summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_05-checkpoint.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_05-checkpoint.ipynb')
-rwxr-xr-xElectrical_Circuit_Theory_And_Technology/chapter_05-checkpoint.ipynb763
1 files changed, 0 insertions, 763 deletions
diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_05-checkpoint.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_05-checkpoint.ipynb
deleted file mode 100755
index b881dd41..00000000
--- a/Electrical_Circuit_Theory_And_Technology/chapter_05-checkpoint.ipynb
+++ /dev/null
@@ -1,763 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h1>Chapter 5: Series and parallel\n",
- "networks</h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 1, page no. 43</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine (a) the battery voltage V, (b) the total resistance of the circuit, and \n",
- "#(c) the values of resistance of resistors R1, R2 and R3,\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "V1 = 5; # in volts\n",
- "V2 = 2; # in volts\n",
- "V3 = 6; # in volts\n",
- "I = 4; # in Amperes\n",
- "\n",
- "#calculation:\n",
- "Vt = V1 + V2 + V3\n",
- "Rt = Vt/I\n",
- "R1 = V1/I\n",
- "R2 = V2/I\n",
- "R3 = V3/I\n",
- "\n",
- "#results\n",
- "print \"(a) Total Voltage\", Vt,\"Volts(V)\"\n",
- "print \"(b)Total Resistance\", Rt,\"Ohms\"\n",
- "print \"(c)Resistance(R1)\", R1,\"Ohms; Resistance(R2)\", R2,\"Ohms and\"\n",
- "print \"Resistance(R3)\", R3,\"Ohms\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) Total Voltage 13 Volts(V)\n",
- "(b)Total Resistance 3.25 Ohms\n",
- "(c)Resistance(R1) 1.25 Ohms; Resistance(R2) 0.5 Ohms and\n",
- "Resistance(R3) 1.5 Ohms"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 2, page no. 43</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine the p.d. across resistor R3.\n",
- "#Find value of resistor R2\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "V1 = 10; # in volts\n",
- "V2 = 4; # in volts\n",
- "Vt = 25; # in volts\n",
- "Rt = 100; # in ohms\n",
- "\n",
- "#calculation:\n",
- "V3 = Vt - V1 - V2\n",
- "I = Vt/Rt\n",
- "R2 = V2/I\n",
- "\n",
- "#results\n",
- "print \"(a)Voltage(V3)\", V3,\"Volts(V)\"\n",
- "print \"(b)current\", I,\"Amperes(A)\"\n",
- "print \"(c)Resistance(R2)\", R2,\"Ohms\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a)Voltage(V3) 11 Volts(V)\n",
- "(b)current 0.25 Amperes(A)\n",
- "(c)Resistance(R2) 16.0 Ohms"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 3, page no. 44</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the current flowing through, and the p.d. across the 9 ohm resistor. \n",
- "#Find also the power dissipated in the 11 ohm resistor.\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "Vt = 12; # in volts\n",
- "R1 = 4; # in ohms\n",
- "R2 = 9; # in ohms\n",
- "R3 = 11; # in ohms\n",
- "\n",
- "#calculation:\n",
- "Rt = R1 + R2 + R3\n",
- "I = Vt/Rt\n",
- "V9 = I*R2\n",
- "P11 = I*I*R3\n",
- "#results\n",
- "print \"a)current\", I,\"Amperes(A)\\n\"\n",
- "print \"b)Voltage(V2)\", V9,\"Volts(V)\\n\"\n",
- "print \"c)Power\", P11,\"Watt(W)\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)current 0.5 Amperes(A)\n",
- "\n",
- "b)Voltage(V2) 4.5 Volts(V)\n",
- "\n",
- "c)Power 2.75 Watt(W)"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4, page no. 44</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the value of voltage V\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "Vt = 50; # in volts\n",
- "R1 = 4; # in ohms\n",
- "R2 = 6; # in ohms\n",
- "\n",
- "#calculation:\n",
- "Rt = R1 + R2\n",
- "I = Vt/Rt\n",
- "V2 = I*R2\n",
- "\n",
- "#results\n",
- "print \"Voltage(V)\", V2,\"Volts(V)\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Voltage(V) 30.0 Volts(V)"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 5, page no. 45</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine (a) the value of the other resistor, and \n",
- "#(b) the p.d. across the 2 \u0006 resistor. \n",
- "#If the circuit is connected for 50 hours, how much energy is used?\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "Vt = 24; # in volts\n",
- "R1 = 2; # in ohms\n",
- "I = 3; # in Amperes\n",
- "t = 50; # in hrs\n",
- "\n",
- "#calculation:\n",
- "V1 = I*R1\n",
- "R2 = (Vt-(I*R1))/I\n",
- "E = Vt*I*t\n",
- "\n",
- "#results\n",
- "print \"a)Voltage(V1)\", V1,\"Volts(V)\\n\"\n",
- "print \"b)Resistance(R2)\", R2,\"Ohms\\n\"\n",
- "print \"c)Energy(E)\", E/1000,\"kWh\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)Voltage(V1) 6 Volts(V)\n",
- "\n",
- "b)Resistance(R2) 6.0 Ohms\n",
- "\n",
- "c)Energy(E) 3.6 kWh"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 6, page no. 46</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine (a) the reading on the ammeter, and \n",
- "# (b) the value of resistor R2\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "R1 = 5; # in ohms\n",
- "R3 = 20; # in ohms\n",
- "I1 = 8; # in Amperes\n",
- "It = 11; # in Amperes\n",
- "\n",
- "#calculation:\n",
- "Vt = I1*R1\n",
- "I3 = Vt/R3\n",
- "R2 = Vt/(It - I1 - I3)\n",
- "\n",
- "#results\n",
- "print \"a)Ammeter Reading\", I3,\"Amperes(A)\\n\"\n",
- "print \"b)Resistance(R2)\", R2,\"Ohms\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)Ammeter Reading 2.0 Amperes(A)\n",
- "\n",
- "b)Resistance(R2) 40.0 Ohms"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 7, page no. 46</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the total circuit resistance and (b) the current flowing in the 3 ohm resistor.\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "R1 = 3; # in ohms\n",
- "R2 = 6; # in ohms\n",
- "Vt = 12; # in volts\n",
- "\n",
- "#calculation:\n",
- "Rt = R1*R2/(R1 + R2)\n",
- "I1 = (Vt/R1)\n",
- "\n",
- "#Result\n",
- "print \"(a)Total Resistance\", Rt,\"Ohms\\n\"\n",
- "print \"(b)Current(I1)\", I1,\"Amperes(A)\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a)Total Resistance 2.0 Ohms\n",
- "\n",
- "(b)Current(I1) 4.0 Amperes(A)"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 8, page no. 47</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#find (a) the value of the supply voltage V and (b) the value of current I.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R1 = 10;# in ohms\n",
- "R2 = 20;# in ohms\n",
- "R3 = 60;# in ohms\n",
- "I2 = 3;# in Amperes\n",
- "\n",
- "#calculation:\n",
- "Vt = I2*R2\n",
- "I1 = Vt/R1\n",
- "I3 = Vt/R3\n",
- "I = I1 +I2 + I3\n",
- "\n",
- "print \"\\nResult\\n\"\n",
- "print \"\\n(a)Voltage(V) \",Vt,\" Volts(V)\\n\"\n",
- "print \"\\n(b)Total Current(I) \",I,\" Amperes(A)\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "Result\n",
- "\n",
- "\n",
- "(a)Voltage(V) 60 Volts(V)\n",
- "\n",
- "\n",
- "(b)Total Current(I) 10.0 Amperes(A)"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 9, page no. 47</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#state how they must be connected to give an overall resistance of \n",
- "#(a) 1/4 ohm (b) 1 ohm (c) 4/3 ohm (d)2.5 ohm, all four resistors being connected in each case\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 1;# in ohms\n",
- "\n",
- "#calculation\n",
- "R1 = 1/(1/R + 1/R + 1/R + 1/R)\n",
- "R2 = 2*R*2*R/(4*R)\n",
- "R3 = 1/(1/R + 1/R + 1/R) + 1\n",
- "R4 = R*R/(2*R) + 2*R\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n(a)All four in parallel for \",R1,\" ohm\\n\"\n",
- "print \"\\n(b)Two in series, in parallel with another two in series for\",R2,\" ohm\\n\"\n",
- "print \"\\n(c)Three in parallel, in series with one for \",round(R3,2),\" ohm\\n\"\n",
- "print \"\\n(d)Two in parallel, in series with two in series for \",R4,\" ohm\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- "(a)All four in parallel for 0.25 ohm\n",
- "\n",
- "\n",
- "(b)Two in series, in parallel with another two in series for 1.0 ohm\n",
- "\n",
- "\n",
- "(c)Three in parallel, in series with one for 1.33 ohm\n",
- "\n",
- "\n",
- "(d)Two in parallel, in series with two in series for 2.5 ohm\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10, page no. 48</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Find the equivalent resistance for the circuit\n",
- "from __future__ import division\n",
- "#initializing the variables:\n",
- "R1 = 1;# in ohms\n",
- "R2 = 2.2;# in ohms\n",
- "R3 = 3;# in ohms\n",
- "R4 = 6;# in ohms\n",
- "R5 = 18;# in ohms\n",
- "R6 = 4;# in ohms\n",
- "\n",
- "\n",
- "#calculation:\n",
- "R0 = 1/((1/3) + (1/6) + (1/18))\n",
- "Rt = R1 + R2 + R0 + R6\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n Equivalent Resistance \",Rt,\" Ohms\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- " Equivalent Resistance 9.0 Ohms"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 11, page no. 48</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#find (a) the supply current, (b) the current flowing through each resistor and (c) the p.d. across each resistor.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R1 = 2.5;# in ohms\n",
