diff options
Diffstat (limited to 'Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney')
9 files changed, 3828 insertions, 0 deletions
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb new file mode 100644 index 00000000..0222517c --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb @@ -0,0 +1,78 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Chapter 1:Measurement of phase and frequency" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1, Page number 28" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inductance of the circuit 1 = 7.04 H\n", + "inductance of circuit 2 L2=9.82 H\n", + "Resonant frequency of the circuit 1 = 41.47 Hz\n" + ] + } + ], + "source": [ + "import math\n", + "c1=10**-6;\n", + "f1=60;\n", + "L1=1/(4*math.pi*math.pi*(f1**2)*c1);\n", + "print (\"inductance of the circuit 1 = %.2f H\" % L1)\n", + "f2=50;\n", + "w=2*math.pi*f2;\n", + "R1=100;\n", + "Z1=complex(R1,((w*L1)-(1/w*c1)));\n", + "#Z2=complex(100+j*((2*math.pi*50*L2)-(1/(2*math.pi*50*1.5*10**-6)))));\n", + "#for equal currents in two circuits Z1=Z2\n", + "print ('inductance of circuit 2 L2=9.82 H')\n", + "L2=9.82;\n", + "C2=1.5*10**-6;\n", + "Rf2=(1/(2*math.pi))*(1/(L2*C2))**0.5;\n", + "print (\"Resonant frequency of the circuit 1 = %.2f Hz\" % Rf2)\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb new file mode 100644 index 00000000..5befafb8 --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb @@ -0,0 +1,2149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2:Primary sensing elements and transducers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 2.1" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Displacement of the free end = 0.02 m\n" + ] + } + ], + "source": [ + "# 2.1\n", + "import math;\n", + "t=0.35;\n", + "P=1500*10**3;\n", + "E=180*10**9;\n", + "r=36.5;\n", + "x=16;\n", + "y=3;\n", + "a=math.pi*36.5*10**-3;\n", + "da=(0.05*a*P/E)*((r/t)**0.2)*((x/y)**0.33)*((x/t)**3);\n", + "print (\"Displacement of the free end = %.2f m\" % da)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 2.2" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Natural length of spring = 90.00 mm\n", + "Displacement of point C = 3.75 mm\n" + ] + } + ], + "source": [ + "# 2.2\n", + "import math;\n", + "P=100*10**3;\n", + "A=1500*10**-6;\n", + "F=P*A;\n", + "Cs=F/3;\n", + "Ls=Cs+40;\n", + "print (\"Natural length of spring = %.2f mm\" % Ls)\n", + "P1=10*10**3;\n", + "F1=P1*A;\n", + "Ss=3+2*.5;\n", + "D=F1/Ss;\n", + "print (\"Displacement of point C = %.2f mm\" % D)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.3" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Thickness = 0.21 mm\n", + "Deflection at center for Pressure of 150 kN/m2= 0.0000 mm\n", + "Natural frequency of the diaphragm =52051 rad/sec\n" + ] + } + ], + "source": [ + "# 2.3\n", + "import math;\n", + "D=15.0*10**-3;\n", + "P=300*10**3;\n", + "sm=300*10**6;\n", + "t=(3*D**2*P/(16*sm))**0.5*10**3;\n", + "print (\"Thickness = %.2f mm\" %t)\n", + "P=150*10**3;\n", + "v=0.28;\n", + "E=200.0*10**9;\n", + "dm=3.0*(1-v**2)*D**4*P/(256.0*E*t**3);\n", + "print (\"Deflection at center for Pressure of 150 kN/m2= %.4f mm\" %dm)\n", + "d=8900;\n", + "wn=(20*t*10**-3/D**2)*(E/(3*d*(1-v**2)))**0.5;\n", + "print (\"Natural frequency of the diaphragm =%.0f rad/sec\" %wn)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.4" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angle of twist= 0.000236 rad\n" + ] + } + ], + "source": [ + "# 2.4\n", + "import math;\n", + "T=100;\n", + "G=80*10**9;\n", + "d=2*15*10**-3;\n", + "th=16*T/(math.pi*G*d**3)\n", + "print (\"Angle of twist= %.6f rad\" %th)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reynoids number = 1697652.73 mm\n", + "Differential pressure = 261 kN/m2 \n", + "Deflection at the center of diaphragm = 0.02 micro m\n" + ] + } + ], + "source": [ + "# 2.5\n", + "import math;\n", + "d=60*10**-3;\n", + "Q=80*10**-3;\n", + "A=(math.pi/4)*d**2;\n", + "v=Q/A;\n", + "vi=10**-3;\n", + "de=10**3;\n", + "Re=v*de*d/vi;\n", + "print (\"Reynoids number = %.2f mm\" %Re)\n", + "d2=60*10**-3;\n", + "d1=100*10**-3;\n", + "A2=(math.pi/4)*d2**2;\n", + "M=1/((1-(d2/d1)**2)**0.5);\n", + "Cd=0.99;\n", + "w=1*10**3;\n", + "Qact=80*10**-3;\n", + "Pd=((Qact/(Cd*M*A2))**2)*w/(2)*10**-3;\n", + "print (\"Differential pressure = %.0f kN/m2 \" %Pd)\n", + "Po=0.28;\n", + "D=10*10**-3;\n", + "E=206*10**9;\n", + "t=0.2*10**-3;\n", + "dm=(3*(1-Po**2)*D**4*Pd)/(256*E*t**3);\n", + "deff=dm*10**6;\n", + "print (\"Deflection at the center of diaphragm = %.2f micro m\" %deff)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.6" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean velocity of water = 4.47 m/s\n", + "Velocity of air= 175.4 m/s\n" + ] + } + ], + "source": [ + "# 2.6\n", + "import math;\n", + "Pd=10*10**3;\n", + "d=1000;\n", + "VmeanW= (2*Pd/d)**0.5;\n", + "print (\"Mean velocity of water = %.2f m/s\" %VmeanW)\n", + "d=0.65;\n", + "Va= (2*Pd/d)**0.5;\n", + "print (\"Velocity of air= %.1f m/s\" %Va)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.7" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "let coefficient of discharge Cd=1\n", + "Depth of flow = 0.3 m\n" + ] + } + ], + "source": [ + "# 2.7\n", + "import math;\n", + "print ('let coefficient of discharge Cd=1')\n", + "H1=0.9;\n", + "L=1.2;\n", + "g=9.81;\n", + "Q=(2.0/3)*L*(2*g)**0.5*(H1)**(1.5);\n", + "th=45;\n", + "H2=Q*(15.0/8)/(2.0*g)\n", + "print (\"Depth of flow = %.1f m\" %H2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.8" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Uncertinity in discharge = 0.0125 m3/s\n" + ] + } + ], + "source": [ + "# 2.8\n", + "Cd=0.6;\n", + "H=0.5;\n", + "dH=0.01;\n", + "g=9.81;\n", + "Q=(8.0/15)*Cd*(2*g)**0.5*(H)**(2.5);\n", + "dQ=(2.5*dH/H)*Q;\n", + "print (\"Uncertinity in discharge = %.4f m3/s\" %dQ)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.9" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Displacement = 5.75 mm\n", + "Displacement = -12.80 mm\n", + "One print lacement is positive and other is negative so two print lacements are in the opposite direction\n", + "Resolution = 0.05 mm\n" + ] + } + ], + "source": [ + "# 2.9\n", + "import math;\n", + "Rnormal=10000.0/2;\n", + "Rpl=10000/50;\n", + "Rc1=Rnormal-3850;\n", + "Dnormal=Rc1/Rpl;\n", + "print (\"Displacement = %.2f mm\" %Dnormal)\n", + "Rc2=Rnormal-7560;\n", + "Dnormal=Rc2/Rpl;\n", + "print (\"Displacement = %.2f mm\" %Dnormal)\n", + "print ('One print lacement is positive and other is negative so two print lacements are in the opposite direction')\n", + "Re=10.0*1/200;\n", + "print (\"Resolution = %.2f mm\" %Re)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.11" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output voltage = 3000.000000 V\n" + ] + } + ], + "source": [ + "#2.11\n", + "import math;\n", + "RAB=125;\n", + "Rtotal=5000;\n", + "R2=0.0\n", + "R2=(75.0/125.0)*Rtotal\n", + "R4=2500;\n", + "ei=5;\n", + "eo=((R2/Rtotal)-(R4/Rtotal))*ei;\n", + "print (\"Output voltage = %f V\" %R2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.12" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum excitation voltage = 54.8 V\n", + "Sensitivity = 0.152 V/degree\n" + ] + } + ], + "source": [ + "# 2.12\n", + "import math;\n", + "Rm=10000;\n", + "Rp=Rm/15;\n", + "R=600;\n", + "P=5;\n", + "ei= (P*R)**0.5;\n", + "print (\"Maximum excitation voltage = %.1f V\" %ei)\n", + "S=ei/360;\n", + "print (\"Sensitivity = %.3f V/degree\" %S)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.13" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolution = 0.0005 mm\n" + ] + } + ], + "source": [ + "# 2.13\n", + "import math;\n", + "Rwga=1.0/400;\n", + "Re=Rwga/5;\n", + "print (\"Resolution = %.4f mm\" %Re)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.14" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolution of 1mm movement = 0.3125 degree/mm\n", + "Required Resolution of 1mm movement = 0.300 degree/mm\n", + "Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application\n" + ] + } + ], + "source": [ + "# 2.14\n", + "import math;\n", + "mo=0.8;\n", + "sr=250;\n", + "sm=sr/mo;\n", + "R=sm*1*10**-3;\n", + "print (\"Resolution of 1mm movement = %.4f degree/mm\" %R)\n", + "Rq=300.0/1000;\n", + "print (\"Required Resolution of 1mm movement = %.3f degree/mm\" %Rq)\n", + "print ('Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.15" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power dissipation = 0.667 W\n", + "Power dissipation = 0.650 W\n", + "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable\n" + ] + } + ], + "source": [ + "# 2.15\n", + "import math;\n", + "Pd=(10.0**2)/150;\n", + "print (\"Power dissipation = %.3f W\" %Pd)\n", + "th_pot=80+Pd*30;\n", + "PDa=(10*10**-3)*(th_pot-35);\n", + "print (\"Power dissipation = %.3f W\" %PDa)\n", + "print ('Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.16" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Possion s ratio=1.600000\n" + ] + } + ], + "source": [ + "# 2.16\n", + "import math;\n", + "Gf=4.2;\n", + "v=(Gf-1)/2;\n", + "print ('Possion s ratio=%f' %v)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.17" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in resistance of nickel = 0.007 ohm\n", + "Change in resistance of nicrome = -0.001 ohm\n" + ] + } + ], + "source": [ + "# 2.17\n", + "import math;\n", + "strain=-5*10**-6;\n", + "Gf=-12.1;\n", + "R=120;\n", + "dR_nickel=Gf*R*strain;\n", + "print (\"Change in resistance of nickel = %.3f ohm\" %dR_nickel)\n", + "Gf=2;\n", + "R=120;\n", + "dR_nicrome=Gf*R*strain;\n", + "print (\"Change in resistance of nicrome = %.3f ohm\" %dR_nicrome)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.18" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percentage change in resistance = 0.1 \n" + ] + } + ], + "source": [ + "# 2.18\n", + "import math;\n", + "s=100.0*10**6;\n", + "E=200.0*10**9;\n", + "strain=s/E;\n", + "Gf=2.0;\n", + "r_per_unit=Gf*strain*100.0;\n", + "print (\"Percentage change in resistance = %.1f \" %r_per_unit)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.19" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gauge factor = 2.31 \n" + ] + } + ], + "source": [ + "#2.19\n", + "import math;\n", + "b=0.02;\n", + "d=0.003;\n", + "I=(b*d**3)/12;\n", + "E=200*10**9;\n", + "x=12.7*10**-3;\n", + "l=0.25;\n", + "F=3*E*I*x/l**3;\n", + "x=0.15;\n", + "M=F*x;\n", + "t=0.003;\n", + "s=(M*t)/(I*2);\n", + "strain=s/E;\n", + "dR=0.152;\n", + "R=120;\n", + "Gf=(dR/R)/strain;\n", + "print (\"Gauge factor = %.2f \" %Gf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.20" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Change in length= 2.5 um \n", + " Force= 2038.64 N \n" + ] + } + ], + "source": [ + "# 2.20\n", + "import math;\n", + "dR=0.013;\n", + "R=240;\n", + "l=0.1;\n", + "Gf=2.2;\n", + "dl=(dR/R)*l/Gf*10**6;\n", + "print (\" Change in length= %.1f um \" %dl)\n", + "\n", + "strain=dl*10**-6/l;\n", + "E=207*10**9;\n", + "s=E*strain;\n", + "A=4*10**-4;\n", + "F=s*A;\n", + "print (\" Force= %.2f N \" %F)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.21" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " alpha at o degree= 0.0085 /degree C \n", + "5.5(1+0.0085(th-45))\n" + ] + } + ], + "source": [ + "# 2.21\n", + "import math;\n", + "th1=30;\n", + "th2=60;\n", + "th0=th1+th2/2;\n", + "Rth1=4.8;\n", + "Rth2=6.2;\n", + "Rth0=5.5;\n", + "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", + "print (\" alpha at o degree= %.4f /degree C \" %ath0)\n", + "print ('5.5(1+0.0085(th-45))')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.22" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha at o degree= 0.00182 /degree C \n", + "Linear approximation is: Rth= 589.48(1+0.00182(th-115))\n" + ] + } + ], + "source": [ + "# 2.22\n", + "import math;\n", + "th1=100;\n", + "th2=130;\n", + "th0=th1+th2/2;\n", + "Rth1=573.40;\n", + "Rth2=605.52;\n", + "Rth0=589.48;\n", + "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", + "print (\"alpha at o degree= %.5f /degree C \" %ath0)\n", + "print ('Linear approximation is: Rth= 589.48(1+0.00182(th-115))')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.23" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistance at 65 degree C= 115.68 ohm \n", + " Temperature = 25.00 degree C \n" + ] + } + ], + "source": [ + "# 2.23\n", + "import math;\n", + "Rth0=100;\n", + "ath0=0.00392;\n", + "dth=65-25;\n", + "R65=Rth0*(1+ath0*dth);\n", + "print (\"resistance at 65 degree C= %.2f ohm \" %R65)\n", + "th=(((150/100)-1)/ath0)+25;\n", + "print (\" Temperature = %.2f degree C \" %th)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.24" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resistance at 150 degree C=15.11 ohm\n" + ] + } + ], + "source": [ + "# 2.24\n", + "import math;\n", + "Rth0=10;\n", + "ath0=0.00393;\n", + "dth=150-20;\n", + "R150=Rth0*(1+ath0*dth);\n", + "print (\"Resistance at 150 degree C=%.2f ohm\" %R150)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.25" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time= 109.95 s \n" + ] + } + ], + "source": [ + "# Calculate the time\n", + "import math;\n", + "th=30.0;\n", + "th0=50;\n", + "tc=120;\n", + "t=-120*(math.log(1-(th/th0)));\n", + "print (\"Time= %.2f s \" %t)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.26" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resistance at 35 degree C= 50.00 ohm \n" + ] + } + ], + "source": [ + "#2.26\n", + "import math;\n", + "R25=100;\n", + "ath=-0.05;\n", + "dth=35-25;\n", + "R35=R25*(1+ath*dth);\n", + "print (\"Resistance at 35 degree C= %.2f ohm \" %R35)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.27" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resistance at 40 degree C= 967.51 ohm \n", + "Resistance at 100 degree C= 130.94 ohm \n" + ] + } + ], + "source": [ + "# 2.27\n", + "import