summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb')
-rw-r--r--Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb703
1 files changed, 703 insertions, 0 deletions
diff --git a/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb b/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb
new file mode 100644
index 00000000..97968f87
--- /dev/null
+++ b/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb
@@ -0,0 +1,703 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18:Elements of Heat Transfer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.1:pg-757"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.1\n",
+ "\n",
+ "\n",
+ " The rate of heat removal is 486.40484238 W\n",
+ "\n",
+ " Temperature at inside surface of brick is 20.2812224957 degree celcius\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "ho = 12.0 # Outside convective heat transfer coefficient in W/m**2K \n",
+ "x1 = 0.23# Thickness of brick in m\n",
+ "k1 = 0.98 # Thermal conductivity of brick in W/mK\n",
+ "x2 = 0.08 # Thickness of foam in m\n",
+ "k2 = 0.02# Thermal conductivity of foam in W/mK\n",
+ "x3 = 1.5# Thickness of wood in cm\n",
+ "k3 = 0.17# Thermal conductivity of wood in W/cmK\n",
+ "hi = 29.0# Inside convective heat transfer coefficient in W/m**2K \n",
+ "A = 90.0 # Total wall area in m**2\n",
+ "to = 22.0# outside air temperature in degree Celsius\n",
+ "ti = -2.0 # Inside air temperature in degree Celsius\n",
+ "print \"\\n Example 18.1\\n\"\n",
+ "U = (1/((1/ho)+(x1/k1)+(x2/k2)+(x3*1e-2/k3)+(1/hi)))# Overall heat transfer coefficient\n",
+ "Q = U*A*(to-ti) # Rate of heat transfer\n",
+ "R = (1/ho)+(x1/k1)\n",
+ "t2 = to-Q*R/A # Temperature at inside surface of brick\n",
+ "\n",
+ "print \"\\n The rate of heat removal is \",Q ,\" W\"\n",
+ "\n",
+ "print \"\\n Temperature at inside surface of brick is \",t2 ,\" degree celcius\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.2:pg-758"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.2\n",
+ "\n",
+ "\n",
+ " Heat transfer rate is 2.33519645654 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r1 = 5.0 # Inner radius of steel pipe in cm\n",
+ "r2 = 10.0 # Extreme radius of inner insulation in cm\n",
+ "r3 = 13.0# Extreme radius of outer insulation in cm\n",
+ "K1 = 0.23 # Thermal conductivity of inner insulation in W/mK\n",
+ "K2 = 0.37 # Thermal conductivity of outer insulation in W/mK\n",
+ "hi = 58.0 # Inner heat transfer coefficient in W/m**2K\n",
+ "h0 = 12.0 # Inner heat transfer coefficient in W/m**2K\n",
+ "ti = 60.0 # Inner temperature in degree Celsius\n",
+ "to = 25.0 # Outer temperature in degree Celsius\n",
+ "L = 50.0 # Length of pipe in m\n",
+ "\n",
+ "print \"\\n Example 18.2\\n\"\n",
+ "Q =((2*math.pi*L*(ti-to))/((1/(hi*r1*1e-2))+(math.log(r2/r1)/(K1))+(math.log(r3/r2)/(K2))+(1/(h0*r3*1e-2))))\n",
+ "# Rate of heat transfer\n",
+ "print \"\\n Heat transfer rate is \",Q/1e3 ,\" kW\"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.3:pg-759"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.3\n",
+ "\n",
+ "\n",
+ " Thermal conductivity of rod A is 57.4969670417 W/mK\n",
+ "\n",
+ " Thermal conductivity of rod B is 86.076212035 W/mK\n",
+ "\n",
+ " Thermal conductivity of rod C is 116.0 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "to = 20 # Environment temperature in degree Celsius\n",
+ "t = 100# Temperature of steam path in degree Celsius\n",
+ "ta1 = 26.76 # Temperature at other end in degree Celsius for rod A \n",
+ "d = 10 # diameter of rod in mm\n",
+ "L = 0.25 # length of rod in m\n",
+ "h = 23 # heat transfer coefficient in W/m**2 K\n",
+ "tb1 = 32.00 # Temperature at other end in degree Celsius for rod B \n",
+ "tc1 = 36.93 # Temperature at other end in degree Celsius for rod C \n",
+ "\n",
+ "print \"\\n Example 18.3\\n\"\n",
+ "A = math.pi/4 * (d*1e-3)**2 #Area of rod\n",
+ "p = math.pi*d*1e-3 # perimeter of rod\n",
+ "# For rod A\n",
+ "a = (ta1-to)/(t-to) \n",
+ "ma = (math.acosh(1/a))/L\n",
+ "\n",
+ "Ka = (h*p)/(ma**2*A) # Thermal conductivity of rod A\n",
+ "print \"\\n Thermal conductivity of rod A is \",Ka ,\" W/mK\"\n",
+ "# For rod B\n",
+ "b = (tb1-to)/(t-to) \n",
+ "mb = (math.acosh(1/b))/L\n",
+ "\n",
+ "Kb = (h*p)/(mb**2*A) # Thermal conductivity of rod B\n",
+ "print \"\\n Thermal conductivity of rod B is \",Kb ,\" W/mK\"\n",
+ "c = (tc1-to)/(t-to) \n",
+ "mc = (math.acosh(1/c))/L\n",
+ "\n",
+ "Kc = (h*p)/(mc**2*A) # Thermal conductivity of rod A\n",
+ "print \"\\n Thermal conductivity of rod C is \",math. ceil(Kc) ,\" W/mK\"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.4:pg-760"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.4\n",
+ "\n",
+ "\n",
+ " Midway temperature of rod is 88.7138777413 degree Celcius\n",
+ "\n",
+ " Heat loss rate is 88.0331604603 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "h = 17.4 # Convective heat transfer coefficient in W/m**2K\n",
+ "K = 52.2 # Thermal conductivity in W/mK\n",
+ "t = 120 # Heat reservoir wall temperature in degree celcius\n",
+ "t0 = 35 # Ambient temperature in degree celcius\n",
+ "L = 0.4 # Lenght of rod in m\n",
+ "b = .050 # width of rod in mm\n",
+ "H = .050 # Heigth of rod in mm\n",
+ "\n",
+ "print \"\\n Example 18.4\\n\"\n",
+ "l= L/2\n",
+ "A = b*H\n",
+ "m = math.sqrt(4*h*b/(K*b*H))\n",
+ "t1 = (t-t0)/math.cosh(m*l) + t0 # Midway temperature of rod\n",
+ "Q1 = 2*5.12*K*A*(t-t0)*math.tanh(m*l) # Heat loss rate \n",
+ "print \"\\n Midway temperature of rod is \",t1 ,\" degree Celcius\"\n",
+ "print \"\\n Heat loss rate is \",Q1 ,\"W\"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.5:pg-760"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.5\n",
+ "\n",
+ "\n",
+ " Time to cool down to 2 degree celcius is 30.5933342864 min\n",
+ "\n",
+ " Temperature of peas after 10 minutes is 13.1714792663 degree celcius\n",
+ "\n",
+ " Temperature of peas after 30 minutes is 1.0393274697 degree celcius\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "d = 8.0 # Average diameter in mm\n",
+ "r = 750.0 # Density in Kg/m**3\n",
+ "t = 2.0 # Intermediate temperature in degree celcius\n",
+ "t_inf = 1.0 # Ambient temperature in degree celcius\n",
+ "t0 = 25.0 # Initial temperature in degree celcius\n",
+ "c = 3.35 # Specific heat in kJ/KgK\n",
+ "h = 5.8 # Heat transfer coeeficient in W/m**2K\n",
+ "T1 = 10.0 # time period in minutes\n",
+ "T2 = 30.0 # time period in minutes \n",
+ "t1 = 5.0 # Intermediate temperature in degree celcius\n",
+ "print \"\\n Example 18.5\\n\"\n",
+ "tau1 = c*1e3*math.log((t0-t_inf)/(t-t_inf))/(h*60) # Time to cool down to 2 degree celcius\n",
