summaryrefslogtreecommitdiff
path: root/A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb')
-rwxr-xr-xA_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb319
1 files changed, 319 insertions, 0 deletions
diff --git a/A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb b/A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb
new file mode 100755
index 00000000..d80a182f
--- /dev/null
+++ b/A_Textbook_Of_Engineering_Physics/Chapter18_1.ipynb
@@ -0,0 +1,319 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:265535ddaffc0266824860d662b8052593e36ca515dd70e32c070b51cf842e7d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter18-Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg539"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.2\n",
+ "##calculation of probability\n",
+ "\n",
+ "##given values\n",
+ "T=300.;##temp in K\n",
+ "kT=.026;##temperture equivalent at room temp in eV\n",
+ "Eg=5.6;##forbidden gap in eV\n",
+ "\n",
+ "##calculation\n",
+ "f=1./(1.+math.e**(Eg/(2.*kT)));\n",
+ "\n",
+ "print'%s %.3e %s'%('probability of an e being thermally promoted to conduction band is',f,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "probability of an e being thermally promoted to conduction band is 1.698e-47 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.3\n",
+ "##calculation of fraction of e in CB\n",
+ "\n",
+ "##given values\n",
+ "T=300.;##temp in K\n",
+ "kT=.026;##temperture equivalent at room temp in eV\n",
+ "Eg1=.72;##forbidden gap of germanium in eV\n",
+ "Eg2=1.1;##forbidden gap of silicon in eV\n",
+ "Eg3=5.6;##forbidden gap of diamond in eV\n",
+ "\n",
+ "##calculation\n",
+ "f1=math.e**(-Eg1/(2.*kT));\n",
+ "print'%s %.6f %s'%('fraction of e in conduction band of germanium is',f1,'');\n",
+ "f2=math.e**(-Eg2/(2.*kT));\n",
+ "print'%s %.3e %s'%('fraction of e in conduction band of silicon is',f2,'');\n",
+ "f3=math.e**(-Eg3/(2*kT));\n",
+ "print'%s %.3e %s'%('fraction of e in conduction band of diamond is',f3,'');\n",
+ "print'abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fraction of e in conduction band of germanium is 0.000001 \n",
+ "fraction of e in conduction band of silicon is 6.501e-10 \n",
+ "fraction of e in conduction band of diamond is 1.698e-47 \n",
+ "abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.4\n",
+ "##calculation of fractionional change in no of e\n",
+ "\n",
+ "##given values\n",
+ "T1=300.;##temp in K\n",
+ "T2=310.;##temp in K\n",
+ "Eg=1.1;##forbidden gap of silicon in eV\n",
+ "k=8.6*10**-5.;##boltzmann's constant in eV/K\n",
+ "\n",
+ "##calculation\n",
+ "n1=(10**21.7)*(T1**(3/2.))*10**(-2500.*Eg/T1);##no of conduction e at T1\n",
+ "n2=(10**21.7)*(T2**(3/2.))*10**(-2500.*Eg/T2);##no of conduction e at T2\n",
+ "x=n2/n1;\n",
+ "print'%s %.1f %s'%('fractional change in no of e is',x,'');\n",
+ "print 'in book he just worte ans but he didnt calculated final ans but here is i calculated'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fractional change in no of e is 2.1 \n",
+ "in book he just worte ans but he didnt calculated final ans but here is i calculated\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 18.5\n",
+ "##calculation of resistivity\n",
+ "\n",
+ "##given values\n",
+ "e=1.6*10**-19;\n",
+ "ni=2.5*10**19;##intrinsic density of carriers per m**3\n",
+ "ue=.39;##mobility of e \n",
+ "uh=.19;##mobility of hole\n",
+ "\n",
+ "\n",
+ "##calculation\n",
+ "c=e*ni*(ue+uh);##conductivity\n",
+ "r=1/c;##resistivity\n",
+ "print'%s %.2f %s'%('resistivity in ohm m is',r,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "resistivity in ohm m is 0.43 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.6\n",
+ "##calculation of conductivity of intrinsic and doped semiconductors\n",
+ "\n",
+ "##given values\n",
+ "h=4.52*10**24;##no of holes per m**3\n",
+ "e=1.25*10**14;##no of electrons per m**3\n",
+ "ue=.38;##e mobility\n",
+ "uh=.18;##hole mobility\n",
+ "q=1.6*10**-19;##charge of e in C\n",
+ "##calculation\n",
+ "ni=math.sqrt(h*e);##intrinsic concentration\n",
+ "ci=q*ni*(ue+uh);\n",
+ "print'%s %.2f %s'%('conductivity of semiconductor(in S/m) is',ci,'');\n",
+ "cp=q*h*uh;\n",
+ "print'%s %.2f %s'%('conductivity of doped semiconductor (in S/m) is',cp,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of semiconductor(in S/m) is 2.13 \n",
+ "conductivity of doped semiconductor (in S/m) is 130176.00 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.7\n",
+ "##calculation of hole concentration\n",
+ "\n",
+ "##given values\n",
+ "ni=2.4*10**19.;##carrier concentration per m**3\n",
+ "N=4*10**28.;##concentration of ge atoms per m**3\n",
+ "\n",
+ "##calculation\n",
+ "ND=N/10**6.;##donor cocntrtn\n",
+ "n=ND;##no of electrones\n",
+ "\n",
+ "p=ni**2./n;\n",
+ "print'%s %.3e %s'%('concentartion of holes per m^3 is',p,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "concentartion of holes per m^3 is 1.440e+16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg558"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 18.8\n",
+ "##calculation of Hall voltage\n",
+ "\n",
+ "##given values\n",
+ "ND=10**21.;##donor density per m**3\n",
+ "B=.5;##magnetic field in T\n",
+ "J=500.;##current density in A/m**2\n",
+ "w=3*10**-3.;##width in m\n",
+ "e=1.6*10**-19.;##charge in C\n",
+ "\n",
+ "##calculation\n",
+ "\n",
+ "\n",
+ "V=B*J*w/(ND*e);##in volts\n",
+ "print'%s %.2f %s'%('Hall voltage in mv is',V*10**3,'');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hall voltage in mv is 4.69 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file