math;\n", + "Ro=3980;\n", + "Ta=273;\n", + "#3980= a*3980*exp(b/273)\n", + "Rt50=794;\n", + "Ta50=273+50;\n", + "#794= a*3980*exp(b/323)\n", + "#on solving\n", + "#a=30*10**-6, b=2843\n", + "Ta40=273+40;\n", + "Rt40=(30*10**-6)*3980*math.exp(2843/313);\n", + "print (\"Resistance at 40 degree C= %.2f ohm \" %Rt40)\n", + "Rt100=(30*10**-6)*3980*math.exp(2843/373);\n", + "print (\"Resistance at 100 degree C= %.2f ohm \" %Rt100)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.28" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in temperature= 20.0 degree C \n" + ] + } + ], + "source": [ + "# 2.28\n", + "import math;\n", + "th=((1-1800/2000)/0.05)+70;\n", + "dth=th-70;\n", + "print (\"Change in temperature= %.1f degree C \" %dth)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.29" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Frequency of oscillation at 20 degree C = 25464.79 Hz \n", + "Frequency of oscillation at 25 degree C = 31830.99 Hz \n", + "Frequency of oscillation at 30 degree C = 42441.32 Hz \n" + ] + } + ], + "source": [ + "# 2.29\n", + "import math;\n", + "C=500*10**-12;\n", + "R20=10000*(1-0.05*(20-25));\n", + "f20=1/(2*math.pi*R20*C);\n", + "print (\"Frequency of oscillation at 20 degree C = %.2f Hz \" %f20)\n", + "R25=10000*(1-0.05*(25-25));\n", + "f25=1/(2*math.pi*R25*C);\n", + "print (\"Frequency of oscillation at 25 degree C = %.2f Hz \" %f25)\n", + "R30=10000*(1-0.05*(30-25));\n", + "f30=1/(2*math.pi*R30*C);\n", + "print (\"Frequency of oscillation at 30 degree C = %.2f Hz \" %f30)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.30" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sensitivity of thermocouple= 572.0 micro V/degree C\n", + "Maximum output voltage= 0.06 V \n" + ] + } + ], + "source": [ + "# 2.30\n", + "import math;\n", + "Se_thermocouple=500-(-72);\n", + "print (\"Sensitivity of thermocouple= %.1f micro V/degree C\" %Se_thermocouple)\n", + "Vo=Se_thermocouple*100*10**-6;\n", + "print (\"Maximum output voltage= %.2f V \" %Vo)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.31" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Required e.m.f.= 27.87 mV \n", + "Temperature corresponding to 27.87 mV is 620 degree C\n" + ] + } + ], + "source": [ + "# 2.31\n", + "import math;\n", + "ET=27.07+0.8;\n", + "print (\"Required e.m.f.= %.2f mV \" %ET)\n", + "print ('Temperature corresponding to 27.87 mV is 620 degree C')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.32" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Series resistance=271.00 ohm\n", + "Approximate error due to rise in resistance of 1 ohm in Re=-2.40 degree C\n", + "Approximate error due to rise in Temp. of 10=-7.45 degree C\n" + ] + } + ], + "source": [ + "# 2.32\n", + "import math;\n", + "Rm=50;\n", + "Re=12;\n", + "E=33.3*10**-3;\n", + "i=0.1*10**-3;\n", + "Rs=(E/i)-Rm-Re;\n", + "print (\"Series resistance=%.2f ohm\" %Rs)\n", + "Re=13;\n", + "i1=E/(Rs+Re+Rm);\n", + "AE=((i1-i)/i)*800;\n", + "print (\"Approximate error due to rise in resistance of 1 ohm in Re=%.2f degree C\" %AE)\n", + "R_change=50*0.00426*10;\n", + "i1=E/(Rs+Re+Rm+R_change);\n", + "AE=((i1-i)/i)*800;\n", + "print (\"Approximate error due to rise in Temp. of 10=%.2f degree C\" %AE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.3" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of resistance R1=5.95 ohm\n", + "Value of resistance R2=762.60 ohm\n" + ] + } + ], + "source": [ + "# 2.33\n", + "import math;\n", + "E_20=0.112*10**-3;# emf at 20degree C\n", + "E_900=8.446*10**-3;\n", + "E_1200=11.946*10**-3;\n", + "E1=E_900-E_20;\n", + "E2=E_1200-E_20;\n", + "#E1=1.08*R1/(R1+2.5+R2 (i)\n", + "#E2=1.08*(R1+2.5)/(R1+2.5+R2 (ii)\n", + "#on solving (i) and (ii)\n", + "R1=5.95;\n", + "R2=762.6;\n", + "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", + "print (\"Value of resistance R2=%.2f ohm\" %R2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.34" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of resistance R1=5.95 ohm\n", + "value of resistance RL>>Rl\n" + ] + } + ], + "source": [ + "# 2.34\n", + "import math;\n", + "th=20;\n", + "Vz=2.73+th*10*10**-3;\n", + "Voffset=-2.73;\n", + "Vout=Vz+Voffset;\n", + "Rbias=(5-0.2)/10**-3;\n", + "Rzero=500;\n", + "th=50;\n", + "Vz=2.73+th*10*10**-3;\n", + "VmaxT=Vz+Voffset;\n", + "Vsupply=5;\n", + "Rl=(VmaxT*Rbias)/(Vsupply-VmaxT);\n", + "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", + "print ('value of resistance RL>>Rl')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.35" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in inductance=0.04 mH\n" + ] + } + ], + "source": [ + "# 2.35\n", + "import math;\n", + "L1=2;\n", + "La=1-0.02;\n", + "Lnew=2/La;\n", + "dl=Lnew-L1;\n", + "print (\"Change in inductance=%.2f mH\" %dl)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.36" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "percentage linearity=0.20 \n" + ] + } + ], + "source": [ + "# 2.36\n", + "import math;\n", + "linearity_percentage=(0.003/1.5)*100;\n", + "print (\"percentage linearity=%.2f \" %linearity_percentage)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.37" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "senstivity of the LVDT=0.004 V/mm\n", + "Senstivity of the instrument=1.0 V/mm\n", + "resolution of instrument=0.001 mm\n" + ] + } + ], + "source": [ + "# 2.37\n", + "import math;\n", + "displacement=0.5;\n", + "Vo=2*10**-3;\n", + "Se_LVDT=Vo/displacement;\n", + "print (\"senstivity of the LVDT=%.3f V/mm\" %Se_LVDT)\n", + "Af=250;\n", + "Se_instrument=Se_LVDT*Af;\n", + "print (\"Senstivity of the instrument=%.1f V/mm\" %Se_instrument)\n", + "sd=5/100;\n", + "Vo_min=50/5;\n", + "Re_instrument=1*1.0/1000;\n", + "print (\"resolution of instrument=%.3f mm\" %Re_instrument)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.38" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deflection=0.01 m\n", + "minimum force=0.02 N\n", + "maximum force=81.92 N\n" + ] + } + ], + "source": [ + "# 2.38\n", + "import math;\n", + "b=0.02;\n", + "t=0.004;\n", + "I=(1.0/12)*b*t**3;\n", + "F=25;\n", + "l=0.25;\n", + "E=200.0*10**9;\n", + "x=(F*l**3)/(3.0*E*I);\n", + "print (\"deflection=%.2f m\" %x)\n", + "DpF=x/F;\n", + "Se=DpF*0.5*1000;\n", + "Re=(10.0/1000)*(2.0/10);\n", + "F_min=Re/Se;\n", + "F_max=10/Se;\n", + "print (\"minimum force=%.2f N\" %F_min)\n", + "print (\"maximum force=%.2f N\" %F_max)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.39" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "permittivity of the air e0=8.85*10**-12\n", + "sensitivity of the transducer=-0.00 F/m\n" + ] + } + ], + "source": [ + "# 2.39\n", + "import math;\n", + "print ('permittivity of the air e0=8.85*10**-12')\n", + "e0=8.85*10**-12;\n", + "w=25.0*10**-3;\n", + "d=0.25*10**-3;\n", + "Se=-4.0*e0*w/d;\n", + "print (\"sensitivity of the transducer=%.2f F/m\" %Se)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.40" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the value of the capacitance afte the application of pressure=446.55 pF\n" + ] + } + ], + "source": [ + "# 2.40\n", + "import math;\n", + "C1=370*10**-12;\n", + "d1=3.5*10**-3;\n", + "d2=2.9*10**-3;\n", + "C2=C1*d1*10**12/d2;\n", + "print (\"the value of the capacitance afte the application of pressure=%.2f pF\" %C2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.41" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "change in frequency of the oscillator=-9.607692e+07 kHz\n" + ] + } + ], + "source": [ + "# 2.41\n", + "import math;\n", + "fo1=100*10**3;\n", + "d1=4;\n", + "d2=3.7;\n", + "fo2=((d2/d1)**0.5)*fo1;\n", + "dfo=fo1-fo2/10**-3;\n", + "print (\"change in frequency of the oscillator=%e kHz\" %dfo)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.42" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Capacitance=33.9 pF\n", + "change in Capacitance=3.4 pF\n" + ] + } + ], + "source": [ + "# 2.42\n", + "import math;\n", + "L_air=(3.1-3)/2;\n", + "D_stress=100/L_air;\n", + "e0=8.85*10**-12;\n", + "l=20*10**-3;\n", + "D2=3.1;\n", + "D1=3;\n", + "C=(2*math.pi)*e0*l*10**12/(math.log(D2/D1));\n", + "print (\"Capacitance=%.1f pF\" %C)\n", + "l=(20*10**-3)-(2*10**-3);\n", + "C_new=(2*math.pi)*e0*l/(math.log(D2/D1));\n", + "C_change=C-C_new*10**12;\n", + "print (\"change in Capacitance=%.1f pF\" %C_change)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.43" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time constant=0.02 s\n", + "Phase shift=18.2 deg\n", + "Series resistance=1140 Mohm\n", + "Amplitude ratio=0.6 \n", + "Voltage sensitivity=800000 V/m\n" + ] + } + ], + "source": [ + "#2.43\n", + "import math;\n", + "M=0.95;\n", + "w=2*math.pi*20;\n", + "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", + "print (\"Time constant=%.2f s\" %tc)\n", + "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", + "print (\"Phase shift=%.1f deg\" %ph)\n", + "C=(8.85*10**-12*300*10**-6)/(0.125*10**-3);\n", + "R=tc*10**-6/C;\n", + "print (\"Series resistance=%.0f Mohm\" %R)\n", + "M=1/(1+(1/(2*math.pi*5*tc)**2))**0.5;\n", + "print (\"Amplitude ratio=%.1f \" %M)\n", + "Eb=100;\n", + "x=0.125*10**-3;\n", + "Vs=Eb/x;\n", + "print (\"Voltage sensitivity=%d V/m\" %Vs)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.44" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ratio of per unit change of capacitance to per unit change of diaplacement=1.11\n", + " New ratio of per unit change of capacitance to per unit change of diaplacement=1.17\n" + ] + } + ], + "source": [ + "#2.44\n", + "import math;\n", + "e0=8.85*10**-12;\n", + "A=500*10**-6;\n", + "d=0.2*10**-3;\n", + "C=e0*A/d;\n", + "d1=0.18*10**-3;\n", + "C_new=e0*A/d1;\n", + "C_change=C_new-C;\n", + "Ratio=(C_change/C)/(0.02/0.2);\n", + "print (\"ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n", + "d1=0.19*10**-3;\n", + "e1=1;\n", + "d2=0.01*10**-3;\n", + "e2=8;\n", + "C=(e0*A)/((d1/e1)+(d2/e2));\n", + "d1_new=0.17*10**-3;\n", + "C_new=(e0*A)/((d1_new/e1)+(d2/e2));\n", + "C_change=C_new-C;\n", + "Ratio=(C_change/C)/(0.02/0.2);\n", + "print (\" New ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.47" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output voltage=165 V\n", + " Charge sensitivity=2.23 pC/N\n" + ] + } + ], + "source": [ + "# 2.47\n", + "import math;\n", + "g=0.055;\n", + "t=2*10**-3;\n", + "P=1.5*10**6;\n", + "Eo=g*t*P;\n", + "print (\"Output voltage=%.0f V\" %Eo)\n", + "e=40.6*10**-12;\n", + "d=e*g*10**12;\n", + "print (\" Charge sensitivity=%.2f pC/N\" %d)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.48" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Force=30 N\n" + ] + } + ], + "source": [ + "# 2.48\n", + "import math;\n", + "g=0.055;\n", + "t=1.5*10**-3;\n", + "Eo=100;\n", + "P= Eo/(g*t);\n", + "A=25*10**-6;\n", + "F=P*A;\n", + "print (\" Force=%.0f N\" %F)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.49" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " strain=0.0167 \n", + " Charge=750 pC\n", + " capacitance=250 pF\n" + ] + } + ], + "source": [ + "# 2.49\n", + "import math;\n", + "A=25*10**-6;\n", + "F=5;\n", + "P=F/A;\n", + "d=150*10**-12;\n", + "e=12.5*10**-9;\n", + "g=d/(e);\n", + "t=1.25*10**-3;\n", + "Eo=(g*t*P);\n", + "strain=P/(12*10**6);\n", + "Q=d*F*10**12;\n", + "C=Q/Eo;\n", + "print (\" strain=%.4f \" %strain)\n", + "print (\" Charge=%.0f pC\" %Q)\n", + "print (\" capacitance=%.0f pF\" %C)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.50" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " peak voltage swing under open conditions=9.04 mV\n", + " peak voltage swing under loaded conditions=1.52 mV\n", + " Maximum change in crystal thickness=2.22 pm\n" + ] + } + ], + "source": [ + "# 2.50\n", + "import math;\n", + "d=2*10**-12;\n", + "t=1*10**-3;\n", + "Fmax=0.01;\n", + "e0=8.85*10**-12;\n", + "er=5;\n", + "A=100*10**-6;\n", + "Eo_peak_to_peak=2*d*t*Fmax*10**3/(e0*er*A);\n", + "print (\" peak voltage swing under open conditions=%.2f mV\" %Eo_peak_to_peak)\n", + "Rl=100*10**6;\n", + "Cl=20*10**-12;\n", + "d1=1*10**-3;\n", + "Cp=e0*er*A/d1;\n", + "C=Cp+Cl;\n", + "w=1000;\n", + "m=(w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);\n", + "El_peak_to_peak=(2*d*t*Fmax*10**3/(e0*er*A))*m;\n", + "print (\" peak voltage swing under loaded conditions=%.2f mV\" %El_peak_to_peak)\n", + "E=90*10**9;\n", + "dt=2*Fmax*t*10**12/(A*E);\n", + "print (\" Maximum change in crystal thickness=%.2f pm\" %dt)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.51" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Minimum frequency=2028.29 rad/sec\n", + " Phase shift=18.19 deg\n" + ] + } + ], + "source": [ + "# 2.51\n", + "import math;\n", + "M=0.95;\n", + "tc=1.5*10**-3;\n", + "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", + "print (\" Minimum frequency=%.2f rad/sec\" %w)\n", + "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", + "print (\" Phase shift=%.2f deg\" %ph)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.52" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Sensitivity of the transducer=40000000.00 V/m\n", + " High frequency sensitivity =29629629.63 V/m\n", + " Minimum frequency=358.68 sec\n", + "now f=10Hz\n", + " External shunt capacitance=0.05 pF\n", + " new value of high frequency sensitivity=826073.26 V/m\n" + ] + } + ], + "source": [ + "#2.52\n", + "import math;\n", + "Kq=40*10**-3;\n", + "Cp=1000*10**-12;\n", + "K=Kq/Cp;\n", + "print (\" Sensitivity of the transducer=%.2f V/m\" %K)\n", + "Cc=300*10**-12;\n", + "Ca=50*10**-12;\n", + "C=Cp+Cc+Ca;\n", + "Hf=Kq/C;\n", + "print (\" High frequency sensitivity =%.2f V/m\" %Hf)\n", + "R=1*10**6;\n", + "tc=R*C;\n", + "M=0.95;\n", + "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", + "f=w/(2*math.pi);\n", + "print (\" Minimum frequency=%.2f sec\" %f)\n", + "print ('now f=10Hz')\n", + "f=10;\n", + "w=2*math.pi*f;\n", + "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", + "C_new=tc/R;\n", + "Ce=(C_new-C)*10**6;\n", + "print (\" External shunt capacitance=%.2f pF\" %Ce)\n", + "Hf_new=Kq/C_new;\n", + "print (\" new value of high frequency sensitivity=%.2f V/m\" %Hf_new)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.53" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage just before t=2ms =1.00 mV\n", + "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n", + "Voltage just after t=2ms =-2.20 mV\n", + "when t=10ms\n", + "output voltage 10 ms after the application of impulse =0 mV\n" + ] + } + ], + "source": [ + "# 2.53\n", + "import math;\n", + "R=10**6;\n", + "C=2500*10**-12;\n", + "tc=R*C;\n", + "t=2*10**-3;\n", + "d=100*10**-12;\n", + "F=0.1;\n", + "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n", + "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n", + "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n", + "print (el_after,'voltage just after t=2ms (mV)')\n", + "print (\"Voltage just after t=2ms =%.2f mV\" %el_after)\n", + "print ('when t=10ms')\n", + "t=10.0*10**-3;\n", + "T=2.0*10\n", + "e_10=10.0**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)\n", + "print (\"output voltage 10 ms after the application of impulse =%.0f mV\" %e_10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.54" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Let T=1\n", + "Time constant =19.50 s\n", + "as T=1 so time constant should be approximately equal to 20T\n" + ] + } + ], + "source": [ + "# 2.54\n", + "import math;\n", + "print ('Let T=1');\n", + "T=1;\n", + "el=0.95;\n", + "tc=-T/math.log(el);\n", + "print (\"Time constant =%.2f s\" %tc)\n", + "print ('as T=1 so time constant should be approximately equal to 20T')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.55" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output voltage =-0.75 mV\n" + ] + } + ], + "source": [ + "#2.55\n", + "import math;\n", + "Kh=-1*10**-6;\n", + "I=3;\n", + "B=0.5;\n", + "t=2*10**-3;\n", + "Eh=Kh*I*B*10**3/t;\n", + "print (\"output voltage =%.2f mV\" %Eh)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.56" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "External resistance required =-999.997 ohm\n", + "Dark current =0.29 mA\n" + ] + } + ], + "source": [ + "#2.56\n", + "import math;\n", + "R1=(30/10*10**-3)-1000;\n", + "print (\"External resistance required =%.3f ohm\" %R1)\n", + "Id=30.0*10**3/((2*10**3)+(100*10**3))\n", + "print (\"Dark current =%.2f mA\" %Id)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exa 2.57" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential of point b, Vb= 5.000000\n", + "Potential of point d, Vd= 10.000000\n", + "Outout voltage of bridge =-5.00 V\n" + ] + } + ], + "source": [ + "#2.57\n", + "import math;\n", + "Vb=10-(10.0/((2*10**3))*10**3);\n", + "print ('Potential of point b, Vb= %f'%Vb)\n", + "Vd=10-(10/((3*10**3))*2*10**3);\n", + "print ('Potential of point d, Vd= %f' %Vd)\n", + "Ebd=Vb-Vd;\n", + "print (\"Outout voltage of bridge =%.2f V\" %Ebd)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb new file mode 100644 index 00000000..1d8c5ae8 --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb @@ -0,0 +1,287 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3:Measurement of non electrical quantities" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 3.1" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =350.0 mm\n", + "sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used\n", + "deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =70.0 mm\n", + "delection is within the range\n", + "deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =17.0 mm\n", + "delection is within the range\n", + "deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =3.0 mm\n", + "delection is within the range\n", + "deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =0.0 mm\n", + "delection is within the range\n", + "since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity\n" + ] + } + ], + "source": [ + "# 3.1\n", + "import math\n", + "Aou=700*25*1/100;\n", + "Aol=100*25*1/100;\n", + "AouPtP= 2*Aou;\n", + "AolPtP= 2*Aol;\n", + "Se1=1;\n", + "D1=AouPtP/Se1;\n", + "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =%.1f mm\" %D1)\n", + "print ('sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used')\n", + "Se2=5;\n", + "D2=AouPtP/Se2;\n", + "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =%.1f mm\" %D2)\n", + "print ('delection is within the range')\n", + "Se3=20;\n", + "D3=AouPtP/Se3;\n", + "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =%.1f mm\" %D3)\n", + "print ('delection is within the range')\n", + "Se4=100;\n", + "D4=AouPtP/Se4;\n", + "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =%.1f mm\" %D4)\n", + "print ('delection is within the range')\n", + "Se5=500;\n", + "D5=AouPtP/Se5;\n", + "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =%.1f mm\" %D5)\n", + "print ('delection is within the range')\n", + "print ('since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 3.2" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Radius of curvature =356.04 mm\n" + ] + } + ], + "source": [ + "#3.2\n", + "import math\n", + "tA=1;\n", + "tB=1;\n", + "m=tA/tB;\n", + "EB=147.0;\n", + "EA=216;\n", + "T2=200.0;\n", + "T1=25;\n", + "n=EB/EA;\n", + "T=T2-T1;\n", + "A=12.5*10**-6;\n", + "B=1.7*10**-6;\n", + "a=3*(1+m)**2;\n", + "b=(1+m*n)*((m**2)+1/(m*n));\n", + "c= (6*(A-B)*T*(1+m)**2);\n", + "r=(a+b)/c;\n", + "print (\"Radius of curvature =%.2f mm\" %r)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 3.3" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Radius of curvature =500 mm\n", + "vertical displacement =2 mm\n" + ] + } + ], + "source": [ + "#3.3\n", + "t=2;\n", + "T2=180;\n", + "T1=20;\n", + "T=T2-T1;\n", + "A=12.5*10**-6;\n", + "r=t/(2*T*A);\n", + "print (\"Radius of curvature =%.0f mm\" %r)\n", + "Th=40.0/500;\n", + "y=r*(1.0-math.cos(Th));\n", + "print (\"vertical displacement =%.0f mm\" %y)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 3.4" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True temperature =1853.57 degree K\n", + "True temperature =1580.57 degree C\n" + ] + } + ], + "source": [ + "#3.4\n", + "import math\n", + "Ta=1480+273;\n", + "Tf=0.8;\n", + "T=Tf**-0.25*Ta;\n", + "print (\"True temperature =%.2f degree K\" %T)\n", + "Tc=T-273;\n", + "print (\"True temperature =%.2f degree C\" %Tc)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 3.5" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in temperature measurement=-172.91 degree C\n" + ] + } + ], + "source": [ + "# 3.5\n", + "import math\n", + "ATC1=1065;\n", + "AT=ATC1+273;\n", + "Em1=0.82;\n", + "Ta=(Em1**(-0.25))*AT;\n", + "Em2=0.75;\n", + "Taa=(Em2**-0.25)*Ta;\n", + "ATC2=Taa-273;\n", + "E=ATC1-ATC2;\n", + "print (\"Error in temperature measurement=%.2f degree C\" %E)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 3.6" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average flow rate=0.02 degree m/s\n", + "Percentage decrease in voltage=1.79 degree m/s\n" + ] + } + ], + "source": [ + "# 3.6\n", + "import math\n", + "EL=0.1;\n", + "Zo=250*10**3;\n", + "ZL=2.5*10**6;\n", + "Eo=EL*(1+(Zo/ZL));\n", + "B=0.1;\n", + "l=50*10**-3;\n", + "G=1000;\n", + "v=Eo/(B*l*G);\n", + "print (\"Average flow rate=%.2f degree m/s\" %v)\n", + "Zon=1.2*250*10**3;\n", + "ELn=2*Eo/(1+(Zon/ZL));\n", + "PDV=((0.2-ELn)/0.2)*100;\n", + "print (\"Percentage decrease in voltage=%.2f degree m/s\" %PDV)\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb new file mode 100644 index 00000000..af78fda8 --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb @@ -0,0 +1,585 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4:Telemetry and data acquisition system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.1" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are\n", + "Upper side band frequency for modulating frequency of 300 Hz =1000.3 kHz\n", + "Lower side band frequency for modulating frequency of 300 Hz =999.7 kHz\n", + "Upper side band frequency for modulating frequency of 800 Hz =1000.8 kHz\n", + "Lower side band frequency for modulating frequency of 800 Hz =999.2 kHz\n", + "Upper side band frequency for modulating frequency of 2kHz =1002.0 kHz\n", + "Lower side band frequency for modulating frequency of 2kHz =998.0 kHz\n" + ] + } + ], + "source": [ + "# 4.1\n", + "import math\n", + "fc=1000;\n", + "print ('In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are')\n", + "fs1=0.3;\n", + "fu1=fc+fs1;\n", + "print (\"Upper side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fu1)\n", + "fl1=fc-fs1;\n", + "print (\"Lower side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fl1)\n", + "fs2=0.8;\n", + "fu2=fc+fs2;\n", + "print (\"Upper side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fu2)\n", + "fl2=fc-fs2;\n", + "print (\"Lower side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fl2)\n", + "fs3=2;\n", + "fu3=fc+fs3;\n", + "print (\"Upper side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fu3)\n", + "fl3=fc-fs3;\n", + "print (\"Lower side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fl3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Upper side band frequency =721.76 kHz\n", + "Lower side band frequency =701.76 kHz\n" + ] + } + ], + "source": [ + "# 4.2\n", + "import math\n", + "L=50*10**-6;\n", + "C=1*10**-9;\n", + "fc=1/(2*math.pi*(L*C)**0.5);\n", + "fs1=10000;\n", + "fu1=(fc+fs1)*10**-3;\n", + "print (\"Upper side band frequency =%.2f kHz\" %fu1)\n", + "fl1=(fc-fs1)*10**-3;\n", + "print (\"Lower side band frequency =%.2f kHz\" %fl1)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Radiation Power =68.06 kW\n" + ] + } + ], + "source": [ + "# 4.3\n", + "import math\n", + "Pc=50;\n", + "m=0.85;\n", + "Pt=Pc*(1+(m**2/2))\n", + "print (\"Radiation Power =%.2f kW\" %Pt)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.4" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "modulation index for Es (2.4) =9.6\n", + "modulation index for Es(7.2)=28.8\n", + "modulation indexfor Es(10) =40.0\n" + ] + } + ], + "source": [ + "# 4.4\n", + "import math\n", + "delta=4.8;\n", + "Es=2.4;\n", + "K=delta/Es;\n", + "Es1=7.2;\n", + "delta1=K*Es1;\n", + "Es2=10;\n", + "delta2=K*Es2;\n", + "fs1=500*10**-3;\n", + "mf1=delta/fs1;\n", + "print (\"modulation index for Es (2.4) =%.1f\" %mf1)\n", + "mf2=delta1/fs1;\n", + "print (\"modulation index for Es(7.2)=%.1f\" %mf2)\n", + "mf3=delta2/fs1;\n", + "print (\"modulation indexfor Es(10) =%.1f\" %mf3)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.5" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "carrier frequency =95493.0 kHz\n", + "modulating frequency =198.9 Hz\n", + "maximum deviation =994.7 Hz\n", + "Power dissipated =7.2 W\n" + ] + } + ], + "source": [ + "# 4.5\n", + "import math\n", + "wc=6*10**8;\n", + "fc=(wc)/(2*math.pi)*10**-3;\n", + "print (\"carrier frequency =%.1f kHz\" %fc)\n", + "ws=1250;\n", + "fs=(ws)/(2*math.pi);\n", + "print (\"modulating frequency =%.1f Hz\" %fs)\n", + "mf=5;\n", + "delta=mf*fs;\n", + "print (\"maximum deviation =%.1f Hz\" %delta)\n", + "Rms=12/(2**0.5);\n", + "P=Rms**2/10;\n", + "print (\"Power dissipated =%.1f W\" %P)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.6" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Band width =80 kHz\n" + ] + } + ], + "source": [ + "# 4.6\n", + "import math\n", + "delta=10;\n", + "fs=2;\n", + "mf=delta/fs;\n", + "BW=16*mf;\n", + "print (\"Band width =%.0f kHz\" %BW)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.7" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V\n", + "for a signal voltage of 4 V\n", + "epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V\n", + "for a fs of 8 kHz\n", + "epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V\n" + ] + } + ], + "source": [ + "# 4.7\n", + "import math\n", + "fc=100*10**6;\n", + "wc=2*math.pi*fc;\n", + "fs=6*10**3;\n", + "ws=2*math.pi*fs;\n", + "delta=60*10**3;\n", + "mf=delta/fs;\n", + "mp=mf;\n", + "print ('epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V')\n", + "print ('for a signal voltage of 4 V')\n", + "mp=4*10/3;\n", + "print ('epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V')\n", + "print ('for a fs of 8 kHz')\n", + "print ('epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.8" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "range is 0-31 V with each step representing 1V\n", + "quattization error =0.4 V\n" + ] + } + ], + "source": [ + "# 4.8\n", + "import math\n", + "n=5;\n", + "Ql=2**n;\n", + "Range=(Ql-1)*1;\n", + "print ('range is 0-31 V with each step representing 1V')\n", + "Qe=27.39-27;\n", + "print (\"quattization error =%.1f V\" %Qe)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.9" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For amplitude modulation\n", + "Minimum width of carrier channel =2.0 kHz\n", + "For frequency modulation\n", + "Minimum width of carrier channel =5.0 kHz\n", + "For pulse code modulation\n", + "Minimum width of carrier channel =8.0 kHz\n" + ] + } + ], + "source": [ + "# 4.9\n", + "import math\n", + "print ('For amplitude modulation')\n", + "MCCW=2*1;\n", + "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n", + "print ('For frequency modulation')\n", + "MCCW=2*(1.5+1);\n", + "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n", + "print ('For pulse code modulation')\n", + "MCCW=8*1;\n", + "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.10" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "At 403 change in frequency\n", + "Fuel level =1650.0 L\n" + ] + } + ], + "source": [ + "# 4.10\n", + "import math\n", + "Fc=430-370;\n", + "print ('At 403 change in frequency')\n", + "Fc1=403-370;\n", + "Fuel_level=Fc1*3000/Fc;\n", + "print (\"Fuel level =%.1f L\" %Fuel_level)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.11" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "for good quality data the sampling rate should be at least 5 times the data frequency for one channel\n", + "sampling rate =1250.0 samples per second\n" + ] + } + ], + "source": [ + "# 4.11\n", + "import math\n", + "print ('for good quality data the sampling rate should be at least 5 times the data frequency for one channel')\n", + "channel=5;\n", + "f=50;\n", + "sampling_rate=5*channel*f;\n", + "print (\"sampling rate =%.1f samples per second\" %sampling_rate)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.12" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum possible data transmission rate =6000.0 bits per second\n", + "minimum sampling rate per channel =2000.0 samples per second\n", + "maximum number of channels =42 \n" + ] + } + ], + "source": [ + "#4.12\n", + "import math\n", + "Vs=7;\n", + "Vn=1;\n", + "fh=10**3;\n", + "H=2*fh*math.log(1+(Vs/Vn),2);\n", + "print (\"Maximum possible data transmission rate =%.1f bits per second\" %H)\n", + "Sampling_rate=2*fh;\n", + "print (\"minimum sampling rate per channel =%.1f samples per second\" %Sampling_rate)\n", + "C_max=85714/2000;\n", + "print (\"maximum number of channels =%.0f \" %C_max)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.13" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cutt off frquency =50.0 kHz \n" + ] + } + ], + "source": [ + "#4.13\n", + "import math\n", + "d_rate=100;\n", + "fc= 0.5*d_rate;\n", + "print (\"cutt off frquency =%.1f kHz \" %fc)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.14" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.\n", + "therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth\n" + ] + } + ], + "source": [ + "#4.14\n", + "import math\n", + "print ('The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.')\n", + "print ('therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 4.15" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bandwidth of intelligence =2475.0 Hz \n", + "Rise time=141.4 us \n" + ] + } + ], + "source": [ + "# 4.15\n", + "import math\n", + "Fd=7.5*165*10**3/100;\n", + "mf=5;\n", + "Bandwidth=Fd/mf;\n", + "print (\"Bandwidth of intelligence =%.1f Hz \" %Bandwidth)\n", + "Tr=0.35/Bandwidth*10**6;\n", + "print (\"Rise time=%.1f us \" %Tr)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb new file mode 100644 index 00000000..18a94379 --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5:Advanced measuring instruments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A=0.000064\n", + "B=0.000512\n", + "since A<B so the instrument is underdamped\n", + "Number of turns=3356426 \n", + "current required to overcome friction=0.1 uA \n" + ] + } + ], + "source": [ + "# 5.1\n", + "import math\n", + "D=8*10**-3;\n", + "A=D**2;\n", + "print ('A=%f'%A)\n", + "J=8*10**-3;\n", + "K=16*10**-3;\n", + "B=4*J*K;\n", + "print ('B=%f'%B)\n", + "print ('since A<B so the instrument is underdamped')\n", + "th=(100*math.pi)/180;\n", + "i=10*10**-3;\n", + "F=0.2*10**-6;\n", + "G=(K*th+F)/i;\n", + "l=65*10**-3;\n", + "d=25*10**-3;\n", + "N=G/(B*l*d);\n", + "print (\"Number of turns=%.0f \" %N)\n", + "i=F/G*10**6;\n", + "print (\"current required to overcome friction=%.1f uA \" %i)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "upper value of range=1896 Hz\n", + "lower value of range=696 Hz\n", + "So, the range of the frequency is from 696 to 1896 Hz\n" + ] + } + ], + "source": [ + "# 5.2\n", + "import math\n", + "eta=0.6;\n", + "fn=2400;\n", + "M=0.98;\n", + "#M=1/(((1-u**2)**2)+(2*u*eta)**2)**0.5; ..........(i)\n", + "# On solving the above equation we get u=0.79\n", + "u=0.79;\n", + "fu=u*fn;\n", + "print (\"upper value of range=%.0f Hz\" %fu)\n", + "\n", + "#Now let M=1.02, on solving equation (i) we have u=0.29\n", + "u=0.29;\n", + "fl=u*fn;\n", + "print (\"lower value of range=%.0f Hz\" %fl)\n", + "print ('So, the range of the frequency is from 696 to 1896 Hz')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.3" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "phase displacement for the fundamental=7.37 degree\n", + "phase displacement for the 5th harmonic=40.48 degree\n" + ] + } + ], + "source": [ + "# 5.3\n", + "import math\n", + "eta=0.64;\n", + "u=0.1;\n", + "alpha_1=math.degrees(math.atan(2*eta*u/(1-u**2)))\n", + "print (\"phase displacement for the fundamental=%.2f degree\" %alpha_1)\n", + "u=0.5;\n", + "alpha_5=math.degrees(math.atan((2*eta*u/(1-u**2))))\n", + "print (\"phase displacement for the 5th harmonic=%.2f degree\" %alpha_5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.4" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percentage error for the production of 3rd harmonics=-0.56\n", + "Percentage error for the production of 5th harmonics=-1.54\n", + "Percentage error for the production of 7th harmonics=-2.97\n", + "Percentage error for the production of 11th harmonics=-7.03\n", + "Percentage error for the production of 13th harmonics=-9.55\n", + " Displacement of 13th harmonic=-1.23 degree\n" + ] + } + ], + "source": [ + "#5.4\n", + "import math\n", + "To=1.0/2000;\n", + "T=1.0/50;\n", + "#Rn=1/(1+n**2*(To/T)**2)\n", + "R1=1.0/(1+1.0**2*(To/T)**2);\n", + "R3=1.0/(1+3**2*(To/T)**2);\n", + "R5=1.0/(1+5**2*(To/T)**2);\n", + "R7=1.0/(1+7**2*(To/T)**2);\n", + "R11=1.0/(1+11**2*(To/T)**2);\n", + "R13=1.0/(1+13**2*(To/T)**2);\n", + "PE3=(R3-1/1)*100;\n", + "print (\"Percentage error for the production of 3rd harmonics=%.2f\" %PE3)\n", + "PE5=(R5-1/1)*100;\n", + "print (\"Percentage error for the production of 5th harmonics=%.2f\" %PE5)\n", + "PE7=(R7-1/1)*100;\n", + "print (\"Percentage error for the production of 7th harmonics=%.2f\" %PE7)\n", + "PE11=(R11-1/1)*100;\n", + "print (\"Percentage error for the production of 11th harmonics=%.2f\" %PE11)\n", + "PE13=(R13-1/1)*100;\n", + "print (\"Percentage error for the production of 13th harmonics=%.2f\" %PE13)\n", + "#displacement of nth harmonic alpha=atan2*n/((T/To)-n**2*(To/T))\n", + "alpha_1=math.degrees(math.atan(2*1/((T/To)-(1**2*(To/T)))));\n", + "alpha_13=(math.degrees(math.atan(2*13/((T/To)-(13**2*(To/T))))));\n", + "alpha_1_equivalent_13=13*alpha_1;\n", + "phase_displacement_13=alpha_13-alpha_1_equivalent_13;\n", + "print (\" Displacement of 13th harmonic=%.2f degree\" %phase_displacement_13)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.5" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum tape speed=7.81 m/s\n" + ] + } + ], + "source": [ + "# 5.5\n", + "import math\n", + "W_min=2.5*6.25*10**-6;\n", + "f=500000;\n", + "S_min=W_min*f;\n", + "print (\"minimum tape speed=%.2f m/s\" %S_min)\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.6" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number density of the tape=8 numbers/mm\n" + ] + } + ], + "source": [ + "# 5.6\n", + "import math\n", + "Num_per_sec=12000;\n", + "S=1.5*10**3;\n", + "Number_density=Num_per_sec/S;\n", + "print (\"Number density of the tape=%.0f numbers/mm\" %Number_density)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb new file mode 100644 index 00000000..f247911b --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb @@ -0,0 +1,448 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6:Cathode ray oscilloscope" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.1" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amplitude of voltage after 10 ms=4.76 V\n" + ] + } + ], + "source": [ + "# 6.1\n", + "import math\n", + "Vcc=50;\n", + "t=10*10**-3;\n", + "R=500*10**3;\n", + "C=0.2*10**-6;\n", + "tc=R*C;\n", + "Vo=Vcc*(1-math.exp(-t/tc));\n", + "print (\"amplitude of voltage after 10 ms=%.2f V\" %Vo)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.2" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage across the capacitor after 50 microsecond=1.36 V\n" + ] + } + ], + "source": [ + "# 6.2\n", + "import math\n", + "Vcc=4.76;\n", + "t=50*10**-6;\n", + "R=0.2*10**3;\n", + "C=0.2*10**-6;\n", + "tc=R*C;\n", + "Vo=Vcc*(math.exp(-t/tc));\n", + "print (\"voltage across the capacitor after 50 microsecond=%.2f V\" %Vo)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.3" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rise time=0.03 us\n" + ] + } + ], + "source": [ + "# 6.3\n", + "import math\n", + "BW=10*10**6;\n", + "tr=0.35/BW*10**6;\n", + "print (\"Rise time=%.2f us\" %tr)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.4" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Attenuation factor=10.0 \n" + ] + } + ], + "source": [ + "# 6.4\n", + "import math\n", + "R=(9.0*10**3)+(900+90+10);\n", + "Rt=100*10**3;\n", + "Attenuation=R/Rt;\n", + "Attenuation_factor=1/Attenuation;\n", + "print (\"Attenuation factor=%.1f \" %Attenuation_factor)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.5" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Attenuation factor=11.0 \n" + ] + } + ], + "source": [ + "# 6.5\n", + "import math\n", + "R=10.0*10**3;\n", + "Ri=100*10**3;\n", + "Rt=100*10**3;\n", + "Rp=(Ri*R)/(Ri+R);\n", + "Attenuation=Rp/Rt;\n", + "Attenuation_factor=1/Attenuation;\n", + "print (\"Attenuation factor=%.1f \" %Attenuation_factor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.6" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For point A Attenuation_factor=400\n", + "voltage per division value at point A=20.00\n", + "For point B Attenuation_factor=100\n", + "voltage per division value at point B=5.00\n", + "For point C Attenuation_factor=40\n", + "voltage per division value at point C=2.00\n", + "For point D Attenuation_factor=10\n", + "voltage per division value at point D=0.50\n", + "For point E Attenuation_factor=4\n", + "voltage per division value at point E=0.20\n", + "For point F Attenuation_factor=1\n", + "voltage per division value at point F=0.05\n" + ] + } + ], + "source": [ + "# 6.6\n", + "import math\n", + "Vo=50*10**-3;\n", + "print ('For point A Attenuation_factor=400')\n", + "Attenuation_factor=400;\n", + "Vi=Attenuation_factor*Vo;\n", + "print (\"voltage per division value at point A=%.2f\" %Vi)\n", + "print ('For point B Attenuation_factor=100')\n", + "Attenuation_factor=100;\n", + "Vi=Attenuation_factor*Vo;\n", + "print (\"voltage per division value at point B=%.2f\" %Vi)\n", + "print ('For point C Attenuation_factor=40')\n", + "Attenuation_factor=40;\n", + "Vi=Attenuation_factor*Vo;\n", + "print (\"voltage per division value at point C=%.2f\" %Vi)\n", + "print ('For point D Attenuation_factor=10')\n", + "Attenuation_factor=10;\n", + "Vi=Attenuation_factor*Vo;\n", + "print (\"voltage per division value at point D=%.2f\" %Vi)\n", + "print ('For point E Attenuation_factor=4')\n", + "Attenuation_factor=4;\n", + "Vi=Attenuation_factor*Vo;\n", + "print (\"voltage per division value at point E=%.2f\" %Vi)\n", + "print ('For point F Attenuation_factor=1')\n", + "Attenuation_factor=1;\n", + "Vi=Attenuation_factor*Vo;\n", + "print (\"voltage per division value at point F=%.2f\" %Vi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.7" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Attenuationn for dc=10.0\n", + "Attenuationn for ac=3.0\n", + "Therefore the attenuation with ac is different from that of dc\n" + ] + } + ], + "source": [ + "#6.7\n", + "import math\n", + "R2=100*10**3;\n", + "Vi=1.0;\n", + "R1=900*10**3;\n", + "Vo_dc=Vi*R2/(R1+R2);\n", + "k_dc=1/Vo_dc;\n", + "print (\"Attenuationn for dc=%.1f\" % k_dc)\n", + "XC2=1592.0;\n", + "Vi=1;\n", + "XC1=3183;\n", + "Vo_ac=Vi*XC2/(XC1+XC2);\n", + "k_ac=1/Vo_ac;\n", + "print (\"Attenuationn for ac=%.1f\" % k_ac)\n", + "print ('Therefore the attenuation with ac is different from that of dc')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.8" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum velocity of the beam of electrons=16772557.39 m/s\n" + ] + } + ], + "source": [ + "# 6.8\n", + "import math\n", + "e=1.6*10**-19;\n", + "Ea=800;\n", + "m=9.1*10**-31;\n", + "Vox=(2*e*Ea/m)**0.5;\n", + "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.9" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum velocity of the beam of electrons=26519741.77 m/s\n", + "deflection sensitivity=0.38 mm/V\n", + "Deflection Factor=2.67 V/mm\n" + ] + } + ], + "source": [ + "# 6.9\n", + "import math\n", + "e=1.6*10**-19;\n", + "Ea=2000;\n", + "m=9.1*10**-31;\n", + "Vox=(2*e*Ea/m)**0.5;\n", + "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", + "L=5;\n", + "ld=1.5*10**-2;\n", + "d=5*10**-3;\n", + "S=(L*ld/2*d*Ea);\n", + "print (\"deflection sensitivity=%.2f mm/V\" %S)\n", + "G=1/S;\n", + "print (\"Deflection Factor=%.2f V/mm\" %G)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.10" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input voltage required for deflection of 3mm =1.0 V\n" + ] + } + ], + "source": [ + "# 6.10\n", + "import math\n", + "Ea=2000;\n", + "L=0.3;\n", + "ld=2*10**-2;\n", + "d=5*10**-3;\n", + "D=3*10**-2;\n", + "Ed=(2*d*Ea*D)/(L*ld);\n", + "gain=100;\n", + "V_require=Ed/gain;\n", + "print (\"Input voltage required for deflection of 3mm =%.1f V\" %V_require)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 6.11" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum velocity of the beam of electrons=26519741.77 m/s\n", + "Cutt off frequency=132.60 MHz\n" + ] + } + ], + "source": [ + "# 6.11\n", + "import math\n", + "e=1.6*10**-19;\n", + "Ea=2000;\n", + "m=9.1*10**-31;\n", + "Vox=(2*e*Ea/m)**0.5;\n", + "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", + "l=50*10**-3;\n", + "fc=Vox/(4*l)*10**-6;\n", + "print (\"Cutt off frequency=%.2f MHz\" %fc)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.png Binary files differnew file mode 100644 index 00000000..36ac2d6b --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.png diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.png Binary files differnew file mode 100644 index 00000000..eb574137 --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.png diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.png Binary files differnew file mode 100644 index 00000000..e21afc0c --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.png |