diff options
29 files changed, 6811 insertions, 0 deletions
diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb new file mode 100644 index 00000000..3dcd2a65 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter26.ipynb @@ -0,0 +1,230 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 26:CHARGE AND MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Example 26.1 Magnitude of total charges in a copper penny" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Magnitude of the charges in coulombs is 133687.50000000003\n" + ] + } + ], + "source": [ + "#Example 1.1\n", + "\n", + "m =3.1 #mass of copper penny in grams\n", + "e =4.6*10** -18 #charge in coulombs\n", + "N0 =6*10**23 #avogadro’s number atoms / mole\n", + "M =64 #molecular weight of copper in gm/ mole\n", + "\n", + "#Calculation\n", + "N =( N0 * m ) / M #No. of copper atoms in penny\n", + "q = N * e # magnitude of the charges in coulombs\n", + "print (\" Magnitude of the charges in coulomb is \",q )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Example 26.2 Separation between total positive and negative charges" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Separation between total positive and negative charges in meters is 5813776741.499454\n" + ] + } + ], + "source": [ + "#Example 2\n", + "\n", + "import math\n", + "\n", + "F =4.5 #Force of attraction in nt\n", + "q =1.3*10**5 #total charge in coulomb\n", + "r = q * math.sqrt ((9*10**9) / F ) ;\n", + "print(\" Separation between total positive and negative charges in meters is \",r )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Example 26.3 Force acting on charge q1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X component of resultant force acting on q1 in nt is 2.0999999999999996\n", + "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n" + ] + } + ], + "source": [ + "#Example 3\n", + "\n", + "import math\n", + "\n", + "#given three charges q1,q2,q3\n", + "q1=-1.0*10**-6 #charge in coul\n", + "q2=+3.0*10**-6 #charge in coul\n", + "q3=-2.0*10**-6 #charge in coul\n", + "r12=15*10**-2 #separation between q1 and q2 in m\n", + "r13=10*10**-2 # separation between q1 and q3 in m\n", + "angle=math.pi/6 #in degrees\n", + "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n", + "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n", + "F12x=-F12 #ignoring signs of charges\n", + "F13x=F13*math.sin(angle);\n", + "F1x=F12x+F13x\n", + "F12y=0 #from fig.263\n", + "F13y=-F13*math.cos(angle);\n", + "F1y=F12y+F13y #in nt\n", + "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n", + "print(\"Y component of resultant force acting on q1 in nt is\",F1y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Example 26.4 Electrical and Gravitational force between two particles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coulomb force in nt is 8.202207191171238e-08\n", + "Gravitational force in nt is 3.689889640441438e-47\n" + ] + } + ], + "source": [ + "#Example 4\n", + "\n", + "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n", + "e=1.6*10**-19 #charge in coul\n", + "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n", + "m1=9.1*10**-31 #mass of electron in kg\n", + "m2=1.7*10**-27 #mass of proton in kg\n", + "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n", + "F2=G*m1*m2/(r**2) #gravitational force\n", + "print(\"Coulomb force in nt is\",F1)\n", + "print(\"Gravitational force in nt is\",F2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Example 26.5 Repulsive force between two protons in a nucleus of iron" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Repulsive coulomb force F 14.4 nt\n" + ] + } + ], + "source": [ + "#Example 5\n", + "\n", + "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n", + "q=1.6*10**-19 #charge in coul\n", + "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n", + "print(\"Repulsive coulomb force F \",F,'nt')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb new file mode 100644 index 00000000..aa87126e --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter27.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 27 THE ELECTRIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 27.1 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength E=F/q where F=mg\n", + "electric field strength in nt/coul is 5.574e-11\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #mass of electron in kg\n", + "g=9.8 #acceleration due to gravity in m/s\n", + "q=1.6*10**-19 #charge of electron in coul\n", + "print(\"Electric field strength E=F/q where F=mg\")\n", + "E=m*g/q\n", + "print(\"electric field strength in nt/coul is %.3e\"%E)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 27.4 The point on the line joining two charges for the electric field strength to be zero" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the electric field strength to be zero the point should lie between the charges where E1=E2\n", + "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n", + "Electric field strength is zero at x=4.142 cm\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "q1=1.0*10**-6 #in coul\n", + "q2=2.0*10**-6 #in coul\n", + "l=10 #sepearation b/w q1 and q2 in cm\n", + "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n", + "#\"Refer to the fig 27.9\"\n", + "#E1=electric fied strength due to q1\n", + "#E2=electric fied strength due to q2\n", + "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n", + "x=l/(1+math.sqrt(q2/q1))\n", + "print(\"Electric field strength is zero at x=%.3f cm\"%x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 27.9 Deflection of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corresponding deflection in meters is 0.000337\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #charge in coul\n", + "E=1.2*10**4 #electric field in nt/coul\n", + "x=1.5*10**-2 #length of deflecting assembly in m\n", + "K0=3.2*10**-16 #kinetic energy of electron in joule\n", + "#calculation\n", + "y=e*E*x**2/(4*K0)\n", + "print(\"Corresponding deflection in meters is %.6f\"%y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 27.11 Torque and work done by external agent on electric dipole" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Maximum torque exerted by the fied in nt-m is\n", + "0.002\n", + "(b) Work done by the external agent to turn dipole end for end in joule is \n", + "0.004\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n", + "d=2.0*10**-2 #seperation b/w charges in m\n", + "E=1.0*10**5 #external field in nt/coul\n", + "#calculations\n", + "#(a)Max torque if found when theta=90 degrees\n", + "#Torque =pEsin(theta)\n", + "p=q*d #electric dipole moment\n", + "T=p*E*math.sin(math.pi/2)\n", + "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n", + "print(T)\n", + "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n", + "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n", + "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n", + "print(W)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb new file mode 100644 index 00000000..b8c0f0da --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter28.ipynb @@ -0,0 +1,98 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28 GAUSS'S LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 28.3 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n" + ] + } + ], + "source": [ + "r=1*10**-10 #radius of the atom in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 28.4 Electric field strength at the nuclear surface" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n" + ] + } + ], + "source": [ + "r=6.9*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb new file mode 100644 index 00000000..439a6f56 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter29.ipynb @@ -0,0 +1,209 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 29 ELECTRIC POTENTIAL" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 29.3 Magnitude of an isolated positive point charge" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential due to a point charge is V=q/4*pi*epislon0*r\n", + "Magnitude of positive point charge in coul is 1.112e-09\n" + ] + } + ], + "source": [ + "import math\n", + "V=100 #electric potential in volts\n", + "r=10*10**-2 #in meters\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n", + "q=V*4*math.pi*epsilon0*r\n", + "print(\"Magnitude of positive point charge in coul is %.3e\"%q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exa 29.4 Electric potential at the surface of a gold nucleus" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric potential at the surface of the nucleus in volts is 17220668\n" + ] + } + ], + "source": [ + "import math\n", + "r=6.6*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "V=q/(4*math.pi*epsilon0*r)\n", + "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exa 29.5 Potential at the center of the square" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential at the center of the square in volts is 508.65\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.0*10**-8 #in coul\n", + "q2=-2.0*10**-8 #in coul\n", + "q3=3.0*10**-8 #in coul\n", + "q4=2.0*10**-8 #in coul\n", + "a=1 #side of square in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "#refer to the fig 29.7\n", + "r=a/math.sqrt(2) #distance of charges from centre in meter\n", + "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n", + "print(\"Potential at the center of the square in volts is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exa 29.8 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mutual electric potential energy of two proton in joules is 3.837e-14\n", + "Mutual electric potential energy of two proton in ev is 239781.46\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.6*10**-19 #charge in coul\n", + "q2=1.6*10**-19 #charge in coul\n", + "r=6.0*10**-15 #seperation b/w two protons in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "U=(q1*q2)/(4*math.pi*epsilon0*r)\n", + "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n", + "V=U/q1\n", + "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exa 29.9 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy is the sum of each pair of particles \n", + "Mutual potential energy of the particles in joules is -0.008991804694457362\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-7 #charge in coul\n", + "a=10*10**-2 #side of triangle in meter\n", + "q1=q\n", + "q2=-4*q\n", + "q3=2*q\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Total energy is the sum of each pair of particles \")\n", + "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n", + "print(\"Mutual potential energy of the particles in joules is\",U)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb new file mode 100644 index 00000000..6c475796 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter30.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 30 CAPACITORS AND DIELECTRICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 30.1 Plate area" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plate area in square meter is 1.130e+08\n" + ] + } + ], + "source": [ + "C=1.0 #capacitance in farad\n", + "d=1.0*10**-3 #separation b/w plates in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=d*C/epsilon0\n", + "print(\"Plate area in square meter is %.3e\"%A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n", + "(b)Free charge in coul is 8.850e-10\n", + "(c)Electric field strength in the gap in volts/meter is 10000\n", + "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n", + "(e)Potential difference between the plates in volts is 57.1429\n", + "(f)Capacitance with the slab in place in farads is 1.549e-11\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "b=5*10**-3 #thickness of dielectric lab in meter\n", + "V0=100#in volts\n", + "k=7\n", + "#(a)\n", + "C0=epsilon0*A/d\n", + "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n", + "#(b)\n", + "q=C0*V0\n", + "print(\"(b)Free charge in coul is %.3e\"%q)\n", + "#(c)\n", + "E0=q/(epsilon0*A)\n", + "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n", + "#(d)\n", + "E=q/(k*epsilon0*A)\n", + "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n", + "#(e)\n", + "#Refer to fig30-12\n", + "V=E0*(d-b)+E*b\n", + "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n", + "#(f)\n", + "C=q/V\n", + "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n", + "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n", + "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n", + "Electric polarisation in air gap in coul/square meter is 0.0\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "V0=100#in volts\n", + "E0=1*10**4 #Electric field in the air gap in volts/meter\n", + "k=7\n", + "k0=1\n", + "E=1.43*10**3 #in volts/metre\n", + "D=k*E*epsilon0\n", + "P=epsilon0*(k-1)*E\n", + "#(a)\n", + "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n", + "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n", + "#(b)\n", + "D0=k0*epsilon0*E0\n", + "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n", + "P0=epsilon0*(k0-1)*E0\n", + "print(\"Electric polarisation in air gap in coul/square meter is\",P0)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb new file mode 100644 index 00000000..3f58961b --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter31.ipynb @@ -0,0 +1,219 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 31 CURRENT AND RESISTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 31.1 Current density" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current density in Aluminium wire in amp/square inches 1273.240\n", + "Current density in copper wire in amp/square inches 3108.495\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "d1=0.10 #diameter of aluminium wire in inches\n", + "d2=0.064 #diameter of copper wire in inches\n", + "i=10 #current carried by composite wire in amperes\n", + "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n", + "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n", + "j1=i/A1\n", + "j2=i/A2\n", + "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n", + "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 31.2 Drift speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No.of free electrons per unit volume in atoms/mole 8.438e+22\n", + "Drift speed of electron in cm/sec is 0.03556\n" + ] + } + ], + "source": [ + "j=480 #current density for copper wire in amp/cm2\n", + "N0=6*10**23 #avagadro number in atoms/mole\n", + "M=64 #molecular wt in gm/mole\n", + "d=9.0 #density in gm/cm3\n", + "e=1.6*10**-19 #elecron charge in coul\n", + "n=d*N0/M \n", + "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n", + "Vd=j/(n*e)\n", + "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 31.3 Resistance and resistivity" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n", + "(a) Resistance measured b/w the two square ends in ohm is 0.175\n", + "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n" + ] + } + ], + "source": [ + "\n", + "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n", + "l=1.0*10**-2 #in meter\n", + "b=1.0*10**-2#in meter\n", + "h=50*10**-2 #in meter\n", + "p=3.5*10**-5 #resisivity of carbon in ohm-m\n", + "#(a)Resistance b/w two square ends\n", + "l1=h\n", + "A1=b*l\n", + "R1=p*l1/A1\n", + "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n", + "l2=l\n", + "A2=b*h\n", + "R2=p*l2/A2\n", + "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 31.4 Mean time and Mean free path" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Mean time b/w collisions in sec is 4.979e-14\n", + "(b) Mean free path in cm is 0.000008\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #in kg\n", + "n=8.4*10**28 #in m-1\n", + "e=1.6*10**-19 #in coul\n", + "p=1.7*10**-8 #in ohm-m\n", + "v=1.6*10**8 #in cm/sec\n", + "T=2*m/(n*p*e**2)\n", + "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n", + "Lambda=T*v\n", + "print(\"(b) Mean free path in cm is %f\"%Lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 31.5 Power" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Power for the single coil in watts is 504.167\n", + "(b)Power for a coil of half the length in watts is 1008.333\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V=110 #in volt\n", + "R=24 #ohms\n", + "P1=V**2/R\n", + "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n", + "P2=V**2/(R/2)\n", + "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb new file mode 100644 index 00000000..f307c86e --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter33.ipynb @@ -0,0 +1,260 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 33 THE MAGNETIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 33.1 Force acting on a proton" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of the proton in meters/sec is 30678599.55\n", + "Force acting on proton in nt is 7.363e-12\n" + ] + } + ], + "source": [ + "import math\n", + "K=5*10**6 #ev\n", + "e=1.6*10**-19 #in coul\n", + "K1=K*e #in joules\n", + "m=1.7*10**-27 #in kg\n", + "B=1.5 #wb/m\n", + "theta=math.pi/2\n", + "v=math.sqrt(2*K1/m)\n", + "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n", + "F=e*v*B*math.sin(theta)\n", + "print(\"Force acting on proton in nt is %.3e\"%F)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 33.3 Torsional constant of the spring" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torssional constant in nt-m/deg is 3.333e-08\n" + ] + } + ], + "source": [ + "N=250 #turns in coil\n", + "i=1.0*10**-4 #in amp\n", + "B=0.2 #wb/m2\n", + "h=2*10**-2 #coil height in m\n", + "w=1.0*10**-2 #width of coil in m\n", + "Q=30 #angular deflectin in degrees\n", + "theta=math.pi/2\n", + "A=h*w\n", + "k=N*i*A*B*math.sin(theta)/Q\n", + "print(\"Torssional constant in nt-m/deg is %.3e\"%k)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 33.4 Work done" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n" + ] + } + ], + "source": [ + "import math\n", + "N=100 #turns in circular coil\n", + "i=0.10 #in amp\n", + "B=1.5 #in wb/m2\n", + "a=5*10**-2 #radius of coil in meter\n", + "u=N*i*math.pi*(a**2) #u is dipole moment\n", + "U1=(-u*B*math.cos(0))\n", + "U2=-u*B*math.cos(math.pi)\n", + "W=U2-U1\n", + "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 33.5 Hall potential difference" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n" + ] + } + ], + "source": [ + "i=200 #current in the strip in amp\n", + "B=1.5 #magnetic field in wb/m2\n", + "n=8.4*10**28 #in m-3\n", + "e=1.6*10**-19 #in coul\n", + "h=1.0*10**-3 #thickness of copper strip in metre\n", + "w=2*10**-2 #width of copper strip in meter\n", + "Vxy=i*B/(n*e*h)\n", + "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 33.6 Orbital radius Cyclotron frequency and Period of revolution" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Orbit radius in meter is 0.1080625\n", + "(B) Cyclotron frequency in rev/sec is 2798328.7\n", + "(C) Period of revolution in sec is 0.0000004\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "m=9.1*10**-31 # in kg\n", + "v=1.9*10**6 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "B=1.0*10**-4 #in wb/m2\n", + "\n", + "#(A)\n", + "r=m*v/(q*B)\n", + "print(\"(A) Orbit radius in meter is %.7f\"%r)\n", + "#(B)\n", + "f=q*B/(2*math.pi*m)\n", + "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n", + "#(C)\n", + "T=1/f\n", + "print(\"(C) Period of revolution in sec is %.7f\"%T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 33.7 Magnetic induction and Deuteron energy" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n", + "(B) Deuteron energy in joule is 2.669e-12\n", + " Deuteron energy in ev is 16679852\n" + ] + } + ], + "source": [ + "import math\n", + "f0=12*10**6 #cyclotron frequency in cycles/sec\n", + "r=21#dee radius in inches\n", + "R=r*0.0254 #dee radius in meter\n", + "q=1.6*10**-19 #charge in coul\n", + "m=3.3*10**-27 #in kg\n", + "#(A)\n", + "B=2*math.pi*f0*m/q\n", + "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n", + "#(B)\n", + "K=((q**2*B**2*R**2)/(2*m))\n", + "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n", + "K1=K*(1/(1.6*10**-19))\n", + "print(\" Deuteron energy in ev is %d\"%K1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb new file mode 100644 index 00000000..37944813 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter34.ipynb @@ -0,0 +1,148 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 34 AMPERES LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 34.3 Distance" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Separation between two wires in metres 0.0054795\n" + ] + } + ], + "source": [ + "import math\n", + "i1=100 #in amp\n", + "i2=20 #in amp\n", + "W=0.073 #weight of second wire W=F/l in nt/m\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "d=u0*i1*i2/(2*math.pi*W)\n", + "print(\"Separation between two wires in metres %.7f\"%d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 34.5 Magnetic field and Magnetic flux" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0267035\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000189\n" + ] + } + ], + "source": [ + "import math\n", + "l=1.0 #length of solenoid in meter\n", + "d=3*10**-2 #diameter of solenoid in meter\n", + "n=5*850 #number of layers and turns of wire\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i0=5.0 #current in amp\n", + "#(A)\n", + "B=u0*i0*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 34.9 Magnetic field and Magnetic dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n", + "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "e=1.6*10**-19 #in coul\n", + "R=5.1*10**-11 #radius of th enucleus in meter\n", + "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "x=0 #x is any point on the orbit, since at center x=0\n", + "#(A)\n", + "i=e*f\n", + "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n", + "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n", + "N=1 #no.of turns\n", + "A=math.pi*R**2\n", + "U=N*i*A\n", + "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb new file mode 100644 index 00000000..645f77da --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter35.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 35 FARADAYS LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 35.1 Induced EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0376991\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000118\n", + "Induced EMF in volts is -0.0473741\n" + ] + } + ], + "source": [ + "import math \n", + "l=1.0 #length of solenoid in meter\n", + "r=3*10**-2 #radius of solenoid in meter\n", + "n=200*10**2 #number of turns in solenoid per meter\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i=1.5 #current in amp\n", + "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n", + "d=2*10**-2 #diameter of coil in meter\n", + "delta_T=0.050 #in sec\n", + "#(A)\n", + "B=u0*i*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n", + "delta_Q=Q-(-Q)\n", + "E=-(N*delta_Q/delta_T)\n", + "print(\"Induced EMF in volts is %.7f\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 35.7 Induced electric field and EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n", + "(A) Induced electric field in volt/m observed by Z 2.0\n", + "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n", + "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n", + "(C) Induced emf in volt observed by S is 0.2\n", + "Induced emf in volt observed by Z is 0.2\n" + ] + } + ], + "source": [ + "B=2 #magnetic field in wb/m2\n", + "l=10*10**-2 #in m\n", + "v=1.0 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n", + "#(A)\n", + "E=v*B\n", + "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n", + "#(B)\n", + "F=q*v*B\n", + "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n", + "F1=q*E\n", + "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n", + "#(C)\n", + "emf1=B*l*v\n", + "print(\"(C) Induced emf in volt observed by S is\",emf1)\n", + "emf2=E*l\n", + "print(\"Induced emf in volt observed by Z is\",emf2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb new file mode 100644 index 00000000..c300ad25 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter36.ipynb @@ -0,0 +1,220 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 36 INDUCTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 36.1 Inductance of a toroid" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "N=10**3 #no.of turns\n", + "a=5*10**-2 #im meter\n", + "b=10*10**-2 #in meter\n", + "h=1*10**-2 #in metre\n", + "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n", + "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 36.2 Time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n" + ] + } + ], + "source": [ + "import math\n", + "L=50 #inductance in henry\n", + "R=30 #resistance in ohms\n", + "t0=math.log(2)*(L/R)\n", + "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 36.3 Maximum Current and Energy stored" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum current in amp is 5.0\n", + "Energy stored in the magnetic field in joules is 62.5\n" + ] + } + ], + "source": [ + "L=5 #inductance in henry\n", + "V=100 #emf in volts\n", + "R=20 #resistance in ohms\n", + "i=V/R\n", + "print(\"Maximum current in amp is\",i)\n", + "U=(L*i**2)/2\n", + "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 36.4 Rate at which energy is stored and delivered and appeared" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rate at which energy is delivred by the battery in watt is 0.5689085\n", + "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n", + "Let D=di/dt\n", + "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n" + ] + } + ], + "source": [ + "L=3 #inductance in henry\n", + "R=10 #resistance in ohm\n", + "V=3 #emf in volts\n", + "t=0.30 #in sec\n", + "T=0.30 #inductive time constant in sec\n", + "#(a)\n", + "i=(V/R)*(1-math.exp(-t/T))\n", + "P1=V*i\n", + "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n", + "#(b)\n", + "P2=i**2*R\n", + "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n", + "#(c)\n", + "print(\"Let D=di/dt\")\n", + "D=(V/L)*math.exp(-t/T) #in amp/sec\n", + "P3=L*i*D\n", + "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 36.6 Energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n", + "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "E=10**5 #elelctric field in volts/meter\n", + "B=1 #magnetic field in weber/meter2\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "a=0.1 #side of the cube in meter\n", + "V0=a**3 #volume of the cube in meter3\n", + "#(a)\n", + "U1=epsilon0*E**2*V0/2 #in elelctric field\n", + "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n", + "#(b)\n", + "U2=(B**2/(2*u0))*V0\n", + "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb new file mode 100644 index 00000000..034da3ed --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter37.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 37 MAGNETIC PROPERTIES OF MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 37.2 Orbital dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Orbital dipole moment in amp-m2 is 9.061e-24\n" + ] + } + ], + "source": [ + "import math\n", + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n", + "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 37.4 Change in magnetic moment" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "B=2 #in wb/m2\n", + "delta_p=(e**2*B*r**2)/(4*m)\n", + "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 37.5 Precession frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n" + ] + } + ], + "source": [ + "import math\n", + "u=1.4*10**-26 #in amp-m2\n", + "B=0.50 #wb/m2\n", + "Lp=0.53*10**-34 #in joule-sec\n", + "fp=u*B/(2*math.pi*Lp)\n", + "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field strength in amp/m is 2000\n", + "(B) Magnetisation is Zero when core is removed\n", + " Magnetisation when the core is replaced in amp/m 793774.72\n", + "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n", + " Effective magnetizing current in amp is 793.77472\n", + "(D) Permeability 397.88736\n" + ] + } + ], + "source": [ + "import math\n", + "n=10*10**2 #turns/m\n", + "i=2 #in amp\n", + "B=1.0 #in wb/m\n", + "u0=4*math.pi*10**-7 #in wb/amp-m\n", + "#(A)\n", + "H=n*i\n", + "print(\"(A) Magnetic field strength in amp/m is\",H)\n", + "#(B)\n", + "M=(B-u0*H)/u0\n", + "print(\"(B) Magnetisation is Zero when core is removed\")\n", + "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n", + "#(C)\n", + "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n", + "i=M/n\n", + "print(\" Effective magnetizing current in amp is %.5f\"%i)\n", + "#D\n", + "Km=B/(u0*H)\n", + "print(\"(D) Permeability %.5f\"%Km)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb new file mode 100644 index 00000000..8804dca7 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter38.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 38.1 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max current in amps 0.5\n" + ] + } + ], + "source": [ + "import math\n", + "V_o=50 #in volts\n", + "C=1*10**-6 #in farad\n", + "L=10*10**-3\n", + "i_m=V_o*(math.sqrt(C/L))\n", + "print(\"Max current in amps \",i_m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 38.2 Angular frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n" + ] + } + ], + "source": [ + "import math\n", + "L=10*(10**-3) #in henry\n", + "C=(10)**-6 #in farad\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 38.3 Angular frequency and time" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n", + "Time in sec= 0.13863\n" + ] + } + ], + "source": [ + "L=10*(10**-3) #in henry\n", + "C=10**-6 #in farad\n", + "R=0.1 #in ohm\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)\n", + "t=(2*L*math.log(2))/R\n", + "print(\"Time in sec= %.5f\"%t)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 38.5 Magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field in weber/m**2= 0.0000003\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "B=(0.5*m_0*e_0*R*dEbydT)\n", + "print(\"Magnetic field in weber/m**2= %.7f\"%B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 38.6 Calculation of current" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.0699004\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "i_d=(e_0*math.pi*R*R*dEbydT)\n", + "print(\"Current in amp= %.7f\"%i_d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb new file mode 100644 index 00000000..7f0dafec --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter39.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 39 ELECTROMAGNETIC WAVES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 39.6 Magnitude of electric and magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of E in volts/meter= 244.94897\n", + "B in weber/meter^2= 0.00000082\n" + ] + } + ], + "source": [ + "import math\n", + "r=1 #in m\n", + "p=10**3 \n", + "m=4*math.pi*10**-7 #weber/amp-m\n", + "c=3*10**8 #speed of light\n", + "x=2*math.pi\n", + "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n", + "print(\"The value of E in volts/meter= %.5f\"%E_m)\n", + "B=E_m/c\n", + "print(\"B in weber/meter^2= %.8f\"%B)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb new file mode 100644 index 00000000..98931fb3 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter40.ipynb @@ -0,0 +1,166 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 40 NATURE AND PROPOGATION OF LIGHT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 40.1 Force and energy reflected" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Energy reflected from mirror in joule= 36000.0\n", + "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n", + "(B) Force in newton= 6.667e-08\n" + ] + } + ], + "source": [ + "u=(10)*(1.0)*3600 #in Joules\n", + "c=3*10**8 #in m/sec\n", + "t=3600 #in sec\n", + "print(\"(A) Energy reflected from mirror in joule=\",u)\n", + "p=(2*u)/c\n", + "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n", + "f=p/t\n", + "print(\"(B) Force in newton= %.3e\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 40.2 Angular speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular speed in rev/sec= 12.07030\n" + ] + } + ], + "source": [ + "theta=1/1440\n", + "c=3*10**8 #in m/sec\n", + "l=8630 #in m\n", + "w=(c*theta)/(2*l)\n", + "print(\"Angular speed in rev/sec= %.5f\"%w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 40.3 Calculation of c" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lambda_g in cm= 3.9\n", + "Value of c in m/sec= 2.992e+10\n" + ] + } + ], + "source": [ + "l=15.6 #in cm\n", + "n=8\n", + "lambda_g=(2*l)/n\n", + "print(\"Lambda_g in cm=\",lambda_g)\n", + "lamda=3.15 #in cm\n", + "f=9.5*10**9 #cycles/sec\n", + "c=lamda*f\n", + "print(\"Value of c in m/sec= %.3e\"%c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 40.4 Percentage error" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of light in miles/hour= 50000\n" + ] + } + ], + "source": [ + "v_1=25000 #miles/hr\n", + "u=25000 #miles/hr\n", + "c=6.7*10**8 #miles/hr\n", + "x=1+((v_1*u)/(c)**2)\n", + "v=(v_1+u)/x\n", + "print(\"Speed of light in miles/hour= %.0f\"%v)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb new file mode 100644 index 00000000..3ee8111a --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter41.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 41.1 Angle between two refracted beams" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For 4000 A beam, theta_2 in degree= 19.88234\n", + "For 5000 A beam, theta_2 in degree= 19.99290\n" + ] + } + ], + "source": [ + "import math\n", + "theta_1=30\n", + "n_qa=1.4702\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n", + "\n", + "theta_1=30\n", + "n_qa=1.4624\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 41.4 Index of glass" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index reflection= 1.41421\n" + ] + } + ], + "source": [ + "import math\n", + "n=1/math.sin(45*math.pi/180)\n", + "print(\"Index reflection= %.5f\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exa 41.5 Calculation of Angle" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angle theta_c in degree= 62.45732\n", + "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n", + "Angle of refraction:\n", + "Theta_2 in degree= 52.89097\n" + ] + } + ], + "source": [ + "import math\n", + "n2=1.33\n", + "n1=1.50\n", + "theta_c=math.degrees(math.asin(n2/n1))\n", + "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n", + "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n", + "print(\"Angle of refraction:\")\n", + "x=n1/n2\n", + "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n", + "print(\"Theta_2 in degree= %.5f\"%theta_2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb new file mode 100644 index 00000000..44b1556c --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter42.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 42.4 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "x= 0.05\n", + "The value of i in cm= 40.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=1\n", + "n2=2\n", + "o=20 #in cm\n", + "r=10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"x=\",x)\n", + "i=n2/x\n", + "print(\"The value of i in cm=\",i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 42.5 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "The value of i in cm= -0.03333\n", + "The value of i in cm= -30\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=2\n", + "n2=1\n", + "o=15 #in cm\n", + "r=-10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"The value of i in cm= %.5f\"%x)\n", + "i=n2/x\n", + "print(\"The value of i in cm= %d\"%i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 42.7 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/f in cm= 0.0325\n", + "f=1/x\n", + "f in cm= 30.76923\n" + ] + } + ], + "source": [ + "n=1.65\n", + "r_1=40 #in cm\n", + "r_2=-40 #in cm\n", + "x=(n-1)*((1/r_1)-(1/r_2))\n", + "print(\"x=1/f in cm= %.4f\"%x)\n", + "print(\"f=1/x\")\n", + "f=1/x\n", + "print(\"f in cm= %.5f\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 42.8 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/i in cm= -0.06944\n", + "i in cm= -14.4\n", + "Lateral magnification =\n", + "m= 1.6\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "o=9 #in cm\n", + "f=24 #in cm\n", + "x=(1/f)-(1/o)\n", + "print(\"x=1/i in cm= %.5f\"%x)\n", + "i=1/x\n", + "print(\"i in cm= %.1f\"%i)\n", + "print(\"Lateral magnification =\")\n", + "m=-(i/o)\n", + "print('m= %.1f'%m)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb new file mode 100644 index 00000000..215e62df --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter43.ipynb @@ -0,0 +1,177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 43 INTERFERENCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 43.1 Angular position of first minimum" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sin theta = 0.00273\n", + "Angle in degree= 0.15642\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=546*10**-9\n", + "d=0.10*10**-3 #in m\n", + "sin_theta=((m-0.5)*lamda)/(d)\n", + "print(\"Sin theta = %.5f\"%sin_theta)\n", + "theta=math.degrees(math.asin(sin_theta))\n", + "print(\"Angle in degree= %.5f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 43.2 Linear distance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear distance in meter= 0.00109\n" + ] + } + ], + "source": [ + "delta=546*10**-9 #in meter\n", + "D=20*10**-2 #in meter\n", + "d=0.10*10**-3 #in meter\n", + "delta_y=(delta*D)/d\n", + "print(\"Linear distance in meter= %.5f\"%delta_y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 43.4 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 1\n", + "Lambda_max= 5674.666666666667\n", + "Lambda_min= 8500.0\n", + "When m= 2\n", + "Lambda_max= 3404.8\n", + "Lambda_min= 4250.0\n" + ] + } + ], + "source": [ + "d=3200 #in A\n", + "n=1.33\n", + "for m in range(1,3):\n", + " lambda_max=(2*d*n)/(m+0.5)\n", + " lambda_min=(8500/m)\n", + " print(\"When m=\",m)\n", + " print(\"Lambda_max=\",lambda_max)\n", + " print(\"Lambda_min=\",lambda_min)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 43.5 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 0\n", + "d in A=905.797\n", + "When m= 1\n", + "d in A=2717.391\n", + "When m= 2\n", + "d in A=4528.986\n", + "When m= 3\n", + "d in A=6340.580\n" + ] + } + ], + "source": [ + "lamda=5000 #in A\n", + "n=1.38\n", + "for m in range(0,4):\n", + " print(\"When m=\",m)\n", + " d=((m+0.5)*lamda)/(2*n)\n", + " print(\"d in A=%.3f\"%d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb new file mode 100644 index 00000000..22044c55 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter44.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 44 DIFFRACTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 44.1 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a in A=13000\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=6500 #in A\n", + "a=(m*lamda)/math.sin(30*math.pi/180)\n", + "print(\"a in A=%d\"%a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 44.2 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wavelength in A = 4333.333\n" + ] + } + ], + "source": [ + "lamda=6500\n", + "lambda_1=lamda/1.5\n", + "print(\"Wavelength in A = %.3f\"%lambda_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 44.5 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.06990\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "byd=10**12\n", + "i_d=(e_0*math.pi*R*R*byd)\n", + "print(\"Current in amp= %.5f\"%i_d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 44.7 Delta Y" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) D in m= 0.00240\n" + ] + } + ], + "source": [ + "lamda=480*10**-9 #in m\n", + "d=0.10*10**-3 #in m\n", + "D=50*10**-2 #in m\n", + "a=0.02*10**-3\n", + "delta_y=(lamda*D)/d\n", + "print(\"(A) D in m= %.5f\"%delta_y)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb new file mode 100644 index 00000000..78856956 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter45.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 45 GRATING AND SPECTRA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 45.1 Calculation of angle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 7.249\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=4000 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.3f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 45.2 Calculation of angle theta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) The first order diffraction pattern in degree= 13.408\n", + "(B) Angle of seperation in degree= 0.0002388\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=5890 #in A\n", + "d=25400 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n", + "del_lambda=5.9 #in A\n", + "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n", + "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 45.3 Calculation of Sodium Doublet" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolving power= 998.305\n", + "Number of rulings needed is= 332.768\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "lamda_1=5895.9 #A\n", + "m=3\n", + "delta_lambda=(lamda_1-lamda) #in A\n", + "R=lamda/(delta_lambda)\n", + "print(\"Resolving power= %.3f\"%R)\n", + "N=(R/m)\n", + "print(\"Number of rulings needed is= %.3f\"%N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 45.4 Calculation of Dispersion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 31.11244\n", + "(A) The dispersion in radian/A= 0.0001105\n", + "(B) Wave length difference in A= 0.13650\n" + ] + } + ], + "source": [ + "import math\n", + "m=3\n", + "m1=5\n", + "lamda=5460 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n", + "D=m/(d*math.cos(theta*math.pi/180))\n", + "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n", + "N=8000\n", + "lamda=5460\n", + "R=N*m1\n", + "delta_lambda=lamda/R\n", + "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 45.5 Calculation of Angles" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interplanar spacing d in A= 2.51781\n", + "Diffracted beam occurs when m=1,m=2 and m=3\n", + "When m1=1, Theta in degree= 12.61763\n", + "When m1=2, Theta in degree= 25.90544\n", + "When m1=3, Theta in degree= 40.94473\n" + ] + } + ], + "source": [ + "import math\n", + "a_o=5.63 #A\n", + "d=a_o/math.sqrt(5)\n", + "lamda=1.10 #in A\n", + "print(\"Interplanar spacing d in A= %.5f\"%d)\n", + "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n", + "m1=1\n", + "x=(m1*lamda)/(2*d)\n", + "theta_1=math.degrees(math.asin(x))\n", + "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n", + "m2=2\n", + "x=(m2*lamda)/(2*d)\n", + "theta_2=math.degrees(math.asin(x))\n", + "print('When m1=2, Theta in degree= %.5f'%theta_2)\n", + "m3=3\n", + "x=(m3*lamda)/(2*d)\n", + "theta_3=math.degrees(math.asin(x))\n", + "print('When m1=3, Theta in degree= %.5f'%theta_3)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb new file mode 100644 index 00000000..2071ec54 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter46.ipynb @@ -0,0 +1,130 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 46 POLARIZATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 46.1 Calculation of theta" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle theta= 135.0\n" + ] + } + ], + "source": [ + "import math\n", + "theta=math.degrees(math.acos(1/math.sqrt(2)))\n", + "theta=180-theta\n", + "print(\"Polarization angle theta=\",theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 46.2 Angle of refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta_p in degrees=56.30993\n", + "Angle of refraction fron Snells law in degrees=33.69007\n" + ] + } + ], + "source": [ + "import math\n", + "theta_p= math.degrees(math.atan(1.5))\n", + "print(\"Theta_p in degrees=%.5f\"%theta_p)\n", + "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n", + "theta_r=math.degrees(math.asin(sin_theta_r))\n", + "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 46.3 Thickness of slab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Value of x in m= 163611.111111113\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "n_e=1.553\n", + "n_o=1.544\n", + "s=(n_e)-(n_o)\n", + "x=(lamda)/(4*s)\n", + "\n", + "print(\"The Value of x in m=\",x)\n", + "#The answer provided in the textbook is wrong" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb new file mode 100644 index 00000000..f35669ae --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter47.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 47 LIGHT AND QUANTUM PHYSICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 47.1 Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in cycles/s 0.71176\n" + ] + } + ], + "source": [ + "import math\n", + "k=20 #in nt/m\n", + "m=1 #in kg\n", + "\n", + "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n", + "print(\"Velocity in cycles/s %.5f\"%v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 47.2 Time calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power in j-sec 1.000000e-23\n", + "('Time reqired in sec =', 80000.0)\n", + "Time required in hour 22.22224\n" + ] + } + ], + "source": [ + "P=(10**(-3))*(3*10**(-18))/(300)\n", + "print(\"Power in j-sec %e\"%P)\n", + "s=1.6*(10**(-19))\n", + "t=(5*s)/P\n", + "print(\"Time reqired in sec =\",t)\n", + "one_sec=0.000277778 #hr\n", + "in_hour=one_sec*t\n", + "print(\"Time required in hour %.5f\"%in_hour)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 47.3 Work function for sodium" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 2.911e-19\n" + ] + } + ], + "source": [ + "h=6.63*10**(-34) #in joule/sec\n", + "v=4.39*10**(14) #cycles/sec\n", + "E_o=h*(v)\n", + "print(\"Energy in joule= %.3e\"%E_o)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 47.4 Kinetic energy to be imparten on recoiling electron" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "h=(6.63)*10**-34\n", + "m=9.11*10**-31\n", + "c=3*10**8\n", + "delta_h=(h/(m*c))*(1-math.cos(90))\n", + "print(\"(A) Compton shift in meter %.3e\",delta_h)\n", + "delta=1*10**-10\n", + "k=(h*c*delta_h)/(delta*(delta+delta_h))\n", + "print(\"(B) Kinetic energy in joules\",k)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb new file mode 