diff options
Diffstat (limited to 'Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam')
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter01.ipynb | 643 | ||||
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter03.ipynb | 690 | ||||
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter04.ipynb | 622 | ||||
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter05.ipynb | 162 | ||||
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex3.4.png | bin | 0 -> 25383 bytes | |||
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.4.png | bin | 0 -> 15898 bytes | |||
-rw-r--r-- | Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.8.png | bin | 0 -> 15657 bytes |
7 files changed, 2117 insertions, 0 deletions
diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter01.ipynb b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter01.ipynb new file mode 100644 index 00000000..80753bfe --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter01.ipynb @@ -0,0 +1,643 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter01: Characterstics of Electric Motors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_1:pg-83" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "615.2 =New speed in rpm \n" + ] + } + ], + "source": [ + "#Electric Drives concepts and application by V.Subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_1\n", + "import math\n", + "V=500.0;# voltage v\n", + "N1=900.0;# speed in rpm\n", + "Ia1=45.0;#armature current in A\n", + "Ia2=21.0;#armature current in A\n", + "R=8;# resistance in ohm\n", + "Ra=1;#armature resistance in ohm\n", + "Eb1=V-(Ia1*Ra);\n", + "Eb2=V-(9*Ia2);\n", + "N2=N1*(Eb2/Eb1);\n", + "print round(N2,1),\"=New speed in rpm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_2:pg-83" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6.93044450468 =The initial breaking torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and application by V.Subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_2\n", + "import math\n", + "V1=400.0;#supply voltage is V\n", + "I1=70.0;#Current in A\n", + "N1=78.5;#speed in rad/sec\n", + "R1=0.3;#resistance in ohm\n", + "I2=90.0;#current in A\n", + "N2=31.4;#Speed in rpm\n", + "Eb1=V1-(I1*R1);\n", + "T1=(Eb1*I1)/N1;\n", + "V2=V1+Eb1;\n", + "R2=(V2/I2)-R1;\n", + "T2=(Eb1*I2)/N1;\n", + "Eb2=(Eb1*N2)/N1;\n", + "I=(V1+Eb2)/R2;\n", + "T=(Eb2+I)/N2;\n", + "print T,\"=The initial breaking torque in Nm \"\n", + "#Calculation error in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_3:pg-84" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.68541150479 =External resistance required in ohm\n" + ] + } + ], + "source": [ + "#Electric drives concepts and application by V.Subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_3\n", + "import math\n", + "V=250.0;#supply voltage V\n", + "Ia1=40.0;#Armature current in A\n", + "R1=0.6;#Resistance in ohm\n", + "N1=2.828;#speed in rpm\n", + "N2=2;#speed in rpm\n", + "Ia2=((Ia1)**2/N1)**(1.0/2);\n", + "Eb1=V-(Ia1*R1);\n", + "Eb=(Ia1/Ia2)*N2;\n", + "Eb2=Eb1/Eb;\n", + "R2=(V-Eb2)/Ia2;\n", + "print R2,\"=External resistance required in ohm\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_4a:pg-85" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9.09764027943 =the effeciency of the motor in % \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_4a\n", + "import math\n", + "V=440.0;# voltage in V\n", + "Ia=80.0;# Current in A\n", + "Na=1200.0;#Speed in rpm\n", + "Na1=125.6;# Speed in rad/sec\n", + "R1=0.55;# Resistance in ohm\n", + "R2=110.0;# Resistance in ohm\n", + "N0=600.0;# Speed in rpm\n", + "N01=62.8;#Speed in rpm\n", + "Nf=300.0;# Speed in rpm\n", + "Nf1=31.4;# Speed in rpm\n", + "Rsh=1.256;# Resistance in ohm\n", + "E=V-(Ia*R1);\n", + "K=E/Na1; \n", + "E1=K*N01;\n", + "Tf=K*Ia;\n", + "E2=E1*(Nf/N0);\n", + "V2=E2+(Ia*R1);\n", + "Is=(V2/Rsh)+Ia;\n", + "Il=Is+(V/R2);\n", + "Pi=V*Il;\n", + "Po=Tf*Nf1;\n", + "Eff=(Po/Pi)*100;\n", + "print Eff,\"=the effeciency of the motor in % \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_4b:pg-86" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "999.450641681 =No load speed in rpm \n", + "230.176511417 =Full load speed in rpm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_4b\n", + "import math\n", + "V=440.0;#voltage in V\n", + "K=3.153;\n", + "Ia=80.0;# Current in A\n", + "Rs=2.0;#Resistance in ohm\n", + "Rsh=1.5;#Resistance in ohm\n", + "R1=0.55;#Resistance in ohm\n", + "Alpha=(Rs/Rsh);\n", + "Vo=(V/Alpha);\n", + "No=(Vo/K);\n", + "N=((60.0*No)/(2*math.pi));\n", + "print N,\"=No load speed in rpm \"\n", + "V2=((V/Rs)-Ia)/((1/Rs)+(1/Rsh));\n", + "E2=V2-(Ia*R1);\n", + "N2=N*(E2/Vo);\n", + "print N2,\"=Full load speed in rpm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_5a:pg-87" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "898.56 =The speed of the motor in rpm \n", + "99.4718394324 =The torque developed in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_5a\n", + "import math\n", + "V=250;# voltage in V\n", + "Ra=0.4;# Resistance in ohm\n", + "Na=480;#Speed in rpm\n", + "Va=125;# voltage in V\n", + "Ia=40;#Current in A\n", + "Vi=V-(Ra*Ia);\n", + "N=Na*(Vi/Va);\n", + "print N,\"=The speed of the motor in rpm \"\n", + "N1=(2*math.pi*N)/60;\n", + "T=(Vi*Ia)/N1;\n", + "print T,\"=The torque developed in Nm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_5b:pg-87" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.725 =The value of resistance in ohm\n", + "99.4718394324 =The torque developed in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_5b\n", + "import math\n", + "V=250.0;# voltage in V\n", + "I=40.0;#Current in A\n", + "Ra=0.4;#Resistance in ohm\n", + "Eb=125.0;# voltage in V\n", + "Na=480.0;#Speed in rpm\n", + "Re=(V-Eb-(I*Ra))/I;\n", + "print Re,\"=The value of resistance in ohm\"\n", + "T=(Eb*I)*60/(2*Na*math.pi);\n", + "print T,\"=The torque developed in Nm \"\n", + "#Result vary due to error in calculation of torque in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_6:pg-87" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "480.763116057 =The speed of motor in rpm \n", + "3.82460039115 =The torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_6\n", + "import math\n", + "V=250.0;# voltage in V\n", + "I=40.0;#Current in A\n", + "R1=2.725;# Resistance in ohm\n", + "R2=3.5;# Resistance in ohm\n", + "Rf=0.15;# Resistance in ohm\n", + "N=480.0;#Speed in rpm\n", + "V1=V-I*(R1+Rf);\n", + "Ir=(V1/R2);\n", + "Ia=I-Ir;\n", + "Eb=V1-(Ia*Rf);\n", + "Nm=N*(V1/Eb);\n", + "print Nm,\"=The speed of motor in rpm \"\n", + "#Result vary due to 125V is used instead of 135V in the textbook\n", + "T=(Eb*Ia)/(2*math.pi*Nm/60);\n", + "print T,\"=The torque in Nm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_7:pg-87" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "242.984096386 =The speed of the motor in rpm \n", + "99.4718394324 =The torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_7\n", + "import math\n", + "V=250;# voltage in V\n", + "I=40;#Current in A\n", + "Ro=0.4;# Resistance in ohm\n", + "R1=2.725;# Resistance in ohm\n", + "R2=3.5;# Resistance in ohm\n", + "Eb=125;# voltage in V\n", + "Na=480;#Speed in rpm\n", + "Na1=50.24;#Speed in rad/sec\n", + "R=((1/R1)+(1/R2));\n", + "Vm=(V-(I*R1))/(R*R1);\n", + "Em=Vm-(I*Ro);\n", + "N=(Em/Eb)*Na;\n", + "print N,\"=The speed of the motor in rpm \"\n", + "N1=(2*math.pi*N)/60;\n", + "Il=(V-Vm)/R1;\n", + "Po=Em*I;\n", + "T=Po/N1;\n", + "print T,\"=The torque in Nm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_8:pg-89" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-84.7104 =The speed in rpm \n", + "164.128535064 =The torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_8\n", + "import math\n", + "V=250.0;# voltage in V\n", + "I=40.0;#Current in A\n", + "R1=0.91;# Resistance in ohm\n", + "Rs=0.95;# Resistance in ohm\n", + "Eb=125.0;# voltage in V\n", + "N1=480.0;#Speed in rpm\n", + "Vm=Rs*I;\n", + "Ia=I-((V-Vm)/2);\n", + "Em=-Vm-(Ia*R1);\n", + "N=-(Em/Eb)*N1;\n", + "print N,\"=The speed in rpm \"\n", + "N2=(2*math.pi*N)/60;\n", + "T=(Em*Ia)/N2;\n", + "print T,\"=The torque in Nm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_10:pg-90" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.56 =Direct on line starting torque in Nm \n", + "0.853333333333 =By Star/delta starter\n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_10\n", + "import math\n", + "Sf=0.04;#Full load slip in %\n", + "Ist=1.0;#Starting current in A\n", + "If1=Ist/8.0;\n", + "T=(8.0)**2*Sf;\n", + "print T,\"=Direct on line starting torque in Nm \"\n", + "S=T/3;\n", + "print S,\"=By Star/delta starter\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_11:pg-90" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.28 =Torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_11\n", + "import math\n", + "Sf1=0.04;#Full load slip in %\n", + "x=(8.0*3)**(1.0/2);\n", + "Tst=(x)**2*Sf1;\n", + "S=Sf1/2.0;\n", + "T=(8)**2*S;\n", + "print T,\"=Torque in Nm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_12:pg-91" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.16 =Torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_12\n", + "import math\n", + "Sf=0.04;#Full load slip in %\n", + "I=5;#Current in A\n", + "Tst=(I)**2*Sf;\n", + "x=((2.0/I)*100)**(1.0/2);\n", + "T=(2.0/I)**2*(I)**2*Sf;\n", + "print T,\"=Torque in Nm \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex1_13:pg-92" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(6.53+2.08j) =The impedence of motor \n", + "(1.0675+2.08j) =The impedence at plugging \n", + "77019.1732775 =The braking torque in Nm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex1_13\n", + "import math\n", + "V=500.0;#Voltage in V\n", + "r1=0.13;#resistance in ohm\n", + "r2=0.32;#resistance in ohm\n", + "x1=0.6j;#reactance in ohm\n", + "x2=1.48j;#reactance in ohm\n", + "rm=250.0;#resistance in ohm\n", + "xm=20;#reactance in ohm\n", + "S=0.05;#Full load slip in %\n", + "Z2=r1+x1+(r2/S)+x2;\n", + "print Z2,\"=The impedence of motor \"\n", + "I2=(V/(math.sqrt(3.0)*(6.853)));\n", + "T1=3*(I2)**2*(r2/S);\n", + "Sb=2-S;\n", + "Sf=2-S+r1;\n", + "Zb=r1+x1+(Sb/Sf)+x2;\n", + "print Zb,\"=The impedence at plugging \"\n", + "I=(V/(math.sqrt(3.0)*(2.336)));\n", + "T2=3*(I)**2.0*(Sb/Sf);\n", + "T=T1+T2;\n", + "print T,\"=The braking torque in Nm \"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter03.ipynb b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter03.ipynb new file mode 100644 index 00000000..add9d188 --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter03.ipynb @@ -0,0 +1,690 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter03: Converters for Feeding Electric Motors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_1:pg-273" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "81.2623533876 =Current in the load in A \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_1\n", + "import math\n", + "Rd=2;#Resistance in ohm\n", + "Eb=150;#Back emf in V\n", + "Vs=400;#Supply voltage in V\n", + "Alpha=0.52;#angle in radian\n", + "Vdia=((2*math.sqrt(2)*Vs*math.cos(Alpha))/math.pi);\n", + "Id=(Vdia-Eb)/Rd;\n", + "Irms=Id/math.sqrt(2);\n", + "print Id,\"=Current in the load in A \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_2:pg-273" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "88.1286627695 =The firing angle in degree \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_2\n", + "import math\n", + "Vs=400;#Supply voltage in V\n", + "Id=80.88;#Current in A\n", + "Rd=2;#Resistance in ohm\n", + "Eb=-150;#Back emf in V\n", + "Vdia=Id*Rd+Eb;\n", + "a=math.acos((Vdia*math.pi)/(2*math.sqrt(2)*Vs));\n", + "Alpha=(a*180)/math.pi;\n", + "print Alpha,\"=The firing angle in degree \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_3:pg-274" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.19163041855 =The overlap angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_3\n", + "import math\n", + "Id=80.88;#Current in A\n", + "Rd=2;#Resistance in ohm\n", + "Xc=0.628;#Reactance in ohm\n", + "Vs=400;#Supply voltage in V\n", + "Eb=150;#Back emf in V\n", + "Z=Id*(Rd+(Xc/math.pi));\n", + "a=math.acos((Z-Eb)/(0.9*Vs));\n", + "Alpha=(a*180)/math.pi;\n", + "c=math.cos(Alpha);\n", + "d=-c/11;\n", + "b=(Id*Xc*2)/(math.pi*Vs);\n", + "X=d-b;\n", + "e=math.acos(X);\n", + "f=(e*180)/math.pi;\n", + "u=f-Alpha;\n", + "print u,\"=The overlap angle in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_4:pg-275" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.10947929815 =The average value of dc current in A \n", + "88.8684912269 =The average value of converter voltage in V \n", + "0.745818730364 =The overlap angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_4\n", + "import math\n", + "Vs=200.0;#Supply voltage in V\n", + "Rd=12.5;#Resistance in ohm\n", + "Xc=0.5;#Reactance in ohm\n", + "pf=0.5;#Powerfactor\n", + "Vdia=0.9*Vs*pf;\n", + "Id=Vdia/(Rd+(Xc/math.pi));\n", + "print Id,\"=The average value of dc current in A \"\n", + "Vd=Id*Rd;\n", + "print Vd,\"=The average value of converter voltage in V \"\n", + "Vc=Vdia-Vd;\n", + "X=pf-((Vc*2.0)/Vs);\n", + "c=math.acos(X);\n", + "d=(c*180.0)/math.pi;\n", + "u=d-60;\n", + "print u,\"=The overlap angle in deg \"\n", + "#Result vary due to error in calculation of overlap angle in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_5:pg-276" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "56.5714285714 =The average value of load current in A \n", + "64.6230664748 =The overlap angle u in deg \n", + "35.1257218105 =The overlap angle u1 in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_5\n", + "import math\n", + "f=50.0;#Frequency in Hz\n", + "Rd=2.5;#Resistance in ohm\n", + "Lc=0.005;#Inductance in mH\n", + "Vs=220.0;#Supply voltage in V\n", + "pf=1;#Powerfactor\n", + "pf1=0.866;#Powerfactor\n", + "Xc=2*math.pi*f*Lc;\n", + "Z=Rd+((2*Xc)/math.pi);\n", + "Vdia=0.9*Vs*pf;\n", + "Id=Vdia/Z;\n", + "print Id,\"=The average value of load current in A \"\n", + "Vd=Id*Rd;\n", + "Vdc=Vdia-Vd;\n", + "a=(1-((Vdc*2)/Vdia));\n", + "b=math.acos(a);\n", + "u=(b*180.0)/math.pi;\n", + "print u,\"=The overlap angle u in deg \"\n", + "Vdia1=0.9*Vs*pf1;\n", + "Id1=Vdia1/Z;\n", + "Vd1=Id1*Rd;\n", + "Vdc1=Vdia1-Vd1;\n", + "V=pf1-((Vdc1*2)/Vs);\n", + "c=math.acos(V);\n", + "d=(c*180.0)/math.pi;\n", + "u1=d-30;\n", + "print u1,\"=The overlap angle u1 in deg \"\n", + "#Result vary due to error in calculation of overlap angle in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_6:pg-277" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.57960292596 =The overlap angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_6\n", + "import math\n", + "Vs=220.0;#Supply voltage in V\n", + "f=50.0;#Frequency in Hz\n", + "Eb=-200.0;#Back emf in V\n", + "Rd=3.0;#Resistance in ohm\n", + "Vdc=200.0;# voltage in V\n", + "Xc=0.314;#Reactance in ohm\n", + "L=0.001;#Inductance in mH\n", + "pf=-0.5;#Powerfactor\n", + "Vdia=0.9*Vs*pf;\n", + "Id=(Vdia-Eb)/(Rd+((2*Xc)/math.pi));\n", + "Vd=Id*Rd+Eb;\n", + "a=-pf+((Vd*2)/Vdc);\n", + "b=math.acos(a);\n", + "c=(b*180.0)/math.pi;\n", + "u=c-120;\n", + "print u,\"=The overlap angle in deg \"\n", + "#Result vary due to error in calculation of overlap angle in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_7:pg-278" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8.86857843179 =the overlap angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_7\n", + "import math\n", + "Id=50.0;#Current in A\n", + "Vs=220.0;#Supply voltage in V\n", + "Vdio=257.4;# voltage in V\n", + "f=50.0;#Frequency in Hz\n", + "L=0.0015;#Inductance in mH\n", + "pf=0.866;#Powerfactor \n", + "Xc=2*math.pi*f*L;\n", + "Vdia=1.17*Vs*pf;\n", + "Vd=Vdia-((3*Id*Xc)/(2*math.pi));\n", + "Vc=Vdia-Vd;\n", + "a=pf-((Vc*2)/Vdio);\n", + "b=math.acos(a);\n", + "c=(b*180.0)/math.pi;\n", + "u=c-30;\n", + "print u,\"=the overlap angle in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_8:pg-280" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "64.9 =load current in A \n", + "20.6382 =Average value of load current in A \n", + "35.7464109768 =Rms value of load current in A \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_8\n", + "import math\n", + "Rd=2.5;#Resistance in ohm\n", + "V=250;# voltage in V\n", + "f=50;#Frequency in Hz\n", + "Vs=150;#Supply voltage in V\n", + "pf=-0.5;#Powerfactor\n", + "Eb=-250;#Back emf in V\n", + "Xc=0.636;#Reactance in ohm\n", + "Vdia=1.17*Vs*pf;\n", + "Id=(Vdia-Eb)/Rd;\n", + "print Id,\"=load current in A \"\n", + "Ith=(Id*Xc)/2;\t\n", + "print Ith,\"=Average value of load current in A \"\n", + "Irms=math.sqrt(3)*Ith;\n", + "print Irms,\"=Rms value of load current in A \"\n", + "#Result vary due to error in calculation of current in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_9:pg-280" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "26.8325105187 =The overlap angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_9\n", + "import math\n", + "L=0.003;#Inductance in mH\n", + "Id=64.9;#Current in A\n", + "V=162.25;#voltage in V\n", + "Vs=150;#Supply voltage in V\n", + "f=50;#Frequency in Hz\n", + "Rd=2.5;#Resistance in ohm\n", + "Eb=-250;#Back emf in V\n", + "pf=-0.5;#Powerfactor\n", + "Xc=2*math.pi*f*L;\n", + "Vdia=(Id*(Rd+((3*Xc)/(2*math.pi))))+Eb;\n", + "a=Vdia/(1.17*Vs);\n", + "b=math.acos(a);\n", + "c=(b*180)/math.pi;\n", + "Alpha=-0.3338;#angle in radian\n", + "X=(3*Id*Xc)/(math.pi*Vs);\n", + "d=math.acos(Alpha-X);\n", + "e=(d*180)/math.pi;\n", + "u=e-c;\n", + "print u,\"=The overlap angle in deg \"\n", + "#Result vary due to error in calculation of overlap angle in the textbook\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_10:pg-280" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "139.752 =Average value of load voltage in V \n", + "9.3168 =Average value of load current in A \n", + "1302.0414336 =Power dissipation in W \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_10\n", + "import math\n", + "Vs=400;#Supply voltage in V\n", + "f=50;#Frequency in Hz\n", + "Rd=15;#Resistance in ohm\n", + "pf=0.2588;#Powerfactor\n", + "Vdia=1.35*Vs*pf;\n", + "print Vdia,\"=Average value of load voltage in V \"\n", + "Id=Vdia/Rd;\n", + "print Id,\"=Average value of load current in A \"\n", + "P=Vdia*Id;\t\n", + "print P,\"=Power dissipation in W \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_11:pg-281" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.24450211813 =The power factor \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_11\n", + "import math\n", + "Alpha=75;#angle in degree\n", + "a=math.cos(Alpha);\n", + "b=a/3.6;\n", + "pf=(3*b)/math.pi;\n", + "print pf,\"=The power factor \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_12:pg-281" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20.7850558657 =The max current in A \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_12\n", + "import math\n", + "Vs=400;#Supply voltage in V\n", + "Id=9.317;#Current in A\n", + "pf=0.2588;#Powerfactor\n", + "Vth=math.sqrt(2)*Vs;\n", + "Ia=math.sqrt(2/3.0)*Id;\n", + "Ith=Ia/math.sqrt(2);\n", + "Imax=Ith/pf;\n", + "print Imax,\"=The max current in A \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_14:pg-282" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.0 =Ripple factor \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_14\n", + "import math\n", + "t0=1.5;#Time in ms\n", + "t1=3;#Time in ms\n", + "Vs=200.0;#Supply voltage in V\n", + "gama=t0/t1;\n", + "Vl=gama*Vs;\n", + "Vrms=math.sqrt(gama)*Vs;\n", + "Rf=(math.sqrt(1-gama))/(math.sqrt(gama));\n", + "print Rf,\"=Ripple factor \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_14:pg-283" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.0 =Ripple factor \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_14\n", + "import math\n", + "t0=1.5;#Time in ms\n", + "t1=3;#Time in ms\n", + "Vs=200.0;#Supply voltage in V\n", + "gama=t0/t1;\n", + "Vl=gama*Vs;\n", + "Vrms=math.sqrt(gama)*Vs;\n", + "Rf=(math.sqrt(1-gama))/(math.sqrt(gama));\n", + "print Rf,\"=Ripple factor \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3_15:pg-284" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23.032 =Maximum current in A \n", + "23.032 =Minimum current in A \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex3_15\n", + "import math\n", + "R=1.5;#Resistance in ohm\n", + "L=3;#Inductance in H\n", + "Ton=2;#Time in ms\n", + "T=6;#Time in ms\n", + "Vs=150.0;#Supply voltage in V\n", + "t=Ton/T;\n", + "tON=L/R;\n", + "Vavg=T*Vs;\n", + "Iavg=Vavg/R;\n", + "P=(Iavg)**2*R;\n", + "Io=23.032;\n", + "I=1-math.exp(-t);\n", + "I1=Io*math.exp(-t);\n", + "Imax=(Vs/R)*I+I1;\n", + "print