summaryrefslogtreecommitdiff
path: root/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb')
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb409
1 files changed, 0 insertions, 409 deletions
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb
deleted file mode 100755
index 11d97ff9..00000000
--- a/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb
+++ /dev/null
@@ -1,409 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:e111d96c9d3d06af8c3fbdcef02842d64037d852464c268890f5b248289b75b3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter10-Aircraft Engine componet matcing and off design analysis"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1-pg611"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "print \"Example 10.1\"\n",
- "%matplotlib inline\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "#calculate and draw graph the gas generator pumping charcteristics as a fucntion of Nc2/Nc2,d\n",
- "import numpy\n",
- "import matplotlib\n",
- "from matplotlib import pyplot\n",
- "cmap=numpy.matrix([[14.1,6.50,20.0,0.82],[13.5,5.88,18.1,0.84],[13,5.32,16.4,0.83],[12.5,4.81,14.8,0.83],[12,4.36,13.4,0.83],[11.5,4,12.2,0.84]])\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "print cmap,\"Compressor map data in table:\"\n",
- "Cpc=1004.\n",
- "Cpt=1156.\n",
- "f=0.03 #fuel-to-air ratio\n",
- "em=0.995 #efficiency\n",
- "T=6. #T=Tt4/Tt2\n",
- "pb=0.95 #burner pressure ratio\n",
- "gmt=1.33 #gamma turbine\n",
- "gmc=1.4\n",
- "i=5\n",
- "b=1\n",
- "g1=numpy.zeros(6)\n",
- "gc1=0;\n",
- "g2=numpy.zeros(6)\n",
- "gc2=0\n",
- "g3=numpy.zeros(6)\n",
- "gc3=0\n",
- "g4=numpy.zeros(6)\n",
- "gc4=0\n",
- "z0=numpy.linspace(0.82,0.97,6)\n",
- "for b in range (1,7):\n",
- " Nc2=cmap[i,0]\n",
- " pc=cmap[i,1]\n",
- " mc2=cmap[i,2]\n",
- " ec=cmap[i,3]\n",
- " i=i-1;\n",
- " tc=1+(1/ec)*(pc**((gmc-1)/gmc)-1)\n",
- " ffp=T-tc\n",
- " tt=1-(Cpc/Cpt)*((tc-1)/(em*(1+f)*(T)))\n",
- " Nc4=Nc2/T**(1/2.)\n",
- " mc4=mc2*((1+f)*(T)**(1./2.))/(pb*pc)\n",
- " pt=(1-(1-tt)/ec)**(gmt/(gmt-1)) #Assuming et=ec i.e. same efficiency\n",
- " var=T-tc #fuel flow parameter in gas generator\n",
- " p52=pb*pc*pt\n",
- " T52=T-(Cpc/Cpt)*(tc-1)/(em*(1+f))\n",
- " g1[gc1]=p52\n",
- " gc1=gc1+1\n",
- " g3[gc3]=T52\n",
- " gc3=gc3+1\n",
- " g4[gc4]=var\n",
- " gc4=gc4+1\n",
- "\n",
- "pyplot.plot(z0,g1)\n",
- "pyplot.xlabel(\"% Nc2 Design\")\n",
- "pyplot.ylabel(\"Ratios\")\n",
- "pyplot.title(\"GAS GENERATOR PUMPING CHARACTERISTCS\")\n",
- "pyplot.plot(z0,g3)\n",
- "pyplot.plot(z0,g4)\n",
- "pyplot.legend(\"pt5/pt2\",\"Tt5/Tt2\",\"Fuel flow prameter in gas generator\")"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Example 10.1\n",
- "[[ 14.1 6.5 20. 0.82]\n",
- " [ 13.5 5.88 18.1 0.84]\n",
- " [ 13. 5.32 16.4 0.83]\n",
- " [ 12.5 4.81 14.8 0.83]\n",
- " [ 12. 4.36 13.4 0.83]\n",
- " [ 11.5 4. 12.2 0.84]]"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Compressor map data in table:\n"
- ]
- },
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 1,
- "text": [
- "<matplotlib.legend.Legend at 0x5a1d330>"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8JGV97/HPd/blzMrAsMzgoOxEBFREwHjidQMEJRJF\nVFAT5WJcEPW63HAZvWo0KhiMKNEYxeBFI4qY4IbhgGhAdAYkwLATGLaBmWHmzH6W3/3jqZ7Tp6ar\nT/c5vZ2Z7/v16ldX1/r0UvXteqrqKUUEZmZmlUxodwHMzKxzOSTMzKyQQ8LMzAo5JMzMrJBDwszM\nCjkkzMyskEPCzMwKOSTqIOl0STdL2iDpSUk3STqnwnhLJQ1KOjrXf4qkL0p6RFKvpAclXTTCMt8j\n6TZJGyU9Luk6SW8sG94jaXM2v9Ljx9mw7qwcX8nN80ZJZ2Xdb5M0kJt+vaQ9s+EPSdqU9X9C0nck\nzc7Nryv7TK4p63dH2fz6c2X8aDbOIkmXS3o6m/5mSSfl5j2YDeuV9KikiyVNqvJ55cv7z5Jmlg37\nH7nx3ybp11n3kmx5y3LjLJC0TdKDNS6nR9Jf1vodZK/3kvT17D32Sro/m+dBVd7rbElfkvTf2TT3\nSbpI0m61vN9c/x5JayRNyfX/lqSt2fzXSPqVpMNqnT4bdoak32fzeEzSNZKOk/TVst/E1uwzLr3+\nd0nPyj673tzjL2opW/69Sjpe0m8lPSNpdfYdvEDSx8vmvTn7vZZe355N+ypJNyitG6uy93tyNqzu\n9Xo8cUjUSNIHgS8BnwMWRsRC4H8Cx5WvGJIEnAncnj2X+xhwFPDCiJgFdAN/qLLMLwPvB84D5gN7\nA38DvLpstAD+OiJmlT1eWzZ8I/AWSc/KTVN+FeVvctPPjognysZ9TVbe5wHPzcpQ7vXAw0C3pIUA\nEXFYaX7Ar3Nl/Kyk+cCNwBbgUGA34CLgu5Jen5v/4dl8/hT4c+BdRZ9ZrrxHAS8oK2/+fReZntsQ\nngE8kJu2nuVU/Q6yjfpvgWnA8WXzvB54RaUCZr+5XwGHAK/Kpnkx8DTwwnrer6QlwNHAKuCU3OAA\nPpfNf2/S9/zPtU4v6TzS9/opYA9gMfAV4JSIOKfsN/IZ4Iqy38hJgLLZzMn9Pv+11rKVlWM28G/A\n3wPzgH2ATwBbI+IzZeX4n8Bvy5b1XEmnAd8HvgXsExF7AP8HeE02+7rW6/HGIVEDSXNIP6hzIuKH\nEbERICJujYi3RMS2stFfAswmbdxPlzS5bNgLgKtKG+CI+O+I+JeCZR4InAO8MSJ+FRFbI/lNRLy9\njuI/Q/pxX1DtLdYyo4h4EvgFkP8neRbwDeA3wFtqXMYHgPUR8ZcRsSp7f1cAnwa+WLD8+7NlHFpj\neR8DflahvCP5Duk9lbwVuIyCz6mG5Yz0HXwAeCYi3hoRD2bzXBcR34qIfyiY5kzSBvfUiFiRTfNU\nRHw6In5W+M4qh8aZwLXs+L6HTxixBfhXdnyfFacvW2/eHRFXRcTmiBiIiH+PiI/k5iFq/B3WWbaS\nA9No8b1sPdoSEb+MiNurlSP703ch8MmI+GZE9GbLuyEizs5Gq3m9Ho8cErV5MTAV+HEN454F/Cgi\neoDNwMllw24CzpN0jqTnZj/AIi8DHo6IZVXGKRlp5foM8PoseEZDkKqHSHsxN28fkP4d/ynpn9b3\n2XHvqSS/cXoFcGWF8f4V2FfSARWWfzAphH9XY3kXAycAy0cYP+9yUsBL0qFAF2XveZTLqfYdvBz4\nUZ1lfDnw04jYNMJ4+d9Gpd/KmcD3SN/fqyTtUWkapeq0N7HjZ5Gffves/4tJe0f1vre8ar/vkcpW\ncg8wkFVRvVrSvBqXfRCwCPhBlXHqWa/HHYdEbRYAT0fEYKlHVre5Vqle+iVZvxnAaaQNHaSNYPlG\n829J1VVvBm4BVkoq2qguAJ4s7yFpZbbMzdmGCdJKcnHWv/T4RPl02R7A14BPFizrmNz095YvFrhK\n0nrS7vz9pKqDkrcCv4uIlcAPgUMlHVGwnHK7AY9X6F/qt6Cs3zJJG4A7gR9ExGVV5lsq71pSNVcP\naQNdj5XA3aQgO5O0FzGm5YzwHewGlKr3kHRK9j2sl/TzglnOp/LnV7GMpQepqmd7YEs6nlT1cnVE\n3Ev6jM/IzeND2bTrgWOBN4ww/ZvL3tew9WaUns79PkvHaaqWrVxErAeOJ733rwOrJP24QiDm7ZY9\nV/us61mvxx2HRG1WAwskbf+8IuLYiJiXDSv9czgV6CPVFUMKixMkLcimGYyISyLieGAOqWrlm9k/\n5ErL3Ku8R0QsIm08p5YtM4D3RsS8skelao2/I/3LO7zCsJty05f/iw/gtRExm1TX+jLS7nXJmdn7\nJCJWkzaWhVUWZZ4m1SPn7VU2vOTIiOgC3gicmavbzyuVd15ELImI90TE1mxYPzA5N/5k0neWn8dl\nwNuB00nVKPl/h9WWU6ToO1hN2WcREVdnv60PADscCK40TYHyMs7L5vnu3Hs5C/hFqRqF9F2elZvH\n57NplwBbGf7Hp9r0O6w3o7Rb7vd5d41lGyYiVkTE2yNiMfAnpM/vSyMse3X2vFfRCHWu1+OOQ6I2\n/0n6Ab5uhPHOAmaR/kk8TtqTmMzwf2YAZHXwlwBrSQcf8/4DWCTp+bn+o9qVzTbgX2L4XkC987gB\n+DLpXxOSjgX2B/5G6cyrx0lVDGdImjjC7K4F/rzCrvkbSNVs9+YnyA5Y/huwdJRv4WFgv1y//YCH\nKoz7Q+BE4P5sL2nMqnwHvwJeV+GzqPZdX0sKnBl1FqO8vn066fN+Wdn390HgebkgU1b+R4D3AedL\nmlXD9KX15tQayjXa5qgrlm3EhaWg+TYpLKq5G3iEVEMwohrW63HHIVGDiHiGdADuEkmvz1aQCVm1\nSum0x31I/7JPIp0FVHp8juzfjaRzJb1U0nRJk5ROgeyiQl129iO+FLhC0suzaSaSdqnzag2OC0kb\n8bH8eL8EHC3pRWT/IrP5ld7vnwDTSXX01cp4Eelf1z9JWihpmqQ3AR8HPlxl+Z8F3pQdH6nX94Bz\nJR2UHW94AWlv4Yr8iNnJCX8G/NUollNNpe/gQtIZN9+R9OysbLOAIyjeeH6HtPG6Mns/EyTtpnQ6\nZ/6zL/I60t5V+fd3CKn6rPSPfNj3FhHXAveR9kiqTh8R60hnAX1F0mslzZA0WdIJkj6XK8uIxx1G\n6p8r2/ARpYMlnZetp6XjSG8iBVmhiAjS2YXnK51SOzv7rI+XdGk2r5rX63EpIvyo8UHaI7iZdErj\nKtIBq78i7S18FLilwjR7k/5NHQq8E/g96WyXtdn0J46wzPcCfwQ2AY+RqnNOA5QNv450gLy37HFL\nNqyb9K+8fH4fBgZIKzGkDX1/bvpe4PnZ8AeBl+XmcQnwU9Ku+EkVyvwV4Ptlr68D3lFhvMXAd7P5\nbMg+25Nz4wwAz871uwa4sODz2qG8ZcMEfIR0EHMdcAfw9rLhS7LlTagw7cuBB2pczvb3W8t3kPXb\ni3SG2GPZ538f6XTOg6r8NmaTwvbhsmm+AMyr8t2dBdyQdf+UVF2Tn+9fZOWYmJXhk7nhb8iG/8cI\n008oW29uyb7jx4GfAMfkprkAuCzXbwkwWOG3eW42vKhsj5Kq6crf696kPwkrs3KsBL4KdBV9Prn+\nrwJuyJa/KnvvJ2TD6l6vx9OjtKFpGklzST/+w0j/it4RETflxrmY9M9zE/C2iNg5EtjMbJwrvHK1\ngf4euCYiTlO6UnZm+UBJJwL7R8QBWRXGV4FjWlAuMzMbQVOPSShdTPOSiPgmQET0R6qnLHcK6QAS\nEXEzMFfZVbtmZtZezT5wvR/wlFIbNMuU2qbJn42xD+kAXMlK0sUrZmbWZs0OiUmkNk0uiYijSAd8\nP1phvErnoJuZWZs1+5jESmBlRNySvf4BO4bEo6SzXEoWZf22k+TQMDMbhYgYUzMhTd2TiNTg1SMa\naq/m5aTTDstdzdB1BMeQGjp7MjdO208Dq+VxwQUXtL0MLqfL6HK6nKVHI7Ti7Kb3ApcrNW18P/AO\nSWcDRMSlEXGNpBMl3UeqjqqnhVMzM2uipodERNzGUPv2JZfmxnlPs8thZmb1c7McDdTd3d3uItTE\n5Wyc8VBGcDkbbbyUsxGafsV1I0iK8VBOM7NOIokY44HrVhyTMDOzUdixYeBizfoj7ZAwM+tgtWz8\n6wmTevmYhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFfJ1EmZmHayZ10DUwiFh\nZtahOqE5Ilc3mZlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFXJImJlZIYeEmZkVckiYmVkh\nh4SZmRVqerMckh4C1gMDQF9EHJ0b3g38GHgg63VlRHyq2eUyM7ORtaLtpgC6I2JNlXGuj4hTWlAW\nMzOrQ6uqm0ZqxrC9zRyamVlFrdqTuFbSAHBpRHy9wvBjJd0GPAp8KCLuzM/kfT99H11Tupg5eSYz\np8ys2N01pYuZU2Zu7542aVrbm9k1MxvPWhESx0XE45J2B34paUVE/Lps+DJgcURsknQCcBVwYH4m\n91x5D30DfWwb2MYeh+3BvEPmsWHbBjb2bUzP2zbu0L1tYBszJs+oKVBGHJ7rnjTBraybWWfp6emh\np6enofNUK9srl3QBsCEivlhlnAeB55cfw5AUoyln/2A/m/o2FYZIqbsUNsO6Rxg+acKk2gKlhsAp\n754+abr3fsysISQREWPaoDT177CkGcDEiOiVNBN4JfCJ3DgLgVUREZKOJgVXtYPcNZs0YRKzp85m\n9tTZjZjddhHB1oGt1UOmrHvDtg2s2rhqKHgqDM/v/ZQHRz5suiYX9K/wunwvaYJ8xrOZ1afZdSYL\ngR9l/4wnAZdHxC8knQ0QEZcCpwHnSOoHNgGnN7lMYyaJaZOmMW3SNBbMWNDQeZf2fiqFSKXXT258\nkvvX3j/ieJv6NjFt0rSqgVJp76eW1656M9t5tbS6abRGW91kQwZjkM19m0cMk8LXVcabOGHisPBo\nRPDMnDyTqZOmtvtjMxvXGlHd5JCwMSlVvdUdOts2sqGveLwN2zYAbA+d/GPW1Fl0Ta48bPvwCv2n\nTpzqYz62y3BI2E5t28A2Nm7bSO+23u3BUf7o3Vqhf1+VYds2MBADhcHSNaWLWVMqh0u1YT7V2jqV\nQ8KsTn0DfRXDY8O2DcVhVNC/FEb9g/1Vg2fE8Kmw1zNt0jSfaGBj5pAw6wB9A33bq8uq7uXUEUZb\n+7cybdI0Zk6ZyYzJM7af8ba9O+s/rF+F4dX6u+pt5+eQMNtJlZ9osKlv0/Yz3rZ319J/hHH6B/vr\nC5g6Q2jm5JlMnji53R/lLs0hYWajVjrdejQhVGt4SaorhLqmdDFv+jzmT5/PvGnzmDd93rBnh059\nHBJm1rEigr7BvroCqHdrL2u3rGXtlrWs2byGtZtT99rNa3lmyzNMnzx9h/CYP23+DmGSD5q50+bu\nktfzOCTMbJcREfRu690hPErPazav2R4w+f7rt65nxuQZKTjygTJtXsX+pX5zps5h4oSJ7X77o+KQ\nMDOrwWAMsn7r+sqhkgucfP/erb3bq8F2CJQKoVLeb860OW09S80hYWbWZAODA6zfur56qJT65YZv\n2LaB2VNnV95LyVWPHb3P0ew7Z9+Glr3jG/gzMxvvJk6YmDbm0+fVPW3/YD/rtqwrrBp7auNT3LP6\nHtZuWcvsqbMbHhKN4D0JM7OdVCP2JHxJp5mZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVqekhIekjSHyUtl/S7gnEulnSvpNskHdnsMpmZWW1a\n0QpsAN0RsabSQEknAvtHxAGSXgR8FTimBeUyM7MRtKq6qVorhKcA3waIiJuBuZIWtqRUZmZWVStC\nIoBrJf1e0jsrDN8HeKTs9UpgUQvKZWZmI2hFddNxEfG4pN2BX0paERG/zo2T39PY4eYRS5cu3d7d\n3d1Nd3d3o8tpZjau9fT00NPT09B5tvSmQ5IuADZExBfL+n0N6ImIK7LXK4CXRsSTZeP4pkNmZnXq\n+JsOSZohaVbWPRN4JXB7brSrgTOzcY4BnikPCDMza59mVzctBH4kqbSsyyPiF5LOBoiISyPiGkkn\nSroP2Ai8vcllMjOzGvke12ZmO6mOr24yM7PxzSFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwS\nZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZm\nVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVqjpISFpoqTlkn5SYVi3pHXZ8OWS/qbZ\n5TEzs9pNasEy3g/cCcwqGH59RJzSgnKYmVmdmronIWkRcCLwDUBFozWzDGZmNnrNrm66CPgwMFgw\nPIBjJd0m6RpJhza5PGZmVoemVTdJeg2wKiKWS+ouGG0ZsDgiNkk6AbgKOLDSiEuXLt3e3d3dTXd3\n0SzNzHZNPT099PT0NHSeioiGznD7jKXPAG8F+oFpwGzgyog4s8o0DwLPj4g1uf7RrHKame2sJBER\nY6rSryskJM0HFkXEH+taiPRS4EMRcXKu/0LS3kZIOhr4fkQsqTC9Q8LMrE6NCIkRq5skXQ+cnI37\nB+ApSb+JiA/UuazI5nc2QERcCpwGnCOpH9gEnF7nPM3MrIlG3JOQdGtEHCHpr0jHDy6QdHtEPLc1\nRcz2JO68E2bPhlmzoKsLJvg6QDOzalqyJwFMlLQX8AagdLFb6+t+Tj0Venth/XrYtAlmzEiBUQqO\n/HOtw7q6YOLElr8dM7PxoJaQ+CTwc+A3EfE7Sc8B7m1usSpYsWKoe3AQNmwYCo3e3uHd5c+PPVY8\nrLcXNm6E6dMbEzizZjlwzGyn0rSzmxqpqQeuBwdTUFQKkGrhUmmcDRtg2rTGBc6kVlwQb2Y7q5ac\n3SRpMXAxcHzW6wbg/RGxciwLrse4ObtpcDBVhdUSMiMN6+2FqVMrB0qt/UrPrlIz2yW1KiSuBS4H\n/iXr9WbgzRHxirEsuB7jJiQaKWJoDycfJNX2bir1K1WpjSVoSt0zZ/qkAbNxolUhcVtEPG+kfs20\nS4ZEI5Wq1GoNlWrDNm9OQTGWoCk9z5gBctNdZs3SqrObVkt6K/BdUmN8pwNPj2Wh1mITJgwd5xir\ngYF07GWkcFmzBh56qHrwbNtW/TjN7NkwZ87I3bNmee/GrElq2ZNYAnwZOCbr9VvgvRHxcFNLNrwM\n3pPYGfX3D69Oy4dJ+WPduuLujRuH9m5qCZVSd77fzJnes7GdSsub5WgXh4RVVTolulqQ1NK9eXPa\nK6knaCp1T5/usLGO0NSQkPSRiPicpC9XGBwR8b6xLLgeDglriYGBtCcz1rDZtm30AVPq7uryMRsb\ns2Yfk7gze/4Dw6+wFu244tqs2SZOhLlz02Ms+vpqC5snnigeZ8MG2LIlVYF1dQ1/lFoKqKV/vp+D\nx+pUyzGJN0TE90fq10zek7Bd0sBAOt6yYcPwR+nCzdH0KwqeWkPGwTOutOoU2OURceRI/ZrJIWHW\nIJWCZyyh09s7FDy1hky18JkzB+bN88WfDdLU6qbsTnEnAvtIupihe1HPAvrGslAza5OJE4eOezRK\nPniqBcy6dfDoo8XjrV2bqtvmzoUFC2D33dNz6VH0uqvLezNNUu3A9fOAI0kN/J3PUEisB66LiLUt\nKSHekzDbpfT3p+tsnn566PHUU8Wvn3oqTTNSqOSHTZnS7nfadK2qbpoSEdvGspCxckiYWVWbNsHq\n1SMHSun16tXpWEoteymlx7x54+6izVaFxIHAZ4BDgelZ74iIZ49lwfVwSJhZQ0Wkqq9aAqXU3dsL\n8+fXtpdSet3mg/qtConfABcAF5JuY/p2YGJEnD+WBdfDIWFmbdfXN7S3UlTtlR8GtR9bedazGtN0\nTplWhcSyiDiq/JalpX5jWXA9HBJmNu5EpGqwWvZSnn4azj8fTj+9oUVoVQN/WyRNBO6T9B7gMWDm\nWBZqZrbTk9KpwTNnpr2EcaqWPYmjgbuAucD/BWYDfxcRNzW/eNvL4D0JM7M6taWBP0kC3hAR3xvL\ngutcpkPCzKxOjQiJwvO5JHVJ+qCkSyS9W9IESacCd5DuTmdmZju5ahfT/ZB04dx/Aq8EFgNbgPdF\nxK01LyAdz/g9sDIiTq4w/GLgBGAT8LaIWF5hHO9JmJnVqdkHrvePiMOzBX0DeBx4VkRsrnMZ7ye1\nKLvDuV2STsyWc4CkFwFfZejmRmZm1mbVLh8cKHVExADwaL0BIWkRqf2nbzDUrEe5U4BvZ8u4GZgr\naWE9yzAzs+aptidxuKTestfTy15HRNTSQthFwIdJZ0RVsg/wSNnrlcAi4Mka5m1mZk1WGBIRMaa2\neiW9BlgVEcsldVcbNb/oSiMtXbp0e3d3dzfd3dVmaWa26+np6aGnp6eh82zaPa4lfQZ4K9APTCPt\nTVwZEWeWjfM1oCcirsherwBeGhFP5ublA9dmZnVq6imwYxURH4+IxRGxH3A68B/lAZG5GjgTQNIx\nwDP5gDAzs/appVmORgkASWcDRMSlEXGNpBMl3QdsJDUeaGZmHaJp1U2N5OomM7P6dXR1k5mZjX8O\nCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkz\nMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr\n5JAwM7NCTQ0JSdMk3SzpVkl3SvrbCuN0S1onaXn2+JtmlsnMzGo3qZkzj4gtkv4sIjZJmgTcKOn4\niLgxN+r1EXFKM8tiZmb1a3p1U0RsyjqnABOBNRVGU7PLYWZm9Wt6SEiaIOlW4Enguoi4MzdKAMdK\nuk3SNZIObXaZzMysNk2tbgKIiEHgCElzgJ9L6o6InrJRlgGLsyqpE4CrgAPz81m6dOn27u7ubrq7\nu5tZbDOzcaenp4eenp6GzlMR0dAZVl2YdD6wOSK+UGWcB4HnR8Sasn7RynKame0MJBERY6rOb/bZ\nTQskzc26pwOvAJbnxlkoSVn30aTgqnTcwszMWqzZ1U17Ad+WNIEUSN+JiF9JOhsgIi4FTgPOkdQP\nbAJOb3KZzMysRi2tbhotVzeZmdWv46ubzMxsfHNImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVq+v0kzMxsR/398MwzsHo1rFkDS5bAXnu1u1Q7ckiY\nmY3B4CCsWze0sa/1ubcX5syB3XaD+fPh/PPhpJPa/W525FZgzcyACFi/vr4N/Zo1aW9g1qy0oZ8/\nf2ijP9Lz3LkwockV/o1oBdYhYWY7lQjYuLH6hr3SsLVrYfr0+jb0u+2WNvaTOrROxiFhZju1zZvr\nr8ZZsyZttOvd2M+bB1OmtPsdN5ZDwszGtcFBuPtuuPlmuOkmWLFi+AY/YscNei0b/WnT2v3OOoND\nwszGlTVrhgLhppvgd79L/+CPOSY9DjsMFiwY2uBPnw4a0yZu1+aQMLOO1d8Pt98+FAg33QSPPw4v\nfOFQKLzoRbDHHu0u6c7LIWFmHeOxx4bvJSxbBvvuOxQIxxwDhx4KEye2u6S7DoeEmbXFli0pBEqB\ncPPNsGHD8EB44QvTmT/WPg4JM2u6CHjwweHVRnfcAYcckqqLSqGw//4+ftBpHBJm1nC9vXDLLcND\nYfJkePGLhwLhqKNgxox2l9RG0tEhIWkacD0wFZgC/DgiPlZhvIuBE4BNwNsiYnmFcRwSZk0wOJhO\nOy0PhAcegCOOGF51tGhRu0tqo9GIkGjadYIRsUXSn0XEJkmTgBslHR8RN5bGkXQisH9EHCDpRcBX\ngWOaVSazXd3TTw8/uHzLLemU01IYvOtdcPjhO99FZTZ6Tb2YPCI2ZZ1TgInAmtwopwDfzsa9WdJc\nSQsj4slmlstsV9DXB3/84/C9hFWr4OijUyCce27q3n33dpfUOllTQ0LSBGAZ8BzgqxFxZ26UfYBH\nyl6vBBYBDgmzOj366PBAWL4c9tsvBUJ3N3z0o3DwwT4F1erT7D2JQeAISXOAn0vqjoie3Gj5+rKK\nBx+WLl26vbu7u5vu7u7GFdRsnNm8Gf7wh+FVR1u2DFUbLV2aTkGdPbvdJbVW6unpoaenp6HzbNnZ\nTZLOBzZHxBfK+n0N6ImIK7LXK4CX5qubfODadmURcP/9w/cS7rorNWFRfnB5v/18CqoN19EHriUt\nAPoj4hlJ04FXAJ/IjXY18B7gCknHAM/4eITt6tat2/EU1BkzhsLgjDPgyCNTu0ZmzdbMU2CfSzoo\nPSF7fCciPi/pbICIuDQb7x+AVwMbgbdHxLIK8/KehO10Nm1Kp5/eccfwx6pV6TqE8vaN9tmn3aW1\n8aijr5NoJIeEjWebN6fmsPNh8OijcMABqdqo/PHsZ3fuTWxsfHFImHWQLVsqh8HKlfCc5+wYBvvv\n7zCw5nJImLXBtm2Vw+Dhh9PB43wYHHBAatbCrNUcEmZNtG0b3HvvjmHw0EOwZEnlMPCVytZJHBJm\nDdDXB/fdt2MYPPBAuh9CPgwOPBCmTm13qc1G5pAwq0N/f7reIB8G992XGrDLh8FBB/leyTa+OSTM\nKhgYSHsB+TC4917Ya68dw+Dgg33Nge2cHBK2SxsYSDfDKYXAnXem57vvhoULdwyDQw7xPRBs1+KQ\nsF3C4GA6WJzfM7j77tSCaSkEDj10KAy6utpdarP2c0jYTqW0Z3DXXelRCoMVK2D+/Mp7BrNmtbvU\nZp3LIWHj0qZNcM89Q2GwYkV6vu8+2HPPtPE/+ODhewhuzdSsfg4J62hPPz08BErdTzyRrjYuhcEh\nh6THgQf6mIFZIzkkrO0GB9OVxpXCoK9vKADKw2DJEjdHYdYKDglrma1b0ymk+TC45x6YN69yGCxc\n6PsbmLViq0l9AAAJ+ElEQVSTQ8Ia7plndtwjuOsueOSR1C5RKQTKn33w2KwzOSRsVCJSM9WVwmDD\nhrThL98jOPjg1Iqp2yUyG18cElZVX19qhqLS8YKZM3esHjr44NQ8hauIzHYODgkD0r//UgiUh8GD\nD6aNfqUwmDev3aU2s2ZzSOxCItJtLfPVQ3fdBatXp9NH82FwwAFuoM5sV+aQ2Mls3pyOFaxcOfQo\nnVF0110wYULls4j23RcmTmx36c2s0zgkxokIWL9+aMNfHgTl3Rs3wt57pyqiRYtgn32GLjo75BBY\nsMDHC8ysdg6JDjA4mK4sLtrwl17D8I1/qbv8tUPAzBrJIdFk/f2pCYmiDf/KlfDYY6nF0fzGPx8E\nbnvIzFqt40NC0mLgMmAPIIB/jIiLc+N0Az8GHsh6XRkRn8qN0/CQ2LIlbeir7QE89VT6d1/pX3+p\ne599fMMaM+tM4yEk9gT2jIhbJXUBfwBeFxF3lY3TDZwXEadUmU9dIdHbW73qZ+XKdIygVP9fVP2z\n554weXLt77enp4fu7u7aJ2gTl7NxxkMZweVstPFSzkaERFObWYuIJ4Ansu4Nku4C9gbuyo1a05uI\nSKd7Fm34S4+BAVi8ePjG//DD4cQTh14vWJDOFmqk8fLDcTkbZzyUEVzORhsv5WyElrXFKWkJcCRw\nc25QAMdKug14FPhQRNyZn37//VMYTJ++47/+444bvgcwZ44PAJuZNUJLQiKravoB8P6I2JAbvAxY\nHBGbJJ0AXAUcmJ/HT3+aQsD3GzAza52mn90kaTLwb8BPI+JLNYz/IPD8iFhT1q/zT8EyM+tAHX1M\nQpKAfwLuLAoISQuBVRERko4mBdea8nHG+ibNzGx0ml3ddBzwFuCPkpZn/T4O7AsQEZcCpwHnSOoH\nNgGnN7lMZmZWo3FxMZ2ZmbVHg08CrZ+kV0taIeleSR+pMHyBpJ9JulXSf0l6W9Z/saTrJN2R9X9f\np5WxbPhEScsl/aRZZRxrOSXNlfQDSXdJulPSMR1azo9l3/ntkr4raWobyzlP0o8k3SbpZkmH1Tpt\nJ5SzlevQWMpZNrzp69EYv/NOWoeqlbO+dSgi2vYAJgL3AUuAycCtwCG5cZYCf5t1LwBWk6rJ9gSO\nyPp3AXfnp213GcuGnwdcDlzdiZ9l9vrbwDuy7knAnE4rZzbNA8DUbNj3gLPaWM7PA+dn3QcB19Y6\nbYeUsyXr0FjLWTa8qevRWMvYYetQ0Xde9zrU7j2Jo4H7IuKhiOgDrgBemxvncaDU8tFsYHVE9EfE\nExFxK6QL9UgX6O3dSWUEkLQIOBH4BjVeNNjqckqaA7wkIr4JkH2+6zqtnMB6oA+YIWkSMIN0bU27\nynkIcB1ARNwNLJG0R43Ttrucu7dwHRpTOaFl69Goy9iB61DRZ1n3OtTukNgHeKTs9cqsX7mvA4dJ\negy4DXh/fiYqvlCvE8p4EfBhYLAJZSs3lnLuBzwl6Z8lLZP0dUnNuiJl1OWMdNbbF4GHgceAZyLi\n2jaW8zbgzwGUzsx7FrCoxmk7oZzbNXkdakQ5W7EejaWMnbYOVSznaNahdodELUfNPw7cGhF7A0cA\nX5E0qzRQ1S/Ua2sZJb2GdHrvcpq7FwFj+ywnAUcBl0TEUcBG4KMdVs4uSc8BziXtMu8NdEl6cxvL\n+VlgrtKZe+8BlgMDNU7bKGMpJ9CSdQhGX87BFq5HY/ksO20dqljO0axDLWuWo8CjwOKy14tJqVju\nWODTABFxv9LFdgcBv1e6UO9K4F8i4qoOK+PBWf9TJJ0ITANmS7osIs7soHIelI23MiJuycb7Ac37\ngY+2nIeQ/q39NiJWA0j6YTbu5e0oZ0T0Au8ovc7KeT8wfaRpO6CcD2TdrViHxlrON9Ka9WgsZeyi\ng9ahKuU8iXrXoWYcWKnjAMwk0kq1BJhC5QMwFwIXZN0Lsw9jPukfxWXARZ1axtw4LwV+0qnlBG4A\nDsy6lwKf67RyAs8D/ou0ERbpQOFft7Gcc4ApWfc7gW/VOm2HlLMl69BYy5kbp2nr0VjL2GHrUNF3\nfkS961BTfxg1vuETSGdV3Ad8LOt3NnB21r0A+Ampju124Iys//Gk+slbSbtSy4FXd1IZK/y4m3Z2\n01jLSdoA35IN+yFNOjOjAeX8X8AdWf9vA5PbWM4XZ8NXkP45zqk2baeVs5Xr0Fg/z7J5NHU9GuN3\n3knrULVy1rUO+WI6MzMr1O4D12Zm1sEcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWHjUtao\n2o1Zc8evLet/laQ9C6ZZKmljqdG4rF/VZigknZc1q3ybpGsl7Vsw3kDWjPV/KTVxfp6kUTUhIenf\nJc0eeUyz5nNI2Hj1JuASUouY5wJIOhlYFhFPVJnuaeCDZa9HulBoGeme688jXZT0dwXjbYqIIyPi\nT4BXkC52umDEd1FBRJwUEetHM61ZozkkbLzaBswkteUzIGkiqbXYoo04pED4JvBGSXPzAyWdme0x\n3CrpMoCI6ImILdkoN5NrPbXiQiKeAt5FalitdLOcz0v6XTb/d2X995J0Q7YHcruk47L+D0man3Wf\nn91c5tfZDWI+mPXvkfTZ7IYyd0s6fuSPzKx+7W7gz2y0vps93kVqZuCvgcvKNuhFNpCC4lxS+zoA\nZHfu+t/AiyNijaR5Fab9S+CaWgoXEQ9m4bAH8DpSk8xHZ3cBu1HSL0hNOf8sIj4jaQKpbX/I9m4k\nvTAb53BSGz3LgN+XjTMxIl4kqbTX8opaymZWD4eEjUtZdcxrIN2qEfgYcKqkrwNzgS9GxE2VJgUu\nBm6V9IWy/i8Dvh+pvX0iYm35RJLeQmoK+gOjKO4rgedKOi17PRvYn9TOzzezlliviojbyhcJHJf1\n3wZs04637fxh9ryM1NibWcM5JGxncD7wKeAMUkucV5I2oK+uMK4iYp2k75JVB2WCgnsVSHo56R4X\nfxrpTmAjkvRsYCAiVmXHr98TEb+sMN5LSGH3LUkXRsR3qpQpX76t2XPpfgZmDedjEjauSToA2Dsi\nbiA1f1w6ED19hEkvJLWaWdq4Xgf8RdmxgNLzkcDXgJMj4ukay7R7Ns2Xs14/B96tdLtIJB0oaUZ2\nptRTEfEN4J9Id4YrCeA3wMmSpmY3BjqpluWbNZL/fdh49ynSv3yA/wdcRbrZy/kF4wdARKzObrhy\nbvb6DkmfBq6XNECqwnkH6UD4TOAH2R7Bf0fE6yrMd3p2F7DJQD/ZfRqyYd8gVQcty06LXQWcCnQD\nH5bUB/QCw26iExG/l3Q18EfgSVLTzkX3TXZzztYUbircrINJmhkRG5Xul3w98M6IuLXd5bJdh/ck\nzDrbP0o6lHSq77ccENZq3pMwM7NCPnBtZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZW6P8D\ngSQWTCaxBqwAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0x5861f70>"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Ex2-pg616"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#calcualte pressure combustor and compressor pressure ratio and mass flow rate \n",
- "import math\n",
- "import numpy\n",
- "from numpy import roots\n",
- "M0=0.\n",
- "p0=0.1 ##in MPa\n",
- "T0=15.+273.\n",
- "pd=0.98\n",
- "pc=25.\n",
- "ec=0.9\n",
- "Qr=42800000. ##in J/kg\n",
- "pb=0.98\n",
- "eb=0.99\n",
- "Tt4=1500.+273.\n",
- "et=0.85\n",
- "em=0.995\n",
- "mc2=73.\n",
- "Nc2=6000. ##in rpm\n",
- "Mz2=0.6\n",
- "pn=0.97\n",
- "p=1. ##p=p9/p0\n",
- "##in this engine is operating in the following off-design conditions\n",
- "Mo0=0.8\n",
- "po0=33.\n",
- "To0=-15.+273.\n",
- "Tt4o=1375.+273.\n",
- "pdo=0.995\n",
- "po=1.\n",
- "gm=1.4\n",
- "\n",
- "td=T0/Tt4\n",
- "tcd=pc**((gm-1.)/(ec*gm))\n",
- "tod=(To0*(1+(gm-1.)*Mo0**2./2.)/Tt4o)\n",
- "tcod=1.+(td/tod)*(tcd-1.)\n",
- "pcod=(tcod)**((ec*gm)/(gm-1.))\n",
- "print\"%s %.4f %s\"%(\"(a)pressure ratio in combustor,O-D :\",pcod,\"\")\n",
- "mratio=(pcod/pc)*(tod/td)**(1/2.)\n",
- "mc2od=mc2*mratio\n",
- "print\"%s %.4f %s\"%(\"(b)mc2,O-D (in kg/s) :\",mc2od,\"\")\n",
- "Nc2r=(td/tod)**(1/2.)\n",
- "Nc2od=Nc2r*Nc2\n",
- "print\"%s %.4f %s\"%(\"(c)Nc2,O-D (in rpm):\",Nc2od,\"\")\n",
- "pref=101.33 ##in kPa\n",
- "pto0=po0*(1.+(gm-1.)/2.*Mo0**2.)**(gm/(gm-1.))\n",
- "pto2=pdo*pto0\n",
- "Tref=288.2\n",
- "Tto2=To0*(1.+(gm-1.)/2.*Mo0**2.)\n",
- "the2=Tto2/Tref\n",
- "del2=pto2/pref\n",
- "m2=mc2od*del2/(the2)**(1/2.)\n",
- "\n",
- "pol=([0.6*((1.+(gm-1.)/2.)/(1.+(gm-1.)/2.*0.6**2.))**3.,-(73./64.5)])\n",
- "rr=numpy.roots(pol)\n",
- "rr=0.4974\n",
- "print\"%s %.4f %s\"% (\"(d)Mz2,O-D\",rr,\"\")\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a)pressure ratio in combustor,O-D : 21.1779 \n",
- "(b)mc2,O-D (in kg/s) : 64.4778 \n",
- "(c)Nc2,O-D (in rpm): 5754.4965 \n",
- "(d)Mz2,O-D 0.4974 \n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex3-pg618"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#calculate the engine off design performance characteristices that correspond to the supersonic flight condition of aircraft at high attitude\n",
- "print(\"Example 10.3\")\n",
- "M0=0.\n",
- "po=101.33 ##in kPa\n",
- "T0=288.2\n",
- "gmc=1.4\n",
- "Cpc=1004.\n",
- "pd=0.95\n",
- "pc=20.\n",
- "ec=0.9\n",
- "mc2=33.\n",
- "Nc2=7120.\n",
- "Mz2=0.6\n",
- "Qr=428000000.\n",
- "pb=0.98\n",
- "eb=0.97\n",
- "Tt4=1850.\n",
- "gmt=1.33\n",
- "Cpt=1156.\n",
- "et=0.8\n",
- "em=0.995\n",
- "QrAB=4280000.\n",
- "pAB=0.95\n",
- "eAB=0.98\n",
- "Tt7=2450.\n",
- "pAB=1.3\n",
- "CpcAB=1243.\n",
- "pn=0.93\n",
- "p=1. ##p=p9/p0\n",
- "Mo0=2.\n",
- "po0=20.\n",
- "To0=223.\n",
- "gm0=1.4\n",
- "Cpc0=1004.\n",
- "pdo=0.8 \n",
- "ec0=0.9\n",
- "Qr=42800000.\n",
- "pb0=0.98\n",
- "ebo=0.97\n",
- "Tt4o=1850.\n",
- "gmto=1.33\n",
- "cpto=1156.\n",
- "eto=0.8\n",
- "emo=0.995\n",
- "QrABo=42800000.\n",
- "pABo=0.95\n",
- "eab=0.98\n",
- "Tt7o=2450.\n",
- "gmABo=1.3\n",
- "Cpco=1243.\n",
- "pno=0.93\n",
- "po=1.\n",
- "a0=276.4\n",
- "\n",
- "Tt2=T0\n",
- "tc=pc**((gmc-1.)/(ec*gmc))\n",
- "Tt3=tc*Tt2\n",
- "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
- "tt=1.-(1./((1.+f)*em))*(Cpc*Tt2/(Cpt*Tt4))*(tc-1.)\n",
- "print\"%s %.4f %s\"%(\"Turbine expansion parameter at on and off design :\",tt,\"\")\n",
- "##Off-design analysis:\n",
- "Tt2o=To0*(1+(gmc-1.)/2.*(Mo0**2.))\n",
- "tcOD=1+(1.036)*0.995*(1156.*1850./(1004.*401.4))*(1.-0.7915)\n",
- "pcOD=tcOD**((gmc)*ec/((gmc-1.)))\n",
- "print\"%s %.4f %s\"%(\"New compressor pressure ratio :\",pcOD,\"\")\n",
- "mc2D=pcOD/pc*((Tt4o/Tt2)/(Tt4o/Tt2o))**(1/2.)\n",
- "mc2OD=mc2*mc2D\n",
- "print\"%s %.4f %s\"%(\"Off-line mc2 rate in \",mc2OD,\"Kg/s :\")\n",
- "Nc2r=((Tt4o/Tt2o)/(Tt4/Tt2))**(1/2.)\n",
- "Nc2OD=Nc2r*Nc2\n",
- "print\"%s %.4f %s\"%(\"Off-design Nc2,O-D in\",Nc2OD, \"rpm:\")\n",
- "pref=101.33 ##in kPa\n",
- "pt0=po0*(1.+(gmc-1.)/2.*Mo0**2.)**((gmc)/(gmc-1.))\n",
- "pt2=pdo*pt0\n",
- "del2=pt2/pref\n",
- "Tref=288.2\n",
- "the2=Tt2o/Tref\n",
- "m2=mc2OD*del2/(the2)**(1/2.)\n",
- "print\"%s %.4f %s\"%(\"Off-design mass flow in\",m2, \"kg/s\")\n",
- "Tt3=859.2\n",
- "Tt4=1850.\n",
- "fOD=0.03305\n",
- "tcr=(1.+fOD)/(1.+f)\n",
- "pt5=413.7## kPa\n",
- "pt7=393.04\n",
- "fAB=0.0367\n",
- "pt9=365.52\n",
- "M9=2.524\n",
- "T9=1253.\n",
- "V9=1725.\n",
- "\n",
- "ndst=(1.+f+fAB)*V9/a0-M9\n",
- "print\"%s %.4f %s\"%(\"Nondimensional specific thrust :\",ndst,\"\")\n",
- "TSFC=55.94 ##in mg/s/N\n",
- "print\"%s %.4f %s\"%(\"Thrust specific fuel consumption(TSFC) in\",TSFC,\" mg/s/N :\")\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Example 10.3\n",
- "Turbine expansion parameter at on and off design : 0.7914 \n",
- "New compressor pressure ratio : 10.9937 \n",
- "Off-line mc2 rate in 21.4076 Kg/s :\n",
- "Off-design Nc2,O-D in 6033.0691 rpm:\n",
- "Off-design mass flow in 22.4111 kg/s\n",
- "Nondimensional specific thrust : 4.1662 \n",
- "Thrust specific fuel consumption(TSFC) in 55.9400 mg/s/N :\n"
- ]
- }
- ],
- "prompt_number": 6
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file