summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb')
-rwxr-xr-xElectrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb205
1 files changed, 0 insertions, 205 deletions
diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb
deleted file mode 100755
index 4d37718b..00000000
--- a/Electrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb
+++ /dev/null
@@ -1,205 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h1>Chapter 27: A.c. bridges</h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 1, page no. 485</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine the values of Rx and Cx at balance.\n",
- "from __future__ import division\n",
- "import math\n",
- "import cmath\n",
- "#initializing the variables:\n",
- "R2 = 2500;# in ohms\n",
- "C2 = 0.2E-6;# IN fARADS\n",
- "R3 = 1;\n",
- "R4 = 1;\n",
- "w = 2000*math.pi;\n",
- "#calculation:\n",
- "Rx = R4*(1 + w*w*C2*C2*R2*R2)/(R2*R3*w*w*C2*C2)\n",
- "Cx = R3*C2/(R4*(1 + w*w*C2*C2*R2*R2))\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resistance Rx = R4(1 + w*w*C2*C2*R2*R2)/(R2*R3*w*w*C2*C2) and Capacitance Cx = R3*C2/(R4*(1 + w*w*C2*C2*R2*R2))\"\n",
- "print \"\\n (b)at balance Rx = \",round(Rx/1000,2),\"KOhm and Cx = \", round(Cx*1E9,2),\"nF\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance Rx = R4(1 + w*w*C2*C2*R2*R2)/(R2*R3*w*w*C2*C2) and Capacitance Cx = R3*C2/(R4*(1 + w*w*C2*C2*R2*R2))\n",
- "\n",
- " (b)at balance Rx = 2.75 KOhm and Cx = 18.4 nF"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 2, page no. 487</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine, when the bridge is balanced, (a) the value of resistance R1, and (b) the frequency of the bridge.\n",
- "from __future__ import division\n",
- "import math\n",
- "import cmath\n",
- "#initializing the variables:\n",
- "R2 = 30000;# in ohms\n",
- "R3 = 30000;# in ohms\n",
- "R4 = 1000;# in ohms\n",
- "C2 = 1e-9;# IN fARADS\n",
- "C3 = 1e-9;# IN fARADS\n",
- "\n",
- "#calculation:\n",
- " #the bridge is balanced\n",
- "R1 = R4/((R3/R2) + (C2/C3))\n",
- " #frequency, f\n",
- "f = 1/(2*math.pi*((C2*C3*R2*R3)**0.5))\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resistance R1 = \",R1,\" ohm\\n\"\n",
- "print \"\\n (b)frequency, f is \",round(f,2),\"Hz\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance R1 = 500.0 ohm\n",
- "\n",
- "\n",
- " (b)frequency, f is 5305.16 Hz"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 3, page no. 487</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine, when the bridge is balanced, \n",
- "#(a) the value of resistance Rx, (b) the value of capacitance Cx,\n",
- "#(c) the phase angle of the unknown arm, (d) the power factor of the unknown arm and (e) its loss angle.\n",
- "from __future__ import division\n",
- "import math\n",
- "import cmath\n",
- "#initializing the variables:\n",
- "R3 = 600;# in ohms\n",
- "R4 = 200;# in ohms\n",
- "C2 = 0.2e-6;# IN fARADS\n",
- "C3 = 4000e-12;# IN fARADS\n",
- "f = 1500;#in Hz\n",
- "\n",
- "#calculation:\n",
- " #the bridge is balanced\n",
- " #Resistance, Rx\n",
- "Rx = R4*C3/C2\n",
- " #Capacitance, Cx\n",
- "Cx = C2*R3/R4\n",
- " #Phase angle\n",
- "phi = math.atan(1/(2*math.pi*f*Cx*Rx))\n",
- "phid = phi*180/math.pi# in degrees\n",
- " #Power factor of capacitor\n",
- "Pc = math.cos(phi)\n",
- " #Loss angle,\n",
- "de = 90 - phid\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resistance Rx = \",round(Rx,2),\" ohm\\n\"\n",
- "print \"\\n (b)capacitance, Cx is \",round(Cx*1E9,2),\"pFarad\\n\"\n",
- "print \"\\n (c)phasor diagram = \",round(phid,2),\"deg lead \"\n",
- "print \"\\n (d)power factor is \",round(Pc,2),\" \\n\"\n",
- "print \"\\n (e)Loss angle = \",round(de,2),\"deg\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance Rx = 4.0 ohm\n",
- "\n",
- "\n",
- " (b)capacitance, Cx is 600.0 pFarad\n",
- "\n",
- "\n",
- " (c)phasor diagram = 88.7 deg lead \n",
- "\n",
- " (d)power factor is 0.02 \n",
- "\n",
- "\n",
- " (e)Loss angle = 1.3 deg\n"
- ]
- }
- ],
- "prompt_number": 1
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file