Imax,\"=Maximum current in A \"\n", + "Imin=Imax*math.exp(-2*t);\n", + "print Imin,\"=Minimum current in A \"\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter04.ipynb b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter04.ipynb new file mode 100644 index 00000000..a32d3adb --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter04.ipynb @@ -0,0 +1,622 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter04: Control of Electric Motors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_1:pg-441" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29.9336056693 =Iavg:\n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_1\n", + "import math\n", + "Eb=50;# voltage in V\n", + "V=120;# voltage in V\n", + "f=50;#frequency in Hz\n", + "R=10;# Resistance in ohm\n", + "a=math.asin(Eb/(math.sqrt(2)*V));\n", + "Alpha=(a*180)/math.pi;\n", + "pf=0.9556;\n", + "Iavg=(1/(2*math.pi*R))*((2*math.sqrt(2)*V*pf)-(Eb*(math.pi-(2*Alpha))));\n", + "print Iavg,\"=Iavg:\"\n", + "#answer wrong in the textbook due to error in calculation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_3:pg-442" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "81.1519777932 =Effeciency in % \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_3\n", + "import math\n", + "P=10000;\n", + "V=240;# voltage in V\n", + "N=1000;#Speed in rpm\n", + "Eff1=0.87;#Effeciency in %\n", + "Vs=250;# voltage in V\n", + "f=50;#frequency in Hz\n", + "Alpha=0.5;#angle\n", + "R=0.40;# Resistance in ohm\n", + "Fdf=1;#fundamental displacement factor\n", + "df=0.9;#distortion factor\n", + "pf=0.9;#the power factor\n", + "Pi=P/Eff1;\n", + "I=Pi/V;\n", + "Eb=V-(I*R);\n", + "Vi=0.9*Vs;\n", + "Eb1=Vi-(I*R);\n", + "N1=(Eb1/Eb)*N;\n", + "Pi1=V*I*pf*(10)**(-3);\n", + "Pi2=(Pi1*N1)/N;\n", + "Vc=0.9*Vs*Alpha;\n", + "Eb2=Vc-(I*R);\n", + "N2=(N*Eb2)/Eb;\n", + "P0=((Pi1*N2)/N)*1000;\n", + "Pi0=Vc*I;\n", + "Eff=(P0/Pi0)*100;\n", + "print Eff,\"=Effeciency in % \"\n", + "#Result vary due to roundoff error\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_4:pg-442" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7794 =powerfactor \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_4\n", + "import math\n", + "V=250;# voltage in V\n", + "f=50;#frequency in Hz\n", + "R=1.5;# Resistance in ohm\n", + "L=30;#inductance in mH\n", + "Eb=100;#Back emf in V\n", + "Alpha=0.866;#angle \n", + "Vc=0.9*V*Alpha;\n", + "Id=(Vc-Eb)/R;\n", + "P=Vc*Id*10**(-3);\n", + "pf=0.9*Alpha;\n", + "print pf,\"=powerfactor \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_5:pg-443" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "57.4863853668 =The firing angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_5\n", + "import math\n", + "N=1800;#Speed in rpm\n", + "I=60;#Current in A\n", + "V=400;# voltage in V\n", + "E=185;#Back emf in V\n", + "N2=900;#Speed in rpm\n", + "R=0.5;# Resistance in ohm\n", + "Vs=V/2.34;\n", + "Vl=V/1.35;\n", + "Vi=V-(I*R);\n", + "V=E+(I*R);\n", + "a=math.acos(V/(2.34*Vs));\n", + "Alpha=(a*180)/math.pi;\n", + "print Alpha,\"=The firing angle in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_6:pg-444" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "71.5063230096 =The firing angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_6\n", + "import math\n", + "V=500;# voltage in V\n", + "Vs=250;# voltage in V\n", + "I=181;#Current in A\n", + "N=1500;#Speed in rpm\n", + "R=0.1;# Resistance in ohm\n", + "f=50;#frequency in Hz\n", + "Eb=Vs-(I*R);\n", + "Eb1=Eb/3;\n", + "A1=math.acos(Vs/(1.35*V));\n", + "Alpha1=(A1*180)/math.pi;\n", + "Ia2=I/9;\n", + "V2=Eb1+(Ia2*R);\n", + "A2=math.acos(V2/(1.35*V));\n", + "Alpha2=(A2*180)/math.pi;\n", + "Vl=Vs/1.35;\n", + "A3=math.acos(V2/(1.35*Vl));\n", + "Alpha3=(A3*180)/math.pi;\n", + "print Alpha3,\"=The firing angle in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_7a:pg-445" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "26.2447091004 =The firing angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_7a\n", + "import math\n", + "V=300;# voltage in V\n", + "Vt=363.25;# voltage in V\n", + "f=60;#frequency in Hz\n", + "Rd=0.02;# Resistance in ohm\n", + "La=0.002;#inductance in H\n", + "Id=500;#Current in A\n", + "N=1500;#Speed in rpm\n", + "Eb=Vt-(Id*Rd);\n", + "A=math.acos(Vt/(1.35*V));\n", + "Alpha=(A*180)/math.pi;\n", + "print Alpha,\"=The firing angle in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_7b:pg-445" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "173.25 =The back emf in V \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_7b\n", + "import math\n", + "V=300;# voltage in V\n", + "Vt=363.25;# voltage in V\n", + "f=60;#frequency in Hz\n", + "Rd=0.02;# Resistance in ohm\n", + "La=0.001;#inductance in H\n", + "Id=500;#Current in A\n", + "N=1500;#Speed in rpm\n", + "Xc=2*math.pi*f*La;\n", + "Z=Rd+((3*Xc)/math.pi);\n", + "Eb=Vt-(Id*Z);\n", + "print Eb,\"=The back emf in V \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_8:pg-446" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.479515813953 =The constant A \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_8\n", + "import math\n", + "V=600;# voltage in V\n", + "R=0.16;# Resistance in ohm\n", + "Ia=210;#Current in A\n", + "N=600;#Speed in rpm\n", + "n=10;#no of unit\n", + "Eb=V-(Ia*R);\n", + "Td=((Eb*Ia)/(2*math.pi*n));\n", + "W=(2*math.pi*N)/60;\n", + "A=Td/(W)**2;\n", + "print A,\"=The constant A \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_9:pg-447" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "360.0 =The back emf in V \n", + "139.321363317 =The firing angle1 in deg \n", + "98.1111258306 =The firing angle2 in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_9\n", + "import math\n", + "V1=500;# voltage in V\n", + "V2=450;# voltage in V\n", + "Vs=420;# voltage in V\n", + "V=400;# voltage in V\n", + "I=60;#Current in A\n", + "R=1.5;# Resistance in ohm\n", + "R1=5;# Resistance in ohm\n", + "Eb=20;#Back emf in V\n", + "f=50;#frequency in Hz\n", + "Vl=V2+Eb;\t\t\n", + "A=math.acos(Vl/(1.35*Vs));\n", + "Alpha1=(A*180)/math.pi;\n", + "Eb1=V2-(I*R);\n", + "print Eb1,\"=The back emf in V \"\n", + "V3=-V2-(I*R);\n", + "Vc=-V2+Eb;\n", + "A1=math.acos(Vc/(1.35*Vs));\n", + "Alpha2=(A1*180)/math.pi;\n", + "print Alpha2,\"=The firing angle1 in deg \"\n", + "Eb2=-V-(I*R);\n", + "Vc1=-V+Eb+(R1*I);\n", + "A2=math.acos(Vc1/(1.35*Vs));\n", + "Alpha3=(A2*180)/math.pi;\n", + "print Alpha3,\"=The firing angle2 in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_10:pg-448" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.1 =The inductance in Henry \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_10\n", + "import math\n", + "V=500.0;# voltage in V\n", + "I=15.0;#Current in A\n", + "t=0.6;#time in sec\n", + "f=80;#frequency in Hz\n", + "Vav=V*t;\n", + "Vi=V-Vav;\n", + "Ton=t/f;\n", + "L=Vi*(Ton/I);\n", + "print L,\"=The inductance in Henry \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_14:pg-449" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.8 =The time ratio \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_14\n", + "import math\n", + "V=440;# voltage in V\n", + "R1=0.07;# Resistance in ohm\n", + "R2=0.05;# Resistance in ohm\n", + "X=0.2;#Reactance in ohm\n", + "N=1420;#Speed in rpm\n", + "Xm=20;#Reactance in ohm\n", + "S1=80;#slip in rpm\n", + "S2=500;#slip in rpm\n", + "Ra=((S2/S1)*R2)-R2;\n", + "R=2*Ra;\n", + "Ra1=4*R2;\n", + "T=(Ra1*2)/R;\n", + "print T,\"=The time ratio \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_15:pg-450" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "115.887603041 =The firing angle in deg \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_15\n", + "import math\n", + "P=1000;\n", + "N=1500;#Speed in rpm\n", + "R2=0.06;# Resistance in ohm\n", + "I2=125.6;#Current in A\n", + "T=1.5;#Time in sec\n", + "N1=1420;#Speed in rpm\n", + "S=(R2*P)/N;\n", + "K=((S/(2*math.pi*N))*(I2)**2*T)/(N1)**2;\n", + "T1=K*(N1)**2;\n", + "N2=750;#Speed in rpm\n", + "S0=0.489;#No load slip\n", + "S2=1.12;#load slip\n", + "T2=K*(N2)**2;\n", + "X1=(T2*S)/T1;\n", + "A=math.acos(-S0/S2);\n", + "Alpha=(A*180)/math.pi;\n", + "print Alpha,\"=The firing angle in deg \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex4_20:pg-452" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "984.782608696 =The speed N1 in rpm \n", + "968.47826087 =The speed N2 in rpm \n", + "946.739130435 =The speed N3 in rpm \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex4_20\n", + "import math\n", + "R=0.05;# Resistance in ohm\n", + "N0=1000.0;#Speed in rpm\n", + "Rf=46.0;# Resistance in ohm\n", + "I1=75.0;#Current in A\n", + "I2=150;#Current in A\n", + "I3=250.0;#Current in A\n", + "V=230;# voltage in V\n", + "Eb=230;#Back emf in V\n", + "If=V/Rf;\n", + "Ia1=I1-If;\n", + "Eb1=V-(Ia1*R);\n", + "N1=(Eb1/Eb)*N0;\n", + "print N1,\"=The speed N1 in rpm \"\n", + "Ia2=I2-If;\n", + "Eb2=V-(Ia2*R);\n", + "N2=(Eb2/Eb)*N0;\n", + "print N2,\"=The speed N2 in rpm \"\n", + "Ia3=I3-If;\n", + "Eb3=V-(Ia3*R);\n", + "N3=(Eb3/Eb)*N0;\n", + "print N3,\"=The speed N3 in rpm \"\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter05.ipynb b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter05.ipynb new file mode 100644 index 00000000..ddf487e0 --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/Chapter05.ipynb @@ -0,0 +1,162 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5:Rating and Heating of Motors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.1:pg-491" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "43.606211467 is The final temperature in deg\n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Example:5.1\n", + "import math\n", + " \n", + "theta1=60;#Temperature rise of motor in degree\n", + "theta2=40.0;#Temperature rise of motor in degree\n", + "e=0.5;#exponential value\n", + "I1=110.0;#current in A\n", + "I2=125;#current in A\n", + "t1=4;#Time in hour\n", + "t2=8;#Time in hour\n", + "theta=theta1/theta2;\n", + "tough=-(1/math.log(0.5));\n", + "thetam1=theta2/e;\n", + "thetam2=thetam1*(I2/I1)**2;\n", + "x=t1/(theta1*tough);\n", + "a=math.e**-x;\n", + "y=t2/(theta1*tough);\n", + "b=math.e**-y;\n", + "thetam=I2*((1-a)/(1-(a*b)));\n", + "print thetam,\" is The final temperature in deg\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.2:pg-492" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.23972921698 is The permissible overloading \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex5_2\n", + "import math\n", + " \n", + "T=100.0;#Temperature rise of motor in degree\n", + "t1=2;#Time in hour\n", + "t2=1.5;#Time in hour\n", + "Alpha=0.5;#Angle in rad\n", + "e=math.e**(-t1/t2);\n", + "thetam=100.0/(1-e);\n", + "t=thetam/T;\n", + "x=math.sqrt((t*(Alpha+1))-Alpha);\n", + "print x,\" is The permissible overloading \"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.3:pg-493" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.071304005 is The permissible overloading of the motor \n" + ] + } + ], + "source": [ + "#Electric Drives:concepts and applications by V.subrahmanyam\n", + "#Publisher:Tata McGraw-Hill \n", + "#Edition:Second \n", + "#Ex5_3\n", + "import math\n", + " \n", + "Alpha=0.4;#Angle in rad\n", + "T1=100;#Temperature rise of motor in degree\n", + "T2=150.0;#Temperature rise of motor in degree\n", + "P=125.0;#Power in KW\n", + "t1=15;#Time in hour\n", + "t2=30.0;#Time in hour\n", + "x=-t1/T1;\n", + "a=math.e**x;\n", + "y=-t2/T2;\n", + "b=math.e**y;\n", + "p=math.sqrt(((Alpha+1)*(1-(a*b)))/(1-a)-Alpha);\n", + "print p,\"is The permissible overloading of the motor \"\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex3.4.png b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex3.4.png Binary files differnew file mode 100644 index 00000000..26fa3a1f --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex3.4.png diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.4.png b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.4.png Binary files differnew file mode 100644 index 00000000..b51d7355 --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.4.png diff --git a/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.8.png b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.8.png Binary files differnew file mode 100644 index 00000000..a07914ca --- /dev/null +++ b/Electric_Drives_Concepts_And_Applications_by_Vedam_Subrahmanyam/screenshots/Ex4.8.png |