diff options
Diffstat (limited to 'Antenna_and_Wave_Propagation_by_G.S.N._Raju')
16 files changed, 7 insertions, 0 deletions
diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter1_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter1_2.ipynb new file mode 100755 index 00000000..d9a04491 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter1_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 1 : Mathematical Preliminaries", "cell_type": "markdown", "metadata": {}}, {"source": "## Example 1.1,Page Number 45", "cell_type": "markdown", "metadata": {}}, {"execution_count": 26, "cell_type": "code", "source": "import numpy as np\n\n#variable Declaration\nA = np.array([1,2,3]) # A is a vector\n\n#calculations\nl=np.linalg.norm(A) # magnitude or length of vector A\na=A/l # direction of vector A\n\n#results\nprint \"magnitude of vector:\",round(l,2)\nprint \"direction of vector\",np.around(a,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "magnitude of vector: 3.74\ndirection of vector [ 0.267 0.535 0.802]\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.2,Page Number 45", "cell_type": "markdown", "metadata": {"collapsed": true}}, {"execution_count": 2, "cell_type": "code", "source": "import numpy as np\n\n#variable Declaration\nA=np.array([2,5,6]) # vector A\nB=np.array([1,-3,6]) # vector B\n\n#calculations\nSum = A+B # summation of two vectors\nSub = A-B # subtraction of two vectors\n\n#results\nprint \"summation of two vectors:\",Sum\nprint \"subtraction of two vectors:\",Sub\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "summation of two vectors: [ 3 2 12]\nsubtraction of two vectors: [1 8 0]\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.3,Page Number 45", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "import numpy as np\n\n#Variable Declaration\n\nA = np.array([1,1,2]) # vector A\nB = np.array([2,1,1]) # vector B\n\n#Calculations\nk = np.dot(A,B) # dot product of vector A and B\n\n#Results\n\nprint \"dot product of vector A and B:\",k\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "dot product of vector A and B: 5\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.4,Page Number 45", "cell_type": "markdown", "metadata": {}}, {"execution_count": 4, "cell_type": "code", "source": "import numpy as np\n\n#Variable Declaration\n\nA = np.array([2,1,2]) # vector A\nB = np.array([1,2,1]) # vector B\n\n#Calculations\nCross = np.cross(A,B) # dot product of vector A and B\n\n#Results\n\nprint \"cross product of vector A and B:\",Cross\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "cross product of vector A and B: [-3 0 3]\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.5,Page Number 46", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "import numpy as np\n\n#Variable Declaration\n\nA = np.array([1,3,4]) # vector A\nB = np.array([1,0,2]) # vector B\n\n#Calculations\nk = np.dot(A,B) # dot product of vector A and B\n\n#Results\n\nprint \"dot product of vector A and B:\",k\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "dot product of vector A and B: 9\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.9,Page Number 46", "cell_type": "markdown", "metadata": {}}, {"execution_count": 6, "cell_type": "code", "source": "from __future__ import division\nimport math\n\n#variable declaration\np = [1,2,3] # coordinates of point p\nx = 1 # x coordinate of P\ny = 2 # y coordinate of P\nz = 3 # z coordinate of P\n\n#Calculations\nrho = math.sqrt(x**2+y**2) #radius of cylinder in m\nphi = (math.atan(y/x))*(180/math.pi) # azimuthal angle in degrees\nz = 3 # in m\n\n\n#results\nprint \"radius of cylinder is:\",round(rho,2),\"m\"\nprint \"azimuthal angle is:\",round(phi,2),\"degrees\"\nprint \"z coordinate is:\",z,\"m\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radius of cylinder is: 2.24 m\nazimuthal angle is: 63.43 degrees\nz coordinate is: 3 m\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.10,Page Number 47", "cell_type": "markdown", "metadata": {}}, {"execution_count": 27, "cell_type": "code", "source": "from __future__ import division\nfrom math import cos,sin,pi,atan\nimport numpy as np\n\n#Variable Declaration\n\nA = np.array([4,2,1]) # vector A\nA_x = 4 # x coordinate of P\nA_y = 2 # y coordinate of P\nA_z = 1 # z coordinate of P\n\n\n#calculations\nphi = atan(A_y/A_x) # azimuthal in radians\nA_rho = (A_x*cos((phi)))+(A_y*sin((phi))) # x coordinate of cylinder\nA_phi = (-A_x*sin(phi))+(A_y*cos(phi)) # y coordinate of cylinder\nA_z = 1 # z coordinate of cylinder\nA = [A_rho,A_phi,A_z] # cylindrical coordinates if vector A\n\n#Result\nprint \"cylindrical coordinates of vector A:\",np.around(A,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "cylindrical coordinates of vector A: [ 4.472 0. 1. ]\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.12,Page Number 47", "cell_type": "markdown", "metadata": {}}, {"execution_count": 22, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,acos,atan\nimport numpy as np\n\n#Variable Declaration\nP = np.array([1,2,3]) # coordinates of point P in cartezian system\nx = 1 # x coordinate of point P in cartezian system\ny = 2 # y coordinate of point P in cartezian system\nz = 3 # z coordinate of point P in cartezian system\n\n#calculations\nr = sqrt(x**2+y**2+z**2) # radius of sphere in m\ntheta = acos(z/r) # angle of elevation in degrees\nphi = atan(x/y) # azimuthal angle in degrees\n\n#results\nprint \"radius of sphere is:\",round(r,3),\"m\"\nprint \"angle of elevation is:\",round(theta,3),\"radians\"\nprint \"azimuthal angle is:\",round(phi,3),\"radians\"\n\n\n# note : answer in the book is incomplete they find only one coordinate but there are three\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radius of sphere is: 3.742 m\nangle of elevation is: 0.641 radians\nazimuthal angle is: 0.464 radians\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.17,Page Number 48", "cell_type": "markdown", "metadata": {}}, {"execution_count": 9, "cell_type": "code", "source": "import numpy as np\n\n#variable declaration\nA_p=22 # power gain\n\n#calulation\nA_p_dB=10*(np.log10(A_p)) # power gain in dB\n\n#result\nprint \"power gain is:\",round(A_p_dB,3),\"dB\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain is: 13.424 dB\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.18,Page Number 48", "cell_type": "markdown", "metadata": {}}, {"execution_count": 10, "cell_type": "code", "source": "import numpy as np\n\n#variable declaration\nA_v=95 # voltage gain\n\n#calculation\nA_v_dB=20*(np.log10(A_v)) # voltage gain in dB\n\n#result\nprint \"voltage gain is:\",round(A_v_dB,3),\"dB\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "voltage gain is: 39.554 dB\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.19,Page Number 48", "cell_type": "markdown", "metadata": {}}, {"execution_count": 11, "cell_type": "code", "source": "import numpy as np\nfrom math import sqrt\n\n#variable declaration\nA_p = 16 # power gain\n\n#calculations\nA_p_Np = np.log(sqrt(A_p)) # power gain in Np\n\n#results\nprint \"power gain is:\",round(A_p_Np,3),\"Np\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain is: 1.386 Np\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.20,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 12, "cell_type": "code", "source": "import numpy as np\n\n#variable declaration\nA_i = 34 # current gain\n\n#calculations\nA_i_Np = np.log(A_i) # current gain in Nepers\n\n#result\nprint \"power gain is:\",round(A_i_Np,3),\"Np\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain is: 3.526 Np\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.21,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 13, "cell_type": "code", "source": "from __future__ import division\nimport cmath \nfrom math import sqrt,pi\n\n\n#variable declaration\nA=2+4j # complex number A\n\n#calculations\nmagnitude = abs(A) # magnitude of complex number A\nphi = cmath.phase(A)*(180/pi) # phase of complex number A in degrees\n\n#results\nprint \"magnitude of complex number A is:\",round(magnitude,3)\nprint \"phase of complex number A is:\",round(phi,3),\"degrees\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "magnitude of complex number A is: 4.472\nphase of complex number A is: 63.435 degrees\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.22,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 14, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\nimport cmath\n\n#variable declaration\nA = 1+3j # complex no. A\n\n#calculations\nc = A.conjugate() # conjugate of complex no. A\nmagnitude = abs(A) # magnitude of complex number A\nphi = cmath.phase(A)*(180/pi) # phase of complex number A in degrees\n\n\n#results\nprint \"magnitude of complex number A is:\",round(magnitude,3)\nprint \"phase of complex number A in degrees:\",round(phi,3)\nprint \"conjugate of complex no. A:\",c\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "magnitude of complex number A is: 3.162\nphase of complex number A in degrees: 71.565\nconjugate of complex no. A: (1-3j)\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.23,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 24, "cell_type": "code", "source": "from __future__ import division\nfrom math import cos,sin,radians\nimport numpy as np\n\n#variable declaration\nrho = 5 # magnitude of the complex number A\nphi = 45 # phase of a complex number A in Degrees\n\n#calculations\nx = rho*cos(radians(phi)) # real part of complex number A\ny = rho*sin(radians(phi)) # imaginary part of complex number A\nA = complex(x,y) # complex number A\n\n#results\nprint \"real part of complex number A:\",round(x,3)\nprint \"imaginary part of complex number A:\",round(y,3)\nprint \"complex number A:\",np.around(A,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "real part of complex number A: 3.536\nimaginary part of complex number A: 3.536\ncomplex number A: (3.536+3.536j)\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.24,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 16, "cell_type": "code", "source": "#Variable Declaration\n\nA_1 = 2+3j # complex number A_1\nA_2 = 4+5j # complex number A_2\n\n\n#calculation\nA = A_1 + A_2\n\n#Result\nprint \"sum of complex numbers A_1 and A_2 is:\",A\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "sum of complex numbers A_1 and A_2 is: (6+8j)\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.25,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 17, "cell_type": "code", "source": "#Variable Declaration\n\nA_1 = 6j # complex number A_1\nA_2 = 1-2j # complex number A_2\n\n\n#calculation\nA = A_1 - A_2\n\n#Result\nprint \"Difference of complex numbers A_1 and A_2 is:\",A\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Difference of complex numbers A_1 and A_2 is: (-1+8j)\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.26,Page Number 49", "cell_type": "markdown", "metadata": {}}, {"execution_count": 18, "cell_type": "code", "source": "#Variable Declaration\n\nA = 0.4 + 5j # complex number A\nB = 2+3j # complex number B\n\n\n#calculation\nP = A*B\n\n#Result\nprint \"Product of complex numbers A and B is:\",P\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Product of complex numbers A and B is: (-14.2+11.2j)\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.27,Page Number 50", "cell_type": "markdown", "metadata": {}}, {"execution_count": 25, "cell_type": "code", "source": "import numpy as np\n\n#Variable Declaration\n\nA = 10+6j # complex number A\nB = 2-3j # complex number B \n\n#calculation\nD = A/B\n\n#Result\nprint \"Division of complex numbers A and B is:\",np.around(D,3)\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Division of complex numbers A and B is: (0.154+3.231j)\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.28,Page Number 50", "cell_type": "markdown", "metadata": {}}, {"execution_count": 20, "cell_type": "code", "source": "from sympy import *\n\n#variable Declaration\n\nx = Symbol('x')\np = (x)**2 + 2*x + 4\n\n#calculations\nRoots = solve(p,x)\n\n\n#result\nprint \"The roots of the given quadratic equation are:\",Roots\n\nfor i in range(len(Roots)):\n print \"Root %i = %s\" % (i + 1, str(Roots[i].n(5)))\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "The roots of the given quadratic equation are: [-1 - sqrt(3)*I, -1 + sqrt(3)*I]\nRoot 1 = -1.0 - 1.732*I\nRoot 2 = -1.0 + 1.732*I\n"}], "metadata": {"collapsed": false, "trusted": false}}, {"source": "## Example 1.31,Page Number 51", "cell_type": "markdown", "metadata": {}}, {"execution_count": 21, "cell_type": "code", "source": "from math import factorial\n\nf1 = factorial(4) # factorial of 4\nf2 = factorial(6) # factorial of 6\nprint \"factorial of 4 is:\",f1\nprint \"factorial of 6 is:\",f2\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "factorial of 4 is: 24\nfactorial of 6 is: 720\n"}], "metadata": {"collapsed": false, "trusted": false}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter2_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter2_2.ipynb new file mode 100755 index 00000000..365781d8 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter2_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 2 : Maxwell's Equations and Electromagnetic Waves", "cell_type": "markdown", "metadata": {}}, {"source": "## Example 2.8,Page Number 112", "cell_type": "markdown", "metadata": {}}, {"execution_count": 1, "cell_type": "code", "source": "from __future__ import division\nimport numpy as np\nfrom math import pi\n\n#variable delaration\nmu_0 = 4*pi*10**(-7) # permeability in free space\nmu_r1 = 3 # region 1 relative permeability\nmu_r2 = 5 # region 2 relative permeability\nmu_1 = mu_r1*mu_0 # region 1 permeability\nmu_2 = mu_r2*mu_0 # region 2 permeability\n\n#calculations\nH1 = np.array([4,1.5,-3]) # magnetic field in region 1 in A/m\nHt1 = np.array([0,1.5,-3]) # tangential component of magnetic field H1\nHn1 = np.array([4,0,0]) # normal component of magnetic field H1\nHt2 = np.array([0,1.5,-3]) # as tangential componenet of magnetic field H2 = tangential component of magnetic field H1\nHn2 = (mu_1/mu_2)*Hn1 # normal component of magnetic field H2\nH2 = Ht2+Hn2 # magnetic field in region 2 in A/m\nh2 = np.linalg.norm(H2) # magnitude of the magnetic field H2 in A/m\n\n#results\nprint \"magnetic field in region 2 in A/m:\",np.around(H2,2)\nprint \"magnitude of magnetic field in region 2 in A/m:\",round(h2,3) \n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "magnetic field in region 2 in A/m: [ 2.4 1.5 -3. ]\nmagnitude of magnetic field in region 2 in A/m: 4.124\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.9,Page Number 113", "cell_type": "markdown", "metadata": {}}, {"execution_count": 21, "cell_type": "code", "source": "from __future__ import division\nimport numpy as np\n\n#variable Declaration\nepsilon_0 = 8.854*10**(-12) # permittivity in free space\nsigma_1 = 0 #conductivity of medium 1\nsigma_2 = 0 #conductivity of medium 2\nepsilon_r1 = 1 # region 1 relative permittivity\nepsilon_r2 = 2 # region 2 relative permittivity\n\n#calculations\nepsilon_1 = epsilon_r1*epsilon_0 # region 1 permittivity\nepsilon_2 = epsilon_r2*epsilon_0 # region 2 permittivity\nE1 = np.array([1,2,3]) # Electric field in region 1 in V/m\nEt1 = np.array([0,2,3]) # tangential component of electric field E1\nEn1 = np.array([1,0,0]) # normal component of electric field E1\nEt2 = np.array([0,2,3]) # as tangential componenet of electric field E2 = tangential component of electric field E1\nEn2 = (epsilon_1/epsilon_2)*En1 # normal component of electric field E2\nE2 = Et2+En2 # electric field in region 2 in V/m\nDt1 = epsilon_0*Et1 # tangential component of electric flux density D1\nD2 = epsilon_2*E2 # electric flux density in region 2 in C/m**2\n\n\n#Results\nprint \"electric field in region 2 in V/m:\",np.around(E2,2)\nprint \"electric flux density in region 2 in C/m**2:\",D2 \n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "electric field in region 2 in V/m: [ 0.5 2. 3. ]\nelectric flux density in region 2 in C/m**2: [ 8.85400000e-12 3.54160000e-11 5.31240000e-11]\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.12,Page Number 116", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "from __future__ import division\nimport numpy as np\nfrom math import pi\n\n#variable Declaration\n\n# H = cos(10**8*t-Beta*z)ay # magnetic field in A/m\n# E = 377*cos(10**8*t-Beta*z)ax # electric field in V/m\nomega = 10**8 # angular frequency in Hz\nv_0 = 3*10**8 # speed of light in m/s\n\n\n#calculations\nf = omega/(2*pi) # frequency in Hz\nlamda = v_0/f # wavelength in m\nBeta = (2*pi)/lamda # phase constant in rad/m\nprint \"eta_0 = E/H = 377*cos(10**8*t-Beta*z)/cos(10**8*t-Beta*z) = > E/H = 377\"\neta_0 = abs(377) # intrinsic impedence in ohm\n\n\n\n#Results\nprint \"intrinsic impedence in ohm:\",eta_0\nprint \"frequency in MHz:\",round(f/(10**6),3)\nprint \"phase constant in rad/m:\",round(Beta,3)\nprint \"wavelength in m:\",round(lamda,3)\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "eta_0 = E/H = 377*cos(10**8*t-Beta*z)/cos(10**8*t-Beta*z) = > E/H = 377\nintrinsic impedence in ohm: 377\nfrequency in MHz: 15.915\nphase constant in rad/m: 0.333\nwavelength in m: 18.85\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.14,Page Number 116", "cell_type": "markdown", "metadata": {}}, {"execution_count": 22, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\nimport numpy as np\n\n#Variable Declaration\nf = 100 # frequency in MHz\nf = 100*10**6 # frequency in Hz\nv_0=3*10**8 # speed of light in m/s\n\n\n# formula : Gamma = omega(j)*sqrt(mu_0*epsilon_0)=omega(j)/v_0 =(2j*pi*f)/v_0\nGamma =(2j*pi*f)/(v_0) # propagation constant\n\n\n#result\nprint \"propagation constant in m**-1:\",np.around(Gamma,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "propagation constant in m**-1: 2.094j\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.15,Page Number 116", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n#Variable Declaration\n\n# H(z,t) = 48*cos(10**8*t+40*z)ay # equation of magnetic field \nA = 48 # amplitude of the magnetic field in A/m\nomega = 10**8 # angular frequency in radians/sec\nBeta = 40 # phase constant in rad/m\n\n#Calculations\nf = omega/(2*pi) # frequency in Hz\nlamda = (2*pi)/Beta # wavelength in m\n\n\n#results\nprint \"amplitude of the magnetic field in A/m:\",A\nprint \"frequency in MHz:\",round(f/10**6,3)\nprint \"phase constant in rad/m:\",round(Beta,3)\nprint \"wavelength in m:\",round(lamda,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "amplitude of the magnetic field in A/m: 48\nfrequency in MHz: 15.915\nphase constant in rad/m: 40.0\nwavelength in m: 0.157\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.16,Page Number 117", "cell_type": "markdown", "metadata": {}}, {"execution_count": 6, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi,sqrt\n\n#Variable Declaration\n\nH = 2 # ampliutude of magnetic field in A/m\nsigma = 0 # conductivity\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\n\n#calculations\nmu = mu_0 # permeability in F/m\nepsilon = 4*epsilon_0 # permittivity in F/m\nEta_0 = 120*pi # intrinsic impedence in free space in ohm\nE_free = Eta_0*H # electric field in V/m\n\n\n#results\nprint \"magnitude of electric field in V/m in free space:\",round(E_free,3)\nEta = sqrt(mu/epsilon) # intrinsic impedence in ohm\nE = Eta*H # magnitude of electric field\nprint \"magnitude of electric field in V/m:\",round(E,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "magnitude of electric field in V/m in free space: 753.982\nmagnitude of electric field in V/m: 376.734\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.17,Page Number 117", "cell_type": "markdown", "metadata": {}}, {"execution_count": 23, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi,sqrt\nimport numpy as np\n\n\n#variable Declaration\n\nsigma = 0 # conductivity in mho/m\nf = 0.3 # frequency in GHz\nf = 0.3*10**9 # frequency in Hz\nomega = 2*pi*f # angular frequency in rad/sec\n # formula : Gamma = sqrt(1j*omega*mu*(sigma+1j*omega*epsilon)) = 1j*omega*sqrt(mu*epsilon)\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nepsilon = 9*epsilon_0 # permittivity in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nmu = mu_0 # permeability in H/m\nGamma = 1j*omega*sqrt(mu*epsilon) # propagation constant im m**-1\n\n\n#results\n\nprint \"propagation constant im m**-1:\",np.around(Gamma,3)\n # formula : eta = sqrt((1j*omega*mu)/(sigma+omega*epsilon)) = sqrt(mu/epsilon)\neta = sqrt(mu_0/(9*epsilon_0)) # intrinsic impedence in ohm\nprint \"intrinsic impedence in ohm:\",round(eta,3)\n\n\n\n# note : answer in the book is wrong.\n\n\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "propagation constant im m**-1: 18.862j\nintrinsic impedence in ohm: 125.578\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.18,Page Number 118", "cell_type": "markdown", "metadata": {}}, {"execution_count": 8, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable declaration\n\nlamda = 0.25 # wavelength in m\nv = 1.5*10**10 # velocity of propagation of wave in cm/sec\nv = 1.5*10**8 # velocity of propagation of wave in m/sec\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nmu = mu_0 # permeability in H/m\nv_0 = 3*10**8 # speed of light in m/s\nf = v/lamda # frequency in Hz\n # formula : v = 1/(mu*epsilon) = 1/(mu_0*epsilon_0*epsilon_r) = v_0/sqrt(epsilon_r)\nepsilon_r = (v_0/v)**2 # relative permittivity\n\n\n#results\nprint \"frequecy in MHz:\",round(f/10**6,3)\nprint \"relative permittivity:\",epsilon_r\n\n\n # note : answer in the book is wrong.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "frequecy in MHz: 600.0\nrelative permittivity: 4.0\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.19,Page Number 118", "cell_type": "markdown", "metadata": {}}, {"execution_count": 9, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable declaration and calculations\n\n#E = 5*sin(10**8*t+4*x)az # equation of electric field \n\nA = 5 # amplitude of the electric field\nomega = 10**8 # angular frequency in radians/sec\nf = omega/(2*pi) # frequency in Hz\nBeta = 4 # phase constant in rad/m\nv_0 = 3*10**8 # speed of light in m/s\nlamda = v_0/f # wavelength in m\n\n\n#results\nprint \"frequency in MHz:\",round(f/10**6,3)\nprint \"phase constant in rad/m:\",round(Beta,3)\nprint \"wavelength in m:\",round(lamda,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "frequency in MHz: 15.915\nphase constant in rad/m: 4.0\nwavelength in m: 18.85\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.20,Page Number 119", "cell_type": "markdown", "metadata": {}}, {"execution_count": 10, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\nsigma = 10**-2 # conductivity of earth in mho/m\nepsilon_r = 10 # relative permittivity\nmu_r = 2 # relative permeability\nepsilon_0 = (1/(36*pi))*10**-9 # permittivity in free space\nepsilon = epsilon_r*epsilon_0 # permittivity\nf1 = 50 # frequency in Hz\nomega1 = 2*pi*f1 # angular frequency in rad/sec\nprint \"When frequency = 50Hz:\"\nk1 = sigma/(omega1*epsilon)\nprint \"K1 is equal to\",k1\nprint \"since k1>>1 hence it behaves like a good conductor:\"\nf2 = 1 # frequency in kHz\nf2 = 1*10**3 # frequency in Hz\nomega2 = 2*pi*f2 # angular frequency in rad/sec\nprint \"When frequency = 1kHz:\"\nk2 = sigma/(omega2*epsilon)\nprint \"K2 is equal to\",k2\nprint \"since k2>>1 hence it behaves like a good conductor:\"\nf3 = 1 # frequency in MHz\nf3 = 1*10**6 # frequency in Hz\nomega3 = 2*pi*f3 # angular frequency in rad/sec\nprint \"When frequency = 1MHz:\"\nk3 = sigma/(omega3*epsilon)\nprint \"K3 is equal to\",k3\nprint \"since k3 = 18 hence it behaves like a moderate conductor:\"\nf4 = 100 # frequency in MHz\nf4 = 100*10**6 # frequency in Hz\nomega4 = 2*pi*f4 # angular frequency in rad/sec\nprint \"When frequency = 100MHz:\"\nk4 = sigma/(omega4*epsilon)\nprint \"K4 is equal to\",k4\nprint \"since k4 = 0.18 hence it behaves like a quasi-dielectric:\"\nf5 = 10 # frequency in GHz\nf5 = 10*10**9 # frequency in Hz\nomega5 = 2*pi*f5 # angular frequency in rad/sec\nprint \"When frequency = 10GHz:\"\nk5 = sigma/(omega5*epsilon)\nprint \"K5 is equal to\",k5\nprint \"since k5<<1 hence it behaves like a good dielectric:\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "When frequency = 50Hz:\nK1 is equal to 360000.0\nsince k1>>1 hence it behaves like a good conductor:\nWhen frequency = 1kHz:\nK2 is equal to 18000.0\nsince k2>>1 hence it behaves like a good conductor:\nWhen frequency = 1MHz:\nK3 is equal to 18.0\nsince k3 = 18 hence it behaves like a moderate conductor:\nWhen frequency = 100MHz:\nK4 is equal to 0.18\nsince k4 = 0.18 hence it behaves like a quasi-dielectric:\nWhen frequency = 10GHz:\nK5 is equal to 0.0018\nsince k5<<1 hence it behaves like a good dielectric:\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.21,Page Number 120", "cell_type": "markdown", "metadata": {}}, {"execution_count": 11, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\nimport cmath\nimport numpy as np\n\n#variable declaration\nf = 60 # frequency in Hz\nomega = 2*pi*f # angular frequency in rad/sec\nsigma = 5.8*10**7 # conductivity in mho/m\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nepsilon_r = 1 # relative permittivity\nmu_r = 1 # relative permeability\n\n\n#calculations\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu = mu_0*mu_r # permeability\nk = sigma/(omega*epsilon) # ratio\nprint \"ratio k is equal to\",k\nprint \"since k>>1 therefore it is very good conductor:\"\nalpha = sqrt(omega*mu*sigma/2) # attenuation constant in m**-1\nBeta = sqrt(omega*mu*sigma/2) # phase constant in m**-1\nGamma = alpha+(1j*Beta) # propagation constant in m**-1\nlamda = (2*pi)/Beta # wavelength\neta = cmath.sqrt(((1j*omega*mu)/sigma)) # intrinsic impedence in ohm\nv = lamda*f # phase velocity of wave in m/s\n\n\n#result\nprint \"attenuation constant in m**-1:\",round(alpha,2)\nprint \"phase constant in m**-1:\",round(Beta,2)\nprint \"propagation constant in m**-1:\",np.around(Gamma,2)\nprint \"intrinsic impedence in ohm:\",np.around(eta,10)\nprint \"wavelength in cm:\",round(lamda*100,2)\nprint \"phase velocity of wave in m/s:\",round(v,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "ratio k is equal to 1.73763020468e+16\nsince k>>1 therefore it is very good conductor:\nattenuation constant in m**-1: 117.21\nphase constant in m**-1: 117.21\npropagation constant in m**-1: (117.21+117.21j)\nintrinsic impedence in ohm: (2.0209e-06+2.0209e-06j)\nwavelength in cm: 5.36\nphase velocity of wave in m/s: 3.216\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.22,Page Number 120", "cell_type": "markdown", "metadata": {}}, {"execution_count": 12, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n\n#variable Declaration\n\nf1 = 60 # frequency in Hz\nomega1 = 2*pi*f1 # angular frequency in Hz\nf2 = 100 # frequency in MHz\nf2 = 100*10**6 # frequency in Hz\nomega2 = 2*pi*f2 # angular frequency in Hz\nsigma = 5.8*10**7 # conductivity in mho/m\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nepsilon_r = 1 # relative permittivity\nmu_r = 1 # relative permeability\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu = mu_0*mu_r # permeability\n\nprint \"At f = 60Hz\"\nk1 = (sigma)/(omega1*epsilon) # ratio\nprint \"ratio k is equal to\",k1\nprint \"since k>>1 therefore it is very good conductor at f = 60Hz:\"\ndelta1 = (sqrt(2/(omega1*mu*sigma))) # depth of penetration in m\nprint \"depth of penetration delta1 in m:\",delta1\n\nprint \"At f = 100Hz\"\nk2 = sigma/(omega2*epsilon) # ratio\nprint \"ratio k is equal to\",k2\nprint \"since k2>>1 therefore it is very good conductor at f = 100Hz:\"\ndelta2 = (sqrt(2/(omega2*mu*sigma))) # depth of penetration in m\nprint \"depth of penetration delta2 in m:\",delta2\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "At f = 60Hz\nratio k is equal to 1.73763020468e+16\nsince k>>1 therefore it is very good conductor at f = 60Hz:\ndepth of penetration delta1 in m: 0.00853160047351\nAt f = 100Hz\nratio k is equal to 10425781228.1\nsince k2>>1 therefore it is very good conductor at f = 100Hz:\ndepth of penetration delta2 in m: 6.60854931008e-06\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.23,Page Number 121", "cell_type": "markdown", "metadata": {}}, {"execution_count": 13, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n\n#variable Declaration\n\nIc = 10 # conduction current in ampere\nepsilon_r = 1 # relative permittivity\nepsilon_0 = 8.854*10**-12 # permittivity in free space\nepsilon = epsilon_r*epsilon_0 # permittivity\nsigma = 5.8*10**7 # conductivity in mho/m\n\nprint \"when f = 1MHz\"\nf = 1 # frequency in MHz\nf = 1*10**6 # frequency in Hz\nId = (2*pi*f*epsilon*Ic)/sigma # printlacement current\nprint \"displacement current when f = 1MHz in A:\",Id\nprint \"when f = 100MHz\"\nf = 100 # frequency in MHz\nf = 100*10**6 # frequency in Hz\nId = (2*pi*f*epsilon*Ic)/sigma # printlacement current\nprint \"displacement current when f = 100MHz in A:\",Id\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "when f = 1MHz\ndisplacement current when f = 1MHz in A: 9.59160736375e-12\nwhen f = 100MHz\ndisplacement current when f = 100MHz in A: 9.59160736375e-10\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.25,Page Number 122", "cell_type": "markdown", "metadata": {}}, {"execution_count": 14, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi,sin,cos,radians,log\n\n#variable declaration\nEm = 20 # minimum signal level required for vessel under sea water in microV/m\nEm = 20*10**-6 # minimum signal level required for vessel under sea water in V/m\nE = 100 # electric intensity of wave in V/m\nv = 3*10**8 # speed of light in m/s\nf = 4 # frequency in MHz\nf = 4*10**6 # frequency in Hz\nomega = 2*pi*f # angular frequency in Hz\nsigma = 4 # conductivity of sea water in mho/m\nepsilon_r = 81 # relative permittivity\nepsilon_0 = 8.854*10**-12 # permittivity in free space\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu_r = 1 # relative permeability\nmu_0 = 4*pi*10**(-7) # permeability in free space\nmu = mu_r*mu_0 # permeability\nk = (sigma)/(omega*epsilon) #ratio\nprint \"ratio k is equal to:\"\nprint \"ratio:\",round(k,3)\nprint \"K is >>1 so sea water is a good conductor\"\neta_1 = 377 # intrinsic impedance in free space in ohm\nalpha_1 = 0 # attenuation constant in free space in m**-1\n\n\n#calculations\nbeta_1 = omega/v # phase constant in m**-1\nmageta_2 = sqrt((omega*mu)/sigma) # magnitude of eta_2(intrinsic impedance of sea water in ohm) \nargeta_2 = 45 # argument of eta_2 in degrees\neta_2 = mageta_2*cos(radians(argeta_2))+(1j*mageta_2*sin(radians(argeta_2))) #intrinsic impedance in complex form (r*cos(theta)+1j*r*sin(theta))\nTC = 2*eta_2/(eta_1+eta_2) # transmission cofficient\nEt = abs(TC)*E # transmitted electric field in V/m\nalpha_2 = sqrt((omega*mu*sigma)/2) # attenuation constant for sea water in m**-1\n# formula: Et*exp(-alpha_2*d) = Em\nd = -(1/alpha_2)*(log(Em/Et)) # depth in the sea that can be reached by the aeroplane in m\n\n\n#result\nprint \"depth in the sea that can be reached by the aeroplane in m:\",round(d,5)\n\n\n# note 1: the value of alpha_2 in book is 7.905 but it is \"7.94\" exactly calculated by python.\n#note 2 : The correct answer of the Depth(d) is \"1.41095\" the answer in the book is wrong.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "ratio k is equal to:\nratio: 221.92\nK is >>1 so sea water is a good conductor\ndepth in the sea that can be reached by the aeroplane in m: 1.41095\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.27,Page Number 124", "cell_type": "markdown", "metadata": {}}, {"execution_count": 15, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable declaration\n\neta_0=377 # intrinsic impedance in free space in ohm\nprint \"E=sin(omega*t-beta*z)ax+2*sin(omega*t-beta*z+75)ay # electric field in V/m\"\nEx=1 # magnitude of Ex\nEy=2 # magnitude of Ey\n\n#calculations\nE=sqrt(Ex**2+Ey**2) # resultant magnitude\nPav=((1/2)*E**2)/(eta_0) # power per unit area conveyed by the wave in free space\n\n#results\nprint \"power per unit area conveyed by the wave in free space in mW/m**2:\",round(Pav*1000,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "E=sin(omega*t-beta*z)ax+2*sin(omega*t-beta*z+75)ay # electric field in V/m\npower per unit area conveyed by the wave in free space in mW/m**2: 6.631\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.28,Page Number 125", "cell_type": "markdown", "metadata": {}}, {"execution_count": 16, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable declaration\n\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nepsilon_r = 4 # relative permittivity\nmu_r = 1 # relative permeability\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu = mu_0*mu_r # permeability\nH = 5 # magnitude of magnetic field in mA/m\nH = 5*10**-3 # magnitude of magnetic field in A/m\n\n#calculations\neta = sqrt(mu/epsilon) # intrinsic impedence in ohm\nE = H*sqrt(mu/epsilon) # magnitude of electric field\nP_av = E**2/(2*eta) # average power\nW_E = epsilon*E**2 # maximum energy density of the wave\n\n\n#results\nprint \"Average power in micro*w/m**2:\",round(P_av*10**6,2)\nprint \"maximum energy density of the wave in PJ/m*3:\",round(W_E*10**12,3)\n\n\n#note: P_av is = 2353.75 in book but it is 2354.58 correctly calculated by python.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Average power in micro*w/m**2: 2354.59\nmaximum energy density of the wave in PJ/m*3: 31.416\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.29,Page Number 125", "cell_type": "markdown", "metadata": {}}, {"execution_count": 17, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable declaration\n\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nepsilon_r = 1 # relative permittivity\nmu_r = 1 # relative permeability\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu = mu_0*mu_r # permeability\nE = 100*sqrt(pi) # magnitude of electric field in V/m\n\n\n#calculations\nW_E = (1/2)*epsilon*E**2 # electric energy density of the wave\nW_H = W_E # as the energy density is equal to that of magnetic field for a pla`ne travelling wave\nW_T = W_E+W_H # total energy density\n\n#results\nprint \"electric energy density of the wave in nJ/m**3:\",round(W_E*10**9,3)\nprint \"magnetic energy density of wave in nJ/m**3:\",round(W_H*10**9,3)\nprint \"Total energy density in nJ/m**3:\",round(W_T*10**9,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "electric energy density of the wave in nJ/m**3: 139.078\nmagnetic energy density of wave in nJ/m**3: 139.078\nTotal energy density in nJ/m**3: 278.157\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.30,Page Number 126", "cell_type": "markdown", "metadata": {}}, {"execution_count": 18, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable Declaration\n\nsigma = 5 # conductivity of sea water in mho/m\nf1 = 25 # frequency in kHz\nf1 = 25*10**3 # frequency in Hz\nomega1 = 2*pi*f1 # angular frequency in Hz\nf2 = 25 # frequency in MHz\nf2 = 25*10**6 # frequency in Hz\nomega2 = 2*pi*f2 # angular frequency in Hz\nepsilon_r = 81 # relative permittivity\nepsilon_0 = 8.854*10**(-12) # permittivity in free space\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu_r = 1 # relative permeability\nmu_0 = 4*pi*10**(-7) # permeability in free space\nmu = mu_r*mu_0 # permeability\n\n#calculations and results\n\nprint \"when frequency = 25kHz\"\nalpha_1 = omega1*sqrt((mu*epsilon)/2*(sqrt(1+(sigma**2/(omega1**2*epsilon**2)))-1)) # attenuation constant when f = 25kHz\n# formula: exp(-alpha*x) = 0.1\nx1 = 2.3/alpha_1 # transmitted distance in m\nprint \"transmitted distance in m:\",round(x1,3)\nprint \"when frequency = 25MHz\"\nalpha_2 = omega2*sqrt((mu*epsilon)/2*(sqrt(1+(sigma**2/(omega2**2*epsilon**2)))-1)) # attenuation constant when f = 25MHz\nx2 = 2.3/alpha_2 # transmitted distance in m\nprint \"transmitted distance in m:\",round(x2,3)\n\n\n# note: the values of epsilon_r = 81 and of mu_r = 1 for sea water which are not given in the book.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "when frequency = 25kHz\ntransmitted distance in m: 3.274\nwhen frequency = 25MHz\ntransmitted distance in m: 0.105\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.31,Page Number 126", "cell_type": "markdown", "metadata": {}}, {"execution_count": 19, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi,radians,asin,cos,sin,degrees\n\n#variable Declaration\n\nE_i = 1 # magnitude of incident electric field in mV/m\nE_i = 1*10**-3 # magnitude of incident electric field in V/m\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\ntheta_i = 15 # incident angle in degrees\nepsilon_r1 = 8.5 # relative permittivity of medium 1\nmu_r1 = 1 # relative permeability of medium 1\nepsilon1 = epsilon_r1*epsilon_0 # permittivity\nmu1 = mu_0*mu_r1 # permeability\neta1 = sqrt(mu1/epsilon1) # intrinsic impedence of medium 1 in ohm\nepsilon2 = epsilon_0 # permittivity of medium 2\nmu2 = mu_0 # permeability of medium 2\neta2 = sqrt(mu2/epsilon2) # intrinsic impedence of medium 2 in ohm\n\n#calculations and result\n\n# formula : sin(theta_i)/sin(theta_t) = sqrt(epsilon2/epsilon1)\ntheta_t = asin(sin(radians(theta_i)))/(sqrt(epsilon2/epsilon1)) # transmitted angle in degrees\nE_r = (E_i*(((eta2*cos(radians(theta_i))))-(eta1*cos(radians((theta_i))))))/((eta2*cos(radians(theta_i)))+(eta1*cos(radians(theta_i)))) # reflection cofficient of electric field\nprint \"reflection cofficient of electric field in mV/m:\",round(E_r*1000,3)\nH_i = E_i/eta1 # incident cofficient of magnetic field\nprint \"incident cofficient of magnetic field in micro*A/m:\",round(H_i*10**6,3)\nH_r = E_r/eta1 # reflection cofficient of electric field\nprint \"reflection cofficient of magnetic field in micro*A/m:\",round(H_r*10**6,3)\n\n\n#note : minute difference in decimel in the value of H_i and H_r.\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "reflection cofficient of electric field in mV/m: 0.489\nincident cofficient of magnetic field in micro*A/m: 7.739\nreflection cofficient of magnetic field in micro*A/m: 3.786\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 2.32,Page Number 127", "cell_type": "markdown", "metadata": {}}, {"execution_count": 20, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi,sqrt\n\n#variable declaration\n\nsigma = 5.8*10**7 # conductivity in mho/m\nf = 2 # frequency in MHz\nf = 2*10**6 # frequency in Hz\nomega = 2*pi*f # angular frequency in rad/sec\nE = 2 # magnitude of electric field in mV/m\nE = 2*10**-3 # magnitude of electric field in V/m\nepsilon_0 = 8.854*10**-12 # permittivity in free space in F/m\nmu_0 = 4*pi*10**-7 # permeability in free space in H/m\nepsilon_r = 1 # relative permittivity\nmu_r = 1 # relative permeability\nepsilon = epsilon_r*epsilon_0 # permittivity\nmu = mu_0*mu_r # permeability\n\n# calculations\neta = sqrt(mu*omega/sigma) # intrinsic impedence in ohm\nP_av = (1/2)*E**2/eta # average power density anbsorbed by copper\n\n#result\nprint \"average power density anbsorbed by copper in mW/m**2:\",round(P_av*1000,2)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "average power density anbsorbed by copper in mW/m**2: 3.83\n"}], "metadata": {"collapsed": false, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter3_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter3_2.ipynb new file mode 100755 index 00000000..c72b3bb7 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter3_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 3 : Radiation and Antennas", "cell_type": "markdown", "metadata": {}}, {"source": "## Example 3.1,Page Number 158", "cell_type": "markdown", "metadata": {}}, {"execution_count": 1, "cell_type": "code", "source": "from __future__ import division\nfrom sympy import Symbol\nfrom math import pi\n\nLm = Symbol(\"Lm'\")# defining Lm as lambda\ndl = Lm/40 # dipole length\nRr = 80*(pi)**(2)*(dl/Lm)**2\nprint \"radiation resistance of dipole in ohm if dl = Lm/40 :\",round(Rr,3)\ndl = Lm/60 # dipole length\nRr = 80*(pi)**(2)*(dl/Lm)**2\nprint \"radiation resistance of dipole in ohm if dl = Lm/60 :\",round(Rr,3)\ndl = Lm/80 # dipole length\nRr = 80*(pi)**(2)*(dl/Lm)**2\nprint \"radiation resistance of dipole in ohm if dl = Lm/80 :\",round(Rr,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radiation resistance of dipole in ohm if dl = Lm/40 : 0.493\nradiation resistance of dipole in ohm if dl = Lm/60 : 0.219\nradiation resistance of dipole in ohm if dl = Lm/80 : 0.123\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 3.3,Page Number 160", "cell_type": "markdown", "metadata": {}}, {"execution_count": 2, "cell_type": "code", "source": "from __future__ import division\nfrom sympy import Symbol\nfrom math import pi,sqrt\n\n#variable declaration\n\nPr = 1 #power in watt\nEta0 = 120*(pi) # constant\n\n#calculations\nI = sqrt(Pr/73) # current in A\nr = Symbol('r')\nE_max = 60*I/r\nRI = (r**2*E_max**2)/Eta0 # radiation intensity\nGd_max = (4*(pi)*(RI))/Pr\n\n\n#result\nprint \"Directivity of a half wave dipole is:\",round(Gd_max,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Directivity of a half wave dipole is: 1.644\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 3.4,Page Number 160", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "#variable declaration\n\nRr=300 # radiation resistance in ohm\nI=3 # in A\n\n#calculations\n#formula: Pr=I**2*R\nPr=I**2*Rr # power radiated in watt\n\n#result\nprint \"power radiated by antenna in watts:\",Pr\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power radiated by antenna in watts: 2700\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 3.5,Page Number 161", "cell_type": "markdown", "metadata": {}}, {"execution_count": 4, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n#variable delaration\n\nf = 500 #frequency in mega hertz\nf = 500*10**6 #frequency in hertz\nc = 3*10**8 #speed of light in m/s\nGdmax = 1.644 # directivity of a half wave dipole\n\n\n#calculations\nlamda = c/f #wavelength in meter\nAe = ((lamda)**2*Gdmax)/(4*(pi)) # Effective area in m**2\n\n#result\nprint \"effective area of half wave dipole in m**2:\",round(Ae,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "effective area of half wave dipole in m**2: 0.047\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 3.6,Page Number 161", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n#variable delaration\nf = 100 #frequency in Mhz\nf = 100*10**6 #frequency in hertz\nc = 3*10**8 #speed of light in m/s\nD = 1.5 # directivity \n\n#calculations\nlamda = c/f #wavelength in meter\nAe = (lamda**2*D)/(4*(pi)) # effective area in m**2\n\n\n#result\nprint \"Effective area of hertezian dipole in m**2:\",round(Ae,2)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Effective area of hertezian dipole in m**2: 1.07\n"}], "metadata": {"collapsed": false, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter4_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter4_2.ipynb new file mode 100755 index 00000000..7166fa05 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter4_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 4 : Analysis of Linear Arrays", "cell_type": "markdown", "metadata": {}}, {"source": "## Example 4.1,Page Number 195", "cell_type": "markdown", "metadata": {}}, {"execution_count": 1, "cell_type": "code", "source": "from __future__ import division\nfrom sympy import Symbol\n\nL = Symbol('L') #Defining L as lambda\nl = 10*L \nN = 20 # number of elements\nd = l/N \nBW1 = (2*(L/d)*1/N) #bandwidth\nprint \"Null-to-null BW of broadside array in radians when l = 10*L,N = 20:\",round(BW1,2)\nl = 50*L\nN = 100 # number of elements\nd = l/N\nBW2 = (2*(L/d)*1/N) #bandwidth\nprint \"Null-to-null BW of broadside array in radians when l = 50*L,N = 100:\",round(BW2,2)\nl = 20*L\nN = 50 # number of elements\nd = l/N\nBW3 = (2*(L/d)*1/N) #bandwidth\nprint \"Null-to-null BW of broadside array in radians when l = 20*L,N = 50:\",round(BW3,2)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Null-to-null BW of broadside array in radians when l = 10*L,N = 20: 0.2\nNull-to-null BW of broadside array in radians when l = 50*L,N = 100: 0.04\nNull-to-null BW of broadside array in radians when l = 20*L,N = 50: 0.1\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.2,Page Number 196", "cell_type": "markdown", "metadata": {}}, {"execution_count": 2, "cell_type": "code", "source": "from __future__ import division\nfrom sympy import Symbol\nfrom math import sqrt\n\nL = Symbol('L') #Defining L as lambda\nl = 10*L \nN = 20 # number of elements\nd = l/N \nBW1 = 2*sqrt((2*(L/d)*1/N)) #bandwidth\nprint \"Null-to-null BW of end-fire array in radians when l = 10*L,N = 20:\",round(BW1,3)\nl = 50*L\nN = 100 # number of elements\nd = l/N\nBW2 = 2*sqrt((2*(L/d)*1/N)) #bandwidth\nprint \"Null-to-null BW of end-fire array in radians when l = 50*L,N = 100:\",round(BW2,3)\nl = 20*L\nN = 50 # number of elements\nd = l/N\nBW3 = 2*sqrt((2*(L/d)*1/N)) #bandwidth\nprint \"Null-to-null BW of end-fire array in radians when l = 20*L,N = 50:\",round(BW3,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Null-to-null BW of end-fire array in radians when l = 10*L,N = 20: 0.894\nNull-to-null BW of end-fire array in radians when l = 50*L,N = 100: 0.4\nNull-to-null BW of end-fire array in radians when l = 20*L,N = 50: 0.632\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.3,Page Number 196", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable declaration\n\nf = 6 #frequency in GHz\nf = 6*10**9 #frequency in Hz\nc = 3*10**8 #speed of light in m/s\nl = 10 # array length in meter\n\n#calculations\nlamda = c/f #wavelength in meter\n# formula : BWFN = 2*lambda/l\nBWFN = 2*(lamda/l) # band width in radians\nD = 2*(l/lamda) # directivity\n\n#result\nprint \"null-to-null Beamwidth of broad side array in radians:\",round(BWFN,2)\nprint \"Directivity:\",round(D,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "null-to-null Beamwidth of broad side array in radians: 0.01\nDirectivity: 400.0\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.4,Page Number 197", "cell_type": "markdown", "metadata": {}}, {"execution_count": 4, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n#variable declaration\nf = 10 #frequency in Ghz\nf = 10*10**9 #frequency in hertz\nc = 3*10**8 #speed of light in m/s\nlamda = c/f #wavelength in meter\nN = 50 # number of elements\n\n#calculations\nd = 0.5*lamda # element spacing in meter\nBeta = 2*(pi)/lamda # phase shift\nalpha = Beta*d # progressive phase shift in radians\nl = N*d # Array length in meter\n\n\n#result\nprint \"progressive phase shift in radians:\",round(alpha,3)\nprint \"Array length in meter\",round(l,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "progressive phase shift in radians: 3.142\nArray length in meter 0.75\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.5,Page Number 197", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\nfrom sympy import Symbol\n\n\n#variable declaration\nN = 100 # no. of elements\nLm = Symbol('Lm') # defining Lm as lambda\n\n#calculations\nd = 0.5*Lm\nl = N*d # array length\nBWFN = 114.6 /(l/Lm) # beam width in degrees \nHPBW = BWFN/2 # half power beam width in degrees\nD1 = 2*(l/Lm) # directivity of broad side array\nD2 = 4*(l/Lm) # directivity of end fire array\n\n#result\nprint \"half power beamwidth in degrees:\",round(HPBW,3)\nprint \"null-to-null beamwidth in degrees:\",round(BWFN,3)\nprint \"directivity of broad side array:\",round(D1,1)\nprint \"directivity of end fire array:\",round(D2,1)\n\n# note : answer in the book is mis-printed,the HPBW is not 11.46 it should be 1.146 degrees. \n\n# note: misprint in second step of part a in book correct is l = N*d = 100*0.5*lamda = 50*lamda \n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "half power beamwidth in degrees: 1.146\nnull-to-null beamwidth in degrees: 2.292\ndirectivity of broad side array: 100.0\ndirectivity of end fire array: 200.0\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.9,Page Number 200", "cell_type": "markdown", "metadata": {}}, {"execution_count": 6, "cell_type": "code", "source": "from __future__ import division\nimport numpy as np\nfrom math import factorial\n\n\n# formula :combination(n,r)=(factorial(n))/(factorial(r)*factorial(n-r))\nprint(\"when n=2\")\nn=2\na_0=factorial(1)/factorial(0)*factorial(1) #relative excitation level 1\na_1=factorial(1)/factorial(1)*factorial(0) #relative excitation level 2\nprint \"relative excitation levels of binomial array at n=2:\",np.array([a_0,a_1])\nprint(\"when n=3\")\nn=3\na_1=factorial(1)/factorial(1)*factorial(0) #relative excitation level 2\na_0=2*a_1 # relative excitation level 1\nprint \"relative excitation levels of binomial array at n=3:\",np.array([a_1,a_0,a_1])\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "when n=2\nrelative excitation levels of binomial array at n=2: [ 1. 1.]\nwhen n=3\nrelative excitation levels of binomial array at n=3: [ 1. 2. 1.]\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.10,Page Number 200", "cell_type": "markdown", "metadata": {}}, {"execution_count": 7, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10,pi\n\n\n#variable declaration\nd = 30 #separation distance in meter\nf = 10 #frequency in mega hertz\nf = 10*10**6 #frequency in hertz\nc = 3*10**8 #speed of light in m/s\nlamda = c/f #wavelength in meter\nGt = 1.65 #transmitting gain in dB\nGr = 1.65 #receiving gain in dB\n\n#calculations\n\n# basic transmission loss :\n# formula : Lb = 10*log(((4*(pi)*d)**2/(lamda)**2))\nLb = 10*log10((4*(pi)*d)**2/(lamda)**2) # basic transmmision loss in dB\n# actual transmission loss :\nLa = Lb-Gt-Gr # actual transmisson loss in dB\n\n#result\nprint \"basic transmmision loss in dB:\",round(Lb,3)\nprint \"actual transmisson loss in dB:\",round(La,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "basic transmmision loss in dB: 21.984\nactual transmisson loss in dB: 18.684\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.11,Page Number 201", "cell_type": "markdown", "metadata": {}}, {"execution_count": 8, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10,pi\n\n\nf = 0.3 #frequency in Ghz\nf = 0.3*10**9 #frequency in hertz\nc = 3*10**8 #speed of light in m/s\nlamda = c/f #wavelength in meter\nd1 = 1.6 # in Km\nd1 = 1.6*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb1 = 20*log10(4*pi*d1/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 1.6Km,f = 0.3GHz:\",round(Lb1,3)\nd2 = 16 # in Km\nd2 = 16*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb2 = 20*log10(4*pi*d2/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 16Km,f = 0.3GHz:\",round(Lb2,3)\nd3 = 160 # in Km\nd3 = 160*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb3 = 20*log10(4*pi*d3/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 160Km,f = 0.3GHz:\",round(Lb3,3)\nd4 = 320 # in Km\nd4 = 320*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb4 = 20*log10(4*pi*d4/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 320Km,f = 0.3GHz:\",round(Lb4,3)\n# when frequency is 3Ghz\n# given :\nf = 3 #frequency in Ghz\nf = 3*10**9 #frequency in hertz\nc = 3*10**8 #speed of light in m/s\nlamda = c/f #wavelength in meter\nd1 = 1.6 # in Km\nd1 = 1.6*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb1 = 20*log10(4*pi*d1/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 1.6Km,f = 3GHz:\",round(Lb1,3)\nd2 = 16 # in Km\nd2 = 16*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb2 = 20*log10(4*pi*d2/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 16Km,f = 3GHz:\",round(Lb2,3)\nd3 = 160 # in Km\nd3 = 160*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb3 = 20*log10(4*pi*d3/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 160Km,f = 3GHz:\",round(Lb3,3)\nd4 = 320 # in Km\nd4 = 320*10**3 # in meter\n# formula : Lb = 20*log10((4*(pi)*d)/(lamda))\nLb4 = 20*log10(4*pi*d4/lamda) # basic transmission loss in dB\nprint \"basic transmission loss in dB when d = 320Km,f = 3GHz:\",round(Lb4,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "basic transmission loss in dB when d = 1.6Km,f = 0.3GHz: 86.067\nbasic transmission loss in dB when d = 16Km,f = 0.3GHz: 106.067\nbasic transmission loss in dB when d = 160Km,f = 0.3GHz: 126.067\nbasic transmission loss in dB when d = 320Km,f = 0.3GHz: 132.087\nbasic transmission loss in dB when d = 1.6Km,f = 3GHz: 106.067\nbasic transmission loss in dB when d = 16Km,f = 3GHz: 126.067\nbasic transmission loss in dB when d = 160Km,f = 3GHz: 146.067\nbasic transmission loss in dB when d = 320Km,f = 3GHz: 152.087\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.12,Page Number 202", "cell_type": "markdown", "metadata": {}}, {"execution_count": 9, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10,pi\n\nGt=10 # transmission gain in dB\nGr=10 # receiving gain in dB\n#when frequency=0.3GHz\n# given :\nf=0.3 #frequency in Ghz\nf=0.3*10**9 #frequency in hertz\nc=3*10**8 #speed of light in m/s\nlamda=c/f #wavelength in meter\nd1=1.6 # in Km\nd1=1.6*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb1=20*log10(4*pi*d1/lamda) # basic transmission loss in dB\nLa1=Lb1-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=1.6Km,f=0.3GHz:\",round(La1,2)\nd2=16 # in Km\nd2=16*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb2=20*log10(4*pi*d2/lamda) # basic transmission loss in dB\nLa2=Lb2-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=16Km,f=0.3GHz:\",round(La2,2)\nd3=160 # in Km\nd3=160*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb3=20*log10(4*pi*d3/lamda) # basic transmission loss in dB\nLa3=Lb3-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=160Km,f=0.3GHz:\",round(La3,2)\nd4=320 # in Km\nd4=320*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb4=20*log10(4*pi*d4/lamda) # basic transmission loss in dB\nLa4=Lb4-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=320Km,f=0.3GHz:\",round(La4,2)\n# when frequency is 3Ghz\n# given :\nf=3 #frequency in Ghz\nf=3*10**9 #frequency in hertz\nc=3*10**8 #speed of light in m/s\nlamda=c/f #wavelength in meter\nd1=1.6 # in Km\nd1=1.6*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb1=20*log10(4*pi*d1/lamda) # basic transmission loss in dB\nLa1=Lb1-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=1.6Km,f=3GHz:\",round(La1,2)\nd2=16 # in Km\nd2=16*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb2=20*log10(4*pi*d2/lamda) # basic transmission loss in dB\nLa2=Lb2-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=16Km,f=3GHz:\",round(La2,2)\nd3=160 # in Km\nd3=160*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb3=20*log10(4*pi*d3/lamda) # basic transmission loss in dB\nLa3=Lb3-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=160Km,f=3GHz:\",round(La3,2)\nd4=320 # in Km\nd4=320*10**3 # in meter\n# formula : Lb=20*log10((4*(pi)*d)/(lamda))\nLb4=20*log10(4*pi*d4/lamda) # basic transmission loss in dB\nLa4=Lb4-Gt-Gr # Actual transmission loss in dB \nprint \"Actual transmission loss in dB when d=320Km,f=3GHz:\",round(La4,2)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Actual transmission loss in dB when d=1.6Km,f=0.3GHz: 66.07\nActual transmission loss in dB when d=16Km,f=0.3GHz: 86.07\nActual transmission loss in dB when d=160Km,f=0.3GHz: 106.07\nActual transmission loss in dB when d=320Km,f=0.3GHz: 112.09\nActual transmission loss in dB when d=1.6Km,f=3GHz: 86.07\nActual transmission loss in dB when d=16Km,f=3GHz: 106.07\nActual transmission loss in dB when d=160Km,f=3GHz: 126.07\nActual transmission loss in dB when d=320Km,f=3GHz: 132.09\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 4.13,Page Number 203", "cell_type": "markdown", "metadata": {}}, {"execution_count": 10, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n#variable declaration\n\nWt = 15 # radaited power in watt\nf = 60 # in MHz\nf = 60*10**6 # in Hz\nd = 10 # in m\nc = 3*10**8 # in m/s\nlamda = c/f # in meter\nGt = 1.64 # transmitting gain in dB\nGr = 1.64 # receiving gain in dB\n\n\n#calculations\nWr = (Wt*Gt*Gr*(lamda)**2/(4*(pi)*d)**2) # receiving power in watt\n\n#result\nprint \"receiving power in mW:\",round(Wr*1000,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "receiving power in mW: 63.87\n"}], "metadata": {"collapsed": false, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter6_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter6_2.ipynb new file mode 100755 index 00000000..7051aef3 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter6_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 6 : HF,VHF AND UHF ANTENNAS", "cell_type": "markdown", "metadata": {}}, {"source": "## EXAMPLE 6.1,PAGE NUMBER 278 ", "cell_type": "markdown", "metadata": {}}, {"execution_count": 1, "cell_type": "code", "source": "from math import pi,sin\n\n# Variable Declaration\n\nf = 30 # frequency in MHz\nf = 30*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in meter\nDelta = 30 # angle of elevation in Degrees\n\n#calculation\n\nH = lamda/(4 * sin(Delta*pi/180)) # Rhombic height in m\nl = lamda/(2 * sin(Delta*pi/180) **2) # wire length in m\nphi = 90-Delta # tilt angle in Degrees\n\n#Results\n\nprint \"Rhombic height is:\",round(H,2),\"meter\"\nprint \"Tilt angle is:\",round(phi,2),\"degrees\"\nprint \"length of wire is:\",round(l,2),\"meter\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Rhombic height is: 5.0 meter\nTilt angle is: 60.0 degrees\nlength of wire is: 20.0 meter\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.2,PAGE NUMBER 278", "cell_type": "markdown", "metadata": {}}, {"execution_count": 2, "cell_type": "code", "source": "from math import pi,sin\n\n\n# Variable Declaration\n\nf = 20 # frequency in MHz\nf = 20*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in meter\n\n#calculation\n\nDelta = 10 # angle of elevation in Degrees\nH = lamda/(4 * sin(Delta*pi/180)) # Rhombic height in m\nl = lamda/(2 * sin(Delta*pi/180) **2) # wire length in m\nphi = 90-Delta # tilt angle in Degrees\n\n#Results\n\nprint \"Rhombic height is:\",round(H,3),\"meter\"\nprint \"Tilt angle is:\",round(phi,2),\"degrees\"\nprint \"length of wire is:\",round(l,3),\"meter\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Rhombic height is: 21.595 meter\nTilt angle is: 80.0 degrees\nlength of wire is: 248.726 meter\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.3,PAGE NUMBER 279-281", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "from math import pi,sin,cos\n\n\n\n# Variable Declaration\n\nf = 30 # frequency in MHz\nf = 30*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in meter\n\n#calculation and results:\n\n\n\nprint \"for Delta = 10 degrees\"\n\n\nDelta1 = 10 # angle of elevation in Degrees\nH1 = lamda/(4 * sin(Delta1*pi/180)) # Rhombic height in m\nl1 = lamda/(2 * sin(Delta1*pi/180) **2) # wire length in m\nphi1 = 90-Delta1 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H1,3),\"meter\"\nprint \"Tilt angle is:\",round(phi1,2),\"degrees\"\nprint \"length of wire is:\",round(l1,2),\"meter\"\n\n\n\n\nprint \"for Delta = 15 degrees\"\n\n\nDelta2 = 15 # angle of elevation in Degrees\nH2 = lamda/(4 * sin(Delta2*pi/180)) # Rhombic height in m\nl2 = lamda/(2 * sin(Delta2*pi/180) **2) # wire length in m\nphi2 = 90-Delta2 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H2,3),\"meter\"\nprint \"Tilt angle is:\",round(phi2,2),\"degrees\"\nprint \"length of wire is:\",round(l2,2),\"meter\"\n\n\n\nprint \"for Delta = 20 degrees\"\n\n\nDelta3 = 20 # angle of elevation in Degrees\nH3 = lamda/(4 * sin(Delta3*pi/180)) # Rhombic height in m\nl3 = lamda/(2 * sin(Delta3*pi/180) **2) # wire length in m\nphi3 = 90-Delta3 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H3,3),\"meter\"\nprint \"Tilt angle is:\",round(phi3,2),\"degrees\"\nprint \"length of wire is:\",round(l3,2),\"meter\"\n\n\n\n\nprint \"for Delta = 25 degrees\"\n\n\nDelta4 = 25 # angle of elevation in Degrees\nH4 = lamda/(4 * sin(Delta4*pi/180)) # Rhombic height in m\nl4 = lamda/(2 * sin(Delta4*pi/180) **2) # wire length in m\nphi4 = 90-Delta4 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H4,3),\"meter\"\nprint \"Tilt angle is:\",round(phi4,2),\"degrees\"\nprint \"length of wire is:\",round(l4,2),\"meter\"\n\n\n\n\nprint \"for Delta = 30 degrees\"\n\n\nDelta5 = 30 # angle of elevation in Degrees\nH5 = lamda/(4 * sin(Delta5*pi/180)) # Rhombic height in m\nl5 = lamda/(2 * sin(Delta5*pi/180) **2) # wire length in m\nphi5 = 90-Delta5 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H5,3),\"meter\"\nprint \"Tilt angle is:\",round(phi5,2),\"degrees\"\nprint \"length of wire is:\",round(l5,2),\"meter\"\n\n\n\n\nprint \"for Delta = 35 degrees\"\n\n\nDelta6 = 35 # angle of elevation in Degrees\nH6 = lamda/(4 * sin(Delta6*pi/180)) # Rhombic height in m\nl6 = lamda/(2 * sin(Delta6*pi/180) **2) # wire length in m\nphi6 = 90-Delta6 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H6,3),\"meter\"\nprint \"Tilt angle is:\",round(phi6,2),\"degrees\"\nprint \"length of wire is:\",round(l6,2),\"meter\"\n\n\n\n\nprint \"for Delta = 40 degrees\"\n\n\nDelta7 = 40 # angle of elevation in Degrees\nH7 = lamda/(4 * sin(Delta7*pi/180)) # Rhombic height in m\nl7 = lamda/(2 * sin(Delta7*pi/180) **2) # wire length in m\nphi7 = 90-Delta7 # tilt angle in Degrees\nprint \"Rhombic height is:\",round(H7,3),\"meter\"\nprint \"Tilt angle is:\",round(phi7,2),\"degrees\"\nprint \"length of wire is:\",round(l7,2),\"meter\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "for Delta = 10 degrees\nRhombic height is: 14.397 meter\nTilt angle is: 80.0 degrees\nlength of wire is: 165.82 meter\nfor Delta = 15 degrees\nRhombic height is: 9.659 meter\nTilt angle is: 75.0 degrees\nlength of wire is: 74.64 meter\nfor Delta = 20 degrees\nRhombic height is: 7.31 meter\nTilt angle is: 70.0 degrees\nlength of wire is: 42.74 meter\nfor Delta = 25 degrees\nRhombic height is: 5.916 meter\nTilt angle is: 65.0 degrees\nlength of wire is: 27.99 meter\nfor Delta = 30 degrees\nRhombic height is: 5.0 meter\nTilt angle is: 60.0 degrees\nlength of wire is: 20.0 meter\nfor Delta = 35 degrees\nRhombic height is: 4.359 meter\nTilt angle is: 55.0 degrees\nlength of wire is: 15.2 meter\nfor Delta = 40 degrees\nRhombic height is: 3.889 meter\nTilt angle is: 50.0 degrees\nlength of wire is: 12.1 meter\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.4,PAGE NUMBER 281", "cell_type": "markdown", "metadata": {}}, {"execution_count": 4, "cell_type": "code", "source": "from math import pi,sin,cos\n\n\n\n# Variable Declaration\n\nf = 30 # frequency in MHz\nf = 30*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in meter\nDelta = 30 # angle of elevation in Degrees\n\n#calculation\n\nk = 0.74 # constant\nH = lamda/(4 * sin(Delta*pi/180)) # Rhombic height in m\nl = lamda/(2 * sin(Delta*pi/180) **2)*k # wire length in m\nphi = 90-Delta # tilt angle in Degrees\n\n#Results\n\nprint \"Rhombic height is:\",round(H,2),\"meter\"\nprint \"Tilt angle is:\",round(phi,2),\"degrees\"\nprint \"length of wire is:\",round(l,2),\"meter\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Rhombic height is: 5.0 meter\nTilt angle is: 60.0 degrees\nlength of wire is: 14.8 meter\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.5,PAGE NUMBER 282", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "from math import pi,sin\n\n\n# Variable Declaration\n\nf = 20 # frequency in MHz\nf = 20*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in meter\nDelta = 20 # angle of elevation in Degrees\nk = 0.74 # constant\n\n#calculation\n\nH = lamda/(4 * sin(Delta*pi/180)) # Rhombic height in m\nl = lamda/(2 * sin(Delta*pi/180) **2)*k # wire length in m\nphi = 90-Delta # tilt angle in Degrees\n\n\n#Results\n\n\nprint \"Rhombic height is:\",round(H,2),\"meter\"\nprint \"Tilt angle is:\",round(phi,2),\"degrees\"\nprint \"length of wire is:\",round(l,2),\"meter\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Rhombic height is: 10.96 meter\nTilt angle is: 70.0 degrees\nlength of wire is: 47.44 meter\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.6,PAGE NUMBER 282", "cell_type": "markdown", "metadata": {}}, {"execution_count": 6, "cell_type": "code", "source": "from __future__ import division\n\n\n\n# Variable Declaration\n\n\nf_MHz = 172 # frequency in MHz\nc = 3*10**8 # speed of light in m/s\n\n#calculation\n\nlamda = c/f_MHz # wavelength in m\nLa = 478/f_MHz # length of driven element in feet\nLr = 492/f_MHz # length of reflector in feet\nLd = 461.5/f_MHz # length of director in feet\nS = 142/f_MHz # element spacing in feet\n\n\n#Results\n\n\nprint \"length of driven element is:\", round(La,2),\"feet\"\nprint \"length of reflector is:\", round(Lr,2),\"feet\"\nprint \"length of director is:\", round(Ld,3),\"feet\"\nprint \"element spacing is:\",round(S,3),\"feet\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "length of driven element is: 2.78 feet\nlength of reflector is: 2.86 feet\nlength of director is: 2.683 feet\nelement spacing is: 0.826 feet\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.7,PAGE NUMBER 283", "cell_type": "markdown", "metadata": {}}, {"execution_count": 7, "cell_type": "code", "source": "from __future__ import division\n\n# Variable Declaration\n\n\nG = 12 # required gain in dB\nf = 200 # frequency in MHz \nf = 200*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\n\n#calculations\n\n\nlamda = c/f # wavelength in m\nLa = 0.46*lamda # length of driven element in m (note: in book La is given 0.416*lamda misprint)\nLr = 0.475*lamda # length of reflector in m\nLd1 = 0.44*lamda # length of director1 in m\nLd2 = 0.44*lamda # length of director2 in m\nLd3 = 0.43*lamda # length of director3 in m\nLd4 = 0.40*lamda # length of director4 in m\nSL = 0.25*lamda # spacing between reflector and driver in m\nSd = 0.31*lamda # spacing director and driving element in m\nd = 0.01*lamda # diameter of elements in m\nl = 1.5*lamda # length of array in m\n\n\n#Results\n\n\nprint \"length of driven element is:\" ,round(La,2),\"m\"\nprint \"length of reflector is:\",round(Lr,4),\"m\"\nprint \"length of director1 is:\",round(Ld1,2),\"m\"\nprint \"length of director2 is:\",round(Ld2,2),\"m\"\nprint \"length of director3 is:\",round(Ld3,3),\"m\"\nprint \"length of director4 is:\",round(Ld4,2),\"m\"\nprint \"spacing between reflector and driver is:\",round(SL,3),\"m\"\nprint \"spacing director and driving element is:\",round(Sd,3),\"m\"\nprint \"diameter of elements is:\",round(d,3),\"m\"\nprint \"length of array is:\",round(l,2),\"m\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "length of driven element is: 0.69 m\nlength of reflector is: 0.7125 m\nlength of director1 is: 0.66 m\nlength of director2 is: 0.66 m\nlength of director3 is: 0.645 m\nlength of director4 is: 0.6 m\nspacing between reflector and driver is: 0.375 m\nspacing director and driving element is: 0.465 m\ndiameter of elements is: 0.015 m\nlength of array is: 2.25 m\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.8,PAGE NUMBER 283", "cell_type": "markdown", "metadata": {}}, {"execution_count": 8, "cell_type": "code", "source": "from __future__ import division\nfrom math import atan\n\n\n# Variable Declaration\n\n\nG = 9 # required gain in dB\nf_l = 125 # lowest frequency in MHz\nf_l = 125*10**6 # lowest frequency in Hz\nf_h = 500 # highest frequency in MHz\nf_h = 500*10**6 # lowest frequency in Hz\nc = 3*10**8 # speed of light in m/s\ntau = 0.861 # scaling factor\nsigma = 0.162 # spacing factor\n\n\n#calculation\n\n\nlamda_l = c/f_l # longest wavelength in m\nlamda_s = c/f_h # shortest wavelength in m\nalpha = 2*atan((1-tau)/(4*sigma)) # wedge angle in Degrees\nL1 = lamda_l/2 # in m\nL2 = tau*L1 # in m\nL3 = tau*L2 # in m\nL4 = tau*L3 # in m\nL5 = tau*L4 # in m\nL6 = tau*L5 # in m\nL7 = tau*L6 # in m\nL8 = tau*L7 # in m\nL9 = tau*L8 # in m\nL10 = tau*L9 # in m\nL11 = tau*L10 # in m\n\n# element spacing relation\n#formula : sn = 2*sigma*Ln\n\n\nS1 = 2*sigma*L1 # in m\nS2 = 2*sigma*L2 # in m\nS3 = 2*sigma*L3 # in m\nS4 = 2*sigma*L4 # in m\nS5 = 2*sigma*L5 # in m\nS6 = 2*sigma*L6 # in m\nS7 = 2*sigma*L7 # in m\nS8 = 2*sigma*L8 # in m\nS9 = 2*sigma*L9 # in m\nS10 = 2*sigma*L10 # in m\nS11 = 2*sigma*L11 # in m\n\n\n\n#results\n\n\nprint(\"designing of log-periodic antenna:\")\n\nprint \"L1 is:\",round(L1,4),\"m\"\nprint \"L2 is:\",round(L2,4),\"m\"\nprint \"L3 is:\",round(L3,4),\"m\"\nprint \"L4 is:\",round(L4,4),\"m\"\nprint \"L5 is:\",round(L5,4),\"m\"\nprint \"L6 is:\",round(L6,4),\"m\"\nprint \"L7 is:\",round(L7,4),\"m\"\nprint \"L8 is:\",round(L8,4),\"m\"\nprint \"L9 is:\",round(L9,4),\"m\"\nprint \"L10 is:\",round(L10,4),\"m\"\nprint \"L11 is:\",round(L11,4),\"m\"\n\nprint \"elements spacing relation:\"\n\nprint \"S1 is:\",round(S1,4),\"m\"\nprint \"S2 is:\",round(S2,4),\"m\"\nprint \"S3 is:\",round(S3,4),\"m\"\nprint \"S4 is:\",round(S4,4),\"m\"\nprint \"S5 is:\",round(S5,4),\"m\"\nprint \"S6 is:\",round(S6,4),\"m\"\nprint \"S7 is:\",round(S7,4),\"m\"\nprint \"S8 is:\",round(S8,4),\"m\"\nprint \"S9 is:\",round(S9,4),\"m\"\nprint \"S10 is:\",round(S10,4),\"m\"\nprint \"S11 is:\",round(S11,4),\"m\"\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "designing of log-periodic antenna:\nL1 is: 1.2 m\nL2 is: 1.0332 m\nL3 is: 0.8896 m\nL4 is: 0.7659 m\nL5 is: 0.6595 m\nL6 is: 0.5678 m\nL7 is: 0.4889 m\nL8 is: 0.4209 m\nL9 is: 0.3624 m\nL10 is: 0.312 m\nL11 is: 0.2687 m\nelements spacing relation:\nS1 is: 0.3888 m\nS2 is: 0.3348 m\nS3 is: 0.2882 m\nS4 is: 0.2482 m\nS5 is: 0.2137 m\nS6 is: 0.184 m\nS7 is: 0.1584 m\nS8 is: 0.1364 m\nS9 is: 0.1174 m\nS10 is: 0.1011 m\nS11 is: 0.087 m\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.9,PAGE NUMBER 285", "cell_type": "markdown", "metadata": {}}, {"execution_count": 9, "cell_type": "code", "source": "from math import pi,cos,sqrt\n\n\n# Variable Declaration\n\nE_rms = 10 # electric field in mV/m\nE_rms = 10*10 **-3 # electric field in V/m\nf = 2 # frequency in MHz\nf = 2*10 **6 # frequency in Hz\nN = 10 # number of turns\nphi = 0 # angle between the plane of loop and direction of incident wave in Degrees\nS = 1.4 # area of loop antenna in m **2\nc = 3*10 **8 # speed of light in m/s\n\n#calculation\n\nlamda = c/f # wavelength in m\nE_max = sqrt(2)*E_rms # electric field in V/m\nV_rms = (2*pi*E_max*S*N/lamda)*cos(phi) # induced voltage\n\n#Result\n\nprint \"induced voltage is:\",round(V_rms*1000,2),\"mV\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "induced voltage is: 8.29 mV\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.10,PAGE NUMBER 285", "cell_type": "markdown", "metadata": {}}, {"execution_count": 10, "cell_type": "code", "source": "\n# Variable Declaration\n\n\nD = 0.5 # diameter of loop antenna in m\na = D/2 # radius of loop antenna in m\nf = 1 # frequency in MHz\nf = 1*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\n\n#calculation\n\nlamda = c/f # wavelength in m\nRr = 3720*(a/lamda) # radiation resistance of loop antenna in ohm\n\n\n#Results\n\nprint \"radiation resistance of loop antenna is:\",Rr,\"ohm\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radiation resistance of loop antenna is: 3.1 ohm\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.11,PAGE NUMBER 285-286", "cell_type": "markdown", "metadata": {}}, {"execution_count": 11, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n# Variable Declaration\n\na = 0.5 # radius of loop antenna in m\nf = 0.9 # frequency in MHz\nf = 0.9*10**6 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\n\n#calculation\n\nlamda = c/f # wavelength in m\nk = (2*pi*a)/lamda # constant\n\n#Results\n\nprint \"the value of k is:\",round(k,2)\nprint \"since,k<1/3\"\nprint \"So Directivity of loop antenna is D = 1.5\"\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "the value of k is: 0.01\nsince,k<1/3\nSo Directivity of loop antenna is D = 1.5\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.13,PAGE NUMBER 286", "cell_type": "markdown", "metadata": {}}, {"execution_count": 12, "cell_type": "code", "source": "from sympy import Symbol\n\n#variable declaration and calculation\n\nLm = Symbol('Lm') # defining Lm as lambda\nd = 1.5*Lm # diameter of antenna in m\na = d/2 # radius of antenna in m\nRr = 3720*(a/Lm) # radiation resistance of loop antenna in ohm\nD = 4.25*(a/Lm) # Directivity of the loop antenna\n\n#results\n\nprint \"radiation resistance of the loop antenna is:\",round(Rr,0),\"ohm\"\nprint \"Directivity of the loop antenna is:\",round(D,4)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radiation resistance of the loop antenna is: 2790.0 ohm\nDirectivity of the loop antenna is: 3.1875\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.14,PAGE NUMBER 287", "cell_type": "markdown", "metadata": {}}, {"execution_count": 13, "cell_type": "code", "source": "from math import sqrt,pi\nfrom sympy import Symbol\n\n#Variable declaration\n\nGp = 28 # power gain\n\n#calculations\n\nLm = Symbol('Lm') # defining Lm as lamda\nd = Lm/2 # length of dipole\n\n#formula : Gp = 4*(L/lamda)\n\nL = Gp*Lm/4 # array length\nN = 7*2 # Number of elements in the array when spaced at lamda/2\n\n# formula : B.W = 2*sqrt((2*/N)*(lamda/d))\n\nBW = 2*sqrt(2*Lm/(N*d)) # null-to-null beam width in radians\nBW_d = BW*180/pi # null-to-null beam width in degrees\n\n#Results\n\nprint \"Number of elements in the array when spaced at lamda/2 are:\",N\nprint \"array length(where Lm is wavelength in m) is:\",L,\"m\"\nprint \"null-to-null beam width is:\",round(BW_d,1),\"degrees\"\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Number of elements in the array when spaced at lamda/2 are: 14\narray length(where Lm is wavelength in m) is: 7*Lm m\nnull-to-null beam width is: 61.3 degrees\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## EXAMPLE 6.15,PAGE NUMBER 287", "cell_type": "markdown", "metadata": {}}, {"execution_count": 14, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi,sqrt\n\n\n# Variable Declaration\n\nS = 0.05 # spacing in m\nDh = 0.1 # diameter of helical antenna in m\nN = 20 # number of turns\nf = 1000 # frequency in MHz\nf = 1000*10**6 # frequency in MHz\nc = 3*10**8 # speed of light in m/s\n\n\n#calculation\n\n\nlamda = c/f # wavelength in m\nC = pi*Dh # circumfrence of helix in m\nLa = N*S # axial legth in m\nphi_not = (115*(lamda**(3/2))/(C*sqrt(La))) # B.W.F.N., null-to-null beamwidth of main beam in Degreess\nphi = (52*lamda**(3/2)/(C*sqrt(La))) # H.P.B.W, half power beamwidth in Degreess\nD = (15*N*C**2*S/(lamda)**3) # Directivity\n\n#Results\n\nprint \"B.W.F.N., null-to-null beamwidth of main beam is:\",round(phi_not,1),\"degrees\"\nprint \"H.P.B.W, half power beamwidth is:\",round(phi,1),\"degrees\"\nprint \"Directivity is:\",round(D,2)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "B.W.F.N., null-to-null beamwidth of main beam is: 60.1 degrees\nH.P.B.W, half power beamwidth is: 27.2 degrees\nDirectivity is: 54.83\n"}], "metadata": {"collapsed": false, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter7_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter7_2.ipynb new file mode 100755 index 00000000..51c148f2 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter7_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 7 : Microwave Antennas", "cell_type": "markdown", "metadata": {}}, {"source": "## Example 7.1,Page Number 337", "cell_type": "markdown", "metadata": {}}, {"execution_count": 1, "cell_type": "code", "source": "from __future__ import division\n\n\n#variable declaration\nD = 2 # Diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 5 # frequency in GHz\nf = 5*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nBWFN = 140*(lamda/D) # null-to-null beamwidth in degrees\nHPBW = 70*(lamda/D) # half power beamwidth in degrees\n\n#result\nprint \"null-to-null beamwidth in degrees:\",round(BWFN,3)\nprint \"half power beamwidth in degrees:\",round(HPBW,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "null-to-null beamwidth in degrees: 4.2\nhalf power beamwidth in degrees: 2.1\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.2,Page Number 337", "cell_type": "markdown", "metadata": {}}, {"execution_count": 2, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nD = 2 # mouth diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 5 # frequency in GHz\nf = 5*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nG = 6.4*(D/lamda)**2 # power gain of paraboloid\nG_p = 10*log10(G) #power gain in dB\n\n#result\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 38.519\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.3,Page Number 337", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\n\nD_a = 0.15 # mouth Diameter of paraboloid in m\nc = 3*10**8 # speed of light in m/s\nf = 10 # frequency in GHz\nf = 10*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nBWFN = 140*(lamda/D_a) # null-to-null beamwidth in degrees\nHPBW = 70*(lamda/D_a) # half power beamwidth in degrees\nG_p = 6.4*(D_a/lamda)**2 # power gain of paraboloid\nG_p = 10*log10(G_p) # power gain in dB\n\n#result\nprint \"null-to-null beamwidth in degrees:\",round(BWFN,3)\nprint \"half power beamwidth in degrees:\",round(HPBW,3)\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "null-to-null beamwidth in degrees: 28.0\nhalf power beamwidth in degrees: 14.0\npower gain in dB: 22.041\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.4,Page Number 338", "cell_type": "markdown", "metadata": {}}, {"execution_count": 4, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nD_a = 1.8 #mouth diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 2 # frequency in GHz\nf = 2*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nG_p = 6.4*(D_a/lamda)**2 # power gain of paraboloid\nG_p = 10*log10(G_p) # power gain in dB\n\n\n#result\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 29.645\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.5,Page Number 338", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nc = 3*10**8 # speed of light in m/s\nf = 5 # frequency in GHz\nf = 5*10**9 # frequency in Hz\nlamda = c/f # wavelength in m\nBWFN = 10 # null-to-null beamwidth in degrees\n\n#calculations\n# formula: BWFN = 140*(lamda/D_a)\nD_a = 140*lamda/BWFN # mouth Diameter of paraboloid reflector in m\nHPBW = 70*(lamda/D_a) # half power beamwidth in degrees\nG_p = 6.4*(D_a/lamda)**2 # power gain of paraboloid\n\n#result\nprint \"half power beamwidth in degrees:\",round(HPBW,3)\nprint \"mouth Diameter of paraboloid reflector in m:\",round(D_a,3)\nprint \"power gain of paraboloid:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "half power beamwidth in degrees: 5.0\nmouth Diameter of paraboloid reflector in m: 0.84\npower gain of paraboloid: 1254.4\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.6,Page Number 339", "cell_type": "markdown", "metadata": {}}, {"execution_count": 6, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10,pi\n\n#variable declaration\nb = 0.65 # illumination efficiency\nD_a = 6 # mouth diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 10 # frequency in GHz\nf = 10*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nA = pi*(D_a)**2/4 # Actual area in m**2\nA_c = 0.65*A # capture area in m**2\nD = 6.4*(D_a/lamda)**2 # directivity\nD = 10*log10(D) # directivity in dB\nphi = 70*(lamda/D_a) # half power beam width in degrees\nphi_not = 2*phi # null-to-null main beam width in degrees\n\n#result\nprint \"directivity in dB:\",round(D,3)\nprint \"half power beam width in degrees:\",round(phi,3)\nprint \"null-to-null main beam width in degrees:\",round(phi_not,3)\nprint \"capture area in m**2:\",round(A_c,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "directivity in dB: 54.082\nhalf power beam width in degrees: 0.35\nnull-to-null main beam width in degrees: 0.7\ncapture area in m**2: 18.378\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.7,Page Number 339", "cell_type": "markdown", "metadata": {}}, {"execution_count": 7, "cell_type": "code", "source": "from __future__ import division\n\n#variable declaration\nD_a = 6 # Diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 4 # frequency in GHz\nf = 4*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nr = (2*D_a**2)/lamda # required minimum distance between two antennae in m\n\n\n#result\nprint \"required minimum distance between two antennae in m:\",round(r,3) \n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "required minimum distance between two antennae in m: 960.0\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.8,Page Number 340", "cell_type": "markdown", "metadata": {}}, {"execution_count": 8, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable declaration\nG_p = 1000 # gain\nc = 3*10**8 # speed of light in m/s\nf = 3 # frequency in GHz\nf = 3*10**9 # frequency in Hz\nlamda = c/f # wavelength in m\n\n#calculations\n# formula : G_p = 6.4*(D_a/lambda)**2 # power gain\nD_a = lamda*(sqrt(G_p/6.4)) # mouth Diameter of paraboloid in m\nBWFN = 140*(lamda/D_a) # null-to-null beamwidth in degrees\nHPBW = 70*(lamda/D_a) # half power beamwidth in degrees\n\n#result\nprint \"mouth Diameter of paraboloid in m\",round(D_a,3)\nprint \"null-to-null beamwidth in degrees:\",round(BWFN,3)\nprint \"half power beamwidth in degrees:\",round(HPBW,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "mouth Diameter of paraboloid in m 1.25\nnull-to-null beamwidth in degrees: 11.2\nhalf power beamwidth in degrees: 5.6\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.9,Page Number 340", "cell_type": "markdown", "metadata": {}}, {"execution_count": 9, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable declaration\nc = 3*10**8 # speed of light in m/s\nf = 10 # frequency in GHz\nf = 10*10**9 # frequency in Hz\nlamda = c/f # wavelength in m\nG_p = 75 # power gain in dB\n\n#calculations\n\n# formula : G_p = 10*log10(G_p) # power gain in dB\nG = 10**(G_p/10) # simple power gain\n# formula : G = 6.4*(D_a/lamda)**2 # power gain\nD_a = lamda*(sqrt(G/6.4)) # mouth Diameter of paraboloid in m\nA = pi*(D_a)**2/4 # Actual area in m**2\nA_c = 0.65*A # capture area in m**2\nBWFN = 140*(lamda/D_a) # null-to-null beamwidth in degrees\nHPBW = 70*(lamda/D_a) # half power beamwidth in degrees\n\n\n#result\nprint \"null-to-null beamwidth in degrees:\",round(BWFN,3)\nprint \"half power beamwidth in degrees:\",round(HPBW,3)\nprint \"capture area in m**2:\",round(A_c,3)\n\n#answer of capture area is slightly more as compare to the book\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "null-to-null beamwidth in degrees: 0.063\nhalf power beamwidth in degrees: 0.031\ncapture area in m**2: 2270.209\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.10,Page Number 341", "cell_type": "markdown", "metadata": {}}, {"execution_count": 10, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10,pi\n\n#variable declaration\nD_a = 60 # mouth diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 2 # frequency in GHz\nf = 2*10**9 # frequency in Hz\n\n#calculations\nlamda = c/f # wavelength in m\nphi = 70*(lamda/D_a) # half power beam width in degrees\nphi_not = 140*(lamda/D_a) # null-to-null main beam width in degrees\nG_p = 6.4*(D_a/lamda)**2 # power gain of paraboloid\nG_p = 10*log10(G_p) #power gain in dB\n\n#result\nprint \"half power beam width in degrees:\",round(phi,3)\nprint \"null-to-null main beam width in degrees:\",round(phi_not,3)\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "half power beam width in degrees: 0.175\nnull-to-null main beam width in degrees: 0.35\npower gain in dB: 60.103\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.11,Page Number 342", "cell_type": "markdown", "metadata": {}}, {"execution_count": 11, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nD = 22 # mouth diameter of paraboloid reflector in m\nc = 3*10**8 # speed of light in m/s\nf = 5 # frequency in GHz\nf = 5*10**9 # frequency in Hz\nlamda = c/f # wavelength in m\nb = 0.6 # illumination efficiency\n\n\n#calculations\nG_p = b*(D/lamda)**2 # power gain of paraboloid\nG_p = 10*log10(G_p) #power gain in dB\n\n#result\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 49.067\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.12,Page Number 342", "cell_type": "markdown", "metadata": {}}, {"execution_count": 12, "cell_type": "code", "source": "from __future__ import division\nfrom math import pi\n\n#variable declaration\nc = 3*10**8 # speed of light in m/s\nf = 2 # frequency in GHz\nf = 2*10**9 # frequency in Hz\nlamda = c/f # wavelength in m\nBWFN = 12 # null-to-null main beam width in degrees\n\n#calculalations\n# formula : BWFN = 140*(lamda/D_a)\nD_a = 140*lamda/BWFN # mouth diameter of paraboloid reflector in m\nA = pi*(D_a)**2/4 # Actual area in m**2\nA_c = 0.65*A # capture area in m**2\n\n#result\nprint \"mouth diameter of paraboloid reflector in m:\",round(D_a,3)\nprint \"capture area in m**2:\",round(A_c,4)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "mouth diameter of paraboloid reflector in m: 1.75\ncapture area in m**2: 1.5634\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.13,Page Number 343", "cell_type": "markdown", "metadata": {}}, {"execution_count": 13, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nc=3*10**8 # speed of light in m/s\nf=2.5 # frequency in GHz\nf=2.5*10**9 # frequency in Hz\nlamda=c/f # wavelength in m\nBWFN=3 # null-to-null main beam width in degrees\n\n#calculations\n# formula : BWFN=140*(lamda/D_a)\nD_a=140*lamda/BWFN # mouth diameter of paraboloid reflector in m\nG=6.4*(D_a/lamda)**2 # power gain of paraboloid\nG_p=10*log10(G) #power gain in dB\n\n#calculations\nprint \"power gain in dB:\",round(G_p,3)\nprint \"mouth diameter of paraboloid reflector in m:\",round(D_a,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 41.442\nmouth diameter of paraboloid reflector in m: 5.6\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.14,Page Number 343", "cell_type": "markdown", "metadata": {}}, {"execution_count": 14, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\nfrom sympy import Symbol\n\n#variable declaration\nphi = 5 # HPBW,half power beam width in Degrees\nphi_not = 2*phi # BWFN, null-to-null beam width in degrees\nLm = Symbol('Lm') # defining Lm as lambda\n\n#calculations\n# formula : phi = 70*(Lm/D_a) # where Lm is wavelength in m and D_a is mouth diameter in m\nD_a = (70*Lm)/phi\nG_p = 6.4*(D_a/Lm)**2\nG_p = 10*log10(G_p) # power gain in dB\n\n#result\nprint \"BWFN, null-to-null beam width in degrees:\",round(phi_not,3)\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "BWFN, null-to-null beam width in degrees: 10.0\npower gain in dB: 30.984\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.15,Page Number 344", "cell_type": "markdown", "metadata": {}}, {"execution_count": 15, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\nfrom sympy import Symbol\n\n#variable declaration\nLm = Symbol('Lm')# defining Lm as lambda\nD_a = 8*Lm # where D_a is mouth diameter in m and Lm is wavelength in m\n\n#calculations\n# formula : G_p = 6.4*(D/lambda)**2\nG_p = 6.4*(D_a/Lm)**2 #power gain\nG_p = 10*log10(G_p) # power gain in dB \n\n#result\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 26.124\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.16,Page Number 344", "cell_type": "markdown", "metadata": {}}, {"execution_count": 16, "cell_type": "code", "source": "from __future__ import division\nfrom sympy import Symbol\n\n#variable declaration\nLm = Symbol('Lm') # defining Lm as lamda\nD_a = 6*Lm # where D_a is mouth diameter in m and Lm is wavelength\n\n#calculations\n# formula : HPBW = phi = 70*(lamda/D_a)\nphi = 70*(Lm/D_a) # half power beam width in degrees\nphi_not = 2*phi # null-to-null beam width in degrees\n# formula : D = 6.4*(D_a/lambda)**2\nD = 6.4*(D_a/Lm)**2\n\n#result\nprint \"Directivity:\",round(D,3)\nprint \"half power beam width in degrees:\",round(phi,3)\nprint \"null-to-null beam width in degrees:\",round(phi_not,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Directivity: 230.4\nhalf power beam width in degrees: 11.667\nnull-to-null beam width in degrees: 23.333\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.17,Page Number 344", "cell_type": "markdown", "metadata": {}}, {"execution_count": 17, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nf = 6 # frequency in GHz\nf = 6*10**9 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in m\nd = 12 # aperture length in cm\nd = 12*10**-2 # aperture length in m\nw = 6 # aperture width in cm\nw = 6*10**-2 # aperture width in m\n\n#calculations\nphi_E = 56*(lamda/d) # half power beam width for aperture length d in Degrees\nphi_H = 67*(lamda/w) # half power beam width for aperture width w in Degrees\nG_p = (4.5*w*d)/(lamda)**2 # power gain\nG_p = 10*log10(G_p) # power gain in dB\nD =(7.5*w*d)/(lamda)**2 # Directivity\n\n#result\nprint \"half power beam width for aperture length d in Degrees:\",round(phi_E,3)\nprint \"half power beam width for aperture width w in Degrees:\",round(phi_H,3)\nprint \"power gain in dB:\",round(G_p,2)\nprint \"Directivity:\",round(D,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "half power beam width for aperture length d in Degrees: 23.333\nhalf power beam width for aperture width w in Degrees: 55.833\npower gain in dB: 11.13\nDirectivity: 21.6\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.18,Page Number 345", "cell_type": "markdown", "metadata": {}}, {"execution_count": 18, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\nfrom sympy import Symbol\n\n#variable declaration\nLm = Symbol('Lm') # defining Lm as lambda\nd = 8*Lm # where d is aperture length and Lm is wavelength\nw = 8*Lm # where w is aperture width\n\n#calculations\n#formula : G_p = (4.5*w*d)/lambda**2\nG_p = (4.5*w*d)/Lm**2 # power gain \nG_p = 10*log10(G_p) # power gain in dB\n\n#result\nprint \"power gain in dB:\",round(G_p,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 24.594\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.19,Page Number 345", "cell_type": "markdown", "metadata": {}}, {"execution_count": 19, "cell_type": "code", "source": "from __future__ import division\nfrom math import log10\n\n#variable declaration\nf = 6 # frequency in GHz\nf = 6*10**9 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in m\nd = 10 # aperture length in cm\nd = 10*10**-2 # aperture length in m\nw = 5 # aperture width in cm\nw = 5*10**-2 # aperture width in m\n\n#calculations\nG_p = (4.5*w*d)/(lamda)**2 # power gain\nG_p = 10*log10(G_p) # power gain in dB\nD = (7.5*w*d)/(lamda)**2 # Directivity\nD = 10*log10(D) # directivity in dB\n\n#result\nprint \"power gain in dB:\",round(G_p,3)\nprint \"Directivity in dB:\",round(D,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "power gain in dB: 9.542\nDirectivity in dB: 11.761\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 7.20,Page Number 345", "cell_type": "markdown", "metadata": {}}, {"execution_count": 21, "cell_type": "code", "source": "from __future__ import division\nimport numpy as np\n\neta_0 = 377 #intrinsic impedance in ohm\nprint \"when Zd = 73+42.5j\" \nZd = 73+42.5j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n\nprint \"when Zd = 67+0j\"\nZd = 67+0j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n\nprint \"when Zd = 710+0j\"\nZd = 710+0j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n\n\nprint \"when Zd = 500+0j\"\nZd = 500+0j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n\n\nprint \"when Zd = 50+20j\"\nZd = 50+20j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n\n\nprint \"when Zd = 50-25j\"\nZd = 50-25j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n\n\nprint \"when Zd = 300+0j\"\nZd = 300+0j # dipole impedance\n# formula : zs*zd = (eta_0)**2/4\nZs = eta_0**2/(4*Zd) # slot impedance in ohm\nprint \"complementary slot impedance in ohm:\",np.around(Zs,2)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "when Zd = 73+42.5j\ncomplementary slot impedance in ohm: (363.53-211.64j)\nwhen Zd = 67+0j\ncomplementary slot impedance in ohm: (530.33+0j)\nwhen Zd = 710+0j\ncomplementary slot impedance in ohm: (50.05+0j)\nwhen Zd = 500+0j\ncomplementary slot impedance in ohm: (71.06+0j)\nwhen Zd = 50+20j\ncomplementary slot impedance in ohm: (612.62-245.05j)\nwhen Zd = 50-25j\ncomplementary slot impedance in ohm: (568.52+284.26j)\nwhen Zd = 300+0j\ncomplementary slot impedance in ohm: (118.44+0j)\n"}], "metadata": {"collapsed": false, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter9_2.ipynb b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter9_2.ipynb new file mode 100755 index 00000000..fe9a64b9 --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/chapter9_2.ipynb @@ -0,0 +1 @@ +{"nbformat_minor": 0, "cells": [{"source": "# Chapter 9 : Wave Propagation", "cell_type": "markdown", "metadata": {}}, {"source": "## Example 9.1,Page Number 425", "cell_type": "markdown", "metadata": {}}, {"execution_count": 1, "cell_type": "code", "source": "from __future__ import division\nfrom math import atan,degrees,sqrt,cos,pi,sin,exp,radians\n\n#variable Declaration\n\nf = 1.7 #frequency in MHz\nf = 1.7*10**6 #frequency in Hz\nE = 0.5 #electric field in mV/m\nE = 0.5*10**(-3) # electric field in V/m\nsigma = 5*10**-5 # conductivity in mho/cm\neta = 0.5 # efficiency\nepsilon_r = 10 # relative permittivity\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in m\nd = 10 # distance in km\nd = 10*10**3 # distance in m\n\n#calculations\nDf = 1.8*10**12*(sigma/f) # dissipation factor\nb = atan((epsilon_r+1)/Df)*180/pi # phase constant in degrees\np = (pi/Df)*(d/lamda)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-((sin(radians(b))*(sqrt(p/2)*(exp((-5*p)/8))))) # factor of the ground losses\n# formula: E = (A*E_not)/d\n#E_not = 300*sqrt(P_kW) # E_not is in mV/m\n#E_not = 300*sqrt(P_kW)*10**(-3) # E_not is in V/m\nP_kW = ((E*d*10**-3)/(A*300*10**-3))**2 # Power in kW and d is in km\n# formula : P = Ptx*eta\nPtx = P_kW/eta #transmitter power required in kW\n\n\n#result\nprint \"transmitter power required in W:\",round(Ptx*1000,2)\n\n#note: answer in the book is wrong.python gives Ptx = 11.49W whereas answer in the book is Ptx = 12.6W\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "transmitter power required in W: 11.49\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.2,Page Number 426", "cell_type": "markdown", "metadata": {}}, {"execution_count": 21, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi,radians,atan,cos,sin,exp\n\n#variable Declaration\n\nprint \"for frequency = 500kHz\"\nf1 = 500*10**3 # frequency in Hz\nc = 3*10**8 # speed of light in m/s\nlamda1 = c/f1 # wavelength in m\nd = 100 # distance in km\nd = 100*10**3 # distance in m\nPt = 100 # transmitter power in kW \neta = 50 # efficiency in percentage\neta = 0.5 # efficiency\nP_kW = Pt*eta # radiated power in kW\nE_not = 300*1.28*sqrt(P_kW) # field strength in mV/m without ground losses at 1km\n\n\n#calculations and result\n\n # for sea water earth\nepsilon_r = 81 # permittivity\nsigma = 45*10**-3 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f1) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda1)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2)*exp((-5*p)/8))) # factor of the ground losses\nE1 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for sea water earth in mV/m when f = 500kHz:\",round(E1*1000,3)\n\n# for good soil\nepsilon_r = 20 # permittivity\nsigma = 10**-4 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f1) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda1)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2)*exp((-5*p)/8))) # factor of the ground losses\nE2 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for good soil in mV/m when f = 500kHz:\",round(E2*1000,3)\n\n# for poor soil\nepsilon_r = 10 # permittivity\nsigma = 0.2*10**-4 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f1) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda1)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2)*exp((-5*p)/8))) # factor of the ground losses\nE3 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for poor soil in mV/m when f = 500kHz:\",round(E3*1000,3)\n\n# for cities,industrial areas\nepsilon_r = 5 # permittivity\nsigma = 10**-5 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f1) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda1)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2)*exp((-5*p)/8))) # factor of the ground losses\nE4 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for cities,industrial areas in mV/m when f = 500kHz:\",round(E4*1000,3)\n\n# for Rockey soil,flat sandy\nepsilon_r = 10 # permittivity\nsigma = 2*10**-3 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f1) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda1)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2)*exp((-5*p)/8))) # factor of the ground losses\nE5 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for Rockey soil,flat sandy in mV/m when f = 500kHz:\",round(E5*1000,3)\n\n# for medium hills,forestation\nepsilon_r = 13 # permittivity\nsigma = 5*10**-5 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f1) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda1)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2)*exp((-5*p)/8))) # factor of the ground losses\nE6 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for medium hills,forestation in mV/m when f = 500kHz:\",round(E6*1000,3)\n\n\n\nprint(\"for frequency = 1500kHz\")\n\nf2 = 1500 # in kHz\nf2 = 1500*10**(3) # in Hz\nlamda2 = c/f2 # in m\n # for sea water earth\nepsilon_r = 81 # permittivity\nsigma = 45*10**-3 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f2) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda2)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b)))*(sqrt(p/2)*exp((-5*p)/8)) # factor of the ground losses\nE1 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for sea water earth in mV/m when f = 1500kHz:\",round(E1*1000,3)\n\n# for good soil\nepsilon_r = 20 # permittivity\nsigma = 10**-4 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f2) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda2)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b)))*(sqrt(p/2)*exp((-5*p)/8)) # factor of the ground losses\nE2 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for good soil in mV/m when f = 1500kHz:\",round(E2*1000,3)\n\n# for poor soil\nepsilon_r = 10 # permittivity\nsigma = 0.2*10**-4 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f2) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda2)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b)))*(sqrt(p/2)*exp((-5*p)/8)) # factor of the ground losses\nE3 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for poor soil in mV/m when f = 1500kHz:\",round(E3*1000,3)\n\n# for cities,industrial areas\nepsilon_r = 5 # permittivity\nsigma = 10**-5 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f2) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda2)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b)))*(sqrt(p/2)*exp((-5*p)/8)) # factor of the ground losses\nE4 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for cities,industrial areas in mV/m when f = 1500kHz:\",round(E4*1000,3)\n\n# for Rockey soil,flat sandy\nepsilon_r = 10 # permittivity\nsigma = 2*10**-3 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f2) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda2)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b)))*(sqrt(p/2)*exp((-5*p)/8)) # factor of the ground losses\nE5 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for Rockey soil,flat sandy in mV/m when f = 1500kHz:\",round(E5*1000,3)\n\n# for medium hills,forestation\nepsilon_r = 13 # permittivity\nsigma = 5*10**-5 # conductivity in mho/cm\nDf = 1.8*10**12*(sigma/f2) # dissipation factor\nb = atan(radians(epsilon_r+1)/Df) # phase constant in degrees\np = (pi/Df)*(d/lamda2)*cos(radians(b)) # numerical distance\nA = ((2+0.3*p)/(2+p+0.6*p**2))-(sin(radians(b))*(sqrt(p/2))*exp((-5*p)/8)) # factor of the ground losses\nE6 = (A*E_not)/(d) # in V/m\nprint \"electric field strength for medium hills,forestation in mV/m when f = 1500kHz:\",round(E6*1000,3)\n\n\n\n\n# note 1 : misprint value of sigma in part (e) when f = 500khz correct is sigma = 2*10**-3 for rockey soil\n# note 2: The ans is rounded off at the F = 1500 kHz in poor soil and Cities, industrial area.\n# note 3 : most of the answers in the book are upto one places of decimal.python calculated them upto 3 places of decimal.\n# note 4 : Several answers in the book are not correctly calculated after decimal.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "for frequency = 500kHz\nelectric field strength for sea water earth in mV/m when f = 500kHz: 27.122\nelectric field strength for good soil in mV/m when f = 500kHz: 14.004\nelectric field strength for poor soil in mV/m when f = 500kHz: 2.769\nelectric field strength for cities,industrial areas in mV/m when f = 500kHz: 1.204\nelectric field strength for Rockey soil,flat sandy in mV/m when f = 500kHz: 26.446\nelectric field strength for medium hills,forestation in mV/m when f = 500kHz: 7.811\nfor frequency = 1500kHz\nelectric field strength for sea water earth in mV/m when f = 1500kHz: 26.874\nelectric field strength for good soil in mV/m when f = 1500kHz: 1.365\nelectric field strength for poor soil in mV/m when f = 1500kHz: 0.223\nelectric field strength for cities,industrial areas in mV/m when f = 1500kHz: 0.108\nelectric field strength for Rockey soil,flat sandy in mV/m when f = 1500kHz: 20.483\nelectric field strength for medium hills,forestation in mV/m when f = 1500kHz: 0.609\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.3,Page Number 432", "cell_type": "markdown", "metadata": {}}, {"execution_count": 3, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nHt=100 # height of transmittin antenna in feet\nHr=50 # height of receiving antenna in feet\n\n#calculation\nDmax = sqrt(2*Ht)+sqrt(2*Hr) # in miles\n\n#result\nprint \"maximum range of tropospheric transmission in miles:\",round(Dmax,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "maximum range of tropospheric transmission in miles: 24.142\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.4,Page Number 432", "cell_type": "markdown", "metadata": {}}, {"execution_count": 4, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nHt=80 # height of transmitting antenna in meter\n\n#calculation\nd=sqrt(17*Ht) # radio horizon distance of transmitting antenna\n\n#result\nprint \"radio horizon distance of transmitting antenna in Km\",round(d,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radio horizon distance of transmitting antenna in Km 36.878\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.5,Page Number 433", "cell_type": "markdown", "metadata": {}}, {"execution_count": 5, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nHt=80 # height of transmittin antenna in meter\nHr=50 # height of receiving antenna in meter\n\n#calculation\ndmax = sqrt(17*Ht)+sqrt(17*Hr) # in miles\n\n#result\nprint \"maximum range of tropospheric transmission in Km:\",round(dmax,3)\n\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "maximum range of tropospheric transmission in Km: 66.033\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.6,Page Number 433", "cell_type": "markdown", "metadata": {}}, {"execution_count": 6, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nDmax = 80 #distance in Km\nHt = 100 # height of transmitting antenna in meter\n\n#calculations\n# formula : Dmax = sqrt(17*Ht)+sqrt(17*Hr)\nHr = ((Dmax-(sqrt(17*Ht)))**2)/17 # height of receiving antenna in m\n\n#result\nprint \"height of receiving antenna in m\",round(Hr,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "height of receiving antenna in m 88.414\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.7,Page Number 433", "cell_type": "markdown", "metadata": {}}, {"execution_count": 7, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nHt=300 # height of antenna in feet\nHr=100 # height of receiving antenna in feet\n\n#calculations\ndt=sqrt(2*Ht) # radio horizon distance for a transmitting antenna in miles\ndr=sqrt(2*Hr) # radio horizon distance for a transmitting antenna in miles\ndmax=dt+dr # maximum range of space wave propagation in miles\n\n\n#result\nprint \"radio horizon distance for a transmitting antenna in miles:\",round(dt,3)\nprint \"radio horizon distance for a receiving antenna in miles:\",round(dr,3)\nprint \"maximum range of space wave propagation in miles:\",round(dmax,3) \n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "radio horizon distance for a transmitting antenna in miles: 24.495\nradio horizon distance for a receiving antenna in miles: 14.142\nmaximum range of space wave propagation in miles: 38.637\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.8,Page Number 433", "cell_type": "markdown", "metadata": {}}, {"execution_count": 8, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,pi\n\n#variable Declaration\nf = 60 # in MHz\nf = 60*10**6 # in Hertz\nc = 3*10**8 # speed of light in m/s\nlamda = c/f # wavelength in meter\nPtx = 1 # transmitting power in kilo watt\nht = 50 # height of transmiting antenna in meter\nhr = 5 # height of receiving antenna in meter\nE = 80 # electric field in micro V/m\nE = 80*10**(-6) # electric field in V/m\n\n\n#calculations\nE0 = 3*137.6*sqrt(Ptx)*(8/5)*10**3 # field in mV/m at 1 meter where Ptx is in kW\nE0 = 3*137.6*sqrt(Ptx)*(8/5)*10**3*10**(-3) # field in V/m at 1 meter where Ptx is in kW\n# formula : E = (4*(pi)*ht*hr*E0)/(lambda*d**2)\nd = sqrt((4*pi*ht*hr*E0)/(lamda*E)) # range of space wave in meter\n\n#result\nprint \"range of space wave in Km:\",round(d/1000,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "range of space wave in Km: 72.024\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.9,Page Number 434", "cell_type": "markdown", "metadata": {}}, {"execution_count": 9, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nhd = 30 # height of duct in m\ndelta_M = 30 # unitless\n\n#calculations\nlamda_max = 2.5*hd*sqrt(delta_M*10**-6) # maximum wavelength at which duct propagation is possible\n\n#result\nprint \"maximum wavelength at which duct propagation is possible in m:\",round(lamda_max,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "maximum wavelength at which duct propagation is possible in m: 0.411\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.10,Page Number 434", "cell_type": "markdown", "metadata": {}}, {"execution_count": 10, "cell_type": "code", "source": "from __future__ import division\n\n#variable Declaration\nfc = 1.5 # critical frequency in MHz\nfc = 1.5*10**(6) # critical frequency in Hz\n\n#calculations\n# formula : fc = 9*sqrt(Nmax)\nNmax = (fc)**2/81 # electron density in electrons/m**3\n\n#result\nprint \"electron density in electrons/m**3:\",Nmax\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "electron density in electrons/m**3: 27777777777.8\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.11,Page Number 435", "cell_type": "markdown", "metadata": {}}, {"execution_count": 11, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nn = 0.92 # refrective index\nMUF = 10 # maximum usable frequency in MHz\nMUF = 10*10**6 # maximum usable frequency in Hz\nf = 10*10**6 # in Hz ordinary frequency and maximum usable frequency are same\nh = 400 # height of ray reflection point on the ionospheric layer in Km\nh = 400*10**3 # height of ray reflection point on the ionospheric layer in m\n\n#calcu;ations\n# formula :n = sqrt(1-(81*Nmax/f**2))\nNmax = (1-n**2)*f**2/81 # electron density in electrons/m**3\nfc = 9*sqrt(Nmax) # critical frequency in Hz\n# MUF = fc*sec(thetai)\n#sec(thetai) = MUF/fc\n# also, sec(thetai) = sqrt(h**2+(d**2/4))/h so on comparing,\nd = sqrt(((MUF*h/fc)**2-h**2)*4) # range in km\n\n#result\nprint \"Range in Km:\",round(d/1000,3)\n\n# note :answer in the book is 1876.59 where as in python is 1877.94 minute difference only\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Range in Km: 1877.942\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.12,Page Number 435", "cell_type": "markdown", "metadata": {}}, {"execution_count": 12, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nf=50 # in hz\nf=50*10**3 # in KHz\nN1=400 # electron density of D layer in electrons/cm**3 \nN2=5*10**5 # electron density of E layer in electrons/cm**3 \nN3=2*10**6 # electron density of F layer in electrons/cm**3 \n\n#calculations\n# formula :n=sqrt(epsilon_r)=sqrt(1-(81*N/f**2)) # WHERE f IS IN KhZ\n# for D layer\nepsilon_r1=1-(81*N1/f**2) # relative permittivity of D layer\n# for E layer\nepsilon_r2=1-(81*N2/f**2) # relative permittivity of E layer\n# for F layer\nepsilon_r3=1-(81*N3/f**2) # relative permittivity of F layer\n\n#result\nprint \"relative permittivity of D layer:\",round(epsilon_r1,3)\nprint \"relative permittivity of E layer:\",round(epsilon_r2,4)\nprint \"relative permittivity of F layer:\",round(epsilon_r3,4)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "relative permittivity of D layer: 1.0\nrelative permittivity of E layer: 0.9838\nrelative permittivity of F layer: 0.9352\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.13,Page Number 436", "cell_type": "markdown", "metadata": {}}, {"execution_count": 13, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,radians,asin,sin,pi,degrees\n\n#variable Declaration\nf = 50 # in hz\nf = 50*10**3 # in KHz\ntheta_i = 30 # in degrees\nN = 400 # electron density of D layer in electrons/cm**3 \n\n#calculations\n# formula :n = sqrt(epsilon_r) = sqrt(1-(81*N/f**2)) # WHERE f IS IN KhZ\n# for D layer\nepsilon_r = 1-(81*N/f**2) # relative permittivity of D layer\nn = sqrt(epsilon_r) # refrective index\n# formula : nsin(theta_r) = sin(theta_i) # snell's law\ntheta_r = asin(sin(radians(theta_i/n)))*180/pi # angle of refraction in degrees\n\n#result\nprint \"angle of refraction in degrees:\",round(theta_r,3) \n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "angle of refraction in degrees: 30.0\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.14,Page Number 437", "cell_type": "markdown", "metadata": {}}, {"execution_count": 14, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nN1 = 400 # electron density of D layer in electrons/cm**3 \nN2 = 5*10**5 # electron density of E layer in electrons/cm**3 \nN3 = 2*10**6 # electron density of F layer in electrons/cm**3\n\n#calculations\n# formula : fc = 9*sqrt(N) \nfc1 = 9*sqrt(N1) # critical frequency in Khz of EM wave for D layer\nfc2 = 9*sqrt(N2) # critical frequency in MHz of EM wave for E layer\nfc3 = 9*sqrt(N3) # critical frequency in MHz of EM wave for F layer\n\n\n#result\nprint \"critical frequency of EM wave for D layer in kHz:\",round(fc1,3)\nprint \"critical frequency of EM wave for E layer in Mhz:\",round(fc2/10**3,3)\nprint \"critical frequency of EM wave for F layer in Mhz:\",round(fc3/10**3,3)\n\n\n\n#note: the value of fc3 in book is equal to 12.8MHz but the correct is 12.72MHz.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "critical frequency of EM wave for D layer in kHz: 180.0\ncritical frequency of EM wave for E layer in Mhz: 6.364\ncritical frequency of EM wave for F layer in Mhz: 12.728\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.15,Page Number 437", "cell_type": "markdown", "metadata": {}}, {"execution_count": 15, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nNmax = 1.3*10**6 # maximum electron density in electrons/cm**3\n\n#calculations\n# formula : fc = 9*sqrt(Nmax)\nfc_khz = 9*sqrt(Nmax) # critical frequency in Khz\n\n#result\nprint \"critical frequency in Mhz:\",round(fc_khz/1000,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "critical frequency in Mhz: 10.262\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.16,Page Number 437", "cell_type": "markdown", "metadata": {}}, {"execution_count": 16, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nd = 2600 # distance between the points in Km\nd = 2600*10**3 # distance between the points in m\nfc = 4 # critical frequency in MHz\nfc = 4*10**6 # critical frequency in Hz\nh = 200 # height of ionospheric layer in km\nh = 200*10**3 # height of ionospheric layer in m\n\n\n#calculations\nMUF = fc*sqrt(1+(d/(2*h))**2) # maximum usable frequency (this step is Misprinted in the book)\n\n#result\nprint \"maximum usable frequency in MHz:\",round(MUF/10**6,3)\n\n\n\n#note: Answer in the book is wrong.\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "maximum usable frequency in MHz: 26.306\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.17,Page Number 438", "cell_type": "markdown", "metadata": {}}, {"execution_count": 17, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nN = 400 # electron density in electrons/cm**3\nn = 0.5 # refrective index\n\n#calculations\n# formula : n = sqrt(1-(81*N/f**2)) \nf = sqrt(81*N/(1-n**2)) # frequency in kHz\n\n#result\nprint \"frequency of propagating wave in kHz:\",round(f,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "frequency of propagating wave in kHz: 207.846\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.18,Page Number 438", "cell_type": "markdown", "metadata": {}}, {"execution_count": 18, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt\n\n#variable Declaration\nHt = 60 # height of transmitting antenna in meter\nHr = 6 # height of receiving antenna in meter\n\n#calculations\nd= sqrt(17*Ht)+sqrt(17*Hr) # in Km\n\n#result\nprint \"range of line of sight in Km:\",round(d,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "range of line of sight in Km: 42.037\n"}], "metadata": {"collapsed": false, "trusted": true}}, {"source": "## Example 9.19,Page Number 438", "cell_type": "markdown", "metadata": {}}, {"execution_count": 19, "cell_type": "code", "source": "from __future__ import division\nfrom math import sqrt,asin,atan,pi\n\n#variable Declaration\nd=500 # distance between transmitter and receiver in km\nh=70 # height of D layer in km\n\n#calculations\ntheta_c = asin(h/(sqrt(h**2+(d**2/4))))*180/pi # critical angle in degrees\n\n#result\nprint \"critical angle of propagation in degrees:\",round(theta_c,3)\n\n\n\n#it can also be calculated from\ntheta_c = atan((2*h/d))*180/pi # critical angle in degrees\nprint \"critical angle of propagation in degrees by method 2:\",round(theta_c,3)\n", "outputs": [{"output_type": "stream", "name": "stdout", "text": "critical angle of propagation in degrees: 15.642\ncritical angle of propagation in degrees by method 2: 15.642\n"}], "metadata": {"collapsed": false, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.8", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
\ No newline at end of file diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1.png Binary files differnew file mode 100755 index 00000000..f45cc37d --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1_1.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1_1.png Binary files differnew file mode 100755 index 00000000..f45cc37d --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1_1.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1_2.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1_2.png Binary files differnew file mode 100755 index 00000000..f45cc37d --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter1_2.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4.png Binary files differnew file mode 100755 index 00000000..06af66db --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4_1.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4_1.png Binary files differnew file mode 100755 index 00000000..06af66db --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4_1.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4_2.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4_2.png Binary files differnew file mode 100755 index 00000000..06af66db --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter4_2.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6.png Binary files differnew file mode 100755 index 00000000..7df8bb6a --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6_1.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6_1.png Binary files differnew file mode 100755 index 00000000..7df8bb6a --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6_1.png diff --git a/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6_2.png b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6_2.png Binary files differnew file mode 100755 index 00000000..7df8bb6a --- /dev/null +++ b/Antenna_and_Wave_Propagation_by_G.S.N._Raju/screenshots/chapter6_2.png |