summaryrefslogtreecommitdiff
path: root/Applied_Physics-I_by_I_A_Shaikh/Chapter4.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics-I_by_I_A_Shaikh/Chapter4.ipynb')
-rwxr-xr-xApplied_Physics-I_by_I_A_Shaikh/Chapter4.ipynb1309
1 files changed, 1309 insertions, 0 deletions
diff --git a/Applied_Physics-I_by_I_A_Shaikh/Chapter4.ipynb b/Applied_Physics-I_by_I_A_Shaikh/Chapter4.ipynb
new file mode 100755
index 00000000..ded2d042
--- /dev/null
+++ b/Applied_Physics-I_by_I_A_Shaikh/Chapter4.ipynb
@@ -0,0 +1,1309 @@
+{
+ "metadata": {
+ "celltoolbar": "Raw Cell Format",
+ "name": "",
+ "signature": "sha256:c8b4bc6a0f384361dda4e7989c0d96facf075884a24ed18090bbb83730c8fbed"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: Acoustics and Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.11.1,Page number 4-17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given data\n",
+ "d=8900.0 #density\n",
+ "Y=20.8*10**10 #Young's modulus\n",
+ "n=40*10**3 #frequency of wave\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "l=(k/(2*n))*math.sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "print\"length =\",round(l,4),\"meter\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "length = 0.0604 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.12.1,Page number 4-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given data\n",
+ "\n",
+ "d=2.65*10**3 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "n=1*10**6 #frequency of wave\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "t=(k/(2*n))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "print\"thickness =\",round(t,4),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "thickness = 0.0027 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.1,Page number 4-25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data\n",
+ "l=20 #length of room\n",
+ "b=15 #bredth of room\n",
+ "h=10 #height of room\n",
+ "V=l*b*h #volume of room\n",
+ "a=0.106 #absorption coefficient\n",
+ "\n",
+ "S=2*(l*b+b*h+h*l) #surface area of hall\n",
+ "\n",
+ "T=(0.161*V)/(a*S) #Reverberation time,using Sabine's formula\n",
+ "\n",
+ "print\"Reverberation time =\",round(T,4),\"sec\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reverberation time = 3.5051 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.2,Page number 4-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "m=1j #original sound intensity\n",
+ "n=1000*1j #increased intensity value\n",
+ "\n",
+ "l=10*log10(n/m) #change in intensity level\n",
+ "\n",
+ "print\"change in intensity level =\",l,\"dB\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "change in intensity level = (30+0j) dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.3,Page number 4-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "S1=220 #wall area\n",
+ "a1=0.03 #absorption coefficient for the wall\n",
+ "S2=120 #floor area\n",
+ "a2=0.8 #absorption coefficient for the floor\n",
+ "S3=120 #ceiling area\n",
+ "a3=0.06 #absorption coefficient for the ceiling\n",
+ "V=600 #volume of room\n",
+ "\n",
+ "S=S1+S2+S3 #total surface area\n",
+ "\n",
+ "a=(a1*S1+a2*S2+a3*S3)/S #average sound absorption coefficient\n",
+ "\n",
+ "print\"1) average sound absorption coefficient =\",round(a,4)\n",
+ "\n",
+ "T=(0.161*V)/(a*S) #Reverberation time,using Sabine's formula\n",
+ "\n",
+ "print\"2) Reverberation time =\",round(T,4),\"sec\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) average sound absorption coefficient = 0.2387\n",
+ "2) Reverberation time = 0.8798 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.4,Page number 4-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given data\n",
+ "\n",
+ "V=5500 #volume\n",
+ "T=2.3 #Reverberation time\n",
+ "S=750 #sound absorption coefficient\n",
+ "a=(0.161*V)/(S*T) #using Sabine's formula\n",
+ "\n",
+ "print\"average absorption coefficient =\",round(a,4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "average absorption coefficient = 0.5133\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.5,Page number 4-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "l=20 #length of room\n",
+ "b=12 #bredth of room\n",
+ "h=12 #height of room\n",
+ "V=l*b*h #volume of room\n",
+ "S=2*(l*b+b*h+h*l) #surface area of hall\n",
+ "T1=2.5 #Reverberation time\n",
+ "\n",
+ "a=(0.161*V)/(T1*S) #using Sabine's formula\n",
+ "\n",
+ "print\"1) average absorption coefficient =\",round(a,4)\n",
+ "\n",
+ "a1=0.5 #absorption coefficient\n",
+ "T2=2 #Reverberation time\n",
+ "\n",
+ "S1=(0.161*V/(a1-a))*(1.0/T2-1.0/T1)\n",
+ "\n",
+ "print\"2) carpet area required =\",round(S1,4),\"m^2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) average absorption coefficient = 0.1486\n",
+ "2) carpet area required = 131.958 m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.6,Page number 4-28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "Ac=10*12 #area of carpet covering entire floor\n",
+ "ac=0.06 #absorption coefficient of carpet\n",
+ "\n",
+ "aS1=Ac*ac #absorption due to carpet\n",
+ "\n",
+ "Af=10*12 #area of false celling\n",
+ "af=0.03 #absorption coefficient of celling\n",
+ "\n",
+ "aS2=Af*af #absorption due to celling\n",
+ "\n",
+ "As=100*1 #area of cushioned sets\n",
+ "a_cush=1 #absorption coefficient of cushion sets\n",
+ "\n",
+ "aS3=As*a_cush #absorption due to cusion sets\n",
+ "\n",
+ "Aw=346*1 #area of walls covered with absorbent\n",
+ "aw=0.2 #absorption coefficient of walls\n",
+ "\n",
+ "aS4=Aw*aw #absorption due to walls\n",
+ "\n",
+ "Ad=346*1 #area of wooden door\n",
+ "ad=0.2 #absorption coefficient of wooden door\n",
+ "\n",
+ "aS5=Ad*ad #absorption due to wooden door\n",
+ "\n",
+ "aS=aS1+aS2+aS3+aS4 #total absorption\n",
+ "\n",
+ "ap=0.46 #absorption coefficient of audience/person\n",
+ "l=12 #assuming length of wall\n",
+ "b=10 #assuming breadth of wall\n",
+ "h=8 #assuming height of wall\n",
+ "\n",
+ "V=l*b*h #volume of hall\n",
+ "\n",
+ "#case 1 :(no one inside/emptey hall)\n",
+ "\n",
+ "T1=(0.161*V)/aS #reverberation time\n",
+ "\n",
+ "print\" 1)reverberation time of empty hall =\",round(T1,4),\"sec\"\n",
+ "\n",
+ "#case 2 :(50 person inside hall)\n",
+ "\n",
+ "T2=(0.161*V)/(aS+50*0.46) #reverberation time\n",
+ "\n",
+ "print\" 2)reverberation time of hall with 50 person =\",round(T2,4),\"sec\"\n",
+ "\n",
+ "#case 2 :(100 person inside hall/full capacity of hall)\n",
+ "\n",
+ "T3=(0.161*V)/(aS+100*0.46) #reverberation time\n",
+ "\n",
+ "print\" 3)reverberation time of hall with 100 person =\",round(T3,4),\"sec\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 1)reverberation time of empty hall = 0.8587 sec\n",
+ " 2)reverberation time of hall with 50 person = 0.7614 sec\n",
+ " 3)reverberation time of hall with 100 person = 0.6839 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.7,Page number 4-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "l=20 #length of room\n",
+ "b=15 #bredth of room\n",
+ "h=5 #height of room\n",
+ "\n",
+ "V=l*b*h #volume of room\n",
+ "S=2*(l*b+b*h+h*l) #surface area of hall\n",
+ "\n",
+ "T=3.5 #Reverberation time\n",
+ "\n",
+ "a=(0.161*V)/(T*S) #using Sabine's formula\n",
+ "\n",
+ "print\"1) average absorption coefficient =\",round(a,4)\n",
+ "\n",
+ "avg=a*S #average total absorption\n",
+ "\n",
+ "print\"2) average total absorption =\",round(avg,4),\"m^2.s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) average absorption coefficient = 0.0726\n",
+ "2) average total absorption = 69.0 m^2.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.8,Page number 4-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "l=20 #length of room\n",
+ "b=15 #bredth of room\n",
+ "h=10 #height of room\n",
+ "\n",
+ "V=l*b*h #volume of room\n",
+ "\n",
+ "a=0.1 #absorption coefficient\n",
+ "\n",
+ "S=2*(l*b+b*h+h*l) #surface area of hall\n",
+ "\n",
+ "T1=(0.161*V)/(a*S) #Reverberation time,using Sabine's formula\n",
+ "\n",
+ "print\"1) Reverberation time =\",round(T1,4),\"sec\"\n",
+ "\n",
+ "a2=0.66 #absorption coefficient of curtain cloth\n",
+ "\n",
+ "S2=100 #surface area of a curtain cloth\n",
+ "\n",
+ "T2=(0.161*V)/(a*S+a2*S2*2) #Reverberation time,using Sabine's formula\n",
+ "\n",
+ "T=T1-T2 #change in Reverberation time\n",
+ "\n",
+ "print\"2) change in Reverberation time =\",round(T,4),\"sec\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) Reverberation time = 3.7154 sec\n",
+ "2) change in Reverberation time = 1.8719 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.9,Page number 4-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "S1=220 #wall area\n",
+ "a1=0.03 #absorption coefficient for the wall\n",
+ "S2=120 #floor area\n",
+ "a2=0.8 #absorption coefficient for the floor\n",
+ "S3=120 #ceiling area\n",
+ "a3=0.06 #absorption coefficient for the ceiling\n",
+ "V=600 #volume of room\n",
+ "\n",
+ "S=S1+S2+S3 #total surface area\n",
+ "a=(a1*S1+a2*S2+a3*S3)/S #average sound absorption coefficient\n",
+ "\n",
+ "print\"1) average sound absorption coefficient =\",round(a,4)\n",
+ "\n",
+ "T=(0.161*V)/(a*S) #Reverberation time,using Sabine's formula\n",
+ "\n",
+ "print\"2) Reverberation time =\",round(T,4),\"sec\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) average sound absorption coefficient = 0.2387\n",
+ "2) Reverberation time = 0.8798 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.10,Page number 4-31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "f=0.07*10**6 #frequency\n",
+ "t=0.65 #time\n",
+ "v=1700 #velocity of sound\n",
+ "\n",
+ "d=v*t/2 #depth of seabed\n",
+ "\n",
+ "print\"1) depth of seabed =\",round(d,4),\"meter\"\n",
+ "\n",
+ "lamda=v/f #wavelength\n",
+ "\n",
+ "print\"2) wavelength =\",round(lamda,4),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) depth of seabed = 552.5 meter\n",
+ "2) wavelength = 0.0243 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.11,Page number 4-31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "t=1*10**-3 #thicknesss of crystal\n",
+ "d=2.65*10**3 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "k=1 #consider 1st harmonic\n",
+ "\n",
+ "n=(k/(2*t))*sqrt(Y/d) #formula of natural frequency\n",
+ "\n",
+ "print\" natural frequency =\",\"{0:.3e}\".format(n),\"Hz\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " natural frequency = 2.747e+06 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.12,Page number 4-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "d=2650 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "#case 1\n",
+ "\n",
+ "n1=3.8*10**6 #frequency of wave\n",
+ "\n",
+ "t1=(k/(2*n1))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "print\"1) thickness =\",\"{0:.3e}\".format(t1),\"meter\"\n",
+ "\n",
+ "#case 2\n",
+ "\n",
+ "n2=300*10**3 #frequency of wave\n",
+ "\n",
+ "t2=(k/(2*n2))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "print\"2) thickness =\",\"{0:.3e}\".format(t2),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) thickness = 7.230e-04 meter\n",
+ "2) thickness = 9.157e-03 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.13,Page number 4-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "d=2650 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "n=2*10**6 #frequency of wave\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "t=(k/(2*n))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "print\"thickness =\",\"{0:.3e}\".format(t),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "thickness = 1.374e-03 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.14,Page number 4-33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "f=50*10**3 #frequency\n",
+ "v1=348 #velocity of ultrasound in atmosphere\n",
+ "v2=1392 #velocity of ultrasound in sea water\n",
+ "t=2.0 #time difference\n",
+ "\n",
+ "#distance is constant hence v1*t1=v2*t2\n",
+ "\n",
+ "m=v2/v1 #assuming constant as m\n",
+ "\n",
+ "#(t1-t2=d) and (t1=m*t2) therefore\n",
+ "\n",
+ "t2=t/(m-1)\n",
+ "\n",
+ "d=v2*t2 #distance between two ship\n",
+ "\n",
+ "print\"distance between two ships =\",round(d,4),\"meter\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "distance between two ships = 928.0 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.15,Page number 4-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "#for case1\n",
+ "t1=2*10**-3 #thicknesss of plate\n",
+ "d=2.65*10**3 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "n1=(k/(2*t1))*sqrt(Y/d) #formula of natural frequency\n",
+ "\n",
+ "print\"1)natural frequency =\",\"{0:.3e}\".format(n1),\"Hz\"\n",
+ "\n",
+ "#for case2\n",
+ "\n",
+ "n2=3*10**6 #frequency\n",
+ "\n",
+ "t2=(k/(2*n2))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "t=t1-t2 #change in thickness\n",
+ "\n",
+ "print\"2)change in thickness =\",\"{0:.3e}\".format(t),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1)natural frequency = 1.374e+06 Hz\n",
+ "2)change in thickness = 1.084e-03 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.16,Page number 4-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "S=10 #salinity\n",
+ "t=2 #time\n",
+ "T=20 #temperature\n",
+ "\n",
+ "v=1510+1.14*S+4.21*T-0.037*T**2 #velocity of ultrasound in sea\n",
+ "\n",
+ "d=v*t/2 #depth of sea bed\n",
+ "\n",
+ "print\"depth of sea bed =\",round(d,4),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of sea bed = 1590.8 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.17,Page number 4-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "S=29 #salinity\n",
+ "t=2 #time\n",
+ "l=0.01 #wavelength\n",
+ "T=30 #temperature\n",
+ "\n",
+ "v=1510+1.14*S+4.21*T-0.037*T**2 #velocity of ultrasound in sea\n",
+ "\n",
+ "d=v*t/2 #depth of sea bed\n",
+ "\n",
+ "print\"1)depth of sea bed =\",round(d,4),\"meter\"\n",
+ "\n",
+ "f=v/l #frequency\n",
+ "\n",
+ "print\"2) frequency =\",\"{0:.3e}\".format(f),\"Hz\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1)depth of sea bed = 1636.06 meter\n",
+ "2) frequency = 1.636e+05 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.18,Page number 4-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "v1=5.9*10**3 #velocity of UW in mild steel\n",
+ "v2=4.3*10**3 #velocity of UW in brass\n",
+ "t2=15*10**-3 #thickness of brass plate\n",
+ "\n",
+ "t1=v2*t2/v1 #since ve;ocity is inversly proportional to thickness\n",
+ "\n",
+ "print\"real thickness =\",\"{0:.3e}\".format(t1),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "real thickness = 1.093e-02 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.19,Page number 4-36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "t1=4*10**-3 #thickness of 1st crystal\n",
+ "n1=400*10**3 #frequency of 1st crystal\n",
+ "n2=500*10**3 #frequency of 2nd crystal\n",
+ "\n",
+ "t2=n1*t1/n2 #since frquency is inversly proportional to thickness\n",
+ "\n",
+ "print\"thickness of 2nd crystal =\",\"{0:.3e}\".format(t2),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "thickness of 2nd crystal = 3.200e-03 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.20,Page number 4-36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "t2=30*10**-6 #pulse arrival time of defective steel bar\n",
+ "t1=80*10**-6 #pulse arrival time of non defective steel bar\n",
+ "d=40*10**-2 #bar thickness\n",
+ "\n",
+ "x=(t2/t1)*d\n",
+ "\n",
+ "print\"distance at which defect has occurred =\",round(x,4),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "distance at which defect has occurred = 0.15 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.21,Page number 4-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "d=18*10**-3 #thickness\n",
+ "v=5.9*10**3 #velocity\n",
+ "\n",
+ "t=(2*d)/v #echo time\n",
+ "\n",
+ "print\"echo time =\",\"{0:.3e}\".format(t),\"sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "echo time = 6.102e-06 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.22,Page number 4-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "t=1*10**-3 #thickness of quartz crystal\n",
+ "\n",
+ "#given t=l/2\n",
+ "\n",
+ "l=t*2 #wavelength\n",
+ "Y=7.9*10**10 #young's module of crystal\n",
+ "p=2650 #density of crystal\n",
+ "\n",
+ "v=sqrt(Y/p) #velocity of vibration\n",
+ "\n",
+ "n=v/l #frequency of vibration\n",
+ "\n",
+ "print\"frquency of vibration =\",\"{0:.3e}\".format(n),\"Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frquency of vibration = 2.730e+06 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.23,Page number 4-38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "d=7.23*10**3 #density\n",
+ "Y=11.6*10**10 #Young's modulus\n",
+ "n=20*10**3 #frequency of wave\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "l=(k/(2*n))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "print\"length =\",\"{0:.3e}\".format(l),\"meter\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "length = 1.001e-01 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.24,Page number 4-38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "#for case1\n",
+ "t1=2*10**-3 #thicknesss of plate\n",
+ "d=2.65*10**3 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "n1=(k/(2*t1))*sqrt(Y/d) #formula of natural frequency\n",
+ "\n",
+ "print\"1)natural frequency =\",\"{0:.3e}\".format(n1),\"Hz\"\n",
+ "\n",
+ "#for case2\n",
+ "\n",
+ "n2=3*10**6 #frequency\n",
+ "\n",
+ "t2=(k/(2*n2))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "t=t1-t2 #change in thickness\n",
+ "\n",
+ "print\"2)change in thickness =\",\"{0:.3e}\".format(t),\"meter\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1)natural frequency = 1.374e+06 Hz\n",
+ "2)change in thickness = 1.084e-03 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.25,Page number 4-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "l=20 #length of room\n",
+ "b=15 #bredth of room\n",
+ "h=10 #height of room\n",
+ "\n",
+ "V=l*b*h #volume of room\n",
+ "S=2*(l*b+b*h+h*l) #surface area of hall\n",
+ "\n",
+ "T=3 #Reverberation time\n",
+ "\n",
+ "a=(0.161*V)/(T*S) #using Sabine's formula\n",
+ "\n",
+ "print\"1) average absorption coefficient =\",round(a,4)\n",
+ "\n",
+ "m=a*S #total absorption\n",
+ "\n",
+ "print\"2) total absorption of surface =\",round(m,4),\"m**2/sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) average absorption coefficient = 0.1238\n",
+ "2) total absorption of surface = 161.0 m**2/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.26,Page number 4-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "#for case1\n",
+ "t1=1.8*10**-3 #thicknesss of plate\n",
+ "d=2.65*10**3 #density\n",
+ "Y=8*10**10 #Young's modulus\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "n1=(k/(2*t1))*sqrt(Y/d) #formula of natural frequency\n",
+ "\n",
+ "print\"1)natural frequency =\",\"{0:.3e}\".format(n1),\"Hz\"\n",
+ "\n",
+ "#for case2\n",
+ "\n",
+ "n2=2*10**6 #frequency\n",
+ "\n",
+ "t2=(k/(2*n2))*sqrt(Y/d) #arranging formula of natural frequency\n",
+ "\n",
+ "t=t1-t2 #change in thickness\n",
+ "\n",
+ "print\"2)change in thickness =\",\"{0:.3e}\".format(t),\"meter\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1)natural frequency = 1.526e+06 Hz\n",
+ "2)change in thickness = 4.264e-04 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15.27,Page number 4-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "n=0.4999*10**6 #frequency\n",
+ "t=5.5*10**-3 #thicknesss of plate\n",
+ "d=2.65*10**3 #density\n",
+ "k=1.0 #consider 1st harmonic\n",
+ "\n",
+ "Y=4*(t**2)*(n**2)*d/k #arranging formula of natural frequency\n",
+ "\n",
+ "print\"Youngs modulus =\",\"{0:.3e}\".format(Y),\"N/m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Youngs modulus = 8.013e+10 N/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file