diff options
Diffstat (limited to 'Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01.ipynb')
-rwxr-xr-x | Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01.ipynb | 185 |
1 files changed, 0 insertions, 185 deletions
diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01.ipynb deleted file mode 100755 index 361be2fa..00000000 --- a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01.ipynb +++ /dev/null @@ -1,185 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:344aa83aae7640fc5c3f2bc230bb6d0ed2b2c16bf41e02ab7ccae093773e6e18"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "CHAPTER01:SIGNALS AND SPECTRA"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example E09 : Pg 1.13"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Page Number: 1.13\n",
- "# Example 1.9\n",
- "# Given,\n",
- "# Signal is x(t)= e^(-at) * u(t)\n",
- "# unity function u(t)=1 for 0 to infinity \n",
- "# therefore\n",
- "import math,numpy\n",
- "x=1;\n",
- "# We assume 'infinity' value as 10 and the value of 'a' is 1\n",
- "#t= 0:1:10;\n",
- "t=numpy.linspace(0,10,num=11)\n",
- "a=1;# a >0\n",
- "z=((math.e)**(-a*t) * x);\n",
- "y=numpy.fft.fft(z);\n",
- "print 'fourier transform of x(t)=',y"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fourier transform of x(t)= [ 1.58195029+0.j 1.33722176-0.38516024j 1.02105993-0.4033185j\n",
- " 0.84862839-0.29364174j 0.76732853-0.17191927j 0.73478625-0.05628763j\n",
- " 0.73478625+0.05628763j 0.76732853+0.17191927j 0.84862839+0.29364174j\n",
- " 1.02105993+0.4033185j 1.33722176+0.38516024j]\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example E10 : Pg 1.14"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Page Number: 1.14\n",
- "# Example 1.10\n",
- "# Given,\n",
- "# Signal is x(t)= e**|-a|t * u(t)\n",
- "# unity function u(t)=1 for 0 to infinity \n",
- "# therefore\n",
- "import numpy,math\n",
- "x=1;\n",
- "# We assume 'infinity' value as 10 and the value of 'a' is 1\n",
- "t= numpy.linspace(0,10,num=11);\n",
- "a1=1;# For a >0\n",
- "a2=-1; # For a <0\n",
- "z=((math.e)**(a2*t) * x)+((math.e)**(a1*t) * x);\n",
- "y=numpy.fft.fft(z);\n",
- "print'fourier transform of x(t)=',y"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fourier transform of x(t)= [ 34846.35579562 +0.j 20193.20071216+23060.75353691j\n",
- " 1262.96607876+24147.94540875j -9061.39666752+17581.25336274j\n",
- " -13929.23742795+10293.34682733j -15877.71059326 +3370.11697016j\n",
- " -15877.71059326 -3370.11697016j -13929.23742795-10293.34682733j\n",
- " -9061.39666752-17581.25336274j 1262.96607876-24147.94540875j\n",
- " 20193.20071216-23060.75353691j]\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example E11 : Pg 1.14"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Page Number: 1.14\n",
- "# Example 1.11\n",
- "# (a)\n",
- "# Given\n",
- "# Signal is x(t) = rect(t)\n",
- "# rect(t) = 1 for -a< |t| < a and 0 elsewhere\n",
- "# Therefore\n",
- "# We find out fourier transform of x(t)= 1 for -a< |t| < a thus,\n",
- "import math,numpy\n",
- "x=([1]);\n",
- "a= 200; # Assume \n",
- "t= numpy.linspace(-a,a,num=2*a+1); # range for fourier transform\n",
- "y=numpy.fft.fft(x);\n",
- "print'Fourier transform of x(t)=',y\n",
- "\n",
- "\n",
- "# (b)\n",
- "\n",
- "# Given\n",
- "# Signal is x(t) = rect(t)\n",
- "# rect(t) = 1 for -a/4< |t| < a/4 and 0 elsewhere\n",
- "# Therefore\n",
- "# We find out fourier transform of x(t)= 1 for -a/4< |t| < a/4 thus,\n",
- "import numpy\n",
- "x=([1]);\n",
- "a= 200; # Assume \n",
- "t= numpy.linspace(-a/4,a/4,num=(a/2)+1);# range for fourer transform\n",
- "y=numpy.fft.fft(x);\n",
- "print'Fourier transform of x(t)=',y\n",
- "\n",
- "# (c)\n",
- "\n",
- "# Given\n",
- "# Signal is x(t) = rect(t)\n",
- "# rect(t) = 1 for b < |t| < b + a/2 and 0 elsewhere\n",
- "# Therefore\n",
- "# We find out fourier transform of x(t)= 1 for b < |t| < b+ a/2 thus,\n",
- "import numpy\n",
- "x=([1]);\n",
- "a= 200; # Assume \n",
- "b=100; # Assume\n",
- "t=numpy.linspace(b,(b+(a/2)),num=((a/2)+1)) ;# range for fourer transform\n",
- "y=numpy.fft.fft(x);\n",
- "print'Fourier transform of x(t)=',y"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Fourier transform of x(t)= [ 1.+0.j]\n",
- "Fourier transform of x(t)= [ 1.+0.j]\n",
- "Fourier transform of x(t)= [ 1.+0.j]\n"
- ]
- }
- ],
- "prompt_number": 3
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |