summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_8.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_8.ipynb')
-rwxr-xr-xApplied_Physics_for_Engineers/Chapter_8.ipynb324
1 files changed, 324 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_8.ipynb b/Applied_Physics_for_Engineers/Chapter_8.ipynb
new file mode 100755
index 00000000..45c3a63e
--- /dev/null
+++ b/Applied_Physics_for_Engineers/Chapter_8.ipynb
@@ -0,0 +1,324 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.1, Page 429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "d = 8e-004; # Thickness of the piece of piezoelectric crystal, m\n",
+ "v = 5760; # Velocity of ultrasonic waves in the piece of piezoelectric crystal, m/s\n",
+ "\n",
+ "#Calculations\n",
+ "n = v/(2*d); # The frequency of the fundamental mode of ultrasonic wave, Hz\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency of the fundamental mode of ultrasonic wave = %3.1f MHz\"%(n/1e+006)\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of the fundamental mode of ultrasonic wave = 3.6 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.2, Page 430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 2e-003; # Thickness of the piece of quarts crystal, m\n",
+ "rho = 2650; # Density of the crystal, kg/meter-cube\n",
+ "Y = 7.9e+010; # Value of Youngs Modulus, N/metre-square\n",
+ "\n",
+ "#Calculations\n",
+ "n = 1/(2*d)*sqrt(Y/rho); #The frequency of the fundamental mode of vibration, Hz\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency of the fundamental mode of vibration in quatrz crystal = %5.3f Hz\"%(n/1e+006)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of the fundamental mode of vibration in quatrz crystal = 1.365 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.3, Page 430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "v = 5e+003; # Velocity of ultrasonic beam in steel plate, m/s\n",
+ "n = 25e+003; # Difference between two neighbouring harmonic frequencies (Nm - Nm_minus1), Hz \n",
+ "\n",
+ "#Calculations\n",
+ "d = v/(2*n); # The thickness of steel plate, m\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of steel plate = %3.1f m\"%d\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of steel plate = 0.1 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.4, Page 430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "n = 1e+006; # Frequency of Ultrasonic waves, Hz \n",
+ "C = 2.5e-014; # Capcitance of capacitor, F\n",
+ "\n",
+ "#Calculations\n",
+ "# Frequency of elecric oscillations is given by n = 1/(2*%pi)*sqrt(1/(L*C)), solving for L\n",
+ "L = 1/(4*pi**2*n**2*C); # The inductance of an inductor to produce ultrasonic waves, henry\n",
+ "\n",
+ "#Result\n",
+ "print \"The inductance of an inductor to produce ultrasonic waves = %d henry\"%L\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The inductance of an inductor to produce ultrasonic waves = 1 henry\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.5, Page 431"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "d = 50e-002; # Thickness of the metallic rod, m\n",
+ "t1 = 30e-006; # Arrival time for first pulse, s\n",
+ "t2 = 80e-006; # Arrival time for second pulse, s\n",
+ "\n",
+ "#Calculations&Results\n",
+ "v = 2*d/t2; # Velocity of ultrasonic waves, m/s\n",
+ "print \"The velocity of pulse inside the rod = %4.2e m/s\"%v\n",
+ "x = t1*v/2;\n",
+ "print \"The position of pulse inside the rod = %6.4f m\"%x\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of pulse inside the rod = 1.25e+04 m/s\n",
+ "The position of pulse inside the rod = 0.1875 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.6, Page 431"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "I = 2.5e+004; # Sound intensity, W/meter-square\n",
+ "v = 1480; # Sound velocity, m/s\n",
+ "rho_w = 1000; # Density of water, kg/meter-cube\n",
+ "rho_c = 2650; # Density of crystal of transducer, kg/meter-cube\n",
+ "d = 0.001; # Thickness of the quartz, m\n",
+ "f = 20e+003; # Frequency of sound in water, Hz\n",
+ "\n",
+ "#Calculations&Results\n",
+ "# As sound intensity, I = p^2/(2*rho1*v), solving for p\n",
+ "p = sqrt(2*rho_w*v*I); # Pressure in the medium, N/metre-square\n",
+ "a = p/(d*rho_c); # Maximum acceleration of the quartz ultrasonic transducer, metre/second-square\n",
+ "print \"The maximum acceleration produced in quartz transducer = %4.2e metre/second-square\"%a\n",
+ "y = a/(2*pi*f)**2; # Maximum displacement of the quartz transducer, m\n",
+ "print \"The maximum displacement of quartz transducer = %3.1f micrometer\"%(y/1e-006)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum acceleration produced in quartz transducer = 1.03e+05 metre/second-square\n",
+ "The maximum displacement of quartz transducer = 6.5 micrometer\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.7, Page 432"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "L = 0.2; # Length of a magnetostrictive hydrophone, m\n",
+ "lamda = 2*L; # Wavelength of ultrasonic wave, m\n",
+ "v = 4900; # Velocity of ultrasonic beam in water, m/s\n",
+ "\n",
+ "#Calculations\n",
+ "f = v/lamda; # Fundamental frequency of ultrasonic, KHz\n",
+ "\n",
+ "#Result\n",
+ "print \"The fundamental frequency of a magnetostrictive hydrophone = %4.2f KHz\"%(f/1e+03)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fundamental frequency of a magnetostrictive hydrophone = 12.25 KHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.8, Page 432"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "v = 3700; # Velocity of ultrasonic beam in copper, m/s\n",
+ "t = 1e-006; # Delay time for ultrasonic beam, s\n",
+ "\n",
+ "#Calculations\n",
+ "L = v*t; # # Length of a copper wire required for a delay, m\n",
+ "\n",
+ "#Result\n",
+ "print \"The length of a copper wire required for a delay = %6.4f m\"%L\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The length of a copper wire required for a delay = 0.0037 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file