diff options
Diffstat (limited to 'Applied_Physics_by_S._Mani_Naidu/Chapter5_KWgo7p8.ipynb')
-rw-r--r-- | Applied_Physics_by_S._Mani_Naidu/Chapter5_KWgo7p8.ipynb | 569 |
1 files changed, 0 insertions, 569 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter5_KWgo7p8.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter5_KWgo7p8.ipynb deleted file mode 100644 index cf59e53f..00000000 --- a/Applied_Physics_by_S._Mani_Naidu/Chapter5_KWgo7p8.ipynb +++ /dev/null @@ -1,569 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5: Electron Theory of Metals" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 5-27" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "temperature is 1259.93 K\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "E_EF=0.5; #fermi energy(eV)\n", - "FE=1/100; #probability\n", - "Kb=1.381*10**-23; #boltzmann constant(J/k)\n", - "x=6.24*10**18; \n", - "\n", - "#Calculation\n", - "KB=Kb*x;\n", - "y=E_EF/KB;\n", - "T=y/math.log(1/FE); #temperature(K)\n", - "\n", - "#Result\n", - "print \"temperature is\",round(T,2),\"K\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 5-28" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total number of free electrons is 8.3954 *10**28 electrons/m**3\n", - "answer in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e=1.602*10**-19; #charge(c)\n", - "m=9.11*10**-31; #mass(kg)\n", - "h=6.63*10**-34; #plancks constant(Js)\n", - "Ef=7*e; #fermi energy(J)\n", - "\n", - "#Calculation\n", - "x=Ef*8*m/h**2;\n", - "n23=x/((3/math.pi)**(2/3));\n", - "n=n23**(3/2); #total number of free electrons(electrons/m**3)\n", - "\n", - "#Result\n", - "print \"total number of free electrons is\",round(n/10**28,4),\"*10**28 electrons/m**3\"\n", - "print \"answer in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 5-28" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relaxation time is 39.742 *10**-15 s\n", - "answer in the book varies due to rounding off errors\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=1.54*10**-8; #resistivity(ohm m)\n", - "n=5.8*10**28; #number of electrons\n", - "e=1.602*10**-19; #charge(c)\n", - "m=9.11*10**-31; #mass(kg)\n", - "\n", - "#Calculation\n", - "tow=m/(n*e**2*rho); #relaxation time(s)\n", - "\n", - "#Result\n", - "print \"relaxation time is\",round(tow*10**15,3),\"*10**-15 s\"\n", - "print \"answer in the book varies due to rounding off errors\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 4, Page number 5-29" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relaxation time is 3.82 *10**-14 s\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=1.43*10**-8; #resistivity(ohm m)\n", - "n=6.5*10**28; #number of electrons\n", - "e=1.6*10**-19; #charge(c)\n", - "m=9.1*10**-31; #mass(kg)\n", - "\n", - "#Calculation\n", - "tow=m/(n*e**2*rho); #relaxation time(s)\n", - "\n", - "#Result\n", - "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 5, Page number 5-29" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of conduction electrons is 1.8088 *10**29 /m**3\n", - "mobility is 0.00128 m**2/Vs\n", - "drift velocity is 2.3 *10**-4 m/s\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=2.7*10**3; #density(kg/m**3)\n", - "rho=2.7*10**-8; #resistivity(ohm m)\n", - "w=26.98; #atomic weight\n", - "Na=6.025*10**26; #avagadro number\n", - "e=1.6*10**-19; #charge(c)\n", - "L=5; #length(m)\n", - "R=0.06; #resistance(ohm)\n", - "I=15; #current(A)\n", - "n=3; #number of electrons\n", - "\n", - "#Calculation\n", - "N=n*D*Na/w; #number of conduction electrons(/m**3)\n", - "mew=1/(rho*N*e); #mobility(m**2/Vs)\n", - "vd=I*R/(L*rho*N*e); #drift velocity(m/s)\n", - "\n", - "#Result\n", - "print \"number of conduction electrons is\",round(N/10**29,4),\"*10**29 /m**3\"\n", - "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", - "print \"drift velocity is\",round(vd*10**4,1),\"*10**-4 m/s\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 6, Page number 5-30" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mobility is 0.00427 m**2/Vs\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=8.92*10**3; #density(kg/m**3)\n", - "rho=1.73*10**-8; #resistivity(ohm m)\n", - "W=63.5; #atomic weight\n", - "Na=6.02*10**26; #avagadro number\n", - "e=1.6*10**-19; #charge(c)\n", - "\n", - "#Calculation\n", - "n=D*Na/W;\n", - "mew=1/(rho*n*e); #mobility(m**2/Vs)\n", - "\n", - "#Result\n", - "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 7, Page number 5-31" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mobility is 0.00428 m**2/Vs\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=8.95*10**3; #density(kg/m**3)\n", - "rho=1.721*10**-8; #resistivity(ohm m)\n", - "W=63.54; #atomic weight\n", - "Na=6.025*10**26; #avagadro number\n", - "e=1.6*10**-19; #charge(c)\n", - "\n", - "#Calculation\n", - "n=D*Na/W;\n", - "mew=1/(rho*n*e); #mobility(m**2/Vs)\n", - "\n", - "#Result\n", - "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 8, Page number 5-31" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relaxation time is 3.64 *10**-14 s\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "rho=1.50*10**-8; #resistivity(ohm m)\n", - "n=6.5*10**28; #conduction electrons(per m**3)\n", - "e=1.602*10**-19; #charge(c)\n", - "m=9.11*10**-31; #mass(kg)\n", - "\n", - "#Calculation\n", - "tow=m/(n*e**2*rho); #relaxation time(sec)\n", - "\n", - "#Result\n", - "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 9, Page number 5-32" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relaxation time is 3.97 *10**-14 s\n", - "drift velocity is 0.7 m/s\n", - "mobility is 0.7 *10**-2 m**2/Vs\n", - "thermal velocity is 1.17 *10**5 m/s\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "m=9.11*10**-31; #mass(kg)\n", - "rho=1.54*10**-8; #resistivity(ohm m)\n", - "e=1.602*10**-19; #charge(c)\n", - "E=10**2; #electric field(V/m)\n", - "n=5.8*10**28; #number of electrons\n", - "Kb=1.381*10**-23; #boltzmann constant\n", - "T=300; #temperature(K)\n", - "\n", - "#Calculation\n", - "tow=m/(n*e**2*rho); #relaxation time(s)\n", - "vd=e*E*tow/m; #drift velocity(m/s)\n", - "mew=vd/E; #mobility(m**2/Vs)\n", - "Vth=math.sqrt(3*Kb*T/m); #thermal velocity(m/s)\n", - "\n", - "#Result\n", - "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"\n", - "print \"drift velocity is\",round(vd,1),\"m/s\"\n", - "print \"mobility is\",round(mew*10**2,1),\"*10**-2 m**2/Vs\"\n", - "print \"thermal velocity is\",round(Vth/10**5,2),\"*10**5 m/s\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 10, Page number 5-32" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fermi velocity is 1.39 *10**6 m/s\n", - "mean free path is 5.52 *10**-8 m\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "m=9.11*10**-31; #mass(kg)\n", - "e=1.602*10**-19; #charge(c)\n", - "E=5.5; #fermi energy(V/m)\n", - "tow=3.97*10**-14; #relaxation time(s)\n", - "\n", - "#Calculation\n", - "Vf=math.sqrt(2*E*e/m); #fermi velocity(m/s)\n", - "lamda=Vf*tow; #mean free path(m)\n", - "\n", - "#Result\n", - "print \"fermi velocity is\",round(Vf/10**6,2),\"*10**6 m/s\"\n", - "print \"mean free path is\",round(lamda*10**8,2),\"*10**-8 m\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 11, Page number 5-33" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "electronic concentration is 5.863 *10**28 per m**3\n", - "fermi energy is 8.83 *10**-19 J\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=1; #number of electrons\n", - "NA=6.025*10**26; #avagadro number\n", - "D=10500; #density(kg/m**3)\n", - "M=107.9; #atomic weight(kg)\n", - "m=9.11*10**-31; #mass(kg)\n", - "h=6.63*10**-34; #plancks constant(Js)\n", - "\n", - "#Calculation\n", - "n=n*NA*D/M; #electronic concentration(per m**3)\n", - "x=(3*n/math.pi)**(2/3);\n", - "Ef=h**2*x/(8*m); #fermi energy(J)\n", - "\n", - "#Result\n", - "print \"electronic concentration is\",round(n/10**28,3),\"*10**28 per m**3\"\n", - "print \"fermi energy is\",round(Ef*10**19,2),\"*10**-19 J\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 12, Page number 5-33" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "current density is 1 *10**7 amp/m**2\n", - "drift velocity is 0.7391 *10**-3 m/s\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=8.92*10**3; #density(kg/m**3)\n", - "w=63.5; #atomic weight\n", - "Na=6.02*10**26; #avagadro number\n", - "e=1.6*10**-19; #charge(c)\n", - "I=100; #current(A)\n", - "A=10*10**-6; #area(m**2)\n", - "n=1;\n", - "\n", - "#Calculation\n", - "J=I/A; #current density(amp/m**2)\n", - "n=n*Na*D/w;\n", - "vd=J/(n*e); #drift velocity(m/s)\n", - "\n", - "#Result\n", - "print \"current density is\",int(J/10**7),\"*10**7 amp/m**2\"\n", - "print \"drift velocity is\",round(vd*10**3,4),\"*10**-3 m/s\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |