diff options
Diffstat (limited to 'Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb')
-rw-r--r-- | Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb | 543 |
1 files changed, 0 insertions, 543 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb deleted file mode 100644 index 8666cfc4..00000000 --- a/Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb +++ /dev/null @@ -1,543 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 6: Dielectric Properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 6-23" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dielectric constant is 1.339\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "alpha_e=10**-40; #polarisability(Fm**2)\n", - "N=3*10**28; #density of atoms\n", - "epsilon0=8.85*10**-12; \n", - "\n", - "#Calculation\n", - "epsilonr=(N*alpha_e/epsilon0)+1; #dielectric constant\n", - "\n", - "#Result\n", - "print \"dielectric constant is\",round(epsilonr,3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 6-24" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "capacitance is 8.85e-12 F\n", - "charge on plates is 8.85e-10 C\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=100*10**-4; #area(m**2)\n", - "epsilon0=8.85*10**-12; \n", - "d=1*10**-2; #seperation(m)\n", - "V=100; #potential(V)\n", - "\n", - "#Calculation\n", - "C=A*epsilon0/d; #capacitance(PF)\n", - "Q=C*V; #charge on plates(C)\n", - "\n", - "#Result\n", - "print \"capacitance is\",C,\"F\"\n", - "print \"charge on plates is\",Q,\"C\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 6-24" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "polarisability is 2.242e-41 Fm**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilonr=1.0000684; #dielectric constant\n", - "N=2.7*10**25; #number of atoms\n", - "epsilon0=8.85*10**-12; \n", - "\n", - "#Calculation\n", - "alpha_e=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", - "\n", - "#Result\n", - "print \"polarisability is\",alpha_e,\"Fm**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 6-24" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "voltage is 39.73 V\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=650*10**-6; #area(m**2)\n", - "epsilon0=8.85*10**-12; \n", - "d=4*10**-3; #seperation(m)\n", - "Q=2*10**-10; #charge(C)\n", - "epsilonr=3.5; #dielectric constant\n", - "\n", - "#Calculation \n", - "V=Q*d/(epsilon0*epsilonr*A); #voltage(V)\n", - "\n", - "#Result\n", - "print \"voltage is\",round(V,2),\"V\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 6-25" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "polarisation is 212.4 *10**-9 C-m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilonr=5; #relative permittivity\n", - "V=12; #potential(V)\n", - "d=2*10**-3; #separation(m) \n", - "epsilon0=8.85*10**-12; \n", - "\n", - "#Calculation\n", - "P=epsilon0*(epsilonr-1)*V/d; #polarisation(C-m)\n", - "\n", - "#Result\n", - "print \"polarisation is\",P*10**9,\"*10**-9 C-m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 6-25" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "electronic polarisability is 3.29 *10**-40 Fm**2\n", - "answer in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilonr=3.75; #relative dielectric constant\n", - "gama=1/3; #internal field constant\n", - "D=2050; #density(kg/m**3)\n", - "M=32; #atomic weight(amu)\n", - "Na=6.02*10**26; #avagadro number\n", - "epsilon0=8.85*10**-12; \n", - "\n", - "#Calculation\n", - "N=Na*D/M; #number of atoms per m**3\n", - "x=(epsilonr-1)/(epsilonr+2);\n", - "alpha_e=x*3*epsilon0/N; #electronic polarisability(F-m**2)\n", - "\n", - "#Result\n", - "print \"electronic polarisability is\",round(alpha_e*10**40,2),\"*10**-40 Fm**2\"\n", - "print \"answer in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 6-26" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "orientational polarisation is 1.0298 *10**-11 C-m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "x=0.25*10**-9; #separation(m)\n", - "E=5*10**5; #intensity of electric field(V/m)\n", - "T=300; #temperature(K) \n", - "KB=1.381*10**-23; #boltzmann constant(J/K)\n", - "N=1.6*10**20; #avagadro number\n", - "\n", - "#Calculation\n", - "Pd=N*(e*x)**2*E/(3*KB*T); #orientational polarisation(C-m)\n", - "\n", - "#Result\n", - "print \"orientational polarisation is\",round(Pd*10**11,4),\"*10**-11 C-m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 8, Page number 6-26" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " polarisability is 2.242e-41 Fm**2\n", - "radius of electron cloud is 5.864 *10**-11 m\n", - "answer for radius given in the book varies due to rounding off errors\n", - "displacement is 0.7 *10**-16 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilonr=1.0000684; #dielectric constant\n", - "N=2.7*10**25; #number of atoms\n", - "epsilon0=8.85*10**-12; \n", - "E=10**6; #electric field(V/m)\n", - "Z=2;\n", - "e=1.6*10**-19; #charge(coulomb)\n", - "\n", - "#Calculation\n", - "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", - "r=(alphae/(4*math.pi*epsilon0))**(1/3); #radius of electron cloud(m)\n", - "d=alphae*E/(Z*e); #displacement(m) \n", - "\n", - "#Result\n", - "print \"polarisability is\",alphae,\"Fm**2\"\n", - "print \"radius of electron cloud is\",round(r*10**11,3),\"*10**-11 m\"\n", - "print \"answer for radius given in the book varies due to rounding off errors\"\n", - "print \"displacement is\",round(d*10**16,1),\"*10**-16 m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 9, Page number 6-27" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "voltage across plates is 53.8 V\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "A=750*10**-6; #area(m**2)\n", - "epsilon0=8.85*10**-12; \n", - "epsilonr=3.5; #dielectric constant\n", - "d=5*10**-3; #seperation(m)\n", - "Q=2.5*10**-10; #charge on plates(C)\n", - "\n", - "#Calculation\n", - "V=Q*d/(epsilon0*epsilonr*A); #voltage across plates(V)\n", - "\n", - "#Result\n", - "print \"voltage across plates is\",round(V,1),\"V\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 10, Page number 6-27" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dipole moment per unit electric field is 8.9 *10**-40 F-m**2\n", - "polarisation is 26.7 *10**-15 C-m\n", - "dielectric constant is 1.00302\n", - "polarisability is 8.9 *10**-40 Fm**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N=3*10**25; #number of atoms\n", - "epsilon0=8.85*10**-12; \n", - "r=0.2*10**-9; #radius(m) \n", - "E=1; #field\n", - "\n", - "#Calculation\n", - "p=4*math.pi*epsilon0*r**3; #dipole moment per unit electric field(F-m**2)\n", - "P=N*p; #polarisation(C-m)\n", - "epsilonr=1+(4*math.pi*r**3*N/E); #dielectric constant\n", - "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", - "\n", - "#Result\n", - "print \"dipole moment per unit electric field is\",round(p*10**40,1),\"*10**-40 F-m**2\"\n", - "print \"polarisation is\",round(P*10**15,1),\"*10**-15 C-m\"\n", - "print \"dielectric constant is\",round(epsilonr,5)\n", - "print \"polarisability is\",round(alphae*10**40,1),\"*10**-40 Fm**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 11, Page number 6-28" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "polarisability is 1.426 *10**-40 F-m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N=2.7*10**25; #number of atoms\n", - "epsilon0=8.85*10**-12; \n", - "epsilonr=1.000435; #dielectric constant\n", - "\n", - "#Calculation\n", - "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", - "\n", - "#Result\n", - "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 12, Page number 6-28" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "polarisability is 6.785 *10**-40 F-m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon0=8.85*10**-12; \n", - "epsilonr=4; #dielectric constant\n", - "NA=6.02*10**26; #avagadro number\n", - "D=2.08*10**3; #density(kg/m**3)\n", - "M=32; #atomic weight(kg)\n", - "\n", - "#Calculation\n", - "N=NA*D/M; #number of atoms\n", - "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", - "\n", - "#Result\n", - "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |