summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_19.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_19.ipynb')
-rwxr-xr-xApplied_Physics_for_Engineers/Chapter_19.ipynb294
1 files changed, 294 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_19.ipynb b/Applied_Physics_for_Engineers/Chapter_19.ipynb
new file mode 100755
index 00000000..0897c570
--- /dev/null
+++ b/Applied_Physics_for_Engineers/Chapter_19.ipynb
@@ -0,0 +1,294 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 19: Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.1, Page 959"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "T_c = 6.2; # Critical temperature of lead in superconducting state, K\n",
+ "T = 4; # Temperature at which critical field of lead is to be found out, K\n",
+ "H_c0 = 0.064; # Critical field for lead at 0 K, MA/m\n",
+ "\n",
+ "#Calculation\n",
+ "H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, MA/m\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical field for lead at 4 K = %5.3f MA/m\"%H_cT\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical field for lead at 4 K = 0.037 MA/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.2, Page 959"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "T_c1 = 4.153; # Critical temperature of mercury for its one isotope, K\n",
+ "M1 = 200.59; # Mass of first isotope of mercury, amu\n",
+ "M2 = 204; # Mass of second isotope of mercury, amu \n",
+ "\n",
+ "#Calculation \n",
+ "# From isotopic effect of superconductivity,\n",
+ "# T_c2/T_c1 = sqrt(M1/M2), solving for T_c2\n",
+ "T_c2 = T_c1*sqrt(M1/M2); # Critical temperature of mercury for second isotope, K\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical temperature of mercury for its isotope of mass 204 amu = %5.3f K\"%T_c2\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical temperature of mercury for its isotope of mass 204 amu = 4.118 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.3, Page 960"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "d = 1e-003; # Diameter of aluminium wire, m\n",
+ "r = d/2; # Radius of aluminium wire, m\n",
+ "H_c = 7.9e+003; # Critical magnetic field for Al, A/m\n",
+ "\n",
+ "#Calculation\n",
+ "I_c = 2*3.14*r*H_c; # Critical current through superconducting aluminium wire, A\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical current through superconducting aluminium wire = %6.3f A\"%I_c\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical current through superconducting aluminium wire = 24.806 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.4, Page 960"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "T_c = 7.18; # Critical temperature of lead in superconducting state, K\n",
+ "H_c0 = 6.5e+004; # Critical field for lead at 0 K, A/m\n",
+ "# At T = 4.2 K\n",
+ "T = 4.2; # Temperature at which critical field of lead is to be found out, K\n",
+ "H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, A/m\n",
+ "d = 1e-003; # Diameter of lead wire, m\n",
+ "r = d/2; # Radius of lead wire, m\n",
+ "I_c = 2*3.14*r*H_cT; # Critical current through superconducting lead wire, A\n",
+ "J_c = I_c/(3.14*r**2); # Critical current density for superconducting lead wire, A/Sq. meter\n",
+ "print \"The critical current density at %3.1f K = %5.3e A/Sq.m\"%(T, J_c)\n",
+ "# At T = 7 K\n",
+ "T = 7; # Temperature at which critical field of lead is to be found out, K\n",
+ "H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, A/m\n",
+ "d = 1e-003; # Diameter of lead wire, m\n",
+ "r = d/2; # Radius of lead wire, m\n",
+ "I_c = 2*3.14*r*H_cT; # Critical current through superconducting lead wire, A\n",
+ "J_c = I_c/(3.14*r**2); # Critical current density for superconducting lead wire, A/Sq. meter\n",
+ "print \"The critical current density at %3.1f K = %4.2e A/Sq.m\"%(T, J_c)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical current density at 4.2 K = 1.710e+08 A/Sq.m\n",
+ "The critical current density at 7.0 K = 1.29e+07 A/Sq.m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.5, Page 961"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "T1 = 3; # Initial temperature of lead wire, K\n",
+ "T2 = 7.1; # Final temperature of lead wire, K\n",
+ "lambda1 = 39.6; # Initial London penetration depth for lead, mm\n",
+ "lambda2 = 173; # Final London penetration depth for lead, mm\n",
+ "\n",
+ "#Calculations\n",
+ "# As lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2) so\n",
+ "# (lambda1/lambda2)^2 = (T_c^4 - T2^4)/(T_c^4 - T1^4)\n",
+ "# Solving for T_c\n",
+ "T_c = ((T2**4-T1**4*(lambda1/lambda2)**2)/(1-(lambda1/lambda2)**2))**(1./4);\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical temperature of lead = %5.3f K\"%T_c\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical temperature of lead = 7.193 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.6, Page 962"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "T_c = 7.2; # Critical temperature of lead in superconducting state, K\n",
+ "T = 5; # Temperature at which lead loses its superconducting state, K\n",
+ "H_cT = 3.3e+004; # Critical magnetic field for superconducting lead at 5 K, A/m\n",
+ "\n",
+ "#Calculation\n",
+ "# As H_cT = H_c0*(1-(T/T_c)^2), solving for H_c0\n",
+ "H_c0 = H_cT/(1-(T/T_c)**2); # Critical field for lead at 0 K, A/m \n",
+ "\n",
+ "#Result\n",
+ "print \"The critical magnetic field for lead at 0 K = %4.2e A/m\"%H_c0\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical magnetic field for lead at 0 K = 6.37e+04 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19.7, Page 962"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "H_c0 = 2e+005; # Critical field for niobium at 0 K, A/m \n",
+ "H_cT = 1e+005; # Critical magnetic field for superconducting niobium at 5 K, A/m\n",
+ "T = 8; # Temperature at which lead loses its superconducting state, K\n",
+ "\n",
+ "#Calculation\n",
+ "# As H_cT = H_c0*(1-(T/T_c)^2), solving for T_c\n",
+ "T_c = T/(1-H_cT/H_c0)**(1./2);\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical temperature for niobium = %6.3f K\"%T_c\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical temperature for niobium = 11.314 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file