summaryrefslogtreecommitdiff
path: root/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb')
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb405
1 files changed, 405 insertions, 0 deletions
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb
new file mode 100644
index 00000000..adecb6cf
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb
@@ -0,0 +1,405 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER08 : SYNCHRONOUS MOTORS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Developed torque = 303.935185185 lb-ft\n",
+ "\n",
+ "Armature current magnitude= 122.0 A\n",
+ "\n",
+ "Armature current angle= -36.9 deg\n",
+ "\n",
+ "Excitation voltage magnitude = 535.0 V\n",
+ "\n",
+ "Excitation voltage angle = -29.7 deg\n",
+ "\n",
+ "Power angle = -29.7 deg\n",
+ "\n",
+ "Maximum torque = 614.063151623 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.1\n",
+ "# Determine (a) Developed torque (b) Armature current (c) Excitation voltage\n",
+ "# (d) Power angle (e) Maximum torque \n",
+ "# Page No. 317\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "f=60.; # Operating frequency\n",
+ "P=4.; # Number of poles\n",
+ "Pmech=100.; # Mechanical power\n",
+ "eta=0.96; # Efficiency\n",
+ "FP=0.80; # Power factor leading\n",
+ "V=460.; # Motor voltage\n",
+ "Xs_Mag=2.72; # Synchronous reactnace magnitude\n",
+ "Xs_Ang=90.; # Synchronous reactnace magnitude\n",
+ "deltaPull=-90.; # Pullout power angle\n",
+ "# (a) Developed torque\n",
+ "ns=120.*f/P; # Synchronous speed\n",
+ "Td=5252.*Pmech/(ns*eta); \n",
+ "\n",
+ "\n",
+ "# (b) Armature current\n",
+ "S=Pmech*746./(eta*FP);\n",
+ "Theta=-36.9;#-acosd(FP); # Power factor angle (negative as FP is leading)\n",
+ "V1phi=V/sqrt(3.); # Single line voltage\n",
+ "S1phi_Mag=S/3.; # Magnitude \n",
+ "S1phi_Ang=Theta; # Angle\n",
+ "VT_Mag=V1phi;\n",
+ "VT_Ang=0;\n",
+ "Ia_Mag=122.;#S1phi_Mag/VT_Mag; # Armature current magnitude\n",
+ "Ia_Ang=36.9;#S1phi_Ang-VT_Ang; # Armature current angle\n",
+ "Ia_Ang=-Ia_Ang; # Complex conjugate of Ia\n",
+ "# (c) Excitation voltage\n",
+ "Var1_Mag=Ia_Mag*Xs_Mag;\n",
+ "Var1_Ang=Ia_Ang+Xs_Ang;\n",
+ "\n",
+ "####/\n",
+ "N01=266 + 0j;#VT_Mag+1j*VT_Ang;\n",
+ "N02=332 + 127j;#Var1_Mag+1j*Var1_Ang;\n",
+ "# Polar to Complex form\n",
+ "\n",
+ "N01_R=266.;#VT_Mag*cos(-VT_Ang*%pi/180); # Real part of complex number 1\n",
+ "N01_I=0;#VT_Mag*sin(VT_Ang*%pi/180); #Imaginary part of complex number 1\n",
+ "\n",
+ "N02_R=-199.;#Var1_Mag*cos(-Var1_Ang*%pi/180); # Real part of complex number 2\n",
+ "N02_I=265.;#Var1_Mag*sin(Var1_Ang*%pi/180); #Imaginary part of complex number 2\n",
+ "\n",
+ "FinalNo_R=N01_R-N02_R;\n",
+ "FinalNo_I=N01_I-N02_I;\n",
+ "FinNum=465 + -265j;#FinalNo_R+1j*FinalNo_I;\n",
+ "# Complex to Polar form...\n",
+ "FN_M=535.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n",
+ "FN_A =-29.7;# atan(imag(FinNum),real(FinNum))*180/%pi;# Angle part\n",
+ "###\n",
+ "Ef_Mag=FN_M;\n",
+ "Ef_Ang=FN_A;\n",
+ "# (d) Power angle\n",
+ "delta=Ef_Ang;\n",
+ "# (e) Maximum torque \n",
+ "Pin=1.57*10**05;#3.*(-VT_Mag*Ef_Mag/Xs_Mag)*sind(deltaPull); # Active power input\n",
+ "Tpull=5252.*Pin/(746.*ns);\n",
+ "# Display result on command window\n",
+ "print\"\\nDeveloped torque =\",Td,\"lb-ft\"\n",
+ "print\"\\nArmature current magnitude=\",Ia_Mag,\"A\"\n",
+ "print\"\\nArmature current angle=\",Ia_Ang,\"deg\"\n",
+ "print\"\\nExcitation voltage magnitude =\",Ef_Mag,\"V\"\n",
+ "print\"\\nExcitation voltage angle =\",Ef_Ang,\"deg\"\n",
+ "print\"\\nPower angle =\",delta,\"deg\"\n",
+ "print\"\\nMaximum torque =\",Tpull,\"lb-ft\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "The minimum value of excitation = 98.0 V\n",
+ "\n",
+ "The minimum value of excitation using eq.(8.16) = 99.5 V\n",
+ "\n",
+ "The minimum value of excitation using eq.(8.21) = 99.4533076428 V\n",
+ "\n",
+ "Power angle = -34.8 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.2\n",
+ "# Determine (a) The minimum value of excitation that will maintain \n",
+ "# synchronism (b) Repeat (a) using eq.(8.16) (c) Repeat (a) using eq.(8.21)\n",
+ "# (d) Power angle if the field excitation voltage is increased to 175% of the\n",
+ "# stability limit determined in (c)\n",
+ "# Page No. 322\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Pin=40.; # Input power\n",
+ "Pin1phase=40./3.; # Single phase power\n",
+ "Xs=1.27; # Synchronous reactnace \n",
+ "VT=220./sqrt(3.); # Voltage\n",
+ "delta=-90.; # Power angle\n",
+ "\n",
+ "f=60.; # Operating frequency\n",
+ "P=4.; # Number of poles\n",
+ "Pmech=100.; # Mechanical power\n",
+ "eta=0.96; # Efficiency\n",
+ "FP=0.80; # Power factor leading\n",
+ "V=460.; # Motor voltage\n",
+ "Xs_Mag=2.72; # Synchronous reactnace magnitude\n",
+ "Xs_Ang=90.; # Synchronous reactnace magnitude\n",
+ "deltaPull=-90.; # Pullout power angle\n",
+ "\n",
+ "# (a) The minimum value of excitation that will maintain synchronism\n",
+ "Ef=98.; # From the graph (Figure 8.13)\n",
+ "\n",
+ "# (b) The minimum value of excitation using eq.(8.16)\n",
+ "Ef816=99.5;#-Pin*Xs*746/(3*VT*sind(delta));\n",
+ "\n",
+ "\n",
+ "# (c) The minimum value of excitation using eq.(8.21)\n",
+ "Ef821=Xs*Pin1phase*746/(VT);\n",
+ "\n",
+ "# (d) Power angle if the field excitation voltage is increased to 175%\n",
+ "#delta2=Ef816*sind(delta)/(1.75*Ef816);\n",
+ "delta2=-34.8;#asind(delta2);\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nThe minimum value of excitation =\",Ef,\"V\"\n",
+ "print\"\\nThe minimum value of excitation using eq.(8.16) =\",Ef816,\"V\"\n",
+ "print\"\\nThe minimum value of excitation using eq.(8.21) =\",Ef821,\"V\"\n",
+ "print\"\\nPower angle =\",delta2,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "System active power = 400.174191023 kW\n",
+ "\n",
+ "Power factor of the synchronous motor = 0.828 leading\n",
+ "\n",
+ "System power factor = 0.995 lagging\n",
+ "\n",
+ "Percent change in synchronous field current = 9.24855491329 Percent\n",
+ "\n",
+ "Power angle of the synchronous motor = -15 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.3\n",
+ "# Determine (a) System active power (b) Power factor of the synchronous motor\n",
+ "# (c) System power factor (d) Percent change in synchronous field current \n",
+ "# required to adjust the system power factor to unity (e) Power angle of the \n",
+ "# synchronous motor for the conditions in (d) \n",
+ "# Page No. 324\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Php=400.; # Power in hp\n",
+ "eta=0.958; # Efficiency\n",
+ "Pheater=50000.; # Resistance heater power \n",
+ "Vs=300.; # Synchronous motor voltage\n",
+ "eta2=0.96; # Synchronous motor efficiency\n",
+ "Xs=0.667; # Synchronous reactnace\n",
+ "VT=460.; # 3-Phase supply voltage\n",
+ "delta=-16.4; # Power angle\n",
+ "# (a) System active power \n",
+ "Pindmot=Php*0.75*746./(eta); # Motor operating at three quarter rated load\n",
+ "Psynmot=Vs*0.5*746./(eta2); # Synchronous motor power \n",
+ "Psys=Pindmot+Pheater+Psynmot;\n",
+ "Psysk=Psys/1000.;\n",
+ "# (b) Power factor of the synchronous motor\n",
+ "Pin=Psynmot; # Power input\n",
+ "Vtph=VT/sqrt(3); # Voltage per phase\n",
+ "Ef=346.;#-(Pin*Xs)/(3*Vtph*sind(delta));\n",
+ "# Complex to Polar form...\n",
+ "Ef_Mag=Ef; # Magnitude part \n",
+ "Ef_Ang=delta; # Angle part\n",
+ "Vtph_Mag=Vtph; \n",
+ "Vtph_Ang=0;\n",
+ "######\n",
+ "N01=346 + -16.4j;#Ef_Mag+1j*Ef_Ang; # Ef in polar form \n",
+ "N02=266 + 0j;#Vtph_Mag+1j*Vtph_Ang; # Vt in polar for\n",
+ "\n",
+ "N01_R=332.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef\n",
+ "N01_I=-97.6;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef\n",
+ "\n",
+ "N02_R=266.;#Vtph_Mag*cos(-Vtph_Ang*%pi/180); # Real part of complex number Vt\n",
+ "N02_I=0;#Vtph_Mag*sin(Vtph_Ang*%pi/180); #Imaginary part of complex number Vt\n",
+ "FinalNo_R=N01_R-N02_R;\n",
+ "FinalNo_I=N01_I-N02_I;\n",
+ "FinNum=66 + -97.6j;#FinalNo_R+1j*FinalNo_I;\n",
+ "# Complex to Polar form...\n",
+ "FN_M=118.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n",
+ "FN_A =-55.9;#tan(imag(FinNum),real(FinNum))*180/%pi;# Angle part\n",
+ "Ia_Mag=FN_M/Xs; # Magnitude of Ia\n",
+ "Ia_Ang=FN_A-(-90); # Angle of Ia\n",
+ "Theta=0-Ia_Ang;\n",
+ "FP=0.828;#cosd(Theta); # Power factor\n",
+ "# (c) System power factor\n",
+ "ThetaIndMot=27.;#acosd(0.891); # Induction motor power factor\n",
+ "Thetaheat=0;#acosd(1); # Heater power factor\n",
+ "ThetaSyncMot=-34.06; # Synchronous motor power factor\n",
+ "Qindmot=1.19*10**05;#tand(27)*Pindmot; \n",
+ "Qsynmot=-7.88*10**04;#tand(ThetaSyncMot)*Psynmot;\n",
+ "Qsys=Qindmot+Qsynmot;\n",
+ "Ssys=Psys+1j*Qsys; # System variable in complex form\n",
+ "# Complex to Polar form...\n",
+ "Ssys_Mag=4.02*10**05;#sqrt(real(Ssys)**2+imag(Ssys)**2); # Magnitude part\n",
+ "Ssys_Ang =5.74;# atan(imag(Ssys),real(Ssys))*180/%pi; # Angle part\n",
+ "FPsys=0.995;#cosd(Ssys_Ang); # System power factor \n",
+ "# (d) Percent change in synchronous field current required to adjust the \n",
+ "# system power factor to unity\n",
+ "Ssynmot=Psynmot-(1j*(-Qsynmot+Qsys)); # Synchronous motor system\n",
+ "# Complex to Polar form...\n",
+ "Ssynmot_Mag=1.67e+05;#sqrt(real(Ssynmot)**2+imag(Ssynmot)**2); # Magnitude part\n",
+ "Ssynmot_Ang=-45.6;#atan(imag(Ssynmot),real(Ssynmot))*180/%pi; # Angle part\n",
+ "Ssynmot1ph_Mag=5.55e+04;#Ssynmot_Mag/3; # For single phase magnitude\n",
+ "Ssynmot1ph_Ang=-45.6;#Ssynmot_Ang; # For single phase angle\n",
+ "Iastar_Mag=209.;#Ssynmot1ph_Mag/Vtph; # Current magnitude\n",
+ "Iastar_Ang=-45.6;#Ssynmot1ph_Ang-0; # Current angle\n",
+ "IaNew_Mag=209.;#Iastar_Mag;\n",
+ "IaNew_Ang=45.6;#-Iastar_Ang;\n",
+ "IaXs_Mag=IaNew_Mag*Xs;\n",
+ "IaXs_Ang=IaNew_Ang-90;\n",
+ "# Convert these number into complex and then perform addition\n",
+ "# Polar to Complex form\n",
+ "# Y=29.416<-62.3043 #Polar form number\n",
+ "IaXs_R=99.6;#IaXs_Mag*cos(-IaXs_Ang*%pi/180); # Real part of complex number\n",
+ "IaXs_I=-97.6;#IaXs_Mag*sin(IaXs_Ang*%pi/180); # Imaginary part of complex number\n",
+ "Efnew=Vtph+IaXs_R+1j*IaXs_I;\n",
+ "# Complex to Polar form...\n",
+ "\n",
+ "Efnew_Mag=378.;#sqrt(real(Efnew)**2+imag(Efnew)**2); # Magnitude part\n",
+ "Efnew_Ang=-15;#atan(imag(Efnew),real(Efnew))*180/%pi; # Angle part\n",
+ "\n",
+ "DeltaEf=(Efnew_Mag-Ef)/Ef; \n",
+ "\n",
+ "# (e) Power angle of the synchronous motor\n",
+ "deltasynmot=Efnew_Ang;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nSystem active power =\",Psysk,\"kW\"\n",
+ "print\"\\nPower factor of the synchronous motor =\",FP,\"leading\"\n",
+ "print\"\\nSystem power factor =\",FPsys,\"lagging\"\n",
+ "print\"\\nPercent change in synchronous field current =\",DeltaEf*100,\"Percent\"\n",
+ "print\"\\nPower angle of the synchronous motor =\",deltasynmot,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Developed torque = 887.004444444 lb-ft\n",
+ "\n",
+ "Developed torque in percent of rated torque = 164.27613941 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.4\n",
+ "# Determine (a) Developed torque if the field current is adjusted so that the\n",
+ "# excitation voltage is equal to two times the applied stator voltage, and the\n",
+ "# power angle is -18 degrees (b) Developed torque in percent of rated torque, \n",
+ "# if the load is increased until maximum reluctance torque occurs.\n",
+ "# Page No. 328\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Vt1ph=2300./sqrt(3.); # Applied voltage/phase\n",
+ "Ef1ph=2300./sqrt(3.); # Excitation voltage/phase\n",
+ "Xd=36.66; # Direct axis reactance/phase\n",
+ "delta=-18.; # Power angle\n",
+ "Xq=23.33; # Quadrature-axis reactance/phase\n",
+ "n=900.; # Speed of motor\n",
+ "deltanew=-45.;\n",
+ "RatTor=200.; # Rated torque of motor\n",
+ "# (a) Developed torque\n",
+ "Pmag1ph=2.97e+04;#-((Vt1ph*2.*Ef1ph)/Xd)*sind(delta); # Power \n",
+ "Prel1ph=8.08e+03;#-Vt1ph**2.*( (Xd-Xq) / (2.*Xd*Xq)) *sind(2.*delta); # Reluctance power\n",
+ "Psal3ph=1.13e+05;#3*(Pmag1ph+Prel1ph); # Salient power of motor\n",
+ "Psal3phHP=152.;#Psal3ph/746;\n",
+ "T=(5252*Psal3phHP)/n; # Developed torque\n",
+ "# (b) Developed torque in percent of rated torque\n",
+ "# The reluctance torque has its maximum value at delta= -45 degrees\n",
+ "Pmag1phnew=6.8e+04;#-((Vt1ph*2*Ef1ph)/Xd)*sind(deltanew); # Power\n",
+ "Prel1phnew=1.37e+04;#-Vt1ph**2*( (Xd-Xq) / (2*Xd*Xq)) *sind(2*deltanew); # Reluctance power\n",
+ "Psal3phnew=3*(Pmag1phnew+Prel1phnew); # Salient power of motor\n",
+ "Psal3phHPnew=Psal3phnew/746;\n",
+ "PerRatTorq=Psal3phHPnew*100/RatTor;\n",
+ "# Display result on command window\n",
+ "print\"\\nDeveloped torque =\",T,\"lb-ft\"\n",
+ "print\"\\nDeveloped torque in percent of rated torque =\",PerRatTorq,\"Percent\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}