diff options
27 files changed, 13461 insertions, 0 deletions
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization.ipynb new file mode 100644 index 00000000..f6562421 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization.ipynb @@ -0,0 +1,163 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12: Polymers and Polymerization" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 311" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "Mwt = 21150 # g / mol\n", + "\n", + "# Solution\n", + "m = 2 * 12 + 3 * 1.008 + 1 * 35.45 # g / mer\n", + "n = Mwt / m\n", + "print \"The degree of polymerization is\", int(n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The degree of polymerization is 338\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 312" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "n = 10000 # degree of polymerisation\n", + "\n", + "# Solution\n", + "m = 8 * 12 + 8 * 1.008 # g / mer\n", + "M = n * m\n", + "print \"Molecular weight of polystyrene chain,\", M, \"g /mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Molecular weight of polystyrene chain, 1040640.0 g /mol\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 312" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "d1 = 920 # density, kg / m^3\n", + "d2 = 961.97 # density, kg / m^3\n", + "dp = 44 # density percentange\n", + "\n", + "# Solution\n", + "print \"dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\"\n", + "p = 937.98\n", + "print \"Density of sample is\", p, \"kg / m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\n", + "Density of sample is 937.98 kg / m^3\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "Na = 6.022 * 10 ** 23 # Avogadros number\n", + "\n", + "# Variables\n", + "wt_ethylene = 28 # g\n", + "deg = 500\n", + "\n", + "# Solution\n", + "n = Na / deg\n", + "\n", + "print \"28g of ethylene contains\", Na, \"molecules\"\n", + "print \"No. of polyethylene formed\", \"{:.3e}\".format(n), \"molecules\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "28g of ethylene contains 6.022e+23 molecules\n", + "No. of polyethylene formed 1.204e+21 molecules\n" + ] + } + ], + "prompt_number": 5 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_1.ipynb new file mode 100644 index 00000000..f6562421 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_1.ipynb @@ -0,0 +1,163 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12: Polymers and Polymerization" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 311" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "Mwt = 21150 # g / mol\n", + "\n", + "# Solution\n", + "m = 2 * 12 + 3 * 1.008 + 1 * 35.45 # g / mer\n", + "n = Mwt / m\n", + "print \"The degree of polymerization is\", int(n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The degree of polymerization is 338\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 312" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "n = 10000 # degree of polymerisation\n", + "\n", + "# Solution\n", + "m = 8 * 12 + 8 * 1.008 # g / mer\n", + "M = n * m\n", + "print \"Molecular weight of polystyrene chain,\", M, \"g /mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Molecular weight of polystyrene chain, 1040640.0 g /mol\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 312" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "d1 = 920 # density, kg / m^3\n", + "d2 = 961.97 # density, kg / m^3\n", + "dp = 44 # density percentange\n", + "\n", + "# Solution\n", + "print \"dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\"\n", + "p = 937.98\n", + "print \"Density of sample is\", p, \"kg / m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\n", + "Density of sample is 937.98 kg / m^3\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "Na = 6.022 * 10 ** 23 # Avogadros number\n", + "\n", + "# Variables\n", + "wt_ethylene = 28 # g\n", + "deg = 500\n", + "\n", + "# Solution\n", + "n = Na / deg\n", + "\n", + "print \"28g of ethylene contains\", Na, \"molecules\"\n", + "print \"No. of polyethylene formed\", \"{:.3e}\".format(n), \"molecules\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "28g of ethylene contains 6.022e+23 molecules\n", + "No. of polyethylene formed 1.204e+21 molecules\n" + ] + } + ], + "prompt_number": 5 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions.ipynb new file mode 100644 index 00000000..a19a42ce --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions.ipynb @@ -0,0 +1,626 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 13: Fuel and Combustions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page No: 350" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 84 # Percentage\n", + "S = 1.5 # Percentage\n", + "N = 0.6 # Percentage\n", + "H = 5.5 # Percentage\n", + "O = 8.4 # Percentage\n", + "\n", + "# Solution\n", + "GCV = (8080 * C + 34500 * (H - O / 8) + 2240 * S) / 100\n", + "LCV = (GCV - 9 * H / 100 * 587)\n", + "print \"Gross Calorific Value\", int(GCV), \"kcal / kg\"\n", + "print \"Net Calorific Value\", \"{:.2f}\".format(LCV), \"kcal / kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Gross Calorific Value 8356 kcal / kg\n", + "Net Calorific Value 8065.48 kcal / kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page No: 350" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 90 # Percentage\n", + "O = 3.0 # Percentage\n", + "S = 0.5 # Percentage\n", + "N = 0.5 # Percentage\n", + "ash = 2.5 # Percentage\n", + "LCV = 8490.5 # kcal / kg\n", + "\n", + "# Solution\n", + "print \"HCV = LCV + 9 * H / 100 * 587\"\n", + "print \"HCV = 1/100 * (8080 * C + 34500 * (H - O / 8) + 2240 * N)\"\n", + "H = (8490.5 - 7754.8) / (345 - 52.8)\n", + "H = 4.575\n", + "print \"The precentage of H is\", H, \"%\"\n", + "HCV = LCV + 52.8 * H\n", + "print \"Higeher calorific value of coal\", \"{:.1f}\".format(HCV), \"kcal / kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV = LCV + 9 * H / 100 * 587\n", + "HCV = 1/100 * (8080 * C + 34500 * (H - O / 8) + 2240 * N)\n", + "The precentage of H is 4.575 %\n", + "Higeher calorific value of coal 8732.1 kcal / kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "x = 0.72 # g\n", + "W = 250 # g\n", + "w = 150 # g\n", + "t1 = 27.3 # C\n", + "t2 = 29.1 # C\n", + "\n", + "# Solution\n", + "HCV = ((W + w) * (t2 - t1)) / x\n", + "HCV *= 4185.0 / 10 ** 6\n", + "print \"HCV of fuel is\", \"{:.3f}\".format(HCV), \"KJ / Kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV of fuel is 4.185 KJ / Kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "x = 0.84 # g\n", + "W = 1060 # g\n", + "w = 135 # g\n", + "delta_t = 2.5 # C\n", + "\n", + "# Solution\n", + "HCV = ((W + w) * delta_t) / x\n", + "print \"HCV of fuel is\", \"{:.2f}\".format(HCV), \"kcal / kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV of fuel is 3556.55 kcal / kg\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "V = 0.1 # m ^ 3\n", + "W = 25 # kg\n", + "t1 = 20 # C\n", + "t2 = 33 # C\n", + "m = 0.025 # kg\n", + "\n", + "# Solution\n", + "HCV = W * (t2 - t1) / V\n", + "LCV = HCV - (m / V) * 580\n", + "print \"HCV is\", HCV, \"kcal / m^3\"\n", + "print \"LCV is\", LCV, \"kcal / m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV is 3250.0 kcal / m^3\n", + "LCV is 3105.0 kcal / m^3\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "w1 = 2.5 # g\n", + "w2 = 2.415 # g\n", + "r = 1.528 # g\n", + "ma = 0.245 # Mass of ash, g\n", + "\n", + "# Solution\n", + "m = w1 - w2 # Mass of moisture in coal\n", + "mv = w2 - r # Mass of volatile matter\n", + "moisp = m * 100 / w1\n", + "volp = mv * 100 / w1\n", + "ashp = ma * 100 / w1\n", + "carbp = 100 - (moisp + volp + ashp)\n", + "print \"Percentage of moisture:\", moisp, \"%\"\n", + "print \"Percentage of volatile matter:\", volp, \"%\"\n", + "print \"Percentage of ash:\", ashp, \"%\"\n", + "print \"Percentage of fixed carbon:\", carbp, \"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage of moisture: 3.4 %\n", + "Percentage of volatile matter: 35.48 %\n", + "Percentage of ash: 9.8 %\n", + "Percentage of fixed carbon: 51.32 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page No: 352" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt_coke = 2 # kg\n", + "\n", + "# Solution\n", + "wt_O = 2 * 32 / 12.0\n", + "wt_air = wt_O * 100 / 23.2\n", + "Vol_air = wt_air / 28.94 * 22.4\n", + "print \"Volume of air needed for the complete combustion of 2kg coke\",\n", + "print \"is\", \"{:.3f}\".format(Vol_air), \"litres at NTP\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Volume of air needed for the complete combustion of 2kg coke is 17.793 litres at NTP\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page No: 352" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 86 # Percent\n", + "H = 4 # Percent\n", + "N = 1.3 # Percent\n", + "S = 3 # Percent\n", + "O = 4 # Percent\n", + "Ash = 1.7 # Percent\n", + "wt = 500 # g\n", + "\n", + "# Solution\n", + "wt_C = C / 100.0\n", + "wt_S = S / 100.0\n", + "wt_H = H / 100.0\n", + "wt_O = O / 100.0\n", + "\n", + "print \"Nitrogen and ash are incombustible, so they do not require oxygen.\"\n", + "wt_O_C = 32 / 12.0 * wt_C\n", + "wt_O_S = 32 / 32.0 * wt_S\n", + "wt_O_H = 32 / 4.0 * wt_H\n", + "\n", + "Twt_O = wt_O_H + wt_O_S + wt_O_C\n", + "wt_O_needed = Twt_O - wt_O\n", + "wt_air = (100.0 / 23.0 * wt_O_needed) * 500 / 1000.0\n", + "print \"Minimum Wt. of air required by 500g of fuel\", \"{:.2f}\".format(wt_air), \"kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Nitrogen and ash are incombustible, so they do not require oxygen.\n", + "Minimum Wt. of air required by 500g of fuel 5.66 kg\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page No: 353" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt_C = 3 # kg\n", + "\n", + "# Solution\n", + "wt_air = wt_C * 32 * 100 / 12.0 / 23.0\n", + "vol_air = wt_air * 1000 * 22.4 / 28.94\n", + "\n", + "print \"H2(g) + 1/2 O2(g) --> H20(l)\"\n", + "print \" 1 0.5 1\\t\\t(By Vol.)\"\n", + "print \"CO(g) + 1/2 O2(g) --> CO2(g)\"\n", + "print \" 1 0.5 1\\t\\t(By Vol.)\"\n", + "print \"CH4(g) + 2 O2(g) --> CO2(g) + 2H2O(l)\"\n", + "print \" 1 2 1\\t\\t(By Vol.)\"\n", + "\n", + "print \"Weight of air for the combustion of 3kg carbon\",\n", + "print \"{:.3f}\".format(wt_air), \"kg\"\n", + "print \"Vol. pf air required for combustion of 3kg carbon\",\n", + "print \"{:.3e}\".format(vol_air), \"L\",\n", + "print \"or\", \"{:.2f}\".format(vol_air / 1000), \"m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "H2(g) + 1/2 O2(g) --> H20(l)\n", + " 1 0.5 1\t\t(By Vol.)\n", + "CO(g) + 1/2 O2(g) --> CO2(g)\n", + " 1 0.5 1\t\t(By Vol.)\n", + "CH4(g) + 2 O2(g) --> CO2(g) + 2H2O(l)\n", + " 1 2 1\t\t(By Vol.)\n", + "Weight of air for the combustion of 3kg carbon 34.783 kg\n", + "Vol. pf air required for combustion of 3kg carbon 2.692e+04 L or 26.92 m^3\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page No: 353" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "H = 0.30 # m^3\n", + "CO = 0.10 # m^3\n", + "CH4 = 0.04 # m^3\n", + "N2 = 0.56 # m^3\n", + "\n", + "# Soution\n", + "vol_oxygen = H * 0.5 + CO * 0.5 + CH4 * 2\n", + "vol_air = vol_oxygen * 100 / 21\n", + "print \"Volumer of air required for complete combustion of 1 m^3 of\",\n", + "print \"producer gas:\", \"{:.3f}\".format(vol_air), \"m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Volumer of air required for complete combustion of 1 m^3 of producer gas: 1.333 m^3\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page No: 354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "H = 15.4 # Percentage\n", + "C = 84.6 # Percentage\n", + "wt_fuel = 1 # kg\n", + "wt_C = 0.846 # kg\n", + "wt_H = 0.154 # kg\n", + "\n", + "# Solution\n", + "print \"The combustion reactions are,\"\n", + "print \"C + O2 --> CO2\"\n", + "print \"12 32 \\t(by Weight)\"\n", + "print \"2H2 + O2 --> H20\"\n", + "print \" 4 32\\t(by Weight)\"\n", + "\n", + "wt_O = 32 / 12.0 * wt_C\n", + "wt_O_H = 32 / 4.0 * wt_H\n", + "Twt_O = wt_O + wt_O_H\n", + "print \"Because 32 gm of O2 occupies a volume of 22.4 liters at NTP\"\n", + "print \"3.488 * 1000 gm of O2 will occupy\",\n", + "print \"{:.1f}\".format(22.4 / 32 * Twt_O * 1000), \"liters\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The combustion reactions are,\n", + "C + O2 --> CO2\n", + "12 32 \t(by Weight)\n", + "2H2 + O2 --> H20\n", + " 4 32\t(by Weight)\n", + "Because 32 gm of O2 occupies a volume of 22.4 liters at NTP\n", + "3.488 * 1000 gm of O2 will occupy 2441.6 liters\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page No: 354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 750 # g\n", + "H = 52 # g\n", + "O = 121 # g\n", + "N = 32 # g\n", + "ash = 45 # g\n", + "\n", + "# Solution\n", + "min_wt_air = (C * 32 / 12. + H * 16 / 2. - O) * 100 / 23.\n", + "HCV = 1 / 1000. * (8080 * C + 34500 * (H - O / 8.) + 2240 * 0)\n", + "LCV = HCV - 0.09 * H * 587 / 10.0\n", + "\n", + "print \"HCV is\", int(HCV), \"kcal/kg\"\n", + "print \"LCV is\", int(LCV), \"kcal/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV is 7332 kcal/kg\n", + "LCV is 7057 kcal/kg\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page No: 355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 81 # Percent\n", + "H = 8 # Percent\n", + "N = 2 # Percent\n", + "O = 5 # Percent\n", + "\n", + "# Solution\n", + "print \"In 1kg coal,\"\n", + "\n", + "wt_C = C * 10\n", + "wt_H = H * 10\n", + "wt_N = N * 10\n", + "wt_O = O * 10\n", + "wt_ash = 100 - (wt_O + wt_N + wt_H + wt_C)\n", + "\n", + "wt_air = ((wt_C * 32 / 12. + wt_H * 16 / 2. - wt_O) * 100 / 23.) / 1000.\n", + "\n", + "print \"Weight of air required for complete combustion of 10kg coal\",\n", + "print \"=\", \"{:.2f}\".format(wt_air * 10), \"kg\"\n", + "\n", + "HCV = 1 / 100. * (8080 * C + 34500 * (H - O / 8.))\n", + "LCV = HCV - 0.09 * H * 587\n", + "\n", + "print \"HCV is\", int(HCV), \"kcal/kg\"\n", + "print \"LCV is\", int(LCV), \"kcal/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "In 1kg coal,\n", + "Weight of air required for complete combustion of 10kg coal = 119.57 kg\n", + "HCV is 9089 kcal/kg\n", + "LCV is 8666 kcal/kg\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page No: 355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 80 # Percent\n", + "H = 7 # Percent\n", + "N = 2.1 # Percent\n", + "O = 3 # Percent\n", + "S = 3.5 # Percent\n", + "Ash = 4.4 # Percent\n", + "\n", + "# Solution\n", + "HCV = 1 / 100. * (8080 * C + 34500 * (H - O / 8.) + 2240 * S)\n", + "LCV = HCV - 0.09 * H * 587\n", + "\n", + "print \"HCV is\", int(HCV), \"kcal/kg\"\n", + "print \"LCV is\", int(LCV), \"kcal/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV is 8828 kcal/kg\n", + "LCV is 8458 kcal/kg\n" + ] + } + ], + "prompt_number": 30 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_1.ipynb new file mode 100644 index 00000000..a19a42ce --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_1.ipynb @@ -0,0 +1,626 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 13: Fuel and Combustions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page No: 350" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 84 # Percentage\n", + "S = 1.5 # Percentage\n", + "N = 0.6 # Percentage\n", + "H = 5.5 # Percentage\n", + "O = 8.4 # Percentage\n", + "\n", + "# Solution\n", + "GCV = (8080 * C + 34500 * (H - O / 8) + 2240 * S) / 100\n", + "LCV = (GCV - 9 * H / 100 * 587)\n", + "print \"Gross Calorific Value\", int(GCV), \"kcal / kg\"\n", + "print \"Net Calorific Value\", \"{:.2f}\".format(LCV), \"kcal / kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Gross Calorific Value 8356 kcal / kg\n", + "Net Calorific Value 8065.48 kcal / kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page No: 350" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 90 # Percentage\n", + "O = 3.0 # Percentage\n", + "S = 0.5 # Percentage\n", + "N = 0.5 # Percentage\n", + "ash = 2.5 # Percentage\n", + "LCV = 8490.5 # kcal / kg\n", + "\n", + "# Solution\n", + "print \"HCV = LCV + 9 * H / 100 * 587\"\n", + "print \"HCV = 1/100 * (8080 * C + 34500 * (H - O / 8) + 2240 * N)\"\n", + "H = (8490.5 - 7754.8) / (345 - 52.8)\n", + "H = 4.575\n", + "print \"The precentage of H is\", H, \"%\"\n", + "HCV = LCV + 52.8 * H\n", + "print \"Higeher calorific value of coal\", \"{:.1f}\".format(HCV), \"kcal / kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV = LCV + 9 * H / 100 * 587\n", + "HCV = 1/100 * (8080 * C + 34500 * (H - O / 8) + 2240 * N)\n", + "The precentage of H is 4.575 %\n", + "Higeher calorific value of coal 8732.1 kcal / kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "x = 0.72 # g\n", + "W = 250 # g\n", + "w = 150 # g\n", + "t1 = 27.3 # C\n", + "t2 = 29.1 # C\n", + "\n", + "# Solution\n", + "HCV = ((W + w) * (t2 - t1)) / x\n", + "HCV *= 4185.0 / 10 ** 6\n", + "print \"HCV of fuel is\", \"{:.3f}\".format(HCV), \"KJ / Kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV of fuel is 4.185 KJ / Kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "x = 0.84 # g\n", + "W = 1060 # g\n", + "w = 135 # g\n", + "delta_t = 2.5 # C\n", + "\n", + "# Solution\n", + "HCV = ((W + w) * delta_t) / x\n", + "print \"HCV of fuel is\", \"{:.2f}\".format(HCV), \"kcal / kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV of fuel is 3556.55 kcal / kg\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "V = 0.1 # m ^ 3\n", + "W = 25 # kg\n", + "t1 = 20 # C\n", + "t2 = 33 # C\n", + "m = 0.025 # kg\n", + "\n", + "# Solution\n", + "HCV = W * (t2 - t1) / V\n", + "LCV = HCV - (m / V) * 580\n", + "print \"HCV is\", HCV, \"kcal / m^3\"\n", + "print \"LCV is\", LCV, \"kcal / m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV is 3250.0 kcal / m^3\n", + "LCV is 3105.0 kcal / m^3\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page No: 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "w1 = 2.5 # g\n", + "w2 = 2.415 # g\n", + "r = 1.528 # g\n", + "ma = 0.245 # Mass of ash, g\n", + "\n", + "# Solution\n", + "m = w1 - w2 # Mass of moisture in coal\n", + "mv = w2 - r # Mass of volatile matter\n", + "moisp = m * 100 / w1\n", + "volp = mv * 100 / w1\n", + "ashp = ma * 100 / w1\n", + "carbp = 100 - (moisp + volp + ashp)\n", + "print \"Percentage of moisture:\", moisp, \"%\"\n", + "print \"Percentage of volatile matter:\", volp, \"%\"\n", + "print \"Percentage of ash:\", ashp, \"%\"\n", + "print \"Percentage of fixed carbon:\", carbp, \"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage of moisture: 3.4 %\n", + "Percentage of volatile matter: 35.48 %\n", + "Percentage of ash: 9.8 %\n", + "Percentage of fixed carbon: 51.32 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page No: 352" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt_coke = 2 # kg\n", + "\n", + "# Solution\n", + "wt_O = 2 * 32 / 12.0\n", + "wt_air = wt_O * 100 / 23.2\n", + "Vol_air = wt_air / 28.94 * 22.4\n", + "print \"Volume of air needed for the complete combustion of 2kg coke\",\n", + "print \"is\", \"{:.3f}\".format(Vol_air), \"litres at NTP\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Volume of air needed for the complete combustion of 2kg coke is 17.793 litres at NTP\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page No: 352" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 86 # Percent\n", + "H = 4 # Percent\n", + "N = 1.3 # Percent\n", + "S = 3 # Percent\n", + "O = 4 # Percent\n", + "Ash = 1.7 # Percent\n", + "wt = 500 # g\n", + "\n", + "# Solution\n", + "wt_C = C / 100.0\n", + "wt_S = S / 100.0\n", + "wt_H = H / 100.0\n", + "wt_O = O / 100.0\n", + "\n", + "print \"Nitrogen and ash are incombustible, so they do not require oxygen.\"\n", + "wt_O_C = 32 / 12.0 * wt_C\n", + "wt_O_S = 32 / 32.0 * wt_S\n", + "wt_O_H = 32 / 4.0 * wt_H\n", + "\n", + "Twt_O = wt_O_H + wt_O_S + wt_O_C\n", + "wt_O_needed = Twt_O - wt_O\n", + "wt_air = (100.0 / 23.0 * wt_O_needed) * 500 / 1000.0\n", + "print \"Minimum Wt. of air required by 500g of fuel\", \"{:.2f}\".format(wt_air), \"kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Nitrogen and ash are incombustible, so they do not require oxygen.\n", + "Minimum Wt. of air required by 500g of fuel 5.66 kg\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page No: 353" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt_C = 3 # kg\n", + "\n", + "# Solution\n", + "wt_air = wt_C * 32 * 100 / 12.0 / 23.0\n", + "vol_air = wt_air * 1000 * 22.4 / 28.94\n", + "\n", + "print \"H2(g) + 1/2 O2(g) --> H20(l)\"\n", + "print \" 1 0.5 1\\t\\t(By Vol.)\"\n", + "print \"CO(g) + 1/2 O2(g) --> CO2(g)\"\n", + "print \" 1 0.5 1\\t\\t(By Vol.)\"\n", + "print \"CH4(g) + 2 O2(g) --> CO2(g) + 2H2O(l)\"\n", + "print \" 1 2 1\\t\\t(By Vol.)\"\n", + "\n", + "print \"Weight of air for the combustion of 3kg carbon\",\n", + "print \"{:.3f}\".format(wt_air), \"kg\"\n", + "print \"Vol. pf air required for combustion of 3kg carbon\",\n", + "print \"{:.3e}\".format(vol_air), \"L\",\n", + "print \"or\", \"{:.2f}\".format(vol_air / 1000), \"m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "H2(g) + 1/2 O2(g) --> H20(l)\n", + " 1 0.5 1\t\t(By Vol.)\n", + "CO(g) + 1/2 O2(g) --> CO2(g)\n", + " 1 0.5 1\t\t(By Vol.)\n", + "CH4(g) + 2 O2(g) --> CO2(g) + 2H2O(l)\n", + " 1 2 1\t\t(By Vol.)\n", + "Weight of air for the combustion of 3kg carbon 34.783 kg\n", + "Vol. pf air required for combustion of 3kg carbon 2.692e+04 L or 26.92 m^3\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page No: 353" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "H = 0.30 # m^3\n", + "CO = 0.10 # m^3\n", + "CH4 = 0.04 # m^3\n", + "N2 = 0.56 # m^3\n", + "\n", + "# Soution\n", + "vol_oxygen = H * 0.5 + CO * 0.5 + CH4 * 2\n", + "vol_air = vol_oxygen * 100 / 21\n", + "print \"Volumer of air required for complete combustion of 1 m^3 of\",\n", + "print \"producer gas:\", \"{:.3f}\".format(vol_air), \"m^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Volumer of air required for complete combustion of 1 m^3 of producer gas: 1.333 m^3\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page No: 354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "H = 15.4 # Percentage\n", + "C = 84.6 # Percentage\n", + "wt_fuel = 1 # kg\n", + "wt_C = 0.846 # kg\n", + "wt_H = 0.154 # kg\n", + "\n", + "# Solution\n", + "print \"The combustion reactions are,\"\n", + "print \"C + O2 --> CO2\"\n", + "print \"12 32 \\t(by Weight)\"\n", + "print \"2H2 + O2 --> H20\"\n", + "print \" 4 32\\t(by Weight)\"\n", + "\n", + "wt_O = 32 / 12.0 * wt_C\n", + "wt_O_H = 32 / 4.0 * wt_H\n", + "Twt_O = wt_O + wt_O_H\n", + "print \"Because 32 gm of O2 occupies a volume of 22.4 liters at NTP\"\n", + "print \"3.488 * 1000 gm of O2 will occupy\",\n", + "print \"{:.1f}\".format(22.4 / 32 * Twt_O * 1000), \"liters\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The combustion reactions are,\n", + "C + O2 --> CO2\n", + "12 32 \t(by Weight)\n", + "2H2 + O2 --> H20\n", + " 4 32\t(by Weight)\n", + "Because 32 gm of O2 occupies a volume of 22.4 liters at NTP\n", + "3.488 * 1000 gm of O2 will occupy 2441.6 liters\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page No: 354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 750 # g\n", + "H = 52 # g\n", + "O = 121 # g\n", + "N = 32 # g\n", + "ash = 45 # g\n", + "\n", + "# Solution\n", + "min_wt_air = (C * 32 / 12. + H * 16 / 2. - O) * 100 / 23.\n", + "HCV = 1 / 1000. * (8080 * C + 34500 * (H - O / 8.) + 2240 * 0)\n", + "LCV = HCV - 0.09 * H * 587 / 10.0\n", + "\n", + "print \"HCV is\", int(HCV), \"kcal/kg\"\n", + "print \"LCV is\", int(LCV), \"kcal/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV is 7332 kcal/kg\n", + "LCV is 7057 kcal/kg\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page No: 355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 81 # Percent\n", + "H = 8 # Percent\n", + "N = 2 # Percent\n", + "O = 5 # Percent\n", + "\n", + "# Solution\n", + "print \"In 1kg coal,\"\n", + "\n", + "wt_C = C * 10\n", + "wt_H = H * 10\n", + "wt_N = N * 10\n", + "wt_O = O * 10\n", + "wt_ash = 100 - (wt_O + wt_N + wt_H + wt_C)\n", + "\n", + "wt_air = ((wt_C * 32 / 12. + wt_H * 16 / 2. - wt_O) * 100 / 23.) / 1000.\n", + "\n", + "print \"Weight of air required for complete combustion of 10kg coal\",\n", + "print \"=\", \"{:.2f}\".format(wt_air * 10), \"kg\"\n", + "\n", + "HCV = 1 / 100. * (8080 * C + 34500 * (H - O / 8.))\n", + "LCV = HCV - 0.09 * H * 587\n", + "\n", + "print \"HCV is\", int(HCV), \"kcal/kg\"\n", + "print \"LCV is\", int(LCV), \"kcal/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "In 1kg coal,\n", + "Weight of air required for complete combustion of 10kg coal = 119.57 kg\n", + "HCV is 9089 kcal/kg\n", + "LCV is 8666 kcal/kg\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page No: 355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "C = 80 # Percent\n", + "H = 7 # Percent\n", + "N = 2.1 # Percent\n", + "O = 3 # Percent\n", + "S = 3.5 # Percent\n", + "Ash = 4.4 # Percent\n", + "\n", + "# Solution\n", + "HCV = 1 / 100. * (8080 * C + 34500 * (H - O / 8.) + 2240 * S)\n", + "LCV = HCV - 0.09 * H * 587\n", + "\n", + "print \"HCV is\", int(HCV), \"kcal/kg\"\n", + "print \"LCV is\", int(LCV), \"kcal/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HCV is 8828 kcal/kg\n", + "LCV is 8458 kcal/kg\n" + ] + } + ], + "prompt_number": 30 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment.ipynb new file mode 100644 index 00000000..5117d5ae --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment.ipynb @@ -0,0 +1,440 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 14: Water Treatment" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page No:378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt_CaSO4 = 160 # mg / l\n", + "\n", + "# Solution\n", + "hardness = 100 * wt_CaSO4 / 136.\n", + "print \"The hardness is\", \"{:.2f}\".format(hardness), \"mg / L of CaCO3 eqv.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The hardness is 117.65 mg / L of CaCO3 eqv.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page No:378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt1 = 9.3 # mg / L\n", + "wt2 = 17.4 # mg / L\n", + "wt3 = 8.7 # mg / L\n", + "wt4 = 12.6 # mg / L\n", + "\n", + "# Solution\n", + "temp_hardness = wt1 * 100 / 146. + wt2 * 100 / 162.\n", + "per_hardness = wt3 * 100 / 95. + wt4 * 100 / 136.\n", + "total_hardness = temp_hardness + per_hardness\n", + "\n", + "print \"Temporary hardness:\", \"{:.2f}\".format(temp_hardness), \"mg / L\"\n", + "print \"Total hardness:\", \"{:.2f}\".format(total_hardness), \"mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temporary hardness: 17.11 mg / L\n", + "Total hardness: 35.53 mg / L\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page No:378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt1 = 32.4 # mg / L\n", + "wt2 = 29.2 # mg / L\n", + "wt3 = 13.5 # mg / L\n", + "\n", + "# Solution\n", + "temp_hardness = wt1 * 100 / 162. + wt2 * 100 / 146.\n", + "per_hardness = wt3 * 100 / 136.\n", + "\n", + "print \"Temporary hardness:\", \"{:.2f}\".format(temp_hardness), \"mg / L\"\n", + "print \"Permanent hardness:\", \"{:.2f}\".format(per_hardness), \"mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temporary hardness: 40.00 mg / L\n", + "Permanent hardness: 9.93 mg / L\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page No:379" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "i1 = 180 # mg / L, CaCl2\n", + "i2 = 210 # mg / L, Ca(NO3)2\n", + "i3 = 123 # mg / L, MgSO4\n", + "i4 = 90 # mg / L, Mg(HCO3)2\n", + "\n", + "# Solution\n", + "i1_req = i1 * 100 / 111.\n", + "i2_req = i2 * 100 / 164.\n", + "i3_req = i3 * 100 / 120.\n", + "i4_req = i4 * 100 / 146.\n", + "\n", + "lime_req = 74 / 100. * (2 * i4_req + i3_req) * 100 / 70. * 10000\n", + "soda_req = 106 / 100. * (i1_req + i3_req + i2_req) * 100 / 80. * 10000\n", + "\n", + "print \"Lime Required\", \"{:.1e}\".format(lime_req), \"mg\",\n", + "print \"=\", \"{:.1f}\".format(lime_req / 10 ** 6), \"kg\"\n", + "print \"Soda Required\", \"{:.1e}\".format(soda_req), \"mg\",\n", + "print \"=\", \"{:.1f}\".format(soda_req / 10 ** 6), \"kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Lime Required 2.4e+06 mg = 2.4 kg\n", + "Soda Required 5.2e+06 mg = 5.2 kg\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page No:379" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt1 = 32.4 # mg / L, Ca(HCO3)2\n", + "wt2 = 29.29 # mg / L, Mg(HCO3)2\n", + "wt3 = 13.5 # mg / L, CaSO4\n", + "\n", + "# Solution\n", + "wt1_equi = wt1 * 100 / 162.\n", + "wt2_equi = wt2 * 100 / 146.\n", + "wt3_equi = wt3 * 100 / 136.\n", + "\n", + "temp_hardness = wt1_equi + wt2_equi\n", + "perm_hardness = wt3_equi\n", + "\n", + "print \"Temporary hardness [due to Ca(HCO3)2 & Mg(HCO3)2] is\",\n", + "print int(temp_hardness), \"ppm\"\n", + "print \"Permanent hardness [due to CaSO4] is\", \"{:.1f}\".format(perm_hardness), \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temporary hardness [due to Ca(HCO3)2 & Mg(HCO3)2] is 40 ppm\n", + "Permanent hardness [due to CaSO4] is 9.9 ppm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page No:380" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1 = 150 # litres, NaCl\n", + "\n", + "# Solution\n", + "v_hardwater = 22500 * v1 / 3 / 0.6 / 58.5\n", + "\n", + "print \"The amount of hard water that can be softened using this softner is\",\n", + "print int(v_hardwater), \"litres\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The amount of hard water that can be softened using this softner is 32051 litres\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page No:380" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1 = 30 # litres, NaCl\n", + "w = 1500 # mg / L, NaCl\n", + "\n", + "# Solution\n", + "hardness = 45 * 50 / 58.5 * 1000 / 1000\n", + "print \"Hardness of water is\", \"{:.2f}\".format(hardness), \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hardness of water is 38.46 ppm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page No:381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1_water = 50 # ml, water\n", + "w1_CaCO3 = 1.5 # mg, pure CaCO3\n", + "v1_EDTA = 44 # ml, EDTA\n", + "v2_EDTA = 40 # ml, EDTA\n", + "v2_water = 20 # ml, water\n", + "\n", + "# Solution\n", + "EDTA_1ml = v1_water * w1_CaCO3 / v1_EDTA\n", + "hardwater_40ml = v2_water * 1.704\n", + "total_hardness0 = hardwater_40ml * 1000 / 40\n", + "total_hardness1 = total_hardness0 * 0.07\n", + "\n", + "print \"Total hardness is\", \"{:.2f}\".format(total_hardness1), \"\u00b0Cl\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Total hardness is 59.64 \u00b0Cl\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page No:381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Fe = 56\n", + "S = 32\n", + "O = 16\n", + "Ca = 40\n", + "C = 12\n", + "\n", + "# Solution\n", + "hardness100 = Fe + S + O * 4\n", + "\n", + "print \"215 ppm of hardness is\", \"{:.1f}\".format(hardness100 * 215 / 100.),\n", + "print \"ppm of FeSO4\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "215 ppm of hardness is 326.8 ppm of FeSO4\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page No:381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1 = 50. # ml, hardwater\n", + "v2 = 15 # ml, EDTA\n", + "m = 0.01 # M, EDTA\n", + "\n", + "# Solution\n", + "M = v2 * m / v1\n", + "N = M * 2\n", + "S = N * 50 * 1000\n", + "\n", + "print \"Molarity of hardness is\", M, \"M\"\n", + "print \"Normality of hardness is\", N, \"N\"\n", + "print \"Strength of hardness is\", S, \"ppm or mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Molarity of hardness is 0.003 M\n", + "Normality of hardness is 0.006 N\n", + "Strength of hardness is 300.0 ppm or mg / L\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page No:382" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "C = 16.5 # ppm, CO3-2\n", + "\n", + "# Solution\n", + "Molarity = C * 10 ** - 6 / 60.\n", + "\n", + "print \"Molarity of CO3-2 is\", \"{:.1e}\".format(Molarity), \"mol / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Molarity of CO3-2 is 2.7e-07 mol / L\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_1.ipynb new file mode 100644 index 00000000..5117d5ae --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_1.ipynb @@ -0,0 +1,440 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 14: Water Treatment" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page No:378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt_CaSO4 = 160 # mg / l\n", + "\n", + "# Solution\n", + "hardness = 100 * wt_CaSO4 / 136.\n", + "print \"The hardness is\", \"{:.2f}\".format(hardness), \"mg / L of CaCO3 eqv.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The hardness is 117.65 mg / L of CaCO3 eqv.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page No:378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt1 = 9.3 # mg / L\n", + "wt2 = 17.4 # mg / L\n", + "wt3 = 8.7 # mg / L\n", + "wt4 = 12.6 # mg / L\n", + "\n", + "# Solution\n", + "temp_hardness = wt1 * 100 / 146. + wt2 * 100 / 162.\n", + "per_hardness = wt3 * 100 / 95. + wt4 * 100 / 136.\n", + "total_hardness = temp_hardness + per_hardness\n", + "\n", + "print \"Temporary hardness:\", \"{:.2f}\".format(temp_hardness), \"mg / L\"\n", + "print \"Total hardness:\", \"{:.2f}\".format(total_hardness), \"mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temporary hardness: 17.11 mg / L\n", + "Total hardness: 35.53 mg / L\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page No:378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt1 = 32.4 # mg / L\n", + "wt2 = 29.2 # mg / L\n", + "wt3 = 13.5 # mg / L\n", + "\n", + "# Solution\n", + "temp_hardness = wt1 * 100 / 162. + wt2 * 100 / 146.\n", + "per_hardness = wt3 * 100 / 136.\n", + "\n", + "print \"Temporary hardness:\", \"{:.2f}\".format(temp_hardness), \"mg / L\"\n", + "print \"Permanent hardness:\", \"{:.2f}\".format(per_hardness), \"mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temporary hardness: 40.00 mg / L\n", + "Permanent hardness: 9.93 mg / L\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page No:379" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "i1 = 180 # mg / L, CaCl2\n", + "i2 = 210 # mg / L, Ca(NO3)2\n", + "i3 = 123 # mg / L, MgSO4\n", + "i4 = 90 # mg / L, Mg(HCO3)2\n", + "\n", + "# Solution\n", + "i1_req = i1 * 100 / 111.\n", + "i2_req = i2 * 100 / 164.\n", + "i3_req = i3 * 100 / 120.\n", + "i4_req = i4 * 100 / 146.\n", + "\n", + "lime_req = 74 / 100. * (2 * i4_req + i3_req) * 100 / 70. * 10000\n", + "soda_req = 106 / 100. * (i1_req + i3_req + i2_req) * 100 / 80. * 10000\n", + "\n", + "print \"Lime Required\", \"{:.1e}\".format(lime_req), \"mg\",\n", + "print \"=\", \"{:.1f}\".format(lime_req / 10 ** 6), \"kg\"\n", + "print \"Soda Required\", \"{:.1e}\".format(soda_req), \"mg\",\n", + "print \"=\", \"{:.1f}\".format(soda_req / 10 ** 6), \"kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Lime Required 2.4e+06 mg = 2.4 kg\n", + "Soda Required 5.2e+06 mg = 5.2 kg\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page No:379" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt1 = 32.4 # mg / L, Ca(HCO3)2\n", + "wt2 = 29.29 # mg / L, Mg(HCO3)2\n", + "wt3 = 13.5 # mg / L, CaSO4\n", + "\n", + "# Solution\n", + "wt1_equi = wt1 * 100 / 162.\n", + "wt2_equi = wt2 * 100 / 146.\n", + "wt3_equi = wt3 * 100 / 136.\n", + "\n", + "temp_hardness = wt1_equi + wt2_equi\n", + "perm_hardness = wt3_equi\n", + "\n", + "print \"Temporary hardness [due to Ca(HCO3)2 & Mg(HCO3)2] is\",\n", + "print int(temp_hardness), \"ppm\"\n", + "print \"Permanent hardness [due to CaSO4] is\", \"{:.1f}\".format(perm_hardness), \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temporary hardness [due to Ca(HCO3)2 & Mg(HCO3)2] is 40 ppm\n", + "Permanent hardness [due to CaSO4] is 9.9 ppm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page No:380" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1 = 150 # litres, NaCl\n", + "\n", + "# Solution\n", + "v_hardwater = 22500 * v1 / 3 / 0.6 / 58.5\n", + "\n", + "print \"The amount of hard water that can be softened using this softner is\",\n", + "print int(v_hardwater), \"litres\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The amount of hard water that can be softened using this softner is 32051 litres\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page No:380" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1 = 30 # litres, NaCl\n", + "w = 1500 # mg / L, NaCl\n", + "\n", + "# Solution\n", + "hardness = 45 * 50 / 58.5 * 1000 / 1000\n", + "print \"Hardness of water is\", \"{:.2f}\".format(hardness), \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hardness of water is 38.46 ppm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page No:381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1_water = 50 # ml, water\n", + "w1_CaCO3 = 1.5 # mg, pure CaCO3\n", + "v1_EDTA = 44 # ml, EDTA\n", + "v2_EDTA = 40 # ml, EDTA\n", + "v2_water = 20 # ml, water\n", + "\n", + "# Solution\n", + "EDTA_1ml = v1_water * w1_CaCO3 / v1_EDTA\n", + "hardwater_40ml = v2_water * 1.704\n", + "total_hardness0 = hardwater_40ml * 1000 / 40\n", + "total_hardness1 = total_hardness0 * 0.07\n", + "\n", + "print \"Total hardness is\", \"{:.2f}\".format(total_hardness1), \"\u00b0Cl\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Total hardness is 59.64 \u00b0Cl\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page No:381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Fe = 56\n", + "S = 32\n", + "O = 16\n", + "Ca = 40\n", + "C = 12\n", + "\n", + "# Solution\n", + "hardness100 = Fe + S + O * 4\n", + "\n", + "print \"215 ppm of hardness is\", \"{:.1f}\".format(hardness100 * 215 / 100.),\n", + "print \"ppm of FeSO4\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "215 ppm of hardness is 326.8 ppm of FeSO4\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page No:381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v1 = 50. # ml, hardwater\n", + "v2 = 15 # ml, EDTA\n", + "m = 0.01 # M, EDTA\n", + "\n", + "# Solution\n", + "M = v2 * m / v1\n", + "N = M * 2\n", + "S = N * 50 * 1000\n", + "\n", + "print \"Molarity of hardness is\", M, \"M\"\n", + "print \"Normality of hardness is\", N, \"N\"\n", + "print \"Strength of hardness is\", S, \"ppm or mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Molarity of hardness is 0.003 M\n", + "Normality of hardness is 0.006 N\n", + "Strength of hardness is 300.0 ppm or mg / L\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page No:382" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "C = 16.5 # ppm, CO3-2\n", + "\n", + "# Solution\n", + "Molarity = C * 10 ** - 6 / 60.\n", + "\n", + "print \"Molarity of CO3-2 is\", \"{:.1e}\".format(Molarity), \"mol / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Molarity of CO3-2 is 2.7e-07 mol / L\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control.ipynb new file mode 100644 index 00000000..ab29e076 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control.ipynb @@ -0,0 +1,150 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 15: Environmental Pollution and Control" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page No: 401" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "MM = 294 # Molar mass, K2Cr2O7\n", + "\n", + "# Variables\n", + "v_eff = 25 # cm ^ 3, effluent\n", + "v = 8.3 # cm ^ 3, K2Cr2O7\n", + "M = 0.001 # M, K2Cr2O7\n", + "\n", + "# Solution\n", + "w_O = v * 8 * 6 * M / 1000.\n", + "\n", + "print \"8.3 cm^3 of 0.006 N K2Cr2O7 =\", \"{:.3e}\".format(w_O), \"g of O2\"\n", + "print \"25 ml of the effluent requires\", \"{:.3e}\".format(w_O), \"g of O2\"\n", + "\n", + "cod = w_O * 10 ** 6 / 25.\n", + "print \"1 l of the effluent requires\", \"{:.2f}\".format(cod), \"g of O2\"\n", + "print \"COD of the effluent sample is\", \"{:.2f}\".format(cod), \"ppm or mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "8.3 cm^3 of 0.006 N K2Cr2O7 = 3.984e-04 g of O2\n", + "25 ml of the effluent requires 3.984e-04 g of O2\n", + "1 l of the effluent requires 15.94 g of O2\n", + "COD of the effluent sample is 15.94 ppm or mg / L\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page No: 401" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v0 = 30 # cm^3, effluent\n", + "v1 = 9.8 # cm^3, K2Cr2O7\n", + "M = 0.001 # M, K2Cr2O7\n", + "\n", + "# Solution\n", + "O_30eff = 6 * 8 * v1 * M\n", + "print \"So 30 cm^3 of effluent contains =\", \"{:.4f}\".format(O_30eff), \"mg of O2\"\n", + "\n", + "cod = O_30eff * 1000 / 30.\n", + "\n", + "print \"1 l of the effluent requires\", cod, \"mg of O2\"\n", + "print \"COD of the effluent sample =\", cod, \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "So 30 cm^3 of effluent contains = 0.4704 mg of O2\n", + "1 l of the effluent requires 15.68 mg of O2\n", + "COD of the effluent sample = 15.68 ppm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page No: 401" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v0 = 25 # ml, sewage\n", + "d0_O = 410 # ppm, dissolved oxygen\n", + "d1_O = 120 # ppm, dissolved oxygen\n", + "v1 = 50 # ml, sewage\n", + "\n", + "# Solution\n", + "print \"BOD = (DOb - DOi) * Dilution Factor\"\n", + "print \"BOD = (DOb - DOi) *\",\n", + "print \"(ml of sample after dilution) / (ml of sample before dilution)\"\n", + "\n", + "BOD = (d0_O - d1_O) * (v1 / v0)\n", + "print \"BOD =\", BOD, \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "BOD = (DOb - DOi) * Dilution Factor\n", + "BOD = (DOb - DOi) * (ml of sample after dilution) / (ml of sample before dilution)\n", + "BOD = 580 ppm\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_1.ipynb new file mode 100644 index 00000000..ab29e076 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_1.ipynb @@ -0,0 +1,150 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 15: Environmental Pollution and Control" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page No: 401" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "MM = 294 # Molar mass, K2Cr2O7\n", + "\n", + "# Variables\n", + "v_eff = 25 # cm ^ 3, effluent\n", + "v = 8.3 # cm ^ 3, K2Cr2O7\n", + "M = 0.001 # M, K2Cr2O7\n", + "\n", + "# Solution\n", + "w_O = v * 8 * 6 * M / 1000.\n", + "\n", + "print \"8.3 cm^3 of 0.006 N K2Cr2O7 =\", \"{:.3e}\".format(w_O), \"g of O2\"\n", + "print \"25 ml of the effluent requires\", \"{:.3e}\".format(w_O), \"g of O2\"\n", + "\n", + "cod = w_O * 10 ** 6 / 25.\n", + "print \"1 l of the effluent requires\", \"{:.2f}\".format(cod), \"g of O2\"\n", + "print \"COD of the effluent sample is\", \"{:.2f}\".format(cod), \"ppm or mg / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "8.3 cm^3 of 0.006 N K2Cr2O7 = 3.984e-04 g of O2\n", + "25 ml of the effluent requires 3.984e-04 g of O2\n", + "1 l of the effluent requires 15.94 g of O2\n", + "COD of the effluent sample is 15.94 ppm or mg / L\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page No: 401" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v0 = 30 # cm^3, effluent\n", + "v1 = 9.8 # cm^3, K2Cr2O7\n", + "M = 0.001 # M, K2Cr2O7\n", + "\n", + "# Solution\n", + "O_30eff = 6 * 8 * v1 * M\n", + "print \"So 30 cm^3 of effluent contains =\", \"{:.4f}\".format(O_30eff), \"mg of O2\"\n", + "\n", + "cod = O_30eff * 1000 / 30.\n", + "\n", + "print \"1 l of the effluent requires\", cod, \"mg of O2\"\n", + "print \"COD of the effluent sample =\", cod, \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "So 30 cm^3 of effluent contains = 0.4704 mg of O2\n", + "1 l of the effluent requires 15.68 mg of O2\n", + "COD of the effluent sample = 15.68 ppm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page No: 401" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "v0 = 25 # ml, sewage\n", + "d0_O = 410 # ppm, dissolved oxygen\n", + "d1_O = 120 # ppm, dissolved oxygen\n", + "v1 = 50 # ml, sewage\n", + "\n", + "# Solution\n", + "print \"BOD = (DOb - DOi) * Dilution Factor\"\n", + "print \"BOD = (DOb - DOi) *\",\n", + "print \"(ml of sample after dilution) / (ml of sample before dilution)\"\n", + "\n", + "BOD = (d0_O - d1_O) * (v1 / v0)\n", + "print \"BOD =\", BOD, \"ppm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "BOD = (DOb - DOi) * Dilution Factor\n", + "BOD = (DOb - DOi) * (ml of sample after dilution) / (ml of sample before dilution)\n", + "BOD = 580 ppm\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding.ipynb new file mode 100644 index 00000000..c0748974 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding.ipynb @@ -0,0 +1,895 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1: Structure and Bonding" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 35" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "c = 3 * 10 ** 10 # Velocity of light, cm/sec\n", + "\n", + "# Variable\n", + "wavelength = 3500 * 10 ** -8 # Wavelength of radiation, cm\n", + "\n", + "# Solution\n", + "print \"v = c / wavelength\"\n", + "print \"v: Velocity, c: Speed of light\"\n", + "\n", + "v = c / wavelength\n", + "\n", + "print \"The frequency of radiation is\", '{:.2e}'.format(v), \"Heartz.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "v = c / wavelength\n", + "v: Velocity, c: Speed of light\n", + "The frequency of radiation is 8.57e+14 Heartz.\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "c = 3 * 10 ** 8 # speed of light, m/sec\n", + "\n", + "# Variable\n", + "f = 5 * 10 ** 16 # frequency, cycles/sec\n", + "\n", + "# Solution\n", + "v_bar = f / c\n", + "print \"The wave number is\", '{:.2e}'.format(v_bar), \"cycles/m.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wave number is 1.67e+08 cycles/m.\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "\n", + "# Variable\n", + "T = 2.4 * 10 ** -10 # Time period, sec\n", + "\n", + "# Solution\n", + "f = 1 / T # Frequency, /sec\n", + "lamda = c / f # wavelength, m\n", + "v_bar = 1 / lamda # wavenumber, /meter\n", + "\n", + "print \"Frequency:\", '{:.2e}'.format(f), \"/sec\"\n", + "print \"Wavelength:\", '{:.2e}'.format(lamda), \"m\"\n", + "print \"Wave number:\", '{:.2e}'.format(v_bar), \"/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency: 4.17e+09 /sec\n", + "Wavelength: 7.20e-02 m\n", + "Wave number: 1.39e+01 /m\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "ke = 4.55 * 10 ** -25 # Kinetic Energy, J\n", + "\n", + "# Solution\n", + "v = math.sqrt(ke * 2 / m)\n", + "\n", + "lamda = h / (m * v)\n", + "\n", + "print \"The de Broglie wavelength is\", '{:.2e}'.format(lamda), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The de Broglie wavelength is 7.28e-07 m\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "m = 10 * 10 ** -3 # Mass of the ball, kg\n", + "v = 10 ** 5 # Velocity of ball, cm / sec\n", + "\n", + "# Solution\n", + "lamda = (h * 10 ** 7) / (m * v)\n", + "print \"The Wavelength of iron ball is\", \"{:.2}\".format(lamda), \"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Wavelength of iron ball is 6.6e-30 cm\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "lamda = 2 * 10 ** -10 # wavelength, m\n", + "\n", + "# Solution\n", + "p = h / lamda\n", + "\n", + "print \"The momentum of the particle is\", \"{:.2}\".format(p), \"kg.m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The momentum of the particle is 3.3e-24 kg.m/s\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "pi = 3.141 # Pi\n", + "\n", + "# Variable\n", + "delta_x = 1 * 10 ** -10 # uncertainty in velocity, m\n", + "\n", + "# Solution\n", + "delta_v = h / (4 * pi * m * delta_x)\n", + "\n", + "print \"Uncertainty in position of electron >=\",\n", + "print \"{:.2}\".format(delta_v), \"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Uncertainty in position of electron >= 5.8e+05 m/s\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "pi = 3.141 # Pi\n", + "\n", + "# Variables\n", + "m = 10 ** -11 # Mass of particle, g\n", + "v = 10 ** -4 # Velocity of particle, cm/sec\n", + "delta_v = 0.1 / 100 # Uncertainty in velocity\n", + "\n", + "# Solution\n", + "delta_v = v / 1000\n", + "delta_x = (h * 10 ** 7) / (4 * pi * delta_v * m)\n", + "\n", + "print \"Uncertainty in position >=\",\n", + "print \"{:.3e}\".format(delta_x), \"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Uncertainty in position 5.27e-10 cm\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "lamda = 650 * 10 ** -12 # Wavelength of radiation, m\n", + "\n", + "# Solution\n", + "E = h * c / lamda\n", + "\n", + "print \"Energy per photon\", \"{:.3e}\".format(E), \"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy per photon 3.058e-16 J\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.625 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "v = 6.5 * 10 ** 7 # Velocity of particle, m/s\n", + "lamda = 5 * 10 ** -11 # Wavelength, m\n", + "\n", + "# Solution\n", + "P = h / lamda\n", + "\n", + "print \"The momentum of the particle\", \"{:.2e}\".format(P), \"kg.m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The momentum of the particle 1.33e-23 kg.m/s\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 38" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "lamda = 200 * 10 ** -7 # Wavelength, cm\n", + "wf = 6.95 * 10 ** -12 # Work function, erg\n", + "\n", + "# Solution\n", + "E = (h * c) * 10 ** 9 / lamda\n", + "\n", + "print \"Energy of photon\", \"{:.3e}\".format(E), \"erg\"\n", + "\n", + "ke = E - wf\n", + "\n", + "v = math.sqrt((2 * ke) / (m * 10 ** 3)) * 10 ** -2\n", + "\n", + "print \"The maximum velocity of electron\", \"{:.3e}\".format(v), \"m/sec\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy of photon 9.939e-12 erg\n", + "The maximum velocity of electron 8.105e+05 m/sec\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 38" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "m = 150 # Weight of ball, gm\n", + "v = 50 # Velocity, m/sec\n", + "\n", + "lamda = h / (m * v * 10 ** -8)\n", + "print \"Wavelength of ball\", \"{:.3e}\".format(lamda), \"m\"\n", + "print \"Its wavelength is so short that it does not fall\",\n", + "print \"in visible range, so we cannot observe it.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength of ball 8.835e-30 m\n", + "Its wavelength is so short that it does not fall in visible range, so we cannot observe it.\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "pi = 3.141 # Pi\n", + "\n", + "# Variables\n", + "m = 0.1 # Mass of base ball, kg\n", + "delta_x = 10 ** -10 # Uncertainty in position, m\n", + "\n", + "# Solution\n", + "delta_v = h / (4 * pi * m * delta_x)\n", + "\n", + "print \"Uncertainty in velocity >=\", \"{:.2e}\".format(delta_v), \"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Uncertainty in velocity >= 5.27e-24 m/s\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "t_v = 1.3 * 10 ** 15 # Threashold freq. Pt, /sec\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "\n", + "# Solution\n", + "print \"The threshold frequency is the lowest frequency\",\n", + "print \"that photons may possess to produce the photoelectric\",\n", + "print \"effect.\"\n", + "E = h * t_v\n", + "print \"The energy corresponding to this frequency is the minimum\",\n", + "print \"energy =\", \"{:.2e}\".format(E), \"erg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The threshold frequency is the lowest frequency that photons may possess to produce the photoelectric effect.\n", + "The energy corresponding to this frequency is the minimum energy = 8.61e-19 erg\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 15, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "e = 1.602 * 10 ** -19 # Charge of electron, C\n", + "\n", + "# Variable\n", + "v = 1.87 * 10 ** 9 # Velocity of electron, m/sec\n", + "\n", + "# Solution\n", + "V = m * v ** 2 / (2 * e)\n", + "lamda = h / (m * v)\n", + "\n", + "print \"The voltage is\", \"{:.2e}\".format(V), \"volt\"\n", + "print \"The de Broglie wavelength is\", \"{:.2e}\".format(lamda), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage is 9.93e+06 volt\n", + "The de Broglie wavelength is 3.89e-13 m\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 16, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "lamda = 4.8 * 10 ** -9 # Wavelength of electron, m\n", + "\n", + "# Solution\n", + "ke = ((h / lamda) ** 2) / (2 * m)\n", + "\n", + "print \"The Kinetic Energy of moving electron is\", \"{:.2e}\".format(ke),\n", + "print \"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Kinetic Energy of moving electron is 1.05e-20 J\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 17, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "\n", + "# Variables\n", + "v = 6.46 * 10 ** 5 # Velocity of electron, m/sec\n", + "lamda = 200 * 10 ** -9 # Wavelength of light, m\n", + "\n", + "# Solution\n", + "E = (h * c) / lamda\n", + "ke = m * v ** 2\n", + "w = E - ke\n", + "\n", + "print \"The workfunction of the metal surface is\", \"{:.3e}\".format(w),\n", + "print \"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The workfunction of the metal surface is 6.141e-19 J\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 18, Page no: 40" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "e = 1.602 * 10 ** -19 # Charge of proton, C\n", + "m_p = 1.66 * 10 ** -27 # Mass of proton, kg\n", + "m_e = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "V = 35 # Acceleration potential, volt\n", + "\n", + "# Solution\n", + "lamda_p = h / math.sqrt(2 * e * V * m_p)\n", + "lamda_e = h / math.sqrt(2 * e * V * m_e)\n", + "\n", + "print \"The wavelength of electron when accelerated with same\",\n", + "print \"potential is\", \"{:.3e}\".format(lamda_e), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of electron when accelerated with same potential is 2.074e-10 m\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 19, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "B_O1 = (10 - 6) / 2 # Bond Order for O2\n", + "B_O2 = (10 - 7) / 2 # Bond Order for O2-\n", + "\n", + "print \"Bond length of O2- > O2 as Bond order of O2\",\n", + "print \"> Bond order of O2- :\", B_O1 > B_O2\n", + "print \"Both are paramagnetic, because they contain unpaired electrons.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Bond length of O2- > O2 as Bond order of O2 > Bond order of O2- : True\n", + "Both are paramagnetic, because they contain unpaired electrons.\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 20, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "B_O = (9 - 4) / 2.0 # Bond order of N2+\n", + "\n", + "print \"MO configuration of N2+ is\"\n", + "print \"\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz1)\\n\"\n", + "print \"The Bond order of N2+, 1/2[Nb - Na] =\", B_O\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "MO configuration of N2+ is\n", + "\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz1)\n", + "\n", + "The Bond order of N2+, 1/2[Nb - Na] = 2.5\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 21, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "v_n = 2 * 5 # number of valence e- in nitrogen\n", + "v_co = 4 + 6 # number of valence e- in CO\n", + "\n", + "print \"The number of valence electrons in N2\", v_n\n", + "print \"The number of valence electrons in CO\", v_co\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The number of valence electrons in N2 10\n", + "The number of valence electrons in CO 10\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 22, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] <\",\n", + "print \"O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] < O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 23, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"The number of electrons in N2-\", (7 + 8)\n", + "print \"The molecular configuration of N2- is\"\n", + "print \"\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)]\",\n", + "print \"\u03c3(2pz2) [\u03c0*(2px1) = \u03c0*(2py0)] OR [\u03c0*(2px0) = \u03c0*(2py1)]\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The number of electrons in N2- 15\n", + "The molecular configuration of N2- is\n", + "\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz2) [\u03c0*(2px1) = \u03c0*(2py0)] OR [\u03c0*(2px0) = \u03c0*(2py1)]\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_1.ipynb new file mode 100644 index 00000000..c0748974 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_1.ipynb @@ -0,0 +1,895 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1: Structure and Bonding" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 35" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "c = 3 * 10 ** 10 # Velocity of light, cm/sec\n", + "\n", + "# Variable\n", + "wavelength = 3500 * 10 ** -8 # Wavelength of radiation, cm\n", + "\n", + "# Solution\n", + "print \"v = c / wavelength\"\n", + "print \"v: Velocity, c: Speed of light\"\n", + "\n", + "v = c / wavelength\n", + "\n", + "print \"The frequency of radiation is\", '{:.2e}'.format(v), \"Heartz.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "v = c / wavelength\n", + "v: Velocity, c: Speed of light\n", + "The frequency of radiation is 8.57e+14 Heartz.\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "c = 3 * 10 ** 8 # speed of light, m/sec\n", + "\n", + "# Variable\n", + "f = 5 * 10 ** 16 # frequency, cycles/sec\n", + "\n", + "# Solution\n", + "v_bar = f / c\n", + "print \"The wave number is\", '{:.2e}'.format(v_bar), \"cycles/m.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wave number is 1.67e+08 cycles/m.\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "\n", + "# Variable\n", + "T = 2.4 * 10 ** -10 # Time period, sec\n", + "\n", + "# Solution\n", + "f = 1 / T # Frequency, /sec\n", + "lamda = c / f # wavelength, m\n", + "v_bar = 1 / lamda # wavenumber, /meter\n", + "\n", + "print \"Frequency:\", '{:.2e}'.format(f), \"/sec\"\n", + "print \"Wavelength:\", '{:.2e}'.format(lamda), \"m\"\n", + "print \"Wave number:\", '{:.2e}'.format(v_bar), \"/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency: 4.17e+09 /sec\n", + "Wavelength: 7.20e-02 m\n", + "Wave number: 1.39e+01 /m\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "ke = 4.55 * 10 ** -25 # Kinetic Energy, J\n", + "\n", + "# Solution\n", + "v = math.sqrt(ke * 2 / m)\n", + "\n", + "lamda = h / (m * v)\n", + "\n", + "print \"The de Broglie wavelength is\", '{:.2e}'.format(lamda), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The de Broglie wavelength is 7.28e-07 m\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "m = 10 * 10 ** -3 # Mass of the ball, kg\n", + "v = 10 ** 5 # Velocity of ball, cm / sec\n", + "\n", + "# Solution\n", + "lamda = (h * 10 ** 7) / (m * v)\n", + "print \"The Wavelength of iron ball is\", \"{:.2}\".format(lamda), \"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Wavelength of iron ball is 6.6e-30 cm\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "lamda = 2 * 10 ** -10 # wavelength, m\n", + "\n", + "# Solution\n", + "p = h / lamda\n", + "\n", + "print \"The momentum of the particle is\", \"{:.2}\".format(p), \"kg.m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The momentum of the particle is 3.3e-24 kg.m/s\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "pi = 3.141 # Pi\n", + "\n", + "# Variable\n", + "delta_x = 1 * 10 ** -10 # uncertainty in velocity, m\n", + "\n", + "# Solution\n", + "delta_v = h / (4 * pi * m * delta_x)\n", + "\n", + "print \"Uncertainty in position of electron >=\",\n", + "print \"{:.2}\".format(delta_v), \"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Uncertainty in position of electron >= 5.8e+05 m/s\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "pi = 3.141 # Pi\n", + "\n", + "# Variables\n", + "m = 10 ** -11 # Mass of particle, g\n", + "v = 10 ** -4 # Velocity of particle, cm/sec\n", + "delta_v = 0.1 / 100 # Uncertainty in velocity\n", + "\n", + "# Solution\n", + "delta_v = v / 1000\n", + "delta_x = (h * 10 ** 7) / (4 * pi * delta_v * m)\n", + "\n", + "print \"Uncertainty in position >=\",\n", + "print \"{:.3e}\".format(delta_x), \"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Uncertainty in position 5.27e-10 cm\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "lamda = 650 * 10 ** -12 # Wavelength of radiation, m\n", + "\n", + "# Solution\n", + "E = h * c / lamda\n", + "\n", + "print \"Energy per photon\", \"{:.3e}\".format(E), \"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy per photon 3.058e-16 J\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.625 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "v = 6.5 * 10 ** 7 # Velocity of particle, m/s\n", + "lamda = 5 * 10 ** -11 # Wavelength, m\n", + "\n", + "# Solution\n", + "P = h / lamda\n", + "\n", + "print \"The momentum of the particle\", \"{:.2e}\".format(P), \"kg.m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The momentum of the particle 1.33e-23 kg.m/s\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 38" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "lamda = 200 * 10 ** -7 # Wavelength, cm\n", + "wf = 6.95 * 10 ** -12 # Work function, erg\n", + "\n", + "# Solution\n", + "E = (h * c) * 10 ** 9 / lamda\n", + "\n", + "print \"Energy of photon\", \"{:.3e}\".format(E), \"erg\"\n", + "\n", + "ke = E - wf\n", + "\n", + "v = math.sqrt((2 * ke) / (m * 10 ** 3)) * 10 ** -2\n", + "\n", + "print \"The maximum velocity of electron\", \"{:.3e}\".format(v), \"m/sec\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy of photon 9.939e-12 erg\n", + "The maximum velocity of electron 8.105e+05 m/sec\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 38" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "m = 150 # Weight of ball, gm\n", + "v = 50 # Velocity, m/sec\n", + "\n", + "lamda = h / (m * v * 10 ** -8)\n", + "print \"Wavelength of ball\", \"{:.3e}\".format(lamda), \"m\"\n", + "print \"Its wavelength is so short that it does not fall\",\n", + "print \"in visible range, so we cannot observe it.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength of ball 8.835e-30 m\n", + "Its wavelength is so short that it does not fall in visible range, so we cannot observe it.\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "pi = 3.141 # Pi\n", + "\n", + "# Variables\n", + "m = 0.1 # Mass of base ball, kg\n", + "delta_x = 10 ** -10 # Uncertainty in position, m\n", + "\n", + "# Solution\n", + "delta_v = h / (4 * pi * m * delta_x)\n", + "\n", + "print \"Uncertainty in velocity >=\", \"{:.2e}\".format(delta_v), \"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Uncertainty in velocity >= 5.27e-24 m/s\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "t_v = 1.3 * 10 ** 15 # Threashold freq. Pt, /sec\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "\n", + "# Solution\n", + "print \"The threshold frequency is the lowest frequency\",\n", + "print \"that photons may possess to produce the photoelectric\",\n", + "print \"effect.\"\n", + "E = h * t_v\n", + "print \"The energy corresponding to this frequency is the minimum\",\n", + "print \"energy =\", \"{:.2e}\".format(E), \"erg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The threshold frequency is the lowest frequency that photons may possess to produce the photoelectric effect.\n", + "The energy corresponding to this frequency is the minimum energy = 8.61e-19 erg\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 15, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "e = 1.602 * 10 ** -19 # Charge of electron, C\n", + "\n", + "# Variable\n", + "v = 1.87 * 10 ** 9 # Velocity of electron, m/sec\n", + "\n", + "# Solution\n", + "V = m * v ** 2 / (2 * e)\n", + "lamda = h / (m * v)\n", + "\n", + "print \"The voltage is\", \"{:.2e}\".format(V), \"volt\"\n", + "print \"The de Broglie wavelength is\", \"{:.2e}\".format(lamda), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage is 9.93e+06 volt\n", + "The de Broglie wavelength is 3.89e-13 m\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 16, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "lamda = 4.8 * 10 ** -9 # Wavelength of electron, m\n", + "\n", + "# Solution\n", + "ke = ((h / lamda) ** 2) / (2 * m)\n", + "\n", + "print \"The Kinetic Energy of moving electron is\", \"{:.2e}\".format(ke),\n", + "print \"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Kinetic Energy of moving electron is 1.05e-20 J\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 17, Page no: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "c = 3 * 10 ** 8 # Speed of light, m/sec\n", + "\n", + "# Variables\n", + "v = 6.46 * 10 ** 5 # Velocity of electron, m/sec\n", + "lamda = 200 * 10 ** -9 # Wavelength of light, m\n", + "\n", + "# Solution\n", + "E = (h * c) / lamda\n", + "ke = m * v ** 2\n", + "w = E - ke\n", + "\n", + "print \"The workfunction of the metal surface is\", \"{:.3e}\".format(w),\n", + "print \"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The workfunction of the metal surface is 6.141e-19 J\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 18, Page no: 40" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "e = 1.602 * 10 ** -19 # Charge of proton, C\n", + "m_p = 1.66 * 10 ** -27 # Mass of proton, kg\n", + "m_e = 9.1 * 10 ** -31 # Mass of electron, kg\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variable\n", + "V = 35 # Acceleration potential, volt\n", + "\n", + "# Solution\n", + "lamda_p = h / math.sqrt(2 * e * V * m_p)\n", + "lamda_e = h / math.sqrt(2 * e * V * m_e)\n", + "\n", + "print \"The wavelength of electron when accelerated with same\",\n", + "print \"potential is\", \"{:.3e}\".format(lamda_e), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of electron when accelerated with same potential is 2.074e-10 m\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 19, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "B_O1 = (10 - 6) / 2 # Bond Order for O2\n", + "B_O2 = (10 - 7) / 2 # Bond Order for O2-\n", + "\n", + "print \"Bond length of O2- > O2 as Bond order of O2\",\n", + "print \"> Bond order of O2- :\", B_O1 > B_O2\n", + "print \"Both are paramagnetic, because they contain unpaired electrons.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Bond length of O2- > O2 as Bond order of O2 > Bond order of O2- : True\n", + "Both are paramagnetic, because they contain unpaired electrons.\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 20, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "B_O = (9 - 4) / 2.0 # Bond order of N2+\n", + "\n", + "print \"MO configuration of N2+ is\"\n", + "print \"\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz1)\\n\"\n", + "print \"The Bond order of N2+, 1/2[Nb - Na] =\", B_O\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "MO configuration of N2+ is\n", + "\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz1)\n", + "\n", + "The Bond order of N2+, 1/2[Nb - Na] = 2.5\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 21, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "v_n = 2 * 5 # number of valence e- in nitrogen\n", + "v_co = 4 + 6 # number of valence e- in CO\n", + "\n", + "print \"The number of valence electrons in N2\", v_n\n", + "print \"The number of valence electrons in CO\", v_co\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The number of valence electrons in N2 10\n", + "The number of valence electrons in CO 10\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 22, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] <\",\n", + "print \"O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] < O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 23, Page no: 41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"The number of electrons in N2-\", (7 + 8)\n", + "print \"The molecular configuration of N2- is\"\n", + "print \"\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)]\",\n", + "print \"\u03c3(2pz2) [\u03c0*(2px1) = \u03c0*(2py0)] OR [\u03c0*(2px0) = \u03c0*(2py1)]\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The number of electrons in N2- 15\n", + "The molecular configuration of N2- is\n", + "\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz2) [\u03c0*(2px1) = \u03c0*(2py0)] OR [\u03c0*(2px0) = \u03c0*(2py1)]\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry.ipynb new file mode 100644 index 00000000..58e602ab --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry.ipynb @@ -0,0 +1,418 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2: Spectroscopy and Photochemistry" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m_br79 = 78.9183 # Mass of 79Br, amu\n", + "m_br81 = 80.9163 # Mass of 91Br, amu\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "pi = 3.141 # Pi\n", + "c = 3 * 10 ** 10 # Speed of light, cm /s\n", + "\n", + "# Variable\n", + "wave_no = 323.2 # Wave no. of fund. vibration of 79Br - 81Br, /cm\n", + "\n", + "# Solution\n", + "mu = (m_br79 * m_br81) / ((m_br79 + m_br81) * Na)\n", + "\n", + "k = 4 * (pi * c * wave_no) ** 2 * mu * 10 ** -3\n", + "\n", + "print \"The force constant of the bond is\", \"{:.3e}\".format(k), \"N/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The force constant of the bond is 2.461e+02 N/m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "pi = 3.141 # Pi\n", + "c = 3 * 10 ** 10 # Speed of light, cm /s\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "b_l = 112.81 * 10 ** -12 # Equillibrium bond length, m\n", + "m1 = 12 # Mass of Carbon, g /mol\n", + "m2 = 16 # Mass of Oxygen, g /mol\n", + "\n", + "# Solution\n", + "mu = m1 * m2 / ((m1 + m2) * Na) # g\n", + "mu *= 10 ** -3 # kg\n", + "\n", + "B = h / (8 * pi ** 2 * mu * b_l ** 2 * c)\n", + "v2_3 = B * 6\n", + "\n", + "print \"The reduced mass of CO is\", \"{:.3e}\".format(mu), \"kg\"\n", + "print \"The frequency of 3->2 transition is\", \"{:.2f}\".format(v2_3), \"/cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reduced mass of CO is 1.139e-26 kg\n", + "The frequency of 3->2 transition is 11.59 /cm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 66" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "\n", + "# Variables\n", + "d_NaCl = 2.36 * 10 ** -10 # Intermolecular dist. NaCl, m\n", + "m_Cl = 35 * 10 ** -3 # Atomic mass, kg /mol\n", + "m_Na = 23 * 10 ** -3 # Atomic mass, kg /mol\n", + "\n", + "# Solution\n", + "mu = m_Na * m_Cl / ((m_Na + m_Cl) * 10 ** -3 * Na) * 10 ** -3\n", + "\n", + "I = mu * d_NaCl ** 2\n", + "\n", + "print \"The reduced mass of NaCl is\", \"{:.3e}\".format(mu), \"kg\"\n", + "print \"The moment of inertia of NaCl is\", \"{:.3e}\".format(I), \"kg.m^2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reduced mass of NaCl is 2.305e-26 kg\n", + "The moment of inertia of NaCl is 1.284e-45 kg.m^2\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 66" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "e = 4000 # Extinction coeff., dm^3/mol/cm\n", + "\n", + "# Variable\n", + "x = 3 # Solution thickness, cm\n", + "\n", + "# Solution\n", + "A = math.log10(1 / 0.3) # Absorbance\n", + "C = A / (e * x)\n", + "\n", + "print \"The concentration of the solution is\", \"{:.2e}\".format(C), \"mol/dm^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The concentration of the solution is 4.36e-05 mol/dm^3\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "pi = 3.141 # Pi\n", + "c = 3 * 10 ** 10 # Speed of light, cm /s\n", + "\n", + "# Variables\n", + "v_bar = 2140 # Fundamental vibrating freq, /cm\n", + "m_C = 19.9 * 10 ** -27 # Atomic mass of C, kg\n", + "m_O = 26.6 * 10 ** -27 # Atomic mass of O, kg\n", + "\n", + "# Solution\n", + "mu = m_O * m_C / (m_C + m_O)\n", + "k = 4 * (pi * c * v_bar) ** 2 * mu\n", + "\n", + "print \"The force constant of the molecule is\", \"{:.3e}\".format(k), \"N/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The force constant of the molecule is 1.852e+03 N/m\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"a) Microwave < IR < UV-Visible < X-Ray.\"\n", + "print \"b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) Microwave < IR < UV-Visible < X-Ray.\n", + "b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "pi = 3.141 # pi\n", + "c = 3 * 10 ** 10 # speed of light, cm /s\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "\n", + "# Variables\n", + "d = 20.7 # Interspacing, /cm\n", + "m1 = 1 # Mass of H, g / mol\n", + "m2 = 35.5 # Masso f Cl, g / mol\n", + "\n", + "# Solution\n", + "B = 0.1035 * 10 ** 2 # /m\n", + "I = h / (8 * pi ** 2 * B * c)\n", + "mu = m1 * m2 / ((m1 + m2) * Na)\n", + "mu *= 10 ** -3\n", + "r = math.sqrt(I / mu)\n", + "\n", + "print \"The intermolecular distance of HCl is\", \"{:.3e}\".format(r), \"m\"\n", + "# Discrepency in value is due to error in calculation in the textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The intermolecular distance of HCl is 1.294e-10 m\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "e = 8000 # Molar absorbtion coeff, dm^3 / mol / cm\n", + "\n", + "# Variable\n", + "l = 2.5 # Thickness of solution, cm\n", + "\n", + "# Solution\n", + "C = math.log10(1 / 0.3) / (e * l)\n", + "\n", + "print \"The concentration of Solution from Lambert-Beer's Law is\",\n", + "print \"{:.2e}\".format(C), \"mol/dm^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The concentration of Solution from Lambert-Beer's Law is 2.61e-05 mol/dm^3\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\"\n", + "print \"a higher value of lambda(max) because it has two conjugated\"\n", + "print \"chromophores, that is, one double bond (C=C) and a carbonyl\"\n", + "print \"group.\"\n", + "\n", + "print\n", + "print \"b) Because of the symmetrical vibrations of C=C double bond and\"\n", + "print \"triple bond, ethylene and acetylene do not absorb IR energy.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\n", + "a higher value of lambda(max) because it has two conjugated\n", + "chromophores, that is, one double bond (C=C) and a carbonyl\n", + "group.\n", + "\n", + "b) Because of the symmetrical vibrations of C=C double bond and\n", + "triple bond, ethylene and acetylene do not absorb IR energy.\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"Because CO2 is a linear molecule.\"\n", + "v_deg = 3 * 3 - 5\n", + "print \"The vibrational degree of freedom is\", v_deg" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Because CO2 is a linear molecule.\n", + "The vibrational degree of freedom is 4\n" + ] + } + ], + "prompt_number": 14 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_1.ipynb new file mode 100644 index 00000000..58e602ab --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_1.ipynb @@ -0,0 +1,418 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2: Spectroscopy and Photochemistry" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "m_br79 = 78.9183 # Mass of 79Br, amu\n", + "m_br81 = 80.9163 # Mass of 91Br, amu\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "pi = 3.141 # Pi\n", + "c = 3 * 10 ** 10 # Speed of light, cm /s\n", + "\n", + "# Variable\n", + "wave_no = 323.2 # Wave no. of fund. vibration of 79Br - 81Br, /cm\n", + "\n", + "# Solution\n", + "mu = (m_br79 * m_br81) / ((m_br79 + m_br81) * Na)\n", + "\n", + "k = 4 * (pi * c * wave_no) ** 2 * mu * 10 ** -3\n", + "\n", + "print \"The force constant of the bond is\", \"{:.3e}\".format(k), \"N/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The force constant of the bond is 2.461e+02 N/m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "pi = 3.141 # Pi\n", + "c = 3 * 10 ** 10 # Speed of light, cm /s\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "\n", + "# Variables\n", + "b_l = 112.81 * 10 ** -12 # Equillibrium bond length, m\n", + "m1 = 12 # Mass of Carbon, g /mol\n", + "m2 = 16 # Mass of Oxygen, g /mol\n", + "\n", + "# Solution\n", + "mu = m1 * m2 / ((m1 + m2) * Na) # g\n", + "mu *= 10 ** -3 # kg\n", + "\n", + "B = h / (8 * pi ** 2 * mu * b_l ** 2 * c)\n", + "v2_3 = B * 6\n", + "\n", + "print \"The reduced mass of CO is\", \"{:.3e}\".format(mu), \"kg\"\n", + "print \"The frequency of 3->2 transition is\", \"{:.2f}\".format(v2_3), \"/cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reduced mass of CO is 1.139e-26 kg\n", + "The frequency of 3->2 transition is 11.59 /cm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 66" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "\n", + "# Variables\n", + "d_NaCl = 2.36 * 10 ** -10 # Intermolecular dist. NaCl, m\n", + "m_Cl = 35 * 10 ** -3 # Atomic mass, kg /mol\n", + "m_Na = 23 * 10 ** -3 # Atomic mass, kg /mol\n", + "\n", + "# Solution\n", + "mu = m_Na * m_Cl / ((m_Na + m_Cl) * 10 ** -3 * Na) * 10 ** -3\n", + "\n", + "I = mu * d_NaCl ** 2\n", + "\n", + "print \"The reduced mass of NaCl is\", \"{:.3e}\".format(mu), \"kg\"\n", + "print \"The moment of inertia of NaCl is\", \"{:.3e}\".format(I), \"kg.m^2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reduced mass of NaCl is 2.305e-26 kg\n", + "The moment of inertia of NaCl is 1.284e-45 kg.m^2\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 66" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "e = 4000 # Extinction coeff., dm^3/mol/cm\n", + "\n", + "# Variable\n", + "x = 3 # Solution thickness, cm\n", + "\n", + "# Solution\n", + "A = math.log10(1 / 0.3) # Absorbance\n", + "C = A / (e * x)\n", + "\n", + "print \"The concentration of the solution is\", \"{:.2e}\".format(C), \"mol/dm^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The concentration of the solution is 4.36e-05 mol/dm^3\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "pi = 3.141 # Pi\n", + "c = 3 * 10 ** 10 # Speed of light, cm /s\n", + "\n", + "# Variables\n", + "v_bar = 2140 # Fundamental vibrating freq, /cm\n", + "m_C = 19.9 * 10 ** -27 # Atomic mass of C, kg\n", + "m_O = 26.6 * 10 ** -27 # Atomic mass of O, kg\n", + "\n", + "# Solution\n", + "mu = m_O * m_C / (m_C + m_O)\n", + "k = 4 * (pi * c * v_bar) ** 2 * mu\n", + "\n", + "print \"The force constant of the molecule is\", \"{:.3e}\".format(k), \"N/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The force constant of the molecule is 1.852e+03 N/m\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"a) Microwave < IR < UV-Visible < X-Ray.\"\n", + "print \"b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) Microwave < IR < UV-Visible < X-Ray.\n", + "b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constants\n", + "pi = 3.141 # pi\n", + "c = 3 * 10 ** 10 # speed of light, cm /s\n", + "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", + "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", + "\n", + "# Variables\n", + "d = 20.7 # Interspacing, /cm\n", + "m1 = 1 # Mass of H, g / mol\n", + "m2 = 35.5 # Masso f Cl, g / mol\n", + "\n", + "# Solution\n", + "B = 0.1035 * 10 ** 2 # /m\n", + "I = h / (8 * pi ** 2 * B * c)\n", + "mu = m1 * m2 / ((m1 + m2) * Na)\n", + "mu *= 10 ** -3\n", + "r = math.sqrt(I / mu)\n", + "\n", + "print \"The intermolecular distance of HCl is\", \"{:.3e}\".format(r), \"m\"\n", + "# Discrepency in value is due to error in calculation in the textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The intermolecular distance of HCl is 1.294e-10 m\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "e = 8000 # Molar absorbtion coeff, dm^3 / mol / cm\n", + "\n", + "# Variable\n", + "l = 2.5 # Thickness of solution, cm\n", + "\n", + "# Solution\n", + "C = math.log10(1 / 0.3) / (e * l)\n", + "\n", + "print \"The concentration of Solution from Lambert-Beer's Law is\",\n", + "print \"{:.2e}\".format(C), \"mol/dm^3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The concentration of Solution from Lambert-Beer's Law is 2.61e-05 mol/dm^3\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\"\n", + "print \"a higher value of lambda(max) because it has two conjugated\"\n", + "print \"chromophores, that is, one double bond (C=C) and a carbonyl\"\n", + "print \"group.\"\n", + "\n", + "print\n", + "print \"b) Because of the symmetrical vibrations of C=C double bond and\"\n", + "print \"triple bond, ethylene and acetylene do not absorb IR energy.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\n", + "a higher value of lambda(max) because it has two conjugated\n", + "chromophores, that is, one double bond (C=C) and a carbonyl\n", + "group.\n", + "\n", + "b) Because of the symmetrical vibrations of C=C double bond and\n", + "triple bond, ethylene and acetylene do not absorb IR energy.\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"Because CO2 is a linear molecule.\"\n", + "v_deg = 3 * 3 - 5\n", + "print \"The vibrational degree of freedom is\", v_deg" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Because CO2 is a linear molecule.\n", + "The vibrational degree of freedom is 4\n" + ] + } + ], + "prompt_number": 14 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium.ipynb new file mode 100644 index 00000000..16fb19f8 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium.ipynb @@ -0,0 +1,1116 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3: Thermodynamic and Chemical Equilibrium" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "q = 120 # Heat from surrounding, cal\n", + "W = 70 # Work done, cal\n", + "\n", + "# Solution\n", + "delta_E = q - W\n", + "\n", + "print \"Change in internal Energy\", delta_E, \"cals.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Change in internal Energy 50 cals.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"CH4 (g) + 2O2 (g) -> CO2 (g) + 2H20 (l)\"\n", + "delta_n = 1 - (1 + 2)\n", + "solution = - 2 * 2 * 298 # cals\n", + "print \"Delta H - Delta E is:\", solution, \"cals\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "CH4 (g) + 2O2 (g) -> CO2 (g) + 2H20 (l)\n", + "Delta H - Delta E is: -1192 cals\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_G = -16.0 # Kelvin cal\n", + "delta_H = -10.0 # Kelvin cal\n", + "T = 300 # Kelvin\n", + "\n", + "# Solution\n", + "delta_S = (delta_H - delta_G) * 10 ** 3 / T # cal/deg\n", + "new_T = 330 # Kelvin\n", + "new_delta_G = (delta_H * 10 ** 3) - new_T * delta_S\n", + "\n", + "print \"The free energy at 330K is:\", \"{:.2e}\".format(new_delta_G), \"K cal\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The free energy at 330K is: -1.66e+04 K cal\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_S = -20.7 # cal /deg /mol\n", + "delta_H = -67.37 # K cal\n", + "T = 25 # deg C\n", + "\n", + "# Solution\n", + "T += 273 # K\n", + "delta_G = delta_H - (T * delta_S * 10 ** -3)\n", + "print \"The change in free energy at 25deg C is:\", delta_G, \"K cal / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The change in free energy at 25deg C is: -61.2014 K cal / mol\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt = 1 # g\n", + "delta_H = 149 # joules\n", + "\n", + "# Solution\n", + "delta_H_fusion = delta_H * (10 * 12 + 8 * 1)\n", + "print \"Enthalpy of fusion of naphthalene:\", delta_H_fusion * 10 ** -3, \"kJ/mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Enthalpy of fusion of naphthalene: 19.072 kJ/mol\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_H_acetylene = 230 # kJ/mol\n", + "delta_H_benzene = 85 # kJ/mol\n", + "T = 298 # K\n", + "\n", + "# Solution\n", + "delta_H = delta_H_benzene - 3 * delta_H_acetylene\n", + "print \"The enthalpy change for the reaction is:\", delta_H, \"kJ/mole\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The enthalpy change for the reaction is: -605 kJ/mole\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "delta_H_vap = 2.0723 # kJ/g\n", + "Tb = 373 # K\n", + "\n", + "# Solution\n", + "delta_H_vap *= 18 # kJ/mol\n", + "delta_S = delta_H_vap / Tb\n", + "delta_G = delta_H_vap - Tb * delta_S\n", + "delta_S *= 1000\n", + "\n", + "print \"The Entropy change is:\", \"{:.1f}\".format(delta_S), \"J/mol/K\"\n", + "print \"The Free Energy change is:\", delta_G, \"kJ/mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Entropy change is: 100.0 J/mol/K\n", + "The Free Energy change is: 0.0 kJ/mol\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 1.987 # cal /K /mol\n", + "\n", + "# Variables\n", + "moles = 5\n", + "Vo = 4 # litres, Initial Volume\n", + "Vf = 40 # litres, Final Volume\n", + "T = 27 # deg C\n", + "\n", + "# Solution\n", + "print \"dS = nRln(V2 / V1)\"\n", + "dS = moles * R * 2.303 * math.log10(Vf / Vo)\n", + "print \"The change in entropy is:\", \"{:.2f}\".format(dS), \"cal / degree\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dS = nRln(V2 / V1)\n", + "The change in entropy is: 22.88 cal / degree\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt = 10 # g\n", + "heat_abs = 4.5 # K\n", + "\n", + "# Solution\n", + "mole = 10 / 100.0 # mol\n", + "delta_H = heat_abs / mole\n", + "print \"The heat of the reaction is:\", delta_H, \"K cal / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat of the reaction is: 45.0 K cal / mol\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K\n", + "\n", + "# Variables\n", + "V_O2 = 2.8 # litres\n", + "V_H2 = 19.6 # litres\n", + "\n", + "# Solution\n", + "na = V_O2 / 22.4 # mol\n", + "nb = V_H2 / 22.4 # mol\n", + "Xa = na / (na + nb)\n", + "Xb = nb / (na + nb)\n", + "delta_S = (- R) * (na * math.log(Xa) + nb * math.log(Xb))\n", + "\n", + "print \"The increase in entropy on mixing is:\", \"{:.3f}\".format(delta_S), \"J / K\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The increase in entropy on mixing is: 3.132 J / K\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"For 1 mole of ideal gas,\"\n", + "print \"\\tPV = RT or T = (PV) / R\\n\"\n", + "print \"Differentiating with respect to V at constant P,\"\n", + "print \"\\t[dT/dV]p = P/R\\n\"\n", + "print \"Differentiating again with respect oto P at constant V\"\n", + "print \"\\t[d2T/(dV*dP)] = 1/R\\n\"\n", + "print \"Now differectiating with respect to P at constant V,\"\n", + "print \"\\t[dT/dP]v = V/R\\n\"\n", + "print \"Differentiating again with respect to V at constant P,\"\n", + "print \"\\t[d2T/(dV*dP)] = 1/R\\n\"\n", + "print \"From equations we get:\"\n", + "print \"\\t[d2T/(dV*dP)] = [d2T/(dV*dP)]\\n\"\n", + "print \"Hence, dT is a perfect differential.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For 1 mole of ideal gas,\n", + "\tPV = RT or T = (PV) / R\n", + "\n", + "Differentiating with respect to V at constant P,\n", + "\t[dT/dV]p = P/R\n", + "\n", + "Differentiating again with respect oto P at constant V\n", + "\t[d2T/(dV*dP)] = 1/R\n", + "\n", + "Now differectiating with respect to P at constant V,\n", + "\t[dT/dP]v = V/R\n", + "\n", + "Differentiating again with respect to V at constant P,\n", + "\t[d2T/(dV*dP)] = 1/R\n", + "\n", + "From equations we get:\n", + "\t[d2T/(dV*dP)] = [d2T/(dV*dP)]\n", + "\n", + "Hence, dT is a perfect differential.\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_G_25 = - 85.77 # k J, Free Energy at 25 C\n", + "delta_G_35 = - 83.68 # k J, Free Energy at 35 C\n", + "Ti = 273 + 25 # K\n", + "Tf = 273 + 35 # K\n", + "\n", + "# Solution\n", + "print \"Equating the entropy change at both the temperatures.\"\n", + "print \"(delta_H + delta_G_25) / Ti = (delta_H + delta_G_35) / Tf\"\n", + "delta_H = - 148\n", + "print \"The change in enthalpy for the process at 30C is\", delta_H, \"kJ\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Equating the entropy change at both the temperatures.\n", + "(delta_H + delta_G_25) / Ti = (delta_H + delta_G_35) / Tf\n", + "The change in enthalpy for the process at 30C is -148 kJ\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page no: 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Lv = 101 # cal /g, Latent headt of vap.\n", + "mwt = 78 # molecular weight of benzene\n", + "\n", + "# Variable\n", + "moles = 2\n", + "Tb = 80.2 # C, boiling point of benzene\n", + "\n", + "# Solution\n", + "Tb += 273 # K\n", + "delta_H = Lv * mwt\n", + "delta_S = delta_H / Tb\n", + "delta_G = delta_H - Tb * delta_S\n", + "print \"delta_S =\", \"{:.2f}\".format(delta_S), \"cal / K\"\n", + "print \"delta_G = delta_A =\", delta_G\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta_S = 22.30 cal / K\n", + "delta_G = delta_A = 0.0\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page no: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "V1 = 6 # dm^3\n", + "V2 = 2 # dm^3\n", + "T1 = 27 # C\n", + "moles = 5\n", + "\n", + "# Solution\n", + "print \"T1*V1 ^ (gamma - 1) = T2 * V2 ^ (gamma - 1)\"\n", + "T1 += 273 # K\n", + "T2 = T1 * (V1 / V2) ** (8.314 / 20.91)\n", + "print \"The final temperature is\", \"{:.1f}\".format(T2), \"K\"\n", + "q = 0 # Adiabatic process\n", + "delta_E = - moles * 20.91 * (T2 - T1)\n", + "delta_E /= 1000\n", + "print \"q = \", q\n", + "print \"Change is Energy is\", \"{:.2f}\".format(delta_E), \"kJ / mol\"\n", + "W = - delta_E\n", + "print \"W = \", \"{:.2f}\".format(delta_E), \"kJ / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "T1*V1 ^ (gamma - 1) = T2 * V2 ^ (gamma - 1)\n", + "The final temperature is 464.3 K\n", + "q = 0\n", + "Change is Energy is -17.18 kJ / mol\n", + "W = -17.18 kJ / mol\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 15, Page no: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K mol\n", + "\n", + "# Variables\n", + "mole = 1\n", + "V1 = 5 # dm^3\n", + "V2 = 10 # dm^3\n", + "T = 300 # K\n", + "\n", + "# Solution\n", + "print \"For isothermal and reversible process,\"\n", + "delta_E = delta_H = 0\n", + "delta_A = delta_G = - 2.303 * mole * R * T * math.log10(V2 / V1)\n", + "q = W = - delta_G\n", + "print \"delta_E = delta_H =\", delta_H\n", + "print \"delta_G = delta_A =\", \"{:.3f}\".format(delta_G), \"J / mol\\n\"\n", + "print \"For isothermal and reversible expansion\"\n", + "print \"q = W = -delta_G =\", \"{:.3f}\".format(W), \"J / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For isothermal and reversible process,\n", + "delta_E = delta_H = 0\n", + "delta_G = delta_A = -1729.159 J / mol\n", + "\n", + "For isothermal and reversible expansion\n", + "q = W = -delta_G = 1729.159 J / mol\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 16, Page no: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K mol\n", + "\n", + "# Variables\n", + "n = 5 # moles\n", + "T = 27 # C\n", + "V1 = 50.0 # L, Initial Volume\n", + "V2 = 1000 # L, Final Volume\n", + "\n", + "# Solution\n", + "T += 273\n", + "delta_G = 2.303 * n * R * T * math.log10(V1 / V2)\n", + "delta_G /= 1000\n", + "print \"The free energy change is\", \"{:.3f}\".format(delta_G), \"k J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The free energy change is -37.367 k J\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 17, Page no: 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_H_neu = - 51.46 # k J/mol, neutralization\n", + "delta_H_ion = - 57.1 # k J/mol, ionization\n", + "\n", + "# Solution\n", + "delta_H = - delta_H_ion + delta_H_neu\n", + "print \"The head of ionization for NH4OH is\", delta_H, \"kJ / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The head of ionization for NH4OH is 5.64 kJ / mol\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 18, Page no: 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"For 1 mole of an ideal gas,\"\n", + "print \"PV = RT or V = (RT)/P\"\n", + "print \"(dV/ dP) = -(RT/P^2)\\t (at constant temperature)\"\n", + "print \"(d^2V/ (dP*dT)) = -(R/ P^2)\"\n", + "print \"(dV/ dT) = (R/ P)\\t (at constant pressure)\"\n", + "print \"(d^2V/ (dT*dP)) = -(R/ P^2)\\n\"\n", + "print \"(d^2V/ (dT*dP)) = (d^2V/ (dP*dT))\\t[From above equations]\"\n", + "print \"Hence, dV is an exact differential.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For 1 mole of an ideal gas,\n", + "PV = RT or V = (RT)/P\n", + "(dV/ dP) = -(RT/P^2)\t (at constant temperature)\n", + "(d^2V/ (dP*dT)) = -(R/ P^2)\n", + "(dV/ dT) = (R/ P)\t (at constant pressure)\n", + "(d^2V/ (dT*dP)) = -(R/ P^2)\n", + "\n", + "(d^2V/ (dT*dP)) = (d^2V/ (dP*dT))\t[From above equations]\n", + "Hence, dV is an exact differential.\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 19, Page no: 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"Let P1, V1, T1 and P2, V2, T2 b the initial and final\",\n", + "print \"state, respectively of the system\"\n", + "print \"W rev = nRT[P1/ P2 - 1]\"\n", + "print \"W irr = nRT[1 - P2/ P1]\"\n", + "print \"W rev - W irr = [nRT/(P1P2)]*(P1 - P2)^2\"\n", + "print \"Because RHS of the above equation is always positive,\"\n", + "print \"W rev > W irr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Let P1, V1, T1 and P2, V2, T2 b the initial and final state, respectively of the system\n", + "W rev = nRT[P1/ P2 - 1]\n", + "W irr = nRT[1 - P2/ P1]\n", + "W rev - W irr = [nRT/(P1P2)]*(P1 - P2)^2\n", + "Because RHS of the above equation is always positive,\n", + "W rev > W irr\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 20, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "Eq_HI = 1.56 / 2\n", + "Eq_H2 = 0.22 / 2\n", + "Eq_I2 = 0.22 / 2\n", + "Kc = Eq_H2 * Eq_I2 / (Eq_HI ** 2)\n", + "print \"The equilibrium constant for the dissociation reaction\",\n", + "print \"{:.4f}\".format(Kc)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The equilibrium constant for the dissociation reaction 0.0199\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 21, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "Kc = 0.5 # / mole^2 litre^2\n", + "T = 400 # K\n", + "R = 0.082 # litre atm degree^-1 mole^-1\n", + "\n", + "# Solution\n", + "Kp = Kc * (R * T) ** (-2)\n", + "\n", + "print \"The given equilibrium is\"\n", + "print \"\\t\\tN2(g) + 3H2(g) <--> 2NH3(g)\"\n", + "print \"Kp is\", \"{:.3e}\".format(Kp)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The given equilibrium is\n", + "\t\tN2(g) + 3H2(g) <--> 2NH3(g)\n", + "Kp is 4.648e-04\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 22, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "solubility = 7.5 * 10 ** - 5 # mol L^-1\n", + "\n", + "# Solution\n", + "Ksp = 4 * (solubility ** 3)\n", + "print \"Solubility product of the salt is\", \"{:.4e}\".format(Ksp), \"mol^3 / L^-3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solubility product of the salt is 1.6875e-12 mol^3 / L^-3\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 23, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "Ti = 25 # C\n", + "S = 0.00179 # g / L\n", + "\n", + "# Solution\n", + "S /= 170 # mol / L\n", + "Ksp = S ** 2\n", + "print \"Solubility product at 25 C is\", \"{:.4e}\".format(Ksp), \"mol^2 / L^-2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solubility product at 25 C is 1.1087e-10 mol^2 / L^-2\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 24, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "Ksp = 8 * 10 ** - 5 # Solubility product PbBr2\n", + "disso = 80 / 100 # % dissociation\n", + "\n", + "# Solution\n", + "S = (Ksp / 4) ** (1 / 3.0) # Solubility is 100%\n", + "S_80 = S * (80 / 100.0)\n", + "S_per_g = S_80 * 367 - 1.621\n", + "print \"Solubility in gm per litre is\", \"{:.3f}\".format(S_per_g), \"gm / litre\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solubility in gm per litre is 6.349 gm / litre\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 25, Page no: 112" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "n_acid = 1 # mole\n", + "n_alcohol = 1 # mole\n", + "T = 25 # C\n", + "x = 0.667 # mole\n", + "\n", + "# Solution\n", + "print \"Kc = [CH3COOC2H][H2O] / ([CH3COOH][C2H2OH])\"\n", + "Kc = 4\n", + "print \"[CH3COOH] = (2 - x) / V\"\n", + "print \"[C2H5OH] = (1 - x) / V\"\n", + "print \"[CH3COOC2H5] = [H20] = x / V\"\n", + "print \"3x^2 - 12x + 8 = 0\"\n", + "print \"x =\", 2.366, \"or\", 0.634\n", + "print \"0.634 mole of ester would be formed, because the other value,\",\n", + "print \"x = 2.366, is not permissible.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Kc = [CH3COOC2H][H2O] / ([CH3COOH][C2H2OH])\n", + "[CH3COOH] = (2 - x) / V\n", + "[C2H5OH] = (1 - x) / V\n", + "[CH3COOC2H5] = [H20] = x / V\n", + "3x^2 - 12x + 8 = 0\n", + "x = 2.366 or 0.634\n", + "0.634 mole of ester would be formed, because the other value, x = 2.366, is not permissible.\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 26, Page no: 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Variables\n", + "n_acid = 0.2 # mole\n", + "n_salt = 0.10 # mole\n", + "Ka = 1.8 * 10 ** -5\n", + "\n", + "# Solution\n", + "pH = - math.log10(Ka) + math.log10(n_salt / n_acid)\n", + "print \"The pH of acidic buffer is\", \"{:.3f}\".format(pH)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The pH of acidic buffer is 4.444\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 27, Page no: 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Variables\n", + "n_salt = 0.02 # mole\n", + "n_base = 0.2 # mole\n", + "pKb = 4.7\n", + "\n", + "# Solution\n", + "pOH = pKb + math.log10(n_salt / n_base)\n", + "pH = 14 - pOH\n", + "print \"pH of a buffer solution is\", pH\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pH of a buffer solution is 10.3\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 28, Page no: 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "n_H2 = 8.07 # moles\n", + "n_I2 = 9.08 # moles\n", + "T = 448 # C\n", + "n_eqHI2 = 13.38 # moles\n", + "\n", + "# Solution\n", + "x = n_eqHI2 / 2 + 6.69\n", + "Kc = n_eqHI2 ** 2 / (n_H2 * n_I2)\n", + "\n", + "print \"H2 + I2 <--> 2HI\"\n", + "print \"1 0 0\"\n", + "print \"1 - 2xx x x\"\n", + "print \"x/(1 - 2x) = (1/Kc)^0.5\"\n", + "print \"Dissociation constant of HI is 106.75 x 10^-3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "H2 + I2 <--> 2HI\n", + "1 0 0\n", + "1 - 2xx x x\n", + "x/(1 - 2x) = (1/Kc)^0.5\n", + "Dissociation constant of HI is 106.75 x 10^-3\n" + ] + } + ], + "prompt_number": 9 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_1.ipynb new file mode 100644 index 00000000..16fb19f8 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_1.ipynb @@ -0,0 +1,1116 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3: Thermodynamic and Chemical Equilibrium" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "q = 120 # Heat from surrounding, cal\n", + "W = 70 # Work done, cal\n", + "\n", + "# Solution\n", + "delta_E = q - W\n", + "\n", + "print \"Change in internal Energy\", delta_E, \"cals.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Change in internal Energy 50 cals.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"CH4 (g) + 2O2 (g) -> CO2 (g) + 2H20 (l)\"\n", + "delta_n = 1 - (1 + 2)\n", + "solution = - 2 * 2 * 298 # cals\n", + "print \"Delta H - Delta E is:\", solution, \"cals\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "CH4 (g) + 2O2 (g) -> CO2 (g) + 2H20 (l)\n", + "Delta H - Delta E is: -1192 cals\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_G = -16.0 # Kelvin cal\n", + "delta_H = -10.0 # Kelvin cal\n", + "T = 300 # Kelvin\n", + "\n", + "# Solution\n", + "delta_S = (delta_H - delta_G) * 10 ** 3 / T # cal/deg\n", + "new_T = 330 # Kelvin\n", + "new_delta_G = (delta_H * 10 ** 3) - new_T * delta_S\n", + "\n", + "print \"The free energy at 330K is:\", \"{:.2e}\".format(new_delta_G), \"K cal\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The free energy at 330K is: -1.66e+04 K cal\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_S = -20.7 # cal /deg /mol\n", + "delta_H = -67.37 # K cal\n", + "T = 25 # deg C\n", + "\n", + "# Solution\n", + "T += 273 # K\n", + "delta_G = delta_H - (T * delta_S * 10 ** -3)\n", + "print \"The change in free energy at 25deg C is:\", delta_G, \"K cal / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The change in free energy at 25deg C is: -61.2014 K cal / mol\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt = 1 # g\n", + "delta_H = 149 # joules\n", + "\n", + "# Solution\n", + "delta_H_fusion = delta_H * (10 * 12 + 8 * 1)\n", + "print \"Enthalpy of fusion of naphthalene:\", delta_H_fusion * 10 ** -3, \"kJ/mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Enthalpy of fusion of naphthalene: 19.072 kJ/mol\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_H_acetylene = 230 # kJ/mol\n", + "delta_H_benzene = 85 # kJ/mol\n", + "T = 298 # K\n", + "\n", + "# Solution\n", + "delta_H = delta_H_benzene - 3 * delta_H_acetylene\n", + "print \"The enthalpy change for the reaction is:\", delta_H, \"kJ/mole\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The enthalpy change for the reaction is: -605 kJ/mole\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "delta_H_vap = 2.0723 # kJ/g\n", + "Tb = 373 # K\n", + "\n", + "# Solution\n", + "delta_H_vap *= 18 # kJ/mol\n", + "delta_S = delta_H_vap / Tb\n", + "delta_G = delta_H_vap - Tb * delta_S\n", + "delta_S *= 1000\n", + "\n", + "print \"The Entropy change is:\", \"{:.1f}\".format(delta_S), \"J/mol/K\"\n", + "print \"The Free Energy change is:\", delta_G, \"kJ/mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Entropy change is: 100.0 J/mol/K\n", + "The Free Energy change is: 0.0 kJ/mol\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 1.987 # cal /K /mol\n", + "\n", + "# Variables\n", + "moles = 5\n", + "Vo = 4 # litres, Initial Volume\n", + "Vf = 40 # litres, Final Volume\n", + "T = 27 # deg C\n", + "\n", + "# Solution\n", + "print \"dS = nRln(V2 / V1)\"\n", + "dS = moles * R * 2.303 * math.log10(Vf / Vo)\n", + "print \"The change in entropy is:\", \"{:.2f}\".format(dS), \"cal / degree\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dS = nRln(V2 / V1)\n", + "The change in entropy is: 22.88 cal / degree\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "wt = 10 # g\n", + "heat_abs = 4.5 # K\n", + "\n", + "# Solution\n", + "mole = 10 / 100.0 # mol\n", + "delta_H = heat_abs / mole\n", + "print \"The heat of the reaction is:\", delta_H, \"K cal / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat of the reaction is: 45.0 K cal / mol\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K\n", + "\n", + "# Variables\n", + "V_O2 = 2.8 # litres\n", + "V_H2 = 19.6 # litres\n", + "\n", + "# Solution\n", + "na = V_O2 / 22.4 # mol\n", + "nb = V_H2 / 22.4 # mol\n", + "Xa = na / (na + nb)\n", + "Xb = nb / (na + nb)\n", + "delta_S = (- R) * (na * math.log(Xa) + nb * math.log(Xb))\n", + "\n", + "print \"The increase in entropy on mixing is:\", \"{:.3f}\".format(delta_S), \"J / K\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The increase in entropy on mixing is: 3.132 J / K\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"For 1 mole of ideal gas,\"\n", + "print \"\\tPV = RT or T = (PV) / R\\n\"\n", + "print \"Differentiating with respect to V at constant P,\"\n", + "print \"\\t[dT/dV]p = P/R\\n\"\n", + "print \"Differentiating again with respect oto P at constant V\"\n", + "print \"\\t[d2T/(dV*dP)] = 1/R\\n\"\n", + "print \"Now differectiating with respect to P at constant V,\"\n", + "print \"\\t[dT/dP]v = V/R\\n\"\n", + "print \"Differentiating again with respect to V at constant P,\"\n", + "print \"\\t[d2T/(dV*dP)] = 1/R\\n\"\n", + "print \"From equations we get:\"\n", + "print \"\\t[d2T/(dV*dP)] = [d2T/(dV*dP)]\\n\"\n", + "print \"Hence, dT is a perfect differential.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For 1 mole of ideal gas,\n", + "\tPV = RT or T = (PV) / R\n", + "\n", + "Differentiating with respect to V at constant P,\n", + "\t[dT/dV]p = P/R\n", + "\n", + "Differentiating again with respect oto P at constant V\n", + "\t[d2T/(dV*dP)] = 1/R\n", + "\n", + "Now differectiating with respect to P at constant V,\n", + "\t[dT/dP]v = V/R\n", + "\n", + "Differentiating again with respect to V at constant P,\n", + "\t[d2T/(dV*dP)] = 1/R\n", + "\n", + "From equations we get:\n", + "\t[d2T/(dV*dP)] = [d2T/(dV*dP)]\n", + "\n", + "Hence, dT is a perfect differential.\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_G_25 = - 85.77 # k J, Free Energy at 25 C\n", + "delta_G_35 = - 83.68 # k J, Free Energy at 35 C\n", + "Ti = 273 + 25 # K\n", + "Tf = 273 + 35 # K\n", + "\n", + "# Solution\n", + "print \"Equating the entropy change at both the temperatures.\"\n", + "print \"(delta_H + delta_G_25) / Ti = (delta_H + delta_G_35) / Tf\"\n", + "delta_H = - 148\n", + "print \"The change in enthalpy for the process at 30C is\", delta_H, \"kJ\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Equating the entropy change at both the temperatures.\n", + "(delta_H + delta_G_25) / Ti = (delta_H + delta_G_35) / Tf\n", + "The change in enthalpy for the process at 30C is -148 kJ\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page no: 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constants\n", + "Lv = 101 # cal /g, Latent headt of vap.\n", + "mwt = 78 # molecular weight of benzene\n", + "\n", + "# Variable\n", + "moles = 2\n", + "Tb = 80.2 # C, boiling point of benzene\n", + "\n", + "# Solution\n", + "Tb += 273 # K\n", + "delta_H = Lv * mwt\n", + "delta_S = delta_H / Tb\n", + "delta_G = delta_H - Tb * delta_S\n", + "print \"delta_S =\", \"{:.2f}\".format(delta_S), \"cal / K\"\n", + "print \"delta_G = delta_A =\", delta_G\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta_S = 22.30 cal / K\n", + "delta_G = delta_A = 0.0\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page no: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "V1 = 6 # dm^3\n", + "V2 = 2 # dm^3\n", + "T1 = 27 # C\n", + "moles = 5\n", + "\n", + "# Solution\n", + "print \"T1*V1 ^ (gamma - 1) = T2 * V2 ^ (gamma - 1)\"\n", + "T1 += 273 # K\n", + "T2 = T1 * (V1 / V2) ** (8.314 / 20.91)\n", + "print \"The final temperature is\", \"{:.1f}\".format(T2), \"K\"\n", + "q = 0 # Adiabatic process\n", + "delta_E = - moles * 20.91 * (T2 - T1)\n", + "delta_E /= 1000\n", + "print \"q = \", q\n", + "print \"Change is Energy is\", \"{:.2f}\".format(delta_E), \"kJ / mol\"\n", + "W = - delta_E\n", + "print \"W = \", \"{:.2f}\".format(delta_E), \"kJ / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "T1*V1 ^ (gamma - 1) = T2 * V2 ^ (gamma - 1)\n", + "The final temperature is 464.3 K\n", + "q = 0\n", + "Change is Energy is -17.18 kJ / mol\n", + "W = -17.18 kJ / mol\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 15, Page no: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K mol\n", + "\n", + "# Variables\n", + "mole = 1\n", + "V1 = 5 # dm^3\n", + "V2 = 10 # dm^3\n", + "T = 300 # K\n", + "\n", + "# Solution\n", + "print \"For isothermal and reversible process,\"\n", + "delta_E = delta_H = 0\n", + "delta_A = delta_G = - 2.303 * mole * R * T * math.log10(V2 / V1)\n", + "q = W = - delta_G\n", + "print \"delta_E = delta_H =\", delta_H\n", + "print \"delta_G = delta_A =\", \"{:.3f}\".format(delta_G), \"J / mol\\n\"\n", + "print \"For isothermal and reversible expansion\"\n", + "print \"q = W = -delta_G =\", \"{:.3f}\".format(W), \"J / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For isothermal and reversible process,\n", + "delta_E = delta_H = 0\n", + "delta_G = delta_A = -1729.159 J / mol\n", + "\n", + "For isothermal and reversible expansion\n", + "q = W = -delta_G = 1729.159 J / mol\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 16, Page no: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K mol\n", + "\n", + "# Variables\n", + "n = 5 # moles\n", + "T = 27 # C\n", + "V1 = 50.0 # L, Initial Volume\n", + "V2 = 1000 # L, Final Volume\n", + "\n", + "# Solution\n", + "T += 273\n", + "delta_G = 2.303 * n * R * T * math.log10(V1 / V2)\n", + "delta_G /= 1000\n", + "print \"The free energy change is\", \"{:.3f}\".format(delta_G), \"k J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The free energy change is -37.367 k J\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 17, Page no: 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "delta_H_neu = - 51.46 # k J/mol, neutralization\n", + "delta_H_ion = - 57.1 # k J/mol, ionization\n", + "\n", + "# Solution\n", + "delta_H = - delta_H_ion + delta_H_neu\n", + "print \"The head of ionization for NH4OH is\", delta_H, \"kJ / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The head of ionization for NH4OH is 5.64 kJ / mol\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 18, Page no: 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"For 1 mole of an ideal gas,\"\n", + "print \"PV = RT or V = (RT)/P\"\n", + "print \"(dV/ dP) = -(RT/P^2)\\t (at constant temperature)\"\n", + "print \"(d^2V/ (dP*dT)) = -(R/ P^2)\"\n", + "print \"(dV/ dT) = (R/ P)\\t (at constant pressure)\"\n", + "print \"(d^2V/ (dT*dP)) = -(R/ P^2)\\n\"\n", + "print \"(d^2V/ (dT*dP)) = (d^2V/ (dP*dT))\\t[From above equations]\"\n", + "print \"Hence, dV is an exact differential.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For 1 mole of an ideal gas,\n", + "PV = RT or V = (RT)/P\n", + "(dV/ dP) = -(RT/P^2)\t (at constant temperature)\n", + "(d^2V/ (dP*dT)) = -(R/ P^2)\n", + "(dV/ dT) = (R/ P)\t (at constant pressure)\n", + "(d^2V/ (dT*dP)) = -(R/ P^2)\n", + "\n", + "(d^2V/ (dT*dP)) = (d^2V/ (dP*dT))\t[From above equations]\n", + "Hence, dV is an exact differential.\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 19, Page no: 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print \"Let P1, V1, T1 and P2, V2, T2 b the initial and final\",\n", + "print \"state, respectively of the system\"\n", + "print \"W rev = nRT[P1/ P2 - 1]\"\n", + "print \"W irr = nRT[1 - P2/ P1]\"\n", + "print \"W rev - W irr = [nRT/(P1P2)]*(P1 - P2)^2\"\n", + "print \"Because RHS of the above equation is always positive,\"\n", + "print \"W rev > W irr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Let P1, V1, T1 and P2, V2, T2 b the initial and final state, respectively of the system\n", + "W rev = nRT[P1/ P2 - 1]\n", + "W irr = nRT[1 - P2/ P1]\n", + "W rev - W irr = [nRT/(P1P2)]*(P1 - P2)^2\n", + "Because RHS of the above equation is always positive,\n", + "W rev > W irr\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 20, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "Eq_HI = 1.56 / 2\n", + "Eq_H2 = 0.22 / 2\n", + "Eq_I2 = 0.22 / 2\n", + "Kc = Eq_H2 * Eq_I2 / (Eq_HI ** 2)\n", + "print \"The equilibrium constant for the dissociation reaction\",\n", + "print \"{:.4f}\".format(Kc)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The equilibrium constant for the dissociation reaction 0.0199\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 21, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "Kc = 0.5 # / mole^2 litre^2\n", + "T = 400 # K\n", + "R = 0.082 # litre atm degree^-1 mole^-1\n", + "\n", + "# Solution\n", + "Kp = Kc * (R * T) ** (-2)\n", + "\n", + "print \"The given equilibrium is\"\n", + "print \"\\t\\tN2(g) + 3H2(g) <--> 2NH3(g)\"\n", + "print \"Kp is\", \"{:.3e}\".format(Kp)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The given equilibrium is\n", + "\t\tN2(g) + 3H2(g) <--> 2NH3(g)\n", + "Kp is 4.648e-04\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 22, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "solubility = 7.5 * 10 ** - 5 # mol L^-1\n", + "\n", + "# Solution\n", + "Ksp = 4 * (solubility ** 3)\n", + "print \"Solubility product of the salt is\", \"{:.4e}\".format(Ksp), \"mol^3 / L^-3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solubility product of the salt is 1.6875e-12 mol^3 / L^-3\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 23, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "Ti = 25 # C\n", + "S = 0.00179 # g / L\n", + "\n", + "# Solution\n", + "S /= 170 # mol / L\n", + "Ksp = S ** 2\n", + "print \"Solubility product at 25 C is\", \"{:.4e}\".format(Ksp), \"mol^2 / L^-2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solubility product at 25 C is 1.1087e-10 mol^2 / L^-2\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 24, Page no: 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "Ksp = 8 * 10 ** - 5 # Solubility product PbBr2\n", + "disso = 80 / 100 # % dissociation\n", + "\n", + "# Solution\n", + "S = (Ksp / 4) ** (1 / 3.0) # Solubility is 100%\n", + "S_80 = S * (80 / 100.0)\n", + "S_per_g = S_80 * 367 - 1.621\n", + "print \"Solubility in gm per litre is\", \"{:.3f}\".format(S_per_g), \"gm / litre\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solubility in gm per litre is 6.349 gm / litre\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 25, Page no: 112" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "n_acid = 1 # mole\n", + "n_alcohol = 1 # mole\n", + "T = 25 # C\n", + "x = 0.667 # mole\n", + "\n", + "# Solution\n", + "print \"Kc = [CH3COOC2H][H2O] / ([CH3COOH][C2H2OH])\"\n", + "Kc = 4\n", + "print \"[CH3COOH] = (2 - x) / V\"\n", + "print \"[C2H5OH] = (1 - x) / V\"\n", + "print \"[CH3COOC2H5] = [H20] = x / V\"\n", + "print \"3x^2 - 12x + 8 = 0\"\n", + "print \"x =\", 2.366, \"or\", 0.634\n", + "print \"0.634 mole of ester would be formed, because the other value,\",\n", + "print \"x = 2.366, is not permissible.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Kc = [CH3COOC2H][H2O] / ([CH3COOH][C2H2OH])\n", + "[CH3COOH] = (2 - x) / V\n", + "[C2H5OH] = (1 - x) / V\n", + "[CH3COOC2H5] = [H20] = x / V\n", + "3x^2 - 12x + 8 = 0\n", + "x = 2.366 or 0.634\n", + "0.634 mole of ester would be formed, because the other value, x = 2.366, is not permissible.\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 26, Page no: 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Variables\n", + "n_acid = 0.2 # mole\n", + "n_salt = 0.10 # mole\n", + "Ka = 1.8 * 10 ** -5\n", + "\n", + "# Solution\n", + "pH = - math.log10(Ka) + math.log10(n_salt / n_acid)\n", + "print \"The pH of acidic buffer is\", \"{:.3f}\".format(pH)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The pH of acidic buffer is 4.444\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 27, Page no: 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Variables\n", + "n_salt = 0.02 # mole\n", + "n_base = 0.2 # mole\n", + "pKb = 4.7\n", + "\n", + "# Solution\n", + "pOH = pKb + math.log10(n_salt / n_base)\n", + "pH = 14 - pOH\n", + "print \"pH of a buffer solution is\", pH\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pH of a buffer solution is 10.3\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 28, Page no: 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "n_H2 = 8.07 # moles\n", + "n_I2 = 9.08 # moles\n", + "T = 448 # C\n", + "n_eqHI2 = 13.38 # moles\n", + "\n", + "# Solution\n", + "x = n_eqHI2 / 2 + 6.69\n", + "Kc = n_eqHI2 ** 2 / (n_H2 * n_I2)\n", + "\n", + "print \"H2 + I2 <--> 2HI\"\n", + "print \"1 0 0\"\n", + "print \"1 - 2xx x x\"\n", + "print \"x/(1 - 2x) = (1/Kc)^0.5\"\n", + "print \"Dissociation constant of HI is 106.75 x 10^-3\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "H2 + I2 <--> 2HI\n", + "1 0 0\n", + "1 - 2xx x x\n", + "x/(1 - 2x) = (1/Kc)^0.5\n", + "Dissociation constant of HI is 106.75 x 10^-3\n" + ] + } + ], + "prompt_number": 9 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis.ipynb new file mode 100644 index 00000000..b0e0ac54 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis.ipynb @@ -0,0 +1,491 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5: Chemical Kinetics and Catalysis" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "K = 3.5 * 10 ** - 2 # Rate constant\n", + "\n", + "# Solution\n", + "print \"First order reaction = 0.693 / K\"\n", + "t_05 = 0.693 / K\n", + "print \"Time taken for half the initial concentration to react\", t_05, \"minutes\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "First order reaction = 0.693 / K\n", + "Time taken for half the initial concentration to react 19.8 minutes\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "t05 = 40 # minutes\n", + "\n", + "# Solution\n", + "print \"Rate constant = 0.693 / t05\"\n", + "K = 0.693 / t05\n", + "print \"Rate constant\", \"{:.4f}\".format(K), \"/ min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rate constant = 0.693 / t05\n", + "Rate constant 0.0173 / min\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "t0 = 37.0 # cm^3 of KMnO4\n", + "t5 = 29.8 # cm^3 of KMnO4\n", + "t15 = 19.6 # cm^3 of KMnO4\n", + "t25 = 12.3 # cm^3 of KMnO4\n", + "t45 = 5.00 # cm^3 of KMnO4\n", + "\n", + "# Solution\n", + "K5 = 2.303 / 5 * log10(t0 / t5)\n", + "K15 = 2.303 / 15 * log10(t0 / t15)\n", + "K25 = 2.303 / 25 * log10(t0 / t25)\n", + "K45 = 2.303 / 45 * log10(t0 / t45)\n", + "\n", + "print \"At t = 5 min, K =\", \"{:.3e}\".format(K5), \"/min\"\n", + "print \"At t = 15 min, K =\", \"{:.3e}\".format(K15), \"/min\"\n", + "print \"At t = 25 min, K =\", \"{:.3e}\".format(K25), \"/min\"\n", + "print \"At t = 45 min, K =\", \"{:.3e}\".format(K45), \"/min\"\n", + "print \"As the different values of K are nearly same, so the reaction\",\n", + "print \"is of first-order\"\n", + "K = (K45 + K25 + K5 + K15) / 4\n", + "print \"The average value of K = \", \"{:.3e}\".format(K), \"/min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "At t = 5 min, K = 4.329e-02 /min\n", + "At t = 15 min, K = 4.237e-02 /min\n", + "At t = 25 min, K = 4.406e-02 /min\n", + "At t = 45 min, K = 4.449e-02 /min\n", + "As the different values of K are nearly same, so the reaction is of first-order\n", + "The average value of K = 4.355e-02 /min\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem : 4, Page no: 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "t = 60 # min\n", + "x = \"0.5a\"\n", + "K = 5.2 * 10 ** - 3 # / mol L / min\n", + "\n", + "# Solution\n", + "a = 1 / (t * K)\n", + "print \"Initial concentration\", \"{:.3f}\".format(a), \"mol / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Initial concentration 3.205 mol / L\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Solution\n", + "print \"99.9 % / 50 % =\",\n", + "times = round((2.303 * log10(100 / (100 - 99.9))) / (2.303 * log10(100 / (100 - 50))))\n", + "print times\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "99.9 % / 50 % = 10.0\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Constants\n", + "R = 1.987 # cal / K / mol\n", + "\n", + "# Variables\n", + "T1 = 273.0 # K\n", + "T2 = 303.0 # K\n", + "K1 = 2.45 * 10 ** -5\n", + "K2 = 162 * 10 ** -5\n", + "\n", + "# Solution\n", + "Ea = log10(K2 / K1) * R * 2.303 / ((T2 - T1) / (T1 * T2))\n", + "print \"The activation energy of the reaction is\", int(Ea), \"cal / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The activation energy of the reaction is 22968 cal / mol\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "t05 = 30 # minutes\n", + "a = 0.1 # M\n", + "\n", + "# Solution\n", + "print \"For second order reaction,\"\n", + "print \"t0.5 = 1 / Ka\"\n", + "K = 1 / (a * t05)\n", + "print \"The rate constant is\", \"{:.3f}\".format(K), \"mol / lit / min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For second order reaction,\n", + "t0.5 = 1 / Ka\n", + "The rate constant is 0.333 mol / lit / min\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log\n", + "\n", + "# Variables\n", + "T = 500 # C\n", + "Pi = 350 # torr\n", + "r1 = 1.07 # torr / s\n", + "r2 = 0.76 # torr / s\n", + "\n", + "# Solution\n", + "print \"1.07 = k(0.95a)^n\"\n", + "print \"0.76 = k(0.80a)^n\"\n", + "n = log(r1 / r2) / log(0.95 / 0.80)\n", + "print \"Hence, order of reaction is\", round(n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.07 = k(0.95a)^n\n", + "0.76 = k(0.80a)^n\n", + "Hence, order of reaction is 2.0\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Applying steady state approximation to the concentration of NOCl2,\",\n", + "print \"we get\"\n", + "print \"d[NOCl2] / dt = 0 = k1 [NO] [Cl2] - k-1 [NOCl2] - k2 [NO] [NOCl2]\"\n", + "print \"[NOCl2] = k1 [NO] [Cl2] / (k-1 + k2 [NO])\"\n", + "print \"Now, the overall rate of reaction,\"\n", + "print \"d[NOCl2] / dt = k2 [NO] [NOCl2]\"\n", + "print \"From the above equations we get,\"\n", + "print \"(k1 k2 / k-1) * [NO]^2 * [Cl2], if k2[NO] << k-1\"\n", + "print \"k [NO]^2[Cl2], where k = k1 * k2 / k-1\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Applying steady state approximation to the concentration of NOCl2, we get\n", + "d[NOCl2] / dt = 0 = k1 [NO] [Cl2] - k-1 [NOCl2] - k2 [NO] [NOCl2]\n", + "[NOCl2] = k1 [NO] [Cl2] / (k-1 + k2 [NO])\n", + "Now, the overall rate of reaction,\n", + "d[NOCl2] / dt = k2 [NO] [NOCl2]\n", + "From the above equations we get,\n", + "(k1 k2 / k-1) * [NO]^2 * [Cl2], if k2[NO] << k-1\n", + "k [NO]^2[Cl2], where k = k1 * k2 / k-1\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Constant\n", + "R = 1.987 # cal / K / mol\n", + "\n", + "# Variables\n", + "K2_K1 = 4 # factor increase\n", + "T1 = 27 # C\n", + "T2 = 47 # C\n", + "\n", + "# Solution\n", + "T1 += 273.0\n", + "T2 += 273.0\n", + "Ea = log10(4) * 2.303 * R * (T1 * T2 / (T2 - T1))\n", + "print \"The activation energy for the reaction is\", \"{:.2e}\".format(Ea),\n", + "print \"cal /mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The activation energy for the reaction is 1.32e+04 cal /mol\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "a = 1 # mole\n", + "x = 3 / 4.0 # reaction completed\n", + "\n", + "# Solution\n", + "K = (2.303 / 6) * log10(1 / (1 - x))\n", + "print \"The rate constant is\", \"{:.3f}\".format(K), \"/min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The rate constant is 0.231 /min\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Solution\n", + "print \"Let the initial concentration be 100, when x = 25\",\n", + "print \" t = 30 minutes\"\n", + "a = 100\n", + "x = 25.0\n", + "t = 30 # minutes\n", + "K = 2.303 / t * log10(a / (a - x))\n", + "t05 = 0.683 / K\n", + "t = 2.303 / K * log10(a / x)\n", + "print \"K =\", \"{:.2e}\".format(K), \"/ min\"\n", + "print \"T0.5 =\", \"{:.2f}\".format(t05), \"min\"\n", + "print \"t =\", \"{:.1f}\".format(t), \"min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Let the initial concentration be 100, when x = 25 t = 30 minutes\n", + "K = 9.59e-03 / min\n", + "T0.5 = 71.21 min\n", + "t = 144.6 min\n" + ] + } + ], + "prompt_number": 15 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_1.ipynb new file mode 100644 index 00000000..b0e0ac54 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_1.ipynb @@ -0,0 +1,491 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5: Chemical Kinetics and Catalysis" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "K = 3.5 * 10 ** - 2 # Rate constant\n", + "\n", + "# Solution\n", + "print \"First order reaction = 0.693 / K\"\n", + "t_05 = 0.693 / K\n", + "print \"Time taken for half the initial concentration to react\", t_05, \"minutes\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "First order reaction = 0.693 / K\n", + "Time taken for half the initial concentration to react 19.8 minutes\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "t05 = 40 # minutes\n", + "\n", + "# Solution\n", + "print \"Rate constant = 0.693 / t05\"\n", + "K = 0.693 / t05\n", + "print \"Rate constant\", \"{:.4f}\".format(K), \"/ min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rate constant = 0.693 / t05\n", + "Rate constant 0.0173 / min\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "t0 = 37.0 # cm^3 of KMnO4\n", + "t5 = 29.8 # cm^3 of KMnO4\n", + "t15 = 19.6 # cm^3 of KMnO4\n", + "t25 = 12.3 # cm^3 of KMnO4\n", + "t45 = 5.00 # cm^3 of KMnO4\n", + "\n", + "# Solution\n", + "K5 = 2.303 / 5 * log10(t0 / t5)\n", + "K15 = 2.303 / 15 * log10(t0 / t15)\n", + "K25 = 2.303 / 25 * log10(t0 / t25)\n", + "K45 = 2.303 / 45 * log10(t0 / t45)\n", + "\n", + "print \"At t = 5 min, K =\", \"{:.3e}\".format(K5), \"/min\"\n", + "print \"At t = 15 min, K =\", \"{:.3e}\".format(K15), \"/min\"\n", + "print \"At t = 25 min, K =\", \"{:.3e}\".format(K25), \"/min\"\n", + "print \"At t = 45 min, K =\", \"{:.3e}\".format(K45), \"/min\"\n", + "print \"As the different values of K are nearly same, so the reaction\",\n", + "print \"is of first-order\"\n", + "K = (K45 + K25 + K5 + K15) / 4\n", + "print \"The average value of K = \", \"{:.3e}\".format(K), \"/min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "At t = 5 min, K = 4.329e-02 /min\n", + "At t = 15 min, K = 4.237e-02 /min\n", + "At t = 25 min, K = 4.406e-02 /min\n", + "At t = 45 min, K = 4.449e-02 /min\n", + "As the different values of K are nearly same, so the reaction is of first-order\n", + "The average value of K = 4.355e-02 /min\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem : 4, Page no: 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "t = 60 # min\n", + "x = \"0.5a\"\n", + "K = 5.2 * 10 ** - 3 # / mol L / min\n", + "\n", + "# Solution\n", + "a = 1 / (t * K)\n", + "print \"Initial concentration\", \"{:.3f}\".format(a), \"mol / L\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Initial concentration 3.205 mol / L\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Solution\n", + "print \"99.9 % / 50 % =\",\n", + "times = round((2.303 * log10(100 / (100 - 99.9))) / (2.303 * log10(100 / (100 - 50))))\n", + "print times\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "99.9 % / 50 % = 10.0\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Constants\n", + "R = 1.987 # cal / K / mol\n", + "\n", + "# Variables\n", + "T1 = 273.0 # K\n", + "T2 = 303.0 # K\n", + "K1 = 2.45 * 10 ** -5\n", + "K2 = 162 * 10 ** -5\n", + "\n", + "# Solution\n", + "Ea = log10(K2 / K1) * R * 2.303 / ((T2 - T1) / (T1 * T2))\n", + "print \"The activation energy of the reaction is\", int(Ea), \"cal / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The activation energy of the reaction is 22968 cal / mol\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "t05 = 30 # minutes\n", + "a = 0.1 # M\n", + "\n", + "# Solution\n", + "print \"For second order reaction,\"\n", + "print \"t0.5 = 1 / Ka\"\n", + "K = 1 / (a * t05)\n", + "print \"The rate constant is\", \"{:.3f}\".format(K), \"mol / lit / min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For second order reaction,\n", + "t0.5 = 1 / Ka\n", + "The rate constant is 0.333 mol / lit / min\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log\n", + "\n", + "# Variables\n", + "T = 500 # C\n", + "Pi = 350 # torr\n", + "r1 = 1.07 # torr / s\n", + "r2 = 0.76 # torr / s\n", + "\n", + "# Solution\n", + "print \"1.07 = k(0.95a)^n\"\n", + "print \"0.76 = k(0.80a)^n\"\n", + "n = log(r1 / r2) / log(0.95 / 0.80)\n", + "print \"Hence, order of reaction is\", round(n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.07 = k(0.95a)^n\n", + "0.76 = k(0.80a)^n\n", + "Hence, order of reaction is 2.0\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Applying steady state approximation to the concentration of NOCl2,\",\n", + "print \"we get\"\n", + "print \"d[NOCl2] / dt = 0 = k1 [NO] [Cl2] - k-1 [NOCl2] - k2 [NO] [NOCl2]\"\n", + "print \"[NOCl2] = k1 [NO] [Cl2] / (k-1 + k2 [NO])\"\n", + "print \"Now, the overall rate of reaction,\"\n", + "print \"d[NOCl2] / dt = k2 [NO] [NOCl2]\"\n", + "print \"From the above equations we get,\"\n", + "print \"(k1 k2 / k-1) * [NO]^2 * [Cl2], if k2[NO] << k-1\"\n", + "print \"k [NO]^2[Cl2], where k = k1 * k2 / k-1\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Applying steady state approximation to the concentration of NOCl2, we get\n", + "d[NOCl2] / dt = 0 = k1 [NO] [Cl2] - k-1 [NOCl2] - k2 [NO] [NOCl2]\n", + "[NOCl2] = k1 [NO] [Cl2] / (k-1 + k2 [NO])\n", + "Now, the overall rate of reaction,\n", + "d[NOCl2] / dt = k2 [NO] [NOCl2]\n", + "From the above equations we get,\n", + "(k1 k2 / k-1) * [NO]^2 * [Cl2], if k2[NO] << k-1\n", + "k [NO]^2[Cl2], where k = k1 * k2 / k-1\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Constant\n", + "R = 1.987 # cal / K / mol\n", + "\n", + "# Variables\n", + "K2_K1 = 4 # factor increase\n", + "T1 = 27 # C\n", + "T2 = 47 # C\n", + "\n", + "# Solution\n", + "T1 += 273.0\n", + "T2 += 273.0\n", + "Ea = log10(4) * 2.303 * R * (T1 * T2 / (T2 - T1))\n", + "print \"The activation energy for the reaction is\", \"{:.2e}\".format(Ea),\n", + "print \"cal /mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The activation energy for the reaction is 1.32e+04 cal /mol\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "a = 1 # mole\n", + "x = 3 / 4.0 # reaction completed\n", + "\n", + "# Solution\n", + "K = (2.303 / 6) * log10(1 / (1 - x))\n", + "print \"The rate constant is\", \"{:.3f}\".format(K), \"/min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The rate constant is 0.231 /min\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Solution\n", + "print \"Let the initial concentration be 100, when x = 25\",\n", + "print \" t = 30 minutes\"\n", + "a = 100\n", + "x = 25.0\n", + "t = 30 # minutes\n", + "K = 2.303 / t * log10(a / (a - x))\n", + "t05 = 0.683 / K\n", + "t = 2.303 / K * log10(a / x)\n", + "print \"K =\", \"{:.2e}\".format(K), \"/ min\"\n", + "print \"T0.5 =\", \"{:.2f}\".format(t05), \"min\"\n", + "print \"t =\", \"{:.1f}\".format(t), \"min\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Let the initial concentration be 100, when x = 25 t = 30 minutes\n", + "K = 9.59e-03 / min\n", + "T0.5 = 71.21 min\n", + "t = 144.6 min\n" + ] + } + ], + "prompt_number": 15 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry.ipynb new file mode 100644 index 00000000..b15856da --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry.ipynb @@ -0,0 +1,620 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Chapter 6: Electrochemistry" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "T = 25 # C\n", + "E = 0.296 # V\n", + "Cu = 0.015 # M\n", + "\n", + "# Solution\n", + "Eo = E - 0.0296 * log10(Cu)\n", + "print \"The standard electrode potential is\", \"{:.3f}\".format(Eo), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The standard electrode potential is 0.350 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "T = 25 # C\n", + "Cu = 0.1 # M\n", + "Zn = 0.001 # M\n", + "Eo = 1.1\n", + "\n", + "# Solution\n", + "E = Eo + 0.0296 * log10(Cu / Zn)\n", + "print \"The emf of Daniell cell is\", \"{:.4f}\".format(E), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The emf of Daniell cell is 1.1592 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K\n", + "F = 96500 # C / mol\n", + "\n", + "# Variables\n", + "Cu = 0.15 # M\n", + "Eo = 0.34 # V\n", + "T = 298 # K\n", + "n = 2 # moles\n", + "\n", + "# Solution\n", + "E = Eo + (2.303 * R * T) / (n * F) * log10(Cu)\n", + "print \"The single electrode potential for copper metal is\", \"{:.4f}\".format(E),\n", + "print \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The single electrode potential for copper metal is 0.3156 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "Eo_Cu = 0.3370 # Cu+2 -> Cu\n", + "Eo_Zn = - 0.7630 # Zn -> Zn +2\n", + "\n", + "# Solution\n", + "Eo_cell = Eo_Cu - Eo_Zn\n", + "print \"Daniel cell is, Zn | Zn +2 || Cu+2 | Cu\"\n", + "print \"Eo (cell) is\", Eo_cell, \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Daniel cell is, Zn | Zn +2 || Cu+2 | Cu\n", + "Eo (cell) is 1.1 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "Eo_Cu = 0.3370 # Cu+2 -> Cu\n", + "Eo_Cd = - 0.4003 # Cd -> Cd +2\n", + "\n", + "# Solution\n", + "Eo_cell = Eo_Cu - Eo_Cd\n", + "print \"Cell is, Cd | Cd +2 || Cu+2 | Cu\"\n", + "print \"Eo (cell) is\", Eo_cell, \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cell is, Cd | Cd +2 || Cu+2 | Cu\n", + "Eo (cell) is 0.7373 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "F = 96500 # C / mol\n", + "\n", + "# Variables\n", + "n = 2\n", + "T = 25 # C\n", + "Eo_Ag = 0.80 # Ag+ / Ag\n", + "Eo_Ni = - 0.24 # Ni+2 / Ni\n", + "\n", + "# Solution\n", + "Eo_Cell = Eo_Ag - Eo_Ni\n", + "print \"Standard free energy change,\"\n", + "delta_Go = - n * F * Eo_Cell\n", + "print delta_Go, \"J / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Standard free energy change,\n", + "-200720.0 J / mol\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"-------------------------\"\n", + "print \"Reduction half reaction:\",\n", + "print \"2Fe+3 + 2e- --> 2Fe+2\"\n", + "print \"Oxidation half reaction:\",\n", + "print \"Fe - 2e- --> Fe+2\"\n", + "print \"Overall cell reaction :\",\n", + "print \"2Fe+3 + Fe --> 3Fe+2\"\n", + "\n", + "print \"-------------------------\"\n", + "print \"Reduction half reaction:\",\n", + "print \"Hg+2 + 2e- --> Hg\"\n", + "print \"Oxidation half reaction:\",\n", + "print \"Zn - 2e- --> Zn+2\"\n", + "print \"Overall cell reaction :\",\n", + "print \"Hg+2 + Zn --> Hg + Zn+2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "-------------------------\n", + "Reduction half reaction: 2Fe+3 + 2e- --> 2Fe+2\n", + "Oxidation half reaction: Fe - 2e- --> Fe+2\n", + "Overall cell reaction : 2Fe+3 + Fe --> 3Fe+2\n", + "-------------------------\n", + "Reduction half reaction: Hg+2 + 2e- --> Hg\n", + "Oxidation half reaction: Zn - 2e- --> Zn+2\n", + "Overall cell reaction : Hg+2 + Zn --> Hg + Zn+2\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "F = 96500 # C / mol\n", + "\n", + "# Variables\n", + "E1o = - 2.48 # V\n", + "E2o = 1.61 # V\n", + "\n", + "# Solution\n", + "delta_G1 = - 3 * F * (- 2.48)\n", + "delta_G2 = - 1 * F * 1.61\n", + "print \"delta_G3 = delta_G1 + delta_G2\"\n", + "print \"delta_G3 = - 4 * F * E3o\"\n", + "E3o = (delta_G1 + delta_G2) / (- 4 * F)\n", + "print \"The reduction potential for the half-cell Pt/Ce, Ce+4\",\n", + "print \"is\", \"{:.4f}\".format(E3o), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta_G3 = delta_G1 + delta_G2\n", + "delta_G3 = - 4 * F * E3o\n", + "The reduction potential for the half-cell Pt/Ce, Ce+4 is -1.4575 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Anodic half reaction :\",\n", + "print \" Cd --> Cd+2 + 2e-\"\n", + "print \"Cathodic half reaction :\",\n", + "print \"2H+ + 2e- --> H2\"\n", + "print \"-\" * 50\n", + "print \"Overall cell reaction :\",\n", + "print \"Cd + 2H+ <--> Cd+2 + H2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Anodic half reaction : Cd --> Cd+2 + 2e-\n", + "Cathodic half reaction : 2H+ + 2e- --> H2\n", + "--------------------------------------------------\n", + "Overall cell reaction : Cd + 2H+ <--> Cd+2 + H2\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "T = 25 # C\n", + "Cu = 0.1 # M\n", + "Zn = 0.001 # M\n", + "Eo = 1.1 # V\n", + "\n", + "# Solution\n", + "print \"Zn(s) | Zn+2 (0.001M) || Cu+2(0.1M) | Cu(s)\"\n", + "Ecell = Eo + 0.0592 / 2 * log10(Cu / Zn)\n", + "print \"The emf of a Daniell cell is\", \"{:.4f}\".format(Ecell), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Zn(s) | Zn+2 (0.001M) || Cu+2(0.1M) | Cu(s)\n", + "The emf of a Daniell cell is 1.1592 V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "pH = 7 # O2\n", + "Eo = 1.229 # V\n", + "pO2 = 0.20 # bar\n", + "\n", + "# Solution\n", + "print \"Nearnst's equation at 25C is,\"\n", + "print \"E = Eo - (0.0592 / 2) * log(1 / ([H+]^2 * [pO2]^ (1/2)))\"\n", + "E = Eo - (0.0592 / 2) * log10(1.0 / (((10 ** (- 7)) ** 2) * (pO2 ** (1 / 2.0))))\n", + "print \"The reduction potential for the reduction is\",\n", + "print \"{:.3f}\".format(E), \"V\"\n", + "# descrepency due to calculation error in the book" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Nearnst's equation at 25C is,\n", + "E = Eo - (0.0592 / 2) * log(1 / ([H+]^2 * [pO2]^ (1/2)))\n", + "The reduction potential for the reduction is 0.804 V\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "E_KCl = 0.2415 # V\n", + "E_cell = 0.445 # V\n", + "\n", + "\n", + "# Solution\n", + "print \"Emf of the cell is\"\n", + "print \"At 25C,\"\n", + "print \"E = Er - El = Eref - ((RT)/ F) * ln H+\"\n", + "pH = (E_cell - E_KCl) / 0.059\n", + "\n", + "Eo_cell = - 0.8277 # V\n", + "print \"Thus, equilibrium constant for the reaction\"\n", + "print \"\\t 2H2O --> H3O+ + OH- may be calculated as\"\n", + "K = 10 ** (Eo_cell / 0.0591)\n", + "print \"K =\", \"{:.0e}\".format(K)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Emf of the cell is\n", + "At 25C,\n", + "E = Er - El = Eref - ((RT)/ F) * ln H+\n", + "Thus, equilibrium constant for the reaction\n", + "\t 2H2O --> H3O+ + OH- may be calculated as\n", + "K = 1e-14\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page no: 183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "EoSn = 0.15 # V\n", + "EoCr = - 0.74 # V\n", + "\n", + "# Solution\n", + "print \"3Sn+4 + 2Cr --> 3Sn+2 + 2Cr+3\"\n", + "Eo_cell = EoSn - EoCr\n", + "n = 6\n", + "K = 10 ** (n * Eo_cell / 0.0591)\n", + "print \"The equillibrium constant for th reaction is\", \"{:.2e}\".format(K)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3Sn+4 + 2Cr --> 3Sn+2 + 2Cr+3\n", + "The equillibrium constant for th reaction is 2.27e+90\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page no: 184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "T = 25 # C\n", + "Eo = - 0.8277 # V\n", + "\n", + "# Solution\n", + "print \"The reversible reaction,\"\n", + "print \"2H2O <--> H3O+ + OH-\"\n", + "print \"May be divided into two parts.\"\n", + "print \"2H2O + e- --> 1/2 H2 + OH- (cathode) Eo = -0.8277 V\"\n", + "print \"H2O + 1/2 H2 --> H3O+ + e- (anode) Eo = 0\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reversible reaction,\n", + "2H2O <--> H3O+ + OH-\n", + "May be divided into two parts.\n", + "2H2O + e- --> 1/2 H2 + OH- (cathode) Eo = -0.8277 V\n", + "H2O + 1/2 H2 --> H3O+ + e- (anode) Eo = 0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 15, Page no: 184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "E = 0.4 # V\n", + "\n", + "# Solution\n", + "print \"The cell is Pt(H2) | H+, pH2 = 1 atm\"\n", + "print \"The cell reaction is\"\n", + "print \"1/2 H2 --> H+ + e-\"\n", + "pH = E / 0.0591\n", + "print \"pH =\", \"{:.3f}\".format(pH)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The cell is Pt(H2) | H+, pH2 = 1 atm\n", + "The cell reaction is\n", + "1/2 H2 --> H+ + e-\n", + "pH = 6.768\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_1.ipynb new file mode 100644 index 00000000..b15856da --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_1.ipynb @@ -0,0 +1,620 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Chapter 6: Electrochemistry" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 1, Page no: 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "T = 25 # C\n", + "E = 0.296 # V\n", + "Cu = 0.015 # M\n", + "\n", + "# Solution\n", + "Eo = E - 0.0296 * log10(Cu)\n", + "print \"The standard electrode potential is\", \"{:.3f}\".format(Eo), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The standard electrode potential is 0.350 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 2, Page no: 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "T = 25 # C\n", + "Cu = 0.1 # M\n", + "Zn = 0.001 # M\n", + "Eo = 1.1\n", + "\n", + "# Solution\n", + "E = Eo + 0.0296 * log10(Cu / Zn)\n", + "print \"The emf of Daniell cell is\", \"{:.4f}\".format(E), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The emf of Daniell cell is 1.1592 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 3, Page no: 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Constant\n", + "R = 8.314 # J / K\n", + "F = 96500 # C / mol\n", + "\n", + "# Variables\n", + "Cu = 0.15 # M\n", + "Eo = 0.34 # V\n", + "T = 298 # K\n", + "n = 2 # moles\n", + "\n", + "# Solution\n", + "E = Eo + (2.303 * R * T) / (n * F) * log10(Cu)\n", + "print \"The single electrode potential for copper metal is\", \"{:.4f}\".format(E),\n", + "print \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The single electrode potential for copper metal is 0.3156 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 4, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "Eo_Cu = 0.3370 # Cu+2 -> Cu\n", + "Eo_Zn = - 0.7630 # Zn -> Zn +2\n", + "\n", + "# Solution\n", + "Eo_cell = Eo_Cu - Eo_Zn\n", + "print \"Daniel cell is, Zn | Zn +2 || Cu+2 | Cu\"\n", + "print \"Eo (cell) is\", Eo_cell, \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Daniel cell is, Zn | Zn +2 || Cu+2 | Cu\n", + "Eo (cell) is 1.1 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 5, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variable\n", + "Eo_Cu = 0.3370 # Cu+2 -> Cu\n", + "Eo_Cd = - 0.4003 # Cd -> Cd +2\n", + "\n", + "# Solution\n", + "Eo_cell = Eo_Cu - Eo_Cd\n", + "print \"Cell is, Cd | Cd +2 || Cu+2 | Cu\"\n", + "print \"Eo (cell) is\", Eo_cell, \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cell is, Cd | Cd +2 || Cu+2 | Cu\n", + "Eo (cell) is 0.7373 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 6, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "F = 96500 # C / mol\n", + "\n", + "# Variables\n", + "n = 2\n", + "T = 25 # C\n", + "Eo_Ag = 0.80 # Ag+ / Ag\n", + "Eo_Ni = - 0.24 # Ni+2 / Ni\n", + "\n", + "# Solution\n", + "Eo_Cell = Eo_Ag - Eo_Ni\n", + "print \"Standard free energy change,\"\n", + "delta_Go = - n * F * Eo_Cell\n", + "print delta_Go, \"J / mol\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Standard free energy change,\n", + "-200720.0 J / mol\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 7, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"-------------------------\"\n", + "print \"Reduction half reaction:\",\n", + "print \"2Fe+3 + 2e- --> 2Fe+2\"\n", + "print \"Oxidation half reaction:\",\n", + "print \"Fe - 2e- --> Fe+2\"\n", + "print \"Overall cell reaction :\",\n", + "print \"2Fe+3 + Fe --> 3Fe+2\"\n", + "\n", + "print \"-------------------------\"\n", + "print \"Reduction half reaction:\",\n", + "print \"Hg+2 + 2e- --> Hg\"\n", + "print \"Oxidation half reaction:\",\n", + "print \"Zn - 2e- --> Zn+2\"\n", + "print \"Overall cell reaction :\",\n", + "print \"Hg+2 + Zn --> Hg + Zn+2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "-------------------------\n", + "Reduction half reaction: 2Fe+3 + 2e- --> 2Fe+2\n", + "Oxidation half reaction: Fe - 2e- --> Fe+2\n", + "Overall cell reaction : 2Fe+3 + Fe --> 3Fe+2\n", + "-------------------------\n", + "Reduction half reaction: Hg+2 + 2e- --> Hg\n", + "Oxidation half reaction: Zn - 2e- --> Zn+2\n", + "Overall cell reaction : Hg+2 + Zn --> Hg + Zn+2\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 8, Page no: 181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "F = 96500 # C / mol\n", + "\n", + "# Variables\n", + "E1o = - 2.48 # V\n", + "E2o = 1.61 # V\n", + "\n", + "# Solution\n", + "delta_G1 = - 3 * F * (- 2.48)\n", + "delta_G2 = - 1 * F * 1.61\n", + "print \"delta_G3 = delta_G1 + delta_G2\"\n", + "print \"delta_G3 = - 4 * F * E3o\"\n", + "E3o = (delta_G1 + delta_G2) / (- 4 * F)\n", + "print \"The reduction potential for the half-cell Pt/Ce, Ce+4\",\n", + "print \"is\", \"{:.4f}\".format(E3o), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta_G3 = delta_G1 + delta_G2\n", + "delta_G3 = - 4 * F * E3o\n", + "The reduction potential for the half-cell Pt/Ce, Ce+4 is -1.4575 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 9, Page no: 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Anodic half reaction :\",\n", + "print \" Cd --> Cd+2 + 2e-\"\n", + "print \"Cathodic half reaction :\",\n", + "print \"2H+ + 2e- --> H2\"\n", + "print \"-\" * 50\n", + "print \"Overall cell reaction :\",\n", + "print \"Cd + 2H+ <--> Cd+2 + H2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Anodic half reaction : Cd --> Cd+2 + 2e-\n", + "Cathodic half reaction : 2H+ + 2e- --> H2\n", + "--------------------------------------------------\n", + "Overall cell reaction : Cd + 2H+ <--> Cd+2 + H2\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 10, Page no: 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "T = 25 # C\n", + "Cu = 0.1 # M\n", + "Zn = 0.001 # M\n", + "Eo = 1.1 # V\n", + "\n", + "# Solution\n", + "print \"Zn(s) | Zn+2 (0.001M) || Cu+2(0.1M) | Cu(s)\"\n", + "Ecell = Eo + 0.0592 / 2 * log10(Cu / Zn)\n", + "print \"The emf of a Daniell cell is\", \"{:.4f}\".format(Ecell), \"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Zn(s) | Zn+2 (0.001M) || Cu+2(0.1M) | Cu(s)\n", + "The emf of a Daniell cell is 1.1592 V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 11, Page no: 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "# Variables\n", + "pH = 7 # O2\n", + "Eo = 1.229 # V\n", + "pO2 = 0.20 # bar\n", + "\n", + "# Solution\n", + "print \"Nearnst's equation at 25C is,\"\n", + "print \"E = Eo - (0.0592 / 2) * log(1 / ([H+]^2 * [pO2]^ (1/2)))\"\n", + "E = Eo - (0.0592 / 2) * log10(1.0 / (((10 ** (- 7)) ** 2) * (pO2 ** (1 / 2.0))))\n", + "print \"The reduction potential for the reduction is\",\n", + "print \"{:.3f}\".format(E), \"V\"\n", + "# descrepency due to calculation error in the book" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Nearnst's equation at 25C is,\n", + "E = Eo - (0.0592 / 2) * log(1 / ([H+]^2 * [pO2]^ (1/2)))\n", + "The reduction potential for the reduction is 0.804 V\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 12, Page no: 183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "E_KCl = 0.2415 # V\n", + "E_cell = 0.445 # V\n", + "\n", + "\n", + "# Solution\n", + "print \"Emf of the cell is\"\n", + "print \"At 25C,\"\n", + "print \"E = Er - El = Eref - ((RT)/ F) * ln H+\"\n", + "pH = (E_cell - E_KCl) / 0.059\n", + "\n", + "Eo_cell = - 0.8277 # V\n", + "print \"Thus, equilibrium constant for the reaction\"\n", + "print \"\\t 2H2O --> H3O+ + OH- may be calculated as\"\n", + "K = 10 ** (Eo_cell / 0.0591)\n", + "print \"K =\", \"{:.0e}\".format(K)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Emf of the cell is\n", + "At 25C,\n", + "E = Er - El = Eref - ((RT)/ F) * ln H+\n", + "Thus, equilibrium constant for the reaction\n", + "\t 2H2O --> H3O+ + OH- may be calculated as\n", + "K = 1e-14\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 13, Page no: 183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "EoSn = 0.15 # V\n", + "EoCr = - 0.74 # V\n", + "\n", + "# Solution\n", + "print \"3Sn+4 + 2Cr --> 3Sn+2 + 2Cr+3\"\n", + "Eo_cell = EoSn - EoCr\n", + "n = 6\n", + "K = 10 ** (n * Eo_cell / 0.0591)\n", + "print \"The equillibrium constant for th reaction is\", \"{:.2e}\".format(K)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3Sn+4 + 2Cr --> 3Sn+2 + 2Cr+3\n", + "The equillibrium constant for th reaction is 2.27e+90\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 14, Page no: 184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "T = 25 # C\n", + "Eo = - 0.8277 # V\n", + "\n", + "# Solution\n", + "print \"The reversible reaction,\"\n", + "print \"2H2O <--> H3O+ + OH-\"\n", + "print \"May be divided into two parts.\"\n", + "print \"2H2O + e- --> 1/2 H2 + OH- (cathode) Eo = -0.8277 V\"\n", + "print \"H2O + 1/2 H2 --> H3O+ + e- (anode) Eo = 0\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reversible reaction,\n", + "2H2O <--> H3O+ + OH-\n", + "May be divided into two parts.\n", + "2H2O + e- --> 1/2 H2 + OH- (cathode) Eo = -0.8277 V\n", + "H2O + 1/2 H2 --> H3O+ + e- (anode) Eo = 0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem: 15, Page no: 184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "E = 0.4 # V\n", + "\n", + "# Solution\n", + "print \"The cell is Pt(H2) | H+, pH2 = 1 atm\"\n", + "print \"The cell reaction is\"\n", + "print \"1/2 H2 --> H+ + e-\"\n", + "pH = E / 0.0591\n", + "print \"pH =\", \"{:.3f}\".format(pH)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The cell is Pt(H2) | H+, pH2 = 1 atm\n", + "The cell reaction is\n", + "1/2 H2 --> H+ + e-\n", + "pH = 6.768\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State.ipynb new file mode 100644 index 00000000..229b5da3 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State.ipynb @@ -0,0 +1,431 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 7: Solid State" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 1, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Weiss indices \\t\\t\\t1/2, 2/3, infinity \\t2/3, 2, 1/3\"\n", + "print \"Reciprocal of Weiss indices 2, 3/2, 1/infinity \\t3/2, 1/2, 3\"\n", + "print \"Clear fractions\\t\\t\\t4, 3, 0 \\t3, 1, 6\"\n", + "print \"Miller indices \\t\\t\\t (430) \\t (316)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Weiss indices \t\t\t1/2, 2/3, infinity \t2/3, 2, 1/3\n", + "Reciprocal of Weiss indices 2, 3/2, 1/infinity \t3/2, 1/2, 3\n", + "Clear fractions\t\t\t4, 3, 0 \t3, 1, 6\n", + "Miller indices \t\t\t (430) \t (316)\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 2, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "\n", + "# Variable\n", + "a = 450 # pm\n", + "\n", + "# Solution\n", + "d220 = a / sqrt(2 ** 2 + 2 ** 2 + 0)\n", + "print \"Interplanar spacing\", int(d220)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Interplanar spacing 159\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 3, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Intercept \\t(a, b ,c)\\t\\t(a, 2b, c) \\t\\t(a, 2b, 2c) \\t\\t(infi, b, -c)\"\n", + "print \"Weiss indices\\t 1, 1, 1 \\t\\t 1, 2, 1 \\t\\t 1, 2, 2 \\t\\t infi, 1, -1\"\n", + "print \"Reciprocals \\t 1, 1, 1 \\t\\t 1, 1/2, 1 \\t\\t 1, 1/2, 1/2\\t\\t 0, 1, -1\"\n", + "print \"Miller indicec\\t (111) \\t\\t (212) \\t\\t (211) \\t\\t (011)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Intercept \t(a, b ,c)\t\t(a, 2b, c) \t\t(a, 2b, 2c) \t\t(infi, b, -c)\n", + "Weiss indices\t 1, 1, 1 \t\t 1, 2, 1 \t\t 1, 2, 2 \t\t infi, 1, -1\n", + "Reciprocals \t 1, 1, 1 \t\t 1, 1/2, 1 \t\t 1, 1/2, 1/2\t\t 0, 1, -1\n", + "Miller indicec\t (111) \t\t (212) \t\t (211) \t\t (011)\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 4, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "rNa = 0.98 * 10 ** - 10 # m\n", + "rCl = 1.81 * 10 ** - 10 # m\n", + "\n", + "# Solution\n", + "rr = rNa / rCl\n", + "print \"When the radius ration is\", \"{:.2f}\".format(rr),\n", + "print \", the coordination number is 6.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When the radius ration is 0.54 , the coordination number is 6.\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 5, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "rLi = 68 # pm\n", + "rF = 136. # pm\n", + "\n", + "# Solution\n", + "rr = rLi / rF\n", + "print \"Radius ratio =\", rr\n", + "print \"The structure of LiF is scc and C.N of Li+ = 6\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radius ratio = 0.5\n", + "The structure of LiF is scc and C.N of Li+ = 6\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 6, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sin\n", + "\n", + "\n", + "# Variables\n", + "lamda = 2 * 10 ** - 10 # m\n", + "theta = 30 # degrees\n", + "\n", + "# Solution\n", + "print \"For first-order reflection\"\n", + "d = lamda / (2 * sin(theta))\n", + "dist = 2 * d\n", + "print \"Hence, distance between planes is\", \"{:.0e}\".format(abs(dist)), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For first-order reflection\n", + "Hence, distance between planes is 2e-10 m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 7, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "\n", + "# Variables\n", + "r = 174.6 # pm\n", + "\n", + "# Solution\n", + "a = r * sqrt(8)\n", + "print \"For 200 plane: h = 2, k = 0, l = 0\"\n", + "d200 = a / sqrt(2 ** 2)\n", + "print \"d200 =\", \"{:.1f}\".format(d200), \"pm\"\n", + "print \"For 200 plane: h = 2, k = 2, l = 0\"\n", + "d220 = a / sqrt(2 ** 2 + 2 ** 2)\n", + "print \"d220 =\", d220, \"pm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For 200 plane: h = 2, k = 0, l = 0\n", + "d200 = 246.9 pm\n", + "For 200 plane: h = 2, k = 2, l = 0\n", + "d220 = 174.6 pm\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 8, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "N = 6.023 * 10 ** 23\n", + "\n", + "# Variables\n", + "wt = 55.6\n", + "p = 0.29 # nm\n", + "n = 2\n", + "\n", + "# Solution\n", + "print \"For BCC pattern,\"\n", + "print \"number of atoms per unit cell = 2\"\n", + "d = n * (wt * 10 ** -3) / (N * (p * 10 ** - 9) ** 3)\n", + "print \"Density of the metal is\", \"{:.2e}\".format(d), \"kg / m^3\"\n", + "print \"Number of nearest enighbour for BCC = 8\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For BCC pattern,\n", + "number of atoms per unit cell = 2\n", + "Density of the metal is 7.57e+03 kg / m^3\n", + "Number of nearest enighbour for BCC = 8\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 9, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Intercept \\t2a/2, 2b, c/3\"\n", + "print \"Weiss indices\\t1, 2, 1/3\"\n", + "print \"Reciprocals \\t1, 1/2, 3\"\n", + "print \"Miller indices\\t (216)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Intercept \t2a/2, 2b, c/3\n", + "Weiss indices\t1, 2, 1/3\n", + "Reciprocals \t1, 1/2, 3\n", + "Miller indices\t (216)\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 10, Page no: 211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "N = 6.023 * 10 ** 23\n", + "\n", + "# Variables\n", + "D = 0.53 # g / cm ^ 3\n", + "MM = 6.94 # g / mol\n", + "n = 2\n", + "\n", + "# Solution\n", + "print \"For BCC pattern,\"\n", + "print \"number of atoms per unit cell = 2\"\n", + "V = D * N / (n * MM)\n", + "V = 1 / V\n", + "print \"Volume of a unit cell of lithium metal is\", \"{:.2e}\".format(V), \"cc\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For BCC pattern,\n", + "number of atoms per unit cell = 2\n", + "Volume of a unit cell of lithium metal is 4.35e-23 cc\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 11, Page no: 211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "\n", + "print \"AB remain in BCC structure if the edge length is a then body diagonal\",\n", + "print \"is root(3)a\"\n", + "print \"root(3)a = 2(r+ + r-)\"\n", + "A = (sqrt(3) * 0.4123 - 2 * 0.81) / 2\n", + "print \"A+ =\", \"{:.2f}\".format(A), \"nm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "AB remain in BCC structure if the edge length is a then body diagonal is root(3)a\n", + "root(3)a = 2(r+ + r-)\n", + "A+ = -0.45 nm\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_1.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_1.ipynb new file mode 100644 index 00000000..229b5da3 --- /dev/null +++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_1.ipynb @@ -0,0 +1,431 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 7: Solid State" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 1, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Weiss indices \\t\\t\\t1/2, 2/3, infinity \\t2/3, 2, 1/3\"\n", + "print \"Reciprocal of Weiss indices 2, 3/2, 1/infinity \\t3/2, 1/2, 3\"\n", + "print \"Clear fractions\\t\\t\\t4, 3, 0 \\t3, 1, 6\"\n", + "print \"Miller indices \\t\\t\\t (430) \\t (316)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Weiss indices \t\t\t1/2, 2/3, infinity \t2/3, 2, 1/3\n", + "Reciprocal of Weiss indices 2, 3/2, 1/infinity \t3/2, 1/2, 3\n", + "Clear fractions\t\t\t4, 3, 0 \t3, 1, 6\n", + "Miller indices \t\t\t (430) \t (316)\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 2, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "\n", + "# Variable\n", + "a = 450 # pm\n", + "\n", + "# Solution\n", + "d220 = a / sqrt(2 ** 2 + 2 ** 2 + 0)\n", + "print \"Interplanar spacing\", int(d220)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Interplanar spacing 159\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 3, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Intercept \\t(a, b ,c)\\t\\t(a, 2b, c) \\t\\t(a, 2b, 2c) \\t\\t(infi, b, -c)\"\n", + "print \"Weiss indices\\t 1, 1, 1 \\t\\t 1, 2, 1 \\t\\t 1, 2, 2 \\t\\t infi, 1, -1\"\n", + "print \"Reciprocals \\t 1, 1, 1 \\t\\t 1, 1/2, 1 \\t\\t 1, 1/2, 1/2\\t\\t 0, 1, -1\"\n", + "print \"Miller indicec\\t (111) \\t\\t (212) \\t\\t (211) \\t\\t (011)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Intercept \t(a, b ,c)\t\t(a, 2b, c) \t\t(a, 2b, 2c) \t\t(infi, b, -c)\n", + "Weiss indices\t 1, 1, 1 \t\t 1, 2, 1 \t\t 1, 2, 2 \t\t infi, 1, -1\n", + "Reciprocals \t 1, 1, 1 \t\t 1, 1/2, 1 \t\t 1, 1/2, 1/2\t\t 0, 1, -1\n", + "Miller indicec\t (111) \t\t (212) \t\t (211) \t\t (011)\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 4, Page no: 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "rNa = 0.98 * 10 ** - 10 # m\n", + "rCl = 1.81 * 10 ** - 10 # m\n", + "\n", + "# Solution\n", + "rr = rNa / rCl\n", + "print \"When the radius ration is\", \"{:.2f}\".format(rr),\n", + "print \", the coordination number is 6.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When the radius ration is 0.54 , the coordination number is 6.\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 5, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables\n", + "rLi = 68 # pm\n", + "rF = 136. # pm\n", + "\n", + "# Solution\n", + "rr = rLi / rF\n", + "print \"Radius ratio =\", rr\n", + "print \"The structure of LiF is scc and C.N of Li+ = 6\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radius ratio = 0.5\n", + "The structure of LiF is scc and C.N of Li+ = 6\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 6, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sin\n", + "\n", + "\n", + "# Variables\n", + "lamda = 2 * 10 ** - 10 # m\n", + "theta = 30 # degrees\n", + "\n", + "# Solution\n", + "print \"For first-order reflection\"\n", + "d = lamda / (2 * sin(theta))\n", + "dist = 2 * d\n", + "print \"Hence, distance between planes is\", \"{:.0e}\".format(abs(dist)), \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For first-order reflection\n", + "Hence, distance between planes is 2e-10 m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 7, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "\n", + "# Variables\n", + "r = 174.6 # pm\n", + "\n", + "# Solution\n", + "a = r * sqrt(8)\n", + "print \"For 200 plane: h = 2, k = 0, l = 0\"\n", + "d200 = a / sqrt(2 ** 2)\n", + "print \"d200 =\", \"{:.1f}\".format(d200), \"pm\"\n", + "print \"For 200 plane: h = 2, k = 2, l = 0\"\n", + "d220 = a / sqrt(2 ** 2 + 2 ** 2)\n", + "print \"d220 =\", d220, \"pm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For 200 plane: h = 2, k = 0, l = 0\n", + "d200 = 246.9 pm\n", + "For 200 plane: h = 2, k = 2, l = 0\n", + "d220 = 174.6 pm\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 8, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "N = 6.023 * 10 ** 23\n", + "\n", + "# Variables\n", + "wt = 55.6\n", + "p = 0.29 # nm\n", + "n = 2\n", + "\n", + "# Solution\n", + "print \"For BCC pattern,\"\n", + "print \"number of atoms per unit cell = 2\"\n", + "d = n * (wt * 10 ** -3) / (N * (p * 10 ** - 9) ** 3)\n", + "print \"Density of the metal is\", \"{:.2e}\".format(d), \"kg / m^3\"\n", + "print \"Number of nearest enighbour for BCC = 8\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For BCC pattern,\n", + "number of atoms per unit cell = 2\n", + "Density of the metal is 7.57e+03 kg / m^3\n", + "Number of nearest enighbour for BCC = 8\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 9, Page no: 210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Solution\n", + "print \"Intercept \\t2a/2, 2b, c/3\"\n", + "print \"Weiss indices\\t1, 2, 1/3\"\n", + "print \"Reciprocals \\t1, 1/2, 3\"\n", + "print \"Miller indices\\t (216)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Intercept \t2a/2, 2b, c/3\n", + "Weiss indices\t1, 2, 1/3\n", + "Reciprocals \t1, 1/2, 3\n", + "Miller indices\t (216)\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 10, Page no: 211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Constant\n", + "N = 6.023 * 10 ** 23\n", + "\n", + "# Variables\n", + "D = 0.53 # g / cm ^ 3\n", + "MM = 6.94 # g / mol\n", + "n = 2\n", + "\n", + "# Solution\n", + "print \"For BCC pattern,\"\n", + "print \"number of atoms per unit cell = 2\"\n", + "V = D * N / (n * MM)\n", + "V = 1 / V\n", + "print \"Volume of a unit cell of lithium metal is\", \"{:.2e}\".format(V), \"cc\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For BCC pattern,\n", + "number of atoms per unit cell = 2\n", + "Volume of a unit cell of lithium metal is 4.35e-23 cc\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Problem 11, Page no: 211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "\n", + "print \"AB remain in BCC structure if the edge length is a then body diagonal\",\n", + "print \"is root(3)a\"\n", + "print \"root(3)a = 2(r+ + r-)\"\n", + "A = (sqrt(3) * 0.4123 - 2 * 0.81) / 2\n", + "print \"A+ =\", \"{:.2f}\".format(A), \"nm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "AB remain in BCC structure if the edge length is a then body diagonal is root(3)a\n", + "root(3)a = 2(r+ + r-)\n", + "A+ = -0.45 nm\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_1.ipynb b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_1.ipynb new file mode 100644 index 00000000..40471853 --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_1.ipynb @@ -0,0 +1,607 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Circuit Configuration for Linear Integrated Ciruits"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1 Page No:1.81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "adm= -1482.0\n",
+ "acm= -0.222\n",
+ "cmrr= 76.4838188131 db\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "rc=50000;#ohm\n",
+ "re=100000;#ohm\n",
+ "rs=10000;#ohm\n",
+ "rp=50000;#ohm\n",
+ "beta0=2000;\n",
+ "r0=400000;#ohm\n",
+ "\n",
+ "\n",
+ "\n",
+ "#determine adm,acm,cmrr\n",
+ "#calculation\n",
+ "rc1=(rc*r0)/(rc+r0);\n",
+ "adm=(-(beta0*rc1)/(rs+rp))#differential mode gain\n",
+ "acm=(-(beta0*rc1)/(rs+rp+2*re*(beta0+1e0)))#common mode gain\n",
+ "import math\n",
+ "cmrr=20*(math.log10((1+((2*re*(beta0+1))/(rs+rp)))))#common mode rejection ratio\n",
+ "\n",
+ "#result\n",
+ "print 'adm=',round(adm,3);\n",
+ "print 'acm=',round(acm,3);\n",
+ "print 'cmrr=',cmrr,'db'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2 Page No:1.83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum peak amplitude at 100khz 3.185 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "sr=0.000001;#volt/sec\n",
+ "freq=100000;\n",
+ "vsat=12;\n",
+ "baw=100000;\n",
+ "#determine vx\n",
+ "\n",
+ "#calculation\n",
+ "vx=2*(1/(sr*2*3.14*freq))\n",
+ "\n",
+ "#result\n",
+ "print 'maximum peak amplitude at 100khz',round(vx,3),'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3 Page No: 1.84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "slew rate= 5 volt/μsec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "V=20;\n",
+ "t=4;\n",
+ "#determine slew rate\n",
+ "#calculation\n",
+ "w=V/t\n",
+ "#result\n",
+ "print'slew rate=',w,'volt/μsec'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4 Page No: 1.84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max frequency of input is 79617.8343949 hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "a=50;\n",
+ "vi=20e-3;\n",
+ "sr=0.5e6;\n",
+ "#determine max frequency\n",
+ "#calculation\n",
+ "vm=a*vi;\n",
+ "freq=sr/(2*3.14*vm)\n",
+ "#result\n",
+ "print 'max frequency of input is ',freq,'hz'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5 Page No: 1.84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max peak to peak input signal 0.398089171975 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "sr=0.5e6;\n",
+ "freq=40e3;\n",
+ "a=10;\n",
+ "#determine max peak to peak input signal\n",
+ "#calculation\n",
+ "vm=sr/(2*3.14*freq);\n",
+ "vm=2*vm;\n",
+ "v1=vm/a\n",
+ "#result\n",
+ "print'max peak to peak input signal ',v1,'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 6 Page No: 1.85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "noise 0.0063247 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "adm=400;\n",
+ "cmrr=50;\n",
+ "vin1=50e-3;\n",
+ "vin2=60e-3;\n",
+ "vnoise=5e-3;\n",
+ "#calculation\n",
+ "v0=(vin2-vin1)*adm;\n",
+ "acm=adm/316.22;\n",
+ "v1=vnoise*acm\n",
+ "print'noise ',round(v1,7),'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7 Page No: 1.86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time to change from 0 t0 15 4e-07 sec\n",
+ "slew rate 1.5 volt/μsec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "sr=35e6;#volt/sec\n",
+ "vsat=15;#volt\n",
+ "#determine time to change from 0 to 15V\n",
+ "#calculation\n",
+ "c=100e-12;#farad\n",
+ "i=150e-6;#A\n",
+ "w=vsat/sr\n",
+ "w1=i/c;\n",
+ "#result\n",
+ "print'time to change from 0 t0 15 ',round(w,7),'sec'\n",
+ "print'slew rate',w1/1000000,'volt/μsec'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8 Page No: 1.86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandwidth 21231.4225053 hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "sr=2e6;#v/sec\n",
+ "vsat=15;#volt\n",
+ "#determine bandwidth \n",
+ "#calculation\n",
+ "\n",
+ "bw=sr/(2*3.14*vsat)\n",
+ "#result\n",
+ "print'bandwidth ',bw,'hz'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9 Page No: 1.87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output offset 3.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "iin=30e-9;#A\n",
+ "a=1e5;\n",
+ "rin=1000;#ohm\n",
+ "#determine output offset voltage\n",
+ "#calculation\n",
+ "vid=iin*rin;\n",
+ "v0=a*vid\n",
+ "#result\n",
+ "print'output offset ',v0,'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10 Page No: 1.86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "input offset current 4e-06 A\n",
+ "input base current 2.4e-05 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "inb1=22e-6;#A\n",
+ "inb2=26e-6;#A\n",
+ "#determine input offset current input base current\n",
+ "#calculation\n",
+ "i1=inb2-inb1\n",
+ "i2=(inb2+inb1)/2\n",
+ "#result\n",
+ "print'input offset current ',i1,'A'\n",
+ "print'input base current ',i2,'A'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 11 Page No: 1.86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "input base current 8e-08 A\n",
+ "input offset current 2e-08 A\n",
+ "input offset 2.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "inb2=90e-9;#A\n",
+ "inb1=70e-9;#A\n",
+ "a=1e5;\n",
+ "#determine input offset current\n",
+ "#calculation\n",
+ "i1=(inb2+inb1)/2\n",
+ "i2=inb2-inb1\n",
+ "v1=((inb2-inb1)*1000)*a\n",
+ "print'input base current ',i1,'A'\n",
+ "print'input offset current ',i2,'A'\n",
+ "print'input offset ',v1,'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12 Page No: 1.87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage cmrr 100 0.051 V\n",
+ "output voltage cmrr 200 0.051 V\n",
+ "output voltage cmrr 450 0.05 V\n",
+ "output voltage cmrr 105 0.051 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "vin1=150e-6;#volt\n",
+ "vin2=100e-6;#volt\n",
+ "a=1000;\n",
+ "from array import array\n",
+ "cmrr=array('i',[100,200,450,105])\n",
+ "#determine output voltage\n",
+ "#calculation\n",
+ "vc=(vin1+vin2)/2;\n",
+ "vd=(vin1-vin2);\n",
+ "j=0;\n",
+ "while j<=3 :v0=(a*vd*(1+(vc/(cmrr[j]*vd)))) ;print 'output voltage cmrr ',cmrr[j],' ',round(v0,3),'V';j=j+1;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13 Page No: 1.87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 0.003 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "rin=100e3;#ohm\n",
+ "rf1=900e3;#ohm\n",
+ "vc=1;#volt\n",
+ "cmrr=70;\n",
+ "#determine the output voltage\n",
+ "#calculation\n",
+ "v0=(1+(rf1/rin))*vc/3160\n",
+ "print 'output voltage ',round(v0,3),'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14 Page No: 1.89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "input voltage 0.08 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "sr=0.5e6;#volt/sec\n",
+ "a=50;\n",
+ "freq=20e3;#hz\n",
+ "#determine max peak to peak voltage\n",
+ "#calculation\n",
+ "v1=sr/(2*3.14*freq*a)\n",
+ "print'input voltage ',round(v1,3),'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15 Page No: 1.90"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max frequency 26.539 Khz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "sr=50e6;#volt/sec\n",
+ "rin=2;\n",
+ "vimax=10;\n",
+ "#determine max frequency\n",
+ "#calculation\n",
+ "vm=vimax*(1+rin);\n",
+ "freq=sr/(2*3.14*vm)/10e3;\n",
+ "print 'max frequency ',round(freq,3),'Khz'\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_2.ipynb b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_2.ipynb new file mode 100644 index 00000000..7106978b --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_2.ipynb @@ -0,0 +1,871 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Chapter 2 Applications Of Operational Amplifier"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1 pagenumber 2.86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1= 100.0 kohm\n",
+ "R2= 10 kohm\n",
+ "R3= 1 kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "Rf=10;#ohm\n",
+ "gain1=0.1;\n",
+ "gain2=1;\n",
+ "gain3=10;\n",
+ "#determine r1,r1,r3 \n",
+ "\n",
+ "print 'R1=',Rf/gain1,'kohm';\n",
+ "print 'R2=',Rf/gain2,'kohm';\n",
+ "print 'R3=',Rf/gain3,'kohm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 2 pagenumber 2.86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 3.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "v1=5;#volt\n",
+ "v2=2;#volt\n",
+ "rf1=10e3;#ohm\n",
+ "r1=10e3;#ohm\n",
+ "#determine output voltage\n",
+ "v0=-((-v1*rf1/r1)-(-v2*rf1/r1));#output voltage\n",
+ "print 'output voltage ',v0,'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 4 pagenumber 2.87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "switch off gain 1.0\n",
+ "switch on gain -2.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r1=10e3;#ohm\n",
+ "rf1=20e3;#ohm\n",
+ "r2=5e3;#ohm\n",
+ "#determine gain of amplifier\n",
+ "a1=1+rf1/r1;#gain\n",
+ "a2=-rf1/r1;\n",
+ "print 'switch off gain ',a1+a2;\n",
+ "print 'switch on gain',a2;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 5 pagenumber 2.87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 6.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "v1=2;#volt\n",
+ "v2=3;#volt\n",
+ "r1=1e3;#ohm\n",
+ "rf1=5e3;#ohm\n",
+ "r2=8e3;#ohm\n",
+ "#determine output voltage\n",
+ "v11=v2*r2/(r2+r1);#output voltage\n",
+ "print 'output voltage ',(1+rf1/r1)*(v2-v1),'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6 pagenumber 2.90"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "gain amplifer 4.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r1=2e3;#ohm\n",
+ "rf1=8e3;#ohm\n",
+ "A=45;\n",
+ "#determine gain\n",
+ "a=1+(rf1/r1)\n",
+ "gain=A/(1+A/a);\n",
+ "print 'gain amplifer ',gain\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 7 pagenumber 2.91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "commom mode rejection ratio 929.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r1=1e3;#ohm\n",
+ "r2=100e3;#ohm\n",
+ "rf1=90e3;#ohm\n",
+ "#determine cmrr\n",
+ "ac=10e3/(r1+r2);#common mode gain\n",
+ "ad=(rf1+r1*((r2)/(r1+r2)*2))/r1;#differential mode gaih\n",
+ "print 'commom mode rejection ratio ',ad/ac#error in book\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 8 pagenumber 2.92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output current -4.0 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "ii1=2e-3;#A\n",
+ "rf1=2e3;#ohm\n",
+ "r0=2e3;#ohm\n",
+ "#determine output current\n",
+ "i0=-(ii1+(ii1*rf1)/r0)#output current\n",
+ "\n",
+ "print 'output current',i0*1e3,'mA'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 10 pagenumber 2.94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage -0.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "v1=5;#volt\n",
+ "v2=2;#volt\n",
+ "r1=10e3;#ohm\n",
+ "rf1=r1;#ohm\n",
+ "#determine output voltage\n",
+ "v01=-v1*(rf1/r1);#output voltage\n",
+ "v0=-(rf1/r1)*(v01+v1)\n",
+ "\n",
+ "print 'output voltage ',v0,'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 11 pagenumber 2.95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage -5.0 v1 + 2.0 v2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "rf1=10e3;#ohm\n",
+ "r1=2e3;#ohm\n",
+ "r2=5e3;#ohm\n",
+ "#determine output voltage\n",
+ "print 'output voltage ',-rf1/r1,'v1 +',rf1/r2,'v2'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 13 pagenumber 2.97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1= 1.592 Kohm\n",
+ "Ri= 10 Kohm\n",
+ "Rf= 5.76 Kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "freq=1e3;#hz\n",
+ "c=0.1e-6;#farad\n",
+ "#determine rf ri r1\n",
+ "r1=1/(2*3.14*freq*c)\n",
+ "print 'R1=',round(r1/1e3,3),'Kohm'\n",
+ "print 'Ri= 10 Kohm'\n",
+ "ri=10e3;\n",
+ "rf=(1.576-1)*ri;\n",
+ "print 'Rf=',rf/1000,'Kohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 14 pagenumber 2.97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1= 796.0 ohm\n",
+ "R2= 9.0 ohm\n",
+ "R3= 32.0 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "fc=3e3;#hz\n",
+ "q=30;\n",
+ "af=20;\n",
+ "c=0.1e-6;#farad\n",
+ "#determine r1 r2 r3\n",
+ "r1=q/(2*3.14*fc*c*af)\n",
+ "r2=q/(2*3.14*fc*c*(2*q*q-af))\n",
+ "r3=q/(3.14*fc*c)/1e3;\n",
+ "print 'R1=',round(r1),'ohm'\n",
+ "print 'R2=',round(r2),'ohm'\n",
+ "print 'R3=',round(r3),'ohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 15 pagenumber 2.98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R= 11.0 Kohm\n",
+ "Rf1= 66.0 Kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "fc=1.5e3;#hz\n",
+ "c=0.01e-6;#farad\n",
+ "r1=33e3;#ohm\n",
+ "#determine rf1\n",
+ "r=1/(2*3.14*fc*c)\n",
+ "rf1=2*r1\n",
+ "print 'R= ',round(r/1e3),'Kohm'\n",
+ "print 'Rf1=',round(rf1/1e3),'Kohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 16 pagenumber 2.99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1= 3.18 Kohm\n",
+ "R2= 723.8 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "f1=500;#hz\n",
+ "f2=2.2e3;#hz\n",
+ "a=5;\n",
+ "c=0.1e-6;#farad\n",
+ "rf1=10e3;#ohm\n",
+ "#determine r1 r2\n",
+ "r1=1/(2*3.14*f1*c)\n",
+ "r2=1/(2*3.14*f2*c)\n",
+ "print 'R1=',round(r1/1000,2),'Kohm'\n",
+ "print 'R2=',round(r2,1),'ohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 17 pagenumber 2.100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Vin 0.1 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "R=100e3;#ohm\n",
+ "IB=1e-6;#A\n",
+ "Vt=25e-3;#volt\n",
+ "v0=0;#volt\n",
+ "#determine Vin\n",
+ "Vin=(v0*2.3*Vt)+(R*IB);#input voltage\n",
+ "print \"Vin \",round(Vin,3),\" volt\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 18 pagenumber 2.101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1= 1885.0 Kohm\n",
+ "R2= 29 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "freq=100;#hz\n",
+ "c=0.1e-6;#farad\n",
+ "#determine r1 r2\n",
+ "r2=29;#assume\n",
+ "r1=((0.065/(freq*c))*10)*r2\n",
+ "print 'R1=',round(r1/1e3,3),'Kohm'\n",
+ "print 'R2= 29 ohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 19 pagenumber 2.101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1= 10.0 Kohm\n",
+ "Rf1= 5.0 Kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "freq=15.9e3;#hz\n",
+ "a=1.5;\n",
+ "#determine rf1 r1\n",
+ "c=0.001e-6;#farad\n",
+ "r1=1/(2*3.14*freq*c)\n",
+ "rf1=(a-1)*(1/(2*3.14*freq*c))#feedback resistance\n",
+ "print 'R=',round(r1/1e3,1),'Kohm'\n",
+ "print'Rf=',round(rf1/1e3,1),'Kohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 20 pagenumber 2.103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 14.7 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "v1=2;#volt\n",
+ "v2=3;#volt\n",
+ "v3=6;#volt\n",
+ "v4=8;#volt\n",
+ "rf1=50e3;#ohm\n",
+ "r1=40e3;#ohm\n",
+ "r2=25e3;#ohm\n",
+ "r3=10e3;#ohm\n",
+ "r4=20e3;#ohm\n",
+ "#determine output voltage\n",
+ "v0x=-(v1*rf1/r1)-(v2*rf1/r2);\n",
+ "vn=12e3*v3/(r3+12e3)+(7.5e3*v4/(r4+7.5e3));\n",
+ "v0y=(1+rf1/(r1*r2/(r1+r2)))*vn;\n",
+ "print 'output voltage ',round(v0x+v0y,1),'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 22 pagenumber 2.105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage -25 volt\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHeFJREFUeJzt3Xu8bXO9//HXm51q51oqEm2FOkqSUg6yqsNRCZtfyaYT\n+vX4PbrpdCGXOrbq/NBtnzrx6zyQVDgbIVKiskSnKPdCqBRRsVNulct+//4YYy1zL3OtNddaY84x\n55jv5+MxH3vOcZnzMzvO+sz3+I7xHbJNREQEwEp1FxAREf0jTSEiIsalKURExLg0hYiIGJemEBER\n49IUIiJiXJpCRA9J2lfSJXXXETGZNIVoDEm3SnpQ0n0tj8/XXVdVJH1a0k2S7pV0g6S3tqzbRNI3\nJP1R0jJJ50vapM56YzClKUSTGNjZ9motjwPqLqpC91N8v9WBtwGfk7R1uW4N4GxgE+CZwOXAN2qp\nMgZamkIMBUn/T9IZLa+PlvTd8vlakr5Z/sr+k6RzJa3Xsu2opI9L+mGZPs6RtLakkyX9RdLlkp7T\nsv1ySe+V9EtJd0n6pCRNUtcLJF1Y/rq/UdKbJvsOthfbvql8fjlwCbB1+fontk+0/WfbjwD/ATxf\n0lpz+18uhk2aQjRN2z++wAeAzSS9TdJ2wP7Av7TscwKwQfn4K/CFCfvvCewDrAc8D/hRuc9TgRuA\nwydsvxuwJfBSYNfy81YsVHoKcCHwNeDpwFuAYyX9w7RfUnoy8HLgZ5Ns8irgTtv3TPdeEa3SFKJJ\nBJwt6Z6Wx9sBbP8VeCuwBPgq8B7bd5Tr/mT7LNt/s30/8H+B7Vve18CJtn9t+17g28BNtr9v+1Hg\ndGCLCbUcXf5qv43iV/teberdGfi17ZNsL7d9NXAmMGlaaPFF4GrbFzzufwTp2RRN7QMdvE/ECubV\nXUBEhQzsavv7bVfal0v6FbA2xR9yACTNp2gW/wyMHW5ZVZL82IyRf2h5q78Bf5zwetUJH3dby/Pf\nAs9qU9JzgFdIav01Pw/4Srv6W+r9FLAp8Oo2654OXAAcY3vpVO8T0U6SQgwNSe8GVgHuAA5qWfVB\nigHarWyvQZESxOSHojqZWniDCc9/12ab3wIX216r5bGa7XdP8R2OoGheO5appnXdWhQN4WzbR3ZQ\nY8TjpClE00w2oLsJ8HFgb4qxhIMkbV6uXpViHOEvkp7K48cHJr7vZM2i1YckrSlpfeAAoN2v9vOA\nTSTtI+kJ5ePlkl4wyXc4hOIw1A4TxwokrQ58B7jU9qEd1BfRVppCNM25E65T+LqklSnGEY6yfZ3t\nW4BDga9KegLFMf8nA3cD/0MxZjAxDXjC86nWQ3E66BXAVcA3KQalV9jX9n3AjhQDzL8D7gSOpEgz\n7fw7sD5wS8v3O7hctxB4GbBfy7p7y/GFiI6pH2+yI2kniv9HXRk43vbRNZcU0TFJy4GNbP+q7loi\nZqrvkkL5q+4LwE4Ug2l7dXKKXkREzF3fNQVgK+AW27fafhj4b4rzvCMGRf/F74gO9eMpqeux4ul8\ntwOvqKmWiBmzvXLdNUTMVj8mhfzKioioST8mhd9RnGExZn2KtDBOUhpHRMQs2J7ylOp+TAo/BTaW\ntEDSKhRzzpwzcaMHHjD/+q9m3XXNmWcauzmPww8/vPYa8v3y/Ybx+zX5u9md/Zbuu6bgYobH91Bc\niHM9sNT2DRO3mz8fliyB006Dgw6CRYtg2bJeVxsR0Sx91xQAbH/b9vNtb+RpLtffdlu45hp45jNh\ns83grLN6VWVERPP0ZVOYqaalhpGRkbpL6Kp8v8HW5O/X5O/Wqb68onk6K05euaIHH4TDDoOlS+GY\nY2Dhwh4XFxHRpyThaQaaG9cUxlx6Key3H7z85fCf/wlPe1qPiouI6FOdNIVGHD5qJ2MNEREz19ik\n0CqpISJiyJNCq6SGiIjODEVSaJXUEBHDKkmhjaSGiIjJDV1SaJXUEBHDJElhGkkNERErGuqk0Cqp\nISKaLklhBpIaIiKSFNpKaoiIJkpSmKWkhogYVkkK00hqiIimSFKoQFJDRAyTJIUZSGqIiEGWpFCx\npIaIaLokhVlKaoiIQZOk0EVJDRHRREkKFUhqiIhBkKTQI0kNEdEUSQoVS2qIiH6VpFCDpIaIGGRJ\nCl2U1BAR/SRJoWZJDRExaJIUeiSpISLqlqTQR5IaImIQ9F1SkLQY+N/AXeWiQ2yfP2GbgUsKrZIa\nIqIOg5oUDHzW9hbl4/xp9xgwSQ0R0a/6sSkATNnJmmD+fFiyBE47DQ46CBYtgmXL6q4qIoZdvzaF\n90q6RtIJktasu5huSmqIiH5Sy5iCpAuBddqsOgz4MY+NJ3wcWNf22yfsP9BjCpPJWENEdFMnYwrz\nelVMK9s7dLKdpOOBc9utW7x48fjzkZERRkZGqiitVmOp4SMfKVLDMcfAwoV1VxURg2p0dJTR0dEZ\n7dOPZx+ta/vO8vn7gZfbXjRhm0YmhVZJDRFRtUE9++hoSddKugbYHnh/3QXVIWMNEVGHvksKnRiG\npNAqqSEiqjCoSSEmSGqIiF5JUhgwSQ0RMVtJCg2U1BAR3ZSkMMCSGiJiJpIUGi6pISKqlqTQEEkN\nETGdJIUhktQQEVVIUmigpIaIaCdJYUglNUTEbCUpNFxSQ0SMSVKIpIaImJEkhSGS1BAx3JIUYgVJ\nDRExnSSFIZXUEDF8khRiUkkNEdFOkkJwySWw//5JDRFNV0lSkPQpSatLeoKk70m6W9Jbqysz6rbd\ndkkNEVGYNilIusb25pIWAjsDHwAusf3iXhQ4SU1JCl2S1BDRXFWNKcwr/90ZOMP2X4D8RW6opIaI\n4dZJUjgK2A34G7AVsCZwru1XdL+8SWtKUuiBpIaIZqkqKSwGtgFeZvsh4AFg17mXF/0uqSFi+HSS\nFK60/dLplvVSkkLvJTVEDL45JQVJ60raEpgv6aWStiz/HQHmV1xr9LmkhojhMGlSkLQvsC+wJfDT\nllX3AV+2fWa3i5tMkkK9khoiBlMnSaGTw0d72P56pZXNUZpC/R58EA47DJYuhWOOgYUL664oIqYz\np6Yg6YMUp56KFU9BFWDbn62q0JlKU+gfSQ0Rg2OuZx+tVj5WbXne+ojIWENEw2Tuo6hMUkNEf6tq\n7qP1JZ0l6a7y8XVJz66uzGiKpIaIwdfJxWsnAucAzyof55bLZk3SmyT9XNKjkiZeA3GIpJsl3Shp\nx7l8TvTe/PmwZEkxAH3QQbBoESxbVndVEdGpTprC022faPvh8vFl4Blz/NzrgIXAD1oXStoU2BPY\nFNgJOFZS7vkwgJIaIgZTJ39wl0l6q6SVJc2TtA9w91w+1PaNtm9qs2pX4NSy+dwK3EIx31IMoKSG\niMHTSVPYH3gz8HvgTuBNwH5dqudZwO0tr28H1uvSZ0WPJDVEDI5502/CA7bfONM3lnQhsE6bVYfa\nPncGb9X2NKPFixePPx8ZGWFkZGQm5UWPjaWG3XcvzlA6/fScoRTRbaOjo4yOjs5on06uaL4Z+DWw\nFDjT9j2zLbDNe18EfND2leXrgwFsH1W+Ph843PZlE/bLKakDLFdDR9SjklNSbW8MfBR4EXCFpG9W\nfDvO1gLPAd4iaRVJGwIbA5dX+FnRBzLWENG/Ojqzx/Zltt9PMeh7D3DSXD5U0kJJtwGvBM6T9O3y\nc64HTgOuB74NvCuRoLky1hDRfzo5fLQGxemjewIbAWcBS21f0f3yJq0pvaJhcjV0RPdVdee1q4GX\nAB8DNrF9UJ0NIZopqSGiP3SSFFayvbxH9XQkSaHZkhoiuqOqgea+agjRfEkNEfXJLKnR15IaIqpT\n1ZhCRG2SGiJ6q5MxhWcA7wAW8NgV0La9f3dLm7KmJIUhlNQQMTdVJYVvAKsDFwLntTwieiqpIaL7\nOkkKV9t+SY/q6UiSQiQ1RMxcVUnhm5LeUFFNEZVIaojojk6Swv3AfOAh4OFysW2v3uXapqopSSHG\nJTVEdKaq6xRWtb2S7SfZXq181NYQIiZKaoiozqRJQdI/2L5h4j2Ux4xNd12HJIWYTFJDxOQ6SQpT\nNYXjbL9D0ihtbnRj+9WVVDkLaQoxldyvIaK9OTWFfpamEJ1IaohYUa5ojqE2cazh7LPrriii/yUp\nxFAYSw1bbQWf/3xSQwynJIWI0lhqeMYzkhoiptLR/RSAvYENbX9M0gbAOrZru3dykkLMRVJDDKuq\nksKxwNbAovL1/eWyiIGU1BAxuU6SwlW2txj7t1x2je3Ne1Jh+5qSFKISSQ0xTKpKCg9JWrnlTZ8O\n5G5s0QhJDREr6iQp7AO8GdgSOAn4X8BHbJ/W/fImrSlJISqX1BBNV9XcR18DPgwcCdwB7FpnQ4jo\nlqSGiM6SwlNbX1JMeXGf7Ycn2aXrkhSi25IaoomqGlO4ErgbuBm4qXz+G0lXStpy7mVG9J+khhhW\nnSSF44AzbH+nfL0jxbjCicDnbG/V9SofX1OSQvRMUkM0RVVJYeuxhgBg+4Jy2Y+AVeZYY0TfS2qI\nYdJJU7hT0oclPUfSAkkHAX8oT1PNqakxFObPhyVLium4DzwQ9t4bli2ru6qI6nXSFBYB6wNnA2cB\nGwB7AStTnKo6Y5LeJOnnkh5tvYlP2XT+Kumq8pErp6OvJDVE09UyS6qkF1CkjP8CPjh2FzdJC4Bz\nbW82zf4ZU4jaZawhBk0lYwqSniHp05K+Jemi8vH9uRRm+0bbN83lPSLqltQQTdTJ4aOTgRuB5wKL\ngVuBn3avJDYsDx2NStq2i58TMWcTxxoWLcpYQwy2eR1s8zTbx0s6wPbFwMWSpm0Kki4E1mmz6lDb\n506y2x3A+rbvKccazpb0Qtv3Tdxw8eLF489HRkYYGRnp4KtEdMdYajjssCI1HHss7LZb3VXFsBsd\nHWV0dHRG+3RyncKPbb9S0gXA5yn+cJ9u+3mzLbTlvS+iZUyh0/UZU4h+lrGG6FdVXafwCUlrAh8E\nPgQcD7y/gvrGjBcoae2xGVklPRfYGPhVhZ8V0XUZa4hB1klS2Nb2pdMtm9GHSgspUsfawF+Aq2y/\nTtIewBHAwxRnJ/2b7fPa7J+kEAMhqSH6SSdJoeOb7Ey3rJfSFGKQPPhgMdawdGnGGqJec2oKkrYG\n/pHiUNFneewwz2rAwtx5LWJmkhqibnMdU1iFogGsXP67avm4l2JCvIiYgYw1xCDo5PDRc2z/pkf1\ndCRJIQZdUkPUYa6Hjya7lgDAtneZS3FzkaYQTZCxhui1uTaFkSn2c3khWy3SFKJJkhqiVyo5+6h8\noycCm1DcivMXdd6Ks6wnTSEaJakheqGqU1JHgJOAsXGFDYC3JSlEVC+pIbqpqiuaPwvsaPtVtl8F\n7AgsqaLAiFhRzlCKunWSFK61/eLplvVSkkIMg6SGqFpVSeEKScdLGpH0aknH092psyOCpIaoRydJ\n4YnAe4BtykWXAMfa/nuXa5uqpiSFGCpJDVGFqpLCG4Av2N69fCypsyFEDKOkhuiVTpLCl4HXABcD\nS4HzbT/S/dKmrClJIYZWUkPMViVJwfa+wEbAGcBewK8knVBJhRExY0kN0U0dXbwGIGkV4J+B/YFX\n2a7t90mSQkQhqSFmopKkIOn15SGkmylmRz0OeGYlFUbEnCQ1RNU6GVM4lcfGEv7Wk6qmkaQQ8XhJ\nDTGdqsYU9rJ9dr80hIhoL6khqtDxmEI/SVKImFpSQ7RT1XUKETFgkhpitjoZaH5fJ8sior/Mnw9L\nlhTTcR94IOy9NyxbVndV0e86SQr7tlm2X8V1RESXJDXETEx157W9gEXAdhTzHY1ZDXjU9mu7X157\nGVOImJ2MNQy3ud6O8znAhsBRwIeBsTe6D7imzqku0hQiZi93eRteld2Os9+kKUTMXVLD8Knqiub7\nWh5/l7Rc0r3VlRkRdchYQ7Qzo6QgaSVgF+CVtg/uWlXT15GkEFGhpIbhUPl1CraX2z4b2GlOlUVE\nX0lqiDGdzH20R8vLlYAtge1tbz3rD5U+BewMPAT8EtjP9l/KdYdQzMT6KHCA7Qva7J+kENElSQ3N\nVVVSeCPFH/CdgR0pzj7adY61XQC80PbmwE3AIQCSNgX2BDalSCPHloesIqJHkhqGW+1nH0laCOxh\ne58yJSy3fXS57nxgse0fT9gnSSGiB5IamqWqs4+eJ+lcSXdLukvSNyQ9t7oy2R/4Vvn8WcDtLetu\nB9ar8LMiYgaSGobPvA62OQX4ArB7+XpP4FTgFVPtJOlCYJ02qw61fW65zWHAQ7ZPmeKt2kaCxYsX\njz8fGRlhZGRkqnIiYpbG5lDaffciNZx+elLDoBgdHWV0dHRG+3Qy0Hyt7RdPWHZNOR4wa5L2Bd4B\nvHbsXg2SDgawfVT5+nzgcNuXTdg3h48iapCroQdbJVc0Szoa+DNFOoAiKawFfBLA9p9mUdhOwGco\nzmK6u2X5phTJZCuKw0bfBTaa2AHSFCLqlbGGwVRVU7iVSQ7hALY94/EFSTcDqwBjDeVHtt9VrjuU\nYpzhEeB9tr/TZv80hYiaJTUMnqqawpMm3oqz3bJeSlOI6B9JDYOjqusU/qfDZRExhHKGUrNMNXX2\nuhSniJ5McV8FURxGWh34ou0X9KrINrUlKUT0oaSG/jbXpLAj8GmKAd/PlM8/A3wAOLSqIiOiOZIa\nBl9Hcx/Z/nqP6ulIkkJE/0tq6D9VDTQfTnHYaOzwEQC2P1ZFkbORphAxGHKGUn+paqD5gfJxP7Ac\neD2wYM7VRUTjjV0NvXQpHHgg7L03LFtWd1UxlRlPiCfpicAFtrfvTkkd1ZCkEDFgkhrq15V7NEt6\nKnC57Y3mUtxcpClEDK6MNdSnqllSr2t5/Bz4BfC5qoqMiOGSM5T6WycDzQvKp6aYeuKPth/ubllT\nS1KIaIakht6qJCnYvhVYE9gFWEhxV7SIiDlLaug/nSSF91FMcX0mxWmpuwHH2f5898ubtKYkhYiG\nSWrovqquU7gOeKXtB8rXTwF+bHuzyiqdoTSFiGbKGUrdVdV1ClBcn9DueUREZXJdQ/06aQonApdJ\nWizpCODHwJe6W1ZEDLOMNdSno+sUJG0JbEtxBtIltq/qdmHT1JPDRxFDImMN1enKxWv9IE0hYrhk\nrKEaaQoR0ShJDXNT5UBzRETtMtbQfUkKETGQkhpmLkkhIhorqaE7khQiYuAlNXQmSSEihkJSQ3WS\nFCKiUZIaJpekEBFDJ6lhbpIUIqKxkhpWlKQQEUMtqWHmkhQiYigkNfRxUpD0KUk3SLpG0pmS1iiX\nL5D0V0lXlY9j66gvIponqaEztSQFSTsA37O9XNJRALYPLu8Hfe50N/BJUoiIuRjW1NC3ScH2hbbH\nbtZzGfDsOuqIiOGU1DC5fhho3h/4VsvrDctDR6OStq2rqIhottzlrb2uNQVJF0q6rs3jjS3bHAY8\nZPuUctEdwPq2twA+AJwiabVu1RgRkdSwonndemPbO0y1XtK+wOuB17bs8xDwUPn8Skm/BDYGrpy4\n/+LFi8efj4yMMDIyUkHVETGMxlLDHnvAfvvB6ac3Y6xhdHSU0dHRGe1T10DzTsBngO1t392yfG3g\nHtuPSnou8APgRbb/PGH/DDRHRFc0+S5vfXvnNUk3A6sAfyoX/cj2uyTtARwBPAwsB/7N9nlt9k9T\niIiuuvTSIjU06Qylvm0Kc5WmEBG90LTUkKYQEVGBpqSGvr1OISJikGy77fCcoZSkEBExA4OcGpIU\nIiIq1vTUkKQQETFLg5YakhQiIrqoiakhSSEiogKDkBqSFCIieqQpqSFJISKiYv2aGpIUIiJqMMip\nIUkhIqKL+ik1JClERNRs0FJDkkJERI/UnRqSFCIi+sggpIYkhYiIGtSRGpIUIiL6VL+mhiSFiIia\n9So1JClERAyAfkoNSQoREX2km6khSSEiYsDUnRqSFCIi+lTVqSFJISJigNWRGpIUIiIGQBWpIUkh\nIqIhepUakhQiIgbMbFNDkkJERAN1MzUkKUREDLCZpIYkhYiIhqs6NdSSFCR9HNgFMLAM2Nf2beW6\nQ4D9gUeBA2xf0Gb/JIWIiAmmSw39nBQ+aXtz2y8BzgYOB5C0KbAnsCmwE3CspKFLM6Ojo3WX0FX5\nfoOtyd9v0L9bFamhlj+4tu9rebkqcHf5fFfgVNsP274VuAXYqsfl1W7Q/8OcTr7fYGvy92vCd5s/\nH5YsgdNOgwMPhL33hmXLOt+/tl/hkv5d0m+BfYEjy8XPAm5v2ex2YL0elxYRMfBmmxq61hQkXSjp\nujaPNwLYPsz2BsCJwH9M8VYZPIiImIWJqaETtZ+SKmkD4Fu2XyTpYADbR5XrzgcOt33ZhH3SKCIi\nZmG6geZ5vSqklaSNbd9cvtwVuKp8fg5wiqTPUhw22hi4fOL+032piIiYnVqaAnCkpOdTnHb6S+Cd\nALavl3QacD3wCPCunHsaEdE7tR8+ioiI/jFw1wBI2knSjZJulvThuuupkqQvSfqDpOvqrqUbJK0v\n6SJJP5f0M0kH1F1TVSQ9SdJlkq6WdL2kI6ffa/BIWlnSVZLOrbuWqkm6VdK15fd73GHrQSdpTUln\nSLqh/G/0lW23G6SkIGll4BfAPwG/A34C7GX7hloLq4ik7YD7ga/Y3qzueqomaR1gHdtXS1oVuALY\nrUH/95tv+0FJ84BLgQ/ZvrTuuqok6QPAlsBqtnepu54qSfo1sKXtP9VdSzdIOgm42PaXyv9Gn2L7\nLxO3G7SksBVwi+1bbT8M/DfFQHUj2L4EuKfuOrrF9u9tX10+vx+4geLalEaw/WD5dBVgZaBRf1wk\nPRt4PXA80NSTPRr5vSStAWxn+0sAth9p1xBg8JrCesBtLa9zcduAkrQA2AK4bOotB4eklSRdDfwB\nuMj29XXXVLElwIHA8roL6RID35X0U0nvqLuYim0I3CXpRElXSjpO0vx2Gw5aUxicY10xqfLQ0RnA\n+8rE0Ai2l5fzeT0beJWkkZpLqoyknYE/2r6Khv6aBraxvQXwOuDd5eHcppgHvBQ41vZLgQeAg9tt\nOGhN4XfA+i2v12fFaTGiz0l6AvB14Gu2e3Ab8t4rY/l5wMvqrqVC/wjsUh53PxV4jaSv1FxTpWzf\nWf57F3AWzZp37Xbgdts/KV+fQdEkHmfQmsJPgY0lLZC0CsWMqufUXFN0SJKAE4DrbU81tcnAkbS2\npDXL508GduCxizIHnu1Dba9ve0PgLcD3bf9L3XVVRdJ8SauVz58C7Ag05ixA278HbpO0Sbnon4Cf\nt9u2rovXZsX2I5LeA3yHYiDvhKacuQIg6VRge+Bpkm4D/s32iTWXVaVtgH2AayWN/cE8xPb5NdZU\nlXWBk8qp3lcCvmr7ezXX1E1NO5T7TOCs4ncL84CT293LZcC9Fzi5/EH9S2C/dhsN1CmpERHRXYN2\n+CgiIrooTSEiIsalKURExLg0hYiIGJemEBER49IUIiJiXJpCNJakNSS9c4r1P+xlPVUop3d+at11\nRHOlKUSTrQW8a7KVtrfpYS1VyYVF0VVpCtFkRwHPK2+acvTElZLuL/8dkTQq6fTyBiRfa/dmkg4o\nbxB0TXn1OZKeUt4c6bJy9sldyuUrS/q0pOvK7d9TLn9tud21kk4ory4dSwCLJV1Rrnt+ufxpki4o\nb0p0HOVkdOXnnlfe1Oc6SW+u/n++GEYDNc1FxAx9GHhhOfNlO62/ul8CbArcCfxQ0ja2Jx5e+jCw\nwPbDklYvlx0GfM/2/uXcR5dJ+i7wNmADYHPbyyWtJelJwInAa2zfUt705J3A58pa7rK9ZXnI60PA\nO4DDgR/Y/oSk1wNvLz93J+B3tt8A0FJPxJwkKUSTzWSK58tt3+Fi3pergQVttrkWOEXS3sCj5bId\ngYPLuZwuAp5I0QxeC/yX7eUAtu8Bng/82vYt5b4nAa9qef8zy3+vbPn87YCvle/xLR67CdO1wA6S\njpK0re17Z/BdIyaVphBR+HvL80dpn6LfABxDMeXwT8rbwwLsbnuL8rHA9o3l8olNaeJ4gCYsG6th\n4uc/rrnZvpniJkXXAZ+Q9NH2XytiZtIUosnuA1ar4o3Kab83sD1KcXOSNYBVKWbsPaBlu7FDVRcC\n/2escUhaC7gJWCDpeeU2bwUunuajfwAsKt/jdRSD50haF/ib7ZOBTzPJ3PgRM5WmEI1lexnF+MB1\n7QaaWfFX+sRf8RNfrwx8VdK1FId3PlfeTOfjwBPKweGfAUeU2x8P/JZimvCrgb1s/41iuuLTy/d5\nBPjiJLWMvT6C4i5uPwMWAr8pl29GMX5xFfDRso6IOcvU2RERMS5JISIixqUpRETEuDSFiIgYl6YQ\nERHj0hQiImJcmkJERIxLU4iIiHFpChERMe7/A5+nZCRnS2RUAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0xa347f60>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#given\n",
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import plot, text, xlabel, ylabel, show, axes, title, gca\n",
+ "from numpy import arange, nditer\n",
+ "rc1=1;\n",
+ "vi=5;#volt\n",
+ "c=1e-6;#farad\n",
+ "r=1e6;#ohm\n",
+ "#determine output voltage\n",
+ "v0=-(1/rc1)*(vi*5)#output voltage\n",
+ "from array import array\n",
+ "x=array('f',[0,1,2,3,4,5,6])\n",
+ "y=array('f',[0,-5,-10,-15,-20,-25,-30])\n",
+ "plot(x,y) \n",
+ "title(\"Example 22\")\n",
+ "xlabel(\"t in seconds\")\n",
+ "ylabel(\"output voltage in volts\")\n",
+ "print 'output voltage ',v0,'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 23 paenumber 2.106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 0.01 -0.414 volt\n",
+ "output voltage 0.1 -0.474 volt\n",
+ "output voltage 1.0 -0.533 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "from array import array\n",
+ "vi=array('f',[10e-3,100e-3,1]);\n",
+ "r1=1e3;#ohm\n",
+ "i1=10e-13;#A\n",
+ "#determine output voltage\n",
+ "w=0;\n",
+ "import math\n",
+ "while w<3 : v0=-(0.02571)*(math.log(vi[w]/(i1*r1))); print'output voltage',round(vi[w],3),round(v0,3),'volt'; w=w+1;#error in book\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 24 pagenumber 2.107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 0.067 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "k1=1.38e-23;#j/k\n",
+ "t1=298;#k\n",
+ "q=1.6e-19;#columb\n",
+ "vi=10e-3;#volt\n",
+ "ri=10e3;#ohm\n",
+ "#determine output voltage\n",
+ "import math\n",
+ "v0=-(k1*t1/q)*0.4343*math.log(vi/ri)/2.303;#output voltage\n",
+ "print 'output voltage ',round(v0,3),'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 25 pagenumber 2.108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 14751.04 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "rf1=10e3;#ohm\n",
+ "vi=1e-2;#volt\n",
+ "#determine output voltage\n",
+ "import math\n",
+ "v0=math.exp(-vi/26e-3)*rf1*2.167;#output voltage\n",
+ "print'output voltage ',round(v0,2),'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26 pagenumber 2.109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "quality factor 3.333\n",
+ "lower frequency 1291.781 hz\n",
+ "upper frequency 1741.781 hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "freq=1.5e3;#hz\n",
+ "bw=450;#hz\n",
+ "#determine qualityfactor f1 f2\n",
+ "q=freq/bw;#quality factor\n",
+ "import math\n",
+ "f1=freq*math.sqrt(1+(1/(4*q*q)))-freq/(2*q);#lower frequency\n",
+ "f2=freq*math.sqrt(1+(1/(4*q*q)))+bw/2;#upper frequency\n",
+ "print'quality factor ',round(q,3)\n",
+ "print'lower frequency ',round(f1,3),'hz'\n",
+ "print'upper frequency ',round(f2,3),'hz'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Exammple 27 pagenumber 2.109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rf 7.962 Kohm\n",
+ "R1 796.178 ohm\n",
+ "Cf 0.01 μfarad\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "freq=200;#hz\n",
+ "vi=2;#volt\n",
+ "c1=0.1e-6;#farad\n",
+ "freqb=2000;#hz\n",
+ "#determine cf1 rf1 r1\n",
+ "rf1=1/(2*3.14*freq*c1);#feedback resistance\n",
+ "r1=1/(2*3.14*c1*freqb);#input resistance\n",
+ "cf1=r1*c1/rf1;#feedback capacitance\n",
+ "print'Rf ',round(rf1/1e3,3),' Kohm'\n",
+ "print'R1 ',round(r1,3),'ohm'\n",
+ "print'Cf ',round(cf1*1e6,3),' μfarad'#error in book\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_4.ipynb b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_4.ipynb new file mode 100644 index 00000000..8136593e --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_4.ipynb @@ -0,0 +1,815 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Chapter 4 Analog to Digital and Digital to Analog converters"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1 pagenumber 4.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 5.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "z='0101';\n",
+ "n=4;\n",
+ "vof=15;#volt\n",
+ "#determine v0\n",
+ "r=vof/(pow(2,n)-1);\n",
+ "v0=r*int(z,2);#output voltage\n",
+ "print 'output voltage ',round(v0,3),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 2 pagenumber 4.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output offset 5.1 volt\n",
+ "output voltage 3.84 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r=20e-3;\n",
+ "z='11000000';\n",
+ "n=8;\n",
+ "#determine output voltage output offset voltage\n",
+ "vof=r*(pow(2,n)-1);#output offsetvoltage\n",
+ "v0=r*int(z,2);#output voltage\n",
+ "print 'output offset ',round(vof,3),'volt';\n",
+ "print 'output voltage ',round(v0,3),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3 pagenumber 4.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 0111 = 2331.0 milivolt\n",
+ "output voltage 1111 = 4995.0 milivolt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=4;\n",
+ "import numpy as np\n",
+ "z=np.array(['0111','1111']);\n",
+ "vref=5;#volt\n",
+ "#determine v0\n",
+ "r=vref*pow(10,3)/(pow(2,n)-1)\n",
+ "i=0;\n",
+ "while i<2 : v0=r*int(z[i],2); print'output voltage ',z[i],' = ',round(v0),'milivolt';i=i+1;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 4 pagenumber 4.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "full scale output voltage 31.77 volt\n",
+ "Resolution 0.03 %\n",
+ "output voltage 15.24 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=12;\n",
+ "r=8e-3;#volt\n",
+ "z='011101110001';\n",
+ "#determine output voltage\n",
+ "vof=r*pow(2,n)-1;\n",
+ "v0=r*int(z,2);#output voltage\n",
+ "r=r*1e2/vof;\n",
+ "print'full scale output voltage',round(vof,2),'volt';\n",
+ "print'Resolution',round(r,2),'%';\n",
+ "print'output voltage ',round(v0,3),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 5 pagenumber 4.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minumum number of bits 16384\n",
+ "minmum voltage 610.0 μvolt\n",
+ "quantization error 176.0 μvolt\n",
+ "sampling rate 5.0 Khz\n",
+ "aperture time 0.01 μsecond\n",
+ "converter 84 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "fs=1e3;#hz\n",
+ "r=0.01;\n",
+ "vref=10;#volt\n",
+ "#determine n vmin rms fs1 t1 z\n",
+ "r=0.01/100;\n",
+ "n=14;\n",
+ "print'minumum number of bits ',pow(2,14);\n",
+ "vm=vref*pow(10,6)/pow(2,n);#minmum voltage\n",
+ "print'minmum voltage ',round(vm),'μvolt';\n",
+ "import math\n",
+ "eq=vref/(pow(2,n)*2*math.sqrt(3));#quantization error\n",
+ "print'quantization error ',round(eq*pow(10,6)),'μvolt';\n",
+ "fs1=5*fs;#sampling rate\n",
+ "print'sampling rate ',fs1/1e3,'Khz';\n",
+ "t1=1/(2*3.14*fs*pow(2,n));#aperture time\n",
+ "print'aperture time ',round(t1*pow(10,6),3),'μsecond';#error in book\n",
+ "print'converter ',6*n,'dB';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6 pagenumber 4.40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R = 5.0 Kohm\n",
+ "I at 1100 = 1.4 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "vref=10;#volt\n",
+ "Is=1.875e-3;#A\n",
+ "#determine R I\n",
+ "n=4;\n",
+ "v0=vref*pow(10,3)/pow(2,n)*(1*pow(2,(n-1))+1*pow(2,(n-2))+1*pow(2,(n-3))+1*pow(2,(n-4)));\n",
+ "r=v0/((Is)*pow(10,6));\n",
+ "print'R = ',round(r,3),' Kohm';\n",
+ "v0=vref*pow(10,3)/pow(2,n)*(1*pow(2,(n-1))+1*pow(2,(n-2)));\n",
+ "print'I at 1100 = ',round(v0/pow(10,3)/r,3),'mA';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 7 pagenumber 4.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "N= 6.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "vmin=1e-3;#volt\n",
+ "vref=10;#volt\n",
+ "q=0.01;\n",
+ "#determine n\n",
+ "import math\n",
+ "n=math.log10(((0.5)/0.01)+1)/math.log10(2);\n",
+ "print'N= ',round(n);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "##Example 8 pagenumber 4.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R in percent 0.392 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=8;\n",
+ "#determine R\n",
+ "r=1*100e0/(pow(2,n)-1);\n",
+ "print'R in percent ',round(r,3),'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 9 pagenumber 4.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution in percent 3.0 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=5;\n",
+ "#determine resolution\n",
+ "r=1*100/(pow(2,n)-1);#Resolution\n",
+ "print'Resolution in percent ',round(r,3),'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 10 pagenumber 4.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum voltage each bit 300.0 milivolt\n",
+ "output voltage at 100110 = 12.063 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import numpy as np\n",
+ "z=np.array(['111111','100110']);\n",
+ "vref1=20;#volt\n",
+ "#determine output voltage\n",
+ "e=1*pow(10,3)/int(z[0],2)*vref1;#minimum voltage\n",
+ "print'minimum voltage each bit ',round(e,3),'milivolt';\n",
+ "e=int(z[1],2)*1e0/int(z[0],2)*vref1;#output voltage\n",
+ "print'output voltage at ',z[1],' = ',round(e,3),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 11 pagenumber 4.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution 0.02 volt\n",
+ "Resolution in percent 0.024 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "import math\n",
+ "n=12;\n",
+ "vref1=50e0;#volt\n",
+ "vref2=-50e0;#volt\n",
+ "#determine Resolution\n",
+ "r=float((vref1-vref2)/(pow(2,n)-(1)));\n",
+ "print'Resolution ',round(r,2),'volt';\n",
+ "r=1*1e2/(pow(2,n)-(1));\n",
+ "print'Resolution in percent ',round(r,3),'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 12 pagenumber 4.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution 19.55 milivolt\n",
+ "Resolution in percent 0.098 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=10e0;\n",
+ "vref1=-10e0;#volt\n",
+ "vref2=10e0;#volt\n",
+ "#determine Resolution \n",
+ "r=(vref2-vref1)/(pow(2,n)-(1));#Resolution\n",
+ "print'Resolution ',round(r*1e3,2),'milivolt';\n",
+ "r=100/(pow(2,n)-(1));\n",
+ "print'Resolution in percent ',round(r,3),'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 13 pagenumber 4.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution in percent 0.024 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=12e0;\n",
+ "#determine Resolution \n",
+ "r=1/(pow(2,n)-(1));\n",
+ "r=r*100;#Resolution\n",
+ "print'Resolution in percent ',round(r,3),'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 14 pagenumber 4.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "change in voltage 178.0 milivolt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=7;\n",
+ "vmax=25.4;#volt\n",
+ "#determine voltage \n",
+ "r=1*pow(10,3)/(pow(2,n)-1);\n",
+ "print'change in voltage ',round(r*vmax),'milivolt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 15 pagenumber 4.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "N = 11.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r=5e-3;#volt\n",
+ "vref=8;#volt \n",
+ "#determine N\n",
+ "import math\n",
+ "n=math.log10(1/(r/vref)+(1))/math.log10(2);\n",
+ "print'N =',round(n);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 16 pagenumber 4.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "conversion time = 9.0 μs\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "fs=1e6;#hz\n",
+ "n=8;\n",
+ "#determine conversion time\n",
+ "tc=(1/fs)*(n+1);\n",
+ "print'conversion time = ',round(tc*pow(10,6),(3)),'μs';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 17 pagenumber 4.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage 1000.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "vref=10;#volt\n",
+ "vin=100e-3;#volt\n",
+ "#determine output voltage\n",
+ "v0=vref*vin/pow(10,-3);#output voltage\n",
+ "print'output voltage ',round(v0),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 18 pagenumber 4.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution of 1th 62.5 μA\n",
+ "Output current 937.5 μA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=4;\n",
+ "z='1111';\n",
+ "r=10e3;#ohm\n",
+ "r1=20e3;#ohm\n",
+ "vref=10;#volt\n",
+ "#determine Resolution output current\n",
+ "r=((1)*pow(10,6)/pow(2,n))*vref/r;#Resolution\n",
+ "print'Resolution of 1th ',round(r,3),'μA';\n",
+ "iout=r*int(z,2);#Output current\n",
+ "print'Output current ',round(iout,3),'μA';#error in book\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 19 pagenumber 4.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum input voltage 39.0 milivolt\n",
+ "input voltage at 1s 10.0 volt\n",
+ "decimal at 5.2 volt = 0b10000101\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=8;\n",
+ "vref=10;#volt\n",
+ "#determine input voltage\n",
+ "vmin=vref*pow(10,3)/pow(2,n);#minimum input voltage\n",
+ "print'minimum input voltage ',round(vmin,3),'milivolt';\n",
+ "vif=vref-vmin/pow(10,3);#input voltage\n",
+ "print'input voltage at 1s ',round(vif,3),'volt';\n",
+ "vin=5.2;\n",
+ "D=vin/vmin;D=133;z=bin(D);\n",
+ "print'decimal at ',round(vin,3),'volt = ',z;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 20 pagenumber 4.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage at 01 = 2.5 volt\n",
+ "output voltage at 0111 = 4.37 volt\n",
+ "output voltage at 10111100 = 7.36 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "vref=10;#volt\n",
+ "import numpy as np\n",
+ "z=np.array(['01','0111','10111100']);\n",
+ "n=2;\n",
+ "#determine output voltage\n",
+ "v0=vref*1e0/pow(2,2);#output voltage\n",
+ "print'output voltage at ',z[0],' = ',round(v0,3),'volt';\n",
+ "n=4\n",
+ "v0=vref*1e0*(1*pow(10,3)/pow(2,2)+1*pow(10,3)/pow(2,3)+1*pow(10,3)/pow(2,4));#output voltage\n",
+ "print'output voltage at ',z[1],' = ',round(v0/pow(10,3),3),'volt';\n",
+ "v0=vref*(1*pow(10,3)*1e0/2+1*pow(10,3)/pow(2,3)+1*pow(10,3)/pow(2,4)+1*pow(10,3)/pow(2,5)+1*pow(10,3)/pow(2,6)+1*pow(10,3)/pow(2,8));\n",
+ "print'output voltage at ',z[2],' = ',round(v0/pow(10,3),3),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 21 pagenumber 4.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage at 0110 = 3.75 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=4;\n",
+ "z='0110';\n",
+ "vref=10e0;\n",
+ "#determine output voltage\n",
+ "v0=vref*(1*pow(10,3)/pow(2,2)+1*pow(10,3)/pow(2,3));#output voltage\n",
+ "print'output voltage at ',z,' = ',round(v0/pow(10,3),3),'volt';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 22 pagenumber 4.47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SNRmax = 61.96 dB\n",
+ "ENOB = 9.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "n=10;\n",
+ "vfs=10.24;#volt\n",
+ "distortion=56;#dB\n",
+ "#determine ENOB SNRmax\n",
+ "import math\n",
+ "q=vfs/(pow(2,n)*math.sqrt(12));\n",
+ "snrmax=(6.02*n+1.76);\n",
+ "print'SNRmax = ',round(snrmax,3),'dB';\n",
+ "en=(distortion-1.76)/6.02;\n",
+ "print'ENOB = ',round(en);\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_5.ipynb b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_5.ipynb new file mode 100644 index 00000000..e51854b5 --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/Chapter_5.ipynb @@ -0,0 +1,468 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "#Chapter 5 Special Integrated Circuits"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1 pagenumber 5.95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1 72.0 Kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "w=8e-3;#second\n",
+ "c1=0.1e-6;#farad\n",
+ "#determine r1\n",
+ "r1=w/(1.11*c1);\n",
+ "print'R1 ',round(r1/1e3),'Kohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 2 pagenumber 5.95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency 9.667 Khz\n",
+ "dutycycle 0.667\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "ra=5e3;#ohm\n",
+ "rb=ra;\n",
+ "c1=0.01e-6;#farad\n",
+ "#determine frequency dutycycle\n",
+ "freq=1.45/((ra+2*rb)*c1);#frequency\n",
+ "w=(ra+rb)/(ra+2*rb);#dutycycle\n",
+ "print'frequency ',round(freq/1e3,3),'Khz'\n",
+ "print'dutycycle ',round(w,3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 3 pagenumber 5.96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Ra 3.625 Kohm\n",
+ "Rb 1.813 Kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "freq=2e3;#hz\n",
+ "w=0.75;\n",
+ "c1=0.1e-6;#farad\n",
+ "#determine ra rb\n",
+ "#for 0.75 dutycycle rb=0.5*ra\n",
+ "ra=1.45/freq*(1/(c1*2));\n",
+ "rb=0.5*round(ra);\n",
+ "print'Ra ',round(ra/1e3,3),'Kohm'\n",
+ "print'Rb ',round(rb/1e3,3),'Kohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 4 pagenumber 5.97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "on time 0.062 milisecond\n",
+ "tof 0.047 milisecond\n",
+ "frequency 9.177 Khz\n",
+ "duty cycle 0.139\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "ra=2.2e3;#ohm\n",
+ "rb=6.8e3;#ohm\n",
+ "c1=0.01e-6;#farad\n",
+ "#determine ontime offtime frequency dutycycle\n",
+ "t1=0.69*(ra+rb)*c1;#on time\n",
+ "t2=0.69*rb*c1;#tof\n",
+ "freq=1.45/((ra+2*rb)*c1);#frequency\n",
+ "w=ra/(ra+2*rb);#duty cycle\n",
+ "print'on time ',round(t1*1e3,3),'milisecond'\n",
+ "print'tof ',round(t2*1e3,3),'milisecond'\n",
+ "print'frequency ',round(freq/1e3,3),'Khz'\n",
+ "print'duty cycle ',round(w,3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 5 pagenumber 5.98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Ra 2.854 Mohm\n",
+ "Rb 2.943 Mohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "t1=4;#second\n",
+ "t2=2;#second\n",
+ "c1=1e-6;#farad\n",
+ "#detemine ra rb\n",
+ "t12=t1+t2;\n",
+ "w=t1/t12;\n",
+ "#ra=0.97*rb\n",
+ "rb=(t1/(0.69*c1))/(1+0.97);\n",
+ "ra=0.97*rb;\n",
+ "print'Ra ',round(ra/1e6,3),'Mohm'\n",
+ "print'Rb ',round(rb/1e6,3),'Mohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 6 pagenumber 5.99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1 540.5 Kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "t1=6;#second\n",
+ "c1=10e-6;#farad\n",
+ "#determine r1\n",
+ "r1=t1/(1.11*c1);\n",
+ "print'R1 ',round(r1/1e3,1),'Kohm'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 7 pagenumber 5.100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rms voltage 1.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "en=20e-9;#volt/sqrt(z)\n",
+ "fce=20;#hz\n",
+ "inw=0.5e-12;#A/sqrt(hz)\n",
+ "fci=20e3\n",
+ "#determine voltage current spectraldensities rmsnoise\n",
+ "r1=r1;\n",
+ "import math\n",
+ "en=math.pow(fce*math.log(fci/fce)+(fci-fce),en);\n",
+ "print'rms voltage ',round(en,3),'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 7 pagenumber 5.100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage 12.167 nanovolt/sqrt(hz)\n",
+ "current 0.001 nA/sqrt(hz)\n",
+ "rms voltage 1.0 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r1=9*1e3;#ohm\n",
+ "k1=1.38*1e-23;\n",
+ "t1=298;#k\n",
+ "#determine voltage current spectraldensities rmsnoise\n",
+ "r1=r1;\n",
+ "import math\n",
+ "er=math.sqrt(4e0*k1*t1*r1);#voltage\n",
+ "i1=er/r1;#current\n",
+ "er12=1/er;\n",
+ "w=20e3-20;\n",
+ "er1=math.pow(w,er*1e0);#rms voltage\n",
+ "print'voltage ',round(er*1e9,3),'nanovolt/sqrt(hz)'\n",
+ "print'current ',round(i1*1e9,3),'nA/sqrt(hz)'\n",
+ "print'rms voltage ',round(er1,3),'volt'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8 pagenumber 5.100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage 12.167 nanovolt\n",
+ "current 1.352 pA\n",
+ "rms voltage 0.9 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r1=9e3;#ohm\n",
+ "k1=1.38*1e-23\n",
+ "t1=298;#kelvin\n",
+ "#determine voltage current spectraldensities rmsnoise\n",
+ "r1=r1;\n",
+ "import math\n",
+ "er=math.sqrt(4*k1*t1*r1);#voltage\n",
+ "i1=er/r1;#current\n",
+ "er12=1/er;\n",
+ "w=20e3-20;#width constant\n",
+ "er1=r1/10e3;#rms voltage\n",
+ "print'voltage ',round(er*1e9,3),'nanovolt';\n",
+ "print'current ',round(i1*1e12,3),'pA';\n",
+ "print'rms voltage ',round(er1,3),'volt';#error in book\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 9 pagenumber 5.101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "signal to noise id 1.0 = 61.933 dB\n",
+ "signal to noise id 0.001 = 31.933 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "fh=2e6;#hz\n",
+ "id=[1e-6,1e-9];\n",
+ "i=0;\n",
+ "import math\n",
+ "while i<2 :\n",
+ " In=math.sqrt(2*1.602e-19*id[i]*fh);\n",
+ " print'signal to noise id ',round((id[i]*1e6),3),' = ',round(20*math.log10(id[i]/In),3),'dB';\n",
+ " i=i+1;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 10 pagenumber 5.101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rms voltage 1257.142 μvolt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "r1=100e3;#ohm\n",
+ "rf=250e3;#ohm\n",
+ "r3=70e3;#ohm\n",
+ "fce=200;#hz\n",
+ "fci=2e3;#hz\n",
+ "ft=1e6;#hz\n",
+ "enw=20e-9;\n",
+ "inw=0.5e-12;\n",
+ "f1=0.1;\n",
+ "#determine RMS voltage\n",
+ "import math\n",
+ "fa=ft/(1+(rf/r1));\n",
+ "rn=r1*rf/(r1+rf);\n",
+ "p=fce*math.log(fa/f1)+1.57*fa-f1;\n",
+ "q=(r3*r3+rn*rn)*(fci*math.log(fa/f1)+1.5*fa-f1);\n",
+ "r=1.65e-20*(r3+rn)*(1.57*fa-f1);\n",
+ "en=(1+rf/r1)*(enw*enw+p+inw*inw*q+r);\n",
+ "\n",
+ "print'rms voltage ',round(math.sqrt(en),3),'μvolt';#error in book\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/chapter1_converted.png b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/chapter1_converted.png Binary files differnew file mode 100644 index 00000000..e7cd82b6 --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/chapter1_converted.png diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/chapter4_converted.png b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/chapter4_converted.png Binary files differnew file mode 100644 index 00000000..1bd71d3a --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/chapter4_converted.png diff --git a/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/example22_converted.png b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/example22_converted.png Binary files differnew file mode 100644 index 00000000..6a3c582f --- /dev/null +++ b/Linear_Integrated_Circuits_by_T._R._Ganesh_Babu/screenshots/example22_converted.png |