summaryrefslogtreecommitdiff
path: root/Basic_Fluid_Mechanics
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Fluid_Mechanics')
-rwxr-xr-xBasic_Fluid_Mechanics/README.txt10
-rwxr-xr-xBasic_Fluid_Mechanics/ch10.ipynb353
-rwxr-xr-xBasic_Fluid_Mechanics/ch11.ipynb443
-rwxr-xr-xBasic_Fluid_Mechanics/ch12.ipynb302
-rwxr-xr-xBasic_Fluid_Mechanics/ch13.ipynb185
-rwxr-xr-xBasic_Fluid_Mechanics/ch14.ipynb148
-rwxr-xr-xBasic_Fluid_Mechanics/ch2.ipynb309
-rwxr-xr-xBasic_Fluid_Mechanics/ch3.ipynb160
-rwxr-xr-xBasic_Fluid_Mechanics/ch5.ipynb212
-rwxr-xr-xBasic_Fluid_Mechanics/ch6.ipynb391
-rwxr-xr-xBasic_Fluid_Mechanics/ch7.ipynb523
-rwxr-xr-xBasic_Fluid_Mechanics/ch8.ipynb148
-rwxr-xr-xBasic_Fluid_Mechanics/ch9.ipynb126
-rwxr-xr-xBasic_Fluid_Mechanics/screenshots/Streamlinedbody_curve.pngbin0 -> 12270 bytes
-rwxr-xr-xBasic_Fluid_Mechanics/screenshots/VariationsOfEpEhEp+EhwithT.pngbin0 -> 19796 bytes
-rwxr-xr-xBasic_Fluid_Mechanics/screenshots/actual_perfomance_curve.pngbin0 -> 14179 bytes
16 files changed, 3310 insertions, 0 deletions
diff --git a/Basic_Fluid_Mechanics/README.txt b/Basic_Fluid_Mechanics/README.txt
new file mode 100755
index 00000000..9fe52d79
--- /dev/null
+++ b/Basic_Fluid_Mechanics/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Jatin Patel
+Course: bca
+College/Institute/Organization: Freelancing work
+Department/Designation: Freelancer
+Book Title: Basic Fluid Mechanics
+Author: Peerless
+Publisher: Pergamon Press
+Year of publication: 1967
+Isbn: 978-0080110981
+Edition: 1 \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch10.ipynb b/Basic_Fluid_Mechanics/ch10.ipynb
new file mode 100755
index 00000000..805fdf34
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch10.ipynb
@@ -0,0 +1,353 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:deacbf9acb1071d19b96737be4ae4bdcb6a5696a34ffaedecc8c1b87e6d2a62b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10 : External Flows"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1 Page No : 367"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from numpy import *\n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "u= 3.6*10**-5 \t#lbf sec/ft**2 viscosity\n",
+ "d= 64. \t#lbm/ft**2 density\n",
+ "l= 20. \t#ft long\n",
+ "a= 0.5\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "sw= u*g/(a*d)\n",
+ "sw1= u**2*g*l/(2*a*d)\n",
+ "Re=array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])*10**5\n",
+ "Vinf=Re*u*g/(d*a)\n",
+ "Cd= array([1.2, 1.15, 0.94, 0.68, 0.305, 0.31, 0.32, 0.33, 0.34, 0.35])\n",
+ "cdre=Cd*Re**2\n",
+ "D=sw1*cdre\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'velocity = %.3e ft/sec'%(sw)\n",
+ "print ' Force = %.3e lbf'%(sw1)\n",
+ "print \"V (ft/sec) D(lbf)\"\n",
+ "for i in range(len(D)):\n",
+ " print \"%6.1f %6d\"%(Vinf[i],D[i])\n",
+ "\n",
+ "\n",
+ "# note : answers are accurate. please check manually."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity = 3.623e-05 ft/sec\n",
+ " Force = 1.304e-08 lbf\n",
+ "V (ft/sec) D(lbf)\n",
+ " 3.6 156\n",
+ " 7.2 599\n",
+ " 10.9 1103\n",
+ " 14.5 1418\n",
+ " 18.1 994\n",
+ " 21.7 1455\n",
+ " 25.4 2044\n",
+ " 29.0 2754\n",
+ " 32.6 3591\n",
+ " 36.2 4564\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2 Page No : 368"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%pylab inline\n",
+ "from numpy import *\n",
+ "from matplotlib.pyplot import *\n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "u= 3.6*10**-5 \t#lbf sec/ft**2\n",
+ "d= 64. \t#lbm/ft**2 density\n",
+ "l= 20. \t#ft long\n",
+ "a= 0.5\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "sw= u*g/(a*d)\n",
+ "sw1= u**2*g*l/(2*a*d)\n",
+ "Re = array([1 ,2, 3, 4, 5, 6, 7, 8, 9, 10])*10**5\n",
+ "Vinf=Re*u*g/(d*a)\n",
+ "Cd = array([1.2, 1.15, 0.94, 0.68, 0.305, 0.31, 0.32, 0.33, 0.34, 0.35])\n",
+ "cdre=Cd*Re**2\n",
+ "D=sw1*cdre\n",
+ "\t\n",
+ "#RESULTS\n",
+ "plot(Vinf,D)\n",
+ "xlabel(\"Vinf, ft/sec\")\n",
+ "ylabel(\"D, lbf\") \n",
+ "suptitle(\"Streamlinedbody curve\")\n",
+ "\n",
+ "\t#data for curves b,c,d is not given\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.text.Text at 0x2683050>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEhCAYAAABoTkdHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNXdx/HPJEah4koS4pOkoqBAhgmMQFQKNmExkogs\nUglIrCAtWhfEpS6PNaAW6kIBrQsuQSVUQAWLJkY2I48CAUJYQq0LsmSCQNhkSYCEnOePK1MQokzI\n5M4k3/frlZfhMnfmO7dlfnPOuecchzHGICIicopC7A4gIiLBRYVDRER8osIhIiI+UeEQERGfqHCI\niIhPVDhERMQnKhxSp/7yl7/QqlUr2rVrR7t27Vi2bBkAEydOpLy8vE6zbNy4EZfLBcCKFSsYOXJk\nrTzvm2++yd133w3Arbfeyvvvv1/j50pMTKSgoKBWconUljPsDiANR15eHgsWLKCoqIiwsDD27t1L\nWVkZAJMmTSI9PZ3GjRufcF5VVRUhIf79jtOxY0c6duxY68/rcDhO+/zTfY5TcXQ6V128lgQ/tTik\nzpSWlhIREUFYWBgA5557LlFRUTz//PNs2bKFpKQkunfvDkCTJk144IEH6NixI0uXLuW1116jXbt2\nOJ1Ohg0bRmVlJQC33347nTp14vLLL+fhhx/2vlbz5s353//9X29BWLlyJb169aJ58+a88MILJ2TL\ny8ujd+/eAIwePZphw4bRo0cPLr74Yp577jnv46rLMXnyZFq0aEHnzp1ZvHjxcc89f/58rrrqKlq0\naMHs2bMBKC8vZ9CgQTidTlwuF5988gkAZWVl9OnTB6fTyYABAygvL8cYw5QpUxg1atRxOe67774T\n3scHH3xAfHw8brfbey1Hjx7N+PHjvY9p27YtmzdvZuPGjbRq1Ypbb72V9u3b89RTT/HnP//Z+7hj\nW07VvW9poIxIHfnhhx9M27ZtTevWrc3tt99u5s+f7/275s2bm507d3r/7HA4zKxZs4wxxqxatcqk\npqaayspKY4wxd9xxh3nttde8z2mMMZWVlSYxMdGsWLHC+3yvvvqqMcaYUaNGGZfLZcrLy01paakJ\nDw83xhizYcMG07ZtW2OMMZ9++qm5/vrrjTHGZGRkmC5dupgjR46YHTt2mAsuuMAcOnSo2hybN282\n0dHRZs+ePaaystJ07drV3H333cYYY37/+9+b1NRU7+tFRkaasrIy89e//tX88Y9/NMYY880335io\nqChTXl5uxo4d6z2+bt06c8YZZ5iCggKzf/9+06JFC+9rd+7c2RQVFR13fbds2WKioqKMx+M57tqM\nHj3aPPfcc97HtW3b1mzatMls2LDBhISEeK9ZaWmpadmypfdxvXr1Ml988cXPXn9pmNRVJXXm3HPP\nZdWqVXz22WcsWrSIIUOG8OSTTzJ8+PATHhsaGkrfvn0BmDdvHoWFhd6upPLyciIiIgB44403ePPN\nN3E4HGzZsoWvvvqKDh06AHD99dcD4HK5OHDgAI0aNaJRo0b86le/Ys+ePdXmdDgcpKSkEBISQtOm\nTYmKimLbtm0n5Dh48CAREREsXbqU7t27c9555wHwu9/9jq+//tr7XAMGDACsVlDr1q0pKiriiy++\n4MEHHwSgZcuWXHbZZRQVFfH55597j8fFxREfHw/A2WefTbdu3fjwww9p3bo1FRUVOJ3O43J//vnn\n9OjRg+joaO/1/iUXX3yx93qFh4dz6aWXkp+fT8uWLfnPf/5D586dee6556q9/tIwqXBInQoNDaVb\nt25069YNl8vF66+/ftLC0ahRo+P622+77TaeeOKJ4x7z1Vdf8eKLL7Jq1SqaNGnC0KFDj+tCOeus\nswAICQnhzDPP9B4PCQmhqqrqZ3Me+/jQ0FDv40+W47333jvuz+YXln87+r5O9jiHw1Ht+cOHD+ev\nf/0rbdq0YdiwYad87k/f78GDB72/n3322cc9Ni0tjZkzZ9K6dWv69+/vPX6y9y0Nl8Y4pM588803\nbNy40fvnwsJCYmNjAWjcuDEHDhw46Xk9e/Zk5syZ7N69G4C9e/fi8Xg4dOgQTZo04eyzz2bHjh18\n/PHHJz3/lz7IT+XxDoej2hxXXXUVCxcu5IcffuDIkSO89957xxWHo3dVbdiwga+++gqXy0XXrl2Z\nMWMGAOvXr+ebb77B5XLRpUsX7/Evv/ySNWvWeDMkJCTg8Xj45z//yaBBg07I2KVLFxYuXIjH4wHw\ntqpiYmJYuXIlAKtWrWLDhg3Vvvd+/frxwQcf8M4775CWlgZUf/2l4VKLQ+rMvn37+NOf/sSBAweo\nrKykZcuWvP7664D1jTYpKYmLL76YBQsWHNfaaNeuHY888ghdu3bljDPOICQkhFdeeYWEhARcLheX\nXXYZLVq0oEuXLid93Z/emfRLv1d3J9PP5Xjssce44ooriIqK8t7ie/S5YmJiuPrqq9m+fTsvv/wy\nZ511Fvfeey9Dhw7F6XQSEhLCW2+9xVlnncXIkSNJS0vD6XQSFxd3wp1eN910E6tXr/Z2ix0rKiqK\nl156ieuuu46wsDDCw8OZN28eN910E2+99RZt27blqquuolWrVid9/wDnn38+cXFxfPnll97Xru59\nx8TEnPR6S/3nML5+HRMR2/Tp04d77rnHe8eUiB3UVSUSBPbs2YPT6eTMM89U0RDbqcUhIiI+UYtD\nRER8osIhIiI+UeEQERGfqHCIiIhPVDhERMQnKhwiIuITFQ4REfGJ3wtH8+bNvfsDJCQkALBr1y56\n9uxJfHw8ycnJx61UOm7cOOLi4nC5XMydO9d7vKCgALfbjdPprLWd2kRExHd+LxwOh4O8vDwKCwu9\n24RmZGSQmprKmjVr6NWrFxkZGYBVHGbNmsXatWvJzc1lxIgRVFRUADB06FAyMzNZt24dmzZt8m6I\nIyIidatOuqp+Ojk9JyeH9PR0AIYMGUJ2djYA2dnZpKWlERoaSnR0NE6nk/z8fDZv3kxVVRVut/uE\nc0REpG7VSYvjaLfUP/7xD8DaQrRp06aAtXnM9u3bASgpKTluxc2YmBg8Hg8lJSXe5bcBoqOjtayz\niIhN/L6s+tKlS4mMjKS0tJTrrruO1q1b+/slRUTEj/xeOCIjIwGIiIhgwIABLF++nIiICHbs2EF4\neDilpaXex8TExFBcXOw91+PxEBsbe9LjJ9sLoGXLlqxfv97P70hEpP5o0aIF3377rU/n+LWrqqys\njLKyMgAOHDhAbm4uTqeTlJQUsrKyAMjKyiIlJQWAlJQUZsyYQWVlJR6Ph6KiIhISEoiNjSUkJITC\nwkIApk2b5j3nWOvXr8cYE9A/GRkZtmdQTuVUTmU8+lOTL9t+bXFs27aNvn374nA4KCsrIy0tjRtu\nuIEuXbowcOBAMjMziYqKYubMmQB06NCBfv36ER8fT0hICJMnTyYsLAyAKVOmMGzYMA4fPkz37t2P\n2w9ZRETqjl8LxyWXXMLq1atPOH7hhRcyb968k57z6KOP8uijj55wvEOHDt4Wh4iI2Eczx+tYYmKi\n3RFOiXLWLuWsXcGQMxgy1lS92gHQ4XBQj96OiIjf1eRzUy0OERHxiQqHiIj4RIVDRER8osIhIiI+\nUeEQERGfqHCIiIhPVDhERMQnKhwiIuITFQ4REfGJCoeIiPhEhUNERHyiwiEiIj5R4RARsdG0abBt\nm90pfKPCISJik8WL4YEHINgW9VbhEBGxwb59kJ4Or7wCUVF2p/GN9uMQEbHB8OHWf19/3d4cNfnc\n9OvWsSIicqJ//Qs+/RRWrbI7Sc2oxSEiUoe2bYP27eH996FzZ7vTaAdAEZGAZgzcdpv1EwhFo6ZU\nOERE6sirr8LWrZCRYXeS06OuKhGROvDNN1YrY9EiaNPG7jT/pa4qEZEAVFlp3XqbkRFYRaOmVDhE\nRPzsr3+F88+HO++0O0nt0O24IiJ+lJ8PL70EhYXgcNidpnaoxSEi4icHDlhdVC++CP/zP3anqT0a\nHBcR8ZM77oCyMnjrLbuTVE8zx0VEAkR2Nnz8MaxebXeS2qfCISJSy0pL4Q9/gOnT4bzz7E5T+9RV\nJSJSi4yB/v3h8svh6aftTvPL1FUlImKzKVNgwwartVFfqcUhIlJLvvsOrrzSWvm2bVu705wazRwX\nEbHJkSPWrbePPho8RaOmVDhERGrB009Do0YwcqTdSfxPXVUiIqepoAB69bL+GxtrdxrfBGRX1ZEj\nR3C73fTu3RuAXbt20bNnT+Lj40lOTmbPnj3ex44bN464uDhcLhdz5871Hi8oKMDtduN0OhnZEMq5\niASNsjIYMgQmTQq+olFTfi8ckyZNIi4uDsePi7RkZGSQmprKmjVr6NWrFxk/LkxfUFDArFmzWLt2\nLbm5uYwYMYKKigoAhg4dSmZmJuvWrWPTpk3Mnj3b37FFRE7Jww+D2w2DBtmdpO74tXB4PB5ycnIY\nPny4tymUk5NDeno6AEOGDCE7OxuA7Oxs0tLSCA0NJTo6GqfTSX5+Pps3b6aqqgq3233COSIidpo7\nFz74wFqLqiHxa+EYNWoUzz77LCEh/32Z0tJSmjZtCkB4eDjbt28HoKSkhJiYGO/jYmJi8Hg8lJSU\nEHtM+y86OhqPx+PP2CIiv2jnThg2zJq3ccEFdqepW36bAPjRRx8RGRmJ2+0mLy/PXy9zgtGjR3t/\nT0xMJDExsc5eW0QaBmPg9tvhppuge3e70/gmLy/vtD+T/VY4Fi9ezJw5c8jJyeHgwYPs3buX9PR0\nIiIi2LFjB+Hh4ZSWlhIZGQlYLYzi4mLv+R6Ph9jY2JMeP7Zl8lPHFg4REX/IyoIvv4SpU+1O4ruf\nfqEeM2aMz8/ht66qsWPHUlxczIYNG5g+fTrdunVj6tSppKSkkJWVBUBWVhYpKSkApKSkMGPGDCor\nK/F4PBQVFZGQkEBsbCwhISEUFhYCMG3aNO85IiJ1bdMmuO8+mDbNmrfRENXZWlVH76oaM2YMAwcO\nJDMzk6ioKGbOnAlAhw4d6NevH/Hx8YSEhDB58mTCwsIAmDJlCsOGDePw4cN0796d/v3711VsERGv\nI0fgllvgwQehXTu709hHEwBFRE7RM89Y+2wsXAihoXanqR01+dxU4RAROQWrV0OPHrB8OTRvbnea\n2hOQM8dFRILdwYNw880wfnz9Kho1pRaHiMgvuO8+KC6GmTPhx+HaekMbOYmI1LIFC6yCsXp1/Ssa\nNaWuKhGRauzeDUOHwhtvwI8LXgjqqhIRqdbgwVbBeOEFu5P4j7qqRERqyTvvQGGhtceGHE8tDhGR\nnyguhg4d4OOPrf/WZ7odV0TkNFVVwa23WlvA1veiUVMqHCIix5g0yZq38dBDdicJXOqqEhH5UVER\nJCXB0qXQooXdaeqGuqpERGro0CFr7/C//a3hFI2aUotDRASra+rrr2HWrIY10U+344qI1EBurrUp\nk2aHnxoVDhFp0L7+2tpjY9YsiIiwO01w0BiHiDRYe/dCnz7w1FPQpYvdaYKHxjhEpEGqqrKKRmws\nvPSS3Wnso7uqRERO0eOPWy2OiRPtThJ8NMYhIg3Ou+9ag+HLl8OZZ9qdJvioq0pEGpSjW8B+8glc\ncYXdaeynrioRkZ+xYwf07Wstk66iUXNqcYhIg1BRAddeC1deac0OF0tNPjdVOESkQbjnHvj2W/jw\nQwgNtTtN4NDMcRGRk3jjDWtMIz9fRaM2qMUhIvXakiXWfI1Fi6B1a7vTBB4NjouIHKOkBAYMgClT\nVDRqkwqHiNRLBw9Cv35w112Qmmp3mvpFXVUiUu8YY23/eugQvPOOVrz9ORocFxHB2v519Wr44gsV\nDX9Q4RCRemX+fHj6aWtQ/Oyz7U5TP6lwiEi9sX493HwzzJwJzZvbnab+0uC4iNQL+/ZZt91mZMBv\nf2t3mvpNg+MiEvSqqqzbbps2hVdf1biGLzQ4LiIN0pNPwrZtuoOqrqhwiEhQmz3bWlJk2TI46yy7\n0zQM6qoSkaBVVARJSfDxx9Cxo91pglNALTly8OBBOnXqhNvt5vLLL2fUqFEA7Nq1i549exIfH09y\ncjJ79uzxnjNu3Dji4uJwuVzMnTvXe7ygoAC3243T6WTkyJH+iiwiQWTXLmtvjb//XUWjrvmtcDRq\n1IhFixZRWFjIv//9b5YsWcKnn35KRkYGqamprFmzhl69epGRkQFYxWHWrFmsXbuW3NxcRowYQUVF\nBQBDhw4lMzOTdevWsWnTJmbPnu2v2CISBCorYeBAq3Ckp9udpuHx6+24jRs3BuDw4cMcOXKEyMhI\ncnJySP/xf+khQ4aQnZ0NQHZ2NmlpaYSGhhIdHY3T6SQ/P5/NmzdTVVWF2+0+4RwRaZgeeghCQrQh\nk138Wjiqqqpo3749zZo1IykpCafTSWlpKU2bNgUgPDyc7du3A1BSUkJMTIz33JiYGDweDyUlJcTG\nxnqPR0dH4/F4/BlbRALY22/DnDkwfTqcodt7bOHXyx4SEsKqVav44YcfSE5O5tNPP/XnywEwevRo\n7++JiYkkJib6/TVFpG4sWwb33w95eXDBBXanCU55eXnk5eWd1nPUSb0+77zzSE1NJT8/n4iICHbs\n2EF4eDilpaVERkYCVgujuLjYe47H4yE2Nvakx49tmfzUsYVDROqP77+HG2+E118Hp9PuNMHrp1+o\nx4wZ4/Nz+K2raufOnezbtw+A8vJy5s2bh8vlIiUlhaysLACysrJISUkBICUlhRkzZlBZWYnH46Go\nqIiEhARiY2MJCQmhsLAQgGnTpnnPEZGG4dAhq2j84Q/WsiJiL7+1OLZs2cItt9yCMYaDBw8yePBg\nUlNTufrqqxk4cCCZmZlERUUxc+ZMADp06EC/fv2Ij48nJCSEyZMnExYWBsCUKVMYNmwYhw8fpnv3\n7vTv399fsUUkwBgDd94JF10Ejz1mdxoBTQAUkQD34ovwyivWMulNmtidpv6pyeemCoeIBKy8PEhL\ng8WL4dJL7U5TPwXUzHERkdOxcaNVNKZNU9EINCocIhJwDhywBsEfeQS6d7c7jfyUuqpEJKAYYy0n\ncvbZkJmpZdL9TftxiEjQGzcONm2Czz5T0QhU1XZVdf+xffjnP/+5zsKISMP2wQfw0kvWHhuNGtmd\nRqpTbYujuLiYxYsXM2fOHNLS0jDG4Dim/F9xxRV1ElBEGoa5c+GPf7T21vif/7E7jfycasc4ZsyY\nwZQpU/jiiy/oeJLF7uti3SlfaYxDJDgtWmTtGT57NvzmN3anaVj8Mo/jiSee4PHHHz+tYHVFhUMk\n+OTnQ+/e1n7huoOq7vmlcBhjmD59Op9//jkhISH85je/IS0t7bSC+osKh0hwWbUKkpOtu6dSU+1O\n0zD5pXAMHTqU77//noEDB2KM4d133+Wiiy4iMzPztML6gwqHSPD48kvo1g1eeMHqphJ7+KVwtGrV\niv/85z/egXFjDK1bt+arr76qeVI/UeEQCQ7r10NiIowdq61f7eaXJUdatWp13I57Ho+H1q1b+55O\nRATYvBl69LBWulXRCE7V3o7bu3dvAPbu3cvll19OQkICDoeDZcuW0alTpzoLKCL1x9atVtG45x4Y\nMcLuNFJT1RaO+++/v9qTHJrOKSI+2rHDKhq33AKjRtmdRk6H1qoSEb/bs8e61fbaa61xDX33DBy1\nOjjepEmTalsWDoeDvXv3+p7Qz1Q4RALP/v1WwejUCSZOVNEINNrISYVDJKCUl1vzMy69FF59FUK0\nkUPAUeFQ4RAJGIcPQ79+cP758PbbEBpqdyI5GRUOFQ6RgFBZae2pYQzMmAFhYXYnkupoPw4Rsd2R\nI3DrrVBWZi2TrqJR/6hwiEitMQbuuANKSiAnB846y+5E4g8+D1X16NGD6667jo8++sgfeUQkSBlj\nzc9YuxbmzIHGje1OJP7ic4vjrbfe4vvvvyc/P98feUQkSD32mLWvxsKFcM45dqcRfzqlwfHS0lIA\nIiIi/B7odGhwXMQeY8fCtGnWPuHh4XanEV/U6iKHxhhGjx5NeHg48fHxuFwuIiIiGDNmzGkHFZH6\nY+JEmDIF5s9X0Wgoqi0cEyZMYMWKFaxZs4bvv/+erVu3snr1agoKCvj73/9elxlFJEC99ppVOBYs\ngIsusjuN1JVqu6o6dOjAggULOP/88487vmfPHrp3705BQUGdBPSFuqpE6k5WFjz8MOTlQcuWdqeR\nmqrVeRzGmBOKBsD555+vD2eRBm7WLHjwQauloaLR8Pxs4ajJ34lI/ZaTY83VyM2FuDi704gdqu2q\nCg0N5Ve/+tVJTyovL6eystKvwWpCXVUi/rVwobWUyIcfwlVX2Z1GakOtdlUdOXLktAOJSP2xeDGk\npcF776loNHRa5FhEflFBAfTtC1Onwm9/a3casZsKh4j8rKIia0+N116D5GS700ggUOEQkWp9/bVV\nLCZMgD597E4jgcKvhaO4uJhrrrkGl8tFq1ateOaZZwDYtWsXPXv2JD4+nuTkZPbs2eM9Z9y4ccTF\nxeFyuZg7d673eEFBAW63G6fTyciRI/0ZW0SAjRuhZ0948kkYNMjuNBJQjB9t3brVrF271hhjzL59\n+8xll11mVq1aZe666y4zYcIEY4wxEyZMMPfcc48xxpgVK1aYjh07msrKSuPxeEzz5s3N4cOHjTHG\nuFwus3LlSmOMMX369DGzZs064fX8/HZEGgyPx5hLLzXmhRfsTiL+VpPPTb+2OJo1a0bbtm0BaNKk\nCfHx8ZSUlJCTk0N6ejoAQ4YMITs7G4Ds7GzS0tIIDQ0lOjoap9NJfn4+mzdvpqqqCrfbfcI5IlK7\nvv0WkpLgj3+Eu+6yO40Eojob49i4cSPLly+nS5culJaW0rRpUwDCw8PZvn07ACUlJcTExHjPiYmJ\nwePxUFJSQmxsrPd4dHQ0Ho+nrqKLNBhLlkDXrvDAA/DQQ3ankUBVJzsA7t+/nwEDBjBp0iTOPffc\nunhJEfHRe+/Bn/4Eb78N111ndxoJZH4vHBUVFdx4443cfPPN9O3bF7D29dixYwfh4eGUlpYSGRkJ\nWC2M4uJi77kej4fY2NiTHj+2ZXKs0aNHe39PTEwkMTGx9t+USD1iDIwfD5Mmwdy50L693YnEn/Ly\n8sjLyzut5ziljZxqyhjD73//e5o2bcqECRO8x++++25atGjBvffey4QJE9iwYQPPP/88BQUF3H77\n7SxZsoStW7fSpUsXvvnmG8LCwoiPj+ett97C7XbTt29fbrnlFvr373/8m9GSIyI+qayEe+6BL76A\n7Gyo5vuY1GM1+dz0a+H4/PPPueaaa4iPj8fhcADW7bYJCQkMHDiQbdu2ERUVxcyZM70r8Y4dO5as\nrCxCQkIYP348yT/OOCooKGD48OEcPnyY7t278/zzz5/4ZlQ4RE7Z/v3WulOVlfDuu6Be5IYp4ApH\nXVPhEDk1W7bA9ddDhw7w0ksQFmZ3IrFLrW4dKyL109q1cPXV8LvfwauvqmiI7+rkrioRCQzz58Pg\nwdZAuGaDS02pxSHSQGRmwpAh8P77KhpyetTiEKnnjIHHH4d//hM++wxatbI7kQQ7FQ6ReuzQIbjt\nNmsZkSVL4McpUyKnRV1VIvXU7t3Wkujl5fDppyoaUntUOETqoe++s+6c6tjRmqPRuLHdiaQ+UeEQ\nqWfy86FLF7j7bnjuOQjRv3KpZRrjEKlHZs+2lkOfMsWa4CfiDyocIvWAMTBxotXCyM21ZoSL+IsK\nh0iQO3IERo2ChQth8WK4+GK7E0l9p8IhEsQOHLAm8x04AJ9/Dj+uFSriVxo2EwlSW7fCb38LTZvC\nxx+raEjdUeEQCULr1sFVV0GfPtZSImeeaXciaUjUVSUSZBYuhLQ0a9e+9HS700hDpBaHSBB5+22r\naMyYoaIh9lGLQyQIGANPPAFvvgl5eRAXZ3ciachUOEQC3OHD8Ic/wL//bS1UGBVldyJp6FQ4RALY\nnj3Qvz+cc47V0jj7bLsTiWiMQyRgFRXBb34DbdvCrFkqGhI4VDhEAsyRI/D005CUBPfdB88/D6Gh\ndqcS+S8VDgl4O3daA8PNmkHfvlBcbHci//n6a+jaFT75BJYvtzZhEgk0KhwSsDZtgpEj4bLLrN/n\nzgW32/qZOBEqK+1OWHuqqqyWRefO1hIi8+dD8+Z2pxI5OYcxxtgdorY4HA7q0dtpsNauhWeegexs\n6xv3vfdCdPR///6rr+D222HvXnj11eBfCXbjRhg6FA4ehLfegssvtzuRNCQ1+dxUi0MCgjGwaBGk\npsK111rzFL77Dp599viiAdCqlTV7euRI6/H33gv79tmT+3QYA6+/Dp06Qa9e1iKFKhoSDNTiEFtV\nVcGcOdZg8I4d8MAD8PvfQ6NGp3b+jh3w4INW184LL1hjIMGgpMSam7Ftm9XKaNvW7kTSUNXkc1OF\nQ2xx6BBMm2a1KM4+Gx56yJqvUNO7h/LyrO6r1q2tAhIbW6txa40x1vu+7z6480549FEIC7M7lTRk\nKhwqHAHv6LjExIngdFoFIykJHI7Tf+5Dh+Bvf7MKx2OPwV13wRkBNMV1+3aruH39tdXKCPaxGakf\nNMYhAWvbNuvb9aWXQkEBfPihdctpt261UzQAzjoLMjLgiy/gX/+CK6+0XisQzJoF8fHWHWIrVqho\nSHALoO9jUh99+621D/bMmdZtpsuWWcXDn44Onk+dag2ep6XBk09ay3bUtd274e67rfc9a5Z1u61I\nsFOLQ/yioABuugmuvhoiIuA//4EXX/R/0TjK4YBbbrGW7fjhB+surQ8+qJvXPurjj8HlggsvhMJC\nFQ2pPzTGIbXGGOvupqeftuZa3HefdedQkyZ2J6vbwfO9e+H++2HePGt3vm7d/PdaIqdLYxxii8pK\na2OhDh2sORXp6bB+PYwaFRhFAyAxEVavhiuu8O/M84ULrbEMgDVrVDSkflKLQ2qsvBymTLG2ML3o\nIusOqdRUCAnwryNffQV33GF1YdXWzPOyMnj4YWsc49VXISXl9J9TpC6oxSF1YvdueOopuOQS686o\nt9+2Zj337h34RQOswfMFC2pv5vnixdC+PezaZbUyVDSkvguCf+YSSKZNs24pXb/e6pb517+sPSOC\nzbGD53uGO/ipAAAPhElEQVT31mzw/NAhq5XRvz+MGwdZWdZAuEh959fCMWzYMJo1a4bL5fIe27Vr\nFz179iQ+Pp7k5GT27Nnj/btx48YRFxeHy+Vi7ty53uMFBQW43W6cTicjR470Z2SpxoED1oKDTzxh\nfVufMqV+7HsdHm4NYE+dahWBU122vaDA6uL6+murlXHjjf7PKhIo/Fo4hg4dSm5u7nHHMjIySE1N\nZc2aNfTq1YuMjAzAKg6zZs1i7dq15ObmMmLECCoqKrzPk5mZybp169i0aROzZ8/2Z2z5iaIiSEiA\nigrrA7NdO7sT1b5THTyvqIDRo61FCR95BN5/HyIj6zqtiL38Wji6du3KBRdccNyxnJwc0tPTARgy\nZAjZ2dkAZGdnk5aWRmhoKNHR0TidTvLz89m8eTNVVVW43e4TzhH/Orp6a1IS/PnP1lhGoNwl5Q9n\nnQWPP27NPJ8zx5p5vmLFf/++qAiuugry8615GTffXHuz3kWCSZ3PHC8tLaVp06YAhIeHs337dgBK\nSkrodsy9izExMXg8HkJDQ4k95qb76OhoPB5P3YZugPbuteY9rF1rLXfepo3dierO0cHzY2eeX3SR\ndffY2LEwfLgKhjRs9W7JkdGjR3t/T0xMJDEx0bYswWrlShg4ELp3t5bKaNzY7kR17+jgeUqKdZvx\n559bW7lqVz4Jdnl5eeTl5Z3Wc9R54YiIiGDHjh2Eh4dTWlpK5I8dxDExMRQfMyrp8XiIjY096fGY\nmJhqn//YwiG+MQb+8Q9rXacXXrCKR0MXHg5vvGF3CpHa89Mv1GPGjPH5Oer8dtyUlBSysrIAyMrK\nIuXHm95TUlKYMWMGlZWVeDweioqKSEhIIDY2lpCQEAoLCwGYNm2a9xypPbt3W7eVvvUWLFmioiEi\n1fNri2PQoEF89tln7Nixg9jYWJ544gnGjBnDwIEDyczMJCoqipkzZwLQoUMH+vXrR3x8PCEhIUye\nPJmwH3e4mTJlCsOGDePw4cN0796d/v37+zN2g7NkibVybb9+MH26NUgsIlIdLTnSgFVVWUuejx9v\nLZPRp4/diUSkrtXkc7PeDY7Lqdm+3Rr83bfPGvT99a/tTiQiwUJLjjRAeXn/neiWl6eiISK+UYuj\nATlyxFqc8JVX4M03ITnZ7kQiEoxUOBqILVv+O9N55UprQpuISE2oq6oByM21FuRLSrJ2pVPREJHT\noRZHPVZRAX/5i7Xc9/Tp8Nvf2p1IROoDFY56atMma27G+edbC/JFRNidSETqC3VV1UMffGAtg96v\nH3z0kYqGiNQutTjqkUOH4MEHrSXB//UvawlwEZHapsJRT3z7rbW+1MUXW11TP9kGRUSk1qirqh54\n5x24+moYNszakU5FQ0T8SS2OIFZWBiNHWrO/5861ZoKLiPibWhxBas0aawC8rMya0KeiISJ1RYUj\nyBw+DBkZ1u58999vzdE45xy7U4lIQ6KuqiCybJk1jnHppbBqFURH251IRBoiFY4gUFZmtTLefhsm\nToS0NGvNKRERO6irKsAtWgTt2kFxMaxda80GV9EQETupxRGg9u2Dhx6yJvK99JJ25xORwKEWRwDK\nzYW2ba2Z4EVFKhoiEljU4gggu3bBqFHw2Wfw2mtw7bV2JxIROZFaHAHi/fetVsZ551mtDBUNEQlU\nanHYbNs2uOsua0LfzJnQpYvdiUREfp5aHDYxBqZOhfh4aNHCmpehoiEiwUAtDhsUF8OIEVBSAjk5\n1rauIiLBQi2OOlRVBZMnwxVXWKvZLl+uoiEiwUctjjry7bfwhz9Ys8A//dQaCBcRCUZqcfjZkSMw\nfry1G9/118PixSoaIhLc1OLwo3Xr4LbboFEjWLoUWra0O5GIyOlTi8MPKirgySchMRFuvRUWLlTR\nEJH6Qy2OWlZQYC19Hh1tbbAUG2t3IhGR2qUWRy05eBAeeQRSUuCBByA7W0VDROontThqweefW2MZ\nLhesXg1RUXYnEhHxHxWO0zRmjDU344UX4MYb7U4jIuJ/DmOMsTtEbXE4HNT121m2zBr4vvDCOn1Z\nEZFaUZPPTRUOEZEGrCafm0E1OJ6bm4vL5SIuLo6nn37a7jgiIg1S0BSOQ4cOcccdd5Cbm8uaNWt4\n7733KCwstDuWz/Ly8uyOcEqUs3YpZ+0KhpzBkLGmgqZw5Ofn43Q6iY6O5owzzmDgwIFkZ2fbHctn\nwfJ/JuWsXcpZu4IhZzBkrKmgKRwej4fYYyZGxMTE4PF4bEwkItIwBU3hcDgcdkcQEREAEyQWLVpk\nUlNTvX9+5plnzFNPPXXcY1q0aGEA/ehHP/rRzyn+tGjRwufP46C5HffgwYO0bt2aL774gsjISDp3\n7szkyZO54oor7I4mItKgBM3M8UaNGvHyyy+TnJxMVVUV6enpKhoiIjYImhaHiIgEhqAZHP85wTIx\nsHnz5sTHx+N2u0lISLA7jtewYcNo1qwZLpfLe2zXrl307NmT+Ph4kpOT2bNnj40JLSfLOXr0aGJi\nYnC73bjdbnJzc21MCMXFxVxzzTW4XC5atWrFM888AwTe9awuZ6Bdz4MHD9KpUyfcbjeXX345o0aN\nAgLvelaXM9Cu51FHjhzB7XbTu3dvoAbX87RGrAPAwYMHTfPmzY3H4zEVFRWmY8eOZuXKlXbHOqnm\nzZubnTt32h3jBIsWLTIrV640bdu29R676667zIQJE4wxxkyYMMHcc889dsXzOlnO0aNHm/Hjx9uY\n6nhbt241a9euNcYYs2/fPnPZZZeZVatWBdz1rC5noF1PY4wpKyszxhhTUVFhrrzySrNw4cKAu57G\nnDxnIF5PY4wZP368GTx4sOndu7cxxvd/70Hf4gi2iYEmAHsGu3btygUXXHDcsZycHNLT0wEYMmRI\nQFzTk+WEwLqmzZo1o+2Pm8o3adKE+Ph4SkpKAu56VpcTAut6AjRu3BiAw4cPc+TIESIjIwPuesKJ\nOZs1awYE3vX0eDzk5OQwfPhwbzZfr2fQF45gmhjocDi8zcF//OMfdsf5WaWlpTRt2hSA8PBwtm/f\nbnOi6r344ou0adOGIUOGsGvXLrvjeG3cuJHly5fTpUuXgL6eR3N27doVCLzrWVVVRfv27WnWrBlJ\nSUk4nc6AvJ4/zRkXFwcE3vUcNWoUzz77LCEh//349/V6Bn3hCKaJgUuXLmXlypUsWLCAKVOmMH/+\nfLsjBb0777yT9evX8+9//5sWLVpwzz332B0JgP379zNgwAAmTZrEueeea3ecau3fv5/f/e53TJo0\niXPOOScgr2dISAirVq3C4/GwaNEiPv30U7sjndRPc+bl5QXc9fzoo4+IjIzE7XafVkso6AtHTEwM\nxcXF3j8XFxcf1wIJJJGRkQBEREQwYMAAli9fbnOi6kVERLBjxw7A+jZyNHugCQ8Px+Fw4HA4GDFi\nREBc04qKCm688UZuvvlm+vbtCwTm9Tyac/Dgwd6cgXg9jzrvvPNITU0lPz8/IK/nUUdzLl26NOCu\n5+LFi5kzZw6XXHIJgwYNYuHChaSnp/t8PYO+cHTq1ImioiJKSkqoqKhg5syZ9OrVy+5YJygrK6Os\nrAyAAwcOkJubi9PptDlV9VJSUsjKygIgKyuLlJQUmxOd3LFN6vfff9/2a2qM4bbbbiMuLs57Zw0E\n3vWsLmegXc+dO3eyb98+AMrLy5k3bx4ulyvgrmd1OUtLS72PCYTrOXbsWIqLi9mwYQPTp0+nW7du\nTJ061ffr6bdh+zqUk5NjnE6nadOmjRk7dqzdcU7qu+++M/Hx8aZdu3bmsssuM3/5y1/sjuSVlpZm\nLrroIhMWFmZiYmJMZmam2blzp+nRo4dxuVymZ8+eZvfu3XbHPCHnG2+8YYYMGWLi4+NN69atTXJy\nsvF4PLZm/L//+z/jcDhMu3btTPv27U379u3Nxx9/HHDX82Q5c3JyAu56rlmzxrRv3960a9fOtGrV\nyowZM8YYYwLuelaXM9Cu57Hy8vK8d1X5ej01AVBERHwS9F1VIiJSt1Q4RETEJyocIiLiExUOERHx\niQqHiIj4RIVDRER8osIhDVq3bt2YO3fucccmTpzIn/70Jz788MNTWqb//vvvp02bNjz00EM/+7ib\nbrqJtm3bMnHiRCZNmkR5eflxf/+3v/2Nf/7zn76/CZE6pnkc0qC99tprLFmyhMzMTO+xq6++mmef\nfZYuXbqc0nOcf/757N69+2fXTdu6dStdu3blm2++AeCSSy5hxYoV3oXlwCpi77777nHHRAKRWhzS\noN14441kZ2dTWVkJWCvFbtmyhS5duvDmm29y9913A3DrrbcycuRIrrnmGn796197WwY33HAD+/fv\n54orrmDmzJnVvs61115LSUkJbrebJ554gi1btpCUlET37t0B2Lt3L4cPH6Zp06a88847uFwu3G63\nd8XayspK7rrrLtq1a0ebNm14/vnnvc89ZswY2rRpQ/v27X+x1SNSG4Jmz3ERf7jwwgtJSEggJyeH\nG264genTpzNw4EDgxJWXt2/fzqJFi/jyyy/p1asXgwcPZs6cOZxzzjkUFhb+7Ot8+OGHXH/99d7H\nTZkyhby8PC688EIA5s+fT48ePQB46qmnyMvLIyIiggMHDgDw0ksvcdFFF7F69WoOHTpE586d6dWr\nF0VFRcybN481a9YQFhbGDz/8UKvXR+Rk1OKQBm/QoEFMnz4dgBkzZjBo0CDg+A14HA4HN9xwAwBt\n2rTxriR6qn6pR/iTTz7xLs55zTXXMGTIEF599VXvOMjcuXN5++23cbvdXHXVVezZs4f169ezYMEC\nhg4dSlhYGGCtzCribyoc0uDdcMMNLFiwgMLCQsrKynC73cCJLY4zzzzT+3tt7wOzbNky7z70L7/8\nMk8++STff/89HTp08G7+88orr1BYWEhhYSHr16/nuuuuAwJvhzmp/1Q4pMFr0qQJSUlJDB06lMGD\nB3uP1+QDefbs2Tz66KO/+LjGjRt7u6HWrVtH69atvcVo48aNJCQkkJGRQbNmzdiwYQPJyclMnjyZ\nqqoqADZs2EB5eTk9e/bkzTff5PDhwwDqqpI6oTEOEazuqv79+x83wH10A55j//xLv69fv77a7qJj\nH3fbbbeRlJTEr3/9a1JTU4/bQ2bUqFF89913VFVVkZSURIcOHXC73WzcuBGn08mZZ57JBRdcwIcf\nfkifPn1YtWoV8fHxNG7cmF69ejF27NjTuxgiv0C344rUovT0dCZOnOjTLbXXXnstU6dOpVmzZn5M\nJlJ7VDhERMQnGuMQERGfqHCIiIhPVDhERMQnKhwiIuITFQ4REfGJCoeIiPhEhUNERHzy/xEUA+vK\n3v8VAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2682fd0>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3 Page No : 373"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "v1= 10. \t#ft/sec\n",
+ "v2m= 9 \t #ft/sec wide\n",
+ "a= 1.02\n",
+ "hbyd= 5.95\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "ca= (v1/v2m)**2\n",
+ "Cd= hbyd*(ca-1+2-2*ca)+2*a*ca\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Drag coeffcieicnt = %.2f'%(Cd)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Drag coeffcieicnt = 1.12\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.4 Page No : 387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "A= 320. \t#ft/**2 area\n",
+ "w= 18000. \t#lbf weighs\n",
+ "v= 230. \t#ft/sec normal speed\n",
+ "ad= 0.0765 \t#lbm/ft**3 density\n",
+ "p= 5. \t#per cent of the total lift force\n",
+ "c= 0.055\n",
+ "n= 1.75 # total drag\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "CL= 2*w*(1-(p/100))*g/(ad*v**2*A)\n",
+ "D= w*(1-(p/100))*c*n/CL\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' lift coefficient = %.2f'%(CL)\n",
+ "print ' Drag force = %.f'%(D)\n",
+ "\n",
+ "# note : answer is accurate"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " lift coefficient = 0.85\n",
+ " Drag force = 1935\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5 Page No : 396"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "bi= 70. \t#degrees outlet angels\n",
+ "i= 8. \t#degrees incidence angle\n",
+ "bo= 130. \t#degrees outlet angels\n",
+ "s= 5. \t#degrees\n",
+ "vi= 1200. \t#ft/sec\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "a= 0.48\n",
+ "s1= 1.4 \t#in\n",
+ "b= 5. \t#in\n",
+ "Cx= 0.06 # co-efficient \n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "O= bo-s-bi+i\n",
+ "Vo= vi*math.sin(math.radians(bi-i))/math.sin(math.radians(bo-s))\n",
+ "Fy= -a*vi*math.sin(math.radians(bi-i))*(s1/12)*(b/12)*(Vo*math.cos(math.radians(bo-s))-vi*math.cos(math.radians(bi-i)))/g\n",
+ "dp= a*(Vo**2*(1+Cx)-vi**2)/(2*g)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Fluid deflection angle = %.f degrees'%(O)\n",
+ "print ' Vo = %.f ft/sec'%(Vo)\n",
+ "print ' Force on each blade = %.f lbf'%(Fy)\n",
+ "print ' Pressure difference = %.f lbf/ft**2'%(dp)\n",
+ "\n",
+ "# note : answer is accurate. please check."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fluid deflection angle = 63 degrees\n",
+ " Vo = 1293 ft/sec\n",
+ " Force on each blade = 1002 lbf\n",
+ " Pressure difference = 2485 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.6 Page No : 397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "ari= 62. \t#degrees\n",
+ "aro= 125. \t#degrees\n",
+ "vri= 1200. \t#ft/sec\n",
+ "vro= 1294. \t#ft/sec\n",
+ "vrr= 550. \t#ft/sec velocity\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "v1= vri*math.sin(math.radians(ari))\n",
+ "v2= vrr+vri*math.cos(math.radians(ari))\n",
+ "vi= math.sqrt(v1**2+v2**2)\n",
+ "ai= round(math.degrees(math.atan(v1/v2)),1)\n",
+ "vo= round(vro*math.sin(math.radians(aro)))\n",
+ "vo1= round(vro*math.cos(math.radians(aro))+vrr)\n",
+ "vo2= round(math.sqrt(vo**2+vo1**2))\n",
+ "ao= math.degrees(math.atan(vo/vo1))+180\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' absolute velocity = %.f ft/sec'%(vi)\n",
+ "print ' direction = %.1f degrees'%(ai)\n",
+ "print ' absolute velocity = %.f ft/sec'%(vo2)\n",
+ "print ' direction = %.1f degrees'%(ao)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " absolute velocity = 1537 ft/sec\n",
+ " direction = 43.6 degrees\n",
+ " absolute velocity = 1077 ft/sec\n",
+ " direction = 100.3 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch11.ipynb b/Basic_Fluid_Mechanics/ch11.ipynb
new file mode 100755
index 00000000..1a38341e
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch11.ipynb
@@ -0,0 +1,443 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d460554b2abe6f6d6700d68291fcbf83cdf7b3bd9d716f5a9395eef88b744934"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11 : Turbomachines:Elementary Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1 Page No : 426"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from sympy.functions.elementary.trigonometric import acot\n",
+ "\n",
+ "#initialisation of variables\n",
+ "rt= 1.3 \t#ft\n",
+ "rr= 0.6 \t#ft\n",
+ "Q= 75. \t#ft**3 flow rate\n",
+ "rm= 0.95\n",
+ "w1= 40. \t#rev/sec \n",
+ "bim= 153. \t#degrees blade inlet angle\n",
+ "bom= 147. \t#degrees blade outlet angle\n",
+ "w= 62.4 \t#lb/ft**3\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "A= round(math.pi*(rt**2-rr**2),2)\n",
+ "Va= round(Q/A,2)\n",
+ "Vbm= rm*w1\n",
+ "#a= -1/math.degrees(math.atan(-Vbm/Va))\n",
+ "a = math.degrees(acot(-Vbm/Va))\n",
+ "im= a-bim\n",
+ "vwm= Vbm+Va*1/math.tan(math.radians(bom))\n",
+ "dvwm= rm*vwm\n",
+ "C= w*Q*dvwm/g\n",
+ "Cw= C*w1\n",
+ "dp= Cw/Q\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' Incidence = %.1f degrees'%(im) \n",
+ "print ' Oulet velocity = %.2f ft/sec'%(vwm)\n",
+ "print ' Change of whirl at the mean radius = %.2f ft**2/sec'%(dvwm)\n",
+ "\n",
+ "print ' Torque = %.f lbf/ft'%(C)\n",
+ "print ' Rate of working = %.f ft lbf/sec'%(Cw)\n",
+ "print ' Workdone by the rotor = %.f lbf/ft**2'%(dp)\n",
+ "\n",
+ "# note : answer in book is wrong. please check manually."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Incidence = -178.3 degrees\n",
+ " Oulet velocity = 10.37 ft/sec\n",
+ " Change of whirl at the mean radius = 9.86 ft**2/sec\n",
+ " Torque = 1432 lbf/ft\n",
+ " Rate of working = 57300 ft lbf/sec\n",
+ " Workdone by the rotor = 764 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2 Page No : 428"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "vbm= 38. \t#ft/sec\n",
+ "va= 17.94 \t#ft/sec\n",
+ "a= 147.5 \t#degrees\n",
+ "vwm= 10.37 \t#ft/sec\n",
+ "C= 1430. \t#lbf/ft\n",
+ "P= 763. \t#lbf/ft**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "vwm1= vbm+va*1/math.tan(math.radians(a))\n",
+ "p= (vwm-vwm1)/vwm\n",
+ "C1= C*(1-p)\n",
+ "P1= P*(1-p)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Oulet Velocity = %.2f ft/sec'%(vwm1) \n",
+ "print ' Torque = %.f lbf/ft'%(round(C1,-1))\n",
+ "print ' Workdone by the rotor = %.f lbf/ft**2'%(P1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Oulet Velocity = 9.84 ft/sec\n",
+ " Torque = 1360 lbf/ft\n",
+ " Workdone by the rotor = 724 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3 Page No : 430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from sympy.functions.elementary.trigonometric import acot\n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "a= 154 \t #degrees\n",
+ "vbm= 38 \t#ft/sec\n",
+ "bom= 147 \t#degrees outlet angle\n",
+ "vwm= -7.78 \t#ft/sec outlet whirl velocity\n",
+ "w= 62.4 \t#lbf/ft**3\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "vb= 38 \t#ft/sec velocity\n",
+ "A= 4.18 \t#ft**2 flow area\n",
+ "e= 0.95\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "vat= (vwm-vb)*math.tan(math.radians(bom))\n",
+ "Q= vat*A\n",
+ "#a1= 1/math.tan(math.radians(-vbm/vat))\n",
+ "a1 = math.degrees(acot(-vbm/vat))\n",
+ "imt= a1-a\n",
+ "C= w*Q*vwm*e/g\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' Flow rate = %.1f ft**3'%(Q)\n",
+ "print ' Incidence angle= %.f degrees'%(imt)\n",
+ "print ' Torque= %.f lbf ft'%(C)\n",
+ "#Incorrect value for a1 in textbook. Hence the difference in answers"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Flow rate = 124.3 ft**3\n",
+ " Incidence angle= -192 degrees\n",
+ " Torque= -1780 lbf ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4 Page No : 435"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from numpy import *\n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "rt= 0.5 \t#ft radius\n",
+ "rr= 0.16 \t#ft root radius\n",
+ "dv1= 88.3 \t#ft/sec\n",
+ "b= 150. \t#degrees\n",
+ "r= array([0.16, 0.3, 0.5])\n",
+ "vw= array([2.5, 5, 7.5])\n",
+ "vb= array([46.6, 88.3, 132.5])\n",
+ "vrb= array([44.16, 88.3, 132.5])\n",
+ "v1= array([-1.154, -0.385])\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "A= math.pi*(rt**2-rr**2)\n",
+ "Va= -dv1*math.tan(math.radians(b))\n",
+ "Q= Va*A\n",
+ "ari = degrees((arctan(Va/(vw - vb)))) + 180\n",
+ "ari = array([ari[0],ari[2]])\n",
+ "#a= tan(radians(v1))+180\n",
+ "b = degrees(math.tan(0.577))\n",
+ "i = ari - 150\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' Velocity = %.2f ft/sec'%(Va)\n",
+ "print ' Flow rate = %.1f ft**3'%(Q)\n",
+ "\n",
+ "print (v1)\n",
+ "print (ari)\n",
+ "print (i)\n",
+ "\n",
+ "# rounding off error. and for 'i' answer is wrong. please check. "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Velocity = 50.98 ft/sec\n",
+ " Flow rate = 35.9 ft**3\n",
+ "[-1.154 -0.385]\n",
+ "[ 130.86126801 157.81238868]\n",
+ "[-19.13873199 7.81238868]\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.5 Page No : 436"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from numpy import *\n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "rt= 0.5 \t#ft\n",
+ "rr= 0.16 \t#ft\n",
+ "dv1= 88.3 \t#ft/sec\n",
+ "b= 150. \t#degrees\n",
+ "a= 5. \t#degrees mean radius\n",
+ "v1= array([-0.933 ,-0.311])\n",
+ "i= array([1.0, 5.0 ,6.7])\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "b1= b+a\n",
+ "A= math.pi*(rt**2-rr**2)\n",
+ "Va= -dv1*math.radians(math.tan(b1))\n",
+ "Q= Va*A\n",
+ "a1= degrees(tan(v1))+180\n",
+ "\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Velocity = %.2f ft/sec'%(Va)\n",
+ "print ' Flow rate = %.1f ft**3/sec'%(Q)\n",
+ "\n",
+ "print (v1)\n",
+ "print (a1)\n",
+ "print (i)\n",
+ "#Incorrect calculations in textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity = -2.76 ft/sec\n",
+ " Flow rate = -1.9 ft**3/sec\n",
+ "[-0.933 -0.311]\n",
+ "[ 102.69071396 161.58339075]\n",
+ "[ 1. 5. 6.7]\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.6 Page No : 439"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 1. \t#in\n",
+ "b= 0.75 \t#in rotor inlet width\n",
+ "w= 180. \t#rev/sec\n",
+ "B= 120. \t#degrees blade inlet angle\n",
+ "Bo= 150. \t#degrees blade outlet angle\n",
+ "ro= 3. \t#ft\n",
+ "bo= 0.5 \t#ft\n",
+ "Vbo= 180. \t#ft/sec\n",
+ "w1= 62.4 \t#lbf/ft**3 density\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Q= -2*math.pi*(r/12)**2*(b/12)*w*math.tan(math.radians(B))\n",
+ "Vfo= Q/(2*math.pi*(ro/12)*(bo/12))\n",
+ "Vwo= Vbo*(ro/12)+Vfo*1/math.tan(math.radians(Bo))\n",
+ "C= w1*Q*Vwo*(ro/12)/g\n",
+ "dp= w1*Vwo*w*(ro/12)/g\n",
+ "ari= degrees(math.atan((-Q*0.8/(2*math.pi*(r/12)**2*(b/12)*w))))+180\n",
+ "i1= ari-B\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' Flow rate = %.2f ft**3/sec'%(Q)\n",
+ "print ' radial velocity= %.2f ft/sec'%(Vfo)\n",
+ "print ' outlet whirl velocity= %.2f ft/sec'%(Vwo)\n",
+ "print ' Torque= %.2f lbf ft'%(C)\n",
+ "print ' Stagnant pressure = %.f lbf/ft**2'%(dp)\n",
+ "print ' Incidence angle = %.1f degrees'%(i1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Flow rate = 0.85 ft**3/sec\n",
+ " radial velocity= 12.99 ft/sec\n",
+ " outlet whirl velocity= 22.50 ft/sec\n",
+ " Torque= 9.27 lbf ft\n",
+ " Stagnant pressure = 1962 lbf/ft**2\n",
+ " Incidence angle = 5.8 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.7 Page No : 447"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 1.4\n",
+ "Mai= 0.5 \t#ft/sec mach number\n",
+ "T= 582. \t#R temperature\n",
+ "psi= 3040. \t#lbf/in**2 pressure\n",
+ "R= 53.3 \t #ft lbf/lbm gas\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "Vwi= 300. \t#ft/sec velocity\n",
+ "m= 35. \t#lb/sec\n",
+ "rm= 0.7 \t #ft radius\n",
+ "rp= 4.25\n",
+ "w= 1200. \t#rev/sec\n",
+ "cp= 0.24\n",
+ "J= 778. \t#lb\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "tr= 1+0.5*(r-1)*Mai**2\n",
+ "Ti= round(T/tr)\n",
+ "pr= tr**(r/(r-1))\n",
+ "pi= psi/pr\n",
+ "ai= pi/(R*Ti)\n",
+ "Vi= Mai*(r*R*g*Ti)**0.5\n",
+ "Vai= math.sqrt(Vi**2-Vwi**2)\n",
+ "h= m/(2*math.pi*ai*rm*Vai)\n",
+ "pr1= rp**(1./12)\n",
+ "Vwo= Vwi+(pr1**((r-1)/r)-1)*(cp*J*g*T/(rm*w))\n",
+ "BO= 1/math.tan(math.radians((Vwo-w*rm)/Vai))\n",
+ "\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' Absolute air velocity = %.f ft/sec'%(Vi)\n",
+ "print ' air velocity = %.f ft/sec'%(Vai)\n",
+ "print ' Blade height = %.3f ft'%(h)\n",
+ "print ' velocity = %.f ft/sec'%(Vwo)\n",
+ "print ' outlet balde angle = %.1f degrees'%(BO) #incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Absolute air velocity = 577 ft/sec\n",
+ " air velocity = 493 ft/sec\n",
+ " Blade height = 0.186 ft\n",
+ " velocity = 446 ft/sec\n",
+ " outlet balde angle = -71.7 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch12.ipynb b/Basic_Fluid_Mechanics/ch12.ipynb
new file mode 100755
index 00000000..61bd9af9
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch12.ipynb
@@ -0,0 +1,302 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:747d23d1d49d9ec45297f78a51cc698e8f77e86dac46ee6fa2ac037964e152b9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12 : Turbomachines: Further Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1 Page No : 461"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%pylab inline\n",
+ "from matplotlib.pyplot import *\n",
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "d= 0.0764 \t #lbm/ft**3\n",
+ "u= 3.74*10**-7 \t #lbf sec/ft**2\n",
+ "D= 15. \t#in\n",
+ "g= 32.2 \t #ft/sec**2\n",
+ "p= 14.7 \t #lb/in**2\n",
+ "r1= [0.02, 0.04, 0.06, 0.08, 0.1, 1.15]\n",
+ "r2= [0.0338, 0.0267, 0.0199, 0.0159, 0.0132, 0.0100]\n",
+ "r3= [0.46, 0.92, 1.38, 1.84, 2.3, 2.64]\n",
+ "r4= [2.97, 2.35, 1.75, 1.4, 1.16, 0.88]\n",
+ "r5= [0.0206, 0.0163, 0.0121, 0.0097, 0.0081, 0.0061]\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "re= (d/u)*(p*100*2*math.pi/60)*(D/12)**2/g\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Reynolds Number = %.2e '%(re)\n",
+ "print \"m/qwD**3 g0deltaPe/QW**2D**2 m(lbm/sec) deltap(lbf/ft**2) deltap(lbf/in**2)\"\n",
+ "for i in range(len(r1)):\n",
+ " print \"%7.2f %8.4f %7.2f %7.2f %8.4f\"%(r1[i],r2[i],r3[i],r4[i],r5[i])\n",
+ "\n",
+ "plot(r3,r5)\n",
+ "xlabel(\"m lbm/sec\")\n",
+ "ylabel( \"dPs lbf/ft**2\") \n",
+ "suptitle(\"Actual perfomance curve\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n",
+ "Reynolds Number = 1.53e+06 \n",
+ "m/qwD**3 g0deltaPe/QW**2D**2 m(lbm/sec) deltap(lbf/ft**2) deltap(lbf/in**2)\n",
+ " 0.02 0.0338 0.46 2.97 0.0206\n",
+ " 0.04 0.0267 0.92 2.35 0.0163\n",
+ " 0.06 0.0199 1.38 1.75 0.0121\n",
+ " 0.08 0.0159 1.84 1.40 0.0097\n",
+ " 0.10 0.0132 2.30 1.16 0.0081\n",
+ " 1.15 0.0100 2.64 0.88 0.0061\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.text.Text at 0x1c015d0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEhCAYAAABV3CYhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclGXex/HPIApmB01FiyE1tYzhrEYecMlDBGoesIe0\nSMV23TYzs3ystvLwVJsdttTKTE0r3cqw0kIpU9CydK1Ry9rSXE2GttZDlqnkINfzx10TiCAIwzDw\nfb9evprDdd/zu7h7zW+u+zrZjDEGERGRMxTg6wBERMS/KZGIiEiVKJGIiEiVKJGIiEiVKJGIiEiV\nKJGIiEiVKJFIjXnzzTcJCAjgq6++Om3ZJ598kmPHjp3xZy1atIhbb731jI8vz6uvvsoll1xCnz59\nvHJ+EX+jRCI15uWXX2bAgAG8/PLLpy07c+ZMjh49esafZbPZzvjYshhjKCoqYuHChSxatIg1a9ZU\n+2fUVkVFRb4OQWoxJRKpET///DObNm3iqaee4tVXX/W8XlhYyC233MJll11GdHQ0M2fOZPbs2Xz7\n7bdceeWVnl/9Z599tueYzMxMRo8eDcCKFSuIj48nMjKSXr168Z///KfcOKZOnUp6ejoJCQm0b9+e\np59+2vPe9OnTiYqK4rLLLuPuu+8GYM+ePVx66aWMGjWKmJgYHnzwQTZs2EBGRgaTJ0+moKCA4cOH\n43A4iIyM5J133gGsFtHgwYNJTk6mXbt2PPXUUzz22GN06dKFuLg49u/fD8DcuXO5/PLLcTgcDBw4\nkJ9//hmAUaNGcdttt9GrVy8uuugi/vGPf3jinDZtGpdddhkxMTFMnjwZgK+++oorr7yS6Oho4uPj\n+fzzz0vV/fDhw1x33XU4HA6io6NZtmxZuX/bUaNG8ec//5kePXowadIk2rVrx48//ugp27FjR/bt\n28d3333HgAEDiI6OJiYmhnXr1pV7DaQOMiI1YPHixWbs2LHGGGMSEhLMJ598Yowx5u9//7tJS0vz\nlDt06JAxxpi2bduaAwcOeF4/++yzPY8zMzPNqFGjjDHG/Pjjj57X582bZ8aNG2eMMWbhwoWex8VN\nmTLFxMTEGLfbbX744QcTGhpq9u7da5YvX27+9Kc/GWOMOXHihBkwYIBZvXq12b17twkICDAff/yx\n5xyJiYme+B988EHPcTt37jStW7c2x44dMwsXLjQdOnQwx44dM/v27TPnnnuumT9/vjHGmNtvv908\n+uijpeK/9957zWOPPWaMMWbUqFHmuuuuM8YY88UXX5g2bdoYY4x5/fXXTY8ePczx48dLHN+9e3ez\nc+dOY4wxGzduND169ChV9/Hjx5s777zT8/y3Y8v6244cOdIMHjzY895tt91mFi5c6PmMfv36GWOM\nGTJkiPnggw+MMcZ88803pn379qU+W+q2QF8nMqkfXn75ZW6//XYArr32Wl5++WXi4uJYs2aN53WA\n8847r1Ln/frrr5k4cSIHDhzA7XZz0UUXlVveZrMxaNAgAgMDadq0KX369GHjxo2sW7eOd999l9jY\nWACOHDnCnj176NChA23atKFz586nPN+GDRuYNGkSAB06dKBjx45s374dm83GlVdeSXBwMMHBwTRt\n2pSUlBQAIiMj2bp1KwCbNm3ivvvu49ixYxw+fJi+fft6zn3NNdcAcNlll3laMO+99x6jR4+mYcOG\nAJx77rns378fp9PJtdde6zn2VP1La9asYfny5Z7n55577mn/VkOHDvU8T0tLY/r06YwaNYpXXnmF\ntLQ0T0y7d+/2lPvll184fPgw55xzTrnnl7pDiUS87uDBg+Tk5Hi+YE+cOEFAQACPPvooYPU9nE7x\nMsW/JMeNG8e9995LSkoK69atY+rUqZWO77f+lPvuu4+MjIwS7+3Zs4cmTZpUOLbi5wsKCvK8FhAQ\n4Hlus9k8fQ4jR45k9erVOBwOXnjhBXJzcz3HNGrUqNQ5bTZbqc8zxtCyZUu2bNly2rqe6m9d1t8W\n4KyzzvI8vuKKK/j666/Zv38/y5cv5/777/fEtHnzZgID9XVSX6mPRLwuMzOTG2+8kT179rB79272\n7t1L27Ztef/99+nXrx/z5s3zfJn9dg++cePGHDlyxHOO5s2b8+WXX2KM4c033/R8sRYUFNC6dWsA\nXnzxxdPGYoxhxYoVuN1ufvjhB9asWcMVV1xBUlISCxcupKCgAIDvv//e0wooT0JCgqfPZ9euXezc\nuZOIiIgKJUeA48ePExISwokTJ1iyZMlpBwn069ePRYsWcfz4ccD6e7Vs2ZKWLVvy9ttve+p4qj6S\nfv36MXfuXM/zn376CSj7b3sym83GkCFDuP322wkPD6dZs2YA9O3bl2effdZTbvv27RWqu9QdSiTi\nda+88gpDhgwp8VpqaiqvvPIK48aNo3nz5p7O45deegmAMWPGlOhs/9vf/kZSUhIJCQlccMEFnvPc\nd999DBkyhPj4eJo3b17il/upvhBtNhuRkZH07t2bzp07c88992C32xk4cCADBgwgLi6OmJgYrrnm\nGg4fPuw5piwTJkzgxx9/xOFwMHjwYF544QWCgoJKff7Jj397Pm3aNDp37kxCQgKdOnUqFevJjwcN\nGkS/fv2IiooiNjaWGTNmANaQ5Mcff5yoqCgiIiLIzMwsFev//d//sXfvXsLDw4mJifGMOivrb3uq\nuqelpbFkyRLPbS2AZ599ltWrVxMZGUlERASzZs0q8+8ldZPNVPSnk0gdMG3aNM4++2zuuOMOX4ci\nUmeoRSL1jjfmmIjUZ2qRiIhIlahFIiIiVaJEIiIiVaJEIiIiVaJEIiIiVaJEIiIiVaJEIiIiVaJE\nIiIiVeL1RJKdnU1kZCTh4eGe5RxONn78eBwOB3FxcZ6F5/Ly8ujVqxeRkZFceumlPPLII57yEydO\nJDw8nPDwcAYMGMCBAwe8XQ0RESmDVxPJL7/8ws0330x2djaffvopmZmZpVYoXbZsGXv37uXzzz9n\nwYIFnk11GjVqxDPPPMNnn33GJ598wvz589m2bRsAAwcOZPv27XzxxRdERETwwAMPeLMaIiJSDq8m\nkk2bNuFwOAgNDSUwMJC0tDSysrJKlFm5ciXp6ekAxMbGUlhYiMvlolWrVkRERADWDm5RUVF8++23\nAFx55ZUEBFih9+jRg/z8fG9WQ0REyuHVROJyuQgLC/M8t9vtuFyuSpfZs2cPmzdvpmfPnqU+47nn\nnmPQoEHVHLmIiFSUVxNJRRfHK2tjILD2+r722muZOXNmqR3XHnzwQRo1asT1119f9WBFROSMeHVL\nM7vdTl5enud5Xl5eidZH8TLx8fGA1UKx2+0AuN1uUlNTGTFiBIMHDy5x3AsvvEBWVhZr16495Wd3\n6NCBXbt2VWd1RETqtOjoaGJiYli0aFHlDvTmhvDHjh0zbdq0MS6Xyxw/ftx06dLFfPLJJyXKZGZm\nmsGDBxtjjPnkk09MVFSUMcaYoqIik56ebiZMmFDqvKtWrTLh4eFm3759ZX62l6vmc1OmTPF1CF5T\nl+tmjOrn7+py/aZMmXJG351ebZEEBwczZ84ckpKSKCoqIj09nbi4OM92n2PHjiU1NZWcnBwcDgdB\nQUEsXLgQgA0bNrB48WLPTnBg7eR29dVXc+utt3L8+HH69esHQLdu3XjmmWe8WRURESmDVxMJQHJy\nMsnJySVeGzt2bInnTz31VKnjevbsSVFR0SnPuXPnzuoLUEREqkQz2/1UYmKir0PwmrpcN1D9/F1d\nrt+Z1q3O7pBos9lKjQYTEZHyncl3p1okIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJS\nJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUoktdyOHbBli6+jEBEpmxJJLfev\nf8HAgVBsx2IRkVrF6xtbSdUMGgQ7d8KAAfDBB3DOOb6OSESkJO1H4geMgT//GVwuWL4cApX+RcRL\ntB9JHWWzwVNPQWEhTJhgJRYRkdrCq4kkOzubyMhIwsPDmTFjxinLjB8/HofDQVxcHFt+7VXOy8uj\nV69eREZGcumll/LII494yh88eJB+/foRFRVFUlIShw4d8mYVao2GDWHpUsjNhVmzfB2NiEgxxksK\nCgpM27ZtjcvlMm6323Tp0sU4nc4SZTIzM82gQYOMMcY4nU4THR1tjDHmu+++M5999pkxxpjDhw+b\njh07mm3bthljjBk3bpx54oknjDHGPPHEE2b8+PGn/HwvVs2n9uwx5sILjVmxwteRiEhddCbfnV5r\nkWzatAmHw0FoaCiBgYGkpaWRlZVVoszKlStJT08HIDY2lsLCQlwuF61atSIiIgKAs88+m6ioKPLz\n80sdc8MNN5Q6Z13Xpg288QaMGaNhwSJSO3gtkbhcLsLCwjzP7XY7Lper0mX27NnD5s2b6dmzJwD7\n9u2jefPmALRo0YL//ve/3qpCrXX55TBnDlxzjdUBLyLiS14b/2Oz2SpUzpzUc1z8uJ9//plrr72W\nmTNnco7GvZaQmgq7dllzTN5/H84+29cRiUh95bVEYrfbySs2iy4vL69E66N4mfj4eMBqodjtdgDc\nbjepqamMGDGCwYMHe45p2bIl+/fvp0WLFuzbt4+QkJAyY5g6darncWJiIomJidVQs9pj0iRrjsnw\n4fDmm9Cgga8jEhF/k5ubS25ubpXO4bV5JAUFBXTq1IkNGzYQEhJC9+7dmTt3LnFxcZ4yy5YtY/Hi\nxbzxxhs4nU5Gjx7Ntm3bMMYwcuRImjdvzhNPPFHivLfeeivt27dnwoQJPPHEE+zevZtZpxjGVJfm\nkZTH7YaUFAgPh5kzfR2NiPi7M/nu9OqExFWrVjFp0iSKiopIT0/n7rvvZu7cuQCMHTsWgHHjxpGT\nk0NQUBDz588nLi6ODz74gF69ehEVFeW51fW3v/2Nq6++moMHD5KWlsb3339P69atWbp0KU2bNi1d\nsXqSSAAOHYIePeDmm2HcOF9HIyL+rNYlEl+qT4kEYPduK5nMmwf9+/s6GhHxV0okxdS3RAKwcaM1\nkuvddyEmxtfRiIg/0hIp9dwVV8DTT1vJ5NdpNyIiXqfl/+qYa6+Fr7+2hgWvX69hwSLifbq1VQcZ\nAzfdBPv2WbPgNSxYRCpKt7YEsFYLfvZZOHIE7rzT19GISF2nRFJHNWwImZmQnQ3PPOPraESkLlMf\nSR3WrBlkZVnDgtu1g+RkX0ckInWRWiR13MUXw+uvw8iR8Omnvo5GROoiJZJ6oFs3mD3bGsn1n//4\nOhoRqWt0a6ueSEv7fVjwunXQpImvIxKRukLDf+sRY2D0aPjxR6sjXsOCReRkGv4r5bLZ4LnnrEUe\nJ0/2dTQiUlcokdQzjRrBsmXw9tvWXBMRkapSH0k9dP75JYcFJyX5OiIR8WdqkdRT7dtb/STp6fDZ\nZ76ORkT8mRJJPdazJzz5pDWS67vvfB2NiPgrJZJ6bsQIGDPGWnr+6FFfRyMi/kjDfwVjYNQo+Pln\neO01CNDPC5F6S8N/5Yz8Nix4/3646y5fRyMi/sariSQ7O5vIyEjCw8OZMWPGKcuMHz8eh8NBXFwc\nW7Zs8byekZFBq1atiIyMLFF+w4YNxMTEEBERQXR0NB9++KE3q1BvBAVZa3K9+aa177uISIUZLyko\nKDBt27Y1LpfLuN1u06VLF+N0OkuUyczMNIMGDTLGGON0Ok10dLTnvfXr1xun02kiIiJKHNOjRw+T\nnZ1tjDFm5cqVpmfPnqf8fC9WrU7bscOYVq2MefddX0ciIr5wJt+dXmuRbNq0CYfDQWhoKIGBgaSl\npZGVlVWizMqVK0lPTwcgNjaWwsJCXC4XAAkJCTRr1qzUecPCwvjxxx8BOHToEG3atPFWFeqljh2t\nfpLrr4fPP/d1NCLiD7w2IdHlchEWFuZ5brfbyc3NPW0Zl8uF3W4v87wPP/wwPXv25M4776SoqIiP\nPvqo2mOv7xIS4O9/hwEDYONGaNXK1xGJSG3mtURis9kqVM6cNDrgdMeNGTOGWbNmMWTIEF577TUy\nMjJYvXr1KctOnTrV8zgxMZHExMQKxSRwww3WasHXXAM5OXDWWb6OSES8ITc3t9SP/MryWiKx2+3k\n5eV5nufl5ZVofRQvEx8fD3Da1gjAxo0bee+99wAYNmwYo0ePLrNs8UQilTdlipVMbrwRli7VsGCR\nuujkH9nTpk2r9Dm89tXQtWtXtm/fTn5+Pm63m6VLl5J80l6vKSkpLFmyBACn00mDBg0IDQ0t97xt\n2rRh3bp1AKxdu5Z27dp5pwKCzQYLFsD338M99/g6GhGprbzWIgkODmbOnDkkJSVRVFREeno6cXFx\nzJ07F4CxY8eSmppKTk4ODoeDoKAgFi5c6Dl++PDhrFu3jgMHDhAWFsb06dMZPXo08+bN4y9/+Qtu\nt5ugoCAWLFjgrSoI1rDgN96wdlns0AFuusnXEYlIbaOZ7VIhO3ZYnfD/+Af06ePraETEWzSzXbzm\nkkusfpLhw+GLL3wdjYjUJkokUmF/+AM89pg1LPi///V1NCJSWyiRSKXceKM1NHjQIDh2zNfRiEht\noD4SqTRjrJnvJ07Ayy9rWLBIXaI+EqkRNhs8/zzk58N99/k6GhHxNSUSOSPBwdaw4FdfhWKjtkWk\nHvLaPBKp+1q2hLfftjrh27SB3r19HZGI+IJaJFIlnTrBK69Yw4K//NLX0YiILyiRSJVdeSXMmAH9\n+8O+fb6ORkRqmkZtSbX5618hNxfWrLH6UETE/5zJd6cSiVSboiIYMcIa1bVkiYYFi/gjDf8VnwoI\nsEZw7dljLUEvIvWDEolUq8aNYflyq0Xywgu+jkZEaoKG/0q1CwmBrKzfhwVrY0qRuk0tEvGKyy6z\nlk9JS4OvvvJ1NCLiTUok4jV9+sBDD1mrBe/f7+toRMRbNGpLvO7uu+H99+G99zQsWKS20/DfYpRI\nao+iIrjuOmjYEBYvtoYHi0jtpOG/UisFBFgjuHbtgqlTfR2NiFQ3ryaS7OxsIiMjCQ8PZ8aMGacs\nM378eBwOB3FxcWzZssXzekZGBq1atSIyMrLUMbNnzyY6OprIyEgmTZrktfil+vw2LPill2DRIl9H\nIyLVynhJQUGBadu2rXG5XMbtdpsuXboYp9NZokxmZqYZNGiQMcYYp9NpoqOjPe+tX7/eOJ1OExER\nUeKYt99+2/Tv39+43W5jjDH79+8/5ed7sWpSBf/6lzEhIca8+66vIxGRUzmT706vtUg2bdqEw+Eg\nNDSUwMBA0tLSyMrKKlFm5cqVpKenAxAbG0thYSEulwuAhIQEmjVrVuq88+fPZ/LkyQQGWlNgmjdv\n7q0qiBd06gSZmdYOi9u2+ToaEakOXkskLpeLsLAwz3O73e5JEpUpc7Ivv/ySd955h5iYGLp168aH\nH35YvYGL1yUkwOzZ1rDg01xuEfEDZc5sN8awYsUKvv32W66++mratWvnee/5558nIyOj3BPbKjg0\nx5w0OuB0xxUVFXH48GG2bt3K5s2bSU1N5ZtvvjnlcVOL9ewmJiaSqCnWtUZaGuTlQUqKNTT4vPN8\nHZFI/ZSbm0tubm6VzlFmIrnjjjv4+OOPufzyy+nbty+33XYb48ePB6zO7tMlErvdTl5enud5Xl5e\nidZH8TLx8fGA1UKx2+3lnjcsLIyhQ4cC0LVrVxo1asT3339P69atS5WdqiFCtdodd1gLPKamwsqV\n0KiRryMSqX9O/pE9bdq0Sp+jzFtbWVlZrFmzhscee4xPPvmE7OxsbrvttgqPL+7atSvbt28nPz8f\nt9vN0qVLSU5OLlEmJSWFJUuWAOB0OmnQoAGhoaHlnrd///6sXbsWgB07dnD06FFCQkIqFJPULjYb\nzJwJTZrAH/8ImvYj4p/KTCSBgYE0bNgQgKZNm7JixQoOHz7MsGHDOH78+GlPHBwczJw5c0hKSiI6\nOpqhQ4cSFxfH3LlzmTt3LgCpqamEhobicDi46aabWLhwoef44cOH0717d3bs2EFYWJjnvXHjxvHv\nf/+biIgIhg4dyqJFiwjQxhd+q0EDa02uL7/UHBMRf1XmzPakpCTuv/9+evToUeL1e++9l4ceeoii\noqIaCfBMaWa7f/nvf6FbN7jnHhgzxtfRiNRf1bpEyrFjxwBo3Lhxqfcq0pfha0ok/uerr6yl5194\nAZKSfB2NSP1UrUukNG7c2HMLatasWSXeq+1JRPzTpZfCsmWQng5bt/o6GhGpqHI7F8455xweffRR\nmjRpUlPxSD3Xowc884w1x2TvXl9HIyIVUWYimTZtGjt27OC+++7jq6++OqMhYSJnYtgwmDjRmmNy\n6JCvoxGR0ykzkUyZMoWGDRvy7rvv0qhRI6ZMmVKTcUk9d/vt0Ls3DB0KFRgkKCI+VO6trV69etGr\nVy/NCJcaZ7PBE09YM97HjNEcE5HarNxE8sUXX5T4r0hNatAAliyBnTvhvvt8HY2IlEWd7VKrnXUW\nvPUWvPIKzJvn62hE5FTU2S61XsuWsGqV1SpZtcrX0YjIydTZLn6hY0d44w0YORKcTl9HIyLFlbn6\nL/ze2V6RtbVEvK1bN3j2WRg4ED78ENq08XVEIgKn6SO56qqr6NOnD3379i3xep8+fbwalEhZhg6F\n//1fSE6GH37wdTQiAuW0SI4dO8bRo0fZt28fBw8e9Lx+5MgRvvnmmxoJTuRUbrvN2sdkyBB45x0I\nCvJ1RCL1W5mLNs6cOZMnn3ySb7/9lgsvvNDzeuPGjRkzZgx33HFHjQV5JrRoY9124gT8z/9YSWTx\nYtBOAiLV40y+O8vdanf37t1Mnz6d+++/v8rBiVSnBg2sBNKnD9x7Lzz0kK8jEqm/yvwdN3/+fADe\neOONGgtGpDIaN4YVKyAzE35dqFpEfKDMFkl4eDgdO3YkPz+fyMjIEu/ZbDY+/fRTrwcncjotWlj7\nvSckQGiotWqwiNSsMvtIAL777juuuuoq3nrrrVL3zNq2bevt2KpEfST1y8aN1rDgVaugSxdfRyPi\nv6p1h8Q//elPJCcn06dPH84999xqCbAmKZHUP2++CbfcAhs2QC3/nSNSa1XrDokZGRls3bqV/v37\n07t3b2bMmMG2bdsqdfLs7GwiIyMJDw9nxowZpywzfvx4HA4HcXFxbNmypcTnt2rVqtRttd88/vjj\nBAQElBiaLPXb4MFw113WHBP9byFSg0wF7Nu3zyxZssSkp6eb6OhoM2rUKPPqq6+We0xBQYFp27at\ncblcxu12my5duhin01miTGZmphk0aJAxxhin02mio6M9761fv944nU4TERFR6tx79+41SUlJpm3b\ntubAgQOn/PwKVk3qoIkTjenVy5iCAl9HIuJ/zuS7s8wWycyZMwHYsGEDLVq0YMSIEbz44ots2bKF\nW265hZ07d5aboDZt2oTD4SA0NJTAwEDS0tLIysoqUWblypWkp6cDEBsbS2FhIS6XC4CEhASaNWt2\nynNPnDiRRx55pKK5UuqZRx+FkBAYNQqKinwdjUjdV2Yimffrmt3jxo0r8brNZqNLly789a9/LffE\nLpeLsLAwz3O73e5JEpUpc7Lly5djt9uJiooqt5zUXwEB8NJLkJcHd9/t62hE6j6vDf+12WwVCsCc\n1KlT3nFHjx7loYceYvXq1WUeX9zUqVM9jxMTE7XTYz0SHAzLl0P37tbijn/5i68jEqmdcnNzyc3N\nrdI5ykwkS5cuLXf47+nY7Xby8vI8z/Py8kq0PoqXiY+PB6wWit1uL/Ocu3btYs+ePURHR3vKd+7c\nmX/+85+EhISUKl88kUj907y5NRy4Z08IC7OGB4tISSf/yD6TvafKXaGodevWfPrpp7Rq1Yr9+/dz\n4MABLrjgggrNIenatSvbt28nPz8ft9vN0qVLSU5OLlEmJSWFJUuWAOB0OmnQoAGhoaFlnjMyMpLv\nv/+e3bt3s3v3bux2O06n85RJRATg4outYcEZGbB5s6+jEambTrvU3RtvvEGbNm244447mDhxIm3a\ntKnQsinBwcHMmTOHpKQkoqOjGTp0KHFxccydO5e5v65nkZqaSmhoKA6Hg5tuuomFCxd6jh8+fDjd\nu3dnx44dhIWFlXjvNxW9fSb12+WXw4IFMGgQ/Pvfvo5GpO4pd2Y7QPv27VmzZo2nFbJ792769u3L\nrl27aiK+M6YJiXKyp5+G2bOtCYvNm/s6GpHaqVonJP6mZcuWJW5ltWvXTreSxC/dcgtcc43VMiko\n8HU0InVHmS2SZcuWAfDee++Rl5fHsGHDPK/b7XbmzJlTc1GeAbVI5FSKimD4cDAGXnlF+5iInKxa\n19oaNWqUpw/CGFPq8an6LGoTJRIpS0EBXHUVxMdbkxdF5HfVmkj8nRKJlOfgQWuOybhx1j8RsVTr\nDom33npruR80a9asSn2QSG1y/vnWHJMePaw5JoMG+ToiEf9VZiLp3LnzKYfXFr/NJeLP2rWzdlhM\nTobWra1bXSJSebq1JfXe22/DH/8IH3wA7dv7OhoR3/LK8F+Rum7AAJgyxWqZ7N/v62hE/I9aJCK/\nuusueP99eO89aNzY19GI+IZGbRWjRCKVVVQEN9wAx4/D0qWaYyL1k1dubU2cOJEjR45w/Phxevfu\nTdOmTWv9HBKRMxEQAAsXWre37rzT19GI+I/TJpK1a9fSpEkT3nrrLS6++GK++eYbnnjiiZqITaTG\nBQXBG29Adjb8ukmoiJxGmcN/f+N2uwFrW9xhw4Zx3nnn0aBBA68HJuIrzZpZc0y6d4eLLoIhQ3wd\nkUjtdtpEkpKSQkREBA0bNmTOnDkcOHCAwMDTHibi19q0seaYXH21NcekWzdfRyRSe1Wos33fvn2c\nf/75NGjQgCNHjvDTTz9xwQUX1ER8Z0yd7VIdVq60NsV6/33o2NHX0Yh4X7V2tq9bt45OnTrRqFEj\nrrrqKrZv3w5AkyZNan0SEakuKSkwfbr13337fB2NSO1UZiK55ZZbmD17Nj/99BP33HMPEyZMqMm4\nRGqNP/0J/ud/rL1Mjh71dTQitU+Zt7aio6PZtm1bmc9rO93akupkjDXH5NgxeO010HgTqauqdfXf\nw4cP8/odAgB/AAAW+UlEQVTrr3tOWPy5zWZj6NChVYtWxI/YbPD881bn+x13wJNP+joikdqjQhtb\nQelVfys6KTE7O5tJkyZx4sQJRo4cyeTJk0uVGT9+PGvWrCEoKIgFCxYQGxsLQEZGBllZWYSEhPDZ\nZ595yk+cOJHs7GwALr74Yl544QWan7QJt1ok4g2HDllLz//xj6C7vVIXndF3p/GigoIC07ZtW+Ny\nuYzb7TZdunQxTqezRJnMzEwzaNAgY4wxTqfTREdHe95bv369cTqdJiIiosQxa9euNSdOnDDGGDN5\n8mQzYcKEUp/t5apJPfbNN8aEhhqTmenrSESq35l8d5Z5a+vxxx8vd9+RiRMnnjZJbdq0CYfDQWho\nKABpaWlkZWV5WhxgTXRMT08HIDY2lsLCQlwuF3a7nYSEBPbs2VPqvFdeeaXncY8ePXjppZdOG4tI\ndbnoInjrLWu73p9+glGjrFtfIvVVmaO2Dh8+zOHDh/n444+ZM2cO+fn5uFwunn32WZxOZ4VO7nK5\nCAsL8zy32+24XK5KlynPc889xyBtbyc1LDbWWiV49myr3+Sbb3wdkYjvlNkimTp1KgCJiYls27aN\ns846C4AHHniAlJSUCp28ojspmpPux1X0uAcffJBGjRpx/fXXn/L93+oAVj0SExMrdF6RioiOhk2b\n4LHHoHNnmDoV/vIXrRos/iU3N5fc3NwqneO0a524XC4aNmz4+wGBgRVuMdjtdvLy8jzP8/LySrQ+\nipeJ/3Wf099ua53OCy+8QFZWFmvXri2zTPFEIuINDRvC3Xdb63GNGQOvvgoLFsAll/g6MpGKOflH\n9rRp0yp9jtP+dhoxYgSdO3dm6tSpTJkyha5du5bZAjhZ165d2b59O/n5+bjdbpYuXUpycnKJMikp\nKSxZsgQAp9NJgwYNPH0qZcnOzuaRRx5hxYoVBAcHVygWEW/q1AnWr4drr7UWe5wxAwoLfR2VSM2o\n0FpbH330Ee+//z4BAQH07NmTK664osIfsGrVKiZNmkRRURHp6encfffdzJ07F4CxY8cCMG7cOHJy\ncggKCmL+/PnExcUBMHz4cNatW8eBAwcICQlh+vTpjB49mo4dO3L8+HHOP/98ALp168YzzzxTsmIa\n/is+snu3NTz40CFr7klUlK8jEqk47ZBYjBKJ+JIxVhK56y64+Wb461+tvU5Eajuv7JAoIpVns1l9\nJtu2Wf/i4qyOeZG6SC0SES8zxuqEnzABrr8e/u//4NdBkCK1jlokIrWQzQbXXQeffQb/+Y/VZ1LF\n0ZYitYpaJCI17K23rH6TAQPgkUfg3HN9HZHI79QiEfEDAwfC9u1w4gRERFi7MIr4M7VIRHxozRpr\nqHD37jBzJpy0iLVIjVOLRMTP9Olj9Z20aGG1TpYutTrnRfyJWiQitcSHH1pDhjt1gmeegQsu8HVE\nUh+pRSLix7p3hy1bwOGwFoRcuFCtE/EPapGI1EJbtkBGBoSEwHPPQZs2vo5I6gu1SETqiNhY+Oc/\nITHRWqL+qaegqMjXUYmcmlokIrXcl19afScBATB/Plx6qa8jkrpMLRKROqj4EvU9emiJeql91CIR\n8SPFl6hfsMDqlBepTmqRiNRx7drB6tXWEit9+8L998Mvv/g6KqnvlEhE/IyWqJfaRre2RPyYlqiX\n6qZbWyL1jJaol9pALRKROkRL1EtV1boWSXZ2NpGRkYSHhzNjxoxTlhk/fjwOh4O4uDi2bNnieT0j\nI4NWrVoRGRlZovzBgwfp168fUVFRJCUlcejQIW9WQcSvaIl68QWvJZJffvmFm2++mezsbD799FMy\nMzNLJAqAZcuWsXfvXj7//HMWLFjA6NGjPe+NHj2a7OzsUuedMmUK/fv359NPPyU5OZkpU6Z4qwoi\nfqlpU5g3z1qra9w4uOEGOHDA11FJXea1RLJp0yYcDgehoaEEBgaSlpZGVlZWiTIrV64kPT0dgNjY\nWAoLC3G5XAAkJCTQrFmzUuctfswNN9xQ6pwiYtES9VJTvJZIXC4XYWFhnud2u92TJCpT5mT79u2j\n+a+7/7Ro0YL//ve/1Ri1SN3SpAk8+SQsWwZTpsDQoVanvEh1CvTWiW02W4XKndypU9HjKmLq1Kme\nx4mJiSQmJlbbuUX8yW9L1D/wgDUbfsYMGDXKGvUl9Vtubi65VRzq57VEYrfbycvL8zzPy8sr0foo\nXiY+Ph6wWih2u73c87Zs2ZL9+/fTokUL9u3bR0hISJlliycSkfouONhKJKmp1hL1r7wCc+dC27a+\njkx86eQf2dOmTav0Obx2a6tr165s376d/Px83G43S5cuJTk5uUSZlJQUlixZAoDT6aRBgwaEhoaW\ne96UlBQWL14MwOLFi0lJSfFOBUTqqOJL1HfpoiXqpeq8Oo9k1apVTJo0iaKiItLT07n77ruZO3cu\nAGPHjgVg3Lhx5OTkEBQUxPz584mLiwNg+PDhrFu3jgMHDhASEsL06dMZPXo0Bw8eJC0tje+//57W\nrVuzdOlSmjZtWrpimkciclrFl6h/5hk4abS91ENn8t2pCYki9dyJE1YSeegha3TXbbdBSoqVXKT+\nUSIpRolEpHJ++cUaIvzkk3D4MNx6q9Uhf845vo5MapISSTFKJCJnxhjYsAFmzoS1a+HGG62kcvHF\nvo5MakKtWyJFRPyPzQY9e8Jrr4HTCQ0bwuWXw+DB1oKQ+n0mJ1OLRERO68gRePFFmDULGjWy+lFG\njLCGFEvdoltbxSiRiFS/oiJrh8aZM+GTT+BPf7JWG77wQl9HJtVFt7ZExKsCAiApyVpVeN06OHgQ\nHA5rU61//tPX0YmvqEUiIlVy6BAsWACzZ1stk9tus9b0atjQ15HJmdCtrWKUSERqVmEhrFhhDR/e\nvRtuuQX++Ef4dY1V8RO6tSUiPhMYaLVE1q+3EsqXX0KHDjB2LHz+ua+jE29SIhGRahcbC4sWWcnk\nwguhb1/o1w/eflvretVFurUlIl6nWfP+Q30kxSiRiNQ+J8+aHznS2g5Ys+ZrD/WRiEitdvKs+cBA\nzZqvC9QiERGfOnIEXnrJaqVo1rzv6dZWMUokIv5Fs+ZrB93aEhG/Vdas+RtugM2bfR2dlEctEhGp\ntU6eNT9hAgwZolnz3qRbW8UokYjUHb/Nmp85E/79b82a9ybd2hKROum3WfPr1mnWfG3k1USSnZ1N\nZGQk4eHhzJgx45Rlxo8fj8PhIC4uji1btpz22A0bNhATE0NERATR0dF8+OGH3qyCiNQyxWfNh4Za\ns+avugqysjRr3meMlxQUFJi2bdsal8tl3G636dKli3E6nSXKZGZmmkGDBhljjHE6nSY6Ovq0x/bo\n0cNkZ2cbY4xZuXKl6dmz5yk/34tVE5FapKDAmBdfNCYuzpiOHY2ZNcuYn37ydVT+60y+O73WItm0\naRMOh4PQ0FACAwNJS0sjKyurRJmVK1eSnp4OQGxsLIWFhbhcrnKPDQsL48cffwTg0KFDtGnTxltV\nEBE/EBQE6enw8cfw/PPWopEdO1rreknNCPTWiV0uF2FhYZ7ndrud3Nzc05ZxuVzk5+eXeezDDz9M\nz549ufPOOykqKuKjjz7yVhVExI/8Nmu+Z0/44ANrs601a+Dhh61kI97jtURis9kqVM5UYHRA8TJj\nxoxh1qxZDBkyhNdee42MjAxWr159yuOmTp3qeZyYmEhiYmKFYhIR/9azJ2zZAmPGQI8e8MorVue8\nlJabm1vqR35leS2R2O128vLyPM/z8vJKtDKKl4mPjwd+b6G43e4SxxZvuWzcuJH33nsPgGHDhjF6\n9OgyYyieSESkfjn/fHj9dXj6aejWzRo6PGKEr6OqfU7+kT1t2rRKn8NrfSRdu3Zl+/bt5Ofn43a7\nWbp0KcnJySXKpKSksGTJEgCcTicNGjQgNDS03GPbtGnDunXrAFi7di3t2rXzVhVExM/ZbNbqwqtX\nw7RpkJFhre0l1ctrLZLg4GDmzJlDUlISRUVFpKenExcXx9y5cwEYO3Ysqamp5OTk4HA4CAoKYuHC\nheUeCzBv3jz+8pe/4Ha7CQoKYsGCBd6qgojUETEx1vpd48ZBly7w6qsQFeXrqOoOzWwXkXrlpZdg\n4kSYPh3+/Ger1SK/0xIpxSiRiEhZduyAtDRrQ63586FZM19HVHtoiRQRkQq45BLYuBHsdmumvBbI\nqBq1SESkXlu+3Nr7ZMIEmDzZWs6+PtOtrWKUSESkovLyft+V8aWXoHVrX0fkO7q1JSJyBsLCICcH\nrrgC4uLg3Xd9HZF/UYtERKSYtWvhxhut9bumT69/m2ipRSIiUkW9e4PTCdu2Qa9esGePryOq/ZRI\nREROEhJirR48bBhcfjksW+briGo33doSESnHP/8Jw4dbm2f9/e/QuLGvI/Iu3doSEalml19u3eo6\neBDi4+Ff//J1RLWPEomIyGmcd561FP348Va/yfPPg254/E63tkREKuHzz63lVaKi4Nln4dxzfR1R\n9dKtLRERL3M4rH6Tc86x5px8/LGvI/I9JRIRkUo66yyYOxceeghSUuCJJ+r3rS7d2hIRqYLdu+G6\n66BlS1i0CFq08HVEVaNbWyIiNaxdO3j/fQgPt1YS/nUD13pFLRIRkWqSnQ2jR8PYsXDffdCgga8j\nqjyt/luMEomI+MK331rrdBUWwpIl1p4n/qTW3drKzs4mMjKS8PBwZsyYccoy48ePx+FwEBcXx5Yt\nWyp07OzZs4mOjiYyMpJJkyZ5swoiIpVy4YXW6sFXXQWdO8Nbb/k6ohpgvKSgoMC0bdvWuFwu43a7\nTZcuXYzT6SxRJjMz0wwaNMgYY4zT6TTR0dGnPfbtt982/fv3N2632xhjzP79+0/5+V6sWq2Qk5Pj\n6xC8pi7XzRjVz99Vpn7vv2/MRRcZM2GCMQUF3oupuuTk5JzRd6fXWiSbNm3C4XAQGhpKYGAgaWlp\nZGVllSizcuVK0tPTAYiNjaWwsBCXy1XusfPmzWPy5MkEBgYC0Lx5c29VoVbLzc31dQheU5frBqqf\nv6tM/Xr2hC1brBWEu3eHnTu9Fla1ONNr57VE4nK5CAsL8zy32+24XK4KlcnPzy/z2K+++op33nmH\nmJgYunXrxofabFlEarHzz4fXX7c64W+6qW7ONwn01oltNluFypkK/FWLlykqKuLw4cNs3bqVzZs3\nk5qayjfffFPhzxMRqWk2G4wbBzffbD2ua7yWSOx2O3l5eZ7neXl5JVoZxcvEx8cDv7dQ3G53iWOL\nt1zCwsIYOnQoAF27dqVRo0Z8//33tD5pk+X27dvX+eQybdo0X4fgNXW5bqD6+bu6Wr/o6GhGjhxZ\n6eO8lki6du3K9u3byc/PJyQkhKVLlzJ37twSZVJSUli8eDHDhg3D6XTSoEEDQkNDad68eZnH9u/f\nn7Vr1/KHP/yBHTt2cPToUUJCQkp9/tdff+2tqomISDFeSyTBwcHMmTOHpKQkioqKSE9PJy4uzpMQ\nxo4dS2pqKjk5OTgcDoKCgli4cGG5xwKMGzeOjIwMIiIiAFi0aBEBAZqgLyLiK3V2QqKIiNQMv/4p\nX5UJj/7gdPXLzc3lvPPOIzY2ltjYWB544AEfRHlmMjIyaNWqFZGRkWWW8edrd7r6+fO1A6vPs1ev\nXkRGRnLppZfyyCOPnLKcv17DitTPX69hQUEBXbt2JTY2lksuuYTbb7/9lOUqde2qeT5LjanKhEd/\nUJH65eTkmIEDB/oowqpZv369cTqdJiIi4pTv+/O1M+b09fPna2eMMd9995357LPPjDHGHD582HTs\n2NFs3bq1RBl/voYVqZ8/X8OjR48aY4xxu90mPj7erF27tsT7lb12ftsiqcqER39QkfpBxYZP10YJ\nCQk0a9aszPf9+drB6esH/nvtAFq1auXppzz77LOJiori22+/LVHGn69hReoH/nsNGzduDMDx48c5\nceIErVq1KvF+Za+d3yaSqkx49AcVid1ms/HRRx8RGRlJnz592LZtW02H6TX+fO0qoi5duz179rB5\n82Z69uxZ4vW6cg3Lqp8/X8OioiJiYmJo1aoVV155JeHh4SXer+y189qoLW870wmP/jK3pCJxdu7c\nGZfLRXBwMO+++y6DBw9m9+7dNRBdzfDXa1cRdeXa/fzzz1x77bXMnDmTc845p9T7/n4Ny6ufP1/D\ngIAAtm7dyo8//khSUhK5ubkkJiaWKFOZa+e3LZLKTHj8jcvlwu4nazpXpH5nn302wcHBAFx11VU0\natSI7777rkbj9BZ/vnYVUReundvtJjU1lREjRjB48OBS7/v7NTxd/erCNTzvvPPo378/GzduLPF6\nZa+d3yaS4hMe3W43S5cuJTk5uUSZlJQUlixZAlBiwqM/qEj99u/f73n8ySefcOTIkVNOzvRH/nzt\nKsLfr50xhjFjxhAeHl7mqB9/voYVqZ+/XsMDBw5w+PBhAI4dO8bq1atLjS6s7LXz21tbVZnw6A8q\nUr+XX36Z5557DoBGjRrxj3/8w28mZw4fPpx169axf/9+wsLCmDZtGm63G/D/awenr58/XzuADRs2\nsHjxYqKiooiNjQXgoYceYu/evYD/X8OK1M9fr+G3337LjTfeiDGGgoICRowYQf/+/av03akJiSIi\nUiW1P32KiEitpkQiIiJVokQiIiJVokQiIiJVokQiIiJVokQiIiJVokQiUkW5ubkMHDgQgKlTp/L4\n449X6Xz/+c9/SEpKqo7QRGqEEolINaqOtaSys7O5+uqrqyEakZqhRCJSzJ49e+jUqRNjxoyhU6dO\nXH/99axevZpevXrRrl07Pvzww9OeY9u2bSQkJNC+fXuefvppwGq1/OEPfyA1NZUOHTpw11138dJL\nL9GtWzcuvfRSdu7c6Tn+nXfeITk5GZfLRa9evYiNjSUyMpIPPvgAgBUrVtC5c2ciIyMZNGiQZ7mL\nDRs20KVLF2JiYujatSs///yzF/5CIqdQfVuliPi/3bt3m8DAQPOvf/3LFBUVmc6dO5ubbrrJGGPM\n8uXLTf/+/Usdk5OTYwYMGGCMMWbKlCkmOjrauN1u88MPP5jQ0FCzd+9ek5OTY5o2bWr27dtnfvnl\nF3PhhRea6dOnG2OMmTlzprnllluMMcYUFhaamJgYY4wxM2bMMDNmzPB8zs8//2y+++47061bN8/G\nRA8//LD561//an755RcTGhrq2Xzp6NGjprCw0Et/JZGS/HatLRFvadeuHZ06dQLA4XDQu3dvACIi\nIkqsiHoqNpuNwYMHExgYSNOmTenTpw8bN24kJCSErl270qJFCwA6dOhA3759Pedds2YNYG1oFh8f\nD0C3bt0YM2YMx44dY+DAgcTFxbFq1Sp27txJ9+7dAWtjovj4eD799FPatm1LdHQ08PvGRSI1QYlE\n5CRBQUGexwEBATRq1MjzuKioqNLn+20hv5PP+9vz4uddtWqVZ5XnhIQE1q9fT1ZWFjfddBMTJkzg\nrLPOIjk5mRdffLHEZ3z88ceVjkukuqiPRKQaGWNYsWIFbrebQ4cOsWbNGuLj4yu8JevatWs9LRWX\ny0VISAhjxowhIyODjz/+mISEBHJycjyr0BYUFLBr1y6ioqLYs2cPW7duBeDIkSOcOHHCO5UUOYla\nJCInOXnkVfHnpxqVZbPZPK/bbDYiIyPp3bs3+fn53HPPPdjtdnbt2lXmiK7fjt+/fz/BwcE0adIE\ngDVr1vDYY4/RsGFDzjnnHJ5//nlatWrFc889xzXXXANYW6Y++OCDtG/fnldffZWMjAyKiooIDg5m\nzZo1nnOJeJOWkRepJZYsWUJ+fj7/+7//6+tQRCpFiURERKpEfSQiIlIlSiQiIlIlSiQiIlIlSiQi\nIlIlSiQiIlIlSiQiIlIlSiQiIlIl/w/IbjDGd8tQDQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1c01590>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 Page No : 464"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "psif= 10.2 \t#lbf/in**2 pressure\n",
+ "usit= 3.8*10**-7 \t#lbf sec/ft**2 viscosity\n",
+ "usif= 3.52*10**-7 \t#lbf sec/ft**2 viscosity\n",
+ "Tsit= 530. \t#R temperature\n",
+ "Tsif= 480. #R temperature\n",
+ "wf= 15000. \t#rev/min speed\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Psit= psif*usit*math.sqrt(Tsit/Tsif)/usif\n",
+ "wt= wf*math.sqrt(Tsit/Tsif)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Pressure in the test cell = %.1f lbf/in**2'%(Psit) \n",
+ "print ' Compressor speed = %.f rev.min'%(wt) \n",
+ "\n",
+ "# book answer is wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Pressure in the test cell = 11.6 lbf/in**2\n",
+ " Compressor speed = 15762 rev.min\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3 Page No : 474"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "w= 62.3 \t#lbf/ft**3 weight\n",
+ "d= 0.375 \t#in diameter\n",
+ "ro= 0.75 \t#ft radius\n",
+ "l= 1.25 \t#ft length\n",
+ "b= 120. \t#degrees angle\n",
+ "do= 0.25 \t#in diameter\n",
+ "p= 750. \t#lbf/in**2\n",
+ "g= 32.1 \t#ft/sec**2\n",
+ "f= 0.03 # friction factor\n",
+ "f1= 0.9\n",
+ "f2= 0.3\n",
+ "w1= 60. \t#rad/sec\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Q= math.sqrt(((p/w)+((60*ro)**2/(2*g))+do)*math.pi**2*g*(d/12)**4/((d/do)**4-1+(l*f/(d/12))+f1+f2))*0.353\n",
+ "Vwo= w1*ro+(4*Q/(math.pi*(do/12)**2))*math.cos(math.radians(b))\n",
+ "C= w*Q*Vwo*ro/g\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Flow Rate = %.4f ft**3/sec'%(Q) \n",
+ "print ' Vwo = %.2f ft/sec'%(Vwo) \n",
+ "print ' Driving Torque = %.3f lbf ft'%(C) \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Flow Rate = 0.0160 ft**3/sec\n",
+ " Vwo = 21.56 ft/sec\n",
+ " Driving Torque = 0.502 lbf ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4 Page No : 491"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "W= 38. \t#rev/sec speed\n",
+ "w= 62.4 \t#lbf/ft**3 density\n",
+ "m= 2000. \t#lbm/sec flow rate\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "ps= 5000. \t#lbf/ft**2 pressure rise\n",
+ "S3= 4.6\n",
+ "e= 0.91\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "S1= W*(w*m**2/(g*ps)**3)**0.25\n",
+ "D= S3*(m**2/(w*g*ps))**0.25\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' S1 = %.3f'%(S1) \n",
+ "print ' Diameter = %.2f ft'%(D) \n",
+ "print ' efficiency = %.2f '%(e)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " S1 = 0.594\n",
+ " Diameter = 3.65 ft\n",
+ " efficiency = 0.91 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5 Page No : 495"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "d= 6. \t#in diameter\n",
+ "f= 0.25\n",
+ "l= 1200. \t#ft long\n",
+ "p= 55. \t#lbm/ft**3\n",
+ "w= 740. \t#rev/min\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "n= 0.87 # efficiency\n",
+ "d1= 1.78 \t#ft\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "D= (0.13*math.pi**2*(d/12)**5/(8*f*l*0.012**2))**0.25*d1\n",
+ "m= 0.012*p*(w*2*math.pi/60)*D**3\n",
+ "dps= 0.13*p*(w*2*math.pi*D/60)**2/g\n",
+ "P= m*10*dps/(p*n)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Diameter = %.2f ft'%(D) \n",
+ "print ' Mass flow rate = %.1f lbm/sec'%(m) \n",
+ "print ' pressure rise = %.1f lbf/ft**2'%(round(dps,-1))\n",
+ "print ' shaft power = %.2e ft lbf/sec'%(P)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diameter = 1.04 ft\n",
+ " Mass flow rate = 57.3 lbm/sec\n",
+ " pressure rise = 1440.0 lbf/ft**2\n",
+ " shaft power = 1.72e+04 ft lbf/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch13.ipynb b/Basic_Fluid_Mechanics/ch13.ipynb
new file mode 100755
index 00000000..6819ab71
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch13.ipynb
@@ -0,0 +1,185 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:943d4576ca0c6a409710e5e5dfd3597778d333997c650e03aa4c9f933860e70a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13 : Hydraulic Power Transmission|"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1 Page No : 512"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "nop= 0.88\n",
+ "nom= 0.88 # constant\n",
+ "Pm= 75. \t#hp\n",
+ "p= 3000. \t#lb/in**2 pressure\n",
+ "d= 54.5 \t#lbm/ft**3 density\n",
+ "u= 1.05*10**-4 # viscosity\n",
+ "d1= 0.5 \t#in\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "nt= (7./11)*nop*nom\n",
+ "pp= Pm/nt\n",
+ "Q= nop*pp*550/(p*144)\n",
+ "Re= 4*d*Q/(math.pi*u*(d1/12)*g)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' ntrans = %.3f '%(nt)\n",
+ "print ' Input power = %.f hp'%(pp)\n",
+ "print ' Flow rate = %.3f ft**3/sec'%(Q)\n",
+ "print ' Reynolds Number = %.1e '%(Re)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " ntrans = 0.493 \n",
+ " Input power = 152 hp\n",
+ " Flow rate = 0.171 ft**3/sec\n",
+ " Reynolds Number = 8.4e+04 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2 Page No : 513"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "lc= 0.25\n",
+ "a= 90. \t#degrees\n",
+ "p= 3000. \t#lb/in**2 pressure\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "d1= 0.5 \t#in\n",
+ "Q= 0.171 \t#ft**3/sec\n",
+ "d= 54.5 \t#lbm/ft**3 density\n",
+ "n1= 2. \n",
+ "n2= 6.\n",
+ "lc1= 0.9\n",
+ "nop= 0.88\n",
+ "nom= 0.88\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "P1= 4*p*144/11\n",
+ "P2= 8*d*Q**2*(n1*lc+n2*lc1)/(math.pi**2*(d1/12)**4*g)\n",
+ "pt= P1+P2\n",
+ "dpm= (p*144-pt)\n",
+ "ntrans= nop*nom*dpm/(p*144)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Frictional pressure drop = %.2e lbf/ft**2'%(P1) \n",
+ "print ' Extra Frictional pressure drop = %.2e lbf/ft**2'%(P2) \n",
+ "print ' Total pressure drop = %.2e lbf/ft**2'%(pt)\n",
+ "print ' Motor pressure drop = %.2e lbf/ft**2'%(dpm)\n",
+ "print ' Overall transmission coefficiency = %.3f'%(ntrans)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Frictional pressure drop = 1.57e+05 lbf/ft**2\n",
+ " Extra Frictional pressure drop = 7.85e+04 lbf/ft**2\n",
+ " Total pressure drop = 2.36e+05 lbf/ft**2\n",
+ " Motor pressure drop = 1.96e+05 lbf/ft**2\n",
+ " Overall transmission coefficiency = 0.352\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.3 Page No : 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "bip= 135. \t#degrees inlet angle\n",
+ "bop= 150. \t#degrees outlet angle\n",
+ "bot= 140. \t#degrees turbine outlet angle\n",
+ "bos= 137. \t#degrees stator blade outlet angle\n",
+ "r= 1.8 \n",
+ "r1= 1.8 # ratio b1/b2\n",
+ "r2= 0.7 # ratio b1/b3\n",
+ "r3= 0.95 # ratio r3/r1\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Vw2r2byVw1r1 = (1+(1/math.tan(math.radians(bip))/1/math.tan(math.radians(bos))))*r**2-r1*(1/math.tan(math.radians(bop))/1/math.tan(math.radians(bos)))\n",
+ "Vw3r3byVw1r1 = r2*r3**2*(1+(1/math.tan(math.radians(bip))/1/math.tan(math.radians(bos))))-(1/math.tan(math.radians(bot))/1/math.tan(math.radians(bos)))\n",
+ "CtbyCp = (Vw2r2byVw1r1-Vw3r3byVw1r1)/(Vw3r3byVw1r1-1)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' R1 = %.2f'%(Vw2r2byVw1r1) \n",
+ "print ' R2 = %.2f'%(Vw3r3byVw1r1) \n",
+ "print ' Torque ratio = %.2f'%(CtbyCp)\n",
+ "\n",
+ "# rounding off error. please check. instead of cot, have used 1/tan. please check."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " R1 = 3.37\n",
+ " R2 = 0.03\n",
+ " Torque ratio = -3.45\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch14.ipynb b/Basic_Fluid_Mechanics/ch14.ipynb
new file mode 100755
index 00000000..9cfe7a00
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch14.ipynb
@@ -0,0 +1,148 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:bc77360c046c25bc1074d9e1441ee10dd742c14709d1f92baa61c939b8a28b76"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14 : Further Developments"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.1 Page No : 532"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%pylab inline\n",
+ "import math \n",
+ "from matplotlib.pyplot import *\n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "a= 60.5\n",
+ "Q= 0.2 \t#ft**3/sec flow rate\n",
+ "d= 3. \t#in diameter\n",
+ "u= 0.0325\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "T= [50.0, 60.0, 70.0, 80.0, 90.0, 100.0]\n",
+ "Ep= [294.5, 188.6, 113.2, 60.4, 37.7, 24.5]\n",
+ "Eh= [0 ,69.9, 139.8, 209.7, 279.5, 349.4]\n",
+ "Et= [295, 258, 253, 270, 317, 374]\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "re= a*4*Q/(math.pi*(d/12)*u*g)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Reynolds Number = %.1f '%(re)\n",
+ "print (T)\n",
+ "print (Ep)\n",
+ "print (Eh)\n",
+ "print (Et)\n",
+ "plot(T,Ep)\n",
+ "plot(T,Eh)\n",
+ "plot(T,Et)\n",
+ "\n",
+ "xlabel(\"T (F)\")\n",
+ "ylabel(\"Eh,Ep,Eh&Ep (kW)\")\n",
+ "suptitle(\"Variations of Ep, Eh and (Ep+Eh) with T\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n",
+ "Reynolds Number = 58.9 \n",
+ "[50.0, 60.0, 70.0, 80.0, 90.0, 100.0]\n",
+ "[294.5, 188.6, 113.2, 60.4, 37.7, 24.5]\n",
+ "[0, 69.9, 139.8, 209.7, 279.5, 349.4]\n",
+ "[295, 258, 253, 270, 317, 374]\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.text.Text at 0x2b11ed0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEhCAYAAABhpec9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtczvf7wPFXNeccJnIKmTmV0sFhKHKMYma2YRg2xoaS\n44ZNGM2GsNl+9p0xs4PDbLblOMqZME2OI0zlVHKKzr1/f3zWTVRS3d33Xdfz8ejh7u7+fD7XfZf7\nut+n622mlFIIIYQQ2TA3dABCCCGMmyQKIYQQOZJEIYQQIkeSKIQQQuRIEoUQQogcSaIQQgiRI0kU\nJqZjx45s3bo1030LFy7k3XffzfU5pk+fzvbt23N8zLfffsuVK1d03w8fPpxTp049XbAFYPz48TRp\n0oTJkydnun/FihVUrVoVZ2dn3dfp06fzdI0hQ4bw3HPP6c7j5uYGgL+/P/Pnz8/3c3gSW1tb4uLi\nsvxZ586duXv3LgAWFhaZnu8nn3ySr+tevHiRMmXKZDrnqlWrALC0tMzymMWLF/Pdd9/l6Xq///47\nc+fOBeDXX3/N9Pfk4eHBkSNHsj02PDxcF6OVlZXu99W1a9c8xSKekhIm5auvvlJDhw7NdN8LL7yg\ndu/enavj09LScvU4Dw8Pdfjw4aeOr6BVrFhRpaenP3b/ihUr1JgxYwrkGkOGDFE///zzY/f7+/ur\nefPmFcg1cmJra6tu3Ljx2P3bt29X7777ru57S0vLPF+jffv26uLFi5nuu3DhgmratGmWj8/uWnfu\n3FEtWrTIcxwZBg8erNatW6f7/mn+3rL7fQn9kRaFienTpw9BQUGkpqYC2qfCy5cv4+bmxogRI2jR\nogUNGzbkvffe0x1ja2vLe++9R6tWrVi3bh1Dhgzh559/BrRPzS1btqRx48YMGTKE9PR01q1bx+HD\nhxkwYAAuLi4kJiZm+sS3fPly7OzssLOzY+zYsbrrWFpaMm3aNN0nv4wWyY8//oiDgwPOzs64u7s/\n9pzS09MZM2aM7pwrV64E4MUXXyQ+Ph4XFxfWrFnz2HEqi7WiISEhtGvXjhdffJFGjRoxdOjQLB+X\nm3MBnDx5ks6dO1O3bl3mzZuX5WNGjhyZ7eue8fo2atSI48ePAxATE4O7uztOTk68/fbb2V77hx9+\noFevXk+M3dbWlsmTJ9O8eXOaNWvGmTNnHnuMmZkZZmZmTzzXw7L6XZYvXx4rKytOnDiR6bFpaWk8\n99xzANy6dQsLCwv27NkDQLt27Th37hwrVqxgzJgx7N+/n99//52JEyfi4uLC+fPnAVi7di1t2rSh\nXr167NixI8fYcvM7FQXIoGlK5EmPHj3Uhg0blFJKBQQEqIkTJyqllLp9+7ZSSqnU1NRMn9BsbW3V\nggULdMc//Iks4xillBo0aJDuU56Hh4c6cuSI7mcZ3//777+qVq1a6ubNmyotLU117txZ/fTTT0op\npczMzNSmTZuUUkpNmjRJTZ8+XSmllJ2dnbp+/bpSSqn4+PjHns/333+vPD09lVJK3bhxQ9WsWVNF\nR0crpbL/ZLt8+XJVtWpV5eTkpJycnJSzs7NKSEhQwcHBqnTp0urSpUsqPT1deXp6qh9++CHH13Pw\n4MGqXr16unMNHDhQKaXU9OnTVdu2bVVaWpqKjY1Vzz77rEpKSnrs+Jxe9y+//FIppdQXX3yhBg8e\nrJRS6u2331Zz5sxRSim1ZcsWZWZmlmWLonHjxpnut7Cw0MXo5OSk1qxZo7vO3Llzda9l165dHzuX\nh4dHli2KMmXKZDrnnj17lFLZ/y6VUurDDz9UX3zxxWPX6Natmzpx4oT6/fffVYsWLdTs2bNVYmKi\nqlevnlJK+52NHj1aKfV4q8DDw0NNnjxZKaXUxo0bVfv27R87f4YhQ4Zkao0I/ZMWhQnq378/P/30\nEwCrV6+mf//+ACxbtoxmzZrh6urKiRMnMn2yfOWVV7I81x9//IGrqyvNmjVjx44dmY5Rj3xqU0px\n4MABOnfuTKVKlTA3N6d///7s3r0bgJIlS9KtWzcAXF1diYyMBLRPlAMHDuSrr74iISHhsRj27t1L\nv379AKhcuTKdOnVi//79Ob4GZmZm9OvXj6NHj3L06FH++usvSpcuDUDLli2pXbs2ZmZm9O3bV/fJ\nNqdzzZs3T3eujD54MzMzvL29MTc3x8rKiurVq3P9+vXHjs/pdc9oEbi4uOhejz179uh+Z127duXZ\nZ5/NMq7Lly9TuXJl3fdlypTRxXj06FFeffVV3c9ee+01AF599VXda7d8+XJdi+Dw4cN4eXnh7OxM\nnz59dMfVr18/0znbtm0LZP+7BKhZsyYXL158LF53d3d27drF7t27ef/999mzZw+HDx+mRYsWWT6/\nR/++snqthHGQRGGCXnzxRbZv387Ro0e5f/8+zs7OnDlzhiVLlrB3717CwsLw9vbWdU8BlCtX7rHz\nxMfHM3bsWIKCgvj7778ZPnx4pmOy6qowMzPL9B9cKaV7XIkSJXT3m5ubk56eDsCXX37JrFmzuHLl\nCq6urlkO3D56ztzI7nEPx/1wfHlRsmRJ3W0LCwvdc8rwpNe9VKlSjx376GuoL0OHDtUlgObNm7Np\n0yaOHj2q63bMSXa/S8j+NW3Xrh27du0iNDQULy8vbt26pesKzMqj58jqtRLGQRKFCbK0tKRDhw4M\nHTqU119/HYDExEQsLS0pV64csbGxbNq06YnnSU1NxdzcnEqVKpGQkMDatWt1PytTpgz37t3L9Hgz\nMzNat27Njh07uHXrFunp6axZsybbN4IMFy9epGXLlkyfPp1q1ao99mnU3d2dtWvXopQiLi6O4OBg\nWrduneM5c3qjDQ0NJTIyEqUUa9eu1c1ieuONNzh06NBTny8neXnd3dzcWL16NQDbtm3j5s2bWT6u\nZs2a3LhxI1dxrFu3TvdvmzZtsnxMQSWnK1euYGtr+9j9LVu2ZN++fVhYWFCqVCmaNWvG0qVLs/z7\nyOrvSxivZwwdgMib/v378/LLL+sGeZs1a4aDgwMNGjSgfv36ujfHnFSqVImhQ4fSuHFj6tatS6tW\nrXQ/GzRoEEOHDqVChQrs27dPd7+NjQ0zZ87UvZF7enrqukAe/oT48OCpn58f58+fJz09nQ4dOuDi\n4pIpjr59+7J3717s7OwwMzMjICCAmjVrPnbOh5mZmbF69epM3UpffPEFZmZmtGjRgtGjR3P69Gna\ntm2r69YKDw+nVq1aWZ5v4sSJfPTRR7pzHzx4MMfrZ8jt6/7w6zFr1iz69OnDTz/9RKtWrahbt26W\nx7i5uXH48GE8PT0BSEhIwNnZWffz7t27M2fOHABiY2Np3rw5qampWQ78Z/dcIiIiMp3zrbfeYvTo\n0dn+LkFLxFkN7JcsWZI6derwwgsvAFoLY/Xq1Tg4ODx2nr59+zJs2DACAwN1Se5JsT7Nz0XBMlOF\n0QYWopCEhIQwf/58fv/990z337lzh+HDh+s+yZuCkJAQVq9ezZdffpnj4+rVq8eRI0cyjWfoy507\nd+jUqVO2LTNRNEnXkyhSspsGWqFCBZNKEqAtQjt79qxuwV12CvPT9YoVK/D19S206wnjIC0KIYQQ\nOZIWhRBCiBxJohBCCJEjSRRCCCFyJIlCCCFEjiRRCCGEyJEkCiGEEDmSRCGEECJHek8UaWlpODs7\n07NnTwDi4uLo0qULjo6OeHp6cuvWLd1jAwICsLOzw8HB4bFd3IQQQhiG3hPFokWLdDV8QNuG09vb\nm2PHjtG9e3emT58OwJEjR1i/fj3h4eFs3ryZESNGkJycrO/whBBCPIFeE0VUVBQbN25k2LBhusqV\nGzduZNCgQQAMHDiQoKAgAIKCgujXrx8WFhbUqlULe3t7QkND9RmeEEKIXNBrovDz8+PTTz/F3PzB\nZWJiYrCysgKgSpUquo1goqOjsbGx0T3OxsaGqKgofYYnhBAiF/SWKP744w+sra1xdnaW/W2FEMKE\n6W0/in379vHbb7+xceNGEhMTuXPnDoMGDaJq1arExsZSpUoVYmJisLa2BrQWxMPbH0ZFRVG7du3H\nzvv8888TERGhr7CFEKJIql+/PufOncvbwYWxMXdISIjq0aOHUkqp0aNHq8DAQKWUUgsWLFBjxoxR\nSil1+PBh1bx5c5WSkqIiIyNV3bp1VXJy8mPnKqSQTcLDG94Xd/JaPCCvxQPyWjyQn/fOQtvhLmPW\n04wZM+jbty/ffPMN1atX1+3G5erqSu/evXF0dMTc3JylS5dm2rdXCCGEYRRKomjfvj3t27cHoHLl\nymzbti3Lx02ZMoUpU6YURkhCCCFySVZmmzAPDw9Dh2A05LV4QF6LB+S1KBgmt8OdmZmZzKISQoin\nlJ/3TmlRCCGEyJEkCiGEEDmSRCGEECJHkiiEEELkSBKFEEKIHEmiEEIIkSNJFEIIIXJUaCU8hBBC\nGIBSsHt3vk4hiUIIIYoipWDjRggIgKtX83Uq6XoSQoiiJC0NfvoJnJ1hyhQYPRpOn87XKaVFIYQQ\nRUFSEnz3HcydC9bWMHs2eHnBf5W780MShRBCmLL4ePjf/2D+fGjaFJYtA3f3AkkQGSRRCCGEKYqL\ng88/177at4cNG8DVVS+XkjEKIYQwJVeuwMSJ8PzzcPEi7NoFa9fqLUmAJAohhDAN58/DyJFgb6+N\nR4SFwTffQOPGer+0JAohhDBm4eEwYAC0bAlWVtoMpsWLoU6dQgtBEoUQQhijAwegVy/o0gUcHCAi\nQpvJZG1d6KHoLVEkJibSokULnJ2dadiwIX5+fgD4+/tjY2ODs7Mzzs7ObNq0SXdMQEAAdnZ2ODg4\nsHXrVn2FJoQQxkkp2LYNOnaEvn2ha1e4cAHeew8qVjRYWHrdCjUhIYEyZcqQmpqKm5sbAQEB7Nq1\ni/LlyzNu3LhMjz1y5AgjR47kwIEDXL16FTc3N86cOUPJkiUzByxboQohipr0dG3W0pw52nTX99+H\n/v2hRIkCu0R+3jv1Oj22TJkyACQnJ5OWlka1atUAsgw2KCiIfv36YWFhQa1atbC3tyc0NBQ3Nzd9\nhiiEEIaTkgI//ggffwzlymkrqXv1AnPjGhXQazTp6ek4OTlRrVo1OnTogJ2dHQBLliyhSZMmDBw4\nkLi4OACio6OxsbHRHWtjY0NUVJQ+wxNCCMNISIAlS6BBA1ixAhYtgtBQ6N3b6JIE6DlRmJubExYW\nRlRUFLt27SIkJIRRo0YRERHByZMnqV+/Pj4+PvoMQQghjMft21rroV492LpVq8m0Y4c2YF2AK6kf\nlpCSwMydM/N1jkJZmV2xYkW8vb05cOAAHh4euvtHjBhBhw4dAK0FERkZqftZVFQUtWvXzvJ8/v7+\nutseHh6ZzimEEEbn+nWt1bB0KXh6agPWDg56vWRwcDBfrvuSrRFbqVm+Zv5OpvQkNjZW3blzRyml\n1P3795W7u7v6448/1PXr13WPWbx4serdu7dSSqnDhw+r5s2bq5SUFBUZGanq1q2rkpOTHzuvHkMW\nQoiC9e+/So0Zo1SlSkqNGKHUuXOFctm/r/6tPFZ4qKZfNFU7zu9QSuXvvVNvLYrLly/zxhtvoJQi\nMTGR119/HW9vbwYNGsSxY8dITk6mbt26LFu2DABXV1d69+6No6Mj5ubmLF26lBIFOOIvhBCF5swZ\nrYrrr7/CW2/BiRNQM5+f6nPhxv0bfBj8IWtPrsXfw5+3Xd/mGfP8v83rdXqsPsj0WCGE0frrL22j\noJAQbR+IMWOgcmW9XzY1PZWlh5cyY+cMXrV7lZkdZmJV1irTY4x2eqwQQhR5GVuNzpmjldsYPx6W\nLwdLy0K5fPCFYHw3+2JV1oo/3/gTx2qOBX4NSRRCCJEXGVuNzpkD167B5MnaorlSpQrl8v/e+pcJ\n2yZwKPoQ87rOo0+TPpjpaeaUJAohhHgaaWlaWe+AAO3799+HV16BZwrn7fR+yn3m7pnL54c+x7eV\nLytfWkmZEmX0ek1JFEIIkRtJSbBypTZIXa2a1pIooK1Gc0MpxZoTa5i4bSJtarfh6Iij1KlYOBVk\nJVEIIURO4uPhq69gwQJtq9FvvinwrUafJOxqGL6bfbmdeJvven9He9v2hXZtkEQhhBBZi4uDzz7T\nSm3oeavR7MTej2Xajmn8cvoXZnjMYLjLcCzMLQo1BpD9KIQQIrOHtxr9999C2Wr0UanpqXx28DOa\nLGlCSYuSnBp1ipHNRxokSYC0KIQQQnP+PHzyCaxZAwMHaluNFuIuchm2n9+O72ZfqltWJ3hwME2t\nmxZ6DI+SRCGEKN7Cw7VCfVu2wIgR2lajBthF7sLNC4zfOp6wq2HM7zqflxq/pLfprk9Lup6EEMWT\nkWw1ei/5HtN2TKP5/5rjWsOVk6NO0rtJb6NJEiAtCiFEcaIU/PmntgYiIgImTdJKfZfR7zqErENR\n/HT8Jyb9OQn3Ou78PfJvbCrYPPlAA5BEIYQo+gphq9GncfTKUXw2+3Av+R4/9vkRtzrGvZOnJAoh\nRNH18FajZcvC1KkG3Wo05l4MU3dM5bczvzGrwyzedH7TYDOZnoYkCiFE0RMbq62iXrxY201u0SLo\n3LlQF8k9LCUthSWHljB792wGOgzk9OjTVCpdySCx5IUkCiFE0ZCerm0r+vXXsHkz9OyptSZatzZo\nWFsjtjJ281hsKtiwc8hO7KraGTSevJD9KIQQpi06WivrvWwZVKgAw4fDgAHw7LMGDSsiLoLxW8cT\nfj2cBV0X8GKjFw06kyk/750yPVYIYXpSUrTB6Z49tfpLkZHa6umwMG3DIAMmifjkeKZsn0Krr1vR\nqlYrTrx7gl6NexnVdNenJV1PQgjTERGhtRxWrNDGHoYN07qXCmmToJwopfg+/Hve+/M9OtTrwN8j\n/6ZWhVqGDqtASKIQQhi3xET45Rf43/+0VdSDBmlrIeyMp6//8OXD+GzyITktmTWvrqFN7TaGDqlA\n6a3rKTExkRYtWuDs7EzDhg3x8/MDIC4uji5duuDo6Iinpye3bt3SHRMQEICdnR0ODg5s3bpVX6EJ\nIUxBeDj4+oKNjVbae+RIiIrSyn0bSZK4Fn+Ntza8Rc8fezLMZRihw0OLXJIAPSaK0qVLs2vXLo4e\nPcrJkyfZv38/wcHBTJ8+HW9vb44dO0b37t2ZPn06AEeOHGH9+vWEh4ezefNmRowYQXJysr7CE0IY\no7t3tVlLL7wA3btrg9OHDsG2bfDaa4W2zeiTJKcls2D/App+2ZRKpStxetRp3nR+E3Ozojnsq9eu\npzL/LYtPTk4mLS0Na2trNm7cSGhoKAADBw7khRdeYNGiRQQFBdGvXz8sLCyoVasW9vb2hIaG4uZm\n3CsWhRD5pBSEhmpdSz//rO39MG0adOtWaNuLPo3N5zYzdvNY6j1bj91Dd9O4SmNDh6R3ev0tpKen\n4+LiQkREBO+88w729vbExMRgZWUFQJUqVbh+/ToA0dHRdOzYUXesjY0NUVFR+gxPCGFIcXHw3Xda\nCyIhQRuYPnkSatQwdGRZOnvjLOO2juN07GkCPQPxbuBt0jOZnoZeE4W5uTlhYWHcvn0bT09PgoOD\nC+S8/v7+utseHh54eHgUyHmFEHqWng4hIVpy2LgRvL211dPt2xusrMaT3E26y0e7PmLZ0WVMajuJ\nda+uo9QzxtEFlpOQkBBCQkIK5FyF0q6rWLEi3t7eHDx4kKpVqxIbG0uVKlWIiYnB+r+SvjY2NkRG\nRuqOiYqKonbt2lme7+FEIYQwAVeuaFNaly3TKrUOHw6ffw6VKxs6smylq3S++/s7puyYQufnOhP+\nTjg1yhtnaycrj36InjFjRp7PpbcUfuPGDe7evQtAQkIC27Ztw8HBAS8vL1atWgXAqlWr8PLyAsDL\ny4vVq1eTmppKVFQUx48fp2XLllmfPD1dX2ELIQpKair8/rtWhM/OTttB7ocf4Ngx8PEx6iQRGh1K\nm2VtWHJoCetfW8+3L31rUkmioOmtRXH58mXeeOMNlFIkJiby+uuv4+3tTevWrenbty/ffPMN1atX\nZ82aNQC4urrSu3dvHB0dMTc3Z+nSpZTIpgRwWvWaWLzYQ/sD7NzZILXkhRDZOH9em866fLm2leiw\nYbBqFZQvb+jInuhq/FXe3/4+W85tYU6nObzR7I0iO5PpaZhkrae21c+xZtBv1AzdAEePQseOWtLo\n0QOqVDF0iEIUP0lJ8Ouv2tjD0aPantPDhmnlNUxAcloyiw4sYu7eubzp/CbT2k2jQqkKhg6rQOWn\n1pNJJoofflD4+mobU3VsdgOCgrS6L3/+Cc2aaUmjVy94/nlDhytE0XbihJYcVq0CR0dt7OGll6B0\naUNHlmtB/wTht8WPhlYNWeC5gIZWDQ0dkl4Uu0ShlCI4GPr2hcBArVAkoC31375dSxq//671gWYk\njRYtjHZWhRAmJT4e1qzREsTFizB0KLz5JtSvb+jInsqZ2DP4bfEj4mYEgZ6BeDXwMnRIelUsEwXA\n8ePg5QXvvguTJz+yJ0l6uraIZ8MG7evWLa3SZK9eWleVCX3iEcLglILDh7XksGYNuLtrXUteXka5\nKC4nd5LuMGvnLJaHLec9t/fwaeVDSYuShg5L74ptogCtFL2XF7RtC599BhbZ7Sp49iz89puWNI4d\n0wbBX3xRm8f93wJAIcQjbt6E77/XVk3fvaslh8GDoZbpVUVNV+l8G/YtU3dMpdvz3ZjTaQ7VLasb\nOqxCU6wTBcDt29CnD5Qrp1UcLlv2CSeJiXkwrrFjBzg7P+iieu45/QUvhClQCnbu1FoPf/yh1Vwa\nNgw6dDDZ7tsDUQfw2eSDhbkFi7stpkWtFoYOqdAV+0QBkJys/S3/8482PFG1ai5PmJCgDYJnjGtY\nWz9IGq6uJvsfQ4indvUqfPutliBKldL+Qw0aZNIt7st3L/Pen++x/cJ2Pu70MQMcBxTb6a6SKP6j\nFHzwAaxeDZs25WHSU1oaHDz4YFzj7l2te6pXL+3TlJFUrhSiwKSlwZYtWnIIDtaa5sOGQatWjwz6\nmZak1CQWHljIp/s+ZbjLcKa4T6F8KeNfx6FPhZIoEhMTMTMzo5SB3yxz82SXLgV/f21ad6tW+bjY\nmTMPxjWOH4euXR+Maxh4P14h8uXixQeL4mrW1JJD375aWW8TppTi939+Z9yWcdhb2zO/63yeryzT\n5EFPiSI9PZ1ff/2VH3/8kX379pGeno5SCgsLC1q3bs2AAQN46aWXCr16Ym6f7B9/aLP2li3T3tvz\n7fp17aQbNmifvJo3f9BFZWtbABcQQs+Sk7W/36+/hiNH4PXXtQTh6GjoyArEqZhTjN0ylku3L7HQ\ncyGez3saOiSjopdE0a5dO9zd3XnxxRdxcnLStSSSkpI4evQov/32G3v27GHXrl15jzwvAT/Fkw0N\n1d7HP/wQ3nmnAIO4f1/bSGXDBi151KjxIGm4uJh0k10UQadOaZ+YVq4Ee3ttUVzv3kWm9M2txFvM\nCJnBqvBVTHWfyqgWoyhhkXX5n+JML4kiOTmZkiVznluclJRU6F1RT/tkIyK0SRt9+sDs2XoYm05L\ng/37H4xrJCQ8GNfw8IAnvIZC6MW9e7B2rdZ6iIiAIUO0RXENGhg6sgKTlp7GN0e/4YPgD3ix0Yt8\n1PEjrMtZGzoso6WXROHr60vbtm1p27YttYxoznRenmxMjPbeXb++1i2rt/dupeD06QfjGqdOgaen\nljS6d4dKlfR0YVHsJSfDhQvaeqGgIG1GR5s2WuvBywuyKbBpqvZc2oPPJh/KlijL4u6LcanhYuiQ\njJ5eEsVnn33G/v372bdvH0op2rRpo0sczZo1w9xA00bz+mTv39e6ZO/ehfXroWJFPQT3qKtXH4xr\n7NwJLVs+6KKqU6cQAhBFSmLig2Rw7pz2lXH78mWoXVub6ufmprUgbGwMHXGBi7oTxaRtk9h9aTef\ndP6Efk37FZtd5vJL77OeoqOjdUljw4YNxMTEcOfOnTxdML/y82TT0rQy+Lt3a5trFer/o3v3YOtW\nLWkEBWkXz0gaTk4yriE0CQlame6sksHVq1C3rpYMGjTQ/s34srUtcq2GhyWkJDB//3wWHljIuy3e\nZXLbyZQrWc7QYZkUvSUKpRTHjh1j37597Nu3j5MnT1KlShXatGnD9OnT8xxwfuTnyYLWO/Tpp9rm\nWkFB4OBQgMHlVmoq7Nv3YFwjJeXBuEb79kX6P7xAa95mJIFHk0FMjPam/2giaNBAa4WaWF2l/FJK\nsf7UeiZsm4BrDVfmdZ2HbSVbQ4dlkvSSKLp06cKdO3dwcnKiVatWtG7dmsaNGxu8mZffRJHhhx9g\n7Nj/SpV3LIDA8kopbUP5DRu0sY1//oFu3R6Ma5j4vPZiKz4++2QQFwf16mVOBhm3a9fOoWBZ8RJ+\nLRzfzb7E3I9hUbdFdKxnyP+opk8viWLEiBH8/ffflC1bllatWtGmTRtat25NFQNvDFRQiQLQlSpf\nuFAbvzAKV65opUQ2bND6yFq31pJGz57am4gwHnfuZJ0Izp3TCpDVr/94q+D557WCepIMshWXEMeH\nwR+y5sQaprefzojmI3jGvHi1pPRBr2MUt2/f5sCBA+zfv5/9+/cTGxuLvb09K1euzNMF86sgEwVA\neLi20HrUKJg0yciGCuLjtfIKGeMatrYPxjUcHY0s2CLq1q3sk0F8fOZE8HAyqFlT6oQ9pdT0VL46\n8hUzds7glSavMLPDTKzKmm6dKWOTn/fOJ6bp0qVLU7ZsWcqUKUOpUqWIjIwkKSkpTxczRg4O2nCB\ntzdcugSLFxvRhz1LS20BSJ8+2rjGnj1a0ujdW+uyatVKe0y5ctpX2bJPd7tECUk2oHUFZZUIzp3T\nZho9nAjat4e33tJu16ghr18BCbkYgs8mH6zKWrFt0DYcqxWN1eJFRbYtCj8/P/bt28c///yDs7Oz\nbnps69atqZTL9QCRkZEMGDCAmzdvkpyczFtvvcWkSZPw9/fn66+/pup/JV7nzJlD9+7dAQgICOC7\n777DwsKC+fPn07Vr18wBF3CLIkNGqXJLS2384omlyg1JKa32VHi4Npvq3j1tgPRpb6en5z3JmFIi\nUgpu3MiZWDMGAAAgAElEQVQ6GZw9qyXhjJbAo4PI1aoZx3Moov699S8Ttk3gUPQh5nWdR58mfQw+\nDlpU6aXradGiRbi5ueHk5IRFHj9iX7t2jZiYGJo2bUp8fDwuLi6sXbuWX3/9lfLlyzNu3LhMjz9y\n5AgjR47kwIEDXL16FTc3N86cOZNphbi+EgVoa5beekt773iqUuWmKiUl70nG2BKRUtqMoaxaBWfP\nao/JKhk0aABVqkgyKGT3U+7z8Z6PWXJoCb6tfJnYZiJlShSNkiLGSi9dT76+vgB8+OGHzJw5U3d/\nWloagwYN4ocffnjiyatVq0a1atUAsLS0xNHRkejoaIAsAw4KCqJfv35YWFhQq1Yt7O3tCQ0Nxc3N\n7emeVR6VLKmVw5k2TVvUunmzyW0D/HRKlNBWi+trxXheElFsbN4S0b172tTRhxOBt/eD7ytXlmRg\nBJRSrD6xmknbJtG2TlvCRoRRu6JM0jB2TxyjuHTpEgEBAbz//vskJSXx2muv4ezs/NQXunjxIocO\nHWL58uUcOnSIJUuW8PXXX+Pq6srixYupXLky0dHRdHxorqqNjQ1RUVFPfa38MDPTakLVrq0tcN2w\nQVtQLfKgMBJRRvIoXVpLBsJoHb1yFN/NvtxNvsv3L3+Pe113Q4ckcumJieKbb75hwIABBAQEsGPH\nDry8vPDz83uqi8THx/Pqq6+yaNEiypcvz6hRo/jwww8B8Pf3x8fHh1WrVuX6fP7+/rrbHh4eeHh4\nPFU8uTFypDaL0dtbqw/Vs2eBX0LkV4kSWi2WQqnHIvIq5l4M03ZMY8OZDczsMJO3nN/CwtxYZowU\nXSEhIYSEhBTIubIdozhy5IhuUCklJYURI0bQpk0bhg0bBoCLS+6KcKWkpNCjRw+6deuWZYK5fPky\nHTp04MyZM8yaNYsyZcowYcIEAHr06MH7779P27ZtHwSsxzGKrGSUKp8+XUseQojcSUlLYcmhJcze\nPZsBDgOY3n46z5aRDb8MRS+D2R4eHplmHyilMn0fHBz8xJMrpRg8eDBWVlYEBgbq7r9+/TrW1lo5\n4M8++4zg4GDWr1+vG8zev3+/bjD77NmzlHiopEVhJwrQxkO7d4dXX9W6paSrW4icbY3YytjNY7Gp\nYMPCbguxq2pn6JCKPaPdM3vPnj20a9cOR0dHXZKZM2cOP/zwA8eOHSM5OZm6deuybNkyXSnzOXPm\nsGrVKszNzZk/fz6enpl3qTJEogBtQk3Pntq46LJlss2EEFmJiItg3NZxHL9+nAVdF/BioxdluquR\n0EuiWLFiBQMHDuSZbIqQJScn8/333zN06NA8XTivDJUoQBs37d9fGzv9+WfpGhciQ3xyPLN3zeZ/\nf/2PCW0m4PeCH6WeKdxNzUTO9DI9Nj4+nhYtWtC4cWOaN29OjRo1UEpx9epVDh8+zOnTpxk+fHie\ngzZFZctqe1mMGQPu7gYoVS6EkUlX6Xx/7Hve3/4+Het15Ng7x6hZvqahwxIF7Illxvfu3cuePXu4\ndOkSAHXr1sXNzY02bdoYpElpyBZFBqXgk09gyRItWTRtatBwhDCIQ9GH8NnsQ2p6Kou7LaZ17daG\nDknkwGjHKPTBGBJFhu+/Bz8/bdfJDh0MHY0QheNq/FWmbJ/C5nObmd1xNoOdBmNuJgUQjV1+3jvl\nt5sPAwZo+1n07avVhxKiKEtOS2bevnk4fOlAlbJVOD36NEOdh0qSKAakyHs+dewI27drC/OiomDi\nRJk+K4qeoH+C8NviR0Orhux9cy8NrRoaOiRRiKTrqYBERYGXF7RrB4sWGVGpciHy4UzsGfy2+BFx\nM4KFngvp3qC7oUMSeaTXrqfr168zYsQI7O3tadq0KSNHjuT69et5ulhRZmOjbUh36pRWrvz+fUNH\nJETe3U68zYStE2j7TVs61etE+DvhkiSKsScmit69e1O3bl3++OMPfvvtN+rWrUvv3r0LIzaTU7Ei\nbNqk7WnRqZNWCFUIU5Ku0vnm6Dc0XtKYmwk3OfHuCca3GU9JC1lhWpw9sevJycmJsLCwTPc5Oztz\n9OhRvQaWHWPtenqYUjB1KqxbpyWOIl2qXBQZ+yP347PZhxLmJVjcfTHNazY3dEiiAOm166lTp06s\nWbOG9PR00tPTWbduXaZS4OJxZmYwZ442ddbNTSssKISxunz3MoN+GcSra1/Ft5Uve9/cK0lCZPLE\nFoWlpSX379/H/L+N4tPT0ylXrpx2sJkZd+7c0X+UDzGFFsXDfvtN2zVPSpULY5OYmkjg/kDm75/P\n265vM8V9CpYlLQ0dltATWXBn5A4ehJdeAn9/GDHC0NGI4k4pxYYzGxi/dTyO1RyZ12Ue9StL/2hR\np5eup4c3Etq7d2+mn33++ed5ulhx1aqVNiNq3jxt7MLE8pwoQk7GnMRzlSdTd0xlaY+l/NL3F0kS\n4omybVE8PGD96OC1DGbnTUwM9OgBjRrB119LqXJReG4m3MQ/xJ8fjv/AB+0+4J3m71DCosSTDxRF\nhpTwMBFVq0JwMNy6pS3Ou33b0BGJoi4tPY2lh5fSeEljktKSOPnuSXxa+UiSEE9FSngUsrJl4Zdf\ntFLl7dpp1Wf/27NJiAK1699d+G72pXzJ8mwZuAWn6k6GDkmYqGy7nsqUKcPzzz8PQEREBPUfWgwQ\nERHBfQMtPTblrqeHZZQq/+ILCAqSUuWi4Fy6fYmJ2yayP3I/n3b5lNfsX5Nd5oR+Ni46depUngMS\nT2ZmBpMna6U/OnaENWvAw8PQUQlTlpCSwKf7PmXRwUWMbjGa5b2WU7ZEWUOHJYqAbBOFra1tpu/j\n4uKoXLkyAOfOndNrUMXJgAFQowa89ppWTLB/f0NHJEyNUoqfT/3MhK0TaFmrJX+9/Rd1K9U1dFii\nCMn1YHaXLl3w9vbmxx9/pGvXrrk6JjIyknbt2uHg4ECjRo345JNPAC3pdOnSBUdHRzw9Pbl165bu\nmICAAOzs7HBwcGDr1q1P+XRMU0ap8smT4dNPZfqsyL1j147RcWVHZu6cyYqXVrDm1TWSJETBU9mI\nj49XycnJme5bunSpMjMzU6tWrcrusEyuXr2qwsPDlVJK3b17VzVo0ECFhYWp0aNHq8DAQKWUUoGB\ngcrHx0cppdThw4dV8+bNVWpqqoqKilK2trYqKSkp0zlzCNnkRUYq1bSpUqNHK5WaauhohDGLvRer\n3v3jXVX1k6pqSegSlZKWYuiQhJHLz3tnti0KDw8Pbt68qft+/fr1zJ07ly1btrBixYpcJaFq1arR\n9L9RWktLSxwdHYmOjmbjxo0MGjQIgIEDBxIUFARAUFAQ/fr1w8LCglq1amFvb09oMSqUZGMDe/bA\niRPwyitSqlw8LjU9lSWhS2iypAlmZmacHn2ad1u8yzPmMoFR6E+2iSIxMRFra2sAli5diq+vL5s2\nbaJLly7ExMQ89YUuXrzIoUOHcHNzIyYmBisrKwCqVKmi298iOjoaGxsb3TE2NjZERUU99bVMWcWK\nsHkzlCsnpcpFZsEXgnFZ6sLPp35m+xvb+dzrcyqXqWzosEQxkO3HkAoVKjBz5kyioqL4+uuv2bVr\nFw0bNuT69eskJiY+1UXi4+N55ZVXWLRoERUqVMh30P7+/rrbHh4eeBSx6UIlS8LKlVq5jzZtpFR5\ncffvrX+ZsG0Ch6IPMb/rfF5u8rJMdxVPFBISQkhISIGcK9tE8fPPP/Pll19Sr149Vq9ezZtvvkn7\n9u3ZuXMnkydPzvUFUlJS6NOnDwMGDOCll14CoGrVqsTGxlKlShViYmJ0LRcbGxsiIyN1x0ZFRVG7\ndu3HzvlwoiiqzM0hIABq19ZKlf/2G7RoYeioRGG6n3KfuXvm8vmhz/Ft5cvKl1ZSpkQZQ4clTMSj\nH6JnzJiR53PlunpsdHQ0u3fvxt7eHgcHh1ydXCnF4MGDsbKyIjAwUHf/mDFjqF+/PmPHjiUwMJAL\nFy6wePFijhw5wsiRI9m/fz9Xr17Fzc2Ns2fPUqLEg3IDRWXB3dPYsAGGDYPly7VaUaJoU0qx5sQa\nJv05idY2rfmkyyfUqVjH0GEJE6f3MuPJyclcv36dtLQ0XZO3Tp0n/+Hu2bOHdu3a4ejoqDsuICCA\nli1b0rdvX65du0b16tVZs2YNlSpVAmDOnDmsWrUKc3Nz5s+fj6enZ+aAi2GiADhwAHr3llLlRV3Y\n1TB8N/tyO/E2i7svpl3ddoYOSRQRek0U8+bNY86cOVSvXh0LCwvd/eHh4Xm6YH4V10QBcPYsdO8O\n/frBrFna6m5RNMTej2Xajmn8cvoXZnrMZJjLMCzMLZ58oBC5pNdEUbduXf766y/dLCVDK86JAuD6\ndW2nvMaN4X//k1Llpi41PZUvD33JrF2z6N+0P/4e/jxb5llDhyWKIL2WGW/QoAHPPit/uMbC2vpB\nqfL27eH4cUNHJPJq+/ntOP2fExvObCB4cDCLui+SJCGMUrYtivnz5wNw8uRJzpw5g7e3NyX/+/hq\nZmbGuHHjCi/KhxT3FkWG9HT46iv44AMYPlz7t4xMiDEJF25eYPzW8YRdDWN+1/m81Pglme4q9E4v\nLYq7d+8SHx9PnTp16Ny5M8nJycTHxxMfH8/du3fzHKwoGObmMHIkHDsGERHg4AB//mnoqERO7iXf\nY9qOabT4Xwtca7hyctRJejfpLUlCGL1cT499WEpKSqYpq4VJWhRZ27gR3n0X3N1hwQJtNz1hHJRS\n/HT8Jyb9OYl2ddsxt/NcbCrYPPlAIQqQXloUbm5uutsZdZkytGrVKk8XE/rj5aXViKpWTdsEafly\nqUJrDP668hfuy92Zt38eP/X5ie9f/l6ShDA52SaKe/fu6W4ff2TEVD7RG6dy5WDePK1W1BdfQIcO\ncOaMoaMqnmLuxfD272/j9b0Xg5sNJnRYKG3rtDV0WELkSa73oxCmw9n5wQK9tm1hxgxISjJ0VMVD\nSloKCw8sxO4LO8qVKMfp0acZ7jpc1kQIk5Ztrafbt2+zfv16lFK624Due2HcLCzA1xdefhlGjwYn\nJ1i6FNrJQl+92RqxlbGbx1K7Ym12DdlFk6pNDB2SEAUi28HsIUOG6GZjKKUem5mxfPly/UeXBRnM\nzptffgEfH/D0hE8+gcpSnbrARMRFMG7rOE5cP8ECzwX0bNhTZjIJo6P3Wk/GRBJF3t25o5UuX7dO\nG8t4/XUpA5If8cnxzNk9h6+OfMWENhPwe8GPUs+UMnRYQmSpUBPFr7/+So0aNQw280kSRf4dPAhv\nvw3Vq2uD3rLXxdNRSvF9+Pe89+d7dKjXgbmd51KzfE1DhyVEjvLz3vnU+ycePHiQ48ePk5KSwubN\nm/N0UWFYrVrB4cOwcKF2e8IEGD8eDLQ0xqQcvnwYn00+pKSnsPbVtbSu3drQIQmhd9L1VMxduKAt\n1IuO1kqCvPCCoSMyTtfirzFl+xQ2ntvI7I6zGeI0BHMzmTQoTIdeiwLev3+fgIAAvL296dGjBx9/\n/DEJCQl5upgwPvXqaau6p0zRZkiNGgUyqe2B5LRk5u+bT9Mvm/JsmWc5Peo0bzq/KUlCFCtPbFH0\n6NGDmjVr0r9/f5RSrF69mujoaP7444/CijETaVHoz82bMHmyljgWLoQ+fYr3YPems5vw2+JHvWfr\nsdBzIY2qNDJ0SELkmV4Hs5s2bfrYyuys7isskij0b88ebbC7fn1YsgRysZlhkXL2xlnGbR3H6djT\nBHoG4t3AW6a7CpOn164nFxcXQkNDdd8fOnQIFxeXPF1MmAY3NwgL0wa6XVwgMBBSUw0dlf7dTbrL\n5G2Tab2sNe513Dn+znF6NOwhSUIUe09sUTRu3Jh//vmH2rVrY2ZmxqVLl2jUqBHPPPMMZmZmHDt2\nrLBiBaRFUdj++UcrZ377tjbY7epq6IgKXrpK57u/v2PKjil0ea4LAZ0CqFG+hqHDEqJA6bXr6eLF\nizle0NbWNttj33zzTYKCgrC2ttbtse3v78/XX39N1f/qYM+ZM4fu3bsDEBAQwHfffYeFhQXz58+n\na9euOV5bFA6lYOVKmDRJW6Q3axZYWho6qoIRGh2KzyYfFIrF3RbTykYqI4uiKV/vnSob27dv190+\nf/58pp/9/PPP2R2Wya5du9Rff/2lmjZtqrvP399fzZ8//7HHHj58WDVv3lylpqaqqKgoZWtrq5KS\nkh57XA4hCz2LiVFq8GCl6tRR6rffDB1N/ly5e0UN+XWIqjGvhlpxdIVKS08zdEhC6FV+3juzHaMY\nP3687vbLL7+c6WezZs3KVRJyd3fPcr9tlUVWCwoKol+/flhYWFCrVi3s7e0zjY0Iw6tSBVas0Pa6\nGDcOXnkFLl82dFRPJzktmU/3fkrTL5piXdaa06NPM9hpsEx3FSIHBvnfsWTJEpo0acLAgQOJi4sD\nIDo6GhubBxu62NjYEBUVZYjwxBN07Ajh4dCkCTRrppUBSUszdFRPFvRPEE2/aMrOf3ey7619zO0y\nlwqlKhg6LCGM3lOX8MivUaNG8eGHHwLaeIWPjw+rVq16qnP4+/vrbnt4eODh4VGAEYrcKF1aG6vo\n31+bSrtypTbY7eho6Mgedyb2DH5b/Ii4GcGibovo3qC7oUMSQu9CQkIICQkpkHNlmyjOnz/Piy++\niFKKCxcu0LNnT93PLly4kOcLVqlSRXd7xIgRdOjQAdBaEJGRkbqfRUVFUbt27SzP8XCiEIZlZwe7\ndsGyZdC5M7z5Jnz4IZQta+jI4E7SHWbunMmKsBW87/Y+v/b7lZIWJQ0dlhCF4tEP0TNmzMjzubKd\n9fSkTJTbT/EXL16kZ8+eullP169fx9raGoDPPvuM4OBg1q9fz5EjRxg5ciT79+/n6tWruLm5cfbs\nWUo8UqlOZj0Zr6tXwc8PQkPhyy8hi0lrhSJdpbMibAVTd0zF63kv5nSaQzXLaoYJRggjoZfqsQXR\nndO/f3927txJbGwstWvXZsaMGQQHB3Ps2DGSk5OpW7cuy5YtA8DV1ZXevXvj6OiIubk5S5cufSxJ\nCONWvTr8+CNs2gQjRkCbNrBgAVQrxPfoA1EH8Nnkg4W5Bb/1+40WtVoU3sWFKKKeunrs4MGDKVu2\nLKNGjaJp06b6iitb0qIwDffuaXt1r1gBc+ZoXVLmepw6cfnuZd778z22X9jOx50+ZoDjAJnJJMRD\nCnXjotDQUC5dukRoaCiffPJJni6aH5IoTEtYmDbYXbq0tmd3kwLeRjopNYnAA4HM2zeP4S7DmeI+\nhfKlyhfsRYQoAmQrVGHU0tK0MYsZM7S9L95/X0sc+aGU4vd/fmfclnHYW9szv+t8nq/8fMEELEQR\npNdEcfz4cebNm0dkZCTp6em6C+7YsSNPF8wvSRSmKyoKfHzgxAmtdZHXYbBTMacYu2Usl25fYqHn\nQjyf9yzQOIUoivSaKBo1asTYsWNxcXHBwsJCd0FXA1WHk0Rh+jZsgDFjtOm0n34KVla5O+524m1m\n7JzBd8e+Y6r7VEa1GEUJC5nwIERu6DVRtGzZ0qhKaUiiKBru3oVp02D1ai1ZDByY/SZJaelpLA9b\nzgfBH9CjQQ9md5qNdTnrwg1YCBOnl0QRFxeHUorPPvuM6tWr06tXL0qVKqX7eeXKlfMWbT5Joiha\nDh3SBrurVNHGMZ5/ZJhh76W9+Gz2ofQzpVncbTGuNYtgnXMhCoFeEoWtrW2OG7bkZ3V2fkiiKHpS\nU2HRIggI0IoNTpgAMYnRTP5zMjv/3cncznPp37S/bCAkRD7IrCdRJFy8CCNHJ3K09AKSXBYw+oWR\nvOf2HpYli8jmF0IYkF62Qn14jcTatWsz/WzKlCl5upgQ2VFKEZb4K2e72lO39SFKrQzlxtqPSL0v\nSUIIQ8s2Ufz444+623PmzMn0s02bNukvIlHsnIw5SddVXZm6YypLeywldPwvnDnwHEqBvT2sWaPt\nsieEMAypcSAM5mbCTXw3+dJ+RXt6NuxJ2IgwOj/XGYBKleD//g/WroWZM6FHD61rSghR+CRRiEKX\nlp7GV0e+osmSJiSlJXHy3ZP4tPLJck1Emzbw11/Qti00bw7z52uD30KIwpPtYLaFhQVl/9tUICEh\ngTJlyuh+lpCQQKqB/rfKYLZp2/3vbnw3+2JZ0pLF3RfjVN0p18eeOwcjR8KNG9omSS2kMKwQuSaz\nnoTRi7wdyaQ/J7H30l4+7fIpr9m/lqfprkrBqlUwcSL07QsffQTlpQagEE+kl1lPQhSEhJQEZu2c\nhfNSZxpUbsCpUafo27RvntdEmJnBoEFavai7d7XB7g0bCjhoIUQm0qIQeqGU4pfTvzB+63hca7gy\nr+s8bCvZFvh1QkK0TZLq1IHx48HTM/tSIEIUZ9L1JIxK+LVwxm4Zy/V711nUbREd63XU6/WSkrSd\n9QIDISUFxo7VakcZw77dQhgLSRTCKMQlxDE9eDqrT6xmevvpjGg+gmfMs91tt8ApBcHBsHAhHDgA\nw4dr+1/UqlVoIQhhtGSMQhhUWnoaXx76kiZLmpCm0jg16hSjWo4q1CQBWpdTx47w22+wdy/cvg1N\nm2qtiyNHCjUUIYoUvSaKN998k2rVquHg4KC7Ly4uji5duuDo6Iinpye3bt3S/SwgIAA7OzscHBzY\nunWrPkMTBWTnxZ24fOXC6hOr2TZoG194f4FV2VxuMKFHDRrA55/D+fPQrBn07g3t2sH69dqOe0KI\n3NNr19Pu3buxtLTkjTfeIDw8HIAxY8ZQv359xo4dy8KFC7lw4QKLFi3iyJEjjBw5kgMHDnD16lXc\n3Nw4c+YMJUuWzBywdD0ZhUu3LzFx20QORB1gXpd5vGL3ilFXd01JgV9+0cYxrl7Vdtp76y2oUMHQ\nkQlROIy268nd3Z1nn302030bN25k0KBBAAwcOJCgoCAAgoKC6NevHxYWFtSqVQt7e3uj2jBJaO6n\n3GdGyAxclrpgV8WOU6NO8ar9q0adJABKlIDXXoP9+7WB74MHwdYW/Py0VocQInuFPkYRExOD1X97\nX1apUoXr168DEB0djY2Nje5xNjY2REVFFXZ4IhtKKdaeWIvdEjtOxp7krxF/Md1jOmVLmN7Uohde\ngJ9+grAwKFkSWraEl1+GXbuk+KAQWSnc0cYC4u/vr7vt4eGBh4eHwWIpDo5dO4bvZl/iEuL49qVv\naW/b3tAhFYg6dWDuXPjgA/j2Wxg2TFvl7eentT4e6fUUwqSEhIQQEhJSIOcq9ERRtWpVYmNjqVKl\nCjExMVhba3sf29jYEBkZqXtcVFQUtWvXzvIcDycKoT837t/gg+AP+PnUz/i392e46/BCn8lUGCwt\nYdQoeOcd2LhRG8eYPFmbWjtihLZNqxCm5tEP0TNmzMjzuQq968nLy4tVq1YBsGrVKry8vHT3r169\nmtTUVKKiojh+/DgtW7Ys7PAEkJqeypLQJTRZ0gQLMwtOjTrFOy3eKZJJ4mHm5lo58+3bYdMmiIjQ\nZk+NGAEnTxo6OiEMR6+znvr378/OnTuJjY2lWrVqzJw5k169etG3b1+uXbtG9erVWbNmDZUqVQK0\nDZJWrVqFubk58+fPx9PT8/GAZdaTXgVfCMZnsw/W5axZ1G0RTa2bGjokg7p2TdsX48svwclJW/Ut\nZUKEKZKV2SLfLt66yIStEzhy5Qjzuszj5SYvG/1MpsKUmKjNllq4UMqECNNktNNjhfG7n3KfD4M/\nxPUrV5pVa8bJd0/Sx66PJIlHlC4NQ4dqM6U+/xz++EObXjt1Kly+bOjohNAvSRTFlFKKn47/ROPP\nG3M27ixhI8L4oP0HlClR5skHF2NZlQmxt5cyIaJok66nYijsahg+m3y4m3yXxd0W417X3dAhmbSb\nN+Hrr+Gzz7RWxtix0KsXWFgYOjIhHpAxCpErsfdjmbZjGr+e/pWZHWbylvNbWJjLu1lBSU3VaklJ\nmRBhjGSMQuQoJS2FxQcX02RJE0o/U5pTo07xtuvbkiQK2DPPSJkQUTRJi6KI+/P8n/hu9qVm+Zos\n9FyIvbW9oUMqVi5dgiVLYNkyrXqtnx+4ucn0WlH4pOtJPOb8zfOM3zqev6/+zQLPBfRq1EtmMhlQ\nfLxWJmTRIq0rauxYKRMiCpckCqFzL/keAXsC+L/D/8e41uMY13ocpZ8pbeiwxH/S0x+UCTl9WsqE\niMIjYxQCpRQ/hP9A4yWNuXjrIn+P/Jsp7lMkSRgZKRMiTJG0KIqAv678hc8mHxJSE1jcbTFt67Q1\ndEjiKUiZEFEYpOupmLp+7zpTt0/l939+56OOHzHUaajMZDJhiYnaPhmBgQ/KhAwaBGVkDaQoANL1\nVMykpKWw8MBC7L+wp3yp8pwefZphLsMkSZi40qVhyJDMZULq1pUyIcLwpEVhYrZGbGXs5rHUqViH\nQM9AmlRtYuiQhB6dPavNlPr+e/D21qbXuroaOiphiqTrqRiIiItg3NZxnLh+gkDPQHo07CHTXYsR\nKRMi8ksSRREWnxzP7F2z+d9f/2Nim4mMfWEspZ4pZeiwhIFImRCRVzJGUQQppVh1bBWNP29M9N1o\njr1zjMlukyVJFHM5lQm5cMHQ0YmiSloURujw5cP4bPIhJT2Fz7p/xgs2Lxg6JGHEIiO1we+MMiED\nBoCzM9SrJ1NsxQPS9VREXIu/xpTtU9h0bhOzO85msNNgzM2k0SdyJz4eVq7UFvKFhcHdu9CsmbY2\nw9lZ+9fOTsqGFFeSKExccloynx38jI/3fsyQZkP4oP0HVCglnc4if2JjtYQRFgZHj2r/XrgAjRpl\nTh7NmkHFioaOVuibSSYKW1tbKlSogIWFBSVKlCA0NJS4uDj69u3LtWvXqFGjBqtXr6ZSpUqZAy5i\niWLT2U34bfHjuWefI9AzkEZVGhk6JFGE3b8Px49nTh7h4VCtWubk4ewMNWtK11VRYpKJol69ehw5\ncoTKlSvr7hszZgz169dn7NixLFy4kAsXLrBo0aJMxxWVRHH2xln8tvjxz41/CPQMxLuht6FDEsVU\nWhFll+YAAAzeSURBVJq2XuPh5HH0KCj1IHFkJI+GDWVKrqky2URx+PBhrKysdPfVr1+f0NBQrKys\niI2N5YUXXuDcuXOZjjP1RHE36S4f7fqIZUeXMbntZHxf8KWkhXQaC+OiFFy58iBxZCSPq1ehadPM\nrQ8HByhb1tARiycxyUTx3HPPUalSJVJTU3n77bcZPXo0FSpU4M6dO7rHPPo9mG6iSFfpfPf3d0zZ\nMYWu9bsS0CmA6pbVDR2WEE/lzh34++/MrY/Tp7Upuo92XUnpdOOSn/fOZwo4llw7cOAA1tbWxMTE\n0K1bNxo3bpzrY/39/XW3PTw88PDwKPgAC1BodChjNo0BYP1r62ll08rAEQmRNxUqgLu79pUhORlO\nnXqQPIKCtNuWlo8nD5myW3hCQkIICQkpkHMZxayngIAAAL7++msOHjxIlSpViImJoXXr1ibd9XTl\n7hXe3/4+WyO2EtApgEHNBsl0V1EsKAUXLz4+7vHwlN2M5CFTdguHyXU93b9/H4CyZcty7949vLy8\nGD9+PNu2bdMNZgcGBnLhwgUWL16cOWATSBTJacksOrCIuXvn8pbzW0xrN43ypcobOiwhDC42Vuu6\nejh5yJTdwmFyieLChQu89NJLmJmZcf/+ffr168fMmTMzTY+tXr06a9asMbnpsUH/BOG3xY9GVRqx\noOsCGlg1MHRIQhi1hARtyu7DyUOm7BY8k0sU+WGsieJM7Bn8tvhx/uZ5FnZbSLfnuxk6JCFM1sNT\ndjOSR8aU3UeTh0zZzR1JFAZ0O/E2s3bN4tu/v+W9tu8xptUYme4qhB5kTNl9eNwjLEy7L2PKbkby\nkCm7j5NEYQDpKp0VYSuYumMqXs97MafTHKpZVjN0WEIUO3fuwLFjmZPHqVPalN1GjcDGRvuqXfvB\n7Vq1oFQxK8QsiaKQ7Y/cj89mH0qYl2Bx98U0r9ncoPEIITLLmLIbEaFV142Kyvx1+bI2WP5oAnn0\nqyjtVy6JopBcvnuZ9/58jx0XdvBx54953eF1me4qhAlKT4fr1x9PIFFRDxJLdLS2FiSrBPJwcilX\nztDPJnckUehZUmoSgQcCmbdvHsNdhjPFfYpMdxWiiFNKm877aAJ59KtUqeyTSMaXMexAKIlCT5RS\n/P7P74zbMg57a3vmd53P85WfL5RrCyGMn1IQF5d9qyTjtoVF9l1cGfdXrKjfqb+SKPTgVMwpxm4Z\ny6Xbl1jUbRFd63fV+zWFEEWPUnD7ds6tkshIrTsspy4uGxuoXDnvyUQSRQG6lXiLGSEzWBW+iqnu\nUxnVYhQlLEro7XpCCAHa7K2cWiZRUZCY+OQB+KpVs04mJlkU0NikpaexPGw5HwR/QM+GPTnx7gms\ny1kbOiwhRDFRoYJW98rOLvvHxMdrg+wPJ5Bjx2DjxgeJ5d49bfrvowkkPyRRAHsv7cVnsw9lninD\nH/3/wLWmq6FDEkKIx1haamtDGuWwEeb9+1oyebglcupU/q5brLueou5EMfnPyez6dxdzO8+lf9P+\nmEkhGSFEEZSf985iuQggMTWR2btm4/R/TtSrVI9To07xusPrkiSEECILxarrSSnFr6d/ZfzW8ThV\ndyJ0eCjPPfucocMSQgijVmwSxcmYk/hu9uXy3ct81fMrOj/X2dAhCSGESSjyXU83E27iu8mX9iva\n07NhT8JGhEmSEEKIp1BkE0VaehpLDy+l8ZLGJKUlcfLdk/i08pE1EUII8ZSKZNfT7n9347PZh/Il\ny7Nl4BacqjsZOiQhhDBZRSpRRN6OZOK2ieyL3MenXT7lNfvXZCaTEELkk9F1PW3evBkHBwfs7OyY\nO3duro5JSElg1s5ZOC11oqFVQ06NOkXfpn0lSQghRAEwqkSRlJTEO++8w+bNmzl27Bjr1q3j6NGj\n2T5eKcXPJ3/G7gs7/r72N0fePsLMDjMpV9JECsTnU0hIiKFDMBryWjwgr8UD8loUDKNKFAcPHsTe\n3p5atWrxzDPP0LdvX4KCgrJ8bPi1cDqt7IT/Tn+WvbiMda+tw7aSbeEGbGDyn+ABeS0ekNfiAXkt\nCoZRJYqoqChq166t+97GxoaoqKjHHjd642g6rexEnyZ9ODriKB3rdSzMMIUQolgxqsHs3I4ppKt0\nTo06hVVZKz1HJIQQAmVEdu3apby9vXXff/LJJ+qjjz7K9Jj69esrQL7kS77kS76e4qt+/fp5fm82\nquqxiYmJNG7cmL1792JtbU2bNm34//buKKTJLowD+D8qqECKzVmzWavWcrpNpuZFjDDYEC0Iampd\n1EVeBdGF0WWIWNRFYEUgQdSNWdZlUCZLyhBMxWR4U8OyNAvdlqVtlNPnu4hetNrk65tufu//B17s\ncDaf8/Buz8553/fs2rVryM/PT3ZoRESqlVJLT6tWrUJDQwNKSkowMzODI0eOsEgQESVZSs0oiIgo\n9aTUVU9/YjQaYbfb4XA4UFRUBAAIhUJwu92w2+0oKSnB+Ph4kqNceOPj4ygvL0deXh4sFgs6OztV\nmYeXL1/C4XAof2vXrsWVK1dUmQsAqKmpgdlsRnZ2NjweD8LhsGpzceHCBZjNZlitVly+fBmAej4r\njh07hvXr18Nmsylt8cZ+/vx55OTkwGazobW1df5/8NdnNxaJ0WiUYDA4p+3EiRNSX18vIiL19fVy\n8uTJZIS2qDwejzQ1NYmIyPT0tHz+/FmVeZhtenpaNmzYIO/evVNlLvx+v2zZskW+ffsmIiIVFRVy\n/fp1Veaip6dHcnNzJRKJSDQaFZfLJT6fTzW5aG9vl97eXrFarUpbrLH39PRIYWGhRKNRGR4eFqPR\nqBxDsSyJQhEIBOa0bd26VWkbGxv7T2fzl4JAICAmk+m3drXl4VePHj0Sp9MpIurMRTAYFLPZLKFQ\nSKampmTfvn3S2tqqylzcunVLqqqqlMd1dXVy9uxZVeXizZs3cwpFrLHX1tbKxYsXlX579+6VZ8+e\nxX3tlF96WrZsmTJ9unr1KgBgbGwMWu2PeyjS09MxOjqazBAXnN/vh06nQ0VFBaxWK44ePYqJiQnV\n5eFXd+7cweHDhwGo75gAAI1Gg1OnTmHTpk3IzMzEunXr4Ha7VZkLm82Gp0+fIhQKIRwO48GDBxga\nGlJlLn6KNfb379/DYDAo/WLd2DxbyheKzs5O9Pb24vHjx7h58ya8Xm+yQ1p0MzMz6O7uxunTp9Hf\n3w+NRoO6urpkh5VU379/x/3791FeXp7sUJJmYGAAly5dwuDgIEZGRjA5OYnGxsZkh5UUNpsN1dXV\nKC4uxp49e2Cz2bgpaAKlfKHIyMgAAOh0Ong8HnR3d0On0yEQCAD4UTV/9vm/ysrKwsaNG7Fz504A\ngMfjQV9fHzIyMlSVh9kePnyIgoIC6HQ6AFDdMQEAXV1d2LVrF7RaLVasWIEDBw6go6NDlbkAgOPH\nj8Pn8+H58+fIzMxEdna2anMBxH5PGAwGDA0NKf1+3TrpT1K6UITDYYTDYQDA169f0dLSgtzcXJSV\nlSnfnBobG1FWVpbMMBdcVlYW0tPT8erVKwCA1+uFxWJBaWmpqvIw2+3bt5VlJwCqOyYAwGQyobOz\nE5FIBCICr9eLbdu2qTIXAJQPxY8fP6K5uRmVlZWqzQUQ+z1RVlaG5uZmRKNRDA8Po7+/X7miNKbE\nn1JJnNevX4vdbpe8vDzZvn27nDlzRkR+nMRzuVxis9nE7XbLp0+fkhzpwuvr65PCwkLJycmR0tJS\nCYVCqsyDiMjk5KRotVr58uWL0qbWXNTU1IjJZBKz2SyVlZUSiURUmwun0yl2u10KCgqkra1NRNRz\nXBw6dEj0er2sXLlSDAaD3LhxI+7Yz507JxaLRXJzc6WlpWXe1+cNd0REFFdKLz0REVHysVAQEVFc\nLBRERBQXCwUREcXFQkFERHGxUBARUVwsFETzCAaDyrbmer0eBoMBDocD+fn5mJqamtPX5XJhYmIC\nALB8+fI5W6K/ffsWPp8PVVVVyRgG0V9LqV+4I0pFWq0WL168AADU1tYiLS0N1dXVv/Vra2vDjh07\nkJaWBgBYs2aN8rzZBgYGMDo6qqrtJGhp44yC6F+KdY9qU1MT9u/fP+/zS0tLce/evUSHRbRgWCiI\nEqSjowOFhYXK40gkoiw7HTx4UGkvKipCe3t7MkIk+itceiJKkJGREWg0GuXx6tWr/7j0pNfrMTg4\nuIiREf03nFEQLTIR4W8l0JLCQkGUIJmZmQgGg/P2+/DhAzZv3rwIERElBgsF0b8UazbgdDrR09Mz\nb7+uri7s3r17QWIjWgjcZpwoQZ48eYLm5mY0NDTE7VdcXIy7d+/y8lhaMjijIEqQ4uJi+P1+5Ya7\nP/H5fDCZTCwStKRwRkFERHFxRkFERHGxUBARUVwsFEREFBcLBRERxcVCQUREcbFQEBFRXP8A3miz\npEyyc1UAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1faccd0>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2 Page No : 535"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "wcb= 2. \t#ton weighing\n",
+ "wc= 100. \t #ton\n",
+ "wa= 6.5 \t #% of the weight\n",
+ "wca= 20. \n",
+ "r= 0.8\n",
+ "r1= 1.2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "wca1= wc/wa\n",
+ "wca2= wcb*(wca1/wca)**1.5\n",
+ "Wca= wcb*r**(9./4)*(1./r1)**(9./4)*(wca1/wca)**1.5\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Wc/Wa = %.2f '%(wca1)\n",
+ "print ' Wc,a = %.2f ton'%(wca2)\n",
+ "print ' Wc,a = %.2f ton'%(Wca)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Wc/Wa = 15.38 \n",
+ " Wc,a = 1.35 ton\n",
+ " Wc,a = 0.54 ton\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch2.ipynb b/Basic_Fluid_Mechanics/ch2.ipynb
new file mode 100755
index 00000000..eab5eede
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch2.ipynb
@@ -0,0 +1,309 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:30849a845cb23e6184901c441ceb4a2e2451d5db6a2c0f60dce1b23531e4d077"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2 : Similarity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1 Page No : 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 4.\n",
+ "l1= 4 \t#units long axis\n",
+ "l2= 10 \t#units long axis\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "sxy= (4/r)\n",
+ "sxy1= l1**2\n",
+ "sxy2= l2**2\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'x**2+4*y**2 = %.f '%(sxy)\n",
+ "print ' x**2+4*y**2 = %.f '%(sxy1)\n",
+ "print ' x**2+4*y**2 = %.f '%(sxy2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x**2+4*y**2 = 1 \n",
+ " x**2+4*y**2 = 16 \n",
+ " x**2+4*y**2 = 100 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3 Page No : 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "vo= 10 \t#ft/sec\n",
