summaryrefslogtreecommitdiff
path: root/Electronic_Devices_/Chapter16.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_/Chapter16.ipynb')
-rw-r--r--Electronic_Devices_/Chapter16.ipynb299
1 files changed, 0 insertions, 299 deletions
diff --git a/Electronic_Devices_/Chapter16.ipynb b/Electronic_Devices_/Chapter16.ipynb
deleted file mode 100644
index b082e3ac..00000000
--- a/Electronic_Devices_/Chapter16.ipynb
+++ /dev/null
@@ -1,299 +0,0 @@
-{
- "metadata": {
- "name": "Chapter_16"
- },
- "nbformat": 2,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "<h1>Chapter 16: Oscillators<h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "<h3>Example 16.1, Page Number: 524<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "%pylab inline"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "",
- "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].",
- "For more information, type 'help(pylab)'."
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "",
- "import math",
- "R1=10*10**3;",
- "R2=R1;",
- "R=R1;",
- "C1=0.01*10**-6;",
- "C2=C1;",
- "C=C1;",
- "R3=1*10**3;",
- "r_ds=500;",
- "f_r=1/(2*math.pi*R*C);",
- "print('resonant frequency of the Wein-bridge oscillator in Hertz = %.4f'%f_r)",
- "#closed loop gain A_v=3 to sustain oscillations",
- "A_v=3;",
- "#A_v=(R_f+R_i)+1 where R_i is composed of R3 and r_ds",
- "R_f=(A_v-1)*(R3+r_ds);",
- "print('value of R_f in ohms = %d'%R_f)"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resonant frequency of the Wein-bridge oscillator in Hertz = 1591.5494",
- "value of R_f in ohms = 3000"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "source": [
- "<h3>Example 16.2, Page Number: 525<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "",
- "import math",
- "A_cl=29; #A_cl=R_f/R_i;",
- "R3=10*10**3;",
- "R_f=A_cl*R3;",
- "print('value of R_f in ohms = %d'%R_f)",
- "#let R1=R2=R3=R and C1=C2=C3=C",
- "R=R3;",
- "C3=0.001*10**-6;",
- "C=C3;",
- "f_r=1/(2*math.pi*math.sqrt(6)*R*C);",
- "print('frequency of oscillation in Hertz = %f'%f_r)"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of R_f in ohms = 290000",
- "frequency of oscillation in Hertz = 6497.473344"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "source": [
- "<h3>Example 16.3, Page Number: 530<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "",
- "import math",
- "C1=0.1*10**-6;",
- "C2=0.01*10**-6;",
- "L=50.0*10**-3; #in Henry",
- "C_T=C1*C2/(C1+C2); #total capacitance",
- "f_r=1/(2*math.pi*math.sqrt((L*C_T)));",
- "print('frequency of oscillation in Hertz when Q>10 is \\n\\t %f'%f_r)",
- "Q=8.0; #when Q drops to 8",
- "f_r1=(1/(2*math.pi*math.sqrt((L*C_T))))*math.sqrt((Q**2/(1+Q**2)));",
- "print('frequency of oscillation in hertz when Q=8 is \\n \\t %f'%f_r1)"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency of oscillation in Hertz when Q>10 is ",
- "\t 7465.028533",
- "frequency of oscillation in hertz when Q=8 is ",
- " \t 7407.382663"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "markdown",
- "source": [
- "<h3>Example 16.4, Page Number: 535<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "",
- "R1=10.0*10**3;",
- "R2=33.0*10**3;",
- "R3=10.0*10**3;",
- "C=0.01*10**-6;",
- "f_r=(1/(4*R1*C))*(R2/R3);",
- "print('frequency of oscillation in hertz is \\n\\t%d'%f_r)",
- "#the value of R1 when frequency of oscillation is 20 kHz",
- "f=20.0*10**3;",
- "R1=(1/(4*f*C))*(R2/R3);",
- "print('value of R1 in ohms to make frequency 20 kiloHertz is \\n\\t%d'%R1)"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency of oscillation in hertz is ",
- "\t8250",
- "value of R1 in ohms to make frequency 20 kiloHertz is ",
- "\t4125"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "source": [
- "<h3>Example 16.5, Page Number: 537<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "",
- "import pylab",
- "import numpy",
- "V=15.0;",
- "C=0.0047*10**-6;",
- "R3=10.0*10**3;",
- "R4=R3;",
- "R2=10.0*10**3;",
- "R1=68.0*10**3;",
- "R_i=100.0*10**3;",
- "V_G=R4*V/(R3+R4); #gate voltage at which PUT turns on",
- "V_p=V_G; #neglecting 0.7V, this the peak voltage of sawtooth wave",
- "print('neglecting 0.7V, the peak voltage of sawtooth wave = %.1f V'%V_p)",
- "V_F=1.0; #minimum peak value of sawtooth wave",
- "V_pp=V_p-V_F;",
- "print('peak to peak amplitude of the sawtooth wave = %.1f V'%V_pp)",
- "V_IN=-V*R2/(R1+R2);",
- "f=(abs(V_IN)/(R_i*C))*(1/(V_pp));",
- "print('frequency of the sawtooth wave = %.1f Hz'%f)",
- "",
- "#############PLOT###############################",
- "",
- "t = arange(0.0, 2.0, 0.0005)",
- "t1= arange(2.0, 4.0, 0.0005)",
- "t2= arange(4.0, 6.0, 0.0005)",
- "k=arange(0.1,7.5, 0.0005)",
- "t3=(2*k)/k",
- "t4=(4*k)/k",
- "t6=(6*k)/k",
- "",
- "subplot(111)",
- "plot(t, (6.5/2)*t+1)",
- "plot(t1, (6.5/2)*t+1,'b')",
- "plot(t2, (6.5/2)*t+1,'b')",
- "plot(t3,k,'b')",
- "plot(t4,k,'b')",
- "plot(t6,k,'b')",
- "",
- "ylim( (1,8) )",
- "ylabel('Vout')",
- "xlabel('ms')",
- "title('Output of the Circuit')"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "neglecting 0.7V, the peak voltage of sawtooth wave = 7.5 V",
- "peak to peak amplitude of the sawtooth wave = 6.5 V",
- "frequency of the sawtooth wave = 629.5 Hz"
- ]
- },
- {
- "output_type": "pyout",
- "prompt_number": 6,
- "text": [
- "<matplotlib.text.Text at 0xa046eec>"
- ]
- },
- {
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAETCAYAAADJUJaPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVQXax/HfUdFUlBElLoGieOFmgJdM0xETs/LVNLEJ\nUJOsZrJVmaWvuVqJjePdUpya0szuMKuyN0xFQztqgksdxFXZi41BklATKHcR4ez3Dzq8YiDnwN7n\nOfvs32etViqy9yPZwz7nbL6YFEVRQERELqGD9ABERKQeLnUiIhfCpU5E5EK41ImIXAiXOhGRC+FS\nJyJyIVzqZDhHjx7FoEGD0KNHD6SlpbX6+/Pz89GhQwdYLBYHTAeEh4fj8OHDqh/38ccfx8qVK1U/\nLjkXLnVq1dtvv42hQ4eie/fu8PX1xYIFC1BWVmbz+wcGBuLgwYOqzdPe47344ot46qmnUFFRgWnT\npql+/NaUl5dj4cKF6NevH3r06IGBAwfimWeeQUlJCQDgm2++wR//+EfVz/uPf/wDL7zwAgDAbDYj\nICBA9XOQPC51uqGNGzdi6dKl2LhxI8rLy3Hs2DH8+OOPmDRpEq5evWrTMUwmE9T8Grf2Hu/8+fMI\nDQ3V7Pg3Ultbi4kTJ+K7777Dvn37UFFRgaysLPTp0wfHjx9v9f3r6+s1mYtciELUgrKyMsXd3V35\n6KOPmvx6ZWWl4uXlpbz11luKoijKQw89pLzwwguNb//yyy8Vf39/RVEUZfbs2UqHDh2Url27Ku7u\n7sr69euVvLw8xWQyKVu3blX8/PwUX19fZcOGDY3vb+/xmrN161Zl4MCBiqenpzJt2jSlsLBQURRF\nGTBgQOP79+jRQ6mtrW3yfjea95133lH69u2r9OnTR/nb3/7W+D4Wi0VZvXq1EhQUpPTu3Vt54IEH\nlIsXLzY717Zt2xRvb2+lqqqqxY97v379lAMHDiiKoijLly9XZs6cqcyePVvp2bOnsn37dqWkpESZ\nN2+e4ufnp/Tq1UuZPn26oiiKsmPHDmXs2LFNjmUymZRz5841+bhWVVUpN910k9KhQwfF3d1d6dGj\nh1JUVNTiPKQvvFKnFmVmZqKmpgb3339/k1/v3r077r33XnzxxRcAGq5sTSZTs8d477330LdvX3z+\n+eeoqKjAc8891/g2s9mMf//739i/fz/Wrl2LAwcOtOt4VgcPHsSyZcvw0UcfoaioCP369cODDz4I\nADh37lzj+5eXl8PNzc3m4x89ehRnz57FgQMH8NJLLyE3NxcAkJycjLS0NBw+fBhFRUXo1asXnnji\niWbnz8jIwD333INu3bo1+3brn/9aaWlpmDVrFsrKyhAfH485c+agpqYGZ86cwX/+8x8sWrSoxWNd\nf1yTyYRu3bohPT0dfn5+qKioQHl5OXx8fGw6Bjk/LnVqUXFxMfr06YMOHX7/18THx6fxOWAAbXq6\nYvny5ejatSvCw8ORmJiIlJSUdh3P6oMPPsD8+fMRGRmJzp07Y/Xq1cjKysL58+fbfEzrvF26dMGt\nt96KiIgInD59GgDw+uuvY+XKlfDz84ObmxuWL1+Ojz/+uNkXVi9evAhfX1+7zjtmzJjG5/4vXbqE\n9PR0vP766/Dw8ECnTp0wbtw4m49l/bi25+NLzo1LnVrUp08fFBcXN7ucioqK0KdPn3Yd/9oX6vr2\n7YvCwsJ2Hc/KenVu1b17d/Tu3RsXLlxo13GvvZrt1q0bKisrAQA//vgjZsyYgV69eqFXr14IDQ1F\np06d8Msvv/zuGL1797b7z+nv79/444KCAnh6esLDw6ONfwpydVzq1KLRo0ejS5cu+OSTT5r8emVl\nJdLT0zFx4kQADUuzurq68e0///xzk9/f0lMp1145nz9/Hrfccku7jmfl5+eH/Pz8xp9XVVWhpKSk\n8fitae341+vbty/S09Nx6dKlxn+qq6ubvSKPiYnBvn37mvz57JknICAAFy9ebPbuo9Y+btcey94/\nI+kHlzq1yMPDA8uXL8eTTz6Jffv24erVq8jPz8cDDzyAgIAAzJkzBwAQGRmJPXv24NKlS/j555+x\nadOmJsfx9vbGuXPnfnf8lStX4vLly/j222/x9ttv409/+lO7jmcVFxeHHTt24PTp07hy5QqWLVuG\n22+/HX379rXpz93a8a/3l7/8BcuWLWv8JPXrr7+2eP/7nDlzEBAQgJkzZyI3NxcWiwUlJSVYtWoV\n9u7d2+q5fH19cc8992DBggUoLS3F1atXG+9pj4iIwLfffovTp0+jpqYGSUlJTd5XUZTGp128vb1R\nUlKC8vJym/+cpA9c6nRDixcvxqpVq/Dcc8/Bw8MDt99+O/r164cDBw40vsg4Z84cREREIDAwEHff\nfTcefPDBJleCzz//PFauXIlevXrh5Zdfbvz18ePHY+DAgYiJicHixYsRExPTruNZTZw4EX/9618x\nc+ZM+Pn5IS8vD6mpqTb/mZs7/o2ubJ9++mlMmzYNd911F3r27InRo0e3eHti586dkZGRgeDgYEya\nNAkeHh4YNWoULl68iNtvv/13v7+5F43fe+89uLm5ITg4GN7e3khOTgYADB48GC+++CJiYmIwZMgQ\njBs3rsn7Xnus4OBgxMXFYcCAAfD09Gz2qp70yaTwFRNysPz8fAwYMAB1dXXNvghLRG2nyf9Rq1ev\nRlhYGIYOHYr4+HhcuXJFi9MQEdF1VF/q+fn52LZtG7Kzs/H111+jvr7eroe+ZAx8oY5IG53UPmDP\nnj3h5uaG6upqdOzYEdXV1TbfdUDGEBgYyC93J9KI6kvd09MTzz77LPr27YuuXbti8uTJjS+AAbxC\nIyJqK1teAlX96Zdz585h06ZNyM/PR2FhISorK/HBBx/8bjC9/rN8+XLxGTi//BycX3//6Hl2RbH9\nfhbVl/rJkycxZswY9O7dG506dcL999+PzMxMtU9DRETNUH2pBwcH49ixY7h8+TIURUFGRsYNM6dE\nRKQe1Zd6REQE5s6dixEjRuDWW28FADz22GNqn0ZMdHS09AjtwvllcX45ep7dHg7/4iMtvwEBEZGr\nsnV38sv5iIhcCJc6EZEL4VInInIhXOpERC6ES52IyIVwqRMRuRAudSIiF8KlTkTkQrjUiYhcCJe6\nwVgsAL+gV47FIj2BsRnh48+lbjBPPgmEh0tPYVwBAcCaNdJTGFNeHtC5M1BXJz2JtrjUDcRiAf7n\nfwBvb+lJjCknB7h4EQgKkp7EmF57reHfnVT/1kDOhUvdQHbvbrhS4VKXsX59w0J3c5OexHjKy4Ht\n24GOHaUn0R6XuoGsWwdMnSo9hTHl5wP79gGBgdKTGNO2bcDEiYARvpsml7pBZGYChYXAbbdJT2JM\nL78MPPKI6z/0d0a1tcArrwCLFklP4hhc6gaxbh3w7LPGePjpbIqLgfffB556SnoSY/rwQyAkBIiK\nkp7EMbjUDeB//xfIygLmzZOexJheew24/37Az096EuOxWBpey1iyRHoSx+GDQQPYsAF44gmgWzfp\nSYynuhp49VXg0CHpSYxpz56GmwNiYoArV6SncQwudRdXWAjs3Al8/730JMb09tvA6NFAcLD0JMa0\nbl3DVboRXiC14lJ3ccnJwOzZQO/e0pMYT10dsHEj8N570pMYU1YWUFAAzJolPYljcam7sPJy4M03\ngZMnpScxpp07AV9fYMwY6UmMaf36hpsDjHbHEV8odWFvvAFMnsx7oyUoCrB2LfDf/y09iTHl5gJf\nfQUkJkpP4ngG+xxmHFeuAJs2NXwVKTnewYPA5cvAlCnSkxjThg3AggVA9+7Skzie6lfqubm5iIqK\navzHw8MDycnJap+GWvHhhw3hrshI6UmMad06YPFioAMfCztcURHw8ccNd3wZkepX6kOGDMGpU6cA\nABaLBbfccgtmzJih9mnoBqz35m7ZIj2JMeXkAN98A8THS09iTMnJQEIC4OUlPYkMTZ9+ycjIQFBQ\nEAICApr8elJSUuOPo6OjER0dreUYhrN7N9C1K3DnndKTGNP69cDChUCXLtKTGE95ObB1K3DihPQk\n7Wc2m2E2m+1+P02XempqKuKbuVy5dqmT+ox4b66zsIa7rJlXcqxt24BJk4ABA6Qnab/rL3hXrFhh\n0/tp9oxfbW0tdu3ahVlGu0lUmDXcNXOm9CTGZA13eXhIT2I81nCXkZIAzdHsSn3v3r0YPnw4vIz6\nxJYQa7jLaPfmOgNruOubb6QnMSZruGvYMOlJZGn2v35KSgri4uK0Ojw1wxru+vBD6UmMieEuOdab\nAzZtkp5EniZLvaqqChkZGdi2bZsWh6cWMNwlh+EuWdeGu4xOk6XevXt3FBcXa3FoagHDXbIY7pLF\nmwP+H595dREMd8lhuEuWUcNdLeFSdwEMd8liuEuWUcNdLeEXMbsAhrvkMNwly8jhrpbwc5vOMdwl\ni+EuWUYOd7WES13nGO6SxXCXHGu46+xZ6UmcC5e6jjHcJYvhLllGD3e1hEtdxxjuksVwl5zy8obO\ny/Hj0pM4Hz5o1DHemyvHGu567DHpSYzJlcJdauOVuk4x3CWL4S451nBXWpr0JM6JS12nGO6Sw3CX\nLIa7bowrQYcY7pLFcJcchrtax6WuQwx3yWG4SxbDXa3jUtcZhrtkMdwlizcHtI5LXWcY7pLDcJcs\nhrtsw6WuIwx3yWK4SxbDXbbhfeo6wnCXHIa7ZDHcZTt+ztMJhrtkMdwli+Eu23Gp6wTDXbIY7pLD\ncJd9uNR1gOEuWQx3yWK4yz5c6jrAcJcshrvkMNxlPz6Y1AHemyuH4S5ZDHfZj1fqTo7hLlkMd8lh\nuKttNLlSLy0tRWxsLEJCQhAaGopjx45pcRpDYLhLjjXc9dRT0pMYE8NdbaPJqnj66adx77334uOP\nP0ZdXR2qqqq0OI3LY7hLFsNdchjuajvVl3pZWRmOHDmCd955p+EEnTrBg49d24ThLjkMd8liuKvt\nVF/qeXl58PLyQmJiIk6fPo3hw4dj8+bN6HbNZkpKSmr8cXR0NKKjo9UeQ/cY7pLFcJcs3hwAmM1m\nmM1mu9/PpCiKouYgJ0+exOjRo5GZmYmRI0di4cKF6NmzJ1566aWGE5pMUPmULmnp0oarxeRkdY+b\nktLwwlNKirrHdSV1dcCQIQ3hLrU7L9OnA/PmNfybmpeV1fA1Ad9/r+5rSTU1wB/+0PBvPbJ1d6r+\nQqm/vz/8/f0xcuRIAEBsbCyys7PVPo1Ls4a7Fi2SnsSYGO6SxXBX+6i+1H18fBAQEICzv31Nb0ZG\nBsLCwtQ+jUtjuEsOw12yGO5qP00+F27ZsgUJCQmora1FUFAQduzYocVpXBLDXbIY7pLFcFf7abLU\nIyIicOLECS0O7fIY7pLFcJcchrvUwWetnAjDXbIY7pLFcJc6uNSdCMNdshjuksNwl3r4INOJ8N5c\nOfn5QHo6w11SGO5SD6/UnURmJnDhAsNdUhjuksNwl7q41J3EunXAc8/x3lwJ1nDXN99IT2JMDHep\niyvECTDcJYvhLjkMd6mPS90JMNwlh+EuWQx3qY9LXRjDXbIY7pLFmwPUx6UuLDkZmD0b6N1behLj\nqasDNm5sCHeR42VlAQUFwKxZ0pO4Fi51QdZw18mT0pMYE8Ndshju0gbvUxfEcJcchrtkMdylHX6O\nFMJwlyyGu2Qx3KUdLnUhDHfJYrhLDsNd2uJSF8BwlyyGu2Qx3KUtLnUBDHfJYrhLDsNd2uODTwG8\nN1cOw12yGO7SHq/UHYzhLlkMd8lhuMsxuNQdjOEuOQx3yWK4yzG4WhyI4S5ZDHfJYbjLcbjUHYjh\nLjkMd8liuMtxuNQdhOEuWQx3yeLNAY7Dpe4gDHfJYbhLFsNdjsWl7gAMd8liuEsWw12OpcmHOTAw\nED179kTHjh3h5uaG4wb/SgOGu+RYw11JSdKTGJM13MVHSY6jyVI3mUwwm83w9PTU4vC6wnCXLIa7\nZDHc5XiaPSBSFEWrQ+sKw12yGO6Sw3CXDM2u1GNiYtCxY0f8+c9/xqOPPtrk7UnXPBaOjo5GdHS0\nFmOIY7hLFsNdshjuah+z2Qyz2Wz3+2my1I8ePQpfX1/8+uuvmDRpEoKDgzFu3LjGtycZ5AlOhrtk\nMdwlxxruOnFCehL9uv6Cd8WKFTa9nyYPSn19fQEAXl5emDFjhmFfKOW9uXIY7pJlDXf17y89ifGo\nvtSrq6tRUVEBAKiqqsL+/fsxdOhQtU/j9BjuksVwlxxruGvxYulJjEn1p19++eUXzJgxAwBQV1eH\nhIQE3HXXXWqfxukx3CWH4S5ZDHfJUn3l9O/fHzk5OWofVlcY7pLFcJcchrvk8TpSAwx3yWG4SxbD\nXfJafU79hx9+sOnXqIE13PXEE9KTGBPDXbJ4c4C8Vpf6zGZe6ZvFMk+LGO6SYw13LVkiPYkxMdzl\nHFp8+uW7777DmTNnUFZWhp07d0JRFJhMJpSXl6OmpsaRM+oGw12yGO6SxXCXc2jxw3/27Fns2rUL\nZWVl2LVrV+Ov9+jRA9u2bXPIcHrDcJcchrtkMdzlPFpc6vfddx/uu+8+ZGVlYfTo0Y6cSZcY7pLF\ncJcshrucR6sPlLZu3YqtW7c2/tz02ysgb731lnZT6RDDXbIY7pLDcJdzaXWpT5kypXGRX758GZ9+\n+in8eANwEwx3yWK4SxbDXc6l1aUeGxvb5Ofx8fG44447NBtIjxjuksVwlxyGu5yP3Q9Wz549i19/\n/VWLWXSL9+bKYbhLFsNdzqfVK3V3d/fGp19MJhO8vb2xdu1azQfTC4a7ZDHcJcca7kpLk56ErtXq\nUq+srHTEHLrFcJcchrtkMdzlnGxaRZ999hkOHz4Mk8mE8ePHY+rUqVrPpQsMd8liuEsOw13Oq9Wl\nvnTpUpw4cQIJCQlQFAXJycnIzMzE6tWrHTGfU2O4Sw7DXbL27Gl4YZrhLufT6lLfvXs3cnJy0LFj\nRwDAvHnzEBkZafilbg13ff+99CTGxHCXLN4c4LxavfvFZDKhtLS08eelpaWNL5waGcNdchjukmUN\nd113tzM5iRav1BcsWID4+HgsW7YMw4YNw4QJE6AoCg4dOoQ1a9Y4ckanw3CXLIa7ZDHc5dxa/M8y\nePBgLF68GIWFhYiJiUG/fv0QGRmJtWvXwsfHx5EzOh2Gu+Qw3CWL4S7n1+LTLwsXLkRWVhYOHTqE\nQYMGYefOnVi8eDHeeOMNnDVw5MEa7uI31ZXBcJcshrucX6vPqQcGBmLp0qXIyclBamoqPv30U4SE\nhDhiNqfEcJcshrvkWMNd/K5ezq3V/zXq6uqQlpaG+Ph43H333QgODsbOnTsdMZvTsd6byxfoZDDc\nJYvhLn1o8Tn1/fv3IzU1Fbt378Ztt92GuLg4bN26Fe7u7o6cz6kw3CWL4S45DHfpR4tLfc2aNYiL\ni8OGDRvg6enpyJmcFu/NlWMNd732mvQkxsRwl360uNQPHjzYrgPX19djxIgR8Pf3b/Lt8PSK4S5Z\nr7zCcJcUhrv0RbM7TTdv3ozQ0FBUVFRodQqHYrhLTklJwy10DHfJYLhLXzS5h+Cnn37Cnj178Mgj\nj0BRFC1O4VDWcNe8edKTGNOrrzLcJYU3B+iPJtedzzzzDNavX4/y8vJm3550zVeOREdHIzo6Wosx\nVMNwlxyGu2Qx3CXHbDbDbDbb/X6qL/XPP/8cN998M6KiolocKElHXw7IcJcshrtk8eYAOddf8K5Y\nscKm91N9qWdmZiItLQ179uxBTU0NysvLMXfuXLz77rtqn8ohGO6SYw138UvSZTDcpU+qP6e+atUq\nFBQUIC8vD6mpqbjzzjt1u9Ct9+YuWiQ9iTEx3CWL4S590vyLrfWc6WW4S4413MUX6GRYw12JidKT\nkL00/Rw8fvx4jB8/XstTaMYa7tq9W3oSY7KGu/7rv6QnMSaGu/SLD6xawHCXLIa75BQVAZ98Ahg4\nxqprXOrNsN6bu2WL9CTGxHCXLGu4q08f6UmoLbjUm8FwlyyGu+Qw3KV/fHDbDN6bK8ca7nrsMelJ\njInhLv3jlfp1GO6SxXCXHIa7XAOX+nUY7pLDcJcshrtcA1fXNazhrg8/lJ7EmBjukmO9OWDTJulJ\nqL241K/BcJcchrtkMdzlOrjUf8NwlyyGu2Tx5gDXwaX+G4a75DDcJYvhLtfCpY7/vzf3X/+SnsSY\nGO6SxXCXa+F96mC4SxLDXbIY7nI9hv/czHCXLIa7ZDHc5XoMv9QZ7pLFcJcchrtck6GXOsNdshju\nksVwl2sy9FJnuEsWw11yGO5yXYZ+0Mt7c+Uw3CWL4S7XZdgrdYa7ZDHcJYfhLtdm2KXOcJcchrtk\nMdzl2gy50hjuksVwlxyGu1yfIZc6w11yGO6SxXCX6zPcUme4SxbDXbJ4c4DrM9xSZ7hLDsNdshju\nMgbVl3pNTQ3Gjx+PK1euoLa2Fvfddx9Wr16t9mnahOEuWQx3yWK4yxhU/89700034csvv0S3bt1Q\nV1eHsWPH4quvvsLYsWPVPpXdGO6SYw13LV8uPYkxWcNdfJTk+jT5nN3tt1cga2trUV9fD09PTy1O\nYxeGu2Qx3CWL4S7j0GSpWywWDBs2DOfOncPjjz+O0NDQJm9PSkpq/HF0dDSio6O1GKMJhrtkMdwl\nh+EufTKbzTCbzXa/n0lRFEX9cRqUlZVh8uTJWLNmTePiNplM0PCUzbJYGhb6li3AxIkOPbXTSUlp\n+ErClBTHnTMnB5gyBfjhB3Zepk8H5s1r+LejPP88UFnJcF1NDfCHPzT8W49s3Z2aXjd5eHhgypQp\nOHnypJanaRXDXbIY7pJjvTlg0SLpSchRVF/qxcXFKC0tBQBcvnwZX3zxBaKiotQ+jV14b64chrtk\nMdxlPKo/p15UVISHHnoIFosFFosFc+bMwUTB5zwY7pLFcJcchruMSfWlPnToUGRnZ6t92DZjuEsO\nw12yGO4yJpdedQx3yWK4Sw7DXcbl0kud4S45DHfJYrjLuFx2qTPcJYvhLlm8OcC4XHapM9wlh+Eu\nWQx3GZtLLnWGu2Qx3CWL4S5jc8kv2ma4S4413LVkifQkxmQNdyUmSk9CUlzucznDXbIY7pLFcBe5\n3FJnuEsWw11yGO4iwMWWuvXeXKOHi6Tk5DR8oVF8vPQkxpScDCQkAH36SE9CklxqqTPcJYvhLjnW\nmwNOnJCehKS51INk3psrh+EuWQx3kZXLXKkz3CWL4S45DHfRtVxmqa9bx3tzpTDcJYvhLrqWS6xA\nhrtkMdwlh+Euup5LLHWGu+Qw3CWL4S66nu6XOsNdshjuksWbA+h6ul/qDHfJYbhLFsNd1BxdL3WG\nu2Qx3CWL4S5qjq7vU2e4Sw7DXbIY7qKW6PZzPMNdshjuksVwF7VEt0ud4S5ZDHfJYbiLbkSXS53h\nLlkMd8liuItuRJdLneEuWQx3yWG4i1qj+oPngoICTJgwAWFhYQgPD0dycrLap+C9uYIY7pLFcBe1\nRvUrdTc3N7zyyiuIjIxEZWUlhg8fjkmTJiEkJESV4zPcJYvhLjkMd5EtVF/qPj4+8PHxAQC4u7sj\nJCQEhYWFqi11hrvkMNwli+EusoWmqzE/Px+nTp3CqFGjmvx6UlJS44+jo6MRHR1t0/EY7pLFcJcc\nhruMx2w2w2w22/1+mi31yspKxMbGYvPmzXB3d2/ytmuXuj0Y7pLDcJcshruM5/oL3hUrVtj0fpos\n9atXr2LmzJmYPXs2pk+frsoxGe6SxXCXLN4cQLZSfakrioL58+cjNDQUCxcuVO24DHfJYbhLFsNd\nZA/Vb2k8evQo3n//fXz55ZeIiopCVFQU0tPT23VM6725ixapNCTZheEuWQx3kT1U/2syduxYWCwW\nVY/JcJcca7hr+XLpSYzJGu7ioySyldN/7me4SxbDXbIY7iJ7Of1SZ7hLFsNdchjuorZw6qXOcJcs\nhrtkMdxFbeHUS53hLlkMd8lhuIvayqkfVPPeXDkMd8liuIvaymmv1BnuksVwlxyGu6g9nHapM9wl\nh+EuWQx3UXs45cpkuEsWw11yrDcHbN4sPQnplVMudYa75DDcJcsa7po4UXoS0iunW+oMd8liuEsW\nbw6g9nK6pc5wlxyGu2Qx3EVqcKqlbr0391//kp7EmBjuksVwF6nBqe5TZ7hLjjXctWSJ9CTGZA13\nJSZKT0J65zTXBAx3yWK4SxbDXaQWp1nqDHfJYrhLDsNdpCanWOoMd8liuEsWw12kJqdY6gx3yWK4\nSw7DXaQ2p3iwzXtz5TDcJYvhLlKb+JU6w12yGO6Sw3AXaUF8qTPcJYfhLlkMd5EWRFcpw12yGO6S\nw3AXaUV0qTPcJYfhLlkMd5FWxF4otYa7nnhCaoK2MZvN0iO0y5kzZgD6DXfp/eNfXGwGoN+bA/T8\n8T982Cw9gkNostQffvhheHt7Y+jQoS3+Hr2Gu/T8lxoAvvvODEVpCHfpMQmg949/cbEZubn6DXfp\n+ePPpd4OiYmJSE9Pb/Ht1ntzFy3S4uzUmoIChrskffopbw4g7Wiy1MeNG4devXq1+PatWxnukqIo\nwHff6fMq3RXU1jZ8/BnuIq2YFEVRtDhwfn4+pk6diq+//rrpCfX2JCIRkZOwZV07/AGgRp9DiIgI\nTpIJICIidXCpExG5EE2WelxcHMaMGYOzZ88iICAAO3bs0OI0RER0HU2WekpKCgoLC3HlyhUUFBQg\n8beX+tPT0xEcHIxBgwZh7dq1WpxaU7bcf++sCgoKMGHCBISFhSE8PBzJycnSI9mlpqYGo0aNQmRk\nJEJDQ/H8889Lj9Qm9fX1iIqKwtSpU6VHsVtgYCBuvfVWREVF4bbbbpMexy6lpaWIjY1FSEgIQkND\ncezYMemRbJabm4uoqKjGfzw8PG78/6/iIHV1dUpQUJCSl5en1NbWKhEREcqZM2ccdXpVHD58WMnO\nzlbCw8OlR7FbUVGRcurUKUVRFKWiokIZPHiw7j7+VVVViqIoytWrV5VRo0YpR44cEZ7Ifhs3blTi\n4+OVqVOnSo9it8DAQKWkpER6jDaZO3eusn37dkVRGv7+lJaWCk/UNvX19YqPj49y/vz5Fn+Pw55T\nP378OAaHKXu/AAAEdUlEQVQOHIjAwEC4ubnhwQcfxGeffeao06uitfvvnZmPjw8if/tege7u7ggJ\nCUFhYaHwVPbp9lskqLa2FvX19fD09BSeyD4//fQT9uzZg0ceeUS3d4Hpce6ysjIcOXIEDz/8MACg\nU6dO8NBpazojIwNBQUEICAho8fc4bKlfuHChySD+/v64cOGCo05P18jPz8epU6cwatQo6VHsYrFY\nEBkZCW9vb0yYMAGhoaHSI9nlmWeewfr169FBp98I1mQyISYmBiNGjMC2bdukx7FZXl4evLy8kJiY\niGHDhuHRRx9FdXW19FhtkpqaivhWvu+kw/528YuOnENlZSViY2OxefNmuLu7S49jlw4dOiAnJwc/\n/fQTDh8+rKsOyeeff46bb74ZUVFRurzaBYCjR4/i1KlT2Lt3L1599VUcOXJEeiSb1NXVITs7GwsW\nLEB2dja6d++ONWvWSI9lt9raWuzatQuzZs264e9z2FK/5ZZbUFBQ0PjzgoIC+Pv7O+r0BODq1auY\nOXMmZs+ejenTp0uP02YeHh6YMmUKTp48KT2KzTIzM5GWlob+/fsjLi4OBw8exNy5c6XHsouvry8A\nwMvLCzNmzMDx48eFJ7KNv78//P39MXLkSABAbGwssrOzhaey3969ezF8+HB4eXnd8Pc5bKmPGDEC\n33//PfLz81FbW4t//vOfmDZtmqNOb3iKomD+/PkIDQ3FwoULpcexW3FxMUpLSwEAly9fxhdffIGo\nqCjhqWy3atUqFBQUIC8vD6mpqbjzzjvx7rvvSo9ls+rqalRUVAAAqqqqsH//ft3cBebj44OAgACc\nPXsWQMPz0mFhYcJT2S8lJQVxcXGt/j6HZQI6deqEv//975g8eTLq6+sxf/58hISEOOr0qoiLi8Oh\nQ4dQUlKCgIAAvPTSS423azq7o0eP4v3332+8JQ0AVq9ejbvvvlt4MtsUFRXhoYcegsVigcViwZw5\nczBRx99hQm9PR/7yyy+YMWMGgIanMxISEnDXXXcJT2W7LVu2ICEhAbW1tQgKCtLd185UVVUhIyPD\nptcyNAt6ERGR4+nzZXgiImoWlzoRkQvhUiciciFc6kRELoRLnQwpPz8fwcHBSExMxJAhQ5CQkID9\n+/fjjjvuwODBg3HixAkcOnSoMaI0bNgwVFZWSo9N1Cre/UKGlJ+fj0GDBiEnJwehoaEYOXIkIiIi\nsH37dqSlpeGtt96CxWLB0qVLMWbMGFRXV6NLly7o2LGj9OhEN8QrdTKs/v37IywsDCaTCWFhYYiJ\niQEAhIeH48cff8TYsWOxaNEibNmyBZcuXeJCJ13gUifD6tKlS+OPO3TogM6dOzf+uK6uDkuWLMGb\nb76Jy5cv44477kBubq7UqEQ2c/g3nibSix9++AHh4eEIDw/HiRMnkJubiyFDhkiPRXRDvFInw7r+\nS/Wv//mmTZswdOhQREREoHPnzrjnnnscOR5Rm/CFUiIiF8IrdSIiF8KlTkTkQrjUiYhcCJc6EZEL\n4VInInIhXOpERC7k/wD4xTcXWswNTwAAAABJRU5ErkJggg==\n"
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "markdown",
- "source": [
- "<h3>Example 16.6, Page Number: 542<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "",
- "R1=2.2*10**3;",
- "R2=4.7*10**3;",
- "C_ext=0.022*10**-6;",
- "f_r=1.44/((R1+2*R2)*C_ext);",
- "print('frequency of the 555 timer in hertz = %f'%f_r)",
- "duty_cycle=((R1+R2)/(R1+2*R2))*100;",
- "print('duty cycle in percentage = %f'%duty_cycle)"
- ],
- "language": "python",
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency of the 555 timer in hertz = 5642.633229",
- "duty cycle in percentage = 59.482759"
- ]
- }
- ],
- "prompt_number": 7
- }
- ]
- }
- ]
-} \ No newline at end of file