diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter17.ipynb')
-rwxr-xr-x | Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter17.ipynb | 543 |
1 files changed, 0 insertions, 543 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter17.ipynb b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter17.ipynb deleted file mode 100755 index 69177875..00000000 --- a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter17.ipynb +++ /dev/null @@ -1,543 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 17 - Engine and plant trails" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1: pg 589 " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 17.1\n", - " The Indicated power is (kW) = 26.2\n", - " The Brake power is (kW) = 22.0\n", - " The mechanical efficiency is (percent) = 837.0\n", - "Energy can be tabulated as :-\n", - "----------------------------------------------------------------------------------------------------\n", - " kJ/s Percentage \n", - "----------------------------------------------------------------------------------------------------\n", - " Energy from fuel 88.0 100.0 \n", - " Energy to brake power 22.0 25.0 \n", - " Energy to coolant 20.7 23.5 \n", - " Energy to exhaust 33.6 38.2 \n", - " Energy to suroundings,etc. 11.8 13.4\n" - ] - } - ], - "source": [ - "#pg 589\n", - "print('Example 17.1');\n", - "\n", - "# aim : To determine\n", - "# the indicated and brake output and the mechanicl efficiency\n", - "# draw up an overall energy balance and as % age\n", - "import math\n", - "# given values\n", - "h = 21;# height of indicator diagram, [mm]\n", - "ic = 27;# indicator calibration, [kN/m**2 per mm]\n", - "sv = 14*10**-3;# swept volume of the cylinder;,[m**3]\n", - "N = 6.6;# speed of engine, [rev/s]\n", - "ebl = 77;# effective brake load, [kg]\n", - "ebr = .7;# effective brake radious, [m]\n", - "fc = .002;# fuel consumption, [kg/s]\n", - "CV = 44000;# calorific value of fuel, [kJ/kg]\n", - "cwc = .15;# cooling water circulation, [kg/s]\n", - "Ti = 38;# cooling water inlet temperature, [C]\n", - "To = 71;# cooling water outlet temperature, [C]\n", - "c = 4.18;# specific heat capacity of water, [kJ/kg]\n", - "eeg = 33.6;# energy to exhaust gases, [kJ/s]\n", - "g = 9.81;# gravitational acceleration, [m/s**2]\n", - "\n", - "# solution\n", - "PM = ic*h;# mean effective pressure, [kN/m**2]\n", - "LA = sv;# swept volume of the cylinder, [m**3]\n", - "ip = PM*LA*N/2;# indicated power,[kW]\n", - "T = ebl*g*ebr;# torque, [N*m]\n", - "bp = 2*math.pi*N*T;# brake power, [W]\n", - "n_mech = bp/ip;# mechanical efficiency\n", - "print ' The Indicated power is (kW) = ',round(ip,2)\n", - "print ' The Brake power is (kW) = ',round(bp*10**-3)\n", - "print ' The mechanical efficiency is (percent) = ',round(n_mech)\n", - "\n", - "ef = CV*fc;# energy from fuel, [kJ/s]\n", - "eb = bp*10**-3;# energy to brake power,[kJ/s]\n", - "ec = cwc*c*(To-Ti);# energy to coolant,[kJ/s]\n", - "es = ef-(eb+ec+eeg);# energy to surrounding,[kJ/s]\n", - "\n", - "print('Energy can be tabulated as :-');\n", - "print('----------------------------------------------------------------------------------------------------');\n", - "print(' kJ/s Percentage ')\n", - "print('----------------------------------------------------------------------------------------------------');\n", - "print ' Energy from fuel ',ef,' ',ef/ef*100,'\\n Energy to brake power ',round(eb),' ',round(eb/ef*100),'\\n Energy to coolant ',round(ec,1),' ',round(ec/ef*100,1),' \\n Energy to exhaust ',eeg,' ',round(eeg/ef*100,1),'\\n Energy to suroundings,etc. ',round(es,1),' ',round(es/ef*100,1)\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 2: pg 591" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 17.2\n", - " (a) The brake power is (kW) = 14.657\n", - " (b) The indicated power is (kW) = 18.2\n", - " (c) The mechanical efficiency is (percent) = 80.4\n", - " (d) The indicated thermal efficiency is (percent) = 12.94\n", - " (e) The brake steam consumption is (kg/kWh) = 13.75\n", - " (f) Energy supplied/min is (kJ) = 9092.0\n", - " Energy to bp/min is (kJ) = 879.0\n", - " Energy to condenser cooling water/min is (kJ) = 5196.0\n", - " Energy to condensate/min is (kJ) = 534.0\n", - " Energy to surrounding, etc/min is (kJ) = 2483.0\n", - "answer in the book is misprinted for Es\n" - ] - } - ], - "source": [ - "#pg 591\n", - "print('Example 17.2');\n", - "import math\n", - "# aim : To determine\n", - "# (a) bp\n", - "# (b) ip\n", - "# (c) mechanical efficiency\n", - "# (d) indicated thermal efficiency\n", - "# (e) brake specific steam consumption\n", - "# (f) draw up complete energy account for the test one-minute basis taking 0 C as datum\n", - "\n", - "# given values\n", - "d = 200.*10**-3;# cylinder diameter, [mm]\n", - "L = 250.*10**-3;# stroke, [mm]\n", - "N = 5.;# speed, [rev/s]\n", - "r = .75/2;# effective radious of brake wheel, [m]\n", - "Ps = 800.;# stop valve pressure, [kN/m**2]\n", - "x = .97;# dryness fraction of steam\n", - "BL = 136.;# brake load, [kg]\n", - "SL = 90.;# spring balance load, [N]\n", - "PM = 232.;# mean effective pressure, [kN/m**2]\n", - "Pc = 10.;# condenser pressure, [kN/m**2]\n", - "m_dot = 3.36;# steam consumption, [kg/min]\n", - "CC = 113.;# condenser cooling water, [kg/min]\n", - "Tr = 11.;# temperature rise of condenser cooling water, [K]\n", - "Tc = 38.;# condensate temperature, [C]\n", - "C = 4.18;# heat capacity of water, [kJ/kg K]\n", - "g = 9.81;# gravitational acceleration, [m/s**2]\n", - "\n", - "# solution\n", - "# from steam table\n", - "# at 800 kN/m**2\n", - "tf1 = 170.4;# saturation temperature, [C]\n", - "hf1 = 720.9;# [kJ/kg]\n", - "hfg1 = 2046.5;# [kJ/kg]\n", - "hg1 = 2767.5;# [kJ/kg]\n", - "vg1 = .2403;# [m**3/kg]\n", - "\n", - "# at 10 kN/m**2\n", - "tf2 = 45.8;# saturation temperature, [C]\n", - "hf2 = 191.8;# [kJ/kg]\n", - "hfg2 = 2392.9;# [kJ/kg]\n", - "hg2 = 2584.8;# [kJ/kg]\n", - "vg2 = 14.67;# [m**3/kg]\n", - "\n", - "# (a)\n", - "T = (BL*g-SL)*r;# torque, [Nm]\n", - "bp = 2*math.pi*N*T*10**-3;# brake power,[W]\n", - "print ' (a) The brake power is (kW) = ',round(bp,3)\n", - "\n", - "# (b)\n", - "A = math.pi*d**2/4;# area, [m**2]\n", - "ip = PM*L*A*N*2;# double-acting so*2, [kW]\n", - "print ' (b) The indicated power is (kW) = ',round(ip,1)\n", - "\n", - "# (c)\n", - "n_mec = bp/ip;# mechanical efficiency\n", - "print ' (c) The mechanical efficiency is (percent) = ',round(n_mec*100,1)\n", - "\n", - "# (d)\n", - "h = hf1+x*hfg1;# [kJ/kg]\n", - "hf = hf2;\n", - "ITE = ip/((m_dot/60)*(h-hf));# indicated thermal efficiency\n", - "print ' (d) The indicated thermal efficiency is (percent) = ',round(ITE*100,2)\n", - "# (e)\n", - "Bsc=m_dot*60/bp;# brake specific steam consumption, [kg/kWh]\n", - "print ' (e) The brake steam consumption is (kg/kWh) = ',round(Bsc,2)\n", - "\n", - "# (f)\n", - "# energy balanvce reckoned from 0 C\n", - "Es = m_dot*h;# energy supplied, [kJ]\n", - "Eb = bp*60;# energy to bp, [kJ]\n", - "Ecc = CC*C*Tr;# energy to condensate cooling water, [kJ]\n", - "Ec = m_dot*C*Tc;# energy to condensate, [kJ]\n", - "Ese = Es-Eb-Ecc-Ec;# energy to surrounding,etc, [kJ]\n", - "\n", - "print ' (f) Energy supplied/min is (kJ) = ',round(Es)\n", - "\n", - "print ' Energy to bp/min is (kJ) = ',round(Eb)\n", - "print ' Energy to condenser cooling water/min is (kJ) = ',round(Ecc)\n", - "print ' Energy to condensate/min is (kJ) = ',round(Ec)\n", - "print ' Energy to surrounding, etc/min is (kJ) = ',round(Ese)\n", - "\n", - "print 'answer in the book is misprinted for Es'\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 3: pg 593" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 17.3\n", - " (a) The Brake power is (kW) = 60.5\n", - " (b) The brake specific fuel consumption is (kg/kWh) = 0.309\n", - " (c) The indicated thermal efficiency is (percent) = 33.2\n", - " (d) Energy from fuel is (kJ) = 13184.0\n", - " Energy to brake power is (kJ) = 3629.0\n", - " Energy to cooling water is (kJ) = 4038.0\n", - " Energy to exhaust is (kJ) = 3739.0\n", - " Energy to surrounding, etc is (kJ) = 1778.0\n", - "The answer is a bit different due to rounding off error in textbook\n" - ] - } - ], - "source": [ - "#pg 593\n", - "print('Example 17.3');\n", - "\n", - "# aim : To determine\n", - "# (a) the brake power\n", - "# (b) the brake specific fuel consumption\n", - "# (c) the indicated thermal efficiency\n", - "# (d) the energy balance, expressing the various items\n", - "import math\n", - "# given values\n", - "t = 30.;# duration of trial, [min]\n", - "N = 1750.;# speed of engine, [rev/min]\n", - "T = 330.;# brake torque, [Nm]\n", - "mf = 9.35;# fuel consumption, [kg]\n", - "CV = 42300.;# calorific value of fuel, [kJ/kg]\n", - "cwc = 483.;# jacket cooling water circulation, [kg]\n", - "Ti = 17.;# inlet temperature, [C]\n", - "To = 77.;# outlet temperature, [C]\n", - "ma = 182.;# air consumption, [kg]\n", - "Te = 486.;# exhaust temperature, [C]\n", - "Ta = 17.;# atmospheric temperature, [C]\n", - "n_mec = .83;# mechanical efficiency\n", - "c = 1.25;# mean specific heat capacity of exhaust gas, [kJ/kg K]\n", - "C = 4.18;# specific heat capacity, [kJ/kg K]\n", - "\n", - "# solution\n", - "# (a)\n", - "bp = 2*math.pi*N*T/60*10**-3;# brake power, [kW]\n", - "print ' (a) The Brake power is (kW) = ',round(bp,1)\n", - "\n", - "# (b)\n", - "bsf = mf*2/bp;#brake specific fuel consumption, [kg/kWh]\n", - "print ' (b) The brake specific fuel consumption is (kg/kWh) = ',round(bsf,3)\n", - "\n", - "# (c)\n", - "ip = bp/n_mec;# indicated power, [kW]\n", - "ITE = ip/(2*mf*CV/3600);# indicated thermal efficiency\n", - "print ' (c) The indicated thermal efficiency is (percent) = ',round(ITE*100,1)\n", - "\n", - "# (d)\n", - "# taking basis one minute \n", - "ef = CV*mf/30;# energy from fuel, [kJ]\n", - "eb = bp*60;# energy to brake power,[kJ]\n", - "ec = cwc/30*C*(To-Ti);# energy to cooling water,[kJ]\n", - "ee = (ma+mf)/30*c*(Te-Ta);# energy to exhaust, [kJ]\n", - "es = ef-(eb+ec+ee);# energy to surrounding,etc,[kJ]\n", - "\n", - "print ' (d) Energy from fuel is (kJ) = ',round(ef)\n", - "print ' Energy to brake power is (kJ) = ',round(eb)\n", - "print ' Energy to cooling water is (kJ) = ',round(ec)\n", - "print ' Energy to exhaust is (kJ) = ',round(ee)\n", - "print ' Energy to surrounding, etc is (kJ) = ',round(es)\n", - " \n", - "print 'The answer is a bit different due to rounding off error in textbook'\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 4: pg 594" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 17.4\n", - " (a) The indicated power of the engine is (kW) = 69.9\n", - " (b) The mechanical efficiency of the engine is (percent) = 74.4\n" - ] - } - ], - "source": [ - "#pg 594\n", - "print('Example 17.4');\n", - "\n", - "# aim : To determine\n", - "# (a) the indicated power of the engine\n", - "# (b) the mechanical efficiency of the engine\n", - "\n", - "# given values\n", - "bp = 52;# brake power output, [kW]\n", - "bp1 = 40.5;# brake power of cylinder cut1, [kW]\n", - "bp2 = 40.2;# brake power of cylinder cut2, [kW]\n", - "bp3 = 40.1;# brake power of cylinder cut3, [kW]\n", - "bp4 = 40.6;# brake power of cylinder cut4, [kW]\n", - "bp5 = 40.7;# brake power of cylinder cut5, [kW]\n", - "bp6 = 40.0;# brake power of cylinder cut6, [kW]\n", - "\n", - "# sollution\n", - "ip1 = bp-bp1;# indicated power of cylinder cut1, [kW]\n", - "ip2 = bp-bp2;# indicated power of cylinder cut2, [kW]\n", - "ip3 = bp-bp3;# indicated power of cylinder cut3, [kW]\n", - "ip4 = bp-bp4;# indicated power of cylinder cut4, [kW]\n", - "ip5 = bp-bp5;# indicated power of cylinder cut5, [kW]\n", - "ip6 = bp-bp6;# indicated power of cylinder cut6, [kW]\n", - "\n", - "ip = ip1+ip2+ip3+ip4+ip5+ip6;# indicated power of engine,[kW]\n", - "print ' (a) The indicated power of the engine is (kW) = ',ip\n", - "\n", - "# (b)\n", - "n_mec = bp/ip;# mechanical efficiency\n", - "print ' (b) The mechanical efficiency of the engine is (percent) = ',round(n_mec*100,1)\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5: pg 595" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 17.5\n", - " The Brake power is (kW) = 29.3\n", - " The Indicated power is (kW) = 37.3\n", - " The mechanical efficiency is (percent) = 78.8\n", - "Energy can be tabulated as :-\n", - "----------------------------------------------------------------------------------------------------\n", - " kJ/s Percentage \n", - "----------------------------------------------------------------------------------------------------\n", - " Energy from fuel 135.3 100.0 \n", - " Energy to brake power 29.3 21.7 \n", - " Energy to exhaust 35.4 26.0 \n", - " Energy to coolant 44.5 32.9 \n", - " Energy to suroundings,etc. 26.1 19.3\n", - "there is minor variation in the result reported in the book due to rounding off error\n" - ] - } - ], - "source": [ - "#pg 595\n", - "print('Example 17.5');\n", - "\n", - "# aim : To determine\n", - "# the brake power,indicated power and mechanicl efficiency\n", - "# draw up an energy balance and as % age of the energy supplied\n", - "\n", - "# given values\n", - "N = 50.;# speed, [rev/s]\n", - "BL = 267.;# break load.,[N]\n", - "BL1 = 178.;# break load of cylinder cut1, [N]\n", - "BL2 = 187.;# break load of cylinder cut2, [N]\n", - "BL3 = 182.;# break load of cylinder cut3, [N]\n", - "BL4 = 182.;# break load of cylinder cut4, [N]\n", - "\n", - "FC = .568/130;# fuel consumption, [L/s]\n", - "s = .72;# specific gravity of fuel\n", - "CV = 43000;# calorific value of fuel, [kJ/kg]\n", - "\n", - "Te = 760;# exhaust temperature, [C]\n", - "c = 1.015;# specific heat capacity of exhaust gas, [kJ/kg K]\n", - "Ti = 18;# cooling water inlet temperature, [C]\n", - "To = 56;# cooling water outlet temperature, [C]\n", - "mw = .28;# cooling water flow rate, [kg/s]\n", - "Ta = 21;# ambient tempearture, [C]\n", - "C = 4.18;# specific heat capacity of cooling water, [kJ/kg K]\n", - "\n", - "# solution\n", - "bp = BL*N/455;# brake power of engine, [kW]\n", - "bp1 = BL1*N/455;# brake power of cylinder cut1, [kW]\n", - "i1 = bp-bp1;# indicated power of cylinder cut1, [kW]\n", - "bp2 = BL2*N/455;# brake power of cylinder cut2, [kW]\n", - "i2 = bp-bp2;# indicated power of cylinder cut2, [kW]\n", - "bp3 = BL3*N/455;# brake power of cylinder cut3, [kW]\n", - "i3 = bp-bp3;# indicated power of cylinder cut3, [kW]\n", - "bp4 = BL4*N/455;# brake power of cylinder cut4, [kW]\n", - "i4 = bp-bp4;# indicated power of cylinder cut4, [kW]\n", - "\n", - "ip = i1+i2+i3+i4;# indicated power of engine, [kW]\n", - "n_mec = bp/ip;# mechanical efficiency\n", - "\n", - "print ' The Brake power is (kW) = ',round(bp,1)\n", - "print ' The Indicated power is (kW) = ',round(ip,1)\n", - "print ' The mechanical efficiency is (percent) = ',round(n_mec*100,1)\n", - "\n", - "mf = FC*s;# mass of fuel/s, [kg]\n", - "ef = CV*mf;# energy from fuel/s, [kJ]\n", - "me = 15*mf;# mass of exhaust/s,[kg],(given in condition)\n", - "ee = me*c*(Te-Ta);# energy to exhaust/s,[kJ]\n", - "ec = mw*C*(To-Ti);# energy to cooling water/s,[kJ]\n", - "es = ef-(ee+ec+bp);# energy to surrounding,etc/s,[kJ]\n", - "\n", - "print('Energy can be tabulated as :-');\n", - "print('----------------------------------------------------------------------------------------------------');\n", - "print(' kJ/s Percentage ')\n", - "print('----------------------------------------------------------------------------------------------------');\n", - "print ' Energy from fuel ',round(ef,1),' ',ef/ef*100,'\\n Energy to brake power ',round(bp,1),' ',round(bp/ef*100.,1),'\\n Energy to exhaust ',round(ee,1),' ',round(ee/ef*100),'\\n Energy to coolant ',round(ec,1),' ',round(ec/ef*100,1),'\\n Energy to suroundings,etc. ',round(es,1),' ',round(es/ef*100,1)\n", - "\n", - "print 'there is minor variation in the result reported in the book due to rounding off error'\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 6: pg 596" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 17.6\n", - " (a) The brake power is (MW) = 23.719\n", - " (b) The fuel consumption is (tonne/h) = 4.74\n", - " (c) The brake thermal efficiency is (percent) = 42.0\n" - ] - } - ], - "source": [ - "#pg 596\n", - "print('Example 17.6');\n", - "\n", - "# aim : To determine \n", - "# (a) the break power of engine\n", - "# (b) the fuel consumption of the engine\n", - "# (c) the brake thermal efficiency of the engine\n", - "import math\n", - "# given values\n", - "d = 850*10**-3;# bore , [m]\n", - "L = 2200*10**-3;# stroke, [m]\n", - "PMb = 15;# BMEP of cylinder, [bar]\n", - "N = 95./60;# speed of engine, [rev/s]\n", - "sfc = .2;# specific fuel oil consumption, [kg/kWh]\n", - "CV = 43000;# calorific value of the fuel oil, [kJ/kg]\n", - "\n", - "# solution\n", - "# (a)\n", - "A = math.pi*d**2/4;# area, [m**2]\n", - "bp = PMb*L*A*N*8/10;# brake power,[MW]\n", - "print ' (a) The brake power is (MW) = ',round(bp,3)\n", - "\n", - "# (b)\n", - "FC = bp*sfc;# fuel consumption, [kg/h]\n", - "print ' (b) The fuel consumption is (tonne/h) = ',round(FC,2)\n", - "\n", - "# (c)\n", - "mf = FC/3600;# fuel used, [kg/s]\n", - "n_the = bp/(mf*CV);# brake thermal efficiency\n", - "print ' (c) The brake thermal efficiency is (percent) = ',round(n_the*100)\n", - "\n", - "# End\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |