summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch4_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch4_1.ipynb')
-rwxr-xr-xChemical_Engineering_Thermodynamics_by_S._Sundaram/ch4_1.ipynb415
1 files changed, 415 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch4_1.ipynb b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch4_1.ipynb
new file mode 100755
index 00000000..0e734b53
--- /dev/null
+++ b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch4_1.ipynb
@@ -0,0 +1,415 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:cba11d6ad27a555b5f3aecc639d6f99831950fba74d42eb631521eded4620d06"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4 : Second Law of Thermodynamics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1 Page No : 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "Q1 = 250.0;#Heat absorbed in Kcal\n",
+ "T1 = (260+273.0);#Temperature at which engine absorbs heat\n",
+ "T0 = (40+273.0);#Temperature at which engine discards heat\n",
+ "#To Calculate work output, heat rejected, entropy change of system,surronding & total change in entropy and the efficiency of the heat engine\n",
+ "\n",
+ "#(i)Calculation of work output\n",
+ "W = (Q1*((T1-T0)/T1));#Work done umath.sing equations 4.7 & 4.9 given on page no 98\n",
+ "print \"i)The work output of the heat engine is %f Kcal\"%(W);\n",
+ "\n",
+ "#(ii)Calculation of heat rejected\n",
+ "Q2 = (Q1*T0)/T1;\n",
+ "print \" ii)The heat rejected is %f Kcal\"%(Q2);\n",
+ "\n",
+ "#(iii)Calculation of entropy\n",
+ "del_S1 = -(Q1/T1);#Change in the entropy of source in Kcal/Kg K\n",
+ "del_S2 = Q2/T0;#Change in the entropy of math.sink in Kcal/Kg K\n",
+ "del_St = del_S1+del_S2;#Total change in entropy in Kcal/Kg K\n",
+ "print \" iii)Total change in entropy is %d confirming that the process is reversible\"%(del_St);\n",
+ "\n",
+ "#(iv)Calculation of efficiency\n",
+ "n = (W/Q1)*100;\n",
+ "print \" iv)The efficiency of the heat engine is %f percent\"%(n);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The work output of the heat engine is 103.189493 Kcal\n",
+ " ii)The heat rejected is 146.810507 Kcal\n",
+ " iii)Total change in entropy is 0 confirming that the process is reversible\n",
+ " iv)The efficiency of the heat engine is 41.275797 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2 Page No : 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "T1 = 373.0;#Temperature of the saturated steam in K\n",
+ "T2 = 298.0;#Temperature of the saturated water in K\n",
+ "#To calculate the total change in entropy and hence determine the reversibility of the process\n",
+ "\n",
+ "#del_H = del_Q+(V*del_P)\n",
+ "#del_H =del_Q; math.since it is a consmath.tant pressure process\n",
+ "\n",
+ "#From steam table,\n",
+ "#enthalpy of saturated steam at 373K is\n",
+ "H1 = 6348.5;# in Kcal/Kg\n",
+ "#enthalpy of saturated liquid water at 373K is\n",
+ "H2 = 99.15;#in Kcal/Kg\n",
+ "Q = H2-H1;#heat rejected in Kcal/Kg\n",
+ "del_S1 = Q/T1;#change in entropy of the system in Kcal/Kg K\n",
+ "del_S2 = Q/T2;#change in entropy of the surronding in Kcal/Kg K\n",
+ "del_St = del_S1+del_S2;#total change in the entropy in Kcal/Kg K\n",
+ "if(del_St == 0):\n",
+ " print \"Process is reversible\";\n",
+ "else:\n",
+ " print \"Process is irreversible\";\n",
+ "#end\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Process is irreversible\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3 Page No : 91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "Cp = 0.09;#specific heat of metal block in Kcal/Kg K\n",
+ "m = 10.0;#mass of metal block in Kg\n",
+ "T1 = 323.0;#initial temperature of the block in K\n",
+ "T2 = 298.0;#final temperature of the block in K\n",
+ "#consmath.tant pressure process\n",
+ "#To find out entropy change of block,air and total entropy change\n",
+ "\n",
+ "#(i)To calculate the entropy change of block\n",
+ "del_S1 = m*Cp*math.log(T2/T1);\n",
+ "print \"i)Entropy change of block is %f Kcal/Kg K\"%(del_S1);\n",
+ "\n",
+ "#(ii)To calculate the entropy change of air\n",
+ "Q = m*Cp*(T1-T2);#heat absorbed by air = heat rejected by block in Kcal\n",
+ "del_S2 = (Q/T2);\n",
+ "print \" ii)Entropy change of air is %f Kcal/Kg K\"%(del_S2);\n",
+ "\n",
+ "#(iii)To calculate the total entropy change\n",
+ "del_St = del_S1+del_S2;\n",
+ "print \" iii)Total entropy change is %f Kcal/Kg K\"%(del_St);\n",
+ "if(del_St == 0):\n",
+ " print \" Process is reversible\";\n",
+ "else:\n",
+ " print \" Process is irreversible\";\n",
+ "#end\n",
+ "#end \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)Entropy change of block is -0.072503 Kcal/Kg K\n",
+ " ii)Entropy change of air is 0.075503 Kcal/Kg K\n",
+ " iii)Total entropy change is 0.003000 Kcal/Kg K\n",
+ " Process is irreversible\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4 Page No : 94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "m1 = 10 #mass of metal block in Kg\n",
+ "m2 = 50 #mass of water in Kg\n",
+ "Cp1 = 0.09 #Specific heat of metal block in Kcal/Kg K\n",
+ "Cp2 = 1 #Specific heat of water in Kcal/Kg K\n",
+ "T1 = 50 #Initial temperature of block in deg celsius\n",
+ "T2 = 25 #Final temperature of block in deg celsius\n",
+ "\n",
+ "#To calculate the total change in entropy\n",
+ "#Heat lost by block = Heat gained by water\n",
+ "Tf = ((m1*Cp1*T1)+(m2*Cp2*T2))/((m1*Cp1)+(m2*Cp2)) #final temperature of water in deg celsius\n",
+ "Tf1 = Tf+273.16 #final temperature in K\n",
+ "del_S1 = m1*Cp1*math.log(Tf1/(T1+273)) #change in entropy of the block in Kcal/K\n",
+ "del_S2 = m2*Cp2*math.log(Tf1/(T2+273)) #change in entropy of the block in Kcal/K\n",
+ "del_St = del_S1+del_S2\n",
+ "print \"The total change entropy is \",\n",
+ "print \"%.6f\" %del_St,\n",
+ "print \"Kcal/K\"\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total change entropy is 0.030226 Kcal/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5 Page No : 96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "#Air at 20 deg celsius\n",
+ "#P1 = 250;initial pressure in atm\n",
+ "#P2 = 10;final pressure after throttling in atm\n",
+ "\n",
+ "#To calculate the entropy change\n",
+ "#According to the given conditions from figure4.5(page no 103)\n",
+ "S1 = -0.38;#initial entropy in Kcal/Kg K\n",
+ "S2 = -0.15;#final entroy in Kcal/Kg K\n",
+ "del_S = S2-S1;\n",
+ "print \"Change in entropy for the throttling process is %f Kcal/Kg K\"%(del_S);\n",
+ "#From figure 4.6(page no 104), the final temperature is -10 deg celsius\n",
+ "#end \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Change in entropy for the throttling process is 0.230000 Kcal/Kg K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.7 Page No : 101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "#Basis: 1 hour\n",
+ "m = 10.0;#mass of air in Kg\n",
+ "T = 293.0;#Consmath.tant temperature throughout the process in K\n",
+ "#P1 = 1;#Initial pressure in atm\n",
+ "#P2 = 30;#Final pressure in atm\n",
+ "#According to the given data and umath.sing the graph or figure A.2.7 given in page no 105\n",
+ "S1 = 0.02;#Initial entropy in Kcal/Kg\n",
+ "S2 = -0.23;#Final entropy in Kcal/Kg\n",
+ "H1 = 5.0;#Initial enthalpy in Kcal/Kg\n",
+ "H2 = 3.0;#Final enthalpy in Kcal/Kg\n",
+ "\n",
+ "W = -((H2-H1)+T*(S2-S1))*m*(427/(3600*75.0));\n",
+ "print \"The horse power of the compressor is %f hp\"%(W);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The horse power of the compressor is 1.190065 hp\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.8 Page No : 104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "#Basis: 1 Kg of steam\n",
+ "#P1 = 30;Intial pressure in Kgf/cm**2\n",
+ "#P2 = 3;Final pressure in Kgf/cm**2\n",
+ "#T = 300;#Operating temperature\n",
+ "#From figure A.2.8, \n",
+ "H1 = 715.0;#Initial enthalpy of steam in Kcal/Kg\n",
+ "H2 = 625.0;#Final enthalpy of steam in Kcal/Kg\n",
+ "S1 = 1.56;#Initial entropy of steam in Kcal/Kg K\n",
+ "S2 = 1.61;#Final entropy of steam in Kcal/Kg K\n",
+ "Q = -1.0;#heat loss in Kcal/Kg\n",
+ "To = 298;#The lowest surronding temperature in K\n",
+ "\n",
+ "#To calculate the effectiveness of the process\n",
+ "W = (-(H2-H1)+Q);#Actual work output by the turbine in Kcal\n",
+ "#The maximum or available work can be calculated from equation 4.14\n",
+ "del_B = -((H2-H1)-(To*(S2-S1)));# Maximum work that can be obtained in Kcal\n",
+ "E = (W/del_B)*100.0;\n",
+ "print \"The effectiveness of the process is %f percent\"%(E);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The effectiveness of the process is 84.842707 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.9 Page No : 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "m = 1.0;#mass of liquid water in Kg\n",
+ "T1 = 1350.0;#initial temperature in deg celsius\n",
+ "T2 = 400.0;#final temperature in deg celsius\n",
+ "Cp = 1.0;#Specific heat of water in Kcal/Kg K\n",
+ "Cpg = 0.2;#Specific heat of combustion gases in Kcal/Kg K\n",
+ "Hv = 468.35;#Heat of vapourisation at 14 Kgf/cm**2 and 194.16 deg celsius in Kcak/Kg\n",
+ "To = 298.0;#Surronding temperature\n",
+ "Tb = 194.16+273;#Boiling point of liquid water\n",
+ "\n",
+ "#To Calculate the maximum work obtained and the entropy change\n",
+ "#(i)Calculation of maximum work\n",
+ "#Q = del_H = m*Cp*(T2-T1); gas can be assumed to cool at consmath.tant pressure\n",
+ "#From equation 4.14 (page no 110)\n",
+ "del_B = -((m*Cpg*(T2-T1))-(To*m*Cp*math.log((T2+273)/(T1+273))));\n",
+ "print \"i)The maximum work that can be obtained is %f Kcal/Kg of gas\"%(del_B);\n",
+ "\n",
+ "#(ii)To Calculate the change in entropy\n",
+ "del_S =(m*Cp*math.log(Tb/To))+((m*Hv)/Tb);\n",
+ "print \"ii)The entropy change per Kg of water is %f\"%(del_S);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The maximum work that can be obtained is -72.325299 Kcal/Kg of gas\n",
+ "ii)The entropy change per Kg of water is 1.452126\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file