diff options
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch10_1.ipynb')
-rwxr-xr-x | Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch10_1.ipynb | 254 |
1 files changed, 254 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch10_1.ipynb b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch10_1.ipynb new file mode 100755 index 00000000..4e2aff57 --- /dev/null +++ b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch10_1.ipynb @@ -0,0 +1,254 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a053f39727ace41fe9dd23fd039f18e2237a3b4848b2ddbeb10075aa5411107c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10 : Compressor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.1 Page No : 168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#Given\n", + "V1 = 2.7;#flow rate of CO2 in cubic meter/min\n", + "T1 = 273-51;#temperature in K\n", + "P1 = 1.0;#initial pressure in Kgf/sq cm\n", + "P2 = 10.0;#final pressure in Kgf/sq cm\n", + "y = 1.3;#gamma\n", + "v1 = 0.41;#specific volume in cubic meter/Kg\n", + "H1 = 158.7;# initial enthalpy in Kcal/Kg\n", + "H2 = 188.7;#final enthalpy in Kcal/Kg\n", + "\n", + "#process is isentropic\n", + "#To calculate the horsepower required\n", + "\n", + "#(i)Assuming ideal gas behaviour\n", + "#From equation 10.3 (page no 189)\n", + "W = (y/(y-1))*(P1*1.03*10**4*V1)*(1-(P2/P1)**((y-1)/y));#work in m Kgf/min\n", + "W1 = W/4500.0;\n", + "print \"i)The horsepower required is %f hp\"%(W1);\n", + "\n", + "#(ii)Umath.sing the given data for CO2\n", + "#From equation 10.2 (page no 189)\n", + "W = -(H2 - H1);#work in Kcal/Kg\n", + "M = V1/v1;#Mass rate of gas in Kg/min\n", + "W1 = W*M*(427/4500.0);\n", + "print \" ii)Compressor work is %f hp\"%(W1);\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)The horsepower required is -18.779590 hp\n", + " ii)Compressor work is -18.746341 hp\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.2 Page No : 171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "P1 = 1.0;#Initial pressure in atm\n", + "P2 = 29.0;#Final pressure in atm\n", + "C = 0.05;#Clearance\n", + "y = 1.4;#gamma of air\n", + "\n", + "#To calculate the volumetric efficiency and the maximum possible pressure that can be attained in a math.single stage\n", + "#(i)Calulation of volumetric efficiency\n", + "#From equation 10.11 (page no 194)\n", + "V_E = 1+C-C*(P2/P1)**(1/y);\n", + "print \"i)Volumetric efficiency is %f percent\"%(V_E*100);\n", + "\n", + "#(ii)Calculation of maximum pressure \n", + "V_E = 0;#Minimum efficiency\n", + "P2 = P1*(((1+C-V_E)/C)**y);\n", + "print \" ii)The maximum possible pressure attained is %f atm\"%(P2);\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)Volumetric efficiency is 49.596143 percent\n", + " ii)The maximum possible pressure attained is 70.975263 atm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.3 Page No : 174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "V_d = 5.15;#print lacement volume in cubic meter/min\n", + "P1 = 1.0;#initial pressure in Kgf/sq cm\n", + "P2 = 8.5;#final pressure in Kgf/sq cm\n", + "C = 0.06;#Clearance\n", + "M_E = 0.8;#Mechenical efficiency\n", + "y = 1.31;#gamma\n", + "\n", + "#To calculate the capacity and the actual horse power of the compressor\n", + "v1 = V_d*(1+C-(C*((P2/P1)**(1/y))));\n", + "print \"The capacity of the copressor is %f cubic meter/min\"%(v1);\n", + "#From equation 10.6 (page no 192)\n", + "W = (y/(y-1))*(P1*1*10**4*v1)*(1-(P2/P1)**((y-1)/y));#work in Kgf/min\n", + "W1 = W/4500.0;#work in hp\n", + "W2 = W1/M_E;\n", + "print \" The actual horse power of the compressor is %f hp\"%(W2);\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The capacity of the copressor is 3.876154 cubic meter/min\n", + " The actual horse power of the compressor is -30.000346 hp\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.4 Page No : 177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "P1 = 1.0;#Initial pressure in Kgf/sq cm\n", + "Pn = 13.0;#Final pressure in Kgf/sq cm\n", + "V1 =27.0;#flow rate of gas in cubic meter/min\n", + "y = 1.6;#gamma of the gas\n", + "n = [1.0,2.0,3.0,4.0,7.0,10.0];#number of stages\n", + "print \"No of stages Horse power in hp\";\n", + "#To Calculate the theoretical horse power required\n", + "W = []\n", + "for i in range(0,6):\n", + " W.append(n[i]*(y/(y-1))*((P1*10**4)/4500)*V1*(1-(Pn/P1)**((y-1)/(n[i]*y))));\n", + " print \" %d\"%(n[i]),\n", + " print \" %f\"%(-1*W[i])\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "No of stages Horse power in hp\n", + " 1 258.647729\n", + " 2 197.623943\n", + " 3 181.430407\n", + " 4 173.977056\n", + " 7 164.971690\n", + " 10 161.541416\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.5 Page No : 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "P1 = 1.0;#Initial pressure in Kgf/sq cm\n", + "P4 = 200.0;#Final pressure in Kgf/sq cm\n", + "n = 4.0;#no of stages\n", + "\n", + "#To find out the presure between stages\n", + "r = (P4/P1)**(1/n);#Compression ratio\n", + "P2 = r*P1;\n", + "print \"The pressure after 1st stage is %f Kgf/sq cm\"%(P2);\n", + "P3 = r*P2;\n", + "print \" The pressure after 2nd stage is %f Kgf/sq cm\"%(P3);\n", + "P4 = r*P3;\n", + "print \" The pressure after 3rd stage is %f Kgf/sq cm\"%(P4);\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The pressure after 1st stage is 3.760603 Kgf/sq cm\n", + " The pressure after 2nd stage is 14.142136 Kgf/sq cm\n", + " The pressure after 3rd stage is 53.182959 Kgf/sq cm\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |