diff options
Diffstat (limited to 'Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb')
-rw-r--r-- | Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb | 543 |
1 files changed, 543 insertions, 0 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb new file mode 100644 index 00000000..8666cfc4 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter6_eRlj3AT.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 6: Dielectric Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 6-23" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dielectric constant is 1.339\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "alpha_e=10**-40; #polarisability(Fm**2)\n", + "N=3*10**28; #density of atoms\n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "epsilonr=(N*alpha_e/epsilon0)+1; #dielectric constant\n", + "\n", + "#Result\n", + "print \"dielectric constant is\",round(epsilonr,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 6-24" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "capacitance is 8.85e-12 F\n", + "charge on plates is 8.85e-10 C\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=100*10**-4; #area(m**2)\n", + "epsilon0=8.85*10**-12; \n", + "d=1*10**-2; #seperation(m)\n", + "V=100; #potential(V)\n", + "\n", + "#Calculation\n", + "C=A*epsilon0/d; #capacitance(PF)\n", + "Q=C*V; #charge on plates(C)\n", + "\n", + "#Result\n", + "print \"capacitance is\",C,\"F\"\n", + "print \"charge on plates is\",Q,\"C\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 6-24" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 2.242e-41 Fm**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=1.0000684; #dielectric constant\n", + "N=2.7*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "alpha_e=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"polarisability is\",alpha_e,\"Fm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 6-24" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage is 39.73 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=650*10**-6; #area(m**2)\n", + "epsilon0=8.85*10**-12; \n", + "d=4*10**-3; #seperation(m)\n", + "Q=2*10**-10; #charge(C)\n", + "epsilonr=3.5; #dielectric constant\n", + "\n", + "#Calculation \n", + "V=Q*d/(epsilon0*epsilonr*A); #voltage(V)\n", + "\n", + "#Result\n", + "print \"voltage is\",round(V,2),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 6-25" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisation is 212.4 *10**-9 C-m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=5; #relative permittivity\n", + "V=12; #potential(V)\n", + "d=2*10**-3; #separation(m) \n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "P=epsilon0*(epsilonr-1)*V/d; #polarisation(C-m)\n", + "\n", + "#Result\n", + "print \"polarisation is\",P*10**9,\"*10**-9 C-m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 6-25" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "electronic polarisability is 3.29 *10**-40 Fm**2\n", + "answer in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=3.75; #relative dielectric constant\n", + "gama=1/3; #internal field constant\n", + "D=2050; #density(kg/m**3)\n", + "M=32; #atomic weight(amu)\n", + "Na=6.02*10**26; #avagadro number\n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "N=Na*D/M; #number of atoms per m**3\n", + "x=(epsilonr-1)/(epsilonr+2);\n", + "alpha_e=x*3*epsilon0/N; #electronic polarisability(F-m**2)\n", + "\n", + "#Result\n", + "print \"electronic polarisability is\",round(alpha_e*10**40,2),\"*10**-40 Fm**2\"\n", + "print \"answer in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 6-26" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "orientational polarisation is 1.0298 *10**-11 C-m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "x=0.25*10**-9; #separation(m)\n", + "E=5*10**5; #intensity of electric field(V/m)\n", + "T=300; #temperature(K) \n", + "KB=1.381*10**-23; #boltzmann constant(J/K)\n", + "N=1.6*10**20; #avagadro number\n", + "\n", + "#Calculation\n", + "Pd=N*(e*x)**2*E/(3*KB*T); #orientational polarisation(C-m)\n", + "\n", + "#Result\n", + "print \"orientational polarisation is\",round(Pd*10**11,4),\"*10**-11 C-m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 6-26" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " polarisability is 2.242e-41 Fm**2\n", + "radius of electron cloud is 5.864 *10**-11 m\n", + "answer for radius given in the book varies due to rounding off errors\n", + "displacement is 0.7 *10**-16 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=1.0000684; #dielectric constant\n", + "N=2.7*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "E=10**6; #electric field(V/m)\n", + "Z=2;\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "\n", + "#Calculation\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "r=(alphae/(4*math.pi*epsilon0))**(1/3); #radius of electron cloud(m)\n", + "d=alphae*E/(Z*e); #displacement(m) \n", + "\n", + "#Result\n", + "print \"polarisability is\",alphae,\"Fm**2\"\n", + "print \"radius of electron cloud is\",round(r*10**11,3),\"*10**-11 m\"\n", + "print \"answer for radius given in the book varies due to rounding off errors\"\n", + "print \"displacement is\",round(d*10**16,1),\"*10**-16 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 6-27" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage across plates is 53.8 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=750*10**-6; #area(m**2)\n", + "epsilon0=8.85*10**-12; \n", + "epsilonr=3.5; #dielectric constant\n", + "d=5*10**-3; #seperation(m)\n", + "Q=2.5*10**-10; #charge on plates(C)\n", + "\n", + "#Calculation\n", + "V=Q*d/(epsilon0*epsilonr*A); #voltage across plates(V)\n", + "\n", + "#Result\n", + "print \"voltage across plates is\",round(V,1),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 6-27" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dipole moment per unit electric field is 8.9 *10**-40 F-m**2\n", + "polarisation is 26.7 *10**-15 C-m\n", + "dielectric constant is 1.00302\n", + "polarisability is 8.9 *10**-40 Fm**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=3*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "r=0.2*10**-9; #radius(m) \n", + "E=1; #field\n", + "\n", + "#Calculation\n", + "p=4*math.pi*epsilon0*r**3; #dipole moment per unit electric field(F-m**2)\n", + "P=N*p; #polarisation(C-m)\n", + "epsilonr=1+(4*math.pi*r**3*N/E); #dielectric constant\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"dipole moment per unit electric field is\",round(p*10**40,1),\"*10**-40 F-m**2\"\n", + "print \"polarisation is\",round(P*10**15,1),\"*10**-15 C-m\"\n", + "print \"dielectric constant is\",round(epsilonr,5)\n", + "print \"polarisability is\",round(alphae*10**40,1),\"*10**-40 Fm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 6-28" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 1.426 *10**-40 F-m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=2.7*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "epsilonr=1.000435; #dielectric constant\n", + "\n", + "#Calculation\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 6-28" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 6.785 *10**-40 F-m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilon0=8.85*10**-12; \n", + "epsilonr=4; #dielectric constant\n", + "NA=6.02*10**26; #avagadro number\n", + "D=2.08*10**3; #density(kg/m**3)\n", + "M=32; #atomic weight(kg)\n", + "\n", + "#Calculation\n", + "N=NA*D/M; #number of atoms\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |