summaryrefslogtreecommitdiff
path: root/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Antenna_and_Wave_Propagation_by_k.k._sharma/chapter10.ipynb')
-rwxr-xr-xAntenna_and_Wave_Propagation_by_k.k._sharma/chapter10.ipynb432
1 files changed, 432 insertions, 0 deletions
diff --git a/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter10.ipynb b/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter10.ipynb
new file mode 100755
index 00000000..4dee9c4a
--- /dev/null
+++ b/Antenna_and_Wave_Propagation_by_k.k._sharma/chapter10.ipynb
@@ -0,0 +1,432 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "chapter 10 : Sky wave propagation - The ionospheric waves"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.1 : page 10-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "H=500 #in km\n",
+ "n=0.8 #in m\n",
+ "f_muf=10 #in MHz\n",
+ "f_muf=f_muf*10**6 #in Hz\n",
+ "f=10 #in MHz\n",
+ "f=f*10**6 #in Hz\n",
+ "# Formula : n=sqrt(1-81*N/f**2)\n",
+ "Nmax=(1-n**2)*f**2/81 #in Hz \n",
+ "fc=9*sqrt(Nmax) #in Hz\n",
+ "Dskip=2*H*sqrt((f_muf/fc)**2-1) #in Km\n",
+ "print \"Assuming the earth is flat the range = %0.2f km\" %Dskip\n",
+ "#Note : Answer in the book is wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Assuming the earth is flat the range = 1333.33 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.2 : page 10-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given data :\n",
+ "n=0.8 #in m\n",
+ "H=500 #in km\n",
+ "a=6370 #in km\n",
+ "D=1349.07 #in Km\n",
+ "f_muf=10 #in MHz\n",
+ "f_muf=f_muf*10**6 #in Hz\n",
+ "f=10 #in MHz\n",
+ "f=f*10**6 #in Hz\n",
+ "# Formula : n=sqrt(1-81*N/f**2)\n",
+ "Nmax=(1-n**2)*f**2/81 #in Hz \n",
+ "fc=9*sqrt(Nmax) #in Hz\n",
+ "# Formula : f_muf/fc=sqrt(D**2/(4*(H+D**2/(8*a))))+1\n",
+ "D1=2*(H+D**2/(8*a))*sqrt((f_muf/fc)**2-1) #in Km\n",
+ "Dskip=2*H*sqrt((f_muf/fc)**2-1) #in Km\n",
+ "print \"Assuming the earth is curved the ground range = %0.2f km\"% D1\n",
+ "# Answer wrong in the textbook."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Assuming the earth is curved the ground range = 1428.57 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.3 : page 10-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "Nmax=2.48*10**6 #in cm**-3\n",
+ "Nmax=2.48*10**6*10**-6 #in m**-3\n",
+ "fc=9*sqrt(Nmax) #in MHz\n",
+ "print \"Critical frequency = %0.2f MHz \" %fc "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical frequency = 14.17 MHz \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.4 : page 10-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "H=200 #in Km\n",
+ "D=4000 #in Km\n",
+ "fc=5 #in MHz\n",
+ "f_muf=fc*sqrt(1+(D/(2*H))**2) #in MHz\n",
+ "print \"MUF for the given path = %0.2f MHz \" %f_muf\n",
+ "#Note : Answer in the book is wrong."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MUF for the given path = 50.25 MHz \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.5 : page 10-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "#For F1 layer :\n",
+ "print \"For F1 layer :\" \n",
+ "Nmax=2.3*10**6 #in cm**3\n",
+ "Nmax=2.3*10**6*10**-6 #in m**3\n",
+ "fc=9*sqrt(Nmax) #in MHz\n",
+ "print \"Critical frequency = %0.2f MHz \" %fc \n",
+ "\n",
+ "#For F2 layer :\n",
+ "print \"For F2 layer :\" \n",
+ "Nmax=3.5*10**6 #in cm**3\n",
+ "Nmax=3.5*10**6*10**-6 #in m**3\n",
+ "fc=9*sqrt(Nmax) #in MHz\n",
+ "print \"Critical frequency = %0.2f MHz\" %fc\n",
+ "\n",
+ "#For F3 layer :\n",
+ "print \"For F3 layer :\" \n",
+ "Nmax=1.7*10**6 #in cm**3\n",
+ "Nmax=1.7*10**6*10**-6 #in m**3\n",
+ "fc=9*sqrt(Nmax) #in MHz\n",
+ "print \"Critical frequency = %0.2f MHz \" %fc "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For F1 layer :\n",
+ "Critical frequency = 13.65 MHz \n",
+ "For F2 layer :\n",
+ "Critical frequency = 16.84 MHz\n",
+ "For F3 layer :\n",
+ "Critical frequency = 11.73 MHz \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.6 : page 10-21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "n=0.7 #refractive index\n",
+ "N=400 #in cm**-3\n",
+ "#Formula : n=sqrt(1-81*N/f**2)\n",
+ "f=sqrt(81*N/(1-n**2)) #in KHz\n",
+ "print \"Frequency of wave propagation = %0.2f kHz\" %f\n",
+ "#Note : Unit of Answer in the book is MHz. It is written by mistake. It is accurately calculated by scilab in KHz. "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of wave propagation = 252.05 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.7 : page 10-21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "HT=169.0 #in meter\n",
+ "HR=20.0 #in meter\n",
+ "d=4.12*(sqrt(HT)+sqrt(HR)) #in Km\n",
+ "print \"Maximum distance = %0.2f km \" %d \n",
+ "r_dash=(4/3)*6370/1000 #in Km\n",
+ "RadioHorizon=sqrt(2*r_dash*HT) #in Km\n",
+ "print \"Radio Horizon = %0.2f km \" %RadioHorizon\n",
+ "# Answe wrong in thetextbook."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum distance = 71.99 km \n",
+ "Radio Horizon = 45.03 km \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.8 : page 10-21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import tan , pi, asin, cos\n",
+ "H=200 #in Km\n",
+ "Beta=20 #in Degree\n",
+ "a=6370 #in Km\n",
+ "D_flat=2*H/tan(Beta*pi/180) #in Km\n",
+ "print \"If earth assumed to be flat transmission path distance = %0.2f km\" %D_flat\n",
+ "D_curved=2*a*(90*pi/180-Beta*pi/180)-asin(a*cos(Beta*pi/180)/(a+H))\n",
+ "print \"If earth assumed to be curved transmission path distance = %0.2f \"%D_curved\n",
+ "# Answe wrong in thetextbook."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "If earth assumed to be flat transmission path distance = 1098.99 km\n",
+ "If earth assumed to be curved transmission path distance = 15563.70 \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.9 : page 10-22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import acos\n",
+ "#given data :\n",
+ "R=6370 #in Km\n",
+ "hm=400 #in Km\n",
+ "#Formula : d=2*R*Q=2*R*acos(R/(R+hm))\n",
+ "d=2*R*acos(R/(R+hm)) #in Km\n",
+ "print \"Maximum Range in a single range transmission = %0.2f km \" %d \n",
+ "# Answe wrong in thetextbook."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum Range in a single range transmission = 20011.95 km \n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.10 : page 10-22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "n=0.6 #refractive index\n",
+ "N=4.23*10**4 #in m**-3\n",
+ "#Formula : n=sqrt(1-81*N/f**2)\n",
+ "f=sqrt(81*N/(1-n**2)) #in Hz\n",
+ "print \"Frequency of wave propagation = %0.3f kHz\" %(f/1000)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of wave propagation = 2.314 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 10.11 : page 10-23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#given data :\n",
+ "n=0.8 #refractive index\n",
+ "N=500 #in cm**-3\n",
+ "#Formula : n=sqrt(1-81*N/f**2)\n",
+ "f=sqrt(81*N/(1-n**2)) #in KHz\n",
+ "print \"Frequency of wave propagation = %0.2f kHz\" %f "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of wave propagation = 335.41 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}