diff options
Diffstat (limited to 'Basic_Electronics_and_Linear_Circuits/ch2.ipynb')
-rw-r--r-- | Basic_Electronics_and_Linear_Circuits/ch2.ipynb | 300 |
1 files changed, 144 insertions, 156 deletions
diff --git a/Basic_Electronics_and_Linear_Circuits/ch2.ipynb b/Basic_Electronics_and_Linear_Circuits/ch2.ipynb index ea7aa645..d56fd44b 100644 --- a/Basic_Electronics_and_Linear_Circuits/ch2.ipynb +++ b/Basic_Electronics_and_Linear_Circuits/ch2.ipynb @@ -1,157 +1,145 @@ -{
- "metadata": {
- "name": "ch2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 2:Current and Voltage Source"
- ]
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 2.1 Page no.39"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Example 2.1\n",
- "# Obtain Equivalent Current Source Representaion from Given Voltage Source Representation in fig 2.16\n",
- "\n",
- "#Voltage Source or Thevenin's Representaion (Series Voltage Source & Resistor\n",
- "Vs=2 #V open circuit voltage\n",
- "Rs=1 #ohm . internal impedence\n",
- "#Current Source or Norton's Representaion (Parallel Current Source & Resistor\n",
- "Is=Vs/Rs #Ampere, short circuit current\n",
- "#result\n",
- "print \"The Short Circuit Current Value is \",Is,\"A\"\n",
- "print \"The Source Impedence Value is \",Rs,\"ohm\"\n",
- "print \"The Current Source & Source Impedance are connected in Parallel.\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 2.2 Page no.40"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Example 2.2\n",
- "# Obtain Equivalent Voltage Source Representaion from Given Current Source Representation\n",
- "\n",
- "#Current Source or Norton's Representaion (Parallel Current Source & Resistor)\n",
- "Is=0.2 #Amperes\n",
- "Zs=100 #Ohms\n",
- "#Voltage Source or Thevenin's Representaion (Series Voltage Source & Resistor)\n",
- "Vs=Is*Zs #Volts\n",
- "# Results \n",
- "print \"The Open Circuit Voltage is \",Vs,\"V\"\n",
- "print \"The Source Impedence Value is \",Zs,\"ohm\"\n",
- "print \"The Voltage Source & Source Impedance are connected in Series.\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 2.3 Page no.40"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Example 2.3\n",
- "#Program to Calculate Current in a Branch by Using Current Source Representation \n",
- "#Verify the Circuit's Result for its equivalence with Voltage Source Representation\n",
- "\n",
- "#Given Circuit Data\n",
- "Is=1.5*10**(-3) #Amperes ,source current\n",
- "Zs=2000 #Ohms, resistance connected to the loads\n",
- "Z1=10000 #Ohms , load resistance 1\n",
- "Z2=40000 #Ohms load resistance 2\n",
- "#Calculation for Current Source Representation\n",
- "Zl=Z1*Z2/(Z1+Z2)\n",
- "I2=Is*Zs/(Zs+Zl)\n",
- "I4I=I2*Z1/(Z1+Z2) #Using Current Divider Rule\n",
- "\n",
- "#Calculation for Current Source Representation\n",
- "Vs=Is*Zs #Open Circuit Volatge\n",
- "I=Vs/(Zs+Zl)\n",
- "I4V=I*Z1/(Z1+Z2) #Using Current Divider Rule\n",
- "# Results \n",
- "print \"The Load Current using Current Source Representaion is I4I = \",I4I,\"A\"\n",
- "print \"The Load Current using Voltage Source Representaion is I4V = \",I4V,\"A\"\n",
- "print \"I4I==I4V so\"\n",
- "print \" Both Results are same.\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 2.4 Page no.45"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Example 2.4\n",
- "# Obtain Output Voltage Vo from Given A.C. Equivalent of an Amplifier using a Transistor\n",
- "\n",
- "#Given Circuit Data\n",
- "#Input Side\n",
- "Vs=0.01 #V ,dc voltage\n",
- "Rs=1000 # ohm, resistance\n",
- "#Output Side resistance\n",
- "Ro1=20000 #ohm, 20 kOhms\n",
- "Ro2=2000 # Ohms\n",
- "\n",
- "#Calculation\n",
- "i=Vs/Rs #Input Current\n",
- "Io=100*i #Output Current\n",
- "Il=Io*Ro1/(Ro1+Ro2) #Using Current Divider Rule\n",
- "Vo=Il*Ro2 #Output Volatge\n",
- "\n",
- "# Result\n",
- "print \"The Output Voltage Vo = \",round(Vo,3),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:b1613f8489042ca15914370b3e63d5de12449c98b57f7da2c4754a1532abe03b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2:Current and Voltage Source" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.1 Page no.39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "Vs=2 #V open circuit voltage\n", + "Rs=1 #ohm . internal impedence\n", + "#Current Source or Norton's Representaion (Parallel Current Source & Resistor\n", + "Is=Vs/Rs #Ampere, short circuit current\n", + "#result\n", + "print \"The Short Circuit Current Value is \",Is,\"A\"\n", + "print \"The Source Impedence Value is \",Rs,\"ohm\"\n", + "print \"The Current Source & Source Impedance are connected in Parallel.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.2 Page no.40" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "Is=0.2 #Amperes\n", + "Zs=100 #Ohms\n", + "#Voltage Source or Thevenin's Representaion (Series Voltage Source & Resistor)\n", + "Vs=Is*Zs #Volts\n", + "# Results \n", + "print \"The Open Circuit Voltage is \",Vs,\"V\"\n", + "print \"The Source Impedence Value is \",Zs,\"ohm\"\n", + "print \"The Voltage Source & Source Impedance are connected in Series.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.3 Page no.40" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "Is=1.5*10**(-3) #Amperes ,source current\n", + "Zs=2000 #Ohms, resistance connected to the loads\n", + "Z1=10000 #Ohms , load resistance 1\n", + "Z2=40000 #Ohms load resistance 2\n", + "#Calculation for Current Source Representation\n", + "Zl=Z1*Z2/(Z1+Z2)\n", + "I2=Is*Zs/(Zs+Zl)\n", + "I4I=I2*Z1/(Z1+Z2) #Using Current Divider Rule\n", + "\n", + "#Calculation for Current Source Representation\n", + "Vs=Is*Zs #Open Circuit Volatge\n", + "I=Vs/(Zs+Zl)\n", + "I4V=I*Z1/(Z1+Z2) #Using Current Divider Rule\n", + "# Results \n", + "print \"The Load Current using Current Source Representaion is I4I = \",I4I,\"A\"\n", + "print \"The Load Current using Voltage Source Representaion is I4V = \",I4V,\"A\"\n", + "print \"I4I==I4V so\"\n", + "print \" Both Results are same.\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.4 Page no.45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Input Side\n", + "Vs=0.01 #V ,dc voltage\n", + "Rs=1000 # ohm, resistance\n", + "#Output Side resistance\n", + "Ro1=20000 #ohm, 20 kOhms\n", + "Ro2=2000 # Ohms\n", + "\n", + "#Calculation\n", + "i=Vs/Rs #Input Current\n", + "Io=100*i #Output Current\n", + "Il=Io*Ro1/(Ro1+Ro2) #Using Current Divider Rule\n", + "Vo=Il*Ro2 #Output Volatge\n", + "\n", + "# Result\n", + "print \"The Output Voltage Vo = \",round(Vo,3),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |