summaryrefslogtreecommitdiff
path: root/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb')
-rw-r--r--Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb770
1 files changed, 770 insertions, 0 deletions
diff --git a/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb b/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb
new file mode 100644
index 00000000..5c47a9e8
--- /dev/null
+++ b/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb
@@ -0,0 +1,770 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b9799d17ce9c5e8acfde2941052198091704f3207bfb93e90879b4a048464a60"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter1-Electrical Fundamentals"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.4\n",
+ "import math\n",
+ "ang_d=215.;##given\n",
+ "ang_r=ang_d*math.pi/180.;\n",
+ "print'%s %.2f %s %.2f %s '%(\"%f degree angle is \",ang_d,\" radians\" and \"\",ang_r,\"\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "%f degree angle is 215.00 3.75 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.5\n",
+ "import math\n",
+ "ang_r=2.5;##given\n",
+ "ang_d=2.5*180./math.pi;##angle in degrees\n",
+ "print'%s %.2f %s %.2f %s '%(\"%f degree angle is \",ang_d,\" radians\" and \"\",ang_r,\"\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "%f degree angle is 143.24 2.50 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.6\n",
+ "import math\n",
+ "i_amp=0.075;##given\n",
+ "i_milamp=i_amp*1000.;##current in milliamp.\n",
+ "print'%s %.2f %s'%(\"%f amp current is \",i_milamp,\" mA\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "%f amp current is 75.00 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.7\n",
+ "import math\n",
+ "fq_khz=1495.;##given\n",
+ "fq_Mhz=fq_khz/1000.;\n",
+ "print'%s %.2f %s'%(\" kHz frequency is \",fq_Mhz,\" MHz\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " kHz frequency is 1.50 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.8\n",
+ "import math\n",
+ "c_pF=27000.;##given\n",
+ "c_uF=c_pF/1000.;\n",
+ "print'%s %.2f %s'%(\"picofarad capacitance is \",c_uF,\" microfarad\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "picofarad capacitance is 27.00 microfarad\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.9\n",
+ "import math\n",
+ "c_mA=7.25;##given\n",
+ "c_A=c_mA*1000.;\n",
+ "print'%s %.2f %s'%(\" milliampere current is \",c_A,\" ampere\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " milliampere current is 7250.00 ampere\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Exa:1.10\n",
+ "import math\n",
+ "vg_v=3.75*10**-6;##given\n",
+ "vg_mv=vg_v*1000.;\n",
+ "print'%s %.2e %s'%(\" volt voltage is \",vg_mv,\" mV\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " volt voltage is 3.75e-03 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.11\n",
+ "import math\n",
+ "r=33000.;##in ohms\n",
+ "i=0.003;##in amp\n",
+ "v=i*r;\n",
+ "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage dropped = 99.00 volts\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.12\n",
+ "import math\n",
+ "t=20.*10**-3;##in sec\n",
+ "i=45.*10**-6;##in amp\n",
+ "q=i*t*10**9;\n",
+ "print'%s %.2f %s'%(\"Charge transferred = \",q,\" nC\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Charge transferred = 900.00 nC\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.13\n",
+ "import math\n",
+ "p=0.3;##in watts\n",
+ "v=1500.;##in volts\n",
+ "i=(p/v)*10**6;\n",
+ "print'%s %.2f %s'%(\"Current supplied = \",i,\" microamp\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current supplied = 200.00 microamp\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.14\n",
+ "import math\n",
+ "r=12.;##in ohms\n",
+ "v=6.;##in volts\n",
+ "i=(v/r);\n",
+ "print'%s %.2f %s'%(\"Current = \",i,\" Amp\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current = 0.50 Amp\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.15\n",
+ "import math\n",
+ "r=56.;##in ohms\n",
+ "i=0.1;##in amp\n",
+ "v=i*r;\n",
+ "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage dropped = 5.60 volts\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex16-pg7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.16\n",
+ "import math\n",
+ "v=15.;##in volts\n",
+ "i=0.001;##in amp\n",
+ "r=v/i;\n",
+ "print'%s %.2f %s'%(\"Resistance = \",r,\" ohms\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistance = 15000.00 ohms\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex17-pg7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.17\n",
+ "import math\n",
+ "p=1.724*10**-8;##in ohm-meter\n",
+ "l=8.;##in meters\n",
+ "a=1.*10**-6;##in sq. meter\n",
+ "r=(p*l)/a;\n",
+ "print'%s %.2f %s'%(\"Resistance = \",r,\" ohms\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistance = 0.14 ohms\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex18-pg8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.18\n",
+ "import math\n",
+ "p=1.724*10**-8;##in ohm-meter\n",
+ "l=20.;##in meters\n",
+ "a=1.*10**-6;##in sq. meter\n",
+ "i=5.;##in amperes\n",
+ "r=(p*l)/a;\n",
+ "v=i*r;\n",
+ "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage dropped = 1.72 volts\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex19-pg9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.19\n",
+ "import math\n",
+ "v=3.;##in volts\n",
+ "i=1.5;##in amperes\n",
+ "p=v*i;\n",
+ "print'%s %.2f %s'%(\"Power supplied = \",p,\" watts\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power supplied = 4.50 watts\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex20-pg9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.20\n",
+ "import math\n",
+ "v=4.;##in volts\n",
+ "r=100.;##in ohms\n",
+ "p=(v**2)/r;\n",
+ "print'%s %.2f %s'%(\"Power dissipated = \",p,\" watts\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power dissipated = 0.16 watts\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex21-pg9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.21\n",
+ "import math\n",
+ "i=20.*10**-3;##in amps\n",
+ "r=1000.;##in ohms\n",
+ "p=(i**2)*r;\n",
+ "print'%s %.2f %s'%(\"Power dissipated = \",p,\" watts\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power dissipated = 0.40 watts\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex22-pg10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.22\n",
+ "import math\n",
+ "v=600;##in volts\n",
+ "d=25*10^-3;##in meters\n",
+ "E=(v)/d;\n",
+ "print'%s %.2f %s'%(\"Electric Field Strength = \",E/10000,\" kV/m\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Electric Field Strength = -1.00 kV/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex23-pg13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.23\n",
+ "import math\n",
+ "u=4.*math.pi*10**-7;##in H/m\n",
+ "i=20.;##in amps\n",
+ "d=50.*10**-3;##in meters\n",
+ "B=(u*i)/(2.*math.pi*d);\n",
+ "print'%s %.2e %s'%(\"Flux Density = \",B,\" Tesla\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flux Density = 8.00e-05 Tesla\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex24-pg13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.24\n",
+ "import math\n",
+ "B=(2.5*10**-3);##in Tesla\n",
+ "a=(20.*10**-4);##in sq. meter\n",
+ "flux=B*a;\n",
+ "print'%s %.2e %s'%(\"Flux = \",flux,\" webers\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flux = 5.00e-06 webers\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex25-pg15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.25\n",
+ "import math\n",
+ "B1=0.6;##in Tesla\n",
+ "u1=B1/800.;\n",
+ "u_r1=u1/(4.*math.pi*10**-7);\n",
+ "print'%s %.2f %s'%(\"reltive permitivity at 0.6T = \",u_r1,\"\");\n",
+ "B2=1.6;##in Tesla\n",
+ "u2=0.2/4000.;\n",
+ "u_r2=u2 /(4.*math.pi*10**-7);\n",
+ "print'%s %.2f %s'%(\"\\n reltive permitivity at 1.6T = \",u_r2,\"\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "reltive permitivity at 0.6T = 596.83 \n",
+ "\n",
+ " reltive permitivity at 1.6T = 39.79 \n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex26-pg16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex:1.26\n",
+ "import math\n",
+ "flux=0.8*10**-3;\n",
+ "a=(500.*10**-6);##in sq. meter\n",
+ "l=0.6;##in meter\n",
+ "N=800.;\n",
+ "B=flux/a;\n",
+ "print'%s %.2e %s'%(\"Flux Density = \",B,\" Tesla\");\n",
+ "H=3500.;##in A/m\n",
+ "i=(H*l)/N;\n",
+ "print'%s %.2f %s'%(\"\\n Current required = \",i,\" amp.s\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flux Density = 1.60e+00 Tesla\n",
+ "\n",
+ " Current required = 2.62 amp.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file