summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch5_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch5_1.ipynb')
-rwxr-xr-xChemical_Engineering_Thermodynamics_by_S._Sundaram/ch5_1.ipynb82
1 files changed, 82 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch5_1.ipynb b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch5_1.ipynb
new file mode 100755
index 00000000..d3517ed7
--- /dev/null
+++ b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch5_1.ipynb
@@ -0,0 +1,82 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3e5d8c28d726b79a2c86b3cf54d87d3c39d0c9ab36d48d833fe93313ec8fd001"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Thermodynamic Potentials and Maxwell Relation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page No : 119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "T = 293.0;#Consmath.tant temperature in K\n",
+ "w_NH3 = 20/100.0;#weight of NH3 in an aqueous solution in Kg\n",
+ "w_H2O = 80/100.0;#weight of H2O in an aqueous solution in Kg\n",
+ "V = 40.0;#feed rate in Kg/min\n",
+ "M_NH3 = 17.0;#Molecular weight of NH3\n",
+ "M_H2O = 18.0;#Molecular weight of H20\n",
+ "R = 1.98;#gas consmath.tant in Kcl/Kg mole K\n",
+ "V_s = 62.0;#Rate of heating steam in Kg/min\n",
+ "P1_H2O = 11.6;#Vapour pressure of water in feed in mm Hg\n",
+ "P2_H2O = 17.5;#Vapour pressure of pure water in mm Hg\n",
+ "P1_NH3 = 227.0;#Vapour pressure of NH3 in feed in mm Hg\n",
+ "P2_NH3 = 6350.0;#Vapor pressure of pure NH3 in mm Hg\n",
+ "#From steam tables:\n",
+ "Hs = 666.4;#Enthalpy of steam at 160 deg celsius & 2Kgf/cm**2 in Kcal /Kg \n",
+ "Ss = 1.75;#Entropy of steam at 160 deg celsius & 2Kgf/cm**2V in Kcal/Kg K\n",
+ "Hl = 20.03;#Enthalpy of liquid water at 20 deg celsius in Kcal/Kg\n",
+ "Sl = 0.0612;#Entropy of liquid water at 20 deg celsius in Kcal/Kg K\n",
+ "\n",
+ "#To Calculate the efficiency of the separation process \n",
+ "#Material Balance:\n",
+ "n_NH3 = (V*w_NH3)/M_NH3;#Kg moles of NH3 in feed(tops)\n",
+ "n_H2O = (V*w_H2O)/M_H2O;#Kg moles of H20 in feed(bottoms)\n",
+ "#del_F = del_F_NH3 +del_F_H2O;\n",
+ "del_F = (R*T*n_NH3*math.log(P2_NH3/P1_NH3))+(R*T*n_H2O*math.log(P2_H2O/P1_H2O));#Theoretical minimum work done in Kcal\n",
+ "#The available energy of the steam can be calculated from equation 4.14(page no 110)\n",
+ "del_B = -V_s*((Hl-Hs)-T*(Sl-Ss));#Available energy of the steam in Kcal\n",
+ "E = (del_F/del_B)*100;\n",
+ "print \"The efficiency of the separation process is %f percent\"%(E);\n",
+ "#end\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The efficiency of the separation process is 14.192424 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file