diff options
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter1.ipynb')
-rwxr-xr-x | Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter1.ipynb | 703 |
1 files changed, 0 insertions, 703 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter1.ipynb b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter1.ipynb deleted file mode 100755 index 53149a6f..00000000 --- a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter1.ipynb +++ /dev/null @@ -1,703 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 1 - General Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1: pg 11" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.1\n", - "The Work done is (MJ) = 0.98\n" - ] - } - ], - "source": [ - "#pg 11\n", - "#calculate the work done\n", - "print 'Example 1.1'\n", - "\n", - "# Given values\n", - "P = 700.; #pressure,[kN/m**2]\n", - "V1 = .28; #initial volume,[m**3]\n", - "V2 = 1.68; #final volume,[m**3]\n", - "\n", - "#solution\n", - "\n", - "W = P*(V2-V1);# # Formula for work done at constant pressure is, [kJ]\n", - "\n", - "#results\n", - "print 'The Work done is (MJ) = ',W*10**-3\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 2: pg 13" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.2\n", - "The new volume of the gas is (m^3) = 0.0355\n" - ] - } - ], - "source": [ - "#pg 13\n", - "#calculate the new volume\n", - "print 'Example 1.2'\n", - "\n", - "#Given values\n", - "P1 = 138.; # initial pressure,[kN/m**2]\n", - "V1 = .112; #initial volume,[m**3]\n", - "P2 = 690; # final pressure,[kN/m**2]\n", - "Gama=1.4; # heat capacity ratio\n", - "\n", - "# solution\n", - "\n", - "# since gas is following, PV**1.4=constant,hence\n", - "\n", - "V2 =V1*(P1/P2)**(1/Gama); # final volume, [m**3] \n", - "\n", - "#results\n", - "print 'The new volume of the gas is (m^3) = ',round(V2,4)\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 3: pg 15" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.3\n", - "Final Volume (m^3) = 0.077\n", - "The Work done by gas during expansion is (kJ) = 37.2\n" - ] - } - ], - "source": [ - "#pg 15\n", - "#calculate the work done by gas\n", - "print 'Example 1.3'\n", - "\n", - "# Given values\n", - "P1 = 2070; # initial pressure, [kN/m^2]\n", - "V1 = .014; # initial volume, [m^3]\n", - "P2 = 207.; # final pressure, [kN/m^2]\n", - "n=1.35; # polytropic index\n", - "\n", - "# solution\n", - "\n", - "# since gas is following PV^n=constant\n", - "# hence \n", - "\n", - "V2 = V1*(P1/P2)**(1/n); # final volume, [m^3]\n", - "\n", - "# calculation of workdone\n", - "\n", - "W=(P1*V1-P2*V2)/(1.35-1); # using work done formula for polytropic process, [kJ]\n", - "\n", - "#results\n", - "print 'Final Volume (m^3) = ',round(V2,3)\n", - "print 'The Work done by gas during expansion is (kJ) = ',round(W,1)\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 4: pg 17" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.4\n", - " The final pressure (kN/m^2) = 800.0\n", - " Work done on the gas (kJ) = -11.64\n" - ] - } - ], - "source": [ - "#pg 17\n", - "#calculate the final pressure and work done\n", - "print 'Example 1.4'\n", - "import math\n", - "\n", - "# Given values\n", - "P1 = 100; # initial pressure, [kN/m^2]\n", - "V1 = .056; # initial volume, [m^3]\n", - "V2 = .007; # final volume, [m^3]\n", - "\n", - "# To know P2\n", - "# since process is hyperbolic so, PV=constant\n", - "# hence\n", - "\n", - "P2 = P1*V1/V2; # final pressure, [kN/m^2]\n", - "\n", - "# calculation of workdone\n", - "W = P1*V1*math.log(V2/V1); # formula for work done in this process, [kJ]\n", - "\n", - "#results\n", - "print ' The final pressure (kN/m^2) = ',P2\n", - "print ' Work done on the gas (kJ) = ',round(W,2)\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5: pg 21" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.5\n", - "The heat required (kJ) = 191.25\n" - ] - } - ], - "source": [ - "#pg 21\n", - "#calculate the heat required\n", - "print 'Example 1.5'\n", - "\n", - "# Given values\n", - "m = 5.; # mass, [kg]\n", - "t1 = 15.; # inital temperature, [C]\n", - "t2 = 100.; # final temperature, [C]\n", - "c = 450.; # specific heat capacity, [J/kg K]\n", - "\n", - "# solution\n", - "\n", - "# using heat transfer equation,[1]\n", - "Q = m*c*(t2-t1); # [J]\n", - "#results\n", - "print 'The heat required (kJ) = ',round(Q*10**-3,2)\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 6: pg 22" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.6\n", - "Required heat transfer to accomplish the change (kJ) = 1814.4\n" - ] - } - ], - "source": [ - "#pg 22\n", - "print 'Example 1.6'\n", - "\n", - "#Calculate the required heat transfer \n", - "# Given values\n", - "m_cop = 2.; # mass of copper vessel, [kg]\n", - "m_wat = 6.; # mass of water, [kg]\n", - "c_wat = 4.19; # specific heat capacity of water, [kJ/kg K]\n", - "\n", - "t1 = 20.; # initial temperature, [C]\n", - "t2 = 90.; # final temperature, [C]\n", - "\n", - "# From the table of average specific heat capacities\n", - "c_cop = .390; # specific heat capacity of copper,[kJ/kg k]\n", - "\n", - "# solution\n", - "Q_cop = m_cop*c_cop*(t2-t1); # heat required by copper vessel, [kJ]\n", - "\n", - "Q_wat = m_wat*c_wat*(t2-t1); # heat required by water, [kJ]\n", - "\n", - "# since there is no heat loss,so total heat transfer is sum of both\n", - "Q_total = Q_cop+Q_wat ; # [kJ]\n", - "\n", - "#results\n", - "print 'Required heat transfer to accomplish the change (kJ) = ',Q_total\n", - "\n", - "#End" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 7: pg 22" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.7\n", - "The final temperature is (C) = 56.9\n" - ] - } - ], - "source": [ - "#pg 22\n", - "print('Example 1.7');\n", - "#calculate the final temperature\n", - "\n", - "# Given values\n", - "m = 10.; # mass of iron casting, [kg]\n", - "t1 = 200.; # initial temperature, [C]\n", - "Q = -715.5; # [kJ], since heat is lost in this process\n", - "\n", - "# From the table of average specific heat capacities\n", - "c = .50; # specific heat capacity of casting iron, [kJ/kg K]\n", - "\n", - "# solution\n", - "# using heat equation\n", - "# Q = m*c*(t2-t1)\n", - "\n", - "t2 = t1+Q/(m*c); # [C]\n", - "\n", - "#results\n", - "print 'The final temperature is (C) = ',t2\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 8: pg 23" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.8\n", - "The specific heat capacity of the liquid is (kJ/kg K) = 2.1\n" - ] - } - ], - "source": [ - "#pg 23\n", - "#calculate the specific heat capacity\n", - "print('Example 1.8');\n", - "# Given values\n", - "m = 4.; # mass of the liquid, [kg]\n", - "t1 = 15.; # initial temperature, [C]\n", - "t2 = 100.; # final temperature, [C]\n", - "Q = 714.; # [kJ],required heat to accomplish this change\n", - "\n", - "# solution\n", - "# using heat equation\n", - "# Q=m*c*(t2-t1)\n", - "\n", - "# calculation of c\n", - "c=Q/(m*(t2-t1)); # heat capacity, [kJ/kg K] \n", - "\n", - "#results\n", - "print 'The specific heat capacity of the liquid is (kJ/kg K) = ',c\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 9: pg 27" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.9\n", - "The power output of the engine is (kJ) = 48.7\n", - "The energy rejected by the engine is (MJ/min) = 11.7\n" - ] - } - ], - "source": [ - "#pg 27\n", - "#calculate the energy rejected by the engine\n", - "print('Example 1.9');\n", - "\n", - "\n", - "# Given values\n", - "m_dot = 20.4; # mass flowrate of petrol, [kg/h]\n", - "c = 43.; # calorific value of petrol, [MJ/kg]\n", - "n = .2; # Thermal efficiency of engine\n", - "\n", - "# solution\n", - "m_dot = 20.4/3600; # [kg/s]\n", - "c = 43*10**6; # [J/kg]\n", - "\n", - "# power output\n", - "P_out = n*m_dot*c; # [W]\n", - "\n", - " \n", - "# power rejected\n", - "\n", - "P_rej = m_dot*c*(1-n); # [W]\n", - "P_rej = P_rej*60*10**-6; # [MJ/min]\n", - "\n", - "#results\n", - "print 'The power output of the engine is (kJ) = ',round(P_out*10**-3,1)\n", - "print 'The energy rejected by the engine is (MJ/min) = ',round(P_rej,1)\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 10: pg 28" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.10\n", - "Thermal efficiency of the plant = 0.173\n" - ] - } - ], - "source": [ - "#pg 28\n", - "print('Example 1.10');\n", - "#calculate the thermal efficiency\n", - "\n", - "\n", - "# Given values\n", - "m_dot = 3.045; # use of coal, [tonne/h]\n", - "c = 28; # calorific value of the coal, [MJ/kg]\n", - "P_out = 4.1; # output of turbine, [MW]\n", - "\n", - "# solution\n", - "m_dot = m_dot*10**3/3600; # [kg/s]\n", - "\n", - "P_in = m_dot*c; # power input by coal, [MW]\n", - "\n", - "n = P_out/P_in; # thermal efficiency formula\n", - "\n", - "#results\n", - "print 'Thermal efficiency of the plant = ',round(n,3)\n", - "\n", - "#End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 11: pg 29" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.11\n", - "The power output of the engine (kW) = 12.5\n" - ] - } - ], - "source": [ - "#pg 29\n", - "#calculate the power output of the engine\n", - "print('Example 1.11');\n", - "\n", - "\n", - "# Given values\n", - "v = 50.; # speed, [km/h]\n", - "F = 900.; # Resistance to the motion of a car\n", - "\n", - "# solution\n", - "v = v*10**3/3600; # [m/s]\n", - "Power = F*v; # Power formula, [W]\n", - "\n", - "print 'The power output of the engine (kW) = ',Power*10**-3\n", - " \n", - "# End" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 12: pg 31" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.12\n", - "The power output from the engine (kW) = 15.79\n" - ] - } - ], - "source": [ - "#pg 31\n", - "#calculate the power output from the engine\n", - "\n", - "print('Example 1.12');\n", - "\n", - "# Given values\n", - "V = 230.; # volatage, [volts]\n", - "I = 60.; # current, [amps]\n", - "n_gen = .95; # efficiency of generator\n", - "n_eng = .92; # efficiency of engine\n", - "\n", - "# solution\n", - "\n", - "P_gen = V*I; # Power delivered by generator, [W]\n", - "P_gen=P_gen*10**-3; # [kW]\n", - "\n", - "P_in_eng=P_gen/n_gen;#Power input from engine,[kW]\n", - "\n", - "P_out_eng=P_in_eng/n_eng;#Power output from engine,[kW]\n", - "\n", - "#results\n", - "print 'The power output from the engine (kW) = ',round(P_out_eng,2)\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 13: pg 32" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.13\n", - "The current taken by heater (amps) = 17.4\n" - ] - } - ], - "source": [ - "#pg 32\n", - "#calculate the current taken by heater\n", - "print('Example 1.13');\n", - "\n", - "\n", - "\n", - "# Given values\n", - "V = 230.; # Voltage, [volts]\n", - "W = 4.; # Power of heater, [kW]\n", - "\n", - "# solution\n", - "\n", - "# using equation P=VI\n", - "I = W/V; # current, [K amps]\n", - "#results\n", - "print 'The current taken by heater (amps) = ',round(I*10**3,1)\n", - "\n", - "# End\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 14: pg 32" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example 1.14\n", - "Mass of coal burnt by the power station in 1 hour (tonne) = 218.0\n" - ] - } - ], - "source": [ - "#pg 32\n", - "#calculate the mass of coal burnt\n", - "print('Example 1.14');\n", - "\n", - "# Given values\n", - "P_out = 500.; # output of power station, [MW]\n", - "c = 29.5; # calorific value of coal, [MJ/kg]\n", - "r=.28; \n", - "\n", - "# solution\n", - "\n", - "# since P represents only 28 percent of energy available from coal\n", - "P_coal = P_out/r; # [MW]\n", - " \n", - "m_coal = P_coal/c; # Mass of coal used, [kg/s]\n", - "m_coal = m_coal*3600; # [kg/h]\n", - "\n", - "#After one hour\n", - "m_coal = m_coal*1*10**-3; # [tonne]\n", - "#results\n", - "print 'Mass of coal burnt by the power station in 1 hour (tonne) = ',round(m_coal,0)\n", - "\n", - "# End\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |