summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb208
30 files changed, 10898 insertions, 0 deletions
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb
new file mode 100644
index 00000000..fd167244
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb
@@ -0,0 +1,304 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 6: Schrodinger Wave Mechanics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy levels are 38 eV 150 eV 339 eV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "a=10**-10; #width(m)\n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "\n",
+ "#Calculation\n",
+ "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
+ "E1=Ex*n1**2; #energy at 1st level(eV)\n",
+ "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
+ "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "probability of finding the particle is 0.133\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=1*10**-10; #width\n",
+ "a=15*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "W=2*deltax/a; #probability of finding the particle\n",
+ "\n",
+ "#Result\n",
+ "print \"probability of finding the particle is\",round(W,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "probability of transmission of electron is 0.5\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=1; #energy(eV)\n",
+ "V0=2; #voltage(eV)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "chi=1.05*10**-34; \n",
+ "a=2*10**-10; #potential barrier\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(2*m*(V0-E)*e);\n",
+ "y=16*E*(1-(E/V0))/V0;\n",
+ "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
+ "\n",
+ "#Result\n",
+ "print \"probability of transmission of electron is\",round(T,1)\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fraction of electrons reflected is 0.38\n",
+ "fraction of electrons transmitted is 0.62\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.080*10**-19; #energy(eV)\n",
+ "E_V0=0.016*10**-19; #voltage(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(E);\n",
+ "y=math.sqrt(E_V0);\n",
+ "R=(x-y)/(x+y); #fraction of electrons reflected\n",
+ "T=1-R; #fraction of electrons transmitted\n",
+ "\n",
+ "#Result\n",
+ "print \"fraction of electrons reflected is\",round(R,2)\n",
+ "print \"fraction of electrons transmitted is\",round(T,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fraction of electrons transmitted is 0.4998\n",
+ "fraction of electrons reflected is 0.5002\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.34; #energy(eV)\n",
+ "E_V0=0.01; #voltage(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(E);\n",
+ "y=math.sqrt(E_V0);\n",
+ "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
+ "R=1-T; #fraction of electrons reflected\n",
+ "\n",
+ "#Result\n",
+ "print \"fraction of electrons transmitted is\",round(T,4)\n",
+ "print \"fraction of electrons reflected is\",round(R,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 13, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transmission coefficient is 3.27 *10**-9\n",
+ "transmission coefficient in 1st case is 7.62 *10**-8\n",
+ "transmission coefficient in 2nd case is 1.51 *10**-15\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "E1=1*e; #energy(J)\n",
+ "E2=2*e; #energy(J)\n",
+ "V0=5*e; #voltage(J)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "chi=1.054*10**-34; \n",
+ "a1=10*10**-10; #potential barrier(m)\n",
+ "a2=20*10**-10; #potential barrier(m)\n",
+ "\n",
+ "#Calculation\n",
+ "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
+ "y1=16*E1*((V0-E1)/(V0**2));\n",
+ "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
+ "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
+ "y2=16*E2*((V0-E2)/(V0**2));\n",
+ "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
+ "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
+ "\n",
+ "#Result\n",
+ "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
+ "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
+ "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb
new file mode 100644
index 00000000..283605cf
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb
@@ -0,0 +1,236 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 15: Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 442"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field at 3K is 0.006281 Tesla\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=0.0106; #critical field at 0K(Tesla)\n",
+ "T=3; #temperature(K)\n",
+ "Tc=4.7; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 442"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature of superconductor is 1.701 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
+ "Tc=2.69; #temperature(K)\n",
+ "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
+ "\n",
+ "#Calculation\n",
+ "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature of superconductor is\",round(T,3),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field is 4.3365 *10**4 A/m\n",
+ "critical current of the wire is 408 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
+ "Tc=7.28; #temperature(K)\n",
+ "T=4.2; #temperature(K)\n",
+ "r=1.5*10**-3; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
+ "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
+ "print \"critical current of the wire is\",int(Ic),\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature is 4.124 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m1=199.5; #isotopic mass\n",
+ "m2=205.4; #change in mass \n",
+ "Tc1=4.185; #temperature of mercury(K)\n",
+ "\n",
+ "#Calculation\n",
+ "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical temperature is\",round(Tc2,3),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 444"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "superconducting transition temperature is 8.106 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T1=3; #temperature(K)\n",
+ "T2=8; #temperature(K)\n",
+ "lamda1=39.6; #penetration depth(nm)\n",
+ "lamda2=173; #penetration depth(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "x=(lamda1/lamda2)**2;\n",
+ "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
+ "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb
new file mode 100644
index 00000000..444cec94
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 9: Nuclear Reactions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q value in nuclear reaction is -1.1898 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N=14.003073; #mass of N\n",
+ "O=16.99913; #mass of O\n",
+ "H=1.007825; #mass of H\n",
+ "He=4.002604; #mass of He\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
+ "\n",
+ "#Result\n",
+ "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "heat generated is 6.6 *10**6 KWH\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Li=7.01600; #mass of Li\n",
+ "H=1.007825; #mass of H\n",
+ "He=4.002604; #mass of He\n",
+ "m=931; \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "N=6.02*10**26; #avagadro number\n",
+ "M=0.1; #mass(kg)\n",
+ "x=1000*3600;\n",
+ "\n",
+ "#Calculation\n",
+ "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
+ "mLi=Li/N; #mass of Li(kg) \n",
+ "H=Q*M/(x*mLi); #heat generated(KWH)\n",
+ "\n",
+ "#Result\n",
+ "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 300"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q-value for the reaction is 5.485 MeV\n",
+ "kinetic energy of Zn is 0.635 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Cu=62.929599; #mass of Cu\n",
+ "H=2.014102; #mass of H(amu)\n",
+ "n=1.008665; #mass of n(amu)\n",
+ "Zn=63.929145; #mass of Zn(amu)\n",
+ "m=931; \n",
+ "Kx=12; #energy of deuterons(MeV)\n",
+ "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
+ "\n",
+ "#Calculation\n",
+ "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
+ "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
+ "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 301"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "threshold kinetic energy is 5.378 MeV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "P=1.007825; #mass of P(amu)\n",
+ "H2=2.014102; #mass of H2(amu)\n",
+ "H3=3.016049; #mass of H3(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
+ "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb
new file mode 100644
index 00000000..1d50ed48
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb
@@ -0,0 +1,384 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 11: Crystal Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 6 4 3 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/2;\n",
+ "b=1/3;\n",
+ "c=1/4; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "z=lcm(1/a,1/b);\n",
+ "lcm=lcm(z,1/c);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 3 2 0 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/2;\n",
+ "b=1/3;\n",
+ "x=float(\"inf\");\n",
+ "c=1/x; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "lcm=lcm(1/a,1/b);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 6 3 2 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/1;\n",
+ "b=1/2;\n",
+ "c=1/3; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "z=lcm(1/a,1/b);\n",
+ "lcm=lcm(z,1/c);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1.1;\n",
+ "b=1.2;\n",
+ "c=1.3; #intercepts along the three axes(angstrom)\n",
+ "h=2;\n",
+ "k=3;\n",
+ "l=4; #miller indices of plane\n",
+ "\n",
+ "#Calculations\n",
+ "l1=a*h/h;\n",
+ "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
+ "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 6 -2 3 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/1;\n",
+ "b=-1/3;\n",
+ "c=1/2; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "z=lcm(1/a,1/b);\n",
+ "lcm=lcm(z,1/c);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 3.61 angstrom\n",
+ "distance between two nearest copper atoms is 2.55 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n=4; #number of molecules per unit cell\n",
+ "M=63.5; #molecular weight\n",
+ "N=6.02*10**26; #avagadro number(kg mol-1)\n",
+ "rho=8.96*10**3; #density(kg/m**3)\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
+ "a=round(a*10**10,2); #lattice constant(angstrom) \n",
+ "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",a,\"angstrom\"\n",
+ "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 2.8687 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n=2; #number of molecules per unit cell\n",
+ "M=55.85; #molecular weight\n",
+ "N=6.02*10**26; #avagadro number(kg mol-1)\n",
+ "rho=7860; #density(kg/m**3)\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb
new file mode 100644
index 00000000..4f050408
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb
@@ -0,0 +1,244 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 10: Nuclear Detectors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current produced is 1.829 *10**-13 amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "n=10; #number of particles\n",
+ "E=4*10**6; #energy of alpha particle(eV)\n",
+ "E1=35; #energy of 1 ion pair(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "N=E*n/E1; #number of ion pairs\n",
+ "q=N*e; #current produced(amp)\n",
+ "\n",
+ "#Result\n",
+ "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of ion pairs required is 6.25 *10**5\n",
+ "energy of alpha-particles is 21.875 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=4; #voltage sensitivity(div/volt)\n",
+ "d=0.8; #number of divisions\n",
+ "C=0.5*10**-12; #capacitance(F)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "E1=35; #energy of 1 ion pair(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "V=d/v; #voltage(V)\n",
+ "q=C*V; #current(C)\n",
+ "n=q/e; #number of ion pairs required\n",
+ "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
+ "print \"energy of alpha-particles is\",E,\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum radial field is 1.89 *10**6 volts/meter\n",
+ "counter will last for 3.7 years\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1000; #voltage(V)\n",
+ "r=0.0001; #radius(m)\n",
+ "b=2*10**-2; #diameter(m)\n",
+ "a=10**-4;\n",
+ "n=10**9; #number of counts\n",
+ "\n",
+ "#Calculation\n",
+ "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
+ "N=n/(50*30*60*3000); #counter will last for(years)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
+ "print \"counter will last for\",round(N,1),\"years\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of the particle is 1500 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=2; #radius(m)\n",
+ "B=2.5; #flux density(Wb/m**2)\n",
+ "q=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculation\n",
+ "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of the particle is\",int(E),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 325"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average current in the circuit is 1.6e-11 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "cr=600; #counting rate(counts/minute)\n",
+ "e=10**7; #number of electrons per discharge\n",
+ "q=1.6*10**-19; #charge(coulomb)\n",
+ "t=60; #number of seconds\n",
+ "\n",
+ "#Calculation\n",
+ "n=cr*e; #number of electrons in 1 minute\n",
+ "q=n*q/t; #average current in the circuit(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"average current in the circuit is\",q,\"A\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb
new file mode 100644
index 00000000..3725056f
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb
@@ -0,0 +1,243 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 13: Bonding In Crystals"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 398"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "potential energy is -5.76 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "r0=2.5*10**-10; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "U=-e*x/r0; #potential energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"potential energy is\",U,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 398"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "equilibrium distance is -2.25 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "U=6.4; #potential energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "r0=-e*x/U; #equilibrium distance(m)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "compressibility of the solid is -25.087 *10**14\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "alpha=1.76; #madelung constant\n",
+ "n=0.5; #repulsive exponent\n",
+ "r0=4.1*10**-4; #equilibrium distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
+ "\n",
+ "#Result\n",
+ "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice energy is -6.45 eV\n",
+ "energy needed to form neutral atoms is -6.17 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "alpha=1.763; #madelung constant\n",
+ "n=10.5; #repulsive exponent\n",
+ "r0=3.56*10**-10; #equilibrium distance(m)\n",
+ "IE=3.89; #ionisation energy(eV)\n",
+ "EA=-3.61; #electron affinity(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
+ "E=U+EA+IE; #energy needed to form neutral atoms\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice energy is\",round(U,2),\"eV\"\n",
+ "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice energy is -3.98 eV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "alpha=1.748; #madelung constant\n",
+ "n=9; #repulsive exponent\n",
+ "r0=2.81*10**-10; #equilibrium distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
+ "\n",
+ "#Result\n",
+ "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb
new file mode 100644
index 00000000..72f70169
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb
@@ -0,0 +1,540 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 3: Inadequacy of Classical Physics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum energy of photoelectron is 3.038 *10**-19 J\n",
+ "maximum velocity of electron is 8.17 *10**5 ms-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=1700*10**-10; #wavelength(m)\n",
+ "lamda0=2300*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
+ "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
+ "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "threshold wavelength is 5380 angstrom\n",
+ "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "W=2.3*e; #work function(J)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=6850; #wavelength of orange light(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda0=h*c/W; #threshold wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
+ "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "retarding potential is 1.175 volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "W=1.3*e; #work function(J)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "new=6*10**14; #frequency(Hertz)\n",
+ "\n",
+ "#Calculations\n",
+ "V0=((h*new)-W)/e; #retarding potential(volts)\n",
+ "\n",
+ "#Result\n",
+ "print \"retarding potential is\",V0,\"volts\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "work function is 1.28 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=3*10**-7; #wavelength(m)\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "v=1*10**6; #velocity(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
+ "W=W/e; #work function(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"work function is\",round(W,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "photoelectric current is 1.86 micro ampere\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=4600*10**-10; #wavelength(m)\n",
+ "qe=0.5; #efficiency(%)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h*c/lamda; #energy(J)\n",
+ "n=10**-3/E; #number of photons/second\n",
+ "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
+ "\n",
+ "#Result\n",
+ "print \"photoelectric current is\",round(i,2),\"micro ampere\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "planck's constant is 6.61 *10**-34 joule second\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T1=3*10**-19; #temperature(J)\n",
+ "T2=1*10**-19; #temperature(J)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda1=3350; #wavelength(m)\n",
+ "lamda2=5060; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "x=10**10*((1/lamda1)-(1/lamda2));\n",
+ "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
+ "\n",
+ "#Result\n",
+ "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 131"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered radiation is 3.0121 angstrom\n",
+ "energy of recoil electron is 2.66 *10**-18 joule\n",
+ "answers given in the book are wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=60*math.pi/180; #angle(radian)\n",
+ "lamda=3*10**-10; #wavelength(angstrom)\n",
+ "lamda_dash=3.058; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_sr=h/(m0*c); \n",
+ "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
+ "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
+ "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
+ "print \"answers given in the book are wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered radiation is 2.003 angstrom\n",
+ "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
+ "answer for velocity given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=30*math.pi/180; #angle(radian)\n",
+ "lamda=2*10**-10; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_sr=h/(m0*c); \n",
+ "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
+ "x=1+(E/(m0*c**2));\n",
+ "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
+ "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
+ "print \"answer for velocity given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered photon is 3.024 angstrom\n",
+ "energy of recoil electron is 0.5 *10**-17 joules\n",
+ "direction of recoil electron is 44 degrees 46 minutes\n",
+ "answer for angle given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=90*math.pi/180; #angle(radian)\n",
+ "lamda=3*10**-10; #wavelength(m) \n",
+ "\n",
+ "#Calculations\n",
+ "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
+ "x=h/(lamda*m0*c);\n",
+ "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
+ "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
+ "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
+ "phim=60*(phi-int(phi)); #angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
+ "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
+ "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
+ "print \"answer for angle given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of scattered photon is 0.226 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=180*math.pi/180; #angle(radian)\n",
+ "E=1.96*10**6*e; #energy of scattered photon(J)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*c/E; #wavelength(m)\n",
+ "delta_lamda=2*h/(m0*c); \n",
+ "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
+ "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered radiation is 4.9e-12 m\n",
+ "energy of recoil electron is 3.9592 *10**-14 Joules\n",
+ "direction of recoil electron is 27 degrees 47 minutes\n",
+ "answer for energy and direction of recoil electron and given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "theta=90*math.pi/180; #angle(radian)\n",
+ "E=500*10**3*e; #energy of scattered photon(J)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*c/E; #wavelength(m)\n",
+ "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
+ "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
+ "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
+ "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
+ "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
+ "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
+ "phim=60*(phi-int(phi)); #angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
+ "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
+ "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
+ "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb
new file mode 100644
index 00000000..171aaa2d
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb
@@ -0,0 +1,396 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 5: Uncertainity Principle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
+ "deltax=5*10**-14; #uncertainity(m)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 3.85 *10**-3 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "v=600; #speed(m/s)\n",
+ "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=3*10**-11; #uncertainity(m)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltat=10**-8; #lifetime of excited atom(sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltaphi=math.pi/(180*60*60); \n",
+ "\n",
+ "#Calculations\n",
+ "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 5.27 *10**-34 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "m=25*10**-3; #mass(kg)\n",
+ "v=400; #speed(m/s)\n",
+ "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage of uncertainity in momentum is 3.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=2*10**-10; #uncertainity in position(m)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "V=1000; #voltage(V)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
+ "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
+ "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
+ "\n",
+ "#Result\n",
+ "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
+ "uncertainity in velocity of proton is 31.545 ms-1\n",
+ "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=20*10**-10; #uncertainity in position(m)\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
+ "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
+ "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
+ "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
+ "minimum kinetic energy of proton is 0.32 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=8*10**-15; #uncertainity in position(m)\n",
+ "mp=1.67*10**-27; #mass(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
+ "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
+ "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb
new file mode 100644
index 00000000..e9b7b5a0
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb
@@ -0,0 +1,250 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 12: X-ray Diffraction"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays is 0.0842 nm\n",
+ "maximum order of diffraction is 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.282; #lattice spacing(nm)\n",
+ "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
+ "n1=1; #order\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
+ "n=2*d/lamda; #maximum order of diffraction\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
+ "print \"maximum order of diffraction is\",int(n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "glancing angle for 1st order is 17 degrees 24 minutes\n",
+ "glancing angle for 2nd order is 36 degrees 44 minutes\n",
+ "answers given in the book are wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=3.209; #lattice spacing(angstrom)\n",
+ "lamda=1.92; #wavelength of X-rays(angstrom)\n",
+ "n1=1; #order\n",
+ "n2=2; #order \n",
+ "\n",
+ "#Calculation\n",
+ "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
+ "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
+ "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
+ "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
+ "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
+ "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
+ "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
+ "print \"answers given in the book are wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays is 1.268 angstrom\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=3.05; #lattice spacing(angstrom)\n",
+ "theta=12*math.pi/180; #glancing angle(radian)\n",
+ "n=1; #order\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of line A is 1.268 angstrom\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "thetaA=30*math.pi/180; #glancing angle(radian)\n",
+ "thetaB=60*math.pi/180; #glancing angle(radian)\n",
+ "n1=1; #order\n",
+ "n2=2; #order\n",
+ "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
+ "\n",
+ "#Calculation\n",
+ "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays is 0.7853 angstrom\n",
+ "glancing angle for 2nd order is 18.2 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.51; #lattice spacing(angstrom)\n",
+ "theta=9*math.pi/180; #glancing angle(radian)\n",
+ "n1=1; #order\n",
+ "n2=2; #order\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
+ "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
+ "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb
new file mode 100644
index 00000000..31b7323a
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb
@@ -0,0 +1,277 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 7: Nuclear Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of He is 2.2375 fermi\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "A1=165; #mass number\n",
+ "A2=4; #mass number\n",
+ "R1=7.731; #radius(fermi)\n",
+ "\n",
+ "#Calculation\n",
+ "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of He is\",round(R2,4),\"fermi\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average binding energy per nucleon is 7.07 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "p=1.007276; #mass of proton(amu)\n",
+ "alpha=4.00150; #mass of alpha particle(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "deltam=2*(p+n)-alpha;\n",
+ "BE=deltam*m; #binding energy(MeV)\n",
+ "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy of neutron is 7.25 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "Li36=6.015125; #mass of Li(amu)\n",
+ "Li37=7.016004; #mass of Li(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "deltam=Li36+n-Li37; \n",
+ "BE=deltam*m; #binding energy of neutron(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy released is 23.6 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "BEHe=4*7.0; #binding energy for He\n",
+ "BEH=2*1.1; #binding energy for H\n",
+ "\n",
+ "#Calculation\n",
+ "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
+ "\n",
+ "#Result\n",
+ "print \"energy released is\",deltaE,\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mass is 19.987 amu\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "p=1.007276; #mass of proton(amu)\n",
+ "BE=160.647; #binding energy(MeV)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
+ "\n",
+ "#Result\n",
+ "print \"mass is\",round(Mx,3),\"amu\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 261"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy of neutron is 11.471 MeV\n",
+ "answer given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "Ca41=40.962278; #mass of Ca(amu)\n",
+ "Ca42=41.958622; #mass of Ca(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "deltam=Ca41+n-Ca42; \n",
+ "BE=deltam*m; #binding energy of neutron(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
+ "print \"answer given in the book varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb
new file mode 100644
index 00000000..ecefb615
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb
@@ -0,0 +1,210 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 8: Alpha and Beta Decays"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of beta article is 0.8624 c\n",
+ "mass of beta particle is 1.98 m0\n",
+ "flux density is 0.029106 weber/m**2\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "Ek=0.5*10**6; #kinetic energy(eV)\n",
+ "m0=9.11*10**-31; #mass(kg)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "r=0.1; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "x=(Ek*e/(m0*c**2))+1;\n",
+ "y=1-(1/x)**2;\n",
+ "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
+ "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
+ "B=m*v/(e*r); #flux density(weber/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
+ "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
+ "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "kinetic energy of alpha particle is 4.782 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=226; #atomic weight\n",
+ "Ra=226.02540; #mass of Ra\n",
+ "Rn=222.017571; #mass of Rn\n",
+ "He=4.002603; #mass of He\n",
+ "m=931.5; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(Ra-Rn-He)*m; \n",
+ "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum kinetic energy of electrons is 4.548 MeV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ne=22.99465; #mass of Ne\n",
+ "Na=22.989768; #mass of Na\n",
+ "m=931.5; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q value of 1st decay is 0.482 MeV\n",
+ "Q value of 2nd decay is 1.504 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "K=39.963999; #mass of K\n",
+ "Ca=39.962591; #mass of Ca\n",
+ "Ar=39.962384; #mass of Ar\n",
+ "me=0.000549; #mass of electron \n",
+ "m=931.5; \n",
+ "\n",
+ "#Calculation\n",
+ "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
+ "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
+ "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb
new file mode 100644
index 00000000..a4871749
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb
@@ -0,0 +1,681 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 4: Matter Waves"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of proton is 1 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "v=3967; #velocity of proton(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "kinetic energy of electron is 6 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy of electron is\",int(E),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "v=c/30; #velocity of proton(m/sec)\n",
+ "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of electron is 1 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=150; #potential difference(V)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength is 1.23 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=100; #voltage(eV) \n",
+ "m=9.1*10**-31; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of neutron is 0.99 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "v=4000; #velocity of proton(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of kinetic energies of electron and proton is 1833\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "me=9.11*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "r=mp/me; #ratio of kinetic energies of electron and proton\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of kinetic energies of electron and proton is\",int(r)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of wavelengths is 32\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.1*10**-31; #mass of proton(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "E=1000; #energy(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of wavelengths is\",int(round(r))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of electron is 0.289 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
+ "wf=1*10**-15; #work function(J)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h*c/lamda; #energy of X-ray(J)\n",
+ "Ee=E-wf; #energy of electron emitted(J)\n",
+ "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength of proton is 1.537 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "T=400; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rest energy of electron is 8.19e-14 J\n",
+ "energy of proton is 8.19e-11 J\n",
+ "velocity of proton is 312902460.506 m/s\n",
+ "wavelength of electron is 1.27 *10**-5 angstrom\n",
+ "answers given in the book are wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.673*10**-27; #mass of proton(kg)\n",
+ "m0=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "h=6.63*10**-34; #planks constant(Js)\n",
+ "ke=1000; #kinetic energy\n",
+ "\n",
+ "#Calculations\n",
+ "re=m0*c**2; #rest energy of electron(J)\n",
+ "Ep=ke*re; #energy of proton(J)\n",
+ "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
+ "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"rest energy of electron is\",re,\"J\"\n",
+ "print \"energy of proton is\",Ep,\"J\"\n",
+ "print \"velocity of proton is\",v,\"m/s\"\n",
+ "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
+ "print \"answers given in the book are wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of electron is 4.55 *10**7 m/s\n",
+ "kinetic energy is 5887 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "v=h/(lamda*m); #velocity of electron(m/s)\n",
+ "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
+ "print \"kinetic energy is\",int(KE),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 13, Page number 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing of crystal is 1.78 angstrom\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "\n",
+ "#Calculations\n",
+ "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 14, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "potential is 605.16 volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=0.5; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "V=(12.3/lamda)**2; #potential(volts)\n",
+ "\n",
+ "#Result\n",
+ "print \"potential is\",V,\"volts\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 15, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of gama ray photon is 19.89 *10**-16 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=1*10**-10; #wavelength(m)\n",
+ "h=6.63*10**-34; #planks constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "p=h/lamda; #momentum(J-sec/m)\n",
+ "E=p*c; #energy of gama ray photon(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 16, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of electron is 2.2 *10**6 m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "m=9*10**-31; #mass of electron(kg)\n",
+ "r=0.53*10**-10; #radius of orbit(m)\n",
+ "\n",
+ "#Calculations\n",
+ "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb
new file mode 100644
index 00000000..ede08994
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb
@@ -0,0 +1,588 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 2: Molecular Spectra"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "raman shift is 219.03 cm-1\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda_sample=4358; #wavelength(angstrom)\n",
+ "lamda_raman=4400; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of diatomic molecule is 2.22 *10**-68 J\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "raman shift is 0.02 *10**6 m-1\n",
+ "wavelength of antistokes line 4950.5 angstrom\n",
+ "answer for wavelength given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda0=5000*10**-10; #wavelength(m)\n",
+ "lamda=5050.5*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "new0=1/lamda0; #frequency(m-1)\n",
+ "new=1/lamda; #frequency(m-1)\n",
+ "delta_new=new0-new; #raman shift(m-1)\n",
+ "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
+ "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
+ "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
+ "print \"answer for wavelength given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy required is 60 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=4.8*10**2; #force constant(N/m)\n",
+ "x=2*10**-10; #inter nuclear distance(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "E=k*x**2/(2*e); #energy required(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy required is\",int(E),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency of vibration is 2.04 *10**13 sec-1\n",
+ "spacing between energy levels is 8.447 *10**-2 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=187; #force constant(N/m)\n",
+ "m=1.14*10**-26; #reduced mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
+ "delta_E=h*new; #spacing between energy levels(J)\n",
+ "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
+ "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "internuclear distance is 1.42 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "B=8.5; #seperation(cm-1)\n",
+ "h=6.62*10**-27; #planck's constant\n",
+ "c=3*10**10; #velocity of light(cm/sec)\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "m1=1;\n",
+ "m2=79; \n",
+ "\n",
+ "#Calculations\n",
+ "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
+ "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
+ "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"internuclear distance is\",round(r,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "vibrational frequency of sample is 1974 cm-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda1=4358.3; #wavelength(angstrom)\n",
+ "lamda2=4768.5; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequqncy of OD stretching vibration is 2401 cm-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "MO=16;\n",
+ "MD=2;\n",
+ "MH=1;\n",
+ "new=3300; #frequency(cm-1)\n",
+ "\n",
+ "#Calculations\n",
+ "mew_OD=MO*MD/(MO+MD); \n",
+ "mew_OH=MO*MH/(MO+MH);\n",
+ "new1=math.sqrt(mew_OD/mew_OH);\n",
+ "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "raman shift of 4400 line is 219.03 cm-1\n",
+ "raman shift of 4419 line is 316.8 cm-1\n",
+ "raman shift of 4447 line is 459.2 cm-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda0=4358; #wavelength(angstrom)\n",
+ "lamda1=4400; #wavelength(angstrom)\n",
+ "lamda2=4419; #wavelength(angstrom)\n",
+ "lamda3=4447; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
+ "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
+ "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
+ "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
+ "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
+ "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "corresponding wavelength is 32 *10**-4 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "new_bar=20.68; #transition(cm-1)\n",
+ "J=14;\n",
+ "\n",
+ "#Calculations\n",
+ "B=new_bar/2; \n",
+ "new=2*B*(J+1); #frequency(cm-1)\n",
+ "lamda=1/new; #corresponding wavelength(cm) \n",
+ "\n",
+ "#Result\n",
+ "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 13, Page number 103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "twoB=4000; #seperation observed from the series(cm-1)\n",
+ "h=6.62*10**-27; #planck's constant\n",
+ "c=3*10**10; #velocity of light(cm/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "B=twoB/2;\n",
+ "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 14, Page number 104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=5461*10**-8; #wavelength(cm)\n",
+ "new1=608;\n",
+ "new2=846;\n",
+ "new3=995;\n",
+ "new4=1178;\n",
+ "new5=1599; \n",
+ "new6=3064; #raman shift(cm-1)\n",
+ "\n",
+ "#Calculations\n",
+ "newbar=1/lamda; #wave number(cm-1)\n",
+ "new11=newbar-new1;\n",
+ "new22=newbar-new2;\n",
+ "new33=newbar-new3;\n",
+ "new44=newbar-new4;\n",
+ "new55=newbar-new5;\n",
+ "new66=newbar-new6;\n",
+ "lamda1=10**8/new11;\n",
+ "lamda2=10**8/new22;\n",
+ "lamda3=10**8/new33;\n",
+ "lamda4=10**8/new44;\n",
+ "lamda5=10**8/new55;\n",
+ "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 15, Page number 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "force constant is 115 N/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J s)\n",
+ "e=1.602*10**-19; #charge(coulomb) \n",
+ "mew=1.14*10**-26; #reduced mass(kg)\n",
+ "deltaE=6.63*10**-2*e; #energy(J)\n",
+ "\n",
+ "#Calculations\n",
+ "new=deltaE/h; #frequency(sec-1)\n",
+ "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"force constant is\",int(k),\"N/m\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb
new file mode 100644
index 00000000..55a10563
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb
@@ -0,0 +1,568 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 1: Atomic Spectra"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of emitted photon is 1.281 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=3;\n",
+ "n2=5; #states\n",
+ "RH=1.0977*10**7;\n",
+ "\n",
+ "#Calculations\n",
+ "newbar=RH*((1/n1**2)-(1/n2**2));\n",
+ "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of principal quantum number of two orbits is 14 / 11\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "E1=1.21;\n",
+ "E2=1.96; #energy of two orbits(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "n1=math.sqrt(E2);\n",
+ "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
+ "n1=n1*10;\n",
+ "n2=n2*10; #multiply and divide the ratio by 10\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "mp=1.672*10**-27; #mass of electron(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
+ "\n",
+ "#Result\n",
+ "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength separation is 0.3358 angstrom\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "B=1; #flux density(Wb/m**2)\n",
+ "lamda=6000*10**-10; #wavelength(m)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
+ "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1;\n",
+ "n2=2; #states\n",
+ "\n",
+ "#Calculations\n",
+ "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
+ "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "linear momentum is 2.107 *10**-24 kg ms-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "state to which it is excited is 4\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
+ "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
+ "\n",
+ "#Result\n",
+ "print \"state to which it is excited is\",int(n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
+ "\n",
+ "#Result\n",
+ "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "component separation is 2.7983 *10**8 Hz\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "B=0.02; #magnetic field(T)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 14, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic flux density is 2.14 Tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=10000*10**-10; #wavelength(m)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "d_lamda=1*10**-10; #wavelength separation(m)\n",
+ "\n",
+ "#Calculations\n",
+ "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic flux density is\",round(B,2),\"Tesla\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 19, Page number 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation is 0.33 angstrom\n",
+ "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=4226; #wavelength(angstrom)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "B=4; #magnetic field(Wb/m**2)\n",
+ "\n",
+ "#Calculations\n",
+ "dnew=B*e/(4*math.pi*m); \n",
+ "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
+ "dlamda1=lamda+dlamda;\n",
+ "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
+ "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 21, Page number 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of elements would be 110\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1;\n",
+ "n2=2; \n",
+ "n3=3;\n",
+ "n4=4;\n",
+ "n5=5;\n",
+ "\n",
+ "#Calculations\n",
+ "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
+ "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
+ "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
+ "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
+ "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
+ "e=e1+e2+e3+e4+e5; #number of elements\n",
+ "\n",
+ "#Result\n",
+ "print \"number of elements would be\",e"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb
new file mode 100644
index 00000000..449a8ffa
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb
@@ -0,0 +1,320 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 14: Magnetism"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 420"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation is 20 *10**9 A/m\n",
+ "flux density is 1.2818 *10**6 T\n",
+ "answer for flux density given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "H=10**12; #magnetic field intensity(A/m)\n",
+ "chi=20*10**-3; #susceptibility\n",
+ "\n",
+ "#Calculations\n",
+ "M=chi*H; #magnetisation(A/m)\n",
+ "B=mew0*(M+H); #flux density(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
+ "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
+ "print \"answer for flux density given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 420"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation is 17725 A/m\n",
+ "answer for magnetisation given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "H=10**2; #magnetic field intensity(A/m)\n",
+ "B=0.0224; #flux density(T)\n",
+ "\n",
+ "#Calculations\n",
+ "M=(B/mew0)-H; #magnetisation(A/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetisation is\",int(M),\"A/m\"\n",
+ "print \"answer for magnetisation given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "change in magnetic moment is 5.27 *10**-29 Am**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "r=5*10**-11; #radius(m)\n",
+ "B=3; #flux density(T)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptibility is 0.8 *10**-4\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T1=200; #temperature(K)\n",
+ "T2=300; #temperature(K)\n",
+ "chi1=1.2*10**-4; #susceptibility\n",
+ "\n",
+ "#Calculations\n",
+ "chi2=T1*chi1/T2; #susceptibility\n",
+ "\n",
+ "#Result\n",
+ "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "paramagnetisation is 3.6 *10**2 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "H=10**5; #magnetic field intensity(A/m)\n",
+ "chi=3.6*10**-3; #susceptibility\n",
+ "\n",
+ "#Calculations\n",
+ "M=chi*H; #paramagnetisation(A/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic moment is 5.655 *10**-24 Am**2\n",
+ "saturation magnetic induction is 6.5 *10**-4 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "mewB=9.27*10**-24; \n",
+ "rho=8906; #density(kg/m**3)\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "W=58.7; #atomic weight\n",
+ "\n",
+ "#Calculations\n",
+ "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
+ "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
+ "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "diamagnetic susceptibility is -8.249 *10**-8\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "R=0.5*10**-10; #radius(m)\n",
+ "N=28*10**26; #number of atoms\n",
+ "Z=2; #atomic number\n",
+ "\n",
+ "#Calculations\n",
+ "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
+ "\n",
+ "#Result\n",
+ "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb
new file mode 100644
index 00000000..55a10563
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb
@@ -0,0 +1,568 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 1: Atomic Spectra"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of emitted photon is 1.281 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=3;\n",
+ "n2=5; #states\n",
+ "RH=1.0977*10**7;\n",
+ "\n",
+ "#Calculations\n",
+ "newbar=RH*((1/n1**2)-(1/n2**2));\n",
+ "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of principal quantum number of two orbits is 14 / 11\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "E1=1.21;\n",
+ "E2=1.96; #energy of two orbits(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "n1=math.sqrt(E2);\n",
+ "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
+ "n1=n1*10;\n",
+ "n2=n2*10; #multiply and divide the ratio by 10\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "mp=1.672*10**-27; #mass of electron(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
+ "\n",
+ "#Result\n",
+ "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength separation is 0.3358 angstrom\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "B=1; #flux density(Wb/m**2)\n",
+ "lamda=6000*10**-10; #wavelength(m)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
+ "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1;\n",
+ "n2=2; #states\n",
+ "\n",
+ "#Calculations\n",
+ "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
+ "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "linear momentum is 2.107 *10**-24 kg ms-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "state to which it is excited is 4\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
+ "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
+ "\n",
+ "#Result\n",
+ "print \"state to which it is excited is\",int(n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
+ "\n",
+ "#Result\n",
+ "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "component separation is 2.7983 *10**8 Hz\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "B=0.02; #magnetic field(T)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 14, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic flux density is 2.14 Tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=10000*10**-10; #wavelength(m)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "d_lamda=1*10**-10; #wavelength separation(m)\n",
+ "\n",
+ "#Calculations\n",
+ "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic flux density is\",round(B,2),\"Tesla\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 19, Page number 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation is 0.33 angstrom\n",
+ "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=4226; #wavelength(angstrom)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "B=4; #magnetic field(Wb/m**2)\n",
+ "\n",
+ "#Calculations\n",
+ "dnew=B*e/(4*math.pi*m); \n",
+ "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
+ "dlamda1=lamda+dlamda;\n",
+ "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
+ "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 21, Page number 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of elements would be 110\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1;\n",
+ "n2=2; \n",
+ "n3=3;\n",
+ "n4=4;\n",
+ "n5=5;\n",
+ "\n",
+ "#Calculations\n",
+ "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
+ "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
+ "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
+ "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
+ "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
+ "e=e1+e2+e3+e4+e5; #number of elements\n",
+ "\n",
+ "#Result\n",
+ "print \"number of elements would be\",e"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb
new file mode 100644
index 00000000..4f050408
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb
@@ -0,0 +1,244 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 10: Nuclear Detectors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current produced is 1.829 *10**-13 amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "n=10; #number of particles\n",
+ "E=4*10**6; #energy of alpha particle(eV)\n",
+ "E1=35; #energy of 1 ion pair(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "N=E*n/E1; #number of ion pairs\n",
+ "q=N*e; #current produced(amp)\n",
+ "\n",
+ "#Result\n",
+ "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of ion pairs required is 6.25 *10**5\n",
+ "energy of alpha-particles is 21.875 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=4; #voltage sensitivity(div/volt)\n",
+ "d=0.8; #number of divisions\n",
+ "C=0.5*10**-12; #capacitance(F)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "E1=35; #energy of 1 ion pair(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "V=d/v; #voltage(V)\n",
+ "q=C*V; #current(C)\n",
+ "n=q/e; #number of ion pairs required\n",
+ "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
+ "print \"energy of alpha-particles is\",E,\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum radial field is 1.89 *10**6 volts/meter\n",
+ "counter will last for 3.7 years\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1000; #voltage(V)\n",
+ "r=0.0001; #radius(m)\n",
+ "b=2*10**-2; #diameter(m)\n",
+ "a=10**-4;\n",
+ "n=10**9; #number of counts\n",
+ "\n",
+ "#Calculation\n",
+ "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
+ "N=n/(50*30*60*3000); #counter will last for(years)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
+ "print \"counter will last for\",round(N,1),\"years\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of the particle is 1500 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=2; #radius(m)\n",
+ "B=2.5; #flux density(Wb/m**2)\n",
+ "q=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculation\n",
+ "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of the particle is\",int(E),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 325"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average current in the circuit is 1.6e-11 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "cr=600; #counting rate(counts/minute)\n",
+ "e=10**7; #number of electrons per discharge\n",
+ "q=1.6*10**-19; #charge(coulomb)\n",
+ "t=60; #number of seconds\n",
+ "\n",
+ "#Calculation\n",
+ "n=cr*e; #number of electrons in 1 minute\n",
+ "q=n*q/t; #average current in the circuit(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"average current in the circuit is\",q,\"A\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb
new file mode 100644
index 00000000..1d50ed48
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb
@@ -0,0 +1,384 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 11: Crystal Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 6 4 3 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/2;\n",
+ "b=1/3;\n",
+ "c=1/4; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "z=lcm(1/a,1/b);\n",
+ "lcm=lcm(z,1/c);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 3 2 0 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/2;\n",
+ "b=1/3;\n",
+ "x=float(\"inf\");\n",
+ "c=1/x; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "lcm=lcm(1/a,1/b);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 6 3 2 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/1;\n",
+ "b=1/2;\n",
+ "c=1/3; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "z=lcm(1/a,1/b);\n",
+ "lcm=lcm(z,1/c);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1.1;\n",
+ "b=1.2;\n",
+ "c=1.3; #intercepts along the three axes(angstrom)\n",
+ "h=2;\n",
+ "k=3;\n",
+ "l=4; #miller indices of plane\n",
+ "\n",
+ "#Calculations\n",
+ "l1=a*h/h;\n",
+ "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
+ "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices of plane are ( 6 -2 3 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1/1;\n",
+ "b=-1/3;\n",
+ "c=1/2; #intercepts along the three axes\n",
+ "\n",
+ "#Calculations\n",
+ "def lcm(x, y):\n",
+ " if x > y:\n",
+ " greater = x\n",
+ " else:\n",
+ " greater = y\n",
+ " while(True):\n",
+ " if((greater % x == 0) and (greater % y == 0)):\n",
+ " lcm = greater\n",
+ " break\n",
+ " greater += 1\n",
+ " \n",
+ " return lcm\n",
+ "\n",
+ "z=lcm(1/a,1/b);\n",
+ "lcm=lcm(z,1/c);\n",
+ "h=a*lcm;\n",
+ "k=b*lcm;\n",
+ "l=c*lcm; #miller indices of plane\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 3.61 angstrom\n",
+ "distance between two nearest copper atoms is 2.55 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n=4; #number of molecules per unit cell\n",
+ "M=63.5; #molecular weight\n",
+ "N=6.02*10**26; #avagadro number(kg mol-1)\n",
+ "rho=8.96*10**3; #density(kg/m**3)\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
+ "a=round(a*10**10,2); #lattice constant(angstrom) \n",
+ "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",a,\"angstrom\"\n",
+ "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 2.8687 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n=2; #number of molecules per unit cell\n",
+ "M=55.85; #molecular weight\n",
+ "N=6.02*10**26; #avagadro number(kg mol-1)\n",
+ "rho=7860; #density(kg/m**3)\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb
new file mode 100644
index 00000000..e9b7b5a0
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb
@@ -0,0 +1,250 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 12: X-ray Diffraction"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays is 0.0842 nm\n",
+ "maximum order of diffraction is 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.282; #lattice spacing(nm)\n",
+ "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
+ "n1=1; #order\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
+ "n=2*d/lamda; #maximum order of diffraction\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
+ "print \"maximum order of diffraction is\",int(n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "glancing angle for 1st order is 17 degrees 24 minutes\n",
+ "glancing angle for 2nd order is 36 degrees 44 minutes\n",
+ "answers given in the book are wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=3.209; #lattice spacing(angstrom)\n",
+ "lamda=1.92; #wavelength of X-rays(angstrom)\n",
+ "n1=1; #order\n",
+ "n2=2; #order \n",
+ "\n",
+ "#Calculation\n",
+ "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
+ "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
+ "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
+ "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
+ "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
+ "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
+ "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
+ "print \"answers given in the book are wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays is 1.268 angstrom\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=3.05; #lattice spacing(angstrom)\n",
+ "theta=12*math.pi/180; #glancing angle(radian)\n",
+ "n=1; #order\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of line A is 1.268 angstrom\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "thetaA=30*math.pi/180; #glancing angle(radian)\n",
+ "thetaB=60*math.pi/180; #glancing angle(radian)\n",
+ "n1=1; #order\n",
+ "n2=2; #order\n",
+ "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
+ "\n",
+ "#Calculation\n",
+ "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of X-rays is 0.7853 angstrom\n",
+ "glancing angle for 2nd order is 18.2 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.51; #lattice spacing(angstrom)\n",
+ "theta=9*math.pi/180; #glancing angle(radian)\n",
+ "n1=1; #order\n",
+ "n2=2; #order\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
+ "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
+ "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb
new file mode 100644
index 00000000..3725056f
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb
@@ -0,0 +1,243 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 13: Bonding In Crystals"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 398"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "potential energy is -5.76 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "r0=2.5*10**-10; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "U=-e*x/r0; #potential energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"potential energy is\",U,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 398"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "equilibrium distance is -2.25 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "U=6.4; #potential energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "r0=-e*x/U; #equilibrium distance(m)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "compressibility of the solid is -25.087 *10**14\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "alpha=1.76; #madelung constant\n",
+ "n=0.5; #repulsive exponent\n",
+ "r0=4.1*10**-4; #equilibrium distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
+ "\n",
+ "#Result\n",
+ "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice energy is -6.45 eV\n",
+ "energy needed to form neutral atoms is -6.17 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "alpha=1.763; #madelung constant\n",
+ "n=10.5; #repulsive exponent\n",
+ "r0=3.56*10**-10; #equilibrium distance(m)\n",
+ "IE=3.89; #ionisation energy(eV)\n",
+ "EA=-3.61; #electron affinity(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
+ "E=U+EA+IE; #energy needed to form neutral atoms\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice energy is\",round(U,2),\"eV\"\n",
+ "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice energy is -3.98 eV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "alpha=1.748; #madelung constant\n",
+ "n=9; #repulsive exponent\n",
+ "r0=2.81*10**-10; #equilibrium distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
+ "\n",
+ "#Result\n",
+ "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb
new file mode 100644
index 00000000..449a8ffa
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb
@@ -0,0 +1,320 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 14: Magnetism"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 420"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation is 20 *10**9 A/m\n",
+ "flux density is 1.2818 *10**6 T\n",
+ "answer for flux density given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "H=10**12; #magnetic field intensity(A/m)\n",
+ "chi=20*10**-3; #susceptibility\n",
+ "\n",
+ "#Calculations\n",
+ "M=chi*H; #magnetisation(A/m)\n",
+ "B=mew0*(M+H); #flux density(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
+ "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
+ "print \"answer for flux density given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 420"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation is 17725 A/m\n",
+ "answer for magnetisation given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "H=10**2; #magnetic field intensity(A/m)\n",
+ "B=0.0224; #flux density(T)\n",
+ "\n",
+ "#Calculations\n",
+ "M=(B/mew0)-H; #magnetisation(A/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetisation is\",int(M),\"A/m\"\n",
+ "print \"answer for magnetisation given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "change in magnetic moment is 5.27 *10**-29 Am**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "r=5*10**-11; #radius(m)\n",
+ "B=3; #flux density(T)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptibility is 0.8 *10**-4\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T1=200; #temperature(K)\n",
+ "T2=300; #temperature(K)\n",
+ "chi1=1.2*10**-4; #susceptibility\n",
+ "\n",
+ "#Calculations\n",
+ "chi2=T1*chi1/T2; #susceptibility\n",
+ "\n",
+ "#Result\n",
+ "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "paramagnetisation is 3.6 *10**2 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "H=10**5; #magnetic field intensity(A/m)\n",
+ "chi=3.6*10**-3; #susceptibility\n",
+ "\n",
+ "#Calculations\n",
+ "M=chi*H; #paramagnetisation(A/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic moment is 5.655 *10**-24 Am**2\n",
+ "saturation magnetic induction is 6.5 *10**-4 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "mewB=9.27*10**-24; \n",
+ "rho=8906; #density(kg/m**3)\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "W=58.7; #atomic weight\n",
+ "\n",
+ "#Calculations\n",
+ "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
+ "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
+ "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "diamagnetic susceptibility is -8.249 *10**-8\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "R=0.5*10**-10; #radius(m)\n",
+ "N=28*10**26; #number of atoms\n",
+ "Z=2; #atomic number\n",
+ "\n",
+ "#Calculations\n",
+ "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
+ "\n",
+ "#Result\n",
+ "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb
new file mode 100644
index 00000000..283605cf
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb
@@ -0,0 +1,236 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 15: Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 442"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field at 3K is 0.006281 Tesla\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=0.0106; #critical field at 0K(Tesla)\n",
+ "T=3; #temperature(K)\n",
+ "Tc=4.7; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 442"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature of superconductor is 1.701 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
+ "Tc=2.69; #temperature(K)\n",
+ "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
+ "\n",
+ "#Calculation\n",
+ "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature of superconductor is\",round(T,3),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field is 4.3365 *10**4 A/m\n",
+ "critical current of the wire is 408 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
+ "Tc=7.28; #temperature(K)\n",
+ "T=4.2; #temperature(K)\n",
+ "r=1.5*10**-3; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
+ "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
+ "print \"critical current of the wire is\",int(Ic),\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 443"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature is 4.124 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m1=199.5; #isotopic mass\n",
+ "m2=205.4; #change in mass \n",
+ "Tc1=4.185; #temperature of mercury(K)\n",
+ "\n",
+ "#Calculation\n",
+ "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical temperature is\",round(Tc2,3),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 444"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "superconducting transition temperature is 8.106 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T1=3; #temperature(K)\n",
+ "T2=8; #temperature(K)\n",
+ "lamda1=39.6; #penetration depth(nm)\n",
+ "lamda2=173; #penetration depth(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "x=(lamda1/lamda2)**2;\n",
+ "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
+ "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb
new file mode 100644
index 00000000..ede08994
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb
@@ -0,0 +1,588 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 2: Molecular Spectra"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "raman shift is 219.03 cm-1\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda_sample=4358; #wavelength(angstrom)\n",
+ "lamda_raman=4400; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of diatomic molecule is 2.22 *10**-68 J\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "raman shift is 0.02 *10**6 m-1\n",
+ "wavelength of antistokes line 4950.5 angstrom\n",
+ "answer for wavelength given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda0=5000*10**-10; #wavelength(m)\n",
+ "lamda=5050.5*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "new0=1/lamda0; #frequency(m-1)\n",
+ "new=1/lamda; #frequency(m-1)\n",
+ "delta_new=new0-new; #raman shift(m-1)\n",
+ "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
+ "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
+ "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
+ "print \"answer for wavelength given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy required is 60 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=4.8*10**2; #force constant(N/m)\n",
+ "x=2*10**-10; #inter nuclear distance(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "E=k*x**2/(2*e); #energy required(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy required is\",int(E),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency of vibration is 2.04 *10**13 sec-1\n",
+ "spacing between energy levels is 8.447 *10**-2 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=187; #force constant(N/m)\n",
+ "m=1.14*10**-26; #reduced mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
+ "delta_E=h*new; #spacing between energy levels(J)\n",
+ "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
+ "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "internuclear distance is 1.42 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "B=8.5; #seperation(cm-1)\n",
+ "h=6.62*10**-27; #planck's constant\n",
+ "c=3*10**10; #velocity of light(cm/sec)\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "m1=1;\n",
+ "m2=79; \n",
+ "\n",
+ "#Calculations\n",
+ "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
+ "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
+ "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"internuclear distance is\",round(r,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "vibrational frequency of sample is 1974 cm-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda1=4358.3; #wavelength(angstrom)\n",
+ "lamda2=4768.5; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequqncy of OD stretching vibration is 2401 cm-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "MO=16;\n",
+ "MD=2;\n",
+ "MH=1;\n",
+ "new=3300; #frequency(cm-1)\n",
+ "\n",
+ "#Calculations\n",
+ "mew_OD=MO*MD/(MO+MD); \n",
+ "mew_OH=MO*MH/(MO+MH);\n",
+ "new1=math.sqrt(mew_OD/mew_OH);\n",
+ "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "raman shift of 4400 line is 219.03 cm-1\n",
+ "raman shift of 4419 line is 316.8 cm-1\n",
+ "raman shift of 4447 line is 459.2 cm-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda0=4358; #wavelength(angstrom)\n",
+ "lamda1=4400; #wavelength(angstrom)\n",
+ "lamda2=4419; #wavelength(angstrom)\n",
+ "lamda3=4447; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
+ "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
+ "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
+ "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
+ "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
+ "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "corresponding wavelength is 32 *10**-4 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "new_bar=20.68; #transition(cm-1)\n",
+ "J=14;\n",
+ "\n",
+ "#Calculations\n",
+ "B=new_bar/2; \n",
+ "new=2*B*(J+1); #frequency(cm-1)\n",
+ "lamda=1/new; #corresponding wavelength(cm) \n",
+ "\n",
+ "#Result\n",
+ "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 13, Page number 103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "twoB=4000; #seperation observed from the series(cm-1)\n",
+ "h=6.62*10**-27; #planck's constant\n",
+ "c=3*10**10; #velocity of light(cm/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "B=twoB/2;\n",
+ "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 14, Page number 104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=5461*10**-8; #wavelength(cm)\n",
+ "new1=608;\n",
+ "new2=846;\n",
+ "new3=995;\n",
+ "new4=1178;\n",
+ "new5=1599; \n",
+ "new6=3064; #raman shift(cm-1)\n",
+ "\n",
+ "#Calculations\n",
+ "newbar=1/lamda; #wave number(cm-1)\n",
+ "new11=newbar-new1;\n",
+ "new22=newbar-new2;\n",
+ "new33=newbar-new3;\n",
+ "new44=newbar-new4;\n",
+ "new55=newbar-new5;\n",
+ "new66=newbar-new6;\n",
+ "lamda1=10**8/new11;\n",
+ "lamda2=10**8/new22;\n",
+ "lamda3=10**8/new33;\n",
+ "lamda4=10**8/new44;\n",
+ "lamda5=10**8/new55;\n",
+ "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 15, Page number 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "force constant is 115 N/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J s)\n",
+ "e=1.602*10**-19; #charge(coulomb) \n",
+ "mew=1.14*10**-26; #reduced mass(kg)\n",
+ "deltaE=6.63*10**-2*e; #energy(J)\n",
+ "\n",
+ "#Calculations\n",
+ "new=deltaE/h; #frequency(sec-1)\n",
+ "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"force constant is\",int(k),\"N/m\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb
new file mode 100644
index 00000000..72f70169
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb
@@ -0,0 +1,540 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 3: Inadequacy of Classical Physics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum energy of photoelectron is 3.038 *10**-19 J\n",
+ "maximum velocity of electron is 8.17 *10**5 ms-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=1700*10**-10; #wavelength(m)\n",
+ "lamda0=2300*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
+ "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
+ "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "threshold wavelength is 5380 angstrom\n",
+ "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "W=2.3*e; #work function(J)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=6850; #wavelength of orange light(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda0=h*c/W; #threshold wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
+ "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "retarding potential is 1.175 volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "W=1.3*e; #work function(J)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "new=6*10**14; #frequency(Hertz)\n",
+ "\n",
+ "#Calculations\n",
+ "V0=((h*new)-W)/e; #retarding potential(volts)\n",
+ "\n",
+ "#Result\n",
+ "print \"retarding potential is\",V0,\"volts\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "work function is 1.28 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=3*10**-7; #wavelength(m)\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "v=1*10**6; #velocity(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
+ "W=W/e; #work function(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"work function is\",round(W,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "photoelectric current is 1.86 micro ampere\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda=4600*10**-10; #wavelength(m)\n",
+ "qe=0.5; #efficiency(%)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h*c/lamda; #energy(J)\n",
+ "n=10**-3/E; #number of photons/second\n",
+ "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
+ "\n",
+ "#Result\n",
+ "print \"photoelectric current is\",round(i,2),\"micro ampere\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "planck's constant is 6.61 *10**-34 joule second\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T1=3*10**-19; #temperature(J)\n",
+ "T2=1*10**-19; #temperature(J)\n",
+ "c=3*10**8; #velocity(m/sec)\n",
+ "lamda1=3350; #wavelength(m)\n",
+ "lamda2=5060; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "x=10**10*((1/lamda1)-(1/lamda2));\n",
+ "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
+ "\n",
+ "#Result\n",
+ "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 131"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered radiation is 3.0121 angstrom\n",
+ "energy of recoil electron is 2.66 *10**-18 joule\n",
+ "answers given in the book are wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=60*math.pi/180; #angle(radian)\n",
+ "lamda=3*10**-10; #wavelength(angstrom)\n",
+ "lamda_dash=3.058; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_sr=h/(m0*c); \n",
+ "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
+ "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
+ "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
+ "print \"answers given in the book are wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered radiation is 2.003 angstrom\n",
+ "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
+ "answer for velocity given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=30*math.pi/180; #angle(radian)\n",
+ "lamda=2*10**-10; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_sr=h/(m0*c); \n",
+ "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
+ "x=1+(E/(m0*c**2));\n",
+ "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
+ "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
+ "print \"answer for velocity given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered photon is 3.024 angstrom\n",
+ "energy of recoil electron is 0.5 *10**-17 joules\n",
+ "direction of recoil electron is 44 degrees 46 minutes\n",
+ "answer for angle given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=90*math.pi/180; #angle(radian)\n",
+ "lamda=3*10**-10; #wavelength(m) \n",
+ "\n",
+ "#Calculations\n",
+ "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
+ "x=h/(lamda*m0*c);\n",
+ "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
+ "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
+ "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
+ "phim=60*(phi-int(phi)); #angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
+ "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
+ "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
+ "print \"answer for angle given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of scattered photon is 0.226 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "theta=180*math.pi/180; #angle(radian)\n",
+ "E=1.96*10**6*e; #energy of scattered photon(J)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*c/E; #wavelength(m)\n",
+ "delta_lamda=2*h/(m0*c); \n",
+ "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
+ "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of scattered radiation is 4.9e-12 m\n",
+ "energy of recoil electron is 3.9592 *10**-14 Joules\n",
+ "direction of recoil electron is 27 degrees 47 minutes\n",
+ "answer for energy and direction of recoil electron and given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "theta=90*math.pi/180; #angle(radian)\n",
+ "E=500*10**3*e; #energy of scattered photon(J)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*c/E; #wavelength(m)\n",
+ "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
+ "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
+ "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
+ "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
+ "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
+ "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
+ "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
+ "phim=60*(phi-int(phi)); #angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
+ "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
+ "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
+ "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb
new file mode 100644
index 00000000..a4871749
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb
@@ -0,0 +1,681 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 4: Matter Waves"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of proton is 1 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "v=3967; #velocity of proton(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "kinetic energy of electron is 6 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy of electron is\",int(E),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "\n",
+ "#Calculations\n",
+ "v=c/30; #velocity of proton(m/sec)\n",
+ "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of electron is 1 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=150; #potential difference(V)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength is 1.23 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=100; #voltage(eV) \n",
+ "m=9.1*10**-31; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-Broglie wavelength of neutron is 0.99 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "v=4000; #velocity of proton(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of kinetic energies of electron and proton is 1833\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "me=9.11*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "r=mp/me; #ratio of kinetic energies of electron and proton\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of kinetic energies of electron and proton is\",int(r)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of wavelengths is 32\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.1*10**-31; #mass of proton(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "E=1000; #energy(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of wavelengths is\",int(round(r))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of electron is 0.289 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
+ "wf=1*10**-15; #work function(J)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h*c/lamda; #energy of X-ray(J)\n",
+ "Ee=E-wf; #energy of electron emitted(J)\n",
+ "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength of proton is 1.537 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "T=400; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rest energy of electron is 8.19e-14 J\n",
+ "energy of proton is 8.19e-11 J\n",
+ "velocity of proton is 312902460.506 m/s\n",
+ "wavelength of electron is 1.27 *10**-5 angstrom\n",
+ "answers given in the book are wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.673*10**-27; #mass of proton(kg)\n",
+ "m0=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "h=6.63*10**-34; #planks constant(Js)\n",
+ "ke=1000; #kinetic energy\n",
+ "\n",
+ "#Calculations\n",
+ "re=m0*c**2; #rest energy of electron(J)\n",
+ "Ep=ke*re; #energy of proton(J)\n",
+ "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
+ "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"rest energy of electron is\",re,\"J\"\n",
+ "print \"energy of proton is\",Ep,\"J\"\n",
+ "print \"velocity of proton is\",v,\"m/s\"\n",
+ "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
+ "print \"answers given in the book are wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of electron is 4.55 *10**7 m/s\n",
+ "kinetic energy is 5887 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.625*10**-34; #planks constant(Js)\n",
+ "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "v=h/(lamda*m); #velocity of electron(m/s)\n",
+ "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
+ "print \"kinetic energy is\",int(KE),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 13, Page number 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing of crystal is 1.78 angstrom\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.62*10**-34; #planks constant(Js)\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "\n",
+ "#Calculations\n",
+ "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 14, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "potential is 605.16 volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=0.5; #wavelength(angstrom)\n",
+ "\n",
+ "#Calculations\n",
+ "V=(12.3/lamda)**2; #potential(volts)\n",
+ "\n",
+ "#Result\n",
+ "print \"potential is\",V,\"volts\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 15, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of gama ray photon is 19.89 *10**-16 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=1*10**-10; #wavelength(m)\n",
+ "h=6.63*10**-34; #planks constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "p=h/lamda; #momentum(J-sec/m)\n",
+ "E=p*c; #energy of gama ray photon(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 16, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of electron is 2.2 *10**6 m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planks constant(Js)\n",
+ "m=9*10**-31; #mass of electron(kg)\n",
+ "r=0.53*10**-10; #radius of orbit(m)\n",
+ "\n",
+ "#Calculations\n",
+ "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb
new file mode 100644
index 00000000..171aaa2d
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb
@@ -0,0 +1,396 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 5: Uncertainity Principle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
+ "deltax=5*10**-14; #uncertainity(m)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 3.85 *10**-3 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "v=600; #speed(m/s)\n",
+ "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=3*10**-11; #uncertainity(m)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltat=10**-8; #lifetime of excited atom(sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltaphi=math.pi/(180*60*60); \n",
+ "\n",
+ "#Calculations\n",
+ "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 5.27 *10**-34 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "m=25*10**-3; #mass(kg)\n",
+ "v=400; #speed(m/s)\n",
+ "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage of uncertainity in momentum is 3.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=2*10**-10; #uncertainity in position(m)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "V=1000; #voltage(V)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
+ "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
+ "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
+ "\n",
+ "#Result\n",
+ "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
+ "uncertainity in velocity of proton is 31.545 ms-1\n",
+ "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=20*10**-10; #uncertainity in position(m)\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
+ "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
+ "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
+ "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
+ "minimum kinetic energy of proton is 0.32 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "deltax=8*10**-15; #uncertainity in position(m)\n",
+ "mp=1.67*10**-27; #mass(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
+ "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
+ "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb
new file mode 100644
index 00000000..fd167244
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb
@@ -0,0 +1,304 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 6: Schrodinger Wave Mechanics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy levels are 38 eV 150 eV 339 eV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "a=10**-10; #width(m)\n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "\n",
+ "#Calculation\n",
+ "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
+ "E1=Ex*n1**2; #energy at 1st level(eV)\n",
+ "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
+ "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "probability of finding the particle is 0.133\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=1*10**-10; #width\n",
+ "a=15*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "W=2*deltax/a; #probability of finding the particle\n",
+ "\n",
+ "#Result\n",
+ "print \"probability of finding the particle is\",round(W,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "probability of transmission of electron is 0.5\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=1; #energy(eV)\n",
+ "V0=2; #voltage(eV)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "chi=1.05*10**-34; \n",
+ "a=2*10**-10; #potential barrier\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(2*m*(V0-E)*e);\n",
+ "y=16*E*(1-(E/V0))/V0;\n",
+ "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
+ "\n",
+ "#Result\n",
+ "print \"probability of transmission of electron is\",round(T,1)\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fraction of electrons reflected is 0.38\n",
+ "fraction of electrons transmitted is 0.62\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.080*10**-19; #energy(eV)\n",
+ "E_V0=0.016*10**-19; #voltage(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(E);\n",
+ "y=math.sqrt(E_V0);\n",
+ "R=(x-y)/(x+y); #fraction of electrons reflected\n",
+ "T=1-R; #fraction of electrons transmitted\n",
+ "\n",
+ "#Result\n",
+ "print \"fraction of electrons reflected is\",round(R,2)\n",
+ "print \"fraction of electrons transmitted is\",round(T,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fraction of electrons transmitted is 0.4998\n",
+ "fraction of electrons reflected is 0.5002\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.34; #energy(eV)\n",
+ "E_V0=0.01; #voltage(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.sqrt(E);\n",
+ "y=math.sqrt(E_V0);\n",
+ "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
+ "R=1-T; #fraction of electrons reflected\n",
+ "\n",
+ "#Result\n",
+ "print \"fraction of electrons transmitted is\",round(T,4)\n",
+ "print \"fraction of electrons reflected is\",round(R,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 13, Page number 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transmission coefficient is 3.27 *10**-9\n",
+ "transmission coefficient in 1st case is 7.62 *10**-8\n",
+ "transmission coefficient in 2nd case is 1.51 *10**-15\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "E1=1*e; #energy(J)\n",
+ "E2=2*e; #energy(J)\n",
+ "V0=5*e; #voltage(J)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "chi=1.054*10**-34; \n",
+ "a1=10*10**-10; #potential barrier(m)\n",
+ "a2=20*10**-10; #potential barrier(m)\n",
+ "\n",
+ "#Calculation\n",
+ "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
+ "y1=16*E1*((V0-E1)/(V0**2));\n",
+ "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
+ "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
+ "y2=16*E2*((V0-E2)/(V0**2));\n",
+ "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
+ "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
+ "\n",
+ "#Result\n",
+ "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
+ "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
+ "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb
new file mode 100644
index 00000000..31b7323a
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb
@@ -0,0 +1,277 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 7: Nuclear Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of He is 2.2375 fermi\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "A1=165; #mass number\n",
+ "A2=4; #mass number\n",
+ "R1=7.731; #radius(fermi)\n",
+ "\n",
+ "#Calculation\n",
+ "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of He is\",round(R2,4),\"fermi\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average binding energy per nucleon is 7.07 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "p=1.007276; #mass of proton(amu)\n",
+ "alpha=4.00150; #mass of alpha particle(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "deltam=2*(p+n)-alpha;\n",
+ "BE=deltam*m; #binding energy(MeV)\n",
+ "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy of neutron is 7.25 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "Li36=6.015125; #mass of Li(amu)\n",
+ "Li37=7.016004; #mass of Li(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "deltam=Li36+n-Li37; \n",
+ "BE=deltam*m; #binding energy of neutron(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy released is 23.6 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "BEHe=4*7.0; #binding energy for He\n",
+ "BEH=2*1.1; #binding energy for H\n",
+ "\n",
+ "#Calculation\n",
+ "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
+ "\n",
+ "#Result\n",
+ "print \"energy released is\",deltaE,\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mass is 19.987 amu\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "p=1.007276; #mass of proton(amu)\n",
+ "BE=160.647; #binding energy(MeV)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
+ "\n",
+ "#Result\n",
+ "print \"mass is\",round(Mx,3),\"amu\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 261"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy of neutron is 11.471 MeV\n",
+ "answer given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1.008665; #mass of neutron(amu)\n",
+ "Ca41=40.962278; #mass of Ca(amu)\n",
+ "Ca42=41.958622; #mass of Ca(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "deltam=Ca41+n-Ca42; \n",
+ "BE=deltam*m; #binding energy of neutron(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
+ "print \"answer given in the book varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb
new file mode 100644
index 00000000..ecefb615
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb
@@ -0,0 +1,210 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 8: Alpha and Beta Decays"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of beta article is 0.8624 c\n",
+ "mass of beta particle is 1.98 m0\n",
+ "flux density is 0.029106 weber/m**2\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "Ek=0.5*10**6; #kinetic energy(eV)\n",
+ "m0=9.11*10**-31; #mass(kg)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "r=0.1; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "x=(Ek*e/(m0*c**2))+1;\n",
+ "y=1-(1/x)**2;\n",
+ "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
+ "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
+ "B=m*v/(e*r); #flux density(weber/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
+ "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
+ "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "kinetic energy of alpha particle is 4.782 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=226; #atomic weight\n",
+ "Ra=226.02540; #mass of Ra\n",
+ "Rn=222.017571; #mass of Rn\n",
+ "He=4.002603; #mass of He\n",
+ "m=931.5; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(Ra-Rn-He)*m; \n",
+ "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum kinetic energy of electrons is 4.548 MeV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ne=22.99465; #mass of Ne\n",
+ "Na=22.989768; #mass of Na\n",
+ "m=931.5; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q value of 1st decay is 0.482 MeV\n",
+ "Q value of 2nd decay is 1.504 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "K=39.963999; #mass of K\n",
+ "Ca=39.962591; #mass of Ca\n",
+ "Ar=39.962384; #mass of Ar\n",
+ "me=0.000549; #mass of electron \n",
+ "m=931.5; \n",
+ "\n",
+ "#Calculation\n",
+ "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
+ "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
+ "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb
new file mode 100644
index 00000000..444cec94
--- /dev/null
+++ b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 9: Nuclear Reactions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q value in nuclear reaction is -1.1898 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N=14.003073; #mass of N\n",
+ "O=16.99913; #mass of O\n",
+ "H=1.007825; #mass of H\n",
+ "He=4.002604; #mass of He\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
+ "\n",
+ "#Result\n",
+ "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "heat generated is 6.6 *10**6 KWH\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Li=7.01600; #mass of Li\n",
+ "H=1.007825; #mass of H\n",
+ "He=4.002604; #mass of He\n",
+ "m=931; \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "N=6.02*10**26; #avagadro number\n",
+ "M=0.1; #mass(kg)\n",
+ "x=1000*3600;\n",
+ "\n",
+ "#Calculation\n",
+ "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
+ "mLi=Li/N; #mass of Li(kg) \n",
+ "H=Q*M/(x*mLi); #heat generated(KWH)\n",
+ "\n",
+ "#Result\n",
+ "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 300"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q-value for the reaction is 5.485 MeV\n",
+ "kinetic energy of Zn is 0.635 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Cu=62.929599; #mass of Cu\n",
+ "H=2.014102; #mass of H(amu)\n",
+ "n=1.008665; #mass of n(amu)\n",
+ "Zn=63.929145; #mass of Zn(amu)\n",
+ "m=931; \n",
+ "Kx=12; #energy of deuterons(MeV)\n",
+ "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
+ "\n",
+ "#Calculation\n",
+ "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
+ "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
+ "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 301"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "threshold kinetic energy is 5.378 MeV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "P=1.007825; #mass of P(amu)\n",
+ "H2=2.014102; #mass of H2(amu)\n",
+ "H3=3.016049; #mass of H3(amu)\n",
+ "m=931; \n",
+ "\n",
+ "#Calculation\n",
+ "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
+ "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}