+ "tau2 = (t0-t_inf)*(math.exp(-(c*T1*60)/(c*1e3))) # Temperature of peas after 10 minutes\n",
+ "Y = math.exp(-1*(c*T2*60)/(c*1e3))\n",
+ "tau3 = (t0*Y-t1)/(Y-1)\n",
+ "\n",
+ "print \"\\n Time to cool down to 2 degree celcius is \",tau1 ,\" min\"\n",
+ "print \"\\n Temperature of peas after 10 minutes is \",tau2 ,\" degree celcius\"\n",
+ "print \"\\n Temperature of peas after 30 minutes is \",tau3 ,\" degree celcius\"\n",
+ "#The answers given in book are incorrect\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.6:pg-761"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.6\n",
+ "\n",
+ "\n",
+ " Surface area of heat exchanger is 53.1155468795 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "mh = 1000 # mass flow rate of hot fluid in Kg/h\n",
+ "mc = 1000 # mass flow rate of cold fluid in Kg/h\n",
+ "ch = 2.09 # Specific heat capacity of hot fluid in kJ/kgK\n",
+ "cc = 4.187 #Specific heat capacity of cold fluid in kJ/kgK \n",
+ "th1 = 80# Inlet temperature of hot fluid in degree celcius\n",
+ "th2 = 40 # Exit temperature of hot fluid in degree Celsius\n",
+ "tc1 = 30 # Inlet temperature of cold fluid in degree Celsius\n",
+ "U = 24 # heat transfer coefficient in W/m**2K\n",
+ "\n",
+ "print \"\\n Example 18.6\\n\"\n",
+ "Q = mh*ch*(th1-th2)\n",
+ "tc2 = Q/(mc*cc) + tc1# outlet temperature of cold fluid\n",
+ "te = th2-tc1 # Exit end temperature difference in degree Celsius\n",
+ "ti = th1 - tc2 # Inlet end temperature difference in degree Celsius\n",
+ "t_lm = (ti-te)/(math.log(ti/te))\n",
+ "A = Q / (U*t_lm*3.6) # Surface are of heat exchanger\n",
+ "\n",
+ "print \"\\n Surface area of heat exchanger is \",A ,\" m**2\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.7:pg-762"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.7\n",
+ "\n",
+ "\n",
+ " Surface area of heat exchanger is 3.52948841744 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "Hfg = 2257.0 # Latent heat at 100 degree Celsius\n",
+ "\n",
+ "ma = 500.0 # mass flow rate of air in Kg/h\n",
+ "ch = 1.005 # Specific heat capacity of hot air in kJ/kgK\n",
+ "ta1 = 260.0 # Inlet temperature of hot air in degree Celsius\n",
+ "ta2 = 150.0 # Inlet temperature of cold air in degree Celsius\n",
+ "tc1 = 100.0 # Inlet temperature of steam\n",
+ "tc2 = tc1 # Exit temperature of steam\n",
+ "U = 46.0 # heat transfer coefficient in W/m**2K\n",
+ "\n",
+ "print \"\\n Example 18.7\\n\"\n",
+ "Q = ma*ch*(ta1-ta2)\n",
+ "m = Q/Hfg # mass flow rate of steam\n",
+ "te = ta2-tc1 # Exit end temperature difference in degree Celsius\n",
+ "ti = ta1 - tc2 # Inlet end temperature difference in degree Celsius\n",
+ "t_lm = (ti-te)/(math.log(ti/te))\n",
+ "A = Q / (U*t_lm*3.6) # Surface are of heat exchanger\n",
+ "\n",
+ "print \"\\n Surface area of heat exchanger is \",A ,\" m**2\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.8:pg-763"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.8\n",
+ "\n",
+ "\n",
+ " Exit temperature of oil is 90.1251029717 degree celcius\n",
+ "\n",
+ " Rate of heat transfer is 1302.7384927 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "mh = 20.15 # mass flow rate of hot fluid in Kg/s\n",
+ "mc = 5.04 # mass flow rate of cold fluid in Kg/h\n",
+ "ch = 2.094 # Specific heat capacity of hot fluid in kJ/kgK\n",
+ "cc = 4.2 #Specific heat capacity of cold fluid in kJ/kgK \n",
+ "th1 = 121# Inlet temperature of hot fluid in degree Celsius\n",
+ "th2 = 40 # Exit temperature of hot fluid in degree Celsius\n",
+ "tc1 = 10 # Inlet temperature of cold fluid in degree Celsius\n",
+ "U = 0.34 # heat transfer coefficient in kW/m**2K\n",
+ "n = 200 # total number of tubes\n",
+ "l = 4.87 # length of tube in m\n",
+ "d = 1.97 # Outer diameter in cm\n",
+ "print \"\\n Example 18.8\\n\"\n",
+ "A = math.pi*n*d*1e-2*l # Total surface area\n",
+ "mc_oil = mh*ch\n",
+ "mc_water = mc*cc\n",
+ "c_min = mc_water\n",
+ "c_max =mc_oil\n",
+ " \n",
+ "if (mc_oil<mc_water):\n",
+ " c_min = mc_oil\n",
+ " c_max =mc_water\n",
+ "\n",
+ "R = c_min/c_max\n",
+ "NTU = U*A/c_min\n",
+ "e = (1-math.exp(-1*NTU*(1-R)))/(1-R*math.exp(-1*NTU*(1-R)))\n",
+ "t_larger = e*(th1-tc1)\n",
+ "t_water = t_larger \n",
+ "t_oil = t_water*mc_water/mc_oil\n",
+ "th2 = th1 - t_oil # Exit temperature of oil\n",
+ "Q = mh*ch*(th1-th2) # Rate of heat transfer\n",
+ "\n",
+ "print \"\\n Exit temperature of oil is \",th2 ,\" degree celcius\"\n",
+ "print \"\\n Rate of heat transfer is \",Q ,\" kW\"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.9:pg-763"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.9\n",
+ "\n",
+ "\n",
+ " Heat transfer coefficient is 4074.68413756 W/m**2K\n",
+ "\n",
+ " Rate of heat transfer is 38.4029932568 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "u_m = 0.8 # mean velocity in m/s\n",
+ "D = 5 # Diameter in cm\n",
+ "v = 4.78e-7 # dynamic coefficient of viscosity\n",
+ "Pr = 2.98 # Prantl number\n",
+ "K = 0.66 # Thermal conductivity in W/mK\n",
+ "l = 3 # length of pipe in m\n",
+ "tw = 70 # Wall temperature\n",
+ "tf = 50 # mean water temperature\n",
+ "print \"\\n Example 18.9\\n\"\n",
+ "Re = u_m*D*1e-2/v # Reynold number\n",
+ "Nu = 0.023*(Re**0.8)*(Pr**0.4)\n",
+ "h = K*Nu/(D*1e-2) # Heat transfer coefficient\n",
+ "A = math.pi*D*1e-2*l # Surface area\n",
+ "Q = h*A*(tw-tf) # Rate of heat transfer\n",
+ "print \"\\n Heat transfer coefficient is \",h ,\" W/m**2K\"\n",
+ "print \"\\n Rate of heat transfer is \",Q/1e3 ,\" kW\"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.10:pg-764"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.10\n",
+ "\n",
+ "\n",
+ " Rate of heat dissipation is 31.392 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "b = 10 # width of plate in cm\n",
+ "h = 15 # Height of plate in cm\n",
+ "hr = 8.72 # Radiative heat transfer coefficient in W/m**2K\n",
+ "tw = 140 # temperature of wall in degree Celsius\n",
+ "tf = 20 # Atmospheric temperature in degree Celsius\n",
+ "v = 2.109e-5 # Coefficient of dynamic viscosity in m**2/s\n",
+ "Pr = 0.692 # Prantl number\n",
+ "K = 0.0305 # Thermal conductivity in W/mK\n",
+ "L = 0.15 # characteristic length in m\n",
+ "g = 9.81 # Gravitational acceleration in m/s**2\n",
+ "\n",
+ "print \"\\n Example 18.10\\n\"\n",
+ "A = 2*b*1e-2*h*1e-2 # total area of plate\n",
+ "t_mean = (tw+tf)/2 +273\n",
+ "B = 1/t_mean\n",
+ "del_t = tw-tf\n",
+ "Gr = g*B*del_t*L**3/v**2 # Grashoff number\n",
+ "x = Gr*Pr\n",
+ "Nu = 0.59*(Gr*Pr)**0.25\n",
+ "hc = Nu*K/L\n",
+ "Q = (hc+hr)*A*del_t # Rate of heat dissipation\n",
+ "print \"\\n Rate of heat dissipation is \",Q ,\" W\"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.11:pg-765"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.11\n",
+ "\n",
+ "\n",
+ " Time required for heating operation is 27.6219838873 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "d1 = 2.0 # Diameter of steel rod in cm\n",
+ "d2 = 16.0 # Diameter of cylindrical furnace in cm\n",
+ "e1 = 0.6 # emissivity of inner surface\n",
+ "e2 = 0.85 # emissivity of rod surface\n",
+ "T = 1093.0 # Inner surface temperature of furncae in degree celcius\n",
+ "Tr1 = 427.0 # Initial temperature of rod in degree celcius\n",
+ "Tr2 = 538.0 # Initial temperature of rod in degree celcius\n",
+ "sigma = 5.67e-8 # Constant\n",
+ "rho = 7845.0 # density in kg/ m**3\n",
+ "c = 0.67 # Specific heat capacity in kJ/kgK\n",
+ "print \"\\n Example 18.11\\n\"\n",
+ "A_ratio = d1/d2 # Surface area ratio of cylindrical bodies\n",
+ "F12 = (1/((1/e1)+(A_ratio*(1/e2 -1))))\n",
+ "A1 = math.pi*d1*1e-2*1 # Surface area of rod\n",
+ "T1 = Tr1+273\n",
+ "T2 = T +273\n",
+ "T3 = Tr2 +273\n",
+ "Qi = sigma*A1*F12*(T1**4-T2**4)\n",
+ "Qe = sigma*A1*F12*(T3**4-T2**4)\n",
+ "\n",
+ "Q_avg = abs((Qi+Qe)/2)\n",
+ "tau = rho*c*(1e-4)*math.pi*(Tr2-Tr1)/(Q_avg*(1e-3))\n",
+ "\n",
+ "# Time required for heating operation \n",
+ "print \"\\n Time required for heating operation is \",tau ,\" s\"\n",
+ "\n",
+ "#The answers vary due to round off error\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex18.12:pg-765"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 18.12\n",
+ "\n",
+ "\n",
+ " Net heat transfer between two cylinders is 7297.2729358 W/m length\n",
+ "\n",
+ " Example 18.12\n",
+ "\n",
+ "\n",
+ " Net heat transfer between two cylinders is 7297.2729358 W/m length\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "d1 = 10.0 # Diameter of inner cylinder in cm\n",
+ "d2 = 20.0 # Diameter of outer cylinder in cm\n",
+ "e1 = 0.65 # emissivity of inner surface\n",
+ "e2 = 0.4 # emissivity of outer surface\n",
+ "T1 = 1000.0 # Inner surface temperature in K\n",
+ "T2 = 500.0 # outer suface temperature in K\n",
+ "sigma = 5.67e-8 # Constant\n",
+ "print \"\\n Example 18.12\\n\"\n",
+ "A1 = math.pi*d1*1e-2\n",
+ "A2 = math.pi*d2*1e-2\n",
+ "R =(((1-e1)/(e1*A1))+((1-e2)/(e2*A2))+(1/(A1*1)))\n",
+ "Eb1 = sigma*T1**4\n",
+ "Eb2 = sigma*T2**4\n",
+ "Q = (Eb1-Eb2)/R # Net heat transfer between two cylinders\n",
+ "print \"\\n Net heat transfer between two cylinders is \",Q ,\" W/m length\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n",
+ "d1 = 10.0 # Diameter of inner cylinder in cm\n",
+ "d2 = 20.0 # Diameter of outer cylinder in cm\n",
+ "e1 = 0.65 # emissivity of inner surface\n",
+ "e2 = 0.4 # emissivity of outer surface\n",
+ "T1 = 1000.0 # Inner surface temperature in K\n",
+ "T2 = 500.0 # outer surface temperature in K\n",
+ "sigma = 5.67e-8 # Constant\n",
+ "print \"\\n Example 18.12\\n\"\n",
+ "A1 = math.pi*d1*1e-2\n",
+ "A2 = math.pi*d2*1e-2\n",
+ "R =(((1-e1)/(e1*A1))+((1-e2)/(e2*A2))+(1/(A1*1)))\n",
+ "Eb1 = sigma*T1**4\n",
+ "Eb2 = sigma*T2**4\n",
+ "Q = (Eb1-Eb2)/R # Net heat transfer between two cylinders\n",
+ "print \"\\n Net heat transfer between two cylinders is \",Q ,\" W/m length\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}