+ "a= 0.5 \t#ft**-1\n",
+ "b= 1 \t#ft\n",
+ "x= -2 \t#ft\n",
+ "y= 2 \t#ft\n",
+ "b1= 2\n",
+ "a1= 3./5 \t#ft\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Vx= vo/(a*x**2+b)\n",
+ "Vy= -2*a*b*vo*x*y/(a*x**2+b)**2\n",
+ "V= math.sqrt(Vx**2+Vy**2)\n",
+ "fx= -2*a*b**2*vo**2*x/(a*x**2+b)**3\n",
+ "fy= 2*a*b**2*vo**2*y*(b-a*x**2)/(a*x**2+b)**4\n",
+ "f= math.sqrt(fx**2+fy**2)\n",
+ "r= b1**2/a1\n",
+ "f1= f*r\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Vx = %.2f ft/sec'%(Vx)\n",
+ "print ' Vy = %.2f ft/sec'%(Vy)\n",
+ "print ' V = %.2f ft/sec'%(V)\n",
+ "print ' fx = %.2f ft/sec**2'%(fx)\n",
+ "print ' fy = %.2f ft/sec**2'%(fy)\n",
+ "print ' f = %.2f ft/sec**2'%(f)\n",
+ "print ' r = %.2f in the present case'%(r)\n",
+ "print ' f1 = %.2f ft/sec**2'%(f1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Vx = 3.33 ft/sec\n",
+ " Vy = 4.44 ft/sec\n",
+ " V = 5.56 ft/sec\n",
+ " fx = 7.41 ft/sec**2\n",
+ " fy = -2.47 ft/sec**2\n",
+ " f = 7.81 ft/sec**2\n",
+ " r = 6.67 in the present case\n",
+ " f1 = 52.05 ft/sec**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4 Page No : 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 1./5\n",
+ "b1= 2 \t#ft\n",
+ "a1= 3./5 \t#ft\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "r= (a1*b1)**2*r\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'ratio of resultant forces acting on coorresponding fluid elements = %.3f '%(r)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio of resultant forces acting on coorresponding fluid elements = 0.288 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5 Page No : 44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "vos= 70. \t#ft/sec\n",
+ "as1= 78. \t#ft density\n",
+ "am= 72. \t#ft wind-tunnel\n",
+ "ls1= 6. \t#ft strut section\n",
+ "lm= 2. \t#ft length\n",
+ "um= 386. \t#ft/sec\n",
+ "us= 372. \t#ft/sec\n",
+ "dm= 0.4\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "vom= vos*as1*ls1*um/(am*lm*us)\n",
+ "Ds= dm*(am/as1)*(us/um)**2\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Air speed = %.f ft/sec'%(vom)\n",
+ "print ' Ds = %.3f lbf'%(Ds)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Air speed = 236 ft/sec\n",
+ " Ds = 0.343 lbf\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6 Page No : 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "vom= 236. \t#ft/sec\n",
+ "as1= 0.072 \t#ft\n",
+ "am = 62.4 \t#ft density of water\n",
+ "ls1= 2. \t#ft\n",
+ "lm= 8. \t#ft\n",
+ "um= 248. \t#ft/sec viscosity\n",
+ "us= 3.86 \t#ft/sec\n",
+ "Pm= 0.4/3.3\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "voh= vom*as1*ls1*um/(am*lm*us)\n",
+ "Ds= Pm*(as1/am)*(um/us)**2*(ls1/lm)*(lm-ls1)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Air speed = %.2f ft/sec'%(voh)\n",
+ "print ' Drag force = %.3f lbf'%(Ds)\n",
+ "\n",
+ "# note : rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Air speed = 4.37 ft/sec\n",
+ " Drag force = 0.866 lbf\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.7 Page No : 51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "To1= 540. \t#R temperature\n",
+ "po3= 12.6 \t#lbf/in**2\n",
+ "l3= 3. \t#ft\n",
+ "po1= 14.7 \t#lbf/in**2 pressure\n",
+ "l1= 1. \t#ft\n",
+ "vo1= 500. \t#ft/sec velocity\n",
+ "r= 0.83\n",
+ "P1= 1. \t#lbf/in**2 turbine blade\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "To3= To1*(po3*l3/(po1*l1))**r\n",
+ "Vo3= vo1*math.sqrt(To3/To1)\n",
+ "P3= P1*po3*l3/(po1*l1)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'To3 = %.f R'%(To3)\n",
+ "print ' Vo3 = %.f ft/sec'%(Vo3)\n",
+ "print ' P3 = %.2f lbf/ft'%(P3)\n",
+ "\n",
+ "# note : book answers are not accurate."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "To3 = 1183 R\n",
+ " Vo3 = 740 ft/sec\n",
+ " P3 = 2.57 lbf/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch3.ipynb b/Basic_Fluid_Mechanics/ch3.ipynb
new file mode 100755
index 00000000..cd8562e6
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch3.ipynb
@@ -0,0 +1,160 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:be8f61b53e434158045726efedae14168d3ad7c750cfe29d070385bb73f71e47"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3 : Dimensional Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.1 Page No : 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "t= 1. \t#hr\n",
+ "g1= 32.2 \t#ft/sec**2\n",
+ "g2= 32.2 \t#lbm ft/lbf\n",
+ "u= 2.4*10**-5 \t#lbf sec/ft**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "q2= g*(t*60*60)**2\n",
+ "go= g*(t*60*60)**2\n",
+ "q3= g/g2\n",
+ "u1= u/(t*60*60)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' q2 = %.2e lbm ft/lbf hr**2'%(q2)\n",
+ "print ' go = %.2e lbm ft/lbf hr**2'%(go)\n",
+ "print ' go = %.f slug ft/lbf sec**2'%(q3)\n",
+ "print ' viscosity = %.2e lbf hr/ft**2'%(u1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " q2 = 4.17e+08 lbm ft/lbf hr**2\n",
+ " go = 4.17e+08 lbm ft/lbf hr**2\n",
+ " go = 1 slug ft/lbf sec**2\n",
+ " viscosity = 6.67e-09 lbf hr/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.2 Page No : 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "m= 1 \t#lb\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "m1= g/m\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print '1 lbf/sec ft**2 = %.1f lbm/ft sec'%(m1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1 lbf/sec ft**2 = 32.2 lbm/ft sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.5 Page No : 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "n1=1.\n",
+ "n2= 3.\n",
+ "n3=2.\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "a1= -n1\n",
+ "a2= -n3\n",
+ "a3= -n1-a2+3*a1\n",
+ "b1= -n1\n",
+ "b2= -n1\n",
+ "b3= n1+3*b1-b2\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' a1 = %.f '%(a1)\n",
+ "print ' a2 = %.f '%(a2)\n",
+ "print ' a3 = %.f '%(a3)\n",
+ "print ' b1 = %.f '%(b1)\n",
+ "print ' b2 = %.f '%(b2)\n",
+ "print ' b3 = %.f '%(b3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " a1 = -1 \n",
+ " a2 = -2 \n",
+ " a3 = -2 \n",
+ " b1 = -1 \n",
+ " b2 = -1 \n",
+ " b3 = -1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch5.ipynb b/Basic_Fluid_Mechanics/ch5.ipynb
new file mode 100755
index 00000000..e44fb093
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch5.ipynb
@@ -0,0 +1,212 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:925f1eedf50c877ed321461a7c6fe2319e03573a843bd9a8a44c0d22ceada0ec"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Control-Volume Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page No : 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "w= 20. \t#lbm/sec plant rate\n",
+ "sh= 0.004\n",
+ "mw2= 0.12 \t#lbm/sec stream rate\n",
+ "ma3= 12.2 \t#lbm/sec rates of air\n",
+ "mw3= 0.130 \t#lbm/sec water rate\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "mw1= w/((1/sh)+1)\n",
+ "ma1= w-mw1\n",
+ "ma4= ma1-ma3\n",
+ "mw4= mw1+mw2-mw3\n",
+ "mr= ma4+mw4\n",
+ "sh1= mw4/ma4\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' mw1 = %.4f lbm/sec'%(mw1)\n",
+ "print ' ma1 = %.2f lbm/sec'%(ma1)\n",
+ "print ' ma4 = %.2f lbm/sec'%(ma4)\n",
+ "print ' mw4 = %.4f lbm/sec'%(mw4)\n",
+ "print ' mr = %.2f lbm/sec'%(mr)\n",
+ "print ' specific humidity = %.5f lbm/sec'%(sh1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " mw1 = 0.0797 lbm/sec\n",
+ " ma1 = 19.92 lbm/sec\n",
+ " ma4 = 7.72 lbm/sec\n",
+ " mw4 = 0.0697 lbm/sec\n",
+ " mr = 7.79 lbm/sec\n",
+ " specific humidity = 0.00903 lbm/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page No : 131"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "w= 62.4 \t#lbf/ft**3 fluid density\n",
+ "g= 32.2 \t#ft/sec**2 \n",
+ "v= 86.5 \t#ft/sec velocity\n",
+ "d2= 3. \t#in\n",
+ "d1= 6. \t#in\n",
+ "dp= 50. \t#lbf/in**2 gauge pressure\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Fb= ((math.pi*(w/g)*v**2*(1/d1)**2*(1-(d2/d1)**2)*0.25)-dp*144*(math.pi/4)*(1/d2)**2)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Load on the bolts = %.f lbf'%(Fb)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Load on the bolts = -391 lbf\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page No : 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "F1= 237. \t#lb\n",
+ "dp= 50. \t#lbf/in**2\n",
+ "D= 6. \t#in diameter\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "F2= dp*144*(math.pi/4)*(D/12)**2\n",
+ "Fb= F1-F2\n",
+ "\t\n",
+ "#RESULTS\n",
+ "\n",
+ "print 'Load on the bolts = %.f lbf'%(Fb)\n",
+ "#rounding-off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Load on the bolts = -1177 lbf\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page No : 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "w1= 0.0286 \t#lbm/ft**3 density\n",
+ "v= 2500. \t#ft/sec velocity\n",
+ "A= 2.5 \t#ft**3 area\n",
+ "k= 0.015\n",
+ "p2= 700. \t#lbf/ft**2\n",
+ "p1= 628. \t#lbf/ft**2 pressure\n",
+ "v2= 3500. \t#ft/sec outlet\n",
+ "g= 32.17 \t#ft/sec**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "ma= w1*v*A\n",
+ "mf= round(k*ma,2)\n",
+ "mt= round(ma+mf,1)\n",
+ "F= (p2-p1)*A+(mt*v2/g)-(ma*v/g)\n",
+ "\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' air mass flow rate = %.2f lbm/sec'%(ma)\n",
+ "print ' Fuel flow rate = %.2f lbm/sec'%(mf)\n",
+ "print ' Fuel flow rate at station 2 = %.2f lbm/sec'%(mt)\n",
+ "print ' Thrust force = %d lbf'%(round(F,-1))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " air mass flow rate = 178.75 lbm/sec\n",
+ " Fuel flow rate = 2.68 lbm/sec\n",
+ " Fuel flow rate at station 2 = 181.40 lbm/sec\n",
+ " Thrust force = 6020 lbf\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch6.ipynb b/Basic_Fluid_Mechanics/ch6.ipynb
new file mode 100755
index 00000000..71c77f3e
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch6.ipynb
@@ -0,0 +1,391 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:912103c870040cf2e80e26b9450874f8f07874fb3d9db28d3d6ce1077a023edc"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6 : Steady, One-Dimensional, Reversible Flow"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.1 Page No : 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "g= 32.2 \t#ft/sec**2 gravitational acceleration\n",
+ "h= 4. \t#ft diameter\n",
+ "d2= 0.16 \t#ft\n",
+ "d1= 0.3 \t#ft\n",
+ "dp= 13.6 \t#lbf/in**2 mercury\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Q= (math.pi/4)*math.sqrt(2*g*dp*h/((1/d2**4)-(1/d1**4)))\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Volumetric flow rate = %.2f ft**3/sec'%(Q)\n",
+ "\n",
+ "# note: book answer is not accurate."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Volumetric flow rate = 1.24 ft**3/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2 Page No : 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "w= 0.0765 \t#lbm/ft**3 density\n",
+ "v1= 120. \t#ft/sec velocity\n",
+ "go = 62.4 \t#lmb/ft**3\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "dp= (w*v1**2)/(2*go)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Difference in pressure= %.2f lbf/ft**2'%(dp)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Difference in pressure= 8.83 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3 Page No : 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "r=1.4\n",
+ "g= 32.2 \t#ft/sec**2 gas\n",
+ "R= 53.3 \t#lbf ft/lbm\n",
+ "T1= 760. \t#R Temperature\n",
+ "p2= 2. \t#lbf/in**2\n",
+ "p1= 3. \t #lbf/in**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "V2= math.sqrt(2*r*R*g*T1*(1-(p2/p1)**((r-1)/r))/(r-1))\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Velocity in working section = %.f ft/sec'%(V2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity in working section = 999 ft/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4 Page No : 166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "y = 1.4\n",
+ "g = 32.2 \t#ft/sec**2\n",
+ "R = 53.3 \t#lbf ft/lbm\n",
+ "T = 32. \t#C air\n",
+ "T1 = 2000. \t#R air\n",
+ "y1 = 1.32\n",
+ "p = 1440. \t#lbf/in**2\n",
+ "v1 = 1.2306 \t #ft**3/lbm\n",
+ "v2 = 1.2546 \t #ft**3/lbm\n",
+ "bm = 3.13*10**5 \t#lbf/in**2\n",
+ "w = 62.4 \t #lbf/ft**3\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "a1= math.sqrt(y*R*(460+T)*g)\n",
+ "a2= math.sqrt(y1*R*T1*g)\n",
+ "r2= p/(v1-v2)\n",
+ "a3= math.sqrt(-g*(v1+v2)**2*0.5**2*r2)\n",
+ "a4= math.sqrt(bm*144*g/w)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Acoustic veloctiy in air at 32 F = %.f ft/sec'%(a1)\n",
+ "print ' Acoustic veloctiy in air at 2000 R = %.f ft/sec'%(a2)\n",
+ "print ' Acoustic veloctiy in steam at 480 F = %.f ft/sec'%(a3)\n",
+ "print ' Acoustic veloctiy in water at 60 F = %.f ft/sec'%(a4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Acoustic veloctiy in air at 32 F = 1087 ft/sec\n",
+ " Acoustic veloctiy in air at 2000 R = 2129 ft/sec\n",
+ " Acoustic veloctiy in steam at 480 F = 1727 ft/sec\n",
+ " Acoustic veloctiy in water at 60 F = 4823 ft/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.5 Page No : 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 1.4\n",
+ "ma2= 2.5 \t#ft/sec\n",
+ "g= 32.17 \t#ft/sec**2\n",
+ "p2= 1. \t#lbf/in**2\n",
+ "ps= 17.08 \t#lbf/in**2\n",
+ "ps2= 75. \t#lbf/in**2\n",
+ "Ts= 720. \t#R\n",
+ "R= 53.3 \t#lbf ft/lbm gas\n",
+ "A= 4. \t#ft**2 flow area\n",
+ "ps3= 0.4 \t#lbf/in**2\n",
+ "A2= 0.685 \t#ft**2\n",
+ "P= 5. \t#per cent throat area\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "R1= (1+0.5*(r-1)*ma2**2)**(r/(r-1))\n",
+ "R2= (2*(r/(r-1))*(p2/ps)**(2/(r))*(1-(p2/ps)**((r-1)/r)))**0.5\n",
+ "m2= R2*ps2*144*(g/(R*Ts))**0.5*0.1\n",
+ "m= m2*A\n",
+ "At= A*R2/A2\n",
+ "m1= m*(1-(P/100))\n",
+ "mrp= (1-(P/100))*R2\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Mass flow rate= %.1f lbm/sec'%(m)\n",
+ "print ' Area of throat= %.3f ft**2'%(At)\n",
+ "print ' Mass flow rate= %.1f lbm/sec'%(m1)\n",
+ "print ' Mass flow rate parameter = %.4f'%(mrp)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Mass flow rate= 32.5 lbm/sec\n",
+ " Area of throat= 1.517 ft**2\n",
+ " Mass flow rate= 30.9 lbm/sec\n",
+ " Mass flow rate parameter = 0.2468\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.7 Page No : 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "r1= 10. \t#ft point - 1\n",
+ "r2= 0.2 \t#miles point - 2\n",
+ "w= 0.0765 \t#lbm/ft**2 density\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "V1= 1. \t#ft/sec velocity\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "k= r2*5280*V1 \n",
+ "dp= w*k**2*10*((1/r1)**2-(1/(5280*r2))**2)/(2*g)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'k = %.f ft**2/sec'%(k)\n",
+ "print ' pressure difference = %.1f lbf/ft**2'%(dp)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "k = 1056 ft**2/sec\n",
+ " pressure difference = 132.5 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.9 Page No : 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "w= 12. \t#ft wide\n",
+ "q= 300. \t#ft**3/sec rate\n",
+ "h= 10. \t#ft depth upstream of the gate\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "R= 2.6\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "hc= ((q/12)**2/g)**(1./3)\n",
+ "r= h/hc\n",
+ "h1= hc*(((h/hc)+0.5*(hc/h)**2)-0.5*R**2)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' hc = %.2f ft'%(hc)\n",
+ "print ' stream depth = %.3f ft'%(h1)\n",
+ "#rounding-off error\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " hc = 2.69 ft\n",
+ " stream depth = 1.013 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.10 Page No : 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "Q= 400. \t#ft**3/sec flow rate\n",
+ "b1= 25. \t#ft channel width\n",
+ "b2= 20. \t#ft channel width\n",
+ "h1= 6. \t#ft stream depth\n",
+ "z1= 2.5 \t#ft elevation of channel bottom\n",
+ "z2= 3.3 \t#ft elevation of channel bottom\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "hc1= (Q**2/(g*b1**2))**(1./3)\n",
+ "hc2= (Q**2/(g*b2**2))**(1./3)\n",
+ "r= (hc1/hc2)*((h1/hc1)+0.5*(hc1/h1)**2)+((z1-z2)/hc2)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' hc1 = %.3f ft'%(hc1)\n",
+ "print ' hc2 = %.3f ft'%(hc2)\n",
+ "print ' Ratio = %.3f '%(r)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " hc1 = 1.996 ft\n",
+ " hc2 = 2.316 ft\n",
+ " Ratio = 2.293 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch7.ipynb b/Basic_Fluid_Mechanics/ch7.ipynb
new file mode 100755
index 00000000..3818de1b
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch7.ipynb
@@ -0,0 +1,523 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:fb647d6d0a9fd1fab503f1e20b9cd4c1b8f196f963f97a28e2375980e25dde26"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7 : Steady, One-Dimensional, Irreversible Flow"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1 Page No : 213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 1.5\n",
+ "f= 0.025 # friction factor\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "r1= (2/f)*(r**2-1)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'ratio L/D2 = %.f'%(r1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio L/D2 = 100\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2 Page No : 214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\t\n",
+ "#initialisation of variables\n",
+ "a= 6. \t#degrees angle\n",
+ "r= 1.5\n",
+ "l= 100. \t#ft\n",
+ "f= 0.025\n",
+ "K= 0.15\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "R= r**4-1\n",
+ "R1= 1/math.tan(math.radians(a/2))*(1-(1./r))\n",
+ "p1= f*l\n",
+ "p2= 2.5*(l-p1)/l\n",
+ "p3= (1-r**2)**2\n",
+ "p4= K*p3\n",
+ "pt= p4+p2\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' lowest ratio = %.2f'%(R)\n",
+ "print ' contribtuion of friction in pipe = %.3f lbf/ft**2'%(p1)\n",
+ "print ' contribtuion of diffuser in pipe = %.3f lbf/ft**2'%(p2)\n",
+ "print ' stagnant pressure drop = %.3f lbf/ft**2'%(p3)\n",
+ "print ' contribtuion of friction in pipe after reduction = %.3f lbf/ft**2'%(pt)\n",
+ "\n",
+ "# note : rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " lowest ratio = 4.06\n",
+ " contribtuion of friction in pipe = 2.500 lbf/ft**2\n",
+ " contribtuion of diffuser in pipe = 2.438 lbf/ft**2\n",
+ " stagnant pressure drop = 1.562 lbf/ft**2\n",
+ " contribtuion of friction in pipe after reduction = 2.672 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3 Page No : 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "d= 4. \t #in galvanised iron pipe diameter\n",
+ "q= 0.5 \t #ft**3/sec flow rate\n",
+ "w= 62.4 \t#lb/ft**3 density\n",
+ "u= 2.7*10**-5 \t#lbf sec/ft**2 viscosity\n",
+ "e= 0.0005 \t#ft\n",
+ "g= 32.1 \t#ft/sec**2 acceleration\n",
+ "f= 0.0235\n",
+ "lt= 400. \t#ft long\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "V= 4*q/(math.pi*(d/12)**2)\n",
+ "Re= w*V*(d/12)/(u*g)\n",
+ "r= e/(d/12)\n",
+ "dz= (V**2/(2*g))*(1.7+f*lt/(d/12))\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' mean flow velocity = %.2f ft/sec'%(V)\n",
+ "print ' Reynolds number = %.2e'%(Re)\n",
+ "print ' Relative roughness = %.4f'%(r)\n",
+ "print ' difference in the levels of water = %.1f ft'%(dz)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " mean flow velocity = 5.73 ft/sec\n",
+ " Reynolds number = 1.38e+05\n",
+ " Relative roughness = 0.0015\n",
+ " difference in the levels of water = 15.3 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4 Page No : 220"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "d= 4. \t#in\n",
+ "v= 6.64 \t#ft/sec\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Q= math.pi*0.25*(d/12)**2*v\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Flow rate= %.3f ft**3/sec'%(Q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flow rate= 0.579 ft**3/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5 Page No : 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "d= 0.366 \t#ft\n",
+ "i= 12\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "pd= d*i\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Required pipe diameter = %.2f in'%(pd)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Required pipe diameter = 4.39 in\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.6 Page No : 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "Ps1= 1050. \t#lbf/ft**2\n",
+ "fr= 10.7\n",
+ "p= 36.6 \t#lbf/ft**2\n",
+ "p1= 195. \t#lbf/ft**2\n",
+ "fr1= 16.\n",
+ "fr2= 1.8\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "deltap = (p+957+p1+Ps1)\n",
+ "p2= round(fr*p)\n",
+ "dp= Ps1-p2\n",
+ "lc= round(dp/p)\n",
+ "sp= Ps1+p1-p*(fr1+fr2)\n",
+ "lc1= sp/p\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' Pressure = %.f lbf/ft**2'%(round(deltap,-1))\n",
+ "print ' pressure difference = %.f lbf/ft**2'%(dp)\n",
+ "print ' Loss coefficient = %.f '%(lc)\n",
+ "print ' Loss coefficient = %.1f '%(lc1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Pressure = 2240 lbf/ft**2\n",
+ " pressure difference = 658 lbf/ft**2\n",
+ " Loss coefficient = 18 \n",
+ " Loss coefficient = 16.2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.7 Page No : 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "p1= 50. \t#lbf/in**2 pressure\n",
+ "R= 96.3 \t#ft lbf/lbm R\n",
+ "T= 80. \t #F temperature\n",
+ "p2= 20. \t#lbf/in**2 pressure\n",
+ "r= 1.31\n",
+ "u= 2.34*10**-7 \t#lbf sec/ft**2\n",
+ "e= 0.00005 \t #ft\n",
+ "m= 5.*10**4 \t#lbm/sec\n",
+ "d= 1.5 \t #ft\n",
+ "g= 32.2 \t #ft/sec**2\n",
+ "f= 0.113\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "w1= p1*144/(R*(460+T))\n",
+ "V1= 4*(m/3600)/(math.pi*w1*d**2)\n",
+ "Ma1= V1/(r*R*g*(460+T))**0.5\n",
+ "Re= w1*V1*d/(u*g)\n",
+ "dx= (((1/(r*Ma1**2))*10*(1-(p2/p1)**2))+math.log(p2/p1))*d/f\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' density = %.3f lbm/ft**3'%(w1)\n",
+ "print ' mean flow velocity = %.1f ft/sec'%(V1)\n",
+ "print ' Match number = %.4f '%(Ma1)\n",
+ "print ' Reynolds number = %.2e '%(Re)\n",
+ "print ' Length of pipe = %.2e ft'%(dx)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " density = 0.138 lbm/ft**3\n",
+ " mean flow velocity = 56.8 ft/sec\n",
+ " Match number = 0.0383 \n",
+ " Reynolds number = 1.56e+06 \n",
+ " Length of pipe = 5.79e+04 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.9 Page No : 238"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "r= 1.4\n",
+ "R= 53.3 \t#ft lbf/lbm R\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "T1= 410. \t#R temperature\n",
+ "v= 2500. \t#ft/sec steadility\n",
+ "P1= 628. \t#lbf/in**2 pressure\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "v1= int(math.sqrt(r*g*R*T1))\n",
+ "Ma1= round(v/v1,2)\n",
+ "Ts1= int(T1*(1+0.5*(r-1)*Ma1**2))\n",
+ "Ps1= P1*(1+0.5*(r-1)*Ma1**2)**(r/(r-1))\n",
+ "Ps2= Ps1*((r+1)/(2*r*Ma1**2-r+1))**(1/(r-1))*(0.5*(r+1)*Ma1**2/(1+0.5*(r-1)*Ma1**2))**(r/(r-1))\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' acoustic velocity = %.f ft/sec'%(v1)\n",
+ "print ' Match number = %.2f '%(Ma1)\n",
+ "print ' Stagnition temperature = %.f R'%(Ts1)\n",
+ "print ' Stagnition pressure = %.f lbf/ft**2'%(Ps1)\n",
+ "print ' Stagnition pressure = %.f lbf/ft**2'%(Ps2)\n",
+ "\n",
+ "# note : answer in book is wrong. Please check manually.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " acoustic velocity = 992 ft/sec\n",
+ " Match number = 2.52 \n",
+ " Stagnition temperature = 930 R\n",
+ " Stagnition pressure = 11069 lbf/ft**2\n",
+ " Stagnition pressure = 5435 lbf/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.10 Page No : 245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#initialisation of variables\n",
+ "p2= 67.2 \t#lbf/in**2 pressure\n",
+ "p1= 63. \t#lbf/in62 pressure\n",
+ "r= 1.4\n",
+ "n= 0.6 # efficiency\n",
+ "T1= 870. \t#R temperature\n",
+ "ma1= 0.8 \t#ft/sec mach number\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "dt= (p2/p1)**((r-1)/r)-1\n",
+ "dt1= dt/n\n",
+ "T2= T1*(1+dt1)\n",
+ "Ts1= T1*(1+0.5*(r-1)*ma1**2)\n",
+ "ps1= p1*(1+0.5*(r-1)*ma1**2)**(r/(r-1))\n",
+ "ps2= p2*(Ts1/T2)**(r/(r-1))\n",
+ "dp= ps1-ps2\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' dT = %.5f '%(dt)\n",
+ "print ' dT1 = %.5f '%(dt1)\n",
+ "print ' Temperature = %.f R'%(T2)\n",
+ "print ' Temperature = %.1f R'%(Ts1)\n",
+ "print ' Pressure = %.1f lbf/in**2'%(ps1)\n",
+ "print ' Pressure = %.1f lbf/in**2'%(ps2)\n",
+ "print ' pressure difference = %.1f lbf/in**2'%(dp)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " dT = 0.01861 \n",
+ " dT1 = 0.03102 \n",
+ " Temperature = 897 R\n",
+ " Temperature = 981.4 R\n",
+ " Pressure = 96.0 lbf/in**2\n",
+ " Pressure = 92.0 lbf/in**2\n",
+ " pressure difference = 4.0 lbf/in**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.11 Page No : 246"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#initialisation of variables\n",
+ "r= 1.4\n",
+ "ma3= 3. \t#ft/sec mach number\n",
+ "ps= 80. \t#lbf/ft**2 pressure\n",
+ "Ts= 840. \t#R temperature\n",
+ "r1= 53.3 \t#ft lbm/ft**3\n",
+ "A3= 2. \t#in**2 flow area\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "ma1= 1.6\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "R= (1+(r-1)*0.5*ma3**2)**(r/(r-1))\n",
+ "p3= ps/R\n",
+ "R1= 1+0.5*(r-1)*ma3**2\n",
+ "T3= Ts/R1\n",
+ "w3= p3*144/(r1*T3)\n",
+ "V3= ma3*math.sqrt(r*r1*g*T3)\n",
+ "m= w3*V3*A3/144\n",
+ "ra= ((r+1)/(2*r*ma1**2-(r-1)))**(1/(r-1))*(0.5*(r+1)*ma1**2/(1+0.5*(r-1)*ma1**2))**(r/(r-1))\n",
+ "ps2= ps*ra\n",
+ "dp= ps-ps2\n",
+ "\n",
+ "#RESULTS\n",
+ "print ' outlet pressure = %.2f lbf/in**2'%(p3)\n",
+ "print ' outlet temperature = %.f R'%(T3)\n",
+ "print ' mass flow rate = %.3f lbm/sec'%(m)\n",
+ "print ' ps2 = %.1f lbf/in**2'%(ps2)\n",
+ "print ' Stagnation pressure loss = %.1f lbf/in**2'%(dp)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " outlet pressure = 2.18 lbf/in**2\n",
+ " outlet temperature = 300 R\n",
+ " mass flow rate = 0.694 lbm/sec\n",
+ " ps2 = 71.6 lbf/in**2\n",
+ " Stagnation pressure loss = 8.4 lbf/in**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch8.ipynb b/Basic_Fluid_Mechanics/ch8.ipynb
new file mode 100755
index 00000000..539707f8
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch8.ipynb
@@ -0,0 +1,148 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:64db2287da8cb97edd52d96a1a1d6b51c3497c61118b03ae2e2cf16f97e85bf8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8 : Analysis of Two-Dimensional, Constant-Density, Laminar Flow "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.2 Page No : 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "w= 78.9 \t#lbf.ft**3 weight\n",
+ "d= 0.01 \t#in bore\n",
+ "u= 8.67*10**-9 \t#lbf/ hr ft**2 viscosity\n",
+ "h= 18. \t#ft\n",
+ "l= 10. \t #ft length\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "Q= math.pi*w*(d/12)**4*(h+l)/(l*128*u)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Flow rate = %.2e ft**3/hr'%(Q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flow rate = 3.02e-04 ft**3/hr\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.3 Page No : 290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "x= 0.1 \t#ft\n",
+ "w= 62.4 \t#lbf/ft**3 fluid density\n",
+ "v1= 10. \t#ft/sec velocity\n",
+ "u= 2.4*10**-5 \t#lbf/ft viscosity\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "k= 4.91\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "s= k*x*(w*v1*x/(u*g))**-0.5\n",
+ "Tw= 0.332*w*v1**2*(u*g/(w*x*v1))**0.5/g\n",
+ "R= 0.332*6*Tw\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print 'Thickness = %.2e*ft'%(s)\n",
+ "print ' Shear stress = %.3f lbf/ft**2'%(Tw)\n",
+ "print ' Shear stress = %.3f lbf/ft'%(R)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness = 1.73e-03*ft\n",
+ " Shear stress = 0.226 lbf/ft**2\n",
+ " Shear stress = 0.451 lbf/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.4 Page No : 298"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "r = 1\n",
+ "r1 = 1\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "e1= r+r1\n",
+ "e2= r-r1\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' vorticity in a forced vortex = %.f*k'%(e1)\n",
+ "print ' vorticity in a free vortex = %.f'%(e2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " vorticity in a forced vortex = 2*k\n",
+ " vorticity in a free vortex = 0\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/ch9.ipynb b/Basic_Fluid_Mechanics/ch9.ipynb
new file mode 100755
index 00000000..004fdaf6
--- /dev/null
+++ b/Basic_Fluid_Mechanics/ch9.ipynb
@@ -0,0 +1,126 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:cf784c378e9383adb15dcad9ef6ad8b764187d7f185393fb16ff16d5b2a1ed70"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9 : Analysis of Two-Dimensional, Constant-Density, Turbulent Flow"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1 Page No : 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\n",
+ "#initialisation of variables\n",
+ "n=7.\n",
+ "w= 62.4 \t#lbf/ft**3 density\n",
+ "v= 6. \t#ft/sec velocity\n",
+ "d= 2. \t #in pipe diameter\n",
+ "u= 2.34*10**-5 \t#lbf/ft**3 viscosity\n",
+ "f= 0.0178\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "R= 1.224\n",
+ "R1= 8. \t#ft/sec\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "r= (n+1)*(2*n+1)/(2*n**2)\n",
+ "Red= w*v*(d/12)/(u*g)\n",
+ "C= (d/Red)**(1./7)*R*(R1/f)**(4./7)\n",
+ "V = v*math.sqrt(f/8)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' Vmax/V = %.3f'%(r)\n",
+ "print ' Red = %.2e'%(Red)\n",
+ "print ' C = %.2f'%(C)\n",
+ "print ' Velocity = %.3f ft/sec'%(V)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Vmax/V = 1.224\n",
+ " Red = 8.28e+04\n",
+ " C = 8.79\n",
+ " Velocity = 0.283 ft/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3 Page No : 332"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\t\n",
+ "#initialisation of variables\n",
+ "Re= 5.\n",
+ "g= 32.2 \t#ft/sec**2\n",
+ "u= 2.34*10**-5 \t#lbf/ft sec\n",
+ "w= 62.4 \t#lbf/ft**3\n",
+ "v= 0.283 \t#ft/sec\n",
+ "Re1= 70.\n",
+ "v1= 0.0374 \t#ft/sec\n",
+ "\t\n",
+ "#CALCULATIONS\n",
+ "y= Re*u*g/(w*v)\n",
+ "y1= Re1*u*g/(w*v)\n",
+ "y2= Re*u*g/(w*v1)\n",
+ "y3= Re1*u*g/(w*v1)\n",
+ "\t\n",
+ "#RESULTS\n",
+ "print ' y = %.6f ft'%(y)\n",
+ "print ' y = %.5f ft'%(y1)\n",
+ "print ' y = %.5f ft'%(y2)\n",
+ "print ' y = %.4f ft'%(y3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " y = 0.000213 ft\n",
+ " y = 0.00299 ft\n",
+ " y = 0.00161 ft\n",
+ " y = 0.0226 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Fluid_Mechanics/screenshots/Streamlinedbody_curve.png b/Basic_Fluid_Mechanics/screenshots/Streamlinedbody_curve.png
new file mode 100755
index 00000000..0628f98d
--- /dev/null
+++ b/Basic_Fluid_Mechanics/screenshots/Streamlinedbody_curve.png
Binary files differ
diff --git a/Basic_Fluid_Mechanics/screenshots/VariationsOfEpEhEp+EhwithT.png b/Basic_Fluid_Mechanics/screenshots/VariationsOfEpEhEp+EhwithT.png
new file mode 100755
index 00000000..bd0bd566
--- /dev/null
+++ b/Basic_Fluid_Mechanics/screenshots/VariationsOfEpEhEp+EhwithT.png
Binary files differ
diff --git a/Basic_Fluid_Mechanics/screenshots/actual_perfomance_curve.png b/Basic_Fluid_Mechanics/screenshots/actual_perfomance_curve.png
new file mode 100755
index 00000000..ece48d25
--- /dev/null
+++ b/Basic_Fluid_Mechanics/screenshots/actual_perfomance_curve.png
Binary files differ