diff options
Diffstat (limited to 'Antenna_and_Wave_Propagation_by_k.k._sharma/chapter5.ipynb')
-rwxr-xr-x | Antenna_and_Wave_Propagation_by_k.k._sharma/chapter5.ipynb | 225 |
1 files changed, 225 insertions, 0 deletions
diff --git a/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter5.ipynb b/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter5.ipynb new file mode 100755 index 00000000..300f89b1 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter5.ipynb @@ -0,0 +1,225 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "chapter 05 : Practical Antennas-I" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.1 : page 5.57" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#For Single Turn:\n", + "from sympy import symbols, sqrt\n", + "lamda = symbols('lamda')\n", + "a=lamda/25\n", + "A=pi*pow(a,2)\n", + "Rr = (A/lamda**2)**2*31171.2\n", + "print \"radiation Resistance =\",round(Rr,4),\"Ohm for single turn \"\n", + "\n", + "#For Eight Turn:\n", + "N=8 #no. of turns\n", + "Rr=Rr*N**2 #in Ohm\n", + "print \"radiation Resistance = %0.2f Ohm for Eight turn \" %Rr" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "radiation Resistance = 0.7876 Ohm for single turn \n", + "radiation Resistance = 50.40 Ohm for Eight turn \n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.2 : page 5.58" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi, acos, sqrt \n", + "#Given data :\n", + "f=20.0 #in MHz\n", + "N=15.0 #No. of turns\n", + "A=2.0 #in m**2\n", + "Vrms=200.0 #in uV\n", + "theta=acos(1) #in radian\n", + "mu_o=4*pi*10**-7 #in H/m\n", + "#Formula : Vm=2*pi*f*mu_o*H*A*N\n", + "Vm=Vrms*sqrt(2) #in uV\n", + "H=(Vm*10**-6)/(2.0*pi*f*10**6*mu_o*A*N) #in A/m\n", + "print \"Peak Value of magnetic feld intensity = %0.3e mA/m \" %(H*1000) \n", + "#Note : Answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak Value of magnetic feld intensity = 5.970e-05 mA/m \n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.3 : page 5.58" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "#Given data :\n", + "f=20 #in MHz\n", + "f=f*10**6 #in Hz\n", + "Wmax=25 #in mW/m**2\n", + "A=10.0 #in m**2\n", + "c=3*10**8 #speed of light in m/s\n", + "lamda=c/f #in meter\n", + "Rr=31171.2*(A/lamda**2)**2 #iin Ohm\n", + "#Formula : Wmax=V**2/(4*Rr)\n", + "V=sqrt(Wmax*10**-3*4*Rr) #in Volts\n", + "print \"Maximum emf in the loop = %0.3f Volts \"%V " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum emf in the loop = 2.481 Volts \n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.4 : page 5.59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#Given data :\n", + "N=20.0 #turns\n", + "D=1.0 #in meter\n", + "r=D/2 #in meter\n", + "E=200*10**-6 #in V/m\n", + "L=50*10**-6 #in H\n", + "R=2.0 #in Ohm\n", + "f=1.5 #in MHz\n", + "f=f*10**6 #in Hz\n", + "c=3*10**8 #speed of light in m/s\n", + "lamda=c/f #in meter\n", + "A=pi*r**2 #in m**2\n", + "Vrms=2*pi*E*A*N/lamda #in Volts\n", + "Q=2*pi*f*L/R #unitless\n", + "Vc_rms=Vrms*Q #in Volts\n", + "print \"Voltage across the capacitor = %0.2f mV\" %(Vc_rms*1000) \n", + "#Note : Answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage across the capacitor = 23.25 mV\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.5 : page 5.59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi, cos\n", + "#Given data :\n", + "N=100 #No. of turns\n", + "A=2 #in m**2\n", + "f=10 #in MHz\n", + "f=f*10**6 #in Hz\n", + "Q=150 #Quality factor\n", + "c=3*10**8 #speed of light in m/s\n", + "lamda=c/f #in meter\n", + "Erms=10*10**-6 #in V/m\n", + "theta=60 #in degree\n", + "Vrms=2*pi*Erms*A*N*cos(theta*pi/180)/lamda \n", + "Vin=Vrms*Q #in Volts\n", + "print \"Voltage to the receiver = %0.1f mV \" %(Vin*1000) \n", + "#Note : Answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage to the receiver = 31.4 mV \n" + ] + } + ], + "prompt_number": 40 + } + ], + "metadata": {} + } + ] +} |