diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter13_1.ipynb')
-rw-r--r-- | Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter13_1.ipynb | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter13_1.ipynb b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter13_1.ipynb new file mode 100644 index 00000000..72959a8f --- /dev/null +++ b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter13_1.ipynb @@ -0,0 +1,330 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13 - Steam turbines" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1: pg 380" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example 13.1\n", + " The power developed for a steam flow of 1 kg/s is (kW) = 52.8\n", + " The energy of steam finally leaving the wheel is (kW/kg) = 8.778\n" + ] + } + ], + "source": [ + "#pg 380\n", + "print('Example 13.1');\n", + "\n", + "# aim : To determine \n", + "# the power developed for a steam flow of 1 kg/s at the blades and the kinetic energy of the steam finally leaving the wheel\n", + "\n", + "# Given values\n", + "alfa = 20;# blade angle, [degree]\n", + "Cai = 375;# steam exit velocity in the nozzle,[m/s]\n", + "U = 165;# blade speed, [m/s]\n", + "loss = .15;# loss of velocity due to friction\n", + "\n", + "# solution\n", + "# using Fig13.12,\n", + "Cvw = 320;# change in velocity of whirl, [m/s]\n", + "cae = 132.5;# absolute velocity at exit, [m/s]\n", + "Pds = U*Cvw*10**-3;# Power developed for steam flow of 1 kg/s, [kW]\n", + "Kes = cae**2/2*10**-3;# Kinetic energy change of steam, [kW/kg] \n", + "\n", + "#results\n", + "print ' The power developed for a steam flow of 1 kg/s is (kW) = ',Pds\n", + "print ' The energy of steam finally leaving the wheel is (kW/kg) = ',round(Kes,3)\n", + "\n", + "# End\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2: pg 382" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example 13.2\n", + " (a) The angle of blades is (degree) = 41.5\n", + " (b) The work done on the blade is (kW/kg) = 150.45\n", + " (c) The diagram efficiency is (percent) = 83.6\n", + " (d) The End-thrust is (N/kg) = -90\n" + ] + } + ], + "source": [ + "#pg 382\n", + "print('Example 13.2');\n", + "\n", + "# aim : To determine\n", + "# (a) the entry angle of the blades\n", + "# (b) the work done per kilogram of steam per second\n", + "# (c) the diagram efficiency\n", + "# (d) the end-thrust per kilogram of steam per second\n", + "\n", + "# given values\n", + "Cai = 600.;# steam velocity, [m/s]\n", + "sia = 25.;# steam inlet angle with blade, [degree]\n", + "U = 255.;# mean blade speed, [m/s]\n", + "sea = 30.;# steam exit angle with blade,[degree] \n", + "\n", + "# solution\n", + "# (a)\n", + "# using Fig.13.13(diagram for example 13.2)\n", + "eab = 41.5;# entry angle of blades, [degree]\n", + "print ' (a) The angle of blades is (degree) = ',eab\n", + "\n", + "# (b)\n", + "Cwi_plus_Cwe = 590;# velocity of whirl, [m/s]\n", + "W = U*(Cwi_plus_Cwe);# work done on the blade,[W/kg]\n", + "print ' (b) The work done on the blade is (kW/kg) = ',W*10**-3\n", + "\n", + "# (c)\n", + "De = 2*U*(Cwi_plus_Cwe)/Cai**2;# diagram efficiency \n", + "print ' (c) The diagram efficiency is (percent) = ',round(De*100,1)\n", + "\n", + "# (d)\n", + "# again from the diagram\n", + "Cfe_minus_Cfi = -90;# change invelocity of flow, [m/s]\n", + "Eth = Cfe_minus_Cfi;# end-thrust, [N/kg s]\n", + "print ' (d) The End-thrust is (N/kg) = ',Eth\n", + "\n", + "# End\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3: pg 384" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example 13.3\n", + " (a) The power of turbine is (kW) = 806.625\n", + " (b) The diagram efficiency is (percent) = 78.7\n" + ] + } + ], + "source": [ + "#pg 384\n", + "print('Example 13.3');\n", + "\n", + "# aim : To determine\n", + "# (a) the power output of the turbine\n", + "# (b) the diagram efficiency\n", + "\n", + "# given values\n", + "U = 150.;# mean blade speed, [m/s]\n", + "Cai1 = 675.;# nozzle speed, [m/s]\n", + "na = 20.;# nozzle angle, [degree]\n", + "m_dot = 4.5;# steam flow rate, [kg/s]\n", + "\n", + "# solution\n", + "# from Fig. 13.15(diagram 13.3)\n", + "Cw1 = 915.;# [m/s]\n", + "Cw2 = 280.;# [m/s]\n", + "\n", + "# (a)\n", + "P = m_dot*U*(Cw1+Cw2);# power of turbine,[W]\n", + "print ' (a) The power of turbine is (kW) = ',P*10**-3\n", + "\n", + "# (b)\n", + "De = 2*U*(Cw1+Cw2)/Cai1**2;# diagram efficiency\n", + "print ' (b) The diagram efficiency is (percent) = ',round(De*100,1)\n", + "\n", + "# End\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4: pg 386" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example 13.4\n", + " (a) The power output of the stage is (MW) = 11.6\n", + " (b) The specific enthalpy drop in the stage is (kJ/kg) = 82.0\n", + " (c) The increase in relative velocity is (percent) = 52.2\n" + ] + } + ], + "source": [ + "#pg 386\n", + "print('Example 13.4');\n", + "import math\n", + "# aim : To determine\n", + "# (a) the power output of the stage\n", + "# (b) the specific enthalpy drop in the stage\n", + "# (c) the percentage increase in relative velocity in the moving blades due to expansion in the bladse\n", + "\n", + "# given values\n", + "N = 50.;# speed, [m/s]\n", + "d = 1.;# blade ring diameter, [m]\n", + "nai = 50.;# nozzle inlet angle, [degree]\n", + "nae = 30.;# nozzle exit angle, [degree]\n", + "m_dot = 600000.;# steam flow rate, [kg/h]\n", + "se = .85;# stage efficiency\n", + "\n", + "# solution\n", + "# (a)\n", + "U = math.pi*d*N;# mean blade speed, [m/s]\n", + "# from Fig. 13.17(diagram 13.4)\n", + "Cwi_plus_Cwe = 444;# change in whirl speed, [m/s]\n", + "P = m_dot*U*Cwi_plus_Cwe/3600;# power output of the stage, [W]\n", + "print ' (a) The power output of the stage is (MW) = ',round(P*10**-6,1)\n", + "\n", + "# (b)\n", + "h = U*Cwi_plus_Cwe/se;# specific enthalpy,[J/kg]\n", + "print ' (b) The specific enthalpy drop in the stage is (kJ/kg) = ',round(h*10**-3)\n", + "\n", + "# (c)\n", + "# again from diagram\n", + "Cri = 224.;# [m/s]\n", + "Cre = 341;# [m/s]\n", + "Iir = (Cre-Cri)/Cri;# increase in relative velocity\n", + "print ' (c) The increase in relative velocity is (percent) = ',round(Iir*100,1)\n", + "\n", + "# End\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5: pg 389" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example 13.5\n", + " (a) The blade height at this stage is (mm) = 65.0\n", + " (b) The power developed is (kW) = 218.7\n", + " (a) The specific enthalpy drop in the stage is (kJ/kg) = 19.059\n" + ] + } + ], + "source": [ + "#pg 389\n", + "print('Example 13.5');\n", + "\n", + "# aim : To determine\n", + "# (a) the blade height of the stage\n", + "# (b) the power developed in the stage\n", + "# (c) the specific enthalpy drop at the stage\n", + "from math import sqrt,pi\n", + "# given values\n", + "U = 60.;# mean blade speed, [m/s]\n", + "P = 350.;# steam pressure, [kN/m**2]\n", + "T = 175.;# steam temperature, [C]\n", + "nai = 30.;# stage inlet angle, [degree]\n", + "nae = 20.;# stage exit angle, [degree] \n", + "\n", + "# solution\n", + "# (a)\n", + "m_dot = 13.5;# steam flow rate, [kg/s]\n", + "# at given T and P\n", + "v = .589;# specific volume, [m**3/kg]\n", + "# given H=d/10, so\n", + "H = sqrt(m_dot*v/(pi*10*60));# blade height, [m]\n", + "print ' (a) The blade height at this stage is (mm) = ',round(H*10**3)\n", + "\n", + "# (b)\n", + "Cwi_plus_Cwe = 270;# change in whirl speed, [m/s]\n", + "P = m_dot*U*(Cwi_plus_Cwe);# power developed, [W]\n", + "print ' (b) The power developed is (kW) = ',P*10**-3\n", + "\n", + "# (c)\n", + "s = .85;# stage efficiency\n", + "h = U*Cwi_plus_Cwe/s;# specific enthalpy,[J/kg]\n", + "print ' (a) The specific enthalpy drop in the stage is (kJ/kg) = ',round(h*10**-3,3)\n", + "\n", + "# End\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |