summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb230
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb183
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb98
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb209
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb167
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb219
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb260
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb148
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb131
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb220
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb181
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb195
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb73
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb166
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb139
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb183
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb177
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb157
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb227
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb130
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb157
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb205
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.pngbin0 -> 92354 bytes
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.pngbin0 -> 78505 bytes
-rw-r--r--Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.pngbin0 -> 88168 bytes
-rw-r--r--sample_notebooks/PraveenKumar/chapter1.ipynb1600
-rw-r--r--sample_notebooks/PreetiRani/ch4.ipynb387
-rw-r--r--sample_notebooks/SPANDANAARROJU/Chapter5.ipynb480
-rw-r--r--sample_notebooks/SundeepKatta/Chapter7.ipynb489
29 files changed, 6811 insertions, 0 deletions
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb
new file mode 100644
index 00000000..3dcd2a65
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb
@@ -0,0 +1,230 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 26:CHARGE AND MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.1 Magnitude of total charges in a copper penny"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Magnitude of the charges in coulombs is 133687.50000000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.1\n",
+ "\n",
+ "m =3.1 #mass of copper penny in grams\n",
+ "e =4.6*10** -18 #charge in coulombs\n",
+ "N0 =6*10**23 #avogadro’s number atoms / mole\n",
+ "M =64 #molecular weight of copper in gm/ mole\n",
+ "\n",
+ "#Calculation\n",
+ "N =( N0 * m ) / M #No. of copper atoms in penny\n",
+ "q = N * e # magnitude of the charges in coulombs\n",
+ "print (\" Magnitude of the charges in coulomb is \",q )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.2 Separation between total positive and negative charges"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Separation between total positive and negative charges in meters is 5813776741.499454\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 2\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "F =4.5 #Force of attraction in nt\n",
+ "q =1.3*10**5 #total charge in coulomb\n",
+ "r = q * math.sqrt ((9*10**9) / F ) ;\n",
+ "print(\" Separation between total positive and negative charges in meters is \",r )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.3 Force acting on charge q1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "X component of resultant force acting on q1 in nt is 2.0999999999999996\n",
+ "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 3\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#given three charges q1,q2,q3\n",
+ "q1=-1.0*10**-6 #charge in coul\n",
+ "q2=+3.0*10**-6 #charge in coul\n",
+ "q3=-2.0*10**-6 #charge in coul\n",
+ "r12=15*10**-2 #separation between q1 and q2 in m\n",
+ "r13=10*10**-2 # separation between q1 and q3 in m\n",
+ "angle=math.pi/6 #in degrees\n",
+ "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n",
+ "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n",
+ "F12x=-F12 #ignoring signs of charges\n",
+ "F13x=F13*math.sin(angle);\n",
+ "F1x=F12x+F13x\n",
+ "F12y=0 #from fig.263\n",
+ "F13y=-F13*math.cos(angle);\n",
+ "F1y=F12y+F13y #in nt\n",
+ "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n",
+ "print(\"Y component of resultant force acting on q1 in nt is\",F1y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.4 Electrical and Gravitational force between two particles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coulomb force in nt is 8.202207191171238e-08\n",
+ "Gravitational force in nt is 3.689889640441438e-47\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 4\n",
+ "\n",
+ "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n",
+ "m1=9.1*10**-31 #mass of electron in kg\n",
+ "m2=1.7*10**-27 #mass of proton in kg\n",
+ "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n",
+ "F2=G*m1*m2/(r**2) #gravitational force\n",
+ "print(\"Coulomb force in nt is\",F1)\n",
+ "print(\"Gravitational force in nt is\",F2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 26.5 Repulsive force between two protons in a nucleus of iron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Repulsive coulomb force F 14.4 nt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 5\n",
+ "\n",
+ "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n",
+ "print(\"Repulsive coulomb force F \",F,'nt')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb
new file mode 100644
index 00000000..aa87126e
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb
@@ -0,0 +1,183 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 27 THE ELECTRIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 27.1 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength E=F/q where F=mg\n",
+ "electric field strength in nt/coul is 5.574e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "g=9.8 #acceleration due to gravity in m/s\n",
+ "q=1.6*10**-19 #charge of electron in coul\n",
+ "print(\"Electric field strength E=F/q where F=mg\")\n",
+ "E=m*g/q\n",
+ "print(\"electric field strength in nt/coul is %.3e\"%E)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 27.4 The point on the line joining two charges for the electric field strength to be zero"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For the electric field strength to be zero the point should lie between the charges where E1=E2\n",
+ "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n",
+ "Electric field strength is zero at x=4.142 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "q1=1.0*10**-6 #in coul\n",
+ "q2=2.0*10**-6 #in coul\n",
+ "l=10 #sepearation b/w q1 and q2 in cm\n",
+ "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n",
+ "#\"Refer to the fig 27.9\"\n",
+ "#E1=electric fied strength due to q1\n",
+ "#E2=electric fied strength due to q2\n",
+ "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n",
+ "x=l/(1+math.sqrt(q2/q1))\n",
+ "print(\"Electric field strength is zero at x=%.3f cm\"%x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 27.9 Deflection of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Corresponding deflection in meters is 0.000337\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #charge in coul\n",
+ "E=1.2*10**4 #electric field in nt/coul\n",
+ "x=1.5*10**-2 #length of deflecting assembly in m\n",
+ "K0=3.2*10**-16 #kinetic energy of electron in joule\n",
+ "#calculation\n",
+ "y=e*E*x**2/(4*K0)\n",
+ "print(\"Corresponding deflection in meters is %.6f\"%y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 27.11 Torque and work done by external agent on electric dipole"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Maximum torque exerted by the fied in nt-m is\n",
+ "0.002\n",
+ "(b) Work done by the external agent to turn dipole end for end in joule is \n",
+ "0.004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n",
+ "d=2.0*10**-2 #seperation b/w charges in m\n",
+ "E=1.0*10**5 #external field in nt/coul\n",
+ "#calculations\n",
+ "#(a)Max torque if found when theta=90 degrees\n",
+ "#Torque =pEsin(theta)\n",
+ "p=q*d #electric dipole moment\n",
+ "T=p*E*math.sin(math.pi/2)\n",
+ "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n",
+ "print(T)\n",
+ "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n",
+ "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n",
+ "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n",
+ "print(W)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb
new file mode 100644
index 00000000..b8c0f0da
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb
@@ -0,0 +1,98 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 28 GAUSS'S LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 28.3 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=1*10**-10 #radius of the atom in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 28.4 Electric field strength at the nuclear surface"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=6.9*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb
new file mode 100644
index 00000000..439a6f56
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb
@@ -0,0 +1,209 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 29 ELECTRIC POTENTIAL"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 29.3 Magnitude of an isolated positive point charge"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential due to a point charge is V=q/4*pi*epislon0*r\n",
+ "Magnitude of positive point charge in coul is 1.112e-09\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V=100 #electric potential in volts\n",
+ "r=10*10**-2 #in meters\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n",
+ "q=V*4*math.pi*epsilon0*r\n",
+ "print(\"Magnitude of positive point charge in coul is %.3e\"%q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Exa 29.4 Electric potential at the surface of a gold nucleus"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric potential at the surface of the nucleus in volts is 17220668\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=6.6*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "V=q/(4*math.pi*epsilon0*r)\n",
+ "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Exa 29.5 Potential at the center of the square"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential at the center of the square in volts is 508.65\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.0*10**-8 #in coul\n",
+ "q2=-2.0*10**-8 #in coul\n",
+ "q3=3.0*10**-8 #in coul\n",
+ "q4=2.0*10**-8 #in coul\n",
+ "a=1 #side of square in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "#refer to the fig 29.7\n",
+ "r=a/math.sqrt(2) #distance of charges from centre in meter\n",
+ "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Potential at the center of the square in volts is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Exa 29.8 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mutual electric potential energy of two proton in joules is 3.837e-14\n",
+ "Mutual electric potential energy of two proton in ev is 239781.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.6*10**-19 #charge in coul\n",
+ "q2=1.6*10**-19 #charge in coul\n",
+ "r=6.0*10**-15 #seperation b/w two protons in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "U=(q1*q2)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n",
+ "V=U/q1\n",
+ "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Exa 29.9 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total energy is the sum of each pair of particles \n",
+ "Mutual potential energy of the particles in joules is -0.008991804694457362\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-7 #charge in coul\n",
+ "a=10*10**-2 #side of triangle in meter\n",
+ "q1=q\n",
+ "q2=-4*q\n",
+ "q3=2*q\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Total energy is the sum of each pair of particles \")\n",
+ "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n",
+ "print(\"Mutual potential energy of the particles in joules is\",U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb
new file mode 100644
index 00000000..6c475796
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb
@@ -0,0 +1,167 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 30 CAPACITORS AND DIELECTRICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 30.1 Plate area"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Plate area in square meter is 1.130e+08\n"
+ ]
+ }
+ ],
+ "source": [
+ "C=1.0 #capacitance in farad\n",
+ "d=1.0*10**-3 #separation b/w plates in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=d*C/epsilon0\n",
+ "print(\"Plate area in square meter is %.3e\"%A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n",
+ "(b)Free charge in coul is 8.850e-10\n",
+ "(c)Electric field strength in the gap in volts/meter is 10000\n",
+ "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n",
+ "(e)Potential difference between the plates in volts is 57.1429\n",
+ "(f)Capacitance with the slab in place in farads is 1.549e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "b=5*10**-3 #thickness of dielectric lab in meter\n",
+ "V0=100#in volts\n",
+ "k=7\n",
+ "#(a)\n",
+ "C0=epsilon0*A/d\n",
+ "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n",
+ "#(b)\n",
+ "q=C0*V0\n",
+ "print(\"(b)Free charge in coul is %.3e\"%q)\n",
+ "#(c)\n",
+ "E0=q/(epsilon0*A)\n",
+ "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n",
+ "#(d)\n",
+ "E=q/(k*epsilon0*A)\n",
+ "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n",
+ "#(e)\n",
+ "#Refer to fig30-12\n",
+ "V=E0*(d-b)+E*b\n",
+ "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n",
+ "#(f)\n",
+ "C=q/V\n",
+ "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n",
+ "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n",
+ "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n",
+ "Electric polarisation in air gap in coul/square meter is 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "V0=100#in volts\n",
+ "E0=1*10**4 #Electric field in the air gap in volts/meter\n",
+ "k=7\n",
+ "k0=1\n",
+ "E=1.43*10**3 #in volts/metre\n",
+ "D=k*E*epsilon0\n",
+ "P=epsilon0*(k-1)*E\n",
+ "#(a)\n",
+ "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n",
+ "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n",
+ "#(b)\n",
+ "D0=k0*epsilon0*E0\n",
+ "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n",
+ "P0=epsilon0*(k0-1)*E0\n",
+ "print(\"Electric polarisation in air gap in coul/square meter is\",P0)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb
new file mode 100644
index 00000000..3f58961b
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb
@@ -0,0 +1,219 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 31 CURRENT AND RESISTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 31.1 Current density"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density in Aluminium wire in amp/square inches 1273.240\n",
+ "Current density in copper wire in amp/square inches 3108.495\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d1=0.10 #diameter of aluminium wire in inches\n",
+ "d2=0.064 #diameter of copper wire in inches\n",
+ "i=10 #current carried by composite wire in amperes\n",
+ "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n",
+ "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n",
+ "j1=i/A1\n",
+ "j2=i/A2\n",
+ "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n",
+ "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 31.2 Drift speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No.of free electrons per unit volume in atoms/mole 8.438e+22\n",
+ "Drift speed of electron in cm/sec is 0.03556\n"
+ ]
+ }
+ ],
+ "source": [
+ "j=480 #current density for copper wire in amp/cm2\n",
+ "N0=6*10**23 #avagadro number in atoms/mole\n",
+ "M=64 #molecular wt in gm/mole\n",
+ "d=9.0 #density in gm/cm3\n",
+ "e=1.6*10**-19 #elecron charge in coul\n",
+ "n=d*N0/M \n",
+ "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n",
+ "Vd=j/(n*e)\n",
+ "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 31.3 Resistance and resistivity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n",
+ "(a) Resistance measured b/w the two square ends in ohm is 0.175\n",
+ "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n",
+ "l=1.0*10**-2 #in meter\n",
+ "b=1.0*10**-2#in meter\n",
+ "h=50*10**-2 #in meter\n",
+ "p=3.5*10**-5 #resisivity of carbon in ohm-m\n",
+ "#(a)Resistance b/w two square ends\n",
+ "l1=h\n",
+ "A1=b*l\n",
+ "R1=p*l1/A1\n",
+ "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n",
+ "l2=l\n",
+ "A2=b*h\n",
+ "R2=p*l2/A2\n",
+ "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 31.4 Mean time and Mean free path"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a) Mean time b/w collisions in sec is 4.979e-14\n",
+ "(b) Mean free path in cm is 0.000008\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #in kg\n",
+ "n=8.4*10**28 #in m-1\n",
+ "e=1.6*10**-19 #in coul\n",
+ "p=1.7*10**-8 #in ohm-m\n",
+ "v=1.6*10**8 #in cm/sec\n",
+ "T=2*m/(n*p*e**2)\n",
+ "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n",
+ "Lambda=T*v\n",
+ "print(\"(b) Mean free path in cm is %f\"%Lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 31.5 Power"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Power for the single coil in watts is 504.167\n",
+ "(b)Power for a coil of half the length in watts is 1008.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "V=110 #in volt\n",
+ "R=24 #ohms\n",
+ "P1=V**2/R\n",
+ "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n",
+ "P2=V**2/(R/2)\n",
+ "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb
new file mode 100644
index 00000000..f307c86e
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb
@@ -0,0 +1,260 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 33 THE MAGNETIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 33.1 Force acting on a proton"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of the proton in meters/sec is 30678599.55\n",
+ "Force acting on proton in nt is 7.363e-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "K=5*10**6 #ev\n",
+ "e=1.6*10**-19 #in coul\n",
+ "K1=K*e #in joules\n",
+ "m=1.7*10**-27 #in kg\n",
+ "B=1.5 #wb/m\n",
+ "theta=math.pi/2\n",
+ "v=math.sqrt(2*K1/m)\n",
+ "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n",
+ "F=e*v*B*math.sin(theta)\n",
+ "print(\"Force acting on proton in nt is %.3e\"%F)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 33.3 Torsional constant of the spring"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Torssional constant in nt-m/deg is 3.333e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "N=250 #turns in coil\n",
+ "i=1.0*10**-4 #in amp\n",
+ "B=0.2 #wb/m2\n",
+ "h=2*10**-2 #coil height in m\n",
+ "w=1.0*10**-2 #width of coil in m\n",
+ "Q=30 #angular deflectin in degrees\n",
+ "theta=math.pi/2\n",
+ "A=h*w\n",
+ "k=N*i*A*B*math.sin(theta)/Q\n",
+ "print(\"Torssional constant in nt-m/deg is %.3e\"%k)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 33.4 Work done"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "N=100 #turns in circular coil\n",
+ "i=0.10 #in amp\n",
+ "B=1.5 #in wb/m2\n",
+ "a=5*10**-2 #radius of coil in meter\n",
+ "u=N*i*math.pi*(a**2) #u is dipole moment\n",
+ "U1=(-u*B*math.cos(0))\n",
+ "U2=-u*B*math.cos(math.pi)\n",
+ "W=U2-U1\n",
+ "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 33.5 Hall potential difference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n"
+ ]
+ }
+ ],
+ "source": [
+ "i=200 #current in the strip in amp\n",
+ "B=1.5 #magnetic field in wb/m2\n",
+ "n=8.4*10**28 #in m-3\n",
+ "e=1.6*10**-19 #in coul\n",
+ "h=1.0*10**-3 #thickness of copper strip in metre\n",
+ "w=2*10**-2 #width of copper strip in meter\n",
+ "Vxy=i*B/(n*e*h)\n",
+ "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 33.6 Orbital radius Cyclotron frequency and Period of revolution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Orbit radius in meter is 0.1080625\n",
+ "(B) Cyclotron frequency in rev/sec is 2798328.7\n",
+ "(C) Period of revolution in sec is 0.0000004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "m=9.1*10**-31 # in kg\n",
+ "v=1.9*10**6 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "B=1.0*10**-4 #in wb/m2\n",
+ "\n",
+ "#(A)\n",
+ "r=m*v/(q*B)\n",
+ "print(\"(A) Orbit radius in meter is %.7f\"%r)\n",
+ "#(B)\n",
+ "f=q*B/(2*math.pi*m)\n",
+ "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n",
+ "#(C)\n",
+ "T=1/f\n",
+ "print(\"(C) Period of revolution in sec is %.7f\"%T)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 33.7 Magnetic induction and Deuteron energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n",
+ "(B) Deuteron energy in joule is 2.669e-12\n",
+ " Deuteron energy in ev is 16679852\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "f0=12*10**6 #cyclotron frequency in cycles/sec\n",
+ "r=21#dee radius in inches\n",
+ "R=r*0.0254 #dee radius in meter\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "m=3.3*10**-27 #in kg\n",
+ "#(A)\n",
+ "B=2*math.pi*f0*m/q\n",
+ "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n",
+ "#(B)\n",
+ "K=((q**2*B**2*R**2)/(2*m))\n",
+ "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n",
+ "K1=K*(1/(1.6*10**-19))\n",
+ "print(\" Deuteron energy in ev is %d\"%K1)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb
new file mode 100644
index 00000000..37944813
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb
@@ -0,0 +1,148 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 34 AMPERES LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 34.3 Distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Separation between two wires in metres 0.0054795\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "i1=100 #in amp\n",
+ "i2=20 #in amp\n",
+ "W=0.073 #weight of second wire W=F/l in nt/m\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "d=u0*i1*i2/(2*math.pi*W)\n",
+ "print(\"Separation between two wires in metres %.7f\"%d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 34.5 Magnetic field and Magnetic flux"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0267035\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000189\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "l=1.0 #length of solenoid in meter\n",
+ "d=3*10**-2 #diameter of solenoid in meter\n",
+ "n=5*850 #number of layers and turns of wire\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i0=5.0 #current in amp\n",
+ "#(A)\n",
+ "B=u0*i0*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 34.9 Magnetic field and Magnetic dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n",
+ "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "e=1.6*10**-19 #in coul\n",
+ "R=5.1*10**-11 #radius of th enucleus in meter\n",
+ "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "x=0 #x is any point on the orbit, since at center x=0\n",
+ "#(A)\n",
+ "i=e*f\n",
+ "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n",
+ "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n",
+ "N=1 #no.of turns\n",
+ "A=math.pi*R**2\n",
+ "U=N*i*A\n",
+ "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb
new file mode 100644
index 00000000..645f77da
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 35 FARADAYS LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 35.1 Induced EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0376991\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000118\n",
+ "Induced EMF in volts is -0.0473741\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "l=1.0 #length of solenoid in meter\n",
+ "r=3*10**-2 #radius of solenoid in meter\n",
+ "n=200*10**2 #number of turns in solenoid per meter\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i=1.5 #current in amp\n",
+ "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n",
+ "d=2*10**-2 #diameter of coil in meter\n",
+ "delta_T=0.050 #in sec\n",
+ "#(A)\n",
+ "B=u0*i*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n",
+ "delta_Q=Q-(-Q)\n",
+ "E=-(N*delta_Q/delta_T)\n",
+ "print(\"Induced EMF in volts is %.7f\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 35.7 Induced electric field and EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n",
+ "(A) Induced electric field in volt/m observed by Z 2.0\n",
+ "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n",
+ "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n",
+ "(C) Induced emf in volt observed by S is 0.2\n",
+ "Induced emf in volt observed by Z is 0.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "B=2 #magnetic field in wb/m2\n",
+ "l=10*10**-2 #in m\n",
+ "v=1.0 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n",
+ "#(A)\n",
+ "E=v*B\n",
+ "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n",
+ "#(B)\n",
+ "F=q*v*B\n",
+ "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n",
+ "F1=q*E\n",
+ "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n",
+ "#(C)\n",
+ "emf1=B*l*v\n",
+ "print(\"(C) Induced emf in volt observed by S is\",emf1)\n",
+ "emf2=E*l\n",
+ "print(\"Induced emf in volt observed by Z is\",emf2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb
new file mode 100644
index 00000000..c300ad25
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb
@@ -0,0 +1,220 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 36 INDUCTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 36.1 Inductance of a toroid"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "N=10**3 #no.of turns\n",
+ "a=5*10**-2 #im meter\n",
+ "b=10*10**-2 #in meter\n",
+ "h=1*10**-2 #in metre\n",
+ "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n",
+ "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 36.2 Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=50 #inductance in henry\n",
+ "R=30 #resistance in ohms\n",
+ "t0=math.log(2)*(L/R)\n",
+ "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 36.3 Maximum Current and Energy stored"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum current in amp is 5.0\n",
+ "Energy stored in the magnetic field in joules is 62.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=5 #inductance in henry\n",
+ "V=100 #emf in volts\n",
+ "R=20 #resistance in ohms\n",
+ "i=V/R\n",
+ "print(\"Maximum current in amp is\",i)\n",
+ "U=(L*i**2)/2\n",
+ "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 36.4 Rate at which energy is stored and delivered and appeared"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The rate at which energy is delivred by the battery in watt is 0.5689085\n",
+ "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n",
+ "Let D=di/dt\n",
+ "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=3 #inductance in henry\n",
+ "R=10 #resistance in ohm\n",
+ "V=3 #emf in volts\n",
+ "t=0.30 #in sec\n",
+ "T=0.30 #inductive time constant in sec\n",
+ "#(a)\n",
+ "i=(V/R)*(1-math.exp(-t/T))\n",
+ "P1=V*i\n",
+ "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n",
+ "#(b)\n",
+ "P2=i**2*R\n",
+ "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n",
+ "#(c)\n",
+ "print(\"Let D=di/dt\")\n",
+ "D=(V/L)*math.exp(-t/T) #in amp/sec\n",
+ "P3=L*i*D\n",
+ "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 36.6 Energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n",
+ "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "E=10**5 #elelctric field in volts/meter\n",
+ "B=1 #magnetic field in weber/meter2\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "a=0.1 #side of the cube in meter\n",
+ "V0=a**3 #volume of the cube in meter3\n",
+ "#(a)\n",
+ "U1=epsilon0*E**2*V0/2 #in elelctric field\n",
+ "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n",
+ "#(b)\n",
+ "U2=(B**2/(2*u0))*V0\n",
+ "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb
new file mode 100644
index 00000000..034da3ed
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb
@@ -0,0 +1,181 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 37 MAGNETIC PROPERTIES OF MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 37.2 Orbital dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Orbital dipole moment in amp-m2 is 9.061e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n",
+ "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 37.4 Change in magnetic moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "B=2 #in wb/m2\n",
+ "delta_p=(e**2*B*r**2)/(4*m)\n",
+ "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 37.5 Precession frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "u=1.4*10**-26 #in amp-m2\n",
+ "B=0.50 #wb/m2\n",
+ "Lp=0.53*10**-34 #in joule-sec\n",
+ "fp=u*B/(2*math.pi*Lp)\n",
+ "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field strength in amp/m is 2000\n",
+ "(B) Magnetisation is Zero when core is removed\n",
+ " Magnetisation when the core is replaced in amp/m 793774.72\n",
+ "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n",
+ " Effective magnetizing current in amp is 793.77472\n",
+ "(D) Permeability 397.88736\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=10*10**2 #turns/m\n",
+ "i=2 #in amp\n",
+ "B=1.0 #in wb/m\n",
+ "u0=4*math.pi*10**-7 #in wb/amp-m\n",
+ "#(A)\n",
+ "H=n*i\n",
+ "print(\"(A) Magnetic field strength in amp/m is\",H)\n",
+ "#(B)\n",
+ "M=(B-u0*H)/u0\n",
+ "print(\"(B) Magnetisation is Zero when core is removed\")\n",
+ "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n",
+ "#(C)\n",
+ "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n",
+ "i=M/n\n",
+ "print(\" Effective magnetizing current in amp is %.5f\"%i)\n",
+ "#D\n",
+ "Km=B/(u0*H)\n",
+ "print(\"(D) Permeability %.5f\"%Km)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb
new file mode 100644
index 00000000..8804dca7
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb
@@ -0,0 +1,195 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 38.1 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Max current in amps 0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V_o=50 #in volts\n",
+ "C=1*10**-6 #in farad\n",
+ "L=10*10**-3\n",
+ "i_m=V_o*(math.sqrt(C/L))\n",
+ "print(\"Max current in amps \",i_m)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 38.2 Angular frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=10*(10**-3) #in henry\n",
+ "C=(10)**-6 #in farad\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 38.3 Angular frequency and time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n",
+ "Time in sec= 0.13863\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=10*(10**-3) #in henry\n",
+ "C=10**-6 #in farad\n",
+ "R=0.1 #in ohm\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)\n",
+ "t=(2*L*math.log(2))/R\n",
+ "print(\"Time in sec= %.5f\"%t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 38.5 Magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field in weber/m**2= 0.0000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "B=(0.5*m_0*e_0*R*dEbydT)\n",
+ "print(\"Magnetic field in weber/m**2= %.7f\"%B)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 38.6 Calculation of current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.0699004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "i_d=(e_0*math.pi*R*R*dEbydT)\n",
+ "print(\"Current in amp= %.7f\"%i_d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb
new file mode 100644
index 00000000..7f0dafec
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb
@@ -0,0 +1,73 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 39 ELECTROMAGNETIC WAVES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 39.6 Magnitude of electric and magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of E in volts/meter= 244.94897\n",
+ "B in weber/meter^2= 0.00000082\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=1 #in m\n",
+ "p=10**3 \n",
+ "m=4*math.pi*10**-7 #weber/amp-m\n",
+ "c=3*10**8 #speed of light\n",
+ "x=2*math.pi\n",
+ "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n",
+ "print(\"The value of E in volts/meter= %.5f\"%E_m)\n",
+ "B=E_m/c\n",
+ "print(\"B in weber/meter^2= %.8f\"%B)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb
new file mode 100644
index 00000000..98931fb3
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb
@@ -0,0 +1,166 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 40 NATURE AND PROPOGATION OF LIGHT"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 40.1 Force and energy reflected"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Energy reflected from mirror in joule= 36000.0\n",
+ "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n",
+ "(B) Force in newton= 6.667e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "u=(10)*(1.0)*3600 #in Joules\n",
+ "c=3*10**8 #in m/sec\n",
+ "t=3600 #in sec\n",
+ "print(\"(A) Energy reflected from mirror in joule=\",u)\n",
+ "p=(2*u)/c\n",
+ "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n",
+ "f=p/t\n",
+ "print(\"(B) Force in newton= %.3e\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 40.2 Angular speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular speed in rev/sec= 12.07030\n"
+ ]
+ }
+ ],
+ "source": [
+ "theta=1/1440\n",
+ "c=3*10**8 #in m/sec\n",
+ "l=8630 #in m\n",
+ "w=(c*theta)/(2*l)\n",
+ "print(\"Angular speed in rev/sec= %.5f\"%w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 40.3 Calculation of c"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lambda_g in cm= 3.9\n",
+ "Value of c in m/sec= 2.992e+10\n"
+ ]
+ }
+ ],
+ "source": [
+ "l=15.6 #in cm\n",
+ "n=8\n",
+ "lambda_g=(2*l)/n\n",
+ "print(\"Lambda_g in cm=\",lambda_g)\n",
+ "lamda=3.15 #in cm\n",
+ "f=9.5*10**9 #cycles/sec\n",
+ "c=lamda*f\n",
+ "print(\"Value of c in m/sec= %.3e\"%c)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 40.4 Percentage error"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of light in miles/hour= 50000\n"
+ ]
+ }
+ ],
+ "source": [
+ "v_1=25000 #miles/hr\n",
+ "u=25000 #miles/hr\n",
+ "c=6.7*10**8 #miles/hr\n",
+ "x=1+((v_1*u)/(c)**2)\n",
+ "v=(v_1+u)/x\n",
+ "print(\"Speed of light in miles/hour= %.0f\"%v)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb
new file mode 100644
index 00000000..3ee8111a
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb
@@ -0,0 +1,139 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 41.1 Angle between two refracted beams"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For 4000 A beam, theta_2 in degree= 19.88234\n",
+ "For 5000 A beam, theta_2 in degree= 19.99290\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_1=30\n",
+ "n_qa=1.4702\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n",
+ "\n",
+ "theta_1=30\n",
+ "n_qa=1.4624\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 41.4 Index of glass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index reflection= 1.41421\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=1/math.sin(45*math.pi/180)\n",
+ "print(\"Index reflection= %.5f\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Exa 41.5 Calculation of Angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle theta_c in degree= 62.45732\n",
+ "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n",
+ "Angle of refraction:\n",
+ "Theta_2 in degree= 52.89097\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n2=1.33\n",
+ "n1=1.50\n",
+ "theta_c=math.degrees(math.asin(n2/n1))\n",
+ "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n",
+ "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n",
+ "print(\"Angle of refraction:\")\n",
+ "x=n1/n2\n",
+ "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n",
+ "print(\"Theta_2 in degree= %.5f\"%theta_2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb
new file mode 100644
index 00000000..44b1556c
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb
@@ -0,0 +1,183 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 42.4 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "x= 0.05\n",
+ "The value of i in cm= 40.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=1\n",
+ "n2=2\n",
+ "o=20 #in cm\n",
+ "r=10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"x=\",x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm=\",i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 42.5 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "The value of i in cm= -0.03333\n",
+ "The value of i in cm= -30\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=2\n",
+ "n2=1\n",
+ "o=15 #in cm\n",
+ "r=-10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"The value of i in cm= %.5f\"%x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm= %d\"%i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 42.7 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/f in cm= 0.0325\n",
+ "f=1/x\n",
+ "f in cm= 30.76923\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1.65\n",
+ "r_1=40 #in cm\n",
+ "r_2=-40 #in cm\n",
+ "x=(n-1)*((1/r_1)-(1/r_2))\n",
+ "print(\"x=1/f in cm= %.4f\"%x)\n",
+ "print(\"f=1/x\")\n",
+ "f=1/x\n",
+ "print(\"f in cm= %.5f\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 42.8 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/i in cm= -0.06944\n",
+ "i in cm= -14.4\n",
+ "Lateral magnification =\n",
+ "m= 1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "o=9 #in cm\n",
+ "f=24 #in cm\n",
+ "x=(1/f)-(1/o)\n",
+ "print(\"x=1/i in cm= %.5f\"%x)\n",
+ "i=1/x\n",
+ "print(\"i in cm= %.1f\"%i)\n",
+ "print(\"Lateral magnification =\")\n",
+ "m=-(i/o)\n",
+ "print('m= %.1f'%m)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb
new file mode 100644
index 00000000..215e62df
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 43 INTERFERENCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 43.1 Angular position of first minimum"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sin theta = 0.00273\n",
+ "Angle in degree= 0.15642\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=546*10**-9\n",
+ "d=0.10*10**-3 #in m\n",
+ "sin_theta=((m-0.5)*lamda)/(d)\n",
+ "print(\"Sin theta = %.5f\"%sin_theta)\n",
+ "theta=math.degrees(math.asin(sin_theta))\n",
+ "print(\"Angle in degree= %.5f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 43.2 Linear distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Linear distance in meter= 0.00109\n"
+ ]
+ }
+ ],
+ "source": [
+ "delta=546*10**-9 #in meter\n",
+ "D=20*10**-2 #in meter\n",
+ "d=0.10*10**-3 #in meter\n",
+ "delta_y=(delta*D)/d\n",
+ "print(\"Linear distance in meter= %.5f\"%delta_y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 43.4 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 1\n",
+ "Lambda_max= 5674.666666666667\n",
+ "Lambda_min= 8500.0\n",
+ "When m= 2\n",
+ "Lambda_max= 3404.8\n",
+ "Lambda_min= 4250.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "d=3200 #in A\n",
+ "n=1.33\n",
+ "for m in range(1,3):\n",
+ " lambda_max=(2*d*n)/(m+0.5)\n",
+ " lambda_min=(8500/m)\n",
+ " print(\"When m=\",m)\n",
+ " print(\"Lambda_max=\",lambda_max)\n",
+ " print(\"Lambda_min=\",lambda_min)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 43.5 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 0\n",
+ "d in A=905.797\n",
+ "When m= 1\n",
+ "d in A=2717.391\n",
+ "When m= 2\n",
+ "d in A=4528.986\n",
+ "When m= 3\n",
+ "d in A=6340.580\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5000 #in A\n",
+ "n=1.38\n",
+ "for m in range(0,4):\n",
+ " print(\"When m=\",m)\n",
+ " d=((m+0.5)*lamda)/(2*n)\n",
+ " print(\"d in A=%.3f\"%d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb
new file mode 100644
index 00000000..22044c55
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb
@@ -0,0 +1,157 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 44 DIFFRACTION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 44.1 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a in A=13000\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=6500 #in A\n",
+ "a=(m*lamda)/math.sin(30*math.pi/180)\n",
+ "print(\"a in A=%d\"%a)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 44.2 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength in A = 4333.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=6500\n",
+ "lambda_1=lamda/1.5\n",
+ "print(\"Wavelength in A = %.3f\"%lambda_1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 44.5 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.06990\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "byd=10**12\n",
+ "i_d=(e_0*math.pi*R*R*byd)\n",
+ "print(\"Current in amp= %.5f\"%i_d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 44.7 Delta Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) D in m= 0.00240\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=480*10**-9 #in m\n",
+ "d=0.10*10**-3 #in m\n",
+ "D=50*10**-2 #in m\n",
+ "a=0.02*10**-3\n",
+ "delta_y=(lamda*D)/d\n",
+ "print(\"(A) D in m= %.5f\"%delta_y)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb
new file mode 100644
index 00000000..78856956
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb
@@ -0,0 +1,227 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 45 GRATING AND SPECTRA"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 45.1 Calculation of angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 7.249\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=4000 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.3f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 45.2 Calculation of angle theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) The first order diffraction pattern in degree= 13.408\n",
+ "(B) Angle of seperation in degree= 0.0002388\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=5890 #in A\n",
+ "d=25400 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n",
+ "del_lambda=5.9 #in A\n",
+ "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n",
+ "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 45.3 Calculation of Sodium Doublet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolving power= 998.305\n",
+ "Number of rulings needed is= 332.768\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "lamda_1=5895.9 #A\n",
+ "m=3\n",
+ "delta_lambda=(lamda_1-lamda) #in A\n",
+ "R=lamda/(delta_lambda)\n",
+ "print(\"Resolving power= %.3f\"%R)\n",
+ "N=(R/m)\n",
+ "print(\"Number of rulings needed is= %.3f\"%N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 45.4 Calculation of Dispersion"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 31.11244\n",
+ "(A) The dispersion in radian/A= 0.0001105\n",
+ "(B) Wave length difference in A= 0.13650\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=3\n",
+ "m1=5\n",
+ "lamda=5460 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n",
+ "D=m/(d*math.cos(theta*math.pi/180))\n",
+ "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n",
+ "N=8000\n",
+ "lamda=5460\n",
+ "R=N*m1\n",
+ "delta_lambda=lamda/R\n",
+ "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 45.5 Calculation of Angles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interplanar spacing d in A= 2.51781\n",
+ "Diffracted beam occurs when m=1,m=2 and m=3\n",
+ "When m1=1, Theta in degree= 12.61763\n",
+ "When m1=2, Theta in degree= 25.90544\n",
+ "When m1=3, Theta in degree= 40.94473\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "a_o=5.63 #A\n",
+ "d=a_o/math.sqrt(5)\n",
+ "lamda=1.10 #in A\n",
+ "print(\"Interplanar spacing d in A= %.5f\"%d)\n",
+ "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n",
+ "m1=1\n",
+ "x=(m1*lamda)/(2*d)\n",
+ "theta_1=math.degrees(math.asin(x))\n",
+ "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n",
+ "m2=2\n",
+ "x=(m2*lamda)/(2*d)\n",
+ "theta_2=math.degrees(math.asin(x))\n",
+ "print('When m1=2, Theta in degree= %.5f'%theta_2)\n",
+ "m3=3\n",
+ "x=(m3*lamda)/(2*d)\n",
+ "theta_3=math.degrees(math.asin(x))\n",
+ "print('When m1=3, Theta in degree= %.5f'%theta_3)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb
new file mode 100644
index 00000000..2071ec54
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb
@@ -0,0 +1,130 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 46 POLARIZATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 46.1 Calculation of theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Polarization angle theta= 135.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta=math.degrees(math.acos(1/math.sqrt(2)))\n",
+ "theta=180-theta\n",
+ "print(\"Polarization angle theta=\",theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 46.2 Angle of refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Theta_p in degrees=56.30993\n",
+ "Angle of refraction fron Snells law in degrees=33.69007\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_p= math.degrees(math.atan(1.5))\n",
+ "print(\"Theta_p in degrees=%.5f\"%theta_p)\n",
+ "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n",
+ "theta_r=math.degrees(math.asin(sin_theta_r))\n",
+ "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 46.3 Thickness of slab"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Value of x in m= 163611.111111113\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "n_e=1.553\n",
+ "n_o=1.544\n",
+ "s=(n_e)-(n_o)\n",
+ "x=(lamda)/(4*s)\n",
+ "\n",
+ "print(\"The Value of x in m=\",x)\n",
+ "#The answer provided in the textbook is wrong"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb
new file mode 100644
index 00000000..f35669ae
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb
@@ -0,0 +1,157 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 47 LIGHT AND QUANTUM PHYSICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 47.1 Velocity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in cycles/s 0.71176\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=20 #in nt/m\n",
+ "m=1 #in kg\n",
+ "\n",
+ "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n",
+ "print(\"Velocity in cycles/s %.5f\"%v)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 47.2 Time calculation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power in j-sec 1.000000e-23\n",
+ "('Time reqired in sec =', 80000.0)\n",
+ "Time required in hour 22.22224\n"
+ ]
+ }
+ ],
+ "source": [
+ "P=(10**(-3))*(3*10**(-18))/(300)\n",
+ "print(\"Power in j-sec %e\"%P)\n",
+ "s=1.6*(10**(-19))\n",
+ "t=(5*s)/P\n",
+ "print(\"Time reqired in sec =\",t)\n",
+ "one_sec=0.000277778 #hr\n",
+ "in_hour=one_sec*t\n",
+ "print(\"Time required in hour %.5f\"%in_hour)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 47.3 Work function for sodium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 2.911e-19\n"
+ ]
+ }
+ ],
+ "source": [
+ "h=6.63*10**(-34) #in joule/sec\n",
+ "v=4.39*10**(14) #cycles/sec\n",
+ "E_o=h*(v)\n",
+ "print(\"Energy in joule= %.3e\"%E_o)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 47.4 Kinetic energy to be imparten on recoiling electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "h=(6.63)*10**-34\n",
+ "m=9.11*10**-31\n",
+ "c=3*10**8\n",
+ "delta_h=(h/(m*c))*(1-math.cos(90))\n",
+ "print(\"(A) Compton shift in meter %.3e\",delta_h)\n",
+ "delta=1*10**-10\n",
+ "k=(h*c*delta_h)/(delta*(delta+delta_h))\n",
+ "print(\"(B) Kinetic energy in joules\",k)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb
new file mode 100644
index 00000000..c5e90763
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb
@@ -0,0 +1,205 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 48 WAVES AND PROPOGATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 48.1 Velocity and Wavelength of particle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in m/s 5929994.5\n",
+ "Wavelength in A 1.222\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=100*(1.6*(10**-19))\n",
+ "m=9.1*(10**-31)\n",
+ "\n",
+ "v=math.sqrt(((2*k)/(m)))\n",
+ "print(\"Velocity in m/s %.1f\"%v)\n",
+ "h=6.6*(10**-34)\n",
+ "p=5.4*(10**-34)\n",
+ "lamda=h/p\n",
+ "print(\"Wavelength in A %.3f\"%lamda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 48.2 Quantized energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in Joule= 5.984e-20\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1\n",
+ "h=(6.6)*10**-34 #j/sec\n",
+ "m=9.1*(10**-31) #in kg\n",
+ "l=1*(10**-9) #in m\n",
+ "E=(n**2)*((h**2)/(8*m*(l**2)))\n",
+ "print(\"Energy in Joule= %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 48.3 Quantum number"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 5.000e-22\n",
+ "Quantum number= 3.030e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=10**-9 #in kg\n",
+ "v=10**-6 #in m/s\n",
+ "l=10**-4 #in m\n",
+ "h=(6.6)*(10**-34) #j/s\n",
+ "E=(0.5)*m*(v**2)\n",
+ "print(\"Energy in joule= %.3e\"%E)\n",
+ "n=(l/h)*(math.sqrt(8*m*E))\n",
+ "print(\"Quantum number= %.3e\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 48.5 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrom momentum in kg-m/s= 2.730e-28\n",
+ "Delta_p in kg-m/s= 2.730e-32\n",
+ "Minimum uncertainaity in m= 0.02418\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*(10**-31) #in kg\n",
+ "v=300 #in m/s\n",
+ "h=6.6*(10**-34) #in j-s\n",
+ "p=m*v\n",
+ "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n",
+ "delta_p=(0.0001)*p\n",
+ "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n",
+ "delta_x=(h/delta_p)\n",
+ "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 48.6 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Momentum in kg-m/s= 15.0\n",
+ "Delta_x in meter= 4.400e-35\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=0.05 #in kg\n",
+ "v=300 #m/s\n",
+ "delta_p=m*v\n",
+ "print(\"Momentum in kg-m/s=\",delta_p)\n",
+ "delta_x=(6.6*10**-34)/delta_p\n",
+ "print(\"Delta_x in meter= %.3e\"%delta_x)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.png b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.png
new file mode 100644
index 00000000..727bff87
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.png
Binary files differ
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.png b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.png
new file mode 100644
index 00000000..1ae30dfa
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.png
Binary files differ
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.png b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.png
new file mode 100644
index 00000000..e972670a
--- /dev/null
+++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.png
Binary files differ
diff --git a/sample_notebooks/PraveenKumar/chapter1.ipynb b/sample_notebooks/PraveenKumar/chapter1.ipynb
new file mode 100644
index 00000000..0d151d06
--- /dev/null
+++ b/sample_notebooks/PraveenKumar/chapter1.ipynb
@@ -0,0 +1,1600 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1 - Semiconductor Material & Junction Diode"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.1 Page No 51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electron drift velocity = 40.00 m/s\n",
+ "The time required for an electron to move across the thickness = 12.50 micro seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "miu = 0.2# m**2/V-s\n",
+ "V = 100# mV\n",
+ "V = V * 10**-3# V\n",
+ "d = 0.5# mm\n",
+ "d = d * 10**-3# m\n",
+ "# mobility, miu = Vd/E and\n",
+ "E = V/d\n",
+ "# Drift velocity,\n",
+ "Vd = miu*E# m/s\n",
+ "print \"The electron drift velocity = %.2f m/s\"%Vd\n",
+ "# Time required,\n",
+ "T = d/Vd# sec\n",
+ "T=T*10**6# µs\n",
+ "print \"The time required for an electron to move across the thickness = %.2f micro seconds\"%T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.2 Page No 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic conductivity = 2.24 (ohm-m)**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "q = 1.6*10**-19# C\n",
+ "n_i = 2.5*10**19# /m**3\n",
+ "miu_n = 0.38# m**2/V-s\n",
+ "miu_p = 0.18# m**2/V-s\n",
+ "# The intrinsic conductivity for germanium,\n",
+ "sigma_i = q*n_i*(miu_n+miu_p)# (ohm-m)**-1\n",
+ "print \"The intrinsic conductivity = %.2f (ohm-m)**-1\"%sigma_i"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.3 Page No 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic carrier concentration = 2.16e+19 per m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "rho = 0.50# ohm-m\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 0.39# m**2/V-s\n",
+ "miu_p = 0.19# m**2/V-s\n",
+ "sigma = 1/rho# (ohm-m)**-1\n",
+ "#conductivity of a semiconductor, sigma = q*n_i*(miu_p+miu_n) or\n",
+ "n_i = sigma/(q*(miu_n+miu_p))# /m**3\n",
+ "print \"The intrinsic carrier concentration = %.2e per m**3\"%n_i"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.4 Page No 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity of Si sample = 14.40 (ohm-m)**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "N_D = 10**21# /m**3\n",
+ "N_A = 5*10**20# /m**3\n",
+ "NdasD = N_D-N_A# /m**3\n",
+ "n = NdasD# /m**3\n",
+ "miu_n = 0.18# m**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "# The conductivity of silicon,\n",
+ "sigma = q*n*miu_n# (ohm-m)**-1\n",
+ "print \"The conductivity of Si sample = %.2f (ohm-m)**-1\"%sigma"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.5 Page No 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity of copper = 4.79e+05 mho/cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "At = 63.54## atomic weight of copper\n",
+ "d = 8.9## density = %.2f gm/cm**3\n",
+ "n = 6.023*10**23/At*d# electron/cm**3\n",
+ "q = 1.63*10**-19# C\n",
+ "miu = 34.8# m**2/V-s\n",
+ "# The conductivity of copper,\n",
+ "sigma = n*q*miu# mho/cm\n",
+ "print \"The conductivity of copper = %.2e mho/cm\"%sigma"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.6 Page No 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Concentration of holes in a p-type Ge = 3.47e+17 /cm**3\n",
+ "The concentration of electrons in a p-type Ge = 1.80e+09 /cm**3\n",
+ "The concentration of electrons in n-type Si = 4.81e+14 /cm**3\n",
+ "The concentration of holes in n-type Si = 4.68e+05 /cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "sigma = 100# (ohm-m)**-1\n",
+ "n_i = 2.5*10**13# /cm**3\n",
+ "miu_n = 3800# cm**2/V-s\n",
+ "miu_p = 1800# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "# Conductivity of a p-type germanium, sigma = q*p*miu_p or\n",
+ "p = sigma/(q*miu_p)# /cm**3\n",
+ "print \"Concentration of holes in a p-type Ge = %.2e /cm**3\"%p\n",
+ "# The concentration of electrons = %.2f a p-type Ge\n",
+ "n = (n_i**2)/p# /cm**3\n",
+ "print \"The concentration of electrons in a p-type Ge = %.2e /cm**3\"%n\n",
+ "#Given for Si\n",
+ "sigma= 0.1# (ohm m)**-1\n",
+ "miu_n= 1300# cm**2/V-sec\n",
+ "n_i= 1.5*10**10# /cm**3\n",
+ "#sigma = q*n*miu_n\n",
+ "n = sigma/(q*miu_n)# /cm**3\n",
+ "print \"The concentration of electrons in n-type Si = %.2e /cm**3\"%n\n",
+ "# The concentration of holes = %.2f n-type Si\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "print \"The concentration of holes in n-type Si = %.2e /cm**3\"%p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.7 Page No 54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity of a dopped Ge = 3.72 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "miu_n = 3800## cm**2/V-s\n",
+ "miu_p = 1800## cm**2/V-s\n",
+ "n_i = 2.5*10**13# /cm**3\n",
+ "Nge = 4.41*10**22# /cm**3\n",
+ "q = 1.602*10**-19# C\n",
+ "impurity = 10**8\n",
+ "# The number of donor atoms,\n",
+ "N_D = Nge/impurity##in /cm**3\n",
+ "# The number of holes\n",
+ "p = (n_i**2)/N_D# /cm**3\n",
+ "# Conductivity of an N-type Ge,\n",
+ "sigma = q*N_D*miu_n# (ohm-cm)**-1\n",
+ "# The resistivity of the Ge\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity of a dopped Ge = %.2f ohm-cm\"% rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.8 Page No 54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity of intrinsic silicon = 2.25e+05 ohm-cm\n",
+ "The resistivity of doped silicon = 4.67 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Nsi = 4.96*10**22# /cm**3\n",
+ "n_i = 1.52*10**10# /cm**2\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 0.135# m**2/V-s\n",
+ "miu_n = miu_n * 10**4# cm**2/V-s\n",
+ "miu_p = 0.048# m**2/V-s\n",
+ "miu_p = miu_p * 10**4# cm**2/V-s\n",
+ "# The conductivity of an intrinsic silicon,\n",
+ "sigma = q*n_i*(miu_n+miu_p)# (ohm-cm)**-1\n",
+ "# The resistivity of intrinsic silicon \n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity of intrinsic silicon = %.2e ohm-cm\"%rho\n",
+ "\n",
+ "impurity = 50*10**6\n",
+ "# The number of donor atoms,\n",
+ "N_D = Nsi/impurity# /cm**3\n",
+ "# Total free electrons,\n",
+ "n = N_D# /cm**3\n",
+ "# Total holes = %.2f a doped Si,\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "# Conductivity of a doped Si,\n",
+ "sigma = q*n*miu_n# (ohm-m)**-1\n",
+ "# The resistivity of doped silicon\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity of doped silicon = %.2f ohm-cm\"%rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.9 Page No 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of temperature = 0.14 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "N_D= 5.0*10**28/(2.0*10**8)\n",
+ "# The Fermi level, E_F= E_C if,\n",
+ "N_C= N_D\n",
+ "# Formula N_C= 4.82*10**21*T**(3/2)\n",
+ "T= (N_C/(4.82*10**21.0))**(2.0/3)# K\n",
+ "print \"The value of temperature = %.2f K\"%T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.10 Page No 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The miniority carrier concentration = 0.10 m**2/V-s\n",
+ "The resistivity = 0.60 ohm-m\n",
+ "The position of Fermi level = 0.23 eV\n",
+ "Minority carrier concentration = 9.00e+12 atoms/cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "n_i = 1.5*10**16##m**3\n",
+ "impurity = 10**20\n",
+ "minority = (n_i**2)/impurity# atoms/m**3\n",
+ "q = 1.6*10**-19# C\n",
+ "rho = 2*10**3# ohm-m\n",
+ "# The miniority carrier concentration \n",
+ "miu_n = 1/(q*rho*n_i*2)##in m**2/V-s\n",
+ "print \"The miniority carrier concentration = %.2f m**2/V-s\"%miu_n\n",
+ "n = impurity\n",
+ "# The conductivity,\n",
+ "sigma = q*impurity*miu_n# (ohm-m)**-1\n",
+ "# The resistivity \n",
+ "rho = 1/sigma# ohm-m\n",
+ "print \"The resistivity = %.2f ohm-m\"%rho\n",
+ "kT = 0.026# eV\n",
+ "n_o = n\n",
+ "# The position of Fermi level \n",
+ "E_FdividedEi = kT*math.log(n_o/n_i)# eV\n",
+ "print \"The position of Fermi level = %.2f eV\"%E_FdividedEi\n",
+ "# Minority carrier concentration \n",
+ "M = ((n_i*2)**2)/n_o# atoms/cm**3\n",
+ "print \"Minority carrier concentration = %.2e atoms/cm**3\"%M"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.11 Page No 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity = 9.62 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "d = 5.0*10**22# atoms/cm**3\n",
+ "impurity = 10**8# atoms\n",
+ "N_D = d/impurity\n",
+ "n_i = 1.45*10**10\n",
+ "n = N_D\n",
+ "#Low of mass action, n*p = (n_i**2)\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 1300# cm/V-s\n",
+ "n_i = n\n",
+ "#The Conductivity\n",
+ "sigma = q*miu_n*n_i# (ohm-cm)**-1\n",
+ "# The resistivity\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity = %.2f ohm-cm\"%rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.12 Page No 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity = 9.62 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "d = 5.0*10**22# atoms/cm**3\n",
+ "impurity = 10**8# atoms\n",
+ "N_D = d/impurity\n",
+ "n_i = 1.45*10**10\n",
+ "n = N_D\n",
+ "#Low of mass action, n*p = (n_i**2)\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 1300# cm/V-s\n",
+ "n_i = n\n",
+ "#The Conductivity\n",
+ "sigma = q*miu_n*n_i# (ohm-cm)**-1\n",
+ "# The resistivity\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity = %.2f ohm-cm\"%rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.14 Page No 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The minority carrier concentration = 2.25e+03 holes/cm**3\n",
+ "The location of Fermi level = 0.409 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "n_i = 1.5*10**10# electrons/cm**3\n",
+ "N_D = 10**17# electrons/cm**3\n",
+ "n = N_D# electrons/cm**3\n",
+ "# The minority carrier concentration\n",
+ "p = (n_i**2)/n# holes/cm**3\n",
+ "print \"The minority carrier concentration = %.2e holes/cm**3\"%p\n",
+ "kT = 0.026\n",
+ "# The location of Fermi level \n",
+ "E_FminusEi = kT*math.log(N_D/n_i)# eV\n",
+ "print \"The location of Fermi level = %.3f eV\"%E_FminusEi"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.15 Page No 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The doping level = 1.92e+15 /cm**3\n",
+ "The drift velocity = 650.00 cm/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V = 1# V\n",
+ "I = 8# mA\n",
+ "I = I * 10**-3# A\n",
+ "R = V/I# ohm\n",
+ "l = 2# mm\n",
+ "l = l * 10**-1# cm\n",
+ "b = 2# mm\n",
+ "b = b * 10**-1# cm\n",
+ "A = l*b# cm**2\n",
+ "L = 2# cm\n",
+ "# R = (rho*L)/A\n",
+ "sigma = L/(R*A)# (ohm-cm)**-1\n",
+ "# n = N_D\n",
+ "miu_n = 1300# cm**2/V-s\n",
+ "q = 1.6 * 10**-19# C\n",
+ "# sigma = n*q*miu_n\n",
+ "N_D = sigma/( miu_n*q )# /cm**3\n",
+ "print \"The doping level = %.2e /cm**3\"%N_D\n",
+ "d = 2.0\n",
+ "E = V/d\n",
+ "# The drift velocity \n",
+ "Vd = miu_n * E# cm/s\n",
+ "print \"The drift velocity = %.2f cm/sec\"%Vd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.17 Page No 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity = 4.68e+05 mho/m\n",
+ "The mobility = 3.48e-05 m**2/V-s\n",
+ "The drift velocity = 1.79e-04 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "l = 1000# ft\n",
+ "l = l * 12*2.54# cm\n",
+ "R = 6.51# ohm\n",
+ "rho = R/l# ohm/cm\n",
+ "# The conductivity \n",
+ "sigma = 1/rho# mho/cm\n",
+ "sigma = sigma * 10**2# mho/m\n",
+ "D= 1.03*10**-3# m\n",
+ "A= math.pi*D**2/4# m**2\n",
+ "print \"The conductivity = %.2e mho/m\"%sigma\n",
+ "q = 1.6*10**-19# C\n",
+ "n = 8.4*10**28# electrons/m**3\n",
+ "# sigma = n*q*miu\n",
+ "miu = sigma/(n*q)# m**2/V-s\n",
+ "print \"The mobility = %.2e m**2/V-s\"%miu\n",
+ "T = 2\n",
+ "# The drift velocity \n",
+ "V = T/(n*q*A)# m/s\n",
+ "print \"The drift velocity = %.2e m/s\"%V"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.18 Page No 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The concentration of holes = 1.50e+16 /cm**3\n",
+ "The concentartion of electrons = 6.67e+07 /cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "N_D = 2*10**16# /cm**3\n",
+ "N_A = 5*10**15# /cm**3\n",
+ "# The concentration of holes \n",
+ "Pp = N_D-N_A# /cm**3\n",
+ "print \"The concentration of holes = %.2e /cm**3\"%Pp\n",
+ "n_i = 10**12\n",
+ "# The concentartion of electrons \n",
+ "n_p = (n_i**2)/Pp# /cm**3\n",
+ "print \"The concentartion of electrons = %.2e /cm**3\"%n_p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.19 Page No 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The hall angle = 1.95 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "rho = 0.005# ohm-m\n",
+ "Bz = 0.48# Wb/m**2\n",
+ "R_H = 3.55*10**-4# m**3/C\n",
+ "ExByJx= rho\n",
+ "# R_H = Ey/(Bz*Jx)\n",
+ "EyByJx= R_H*Bz\n",
+ "# The hall angle \n",
+ "theta_H = math.degrees(math.atan(EyByJx/ExByJx))# °\n",
+ "print \"The hall angle = %.2f degree\"%theta_H"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.20 Page No 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage between contacts = 0.0026 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R_H = 3.55 * 10**-4# m**3/C\n",
+ "Ix = 15# mA\n",
+ "Ix = Ix * 10**-3# A\n",
+ "A = 15*1# mm\n",
+ "A = A * 10**-6# m**2\n",
+ "Bz = 0.48# Wb/m**2\n",
+ "Jx = Ix/A# A/m**2\n",
+ "# R_H = Ey/(Bz*Jx)\n",
+ "Ey = R_H*Bz*Jx# V/m\n",
+ "# voltage between contacts \n",
+ "Voltage = Ey*Ix# V\n",
+ "print \"The voltage between contacts = %.4f V\"%Voltage"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.21 Page No 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The concentration of donor atoms = 4.630e+13 cm**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "A = 0.001# cm**2\n",
+ "l = 20# µm\n",
+ "l = l * 10**-4# cm\n",
+ "V = 20# V\n",
+ "I = 100# mA\n",
+ "I = I * 10**-3# A\n",
+ "R = V/I# ohm\n",
+ "# R = l/(sigma*A)\n",
+ "sigma = l/(R*A)# (ohm-cm)**-1\n",
+ "miu_n = 1350# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "# sigma = n*q*miu_n or\n",
+ "# The concentration of donor atoms \n",
+ "n = sigma/(q*miu_n)# cm**-3\n",
+ "print \"The concentration of donor atoms = %.3e cm**-3\"%n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.22 Page No 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The doping needed = 8.681e+15 cm**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R = 2# k ohm\n",
+ "R = R * 10**3# ohm\n",
+ "L = 200# µm\n",
+ "L = L * 10**-4# cm\n",
+ "A = 10**-6# cm**2\n",
+ "miu_n = 8000# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "n = '0.9*N_D'\n",
+ "# R = (rho*l)/A= (1/(n*q*miu_n))*(l/A)\n",
+ "# rho = L/(R*q*miu_n*A)\n",
+ "n = L/(R*q*miu_n*A)# /cm**-3\n",
+ "# The doping needed \n",
+ "Nd= n/0.9\n",
+ "print \"The doping needed = %.3e cm**-3\"%Nd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.23 Page No 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of the Fermi level = 0.29 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "KT = 26*10**-3\n",
+ "Nd = 10**15\n",
+ "n_i = 1.5*10**10\n",
+ "# The position of the Fermi level \n",
+ "E_FminusE_Fi = KT*math.log(abs( Nd/n_i ))# eV\n",
+ "print \"The position of the Fermi level = %.2f eV\"%E_FminusE_Fi"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.24 Page No 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The concentration of donors atoms = 1.2176e+16 cm**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Na = 5 * 10**15# cm**-3\n",
+ "Nc = 2.8 * 10**19# cm**-3\n",
+ "E_CminusE_F = 0.215# eV\n",
+ "KT = 26* 10**-3# eV\n",
+ "# The concentration of donors atoms \n",
+ "Nd = Na + Nc * (math.exp( -E_CminusE_F/KT ))# cm**-3\n",
+ "print \"The concentration of donors atoms = %.4e cm**-3\"%Nd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.25 Page No 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The percentage doping efficiency = 78.12 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Nd = 10**18\n",
+ "R = 10# ohm\n",
+ "A =10**-6# cm**2\n",
+ "L = 10# mm\n",
+ "L = L * 10**-4# cm\n",
+ "miu_n = 800# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "#Formula used, n = L/(q*miu_n*A*R)\n",
+ "n = L/(q*miu_n*A*R)# cm**-3\n",
+ "# The percentage doping efficiency \n",
+ "doping = (n/Nd)*100## % doping efficiency in %\n",
+ "print \"The percentage doping efficiency = %.2f %%\"%doping"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.26 Page No 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current through the diode under forward bias = 10.72 µA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Io = 2*10**-7# A\n",
+ "V = 0.1# V\n",
+ "# Current through the diode under forward bias,\n",
+ "I = Io*( (math.exp(40*V))-1 )# A\n",
+ "I = I * 10**6# µA\n",
+ "print \"The current through the diode under forward bias = %.2f µA\"%I\n",
+ "\n",
+ "# Note: Calculated value of I in the book is wrong."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.28 Page No 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The dynamic resistance in forward direction = 3.36 ohm\n",
+ "The dynamic resistance in reverse direction = 0.39 Mohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "T = 125.0# degree C\n",
+ "T = T + 273.0# K\n",
+ "V_T = T/11600.0\n",
+ "Io = 30# µA\n",
+ "Io = Io * 10**-6# A\n",
+ "V = 0.2# V\n",
+ "# The dynamic resistance = %.2f forward direction,\n",
+ "r_f = V_T/( Io * (math.exp(V/V_T)) )# ohm\n",
+ "print \"The dynamic resistance in forward direction = %.2f ohm\"%r_f\n",
+ "r_f = V_T/( Io * (math.exp(-V/V_T)) )# ohm\n",
+ "# The dynamic resistance = %.2f reverse direction \n",
+ "r_f = r_f * 10**-6# Mohm\n",
+ "print \"The dynamic resistance in reverse direction = %.2f Mohm\"%r_f"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.29 Page No 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage = -59.87 mV\n",
+ "The ratio of diode current with a forward bias to current with a reverse bias = -6.842\n",
+ "The value of I1 = 458.13 µA\n",
+ "The value of I2 = 21.90 mA\n",
+ "The value of I3 = 1.03 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Eta = 1\n",
+ "V_T = 0.026\n",
+ "# I = Io*( (exp(V/(Eta*V_T))) - 1 ) and I = -Io\n",
+ "# I = -0.9*Io\n",
+ "# -0.9*Io = Io*( (exp(V/(Eta*V_T))) - 1 )\n",
+ "V = Eta*V_T*math.log(0.1)# V\n",
+ "V = V * 10**3# mV\n",
+ "print \"The voltage = %.2f mV\"%V\n",
+ "V = 0.05# V\n",
+ "# The ratio of diode current with a forward bias to current with a reverse bias \n",
+ "If_by_Ir= ( (math.exp(V/V_T))-1 )/( (math.exp(-V/V_T))-1 )\n",
+ "print \"The ratio of diode current with a forward bias to current with a reverse bias = %.3f\"%If_by_Ir\n",
+ "Io = 10# µA\n",
+ "V = 0.1# V\n",
+ "# The value of I1 \n",
+ "I1 = Io*( (math.exp(V/V_T))-1 )# µA\n",
+ "print \"The value of I1 = %.2f µA\"%I1\n",
+ "V = 0.2# V\n",
+ "# The value of I2\n",
+ "I2 = Io*( (math.exp(V/V_T))-1 )# µA \n",
+ "I2 = I2 * 10**-3# mA\n",
+ "print \"The value of I2 = %.2f mA\"%I2\n",
+ "V = 0.3# V\n",
+ "# The value of I3\n",
+ "I3 = Io*( (math.exp(V/V_T))-1 )# µA\n",
+ "I3 = I3 * 10**-6# A\n",
+ "print \"The value of I3 = %.2f A\"%I3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.30 Page No 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which current will get multiplied = 638.025\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "# Io150 = Io25 * 2**((150-25)/10)\n",
+ "#Io150 = 5800*Io25\n",
+ "T = 150# degree C\n",
+ "T = T + 273# K\n",
+ "V_T = 8.62*10**-5 * T# V\n",
+ "V = 0.4# V\n",
+ "Eta = 2\n",
+ "Vt = 0.026# V \n",
+ "# The factor by which current will get multiplied \n",
+ "I150byI25= 5800*math.exp(V/(Eta*V_T))/math.exp(V/(Eta*Vt))\n",
+ "print \"The factor by which current will get multiplied = %.3f\"%I150byI25"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.31 Page No 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The operating point of the diode is : (0.50V,4.50mA)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R = 1# ohm\n",
+ "V = 5# V\n",
+ "V1 = 0.5# V\n",
+ "R1 = 1# k ohm\n",
+ "R1 = R1 * 10**3# ohm\n",
+ "# V-(I_D*R1)-(I_D*R) - V1 = 0\n",
+ "I_D = (V-V1)/(R1+R)# A\n",
+ "I_D = I_D * 10**3# mA\n",
+ "V_D = (I_D*10**-3*R) + V1# V\n",
+ "print \"The operating point of the diode is : (%.2fV,%.2fmA)\"%(V_D,I_D)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.32 Page No 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage drop across the forward biased diode, = 0.0180 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Eta = 1\n",
+ "kT = 26# meV\n",
+ "# (%e**((e*V1)/kT)) = 2 or\n",
+ "#The voltage drop across the forward biased diode\n",
+ "V1 = math.log(2)*kT# mV\n",
+ "V1= V1*10**-3# V\n",
+ "print \"The voltage drop across the forward biased diode, = %.4f V\"%V1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.33 Page No 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The space charge capacitance = 70.74 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "epsilon_Ge = 16/(36*math.pi*10**11)# F/cm\n",
+ "d = 2*10**-4# cm\n",
+ "A = 1# mm**2\n",
+ "A = A * 10**-2# cm**2\n",
+ "epsilon_o = epsilon_Ge# F/cm\n",
+ "# The space charge capacitance \n",
+ "C_T = (epsilon_o*A)/d# F\n",
+ "C_T = C_T * 10**12# pF\n",
+ "print \"The space charge capacitance = %.2f pF\"%C_T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.34 Page No 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of C_T = 61.68 pf/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "# Given data\n",
+ "D = 0.102# cm \n",
+ "A = (math.pi*(D**2))/4# cm**2\n",
+ "sigma_p = 0.286# (ohm-cm)**-1\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_p = 500\n",
+ "# Formula used, sigma_p = q*miu_p*N_A\n",
+ "N_A = sigma_p/(q*miu_p)# atoms/cm**3\n",
+ "V1 = 5# V\n",
+ "V2 = 0.35# V\n",
+ "Vb = V1+V2# V\n",
+ "# The transition capacitance,\n",
+ "C_T = 2.92*10**-4*((N_A/Vb)**(1./2))*A# pF/cm**2\n",
+ "print \"The value of C_T = %.2f pf/cm**2\"%C_T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.35 Page No 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of C_T for reverse bias = 15.00 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "C_T1 = 15# pF\n",
+ "Vb1 = 8# V\n",
+ "Vb2 = 12# V\n",
+ "# C_T1/C_T2 = (Vb2/Vb1)**(1/2)\n",
+ "C_T2 = C_T1 * ((Vb1/Vb2)**(1/2))# pF\n",
+ "print \"The value of C_T for reverse bias = %.2f pF\"%C_T2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.36 Page No 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage = -59.87 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "V_T = 0.026# V\n",
+ "Eta = 1\n",
+ "I = '-0.9*Io'\n",
+ "# T = Io*((%e**(V/(Eta*V_T)))-1 )\n",
+ "# I = Io*((%e**(V/(Eta*V_T)))-1 )\n",
+ "V = math.log(0.1)*V_T# V \n",
+ "V = V * 10**3# mV\n",
+ "print \"The voltage = %.2f mV\"%V"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.37 Page No 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Part (a) : The value of I_D for first circuit = 0.97 mA\n",
+ "Part (b) : The value of I_D for second circuit = 0.10 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Vin = 20# V\n",
+ "Vgamma = 0.7# V\n",
+ "R = 20# k ohm\n",
+ "R = R * 10**3# ohm\n",
+ "# Vin-(I_D*Vin) - Vgamma = 0 or\n",
+ "# The value of I_D,\n",
+ "I_D = (Vin-Vgamma)/R# A\n",
+ "I_D = I_D * 10**3# mA\n",
+ "print \"Part (a) : The value of I_D for first circuit = %.2f mA\"%I_D\n",
+ "\n",
+ "# Part (b)\n",
+ "Vin= 10.# V\n",
+ "Vgamma = 0.7# V\n",
+ "R = 100# k ohm\n",
+ "# Drain current,\n",
+ "I_D= Vin/R# mV\n",
+ "print \"Part (b) : The value of I_D for second circuit = %.2f mA\"%I_D"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.38 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of I_D = 3.10 mA\n",
+ "The value of Vo = 6.90 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R1 = 1# k ohm\n",
+ "R1 = R1 * 10**3# ohm\n",
+ "R2 = 2# k ohm\n",
+ "R2 = R2 * 10**3# ohm\n",
+ "V = 10# V\n",
+ "V1 = 0.7# V \n",
+ "# V * (I_D*R1) - (R2*I_D) - V1 = 0\n",
+ "I_D = (V-V1)/(R1+R2)# A\n",
+ "I_D = I_D * 10**3# mA\n",
+ "print \"The value of I_D = %.2f mA\"%I_D\n",
+ "# The output voltage,\n",
+ "Vo = (I_D*10**-3 * R2) +V1# V\n",
+ "print \"The value of Vo = %.2f V\"%Vo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.39 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Part (a): The current through resistance = 1.00 A\n",
+ "Part (b) : Current through 10 ohm resistance will be Zero\n",
+ "Part (c): Current will be zero\n",
+ "Part (d): The diode will be ON and current = 1.00 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V = 10.# V\n",
+ "R = 10# ohm\n",
+ "# Current through resistance,\n",
+ "I = V/R# A\n",
+ "print \"Part (a): The current through resistance = %.2f A\"%I\n",
+ "print \"Part (b) : Current through 10 ohm resistance will be Zero\"\n",
+ "print \"Part (c): Current will be zero\"\n",
+ "print \"Part (d): The diode will be ON and current = %.2f A\"%I"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.40 Page No 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The operating point is : (0.50V,4.50mA)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Vth= 0.5# V\n",
+ "R_F= 1*10**3# ohm\n",
+ "V= 5# V\n",
+ "# Applying KVL for loop, V-Vd-R_F*Ii= 0 (i)\n",
+ "# When Ii=0\n",
+ "Vd= V# V\n",
+ "# When Vd= 0\n",
+ "Ii= V/R_F# A\n",
+ "# From eq(i)\n",
+ "Ii= (V-Vth)/R_F# A\n",
+ "Vd= V-R_F*Ii# V\n",
+ "print \"The operating point is : (%.2fV,%.2fmA)\"%(Vd,Ii*1000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.43 Page No 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage at V1 = 6.00 volts\n",
+ "The voltage at V2 = 5.40 volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V_CC = 6# V\n",
+ "Vr = 0.6# V\n",
+ "V1= V_CC##in V\n",
+ "V2 = V1-Vr# V\n",
+ "print \"The voltage at V1 = %.2f volts\"%V1\n",
+ "print \"The voltage at V2 = %.2f volts\"%V2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.44 Page No 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of I1 = 1.80 mA\n",
+ "The value of I2 = 1.80 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V_T = 0.7# V\n",
+ "V = 5# V\n",
+ "R = 2# k ohm\n",
+ "R = R * 10**3# ohm\n",
+ "Vs = 0.7\n",
+ "Vx = Vs+V_T# V\n",
+ "# The value of I1 \n",
+ "I1 = (V-Vx)/R# A\n",
+ "I1 = I1 * 10**3# mA\n",
+ "print \"The value of I1 = %.2f mA\"%I1\n",
+ "# The value of I2 \n",
+ "I2 = I1# mA\n",
+ "print \"The value of I2 = %.2f mA\"%I2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.45 Page No 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of Vo = 1.00 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Rf = 300.# ohm\n",
+ "V = 0.5# V\n",
+ "R = 600.# ohm\n",
+ "Vi = 2.# V\n",
+ "# The output voltage \n",
+ "Vo = (Vi-V)*( R/(R+Rf) )# V\n",
+ "print \"The value of Vo = %.2f V\"%Vo"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/PreetiRani/ch4.ipynb b/sample_notebooks/PreetiRani/ch4.ipynb
new file mode 100644
index 00000000..75f81a8f
--- /dev/null
+++ b/sample_notebooks/PreetiRani/ch4.ipynb
@@ -0,0 +1,387 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter4 - Three phase transformers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.1 Pg No: 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of line currents = 276.74 Amperes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Caption:Find the value of line current\n",
+ "\n",
+ "a=2200./200##transformation ratio\n",
+ "P=450*1000. # watts\n",
+ "pf=0.85\n",
+ "V_s=200. # volts\n",
+ "I_2=P/(pf*V_s) # amperes\n",
+ "I_1=1.15*I_2/a\n",
+ "print 'Value of line currents = %.2f Amperes'%I_1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.2 Pg No: 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of line current = 312.71 Amperes\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Find the value of line current\n",
+ "\n",
+ "a=2200./200##transformation ratio\n",
+ "P_1=400.*1000 # watts\n",
+ "P_2=500.*1000 # watts\n",
+ "pf=0.8\n",
+ "V_s=200. # volts\n",
+ "I_2=P_1/(pf*V_s) # amperes\n",
+ "I_1=1.15*I_2/a\n",
+ "I_1T=I_1/2\n",
+ "I_2M=P_2/(pf*V_s*a)\n",
+ "I_p=np.sqrt((I_1T**2)+(I_2M**2))\n",
+ "print 'Value of line current = %.2f Amperes'%I_p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.3 Pg No: 330"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Efficiency at full load and 0.85pf = 95.67 %\n",
+ "(b)Efficiency at 75 percent of full load and unity pf = 95.84 %\n",
+ "(c)max efficieny at unity pf = 97.09 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Caption:Determine the efficiency of transformer at (a)full load and 0.85pf (b)75 percent of full load and unity pf (c)max efficieny at unity pf\n",
+ "\n",
+ "P=100*1000 # watts\n",
+ "P_iron=1500 # watts\n",
+ "x=0.8\n",
+ "P_cu=1500/x**2 # watts\n",
+ "pf=0.8\n",
+ "a=5000/400##transformation ratio\n",
+ "P_t=P_iron+P_cu\n",
+ "P_o=0.85*P # watts\n",
+ "Eff=P_o/(P_o+P_t)\n",
+ "print '(a)Efficiency at full load and 0.85pf = %.2f %%'%(Eff*100)\n",
+ "P_cu_1=0.75*P_cu # watts\n",
+ "P_t_1=P_cu_1+P_iron # watts\n",
+ "P_o_1=0.75*P\n",
+ "Eff_1=P_o_1/(P_o_1+P_t_1)\n",
+ "print '(b)Efficiency at 75 percent of full load and unity pf = %.2f %%'%(Eff_1*100)\n",
+ "P_t_2=2.*P_iron\n",
+ "P_o_2=P\n",
+ "Eff_2=P_o_2/(P_o_2+P_t_2)\n",
+ "print '(c)max efficieny at unity pf = %.2f %%'%(Eff_2*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.4 Pg No: 331"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For Star-Delta Configruation\n",
+ "Line voltage = 190.53 volts\n",
+ "Line current = 173.21 amperes\n",
+ "Output = 57157.68 watts\n",
+ "For Delta-Star Configruation\n",
+ "Line voltage = 571.58 volts\n",
+ "Line current = 57.74 amperes\n",
+ "Output = 57157.68 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Find the value of line voltage,line current,and output when the transformer winding is connected as (a) Star-delta (b)delta-star\n",
+ "\n",
+ "a=10. ##transformation ratio\n",
+ "V_s=3300. # volts\n",
+ "I_1=10. # amperes\n",
+ "V_1=V_s/np.sqrt(3)\n",
+ "V_2=V_1/a\n",
+ "I_2=np.sqrt(3)*a*I_1\n",
+ "P_o=np.sqrt(3)*V_2*I_2\n",
+ "print \"For Star-Delta Configruation\"\n",
+ "print 'Line voltage = %.2f volts'%V_2\n",
+ "print 'Line current = %.2f amperes'%I_2\n",
+ "print 'Output = %.2f watts'%P_o\n",
+ "V_2p=V_s/a\n",
+ "V_2L=np.sqrt(3)*V_2p\n",
+ "I_2L=I_1*a/np.sqrt(3)\n",
+ "P_o2=np.sqrt(3)*V_2*I_2\n",
+ "print \"For Delta-Star Configruation\"\n",
+ "print 'Line voltage = %.2f volts'%V_2L\n",
+ "print 'Line current = %.2f amperes'%I_2L\n",
+ "print 'Output = %.2f watts'%P_o2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.5 Pg No: 332"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency = 93.29 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Find the Efficiency\n",
+ "\n",
+ "P=1200.*1000 # watts\n",
+ "R_1=2.# ohms\n",
+ "R_2=0.03 # ohms\n",
+ "P_iron=20000. # watts\n",
+ "V_1p=6600. # volts\n",
+ "V_2p=1100./np.sqrt(3) # volts\n",
+ "a=V_1p/V_2p\n",
+ "R_o2=R_2+(R_1/a**2) # ohms\n",
+ "I_2p=P/(np.sqrt(3)*1100) # amperes\n",
+ "P_cu=3*R_o2*I_2p**2\n",
+ "P_t=P_iron+P_cu\n",
+ "P_o=0.9*P # watts\n",
+ "Eff=P_o/(P_o+P_t)\n",
+ "print 'Efficiency = %.2f %%'%(Eff*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.6 Pg No: 332"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "% Resistance drop = 2.00 %\n",
+ "% Reactance drop = 4.08 %\n",
+ "Voltage regulation = 4.43 %\n",
+ "Efficiency = 95.62 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math as mt\n",
+ "#Caption:Find the percentage resistance,reactance drop,efficiency and voltage regulation\n",
+ "\n",
+ "P=1500.*1000 # watts\n",
+ "phy=mt.acos(0.8)*180/mt.pi\n",
+ "V_1P=300 # volts\n",
+ "V_1L=6600 # volts\n",
+ "I_1P=131.21/mt.sqrt(3)\n",
+ "Z_1=V_1P/I_1P # ohms\n",
+ "R_1=30*1000/(3*I_1P**2)\n",
+ "X_1=mt.sqrt((Z_1**2)-(R_1**2))\n",
+ "R=I_1P*R_1*100/V_1L\n",
+ "X=I_1P*X_1*100/V_1L\n",
+ "print '%% Resistance drop = %.2f %%'%R\n",
+ "print '%% Reactance drop = %.2f %%'%X\n",
+ "VR=(R*mt.cos(phy*180/mt.pi))+(X*mt.sin(phy*180/mt.pi))\n",
+ "print 'Voltage regulation = %.2f %%'%VR\n",
+ "I_1_FL=P/(mt.sqrt(3)*V_1L)\n",
+ "P_t=(30+25)*1000 # watts\n",
+ "P_o=P*0.8 # watts\n",
+ "Eff=P_o/(P_o+P_t)\n",
+ "print 'Efficiency = %.2f %%'%(Eff*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.7 Pg No: 334"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)KVA Load supplied by each transformer = 28.87 KVA\n",
+ "(b)Percent of rated load = 1.15 %\n",
+ "(c)Total KVA rating = 43.30 KVA\n",
+ "(d)Ratio=0.577\n",
+ "(e)Increase in load = 173.21 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Determine the (a)KVA Load (b)Percentage rated load (c)Total KVA Rating (d)Ratio of star-star bank to delta-delta bank transformer rating (e)% increase in load\n",
+ "\n",
+ "KVA=25.\n",
+ "KVA_s=50./np.sqrt(3)\n",
+ "print '(a)KVA Load supplied by each transformer = %.2f KVA'%KVA_s\n",
+ "r=KVA_s/KVA\n",
+ "print '(b)Percent of rated load = %.2f %%'%r\n",
+ "KVA_t=2*25*0.866\n",
+ "print '(c)Total KVA rating = %.2f KVA'%KVA_t\n",
+ "ratio=KVA_t/75\n",
+ "print '(d)Ratio=%.3f'%ratio\n",
+ "KVA_s2=50./3\n",
+ "Inc=KVA_s/KVA_s2\n",
+ "print '(e)Increase in load = %.2f %%'%(Inc*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.8 Pg No: 335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Currents in sections Oa,Ob and Oc = 131.22 amperes\n",
+ " Currents in sections Aa,Bb and Cc = 524.86 amperes\n",
+ "(b)Power transformed by transformer action = 80.00 Kw\n",
+ "(c)Power Conducted directly = 320.00 Kw\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Determine the (a)Current flowing in various sections (b)Power transformed (c)Power conducted directly\n",
+ "\n",
+ "P=400.*1000 # watts\n",
+ "pf=0.8\n",
+ "V_1=550. # volts\n",
+ "V_2=440. # volts\n",
+ "I_2=P/(np.sqrt(3)*V_2*pf)## in amperes\n",
+ "I_1=I_2*V_2/V_1 # amperes\n",
+ "I=I_2-I_1\n",
+ "print '(a)Currents in sections Oa,Ob and Oc = %.2f amperes'%I\n",
+ "print ' Currents in sections Aa,Bb and Cc = %.2f amperes'%I_1\n",
+ "P_trans=P*(1-(V_2/V_1))\n",
+ "print '(b)Power transformed by transformer action = %.2f Kw'%(P_trans/1000)\n",
+ "P_cond=P-P_trans\n",
+ "print '(c)Power Conducted directly = %.2f Kw'%(P_cond/1000)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb b/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb
new file mode 100644
index 00000000..67fc73ce
--- /dev/null
+++ b/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb
@@ -0,0 +1,480 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 5: Uncertainity Principle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 1.65e-24 kg m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "deltax=4*10**-10; #uncertainity(m)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_px=h/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",delta_px,\"kg m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 0.02418 m\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "v=600; #speed(m/s)\n",
+ "deltapx=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/deltapx; #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax,5),\"m\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 6.63e-23 kg m/sec\n",
+ "uncertainity in velocity is 7.286 *10**7 m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #plancks constant(J s)\n",
+ "deltax=0.1*10**-10; #uncertainity(m)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "deltav=deltap/m0; #uncertainity in velocity(m/sec) \n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",deltap,\"kg m/sec\"\n",
+ "print \"uncertainity in velocity is\",round(deltav/10**7,3),\"*10**7 m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in velocity is 1835\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltavebydeltavp=mp/me; #uncertainity in velocity\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in velocity is\",int(deltavebydeltavp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "smallest possible uncertainity in position is 0.0388 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "v=3*10**7; #velocity(m/sec)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m0=9*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltaxmin=h*math.sqrt(1-(v**2/c**2))/(2*math.pi*m0*v); #smallest possible uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"smallest possible uncertainity in position is\",round(deltaxmin*10**10,4),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in velocity is 7.3 *10**5 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "deltapmax=10**-9; #uncertainity in momentum(kg m/sec)\n",
+ "m=9*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltapmin=h/deltapmax; #smallest possible uncertainity in momentum(kg m/sec)\n",
+ "deltavxmin=deltapmin/m; #minimum uncertainity in velocity(m/s) \n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in velocity is\",round(deltavxmin/10**5,1),\"*10**5 m/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time required is 1.9 *10**-8 second\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=6000*10**-10; #wavelength(m)\n",
+ "dlamda=10**-4*10**-10; #width(m)\n",
+ "\n",
+ "#Calculations\n",
+ "deltat=lamda**2/(2*math.pi*c*dlamda); #time required(second)\n",
+ "\n",
+ "#Result\n",
+ "print \"time required is\",round(deltat*10**8,1),\"*10**-8 second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 3.381 *10**-6 m\n",
+ "answer given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #plancks constant(J s)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "v=3.5*10**5; #speed(m/s)\n",
+ "deltap=(0.0098/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax*10**6,3),\"*10**-6 m\"\n",
+ "print \"answer given in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 5.276 *10**-20 kg m/sec\n",
+ "kinetic energy of electron is 9559.1 MeV\n",
+ "answer for kinetic energy given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #plancks constant(J s)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "deltax=2*10**-15; #uncertainity in position(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
+ "K=deltap**2/(2*m0*e); #kinetic energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",round(deltap*10**20,3),\"*10**-20 kg m/sec\"\n",
+ "print \"kinetic energy of electron is\",round(K/10**6,1),\"MeV\"\n",
+ "print \"answer for kinetic energy given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in momentum is 1.05e-20 kg m/sec\n",
+ "minimum kinetic energy is 2.06 *10**5 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "chi=1.05*10**-34; #plancks constant(J s)\n",
+ "deltaxmax=2*5*10**-15; #uncertainity in momentum(kg m/sec)\n",
+ "m=1.67*10**-27; #mass(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltapmin=chi/deltaxmax; #minimum uncertainity in momentum(kg m/sec)\n",
+ "Emin=deltapmin**2/(2*m*e); #minimum kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in momentum is\",deltapmin,\"kg m/sec\"\n",
+ "print \"minimum kinetic energy is\",round(Emin/10**5,2),\"*10**5 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angular orbital position is 10 radian\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=5/100; #error\n",
+ "h=1; #assume\n",
+ "\n",
+ "#Calculations\n",
+ "deltaJ=e*2*h; #uncertainity in angular momentum\n",
+ "delta_theta=h/deltaJ; #angular orbital position(radian)\n",
+ "\n",
+ "#Result\n",
+ "print \"angular orbital position is\",int(delta_theta),\"radian\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/SundeepKatta/Chapter7.ipynb b/sample_notebooks/SundeepKatta/Chapter7.ipynb
new file mode 100644
index 00000000..fad1281c
--- /dev/null
+++ b/sample_notebooks/SundeepKatta/Chapter7.ipynb
@@ -0,0 +1,489 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 7: Nuclear Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total mass is 11.7167 *10**-27 kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.6725*10**-27; #mass of proton(kg)\n",
+ "mn=1.6748*10**-27; #mass of neutron(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "m=(3*mp)+(4*mn); #total mass(kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"total mass is\",m*10**27,\"*10**-27 kg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons is 36 *10**23\n",
+ "number of protons is 36 *10**23\n",
+ "number of neutrons is 48 *10**23\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "N=6*10**23; #avagadro number\n",
+ "\n",
+ "#Calculations\n",
+ "e=6*N; #number of electrons\n",
+ "p=6*N; #number of protons\n",
+ "n=8*N; #number of neutrons\n",
+ "\n",
+ "#Result\n",
+ "print \"number of electrons is\",int(e/10**23),\"*10**23\"\n",
+ "print \"number of protons is\",int(p/10**23),\"*10**23\"\n",
+ "print \"number of neutrons is\",int(n/10**23),\"*10**23\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mass number of nucleus is 9\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r=2.71*10**-15; #radius(m)\n",
+ "r0=1.3*10**-15; \n",
+ "\n",
+ "#Calculations\n",
+ "A=(r/r0)**3; #mass number of nucleus\n",
+ "\n",
+ "#Result\n",
+ "print \"mass number of nucleus is\",int(A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of He is 2.2375 fermi\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r1=7.731; #radius(fermi)\n",
+ "A1=165; #mass number of Ho\n",
+ "A2=4; #mass number of He \n",
+ "\n",
+ "#Calculations\n",
+ "r2=r1*(A2/A1)**(1/3); #radius of He(fermi)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of He is\",round(r2,4),\"fermi\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of nucleus is 4.8 fermi\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r1=6; #radius(fermi)\n",
+ "A1=125; #mass number of nucleus\n",
+ "A2=64; #mass number of nucleus \n",
+ "\n",
+ "#Calculations\n",
+ "r2=r1*(A2/A1)**(1/3); #radius of nucleus(fermi)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of nucleus is\",r2,\"fermi\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of nuclear matter is 1.8 *10**17 kg/m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "A=1; #assume\n",
+ "r=1.3*A**(1/3)*10**-15; #radius(m) \n",
+ "amu=1.66*10**-27; #amu(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "V=4*math.pi*r**3/3; #volume(m**3)\n",
+ "M=A*amu;\n",
+ "rho=M/V; #density of nuclear matter(kg/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of nuclear matter is\",round(rho/10**17,1),\"*10**17 kg/m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrostatic potential energy is 3.91 *10**-11 eV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "A=235/2; #mass number\n",
+ "r=1.3*A**(1/3)*10**-15; #radius(m) \n",
+ "Z=46; #atomic number\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "epsilon0=8.65*10**-12; \n",
+ "\n",
+ "#Calculations\n",
+ "U=(Z*e)**2/(4*math.pi*epsilon0*2*r); #electrostatic potential energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"electrostatic potential energy is\",round(U*10**11,2),\"*10**-11 eV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy of alpha particle is 28.5229 MeV\n",
+ "binding energy per nucleon is 7.1307 MeV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.007277; #mass of proton(amu)\n",
+ "mhn=4.001265; #mass of helium nucleus(amu)\n",
+ "mn=1.008666; #mass of neutron(amu)\n",
+ "amu=931.4812; #amu(MeV)\n",
+ "\n",
+ "#Calculations\n",
+ "m=(2*mp)+(2*mn); #total initial mass(amu)\n",
+ "deltam=m-mhn; #mass defect(amu)\n",
+ "BEalpha=deltam*amu; #binding energy of alpha particle(MeV)\n",
+ "BEn=BEalpha/4; #binding energy per nucleon(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy of alpha particle is\",round(BEalpha,4),\"MeV\"\n",
+ "print \"binding energy per nucleon is\",round(BEn,4),\"MeV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy released is 63.0 *10**10 J\n",
+ "electrical energy is 8.75 *10**3 kilowatt hour\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mh=1*10**-3; #mass of hydrogen(kg)\n",
+ "mhe=0.993*10**-3; #mass of helium(kg)\n",
+ "e=5/100; #efficiency\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "x=36*10**5; \n",
+ "\n",
+ "#Calculations\n",
+ "deltam=mh-mhe; #mass defect(kg)\n",
+ "E=deltam*c**2; #energy released(J)\n",
+ "EE=e*E/x; #electrical energy(kilowatt hour)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy released is\",E/10**10,\"*10**10 J\"\n",
+ "print \"electrical energy is\",round(EE/10**3,2),\"*10**3 kilowatt hour\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy released is 0.73 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.6725*10**-27; #mass of proton(kg)\n",
+ "me=9*10**-31; #mass of electron(kg)\n",
+ "mn=1.6747*10**-27; #mass of neutron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltam=mn-(mp+me); #mass defect(kg)\n",
+ "E=deltam*c**2/(e*10**6); #energy released(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy released is\",round(E,2),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "atomic mass is 34.96908 amu\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.007825; #mass of proton(amu)\n",
+ "mn=1.008665; #mass of neutron(amu)\n",
+ "BE=298; #binding energy(MeV)\n",
+ "amu=931.5; #amu(MeV)\n",
+ "\n",
+ "#Calculations\n",
+ "m=(17*mp)+(18*mn); #total initial mass(amu)\n",
+ "deltam=BE/amu; #mass defect(amu)\n",
+ "Am=m-deltam; #atomic mass(amu)\n",
+ "\n",
+ "#Result\n",
+ "print \"atomic mass is\",round(Am,5),\"amu\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}