diff options
Diffstat (limited to 'Electronic_Circuits_by_P._Raja/Chapter6.ipynb')
-rwxr-xr-x | Electronic_Circuits_by_P._Raja/Chapter6.ipynb | 519 |
1 files changed, 519 insertions, 0 deletions
diff --git a/Electronic_Circuits_by_P._Raja/Chapter6.ipynb b/Electronic_Circuits_by_P._Raja/Chapter6.ipynb new file mode 100755 index 00000000..59db3bd3 --- /dev/null +++ b/Electronic_Circuits_by_P._Raja/Chapter6.ipynb @@ -0,0 +1,519 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter6 - Oscillators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.1 - page 438" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "Vf= 0.0125 # in volt\n", + "Vo= 0.5 # in volt\n", + "Beta= Vf/Vo \n", + "# For oscillator A*Beta= 1\n", + "A= 1/Beta \n", + "print \"Amplifier Should have a minimum gain of\",A,\"to provide oscillation\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Amplifier Should have a minimum gain of 40.0 to provide oscillation\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.2 - page 439" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import pi, sqrt\n", + "# Given data\n", + "R1= 50 # in kohm\n", + "R1=R1*10**3 # in ohm\n", + "R2=R1 # in ohm\n", + "R3=R2 # in ohm\n", + "C1= 60 # in pF\n", + "C1= C1*10**-12 # in F\n", + "C2=C1 # in F\n", + "C3=C2 # in F\n", + "f= 1/(2*pi*R1*C1*sqrt(6)) \n", + "print \"Frequency of oscilltions = %0.2f kHz\" %( f*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of oscilltions = 21.66 kHz\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.3 - page 445" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import pi\n", + "# Given data\n", + "f=2 # in kHz\n", + "f=f*10**3 # in Hz\n", + "# Let\n", + "R= 10 # in kohm (As R should be greater than 1 kohm)\n", + "R=R*10**3 # in ohm\n", + "# Formula f= 1/(2*pi*R*C)\n", + "C= 1/(2*pi*f*R) # in F\n", + "C= C*10**9 # in nF\n", + "# For Bita to be 1/3, Choose\n", + "R4= R # in ohm\n", + "R3= 2*R4 # in ohm\n", + "print \"Value of C = %0.2f nF\" %C\n", + "print \"Value of R3 = %0.f kohm\" %(R3*10**-3)\n", + "print \"Value of R4 = %0.f kohm\" %(R4*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of C = 7.96 nF\n", + "Value of R3 = 20 kohm\n", + "Value of R4 = 10 kohm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.4 - page 445" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1= 200 # in kohm\n", + "R1=R1*10**3 # in ohm\n", + "R2=R1 # in ohm\n", + "C1= 200 # in pF\n", + "C1= C1*10**-12 # in F\n", + "C2=C1 # in F\n", + "f= 1/(2*pi*R1*C1) # in Hz\n", + "print \"Frequency of oscilltions = %0.2f kHz\" %(f*10**-3)\n", + "\n", + "# Note: Calculation to find the value of f in the book is wrong, so answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of oscilltions = 3.98 kHz\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.5 - page 460" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "L= 100 # in \u00b5H\n", + "L= L*10**-6 # in H\n", + "C1= .001 # in \u00b5F\n", + "C1= C1*10**-6 # in F\n", + "C2= .01 # in \u00b5F\n", + "C2= C2*10**-6 # in F\n", + "C= C1*C2/(C1+C2) # in F\n", + "# (i)\n", + "f= 1/(2*pi*sqrt(L*C)) # in Hz\n", + "print \"Operating frequency = %0.f kHz\" %(round(f*10**-3))\n", + "# (ii)\n", + "Beta= C1/C2 \n", + "print \"Feedback fraction = %0.1f \" %Beta\n", + "# (iii)\n", + "# A*Bita >=1, so Amin*Bita= 1\n", + "Amin= 1/Beta \n", + "print \"Minimum gain to substain oscillations is\",Amin" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Operating frequency = 528 kHz\n", + "Feedback fraction = 0.1 \n", + "Minimum gain to substain oscillations is 10.0\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.6 - page 460" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "L= 15 # in \u00b5H\n", + "L= L*10**-6 # in H\n", + "C1= .004 # in \u00b5F\n", + "C1= C1*10**-6 # in F\n", + "C2= .04 # in \u00b5F\n", + "C2= C2*10**-6 # in F\n", + "C= C1*C2/(C1+C2) # in F\n", + "f= 1/(2*pi*sqrt(L*C)) # in Hz\n", + "print \"Frequency of oscilltions = %0.1f kHz\" %(f*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of oscilltions = 681.5 kHz\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.7 - page 461" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "L= 0.01 # in H\n", + "C= 10 # in pF\n", + "C= C*10**-12 # in F\n", + "f= 1/(2*pi*sqrt(L*C)) # in Hz\n", + "print \"Frequency of oscilltions = %0.2f kHz\" %(f*10**-3)\n", + "# Note: Calculation to find the value of f in the book is wrong, so answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of oscilltions = 503.29 kHz\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.8 - page 463" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "L= 0.8 # in H\n", + "\n", + "C= .08 # in pF\n", + "C= C*10**-12 # in F\n", + "C_M= 1.9 # in pF\n", + "C_M= C_M*10**-12 # in F\n", + "C_T= C*C_M/(C+C_M) # in F\n", + "R=5 # in kohm\n", + "f_s= 1/(2*pi*sqrt(L*C)) # in Hz\n", + "print \"Series resonant frequency = %0.f kHz\" %(f_s*10**-3)\n", + "# (ii)\n", + "f_p= 1/(2*pi*sqrt(L*C_T)) # in Hz\n", + "print \"Parallel resonant frequency = %0.f kHz\" %(f_p*10**-3)\n", + "# Note: Calculation to find the value of parallel resonant frequency in the book is wrong, so answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Series resonant frequency = 629 kHz\n", + "Parallel resonant frequency = 642 kHz\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.10 - page 466" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1= 220 # in kohm\n", + "R1=R1*10**3 # in ohm\n", + "R2=R1 # in ohm\n", + "C1= 250 # in pF\n", + "C1= C1*10**-12 # in F\n", + "C2=C1 # in F\n", + "f= 1/(2*pi*R1*C1) \n", + "print \"Frequency of oscilltions = %0.2f Hz\" %f" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of oscilltions = 2893.73 Hz\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.11 - page 467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import tan\n", + "# Given data\n", + "R= 10 # in kohm\n", + "R=R*10**3 # in ohm\n", + "f=1000 \n", + "fie= 60 # in \u00b0\n", + "# The impedence of given circuit , Z= R+j*1/(omega*C)\n", + "# the phase shift, tan(fie)= imaginary part/ Real part\n", + "# tand(fie) = 1/(omega*R*C)\n", + "C= 1/(2*pi*R*tan(fie*pi/180)) \n", + "print \"The value of C = %0.2f pF\" %(C*10**12)\n", + "# Note : There is an calculation error to evaluate the value of C, So the answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of C = 9188814.92 pF\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R= 10 # in kohm\n", + "R=R*10**3 # in ohm\n", + "f=1000 \n", + "fie= 60 # in \u00b0\n", + "# The impedence of given circuit , Z= R+j*1/(omega*C)\n", + "# the phase shift, tan(fie)= imaginary part/ Real part\n", + "# tand(fie) = 1/(omega*R*C)\n", + "C= 1/(2*pi*R*tan(fie*pi/180)) \n", + "print \"The value of C = %0.2f \u00b5F\" %(C*10**6)\n", + "# Note : There is an calculation error to evaluate the value of C, So the answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of C = 9.19 \u00b5F\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.12 - page 467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "L= 50 # in \u00b5H\n", + "L= L*10**-6 # in H\n", + "C1= 300 # in pF\n", + "C1= C1*10**-12 # in F\n", + "C2= 100 # in pF\n", + "C2= C2*10**-12 # in F\n", + "C_eq= C1*C2/(C1+C2) # in F\n", + "f= 1/(2*pi*sqrt(L*C_eq)) # in Hz\n", + "print \"Frequency of oscillations = %0.1f MHz\" %(f*10**-6)\n", + "Beta= C2/C1 \n", + "# (iii)\n", + "# A*Beta >=1, so A*Bita= 1 (for sustained oscillations)\n", + "Amin= 1/Beta \n", + "print \"Minimum gain to substain oscillations is\",Amin" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of oscillations = 2.6 MHz\n", + "Minimum gain to substain oscillations is 3.0\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 6.14 - page 469" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "L1= 2 # in mH\n", + "L1= L1*10**-3 # in H\n", + "L2= 1.5 # in mH\n", + "L2= L2*10**-3 # in H\n", + "# Formula f= 1/(2*pi*sqrt((L1+L2)*C)\n", + "# For f= 1000 kHz, C will be maximum\n", + "f=1000 # in kHz\n", + "f=f*10**3 # in Hz\n", + "Cmax= 1/((2*pi*f)**2*(L1+L2)) # in F\n", + "# For f= 2000 kHz, C will be maximum\n", + "f=2000 # in kHz\n", + "f=f*10**3 # in Hz\n", + "Cmin= 1/((2*pi*f)**2*(L1+L2)) # in F\n", + "print \"Maximum Capacitance = %0.1f pF\" %(Cmax*10**12)\n", + "print \"Minimum Capacitance = %0.1f pF\" %(Cmin*10**12)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum Capacitance = 7.2 pF\n", + "Minimum Capacitance = 1.8 pF\n" + ] + } + ], + "prompt_number": 19 + } + ], + "metadata": {} + } + ] +} |