- "R2 = 6;# in ohms\n",
- "R3 = 2;# in ohms\n",
- "R4 = 4;# in ohms\n",
- "Vt = 200;# in volts\n",
- "\n",
- "#calculation:\n",
- "R0 = 1/((1/R2) + (1/R3))\n",
- "Rt = R1 + R0 + R4\n",
- "It = Vt/Rt\n",
- "I1 = It\n",
- "I4 = It\n",
- "I2 = R3*It/(R3+R2)\n",
- "I3 = It - I2\n",
- "V1 = I1*R1\n",
- "V2 = I2*R2\n",
- "V3 = I3*R3\n",
- "V4 = I4*R4\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n (a)Total Current Supply \",It,\" Amperes(A)\\n\"\n",
- "print \"\\n (b)Current through resistors (R1, R2, R3, R4)\\n \",I1,\", \", I2,\", \", I3,\", \", I4,\" Amperes(A) respectively\\n\"\n",
- "print \"\\n (c)voltage across resistors (R1, R2, R3, R4)\\n \",V1,\", \", V2,\", \", V3,\", \", V4,\" Volts(V) respectively\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- " (a)Total Current Supply 25.0 Amperes(A)\n",
- "\n",
- "\n",
- " (b)Current through resistors (R1, R2, R3, R4)\n",
- " 25.0 , 6.25 , 18.75 , 25.0 Amperes(A) respectively\n",
- "\n",
- "\n",
- " (c)voltage across resistors (R1, R2, R3, R4)\n",
- " 62.5 , 37.5 , 37.5 , 100.0 Volts(V) respectively"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 12, page no. 49</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#calculate (a) the value of resistor Rx such that the total power dissipated in the circuit is 2.5 kW, and \n",
- "#(b) the current flowing in each of the four resistors\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R1 = 15;# in ohms\n",
- "R2 = 10;# in ohms\n",
- "R3 = 38;# in ohms\n",
- "Vt = 250;# in volts\n",
- "P = 2500;# in Watt\n",
- "\n",
- "#calculation:\n",
- "It = P/Vt\n",
- "I2 = R1*It/(R1+R2)\n",
- "I1 = It - I2\n",
- "Re1 = 1/((1/R1) + (1/R2))\n",
- "Rt = Vt/It\n",
- "Re2 = Rt - Re1\n",
- "Rx = 1/((1/Re2) - (1/R3))\n",
- "I4 = R3*It/(R3+Rx)\n",
- "I3 = It - I4\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n (a)Resistance (Rx) \",Rx,\" Ohms\\n\"\n",
- "print \"\\n (b)Current through resistors (R1, R2, R3, R4): \\n \",I1,\", \", I2,\", \", I3,\", \"\n",
- "print \", I4,\" Amperes(A) respectively\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance (Rx) 38.0 Ohms\n",
- "\n",
- "\n",
- " (b)Current through resistors (R1, R2, R3, R4): \n",
- " 4.0 , 6.0 , 5.0 , 5.0 Amperes(A) respectively"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 13, page no. 51</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#find the current Ix\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R1 = 8;# in ohms\n",
- "R2 = 2;# in ohms\n",
- "R3 = 1.4;# in ohms\n",
- "R4 = 9;# in ohms\n",
- "R5 = 2;# in ohms\n",
- "Vt = 17;# in volts\n",
- "\n",
- "#calculation:\n",
- "R01 = R1*R2/(R1 + R2)\n",
- "R02 = R01 + R3\n",
- "R03 = R4*R02/(R4 +R02)\n",
- "Rt = R5 + R03\n",
- "It = Vt/Rt\n",
- "I1 = R4*It/(R4 + R02)\n",
- "Ix = R2*I1/(R1 + R2)\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n Current(Ix) \",Ix,\" Amperes(A)\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- " Current(Ix) 0.6 Amperes(A)"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 14, page no. 52</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#find the resistance of one lamp.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "Rt = 150;# in ohms\n",
- "n = 3;# no. of identical lamp\n",
- "\n",
- "#calculation:\n",
- "R = Rt*3# (1/Rt)=(1/R)+(1/R)+(1/R)\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n Resistance \",R,\" Ohms\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- " Resistance 450 Ohms"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 15, page no. 52</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#State (a) the voltage across each lamp,\n",
- "# and (b) the effect of lamp C failing.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "#series connection\n",
- "n = 3;# no. of identical lamp\n",
- "Vt = 150;# in volts\n",
- "\n",
- "#calculation:\n",
- "V = Vt/3# Since each lamp is identical, then V volts across each.\n",
- "\n",
- "print \"\\n\\nResult\\n\\n\"\n",
- "print \"\\n a)Voltage across each resistor = \",V,\" Volts(V)\\n\"\n",
- "print \"\\n b)If lamp C fails, i.e., open circuits, no current will flow and lamps A and B will not operate.\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- "Result\n",
- "\n",
- "\n",
- "\n",
- " a)Voltage across each resistor = 50.0 Volts(V)\n",
- "\n",
- "\n",
- " b)If lamp C fails, i.e., open circuits, no current will flow and lamps A and B will not operate."
- ]
- }
- ],
- "prompt_number": 21
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file