100644 index 00000000..c5e90763 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/Chapter48.ipynb @@ -0,0 +1,205 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 48 WAVES AND PROPOGATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 48.1 Velocity and Wavelength of particle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in m/s 5929994.5\n", + "Wavelength in A 1.222\n" + ] + } + ], + "source": [ + "import math\n", + "k=100*(1.6*(10**-19))\n", + "m=9.1*(10**-31)\n", + "\n", + "v=math.sqrt(((2*k)/(m)))\n", + "print(\"Velocity in m/s %.1f\"%v)\n", + "h=6.6*(10**-34)\n", + "p=5.4*(10**-34)\n", + "lamda=h/p\n", + "print(\"Wavelength in A %.3f\"%lamda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 48.2 Quantized energy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in Joule= 5.984e-20\n" + ] + } + ], + "source": [ + "n=1\n", + "h=(6.6)*10**-34 #j/sec\n", + "m=9.1*(10**-31) #in kg\n", + "l=1*(10**-9) #in m\n", + "E=(n**2)*((h**2)/(8*m*(l**2)))\n", + "print(\"Energy in Joule= %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 48.3 Quantum number" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 5.000e-22\n", + "Quantum number= 3.030e+14\n" + ] + } + ], + "source": [ + "m=10**-9 #in kg\n", + "v=10**-6 #in m/s\n", + "l=10**-4 #in m\n", + "h=(6.6)*(10**-34) #j/s\n", + "E=(0.5)*m*(v**2)\n", + "print(\"Energy in joule= %.3e\"%E)\n", + "n=(l/h)*(math.sqrt(8*m*E))\n", + "print(\"Quantum number= %.3e\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 48.5 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electrom momentum in kg-m/s= 2.730e-28\n", + "Delta_p in kg-m/s= 2.730e-32\n", + "Minimum uncertainaity in m= 0.02418\n" + ] + } + ], + "source": [ + "m=9.1*(10**-31) #in kg\n", + "v=300 #in m/s\n", + "h=6.6*(10**-34) #in j-s\n", + "p=m*v\n", + "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n", + "delta_p=(0.0001)*p\n", + "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n", + "delta_x=(h/delta_p)\n", + "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example 48.6 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Momentum in kg-m/s= 15.0\n", + "Delta_x in meter= 4.400e-35\n" + ] + } + ], + "source": [ + "m=0.05 #in kg\n", + "v=300 #m/s\n", + "delta_p=m*v\n", + "print(\"Momentum in kg-m/s=\",delta_p)\n", + "delta_x=(6.6*10**-34)/delta_p\n", + "print(\"Delta_x in meter= %.3e\"%delta_x)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.1" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.png b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.png Binary files differnew file mode 100644 index 00000000..727bff87 --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_37.png diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.png b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.png Binary files differnew file mode 100644 index 00000000..1ae30dfa --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_38.png diff --git a/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.png b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.png Binary files differnew file mode 100644 index 00000000..e972670a --- /dev/null +++ b/Physics-_For_Students_Of_Science_And_Engineering(Part_2)_by_D._Halliday_and_R._Resnick/screenshots/Chapter_39.png diff --git a/sample_notebooks/PraveenKumar/chapter1.ipynb b/sample_notebooks/PraveenKumar/chapter1.ipynb new file mode 100644 index 00000000..0d151d06 --- /dev/null +++ b/sample_notebooks/PraveenKumar/chapter1.ipynb @@ -0,0 +1,1600 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 - Semiconductor Material & Junction Diode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.1 Page No 51" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electron drift velocity = 40.00 m/s\n", + "The time required for an electron to move across the thickness = 12.50 micro seconds\n" + ] + } + ], + "source": [ + "# Given data\n", + "miu = 0.2# m**2/V-s\n", + "V = 100# mV\n", + "V = V * 10**-3# V\n", + "d = 0.5# mm\n", + "d = d * 10**-3# m\n", + "# mobility, miu = Vd/E and\n", + "E = V/d\n", + "# Drift velocity,\n", + "Vd = miu*E# m/s\n", + "print \"The electron drift velocity = %.2f m/s\"%Vd\n", + "# Time required,\n", + "T = d/Vd# sec\n", + "T=T*10**6# µs\n", + "print \"The time required for an electron to move across the thickness = %.2f micro seconds\"%T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.2 Page No 52" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The intrinsic conductivity = 2.24 (ohm-m)**-1\n" + ] + } + ], + "source": [ + "# Given data\n", + "q = 1.6*10**-19# C\n", + "n_i = 2.5*10**19# /m**3\n", + "miu_n = 0.38# m**2/V-s\n", + "miu_p = 0.18# m**2/V-s\n", + "# The intrinsic conductivity for germanium,\n", + "sigma_i = q*n_i*(miu_n+miu_p)# (ohm-m)**-1\n", + "print \"The intrinsic conductivity = %.2f (ohm-m)**-1\"%sigma_i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.3 Page No 52" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The intrinsic carrier concentration = 2.16e+19 per m**3\n" + ] + } + ], + "source": [ + "# Given data\n", + "rho = 0.50# ohm-m\n", + "q = 1.6*10**-19# C\n", + "miu_n = 0.39# m**2/V-s\n", + "miu_p = 0.19# m**2/V-s\n", + "sigma = 1/rho# (ohm-m)**-1\n", + "#conductivity of a semiconductor, sigma = q*n_i*(miu_p+miu_n) or\n", + "n_i = sigma/(q*(miu_n+miu_p))# /m**3\n", + "print \"The intrinsic carrier concentration = %.2e per m**3\"%n_i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.4 Page No 52" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The conductivity of Si sample = 14.40 (ohm-m)**-1\n" + ] + } + ], + "source": [ + "# Given data\n", + "N_D = 10**21# /m**3\n", + "N_A = 5*10**20# /m**3\n", + "NdasD = N_D-N_A# /m**3\n", + "n = NdasD# /m**3\n", + "miu_n = 0.18# m**2/V-s\n", + "q = 1.6*10**-19# C\n", + "# The conductivity of silicon,\n", + "sigma = q*n*miu_n# (ohm-m)**-1\n", + "print \"The conductivity of Si sample = %.2f (ohm-m)**-1\"%sigma" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.5 Page No 53" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The conductivity of copper = 4.79e+05 mho/cm\n" + ] + } + ], + "source": [ + "# Given data\n", + "At = 63.54## atomic weight of copper\n", + "d = 8.9## density = %.2f gm/cm**3\n", + "n = 6.023*10**23/At*d# electron/cm**3\n", + "q = 1.63*10**-19# C\n", + "miu = 34.8# m**2/V-s\n", + "# The conductivity of copper,\n", + "sigma = n*q*miu# mho/cm\n", + "print \"The conductivity of copper = %.2e mho/cm\"%sigma" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.6 Page No 53" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Concentration of holes in a p-type Ge = 3.47e+17 /cm**3\n", + "The concentration of electrons in a p-type Ge = 1.80e+09 /cm**3\n", + "The concentration of electrons in n-type Si = 4.81e+14 /cm**3\n", + "The concentration of holes in n-type Si = 4.68e+05 /cm**3\n" + ] + } + ], + "source": [ + "# Given data\n", + "sigma = 100# (ohm-m)**-1\n", + "n_i = 2.5*10**13# /cm**3\n", + "miu_n = 3800# cm**2/V-s\n", + "miu_p = 1800# cm**2/V-s\n", + "q = 1.6*10**-19# C\n", + "# Conductivity of a p-type germanium, sigma = q*p*miu_p or\n", + "p = sigma/(q*miu_p)# /cm**3\n", + "print \"Concentration of holes in a p-type Ge = %.2e /cm**3\"%p\n", + "# The concentration of electrons = %.2f a p-type Ge\n", + "n = (n_i**2)/p# /cm**3\n", + "print \"The concentration of electrons in a p-type Ge = %.2e /cm**3\"%n\n", + "#Given for Si\n", + "sigma= 0.1# (ohm m)**-1\n", + "miu_n= 1300# cm**2/V-sec\n", + "n_i= 1.5*10**10# /cm**3\n", + "#sigma = q*n*miu_n\n", + "n = sigma/(q*miu_n)# /cm**3\n", + "print \"The concentration of electrons in n-type Si = %.2e /cm**3\"%n\n", + "# The concentration of holes = %.2f n-type Si\n", + "p = (n_i**2)/n# /cm**3\n", + "print \"The concentration of holes in n-type Si = %.2e /cm**3\"%p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.7 Page No 54" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resistivity of a dopped Ge = 3.72 ohm-cm\n" + ] + } + ], + "source": [ + "# Given data\n", + "miu_n = 3800## cm**2/V-s\n", + "miu_p = 1800## cm**2/V-s\n", + "n_i = 2.5*10**13# /cm**3\n", + "Nge = 4.41*10**22# /cm**3\n", + "q = 1.602*10**-19# C\n", + "impurity = 10**8\n", + "# The number of donor atoms,\n", + "N_D = Nge/impurity##in /cm**3\n", + "# The number of holes\n", + "p = (n_i**2)/N_D# /cm**3\n", + "# Conductivity of an N-type Ge,\n", + "sigma = q*N_D*miu_n# (ohm-cm)**-1\n", + "# The resistivity of the Ge\n", + "rho = 1/sigma# ohm-cm\n", + "print \"The resistivity of a dopped Ge = %.2f ohm-cm\"% rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.8 Page No 54" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resistivity of intrinsic silicon = 2.25e+05 ohm-cm\n", + "The resistivity of doped silicon = 4.67 ohm-cm\n" + ] + } + ], + "source": [ + "# Given data\n", + "Nsi = 4.96*10**22# /cm**3\n", + "n_i = 1.52*10**10# /cm**2\n", + "q = 1.6*10**-19# C\n", + "miu_n = 0.135# m**2/V-s\n", + "miu_n = miu_n * 10**4# cm**2/V-s\n", + "miu_p = 0.048# m**2/V-s\n", + "miu_p = miu_p * 10**4# cm**2/V-s\n", + "# The conductivity of an intrinsic silicon,\n", + "sigma = q*n_i*(miu_n+miu_p)# (ohm-cm)**-1\n", + "# The resistivity of intrinsic silicon \n", + "rho = 1/sigma# ohm-cm\n", + "print \"The resistivity of intrinsic silicon = %.2e ohm-cm\"%rho\n", + "\n", + "impurity = 50*10**6\n", + "# The number of donor atoms,\n", + "N_D = Nsi/impurity# /cm**3\n", + "# Total free electrons,\n", + "n = N_D# /cm**3\n", + "# Total holes = %.2f a doped Si,\n", + "p = (n_i**2)/n# /cm**3\n", + "# Conductivity of a doped Si,\n", + "sigma = q*n*miu_n# (ohm-m)**-1\n", + "# The resistivity of doped silicon\n", + "rho = 1/sigma# ohm-cm\n", + "print \"The resistivity of doped silicon = %.2f ohm-cm\"%rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.9 Page No 55" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of temperature = 0.14 K\n" + ] + } + ], + "source": [ + "# Given data\n", + "N_D= 5.0*10**28/(2.0*10**8)\n", + "# The Fermi level, E_F= E_C if,\n", + "N_C= N_D\n", + "# Formula N_C= 4.82*10**21*T**(3/2)\n", + "T= (N_C/(4.82*10**21.0))**(2.0/3)# K\n", + "print \"The value of temperature = %.2f K\"%T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.10 Page No 55" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The miniority carrier concentration = 0.10 m**2/V-s\n", + "The resistivity = 0.60 ohm-m\n", + "The position of Fermi level = 0.23 eV\n", + "Minority carrier concentration = 9.00e+12 atoms/cm**3\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "n_i = 1.5*10**16##m**3\n", + "impurity = 10**20\n", + "minority = (n_i**2)/impurity# atoms/m**3\n", + "q = 1.6*10**-19# C\n", + "rho = 2*10**3# ohm-m\n", + "# The miniority carrier concentration \n", + "miu_n = 1/(q*rho*n_i*2)##in m**2/V-s\n", + "print \"The miniority carrier concentration = %.2f m**2/V-s\"%miu_n\n", + "n = impurity\n", + "# The conductivity,\n", + "sigma = q*impurity*miu_n# (ohm-m)**-1\n", + "# The resistivity \n", + "rho = 1/sigma# ohm-m\n", + "print \"The resistivity = %.2f ohm-m\"%rho\n", + "kT = 0.026# eV\n", + "n_o = n\n", + "# The position of Fermi level \n", + "E_FdividedEi = kT*math.log(n_o/n_i)# eV\n", + "print \"The position of Fermi level = %.2f eV\"%E_FdividedEi\n", + "# Minority carrier concentration \n", + "M = ((n_i*2)**2)/n_o# atoms/cm**3\n", + "print \"Minority carrier concentration = %.2e atoms/cm**3\"%M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.11 Page No 56" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resistivity = 9.62 ohm-cm\n" + ] + } + ], + "source": [ + "# Given data\n", + "d = 5.0*10**22# atoms/cm**3\n", + "impurity = 10**8# atoms\n", + "N_D = d/impurity\n", + "n_i = 1.45*10**10\n", + "n = N_D\n", + "#Low of mass action, n*p = (n_i**2)\n", + "p = (n_i**2)/n# /cm**3\n", + "q = 1.6*10**-19# C\n", + "miu_n = 1300# cm/V-s\n", + "n_i = n\n", + "#The Conductivity\n", + "sigma = q*miu_n*n_i# (ohm-cm)**-1\n", + "# The resistivity\n", + "rho = 1/sigma# ohm-cm\n", + "print \"The resistivity = %.2f ohm-cm\"%rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.12 Page No 57" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resistivity = 9.62 ohm-cm\n" + ] + } + ], + "source": [ + "# Given data\n", + "d = 5.0*10**22# atoms/cm**3\n", + "impurity = 10**8# atoms\n", + "N_D = d/impurity\n", + "n_i = 1.45*10**10\n", + "n = N_D\n", + "#Low of mass action, n*p = (n_i**2)\n", + "p = (n_i**2)/n# /cm**3\n", + "q = 1.6*10**-19# C\n", + "miu_n = 1300# cm/V-s\n", + "n_i = n\n", + "#The Conductivity\n", + "sigma = q*miu_n*n_i# (ohm-cm)**-1\n", + "# The resistivity\n", + "rho = 1/sigma# ohm-cm\n", + "print \"The resistivity = %.2f ohm-cm\"%rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.14 Page No 58" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The minority carrier concentration = 2.25e+03 holes/cm**3\n", + "The location of Fermi level = 0.409 eV\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "n_i = 1.5*10**10# electrons/cm**3\n", + "N_D = 10**17# electrons/cm**3\n", + "n = N_D# electrons/cm**3\n", + "# The minority carrier concentration\n", + "p = (n_i**2)/n# holes/cm**3\n", + "print \"The minority carrier concentration = %.2e holes/cm**3\"%p\n", + "kT = 0.026\n", + "# The location of Fermi level \n", + "E_FminusEi = kT*math.log(N_D/n_i)# eV\n", + "print \"The location of Fermi level = %.3f eV\"%E_FminusEi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.15 Page No 59" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The doping level = 1.92e+15 /cm**3\n", + "The drift velocity = 650.00 cm/sec\n" + ] + } + ], + "source": [ + "# Given data\n", + "V = 1# V\n", + "I = 8# mA\n", + "I = I * 10**-3# A\n", + "R = V/I# ohm\n", + "l = 2# mm\n", + "l = l * 10**-1# cm\n", + "b = 2# mm\n", + "b = b * 10**-1# cm\n", + "A = l*b# cm**2\n", + "L = 2# cm\n", + "# R = (rho*L)/A\n", + "sigma = L/(R*A)# (ohm-cm)**-1\n", + "# n = N_D\n", + "miu_n = 1300# cm**2/V-s\n", + "q = 1.6 * 10**-19# C\n", + "# sigma = n*q*miu_n\n", + "N_D = sigma/( miu_n*q )# /cm**3\n", + "print \"The doping level = %.2e /cm**3\"%N_D\n", + "d = 2.0\n", + "E = V/d\n", + "# The drift velocity \n", + "Vd = miu_n * E# cm/s\n", + "print \"The drift velocity = %.2f cm/sec\"%Vd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.17 Page No 60" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The conductivity = 4.68e+05 mho/m\n", + "The mobility = 3.48e-05 m**2/V-s\n", + "The drift velocity = 1.79e-04 m/s\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "l = 1000# ft\n", + "l = l * 12*2.54# cm\n", + "R = 6.51# ohm\n", + "rho = R/l# ohm/cm\n", + "# The conductivity \n", + "sigma = 1/rho# mho/cm\n", + "sigma = sigma * 10**2# mho/m\n", + "D= 1.03*10**-3# m\n", + "A= math.pi*D**2/4# m**2\n", + "print \"The conductivity = %.2e mho/m\"%sigma\n", + "q = 1.6*10**-19# C\n", + "n = 8.4*10**28# electrons/m**3\n", + "# sigma = n*q*miu\n", + "miu = sigma/(n*q)# m**2/V-s\n", + "print \"The mobility = %.2e m**2/V-s\"%miu\n", + "T = 2\n", + "# The drift velocity \n", + "V = T/(n*q*A)# m/s\n", + "print \"The drift velocity = %.2e m/s\"%V" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.18 Page No 61" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The concentration of holes = 1.50e+16 /cm**3\n", + "The concentartion of electrons = 6.67e+07 /cm**3\n" + ] + } + ], + "source": [ + "# Given data\n", + "N_D = 2*10**16# /cm**3\n", + "N_A = 5*10**15# /cm**3\n", + "# The concentration of holes \n", + "Pp = N_D-N_A# /cm**3\n", + "print \"The concentration of holes = %.2e /cm**3\"%Pp\n", + "n_i = 10**12\n", + "# The concentartion of electrons \n", + "n_p = (n_i**2)/Pp# /cm**3\n", + "print \"The concentartion of electrons = %.2e /cm**3\"%n_p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.19 Page No 62" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The hall angle = 1.95 degree\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "rho = 0.005# ohm-m\n", + "Bz = 0.48# Wb/m**2\n", + "R_H = 3.55*10**-4# m**3/C\n", + "ExByJx= rho\n", + "# R_H = Ey/(Bz*Jx)\n", + "EyByJx= R_H*Bz\n", + "# The hall angle \n", + "theta_H = math.degrees(math.atan(EyByJx/ExByJx))# °\n", + "print \"The hall angle = %.2f degree\"%theta_H" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.20 Page No 63" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage between contacts = 0.0026 V\n" + ] + } + ], + "source": [ + "# Given data\n", + "R_H = 3.55 * 10**-4# m**3/C\n", + "Ix = 15# mA\n", + "Ix = Ix * 10**-3# A\n", + "A = 15*1# mm\n", + "A = A * 10**-6# m**2\n", + "Bz = 0.48# Wb/m**2\n", + "Jx = Ix/A# A/m**2\n", + "# R_H = Ey/(Bz*Jx)\n", + "Ey = R_H*Bz*Jx# V/m\n", + "# voltage between contacts \n", + "Voltage = Ey*Ix# V\n", + "print \"The voltage between contacts = %.4f V\"%Voltage" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.21 Page No 63" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The concentration of donor atoms = 4.630e+13 cm**-3\n" + ] + } + ], + "source": [ + "# Given data\n", + "A = 0.001# cm**2\n", + "l = 20# µm\n", + "l = l * 10**-4# cm\n", + "V = 20# V\n", + "I = 100# mA\n", + "I = I * 10**-3# A\n", + "R = V/I# ohm\n", + "# R = l/(sigma*A)\n", + "sigma = l/(R*A)# (ohm-cm)**-1\n", + "miu_n = 1350# cm**2/V-s\n", + "q = 1.6*10**-19# C\n", + "# sigma = n*q*miu_n or\n", + "# The concentration of donor atoms \n", + "n = sigma/(q*miu_n)# cm**-3\n", + "print \"The concentration of donor atoms = %.3e cm**-3\"%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.22 Page No 64" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The doping needed = 8.681e+15 cm**-3\n" + ] + } + ], + "source": [ + "# Given data\n", + "R = 2# k ohm\n", + "R = R * 10**3# ohm\n", + "L = 200# µm\n", + "L = L * 10**-4# cm\n", + "A = 10**-6# cm**2\n", + "miu_n = 8000# cm**2/V-s\n", + "q = 1.6*10**-19# C\n", + "n = '0.9*N_D'\n", + "# R = (rho*l)/A= (1/(n*q*miu_n))*(l/A)\n", + "# rho = L/(R*q*miu_n*A)\n", + "n = L/(R*q*miu_n*A)# /cm**-3\n", + "# The doping needed \n", + "Nd= n/0.9\n", + "print \"The doping needed = %.3e cm**-3\"%Nd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.23 Page No 65" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The position of the Fermi level = 0.29 eV\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "KT = 26*10**-3\n", + "Nd = 10**15\n", + "n_i = 1.5*10**10\n", + "# The position of the Fermi level \n", + "E_FminusE_Fi = KT*math.log(abs( Nd/n_i ))# eV\n", + "print \"The position of the Fermi level = %.2f eV\"%E_FminusE_Fi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.24 Page No 65" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The concentration of donors atoms = 1.2176e+16 cm**-3\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "Na = 5 * 10**15# cm**-3\n", + "Nc = 2.8 * 10**19# cm**-3\n", + "E_CminusE_F = 0.215# eV\n", + "KT = 26* 10**-3# eV\n", + "# The concentration of donors atoms \n", + "Nd = Na + Nc * (math.exp( -E_CminusE_F/KT ))# cm**-3\n", + "print \"The concentration of donors atoms = %.4e cm**-3\"%Nd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.25 Page No 65" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The percentage doping efficiency = 78.12 %\n" + ] + } + ], + "source": [ + "# Given data\n", + "Nd = 10**18\n", + "R = 10# ohm\n", + "A =10**-6# cm**2\n", + "L = 10# mm\n", + "L = L * 10**-4# cm\n", + "miu_n = 800# cm**2/V-s\n", + "q = 1.6*10**-19# C\n", + "#Formula used, n = L/(q*miu_n*A*R)\n", + "n = L/(q*miu_n*A*R)# cm**-3\n", + "# The percentage doping efficiency \n", + "doping = (n/Nd)*100## % doping efficiency in %\n", + "print \"The percentage doping efficiency = %.2f %%\"%doping" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.26 Page No 66" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current through the diode under forward bias = 10.72 µA\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "Io = 2*10**-7# A\n", + "V = 0.1# V\n", + "# Current through the diode under forward bias,\n", + "I = Io*( (math.exp(40*V))-1 )# A\n", + "I = I * 10**6# µA\n", + "print \"The current through the diode under forward bias = %.2f µA\"%I\n", + "\n", + "# Note: Calculated value of I in the book is wrong." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.28 Page No 67" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The dynamic resistance in forward direction = 3.36 ohm\n", + "The dynamic resistance in reverse direction = 0.39 Mohm\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "T = 125.0# degree C\n", + "T = T + 273.0# K\n", + "V_T = T/11600.0\n", + "Io = 30# µA\n", + "Io = Io * 10**-6# A\n", + "V = 0.2# V\n", + "# The dynamic resistance = %.2f forward direction,\n", + "r_f = V_T/( Io * (math.exp(V/V_T)) )# ohm\n", + "print \"The dynamic resistance in forward direction = %.2f ohm\"%r_f\n", + "r_f = V_T/( Io * (math.exp(-V/V_T)) )# ohm\n", + "# The dynamic resistance = %.2f reverse direction \n", + "r_f = r_f * 10**-6# Mohm\n", + "print \"The dynamic resistance in reverse direction = %.2f Mohm\"%r_f" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.29 Page No 68" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage = -59.87 mV\n", + "The ratio of diode current with a forward bias to current with a reverse bias = -6.842\n", + "The value of I1 = 458.13 µA\n", + "The value of I2 = 21.90 mA\n", + "The value of I3 = 1.03 A\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "Eta = 1\n", + "V_T = 0.026\n", + "# I = Io*( (exp(V/(Eta*V_T))) - 1 ) and I = -Io\n", + "# I = -0.9*Io\n", + "# -0.9*Io = Io*( (exp(V/(Eta*V_T))) - 1 )\n", + "V = Eta*V_T*math.log(0.1)# V\n", + "V = V * 10**3# mV\n", + "print \"The voltage = %.2f mV\"%V\n", + "V = 0.05# V\n", + "# The ratio of diode current with a forward bias to current with a reverse bias \n", + "If_by_Ir= ( (math.exp(V/V_T))-1 )/( (math.exp(-V/V_T))-1 )\n", + "print \"The ratio of diode current with a forward bias to current with a reverse bias = %.3f\"%If_by_Ir\n", + "Io = 10# µA\n", + "V = 0.1# V\n", + "# The value of I1 \n", + "I1 = Io*( (math.exp(V/V_T))-1 )# µA\n", + "print \"The value of I1 = %.2f µA\"%I1\n", + "V = 0.2# V\n", + "# The value of I2\n", + "I2 = Io*( (math.exp(V/V_T))-1 )# µA \n", + "I2 = I2 * 10**-3# mA\n", + "print \"The value of I2 = %.2f mA\"%I2\n", + "V = 0.3# V\n", + "# The value of I3\n", + "I3 = Io*( (math.exp(V/V_T))-1 )# µA\n", + "I3 = I3 * 10**-6# A\n", + "print \"The value of I3 = %.2f A\"%I3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.30 Page No 69" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The factor by which current will get multiplied = 638.025\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "# Io150 = Io25 * 2**((150-25)/10)\n", + "#Io150 = 5800*Io25\n", + "T = 150# degree C\n", + "T = T + 273# K\n", + "V_T = 8.62*10**-5 * T# V\n", + "V = 0.4# V\n", + "Eta = 2\n", + "Vt = 0.026# V \n", + "# The factor by which current will get multiplied \n", + "I150byI25= 5800*math.exp(V/(Eta*V_T))/math.exp(V/(Eta*Vt))\n", + "print \"The factor by which current will get multiplied = %.3f\"%I150byI25" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.31 Page No 69" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The operating point of the diode is : (0.50V,4.50mA)\n" + ] + } + ], + "source": [ + "# Given data\n", + "R = 1# ohm\n", + "V = 5# V\n", + "V1 = 0.5# V\n", + "R1 = 1# k ohm\n", + "R1 = R1 * 10**3# ohm\n", + "# V-(I_D*R1)-(I_D*R) - V1 = 0\n", + "I_D = (V-V1)/(R1+R)# A\n", + "I_D = I_D * 10**3# mA\n", + "V_D = (I_D*10**-3*R) + V1# V\n", + "print \"The operating point of the diode is : (%.2fV,%.2fmA)\"%(V_D,I_D)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.32 Page No 70" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage drop across the forward biased diode, = 0.0180 V\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "Eta = 1\n", + "kT = 26# meV\n", + "# (%e**((e*V1)/kT)) = 2 or\n", + "#The voltage drop across the forward biased diode\n", + "V1 = math.log(2)*kT# mV\n", + "V1= V1*10**-3# V\n", + "print \"The voltage drop across the forward biased diode, = %.4f V\"%V1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.33 Page No 71" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The space charge capacitance = 70.74 pF\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "epsilon_Ge = 16/(36*math.pi*10**11)# F/cm\n", + "d = 2*10**-4# cm\n", + "A = 1# mm**2\n", + "A = A * 10**-2# cm**2\n", + "epsilon_o = epsilon_Ge# F/cm\n", + "# The space charge capacitance \n", + "C_T = (epsilon_o*A)/d# F\n", + "C_T = C_T * 10**12# pF\n", + "print \"The space charge capacitance = %.2f pF\"%C_T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.34 Page No 71" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of C_T = 61.68 pf/cm**2\n" + ] + } + ], + "source": [ + "import math \n", + "# Given data\n", + "D = 0.102# cm \n", + "A = (math.pi*(D**2))/4# cm**2\n", + "sigma_p = 0.286# (ohm-cm)**-1\n", + "q = 1.6*10**-19# C\n", + "miu_p = 500\n", + "# Formula used, sigma_p = q*miu_p*N_A\n", + "N_A = sigma_p/(q*miu_p)# atoms/cm**3\n", + "V1 = 5# V\n", + "V2 = 0.35# V\n", + "Vb = V1+V2# V\n", + "# The transition capacitance,\n", + "C_T = 2.92*10**-4*((N_A/Vb)**(1./2))*A# pF/cm**2\n", + "print \"The value of C_T = %.2f pf/cm**2\"%C_T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.35 Page No 71" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of C_T for reverse bias = 15.00 pF\n" + ] + } + ], + "source": [ + "# Given data\n", + "C_T1 = 15# pF\n", + "Vb1 = 8# V\n", + "Vb2 = 12# V\n", + "# C_T1/C_T2 = (Vb2/Vb1)**(1/2)\n", + "C_T2 = C_T1 * ((Vb1/Vb2)**(1/2))# pF\n", + "print \"The value of C_T for reverse bias = %.2f pF\"%C_T2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.36 Page No 72" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage = -59.87 mV\n" + ] + } + ], + "source": [ + "import math\n", + "# Given data\n", + "V_T = 0.026# V\n", + "Eta = 1\n", + "I = '-0.9*Io'\n", + "# T = Io*((%e**(V/(Eta*V_T)))-1 )\n", + "# I = Io*((%e**(V/(Eta*V_T)))-1 )\n", + "V = math.log(0.1)*V_T# V \n", + "V = V * 10**3# mV\n", + "print \"The voltage = %.2f mV\"%V" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.37 Page No 72" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Part (a) : The value of I_D for first circuit = 0.97 mA\n", + "Part (b) : The value of I_D for second circuit = 0.10 mA\n" + ] + } + ], + "source": [ + "# Given data\n", + "Vin = 20# V\n", + "Vgamma = 0.7# V\n", + "R = 20# k ohm\n", + "R = R * 10**3# ohm\n", + "# Vin-(I_D*Vin) - Vgamma = 0 or\n", + "# The value of I_D,\n", + "I_D = (Vin-Vgamma)/R# A\n", + "I_D = I_D * 10**3# mA\n", + "print \"Part (a) : The value of I_D for first circuit = %.2f mA\"%I_D\n", + "\n", + "# Part (b)\n", + "Vin= 10.# V\n", + "Vgamma = 0.7# V\n", + "R = 100# k ohm\n", + "# Drain current,\n", + "I_D= Vin/R# mV\n", + "print \"Part (b) : The value of I_D for second circuit = %.2f mA\"%I_D" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.38 Page No 73" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of I_D = 3.10 mA\n", + "The value of Vo = 6.90 V\n" + ] + } + ], + "source": [ + "# Given data\n", + "R1 = 1# k ohm\n", + "R1 = R1 * 10**3# ohm\n", + "R2 = 2# k ohm\n", + "R2 = R2 * 10**3# ohm\n", + "V = 10# V\n", + "V1 = 0.7# V \n", + "# V * (I_D*R1) - (R2*I_D) - V1 = 0\n", + "I_D = (V-V1)/(R1+R2)# A\n", + "I_D = I_D * 10**3# mA\n", + "print \"The value of I_D = %.2f mA\"%I_D\n", + "# The output voltage,\n", + "Vo = (I_D*10**-3 * R2) +V1# V\n", + "print \"The value of Vo = %.2f V\"%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.39 Page No 73" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Part (a): The current through resistance = 1.00 A\n", + "Part (b) : Current through 10 ohm resistance will be Zero\n", + "Part (c): Current will be zero\n", + "Part (d): The diode will be ON and current = 1.00 A\n" + ] + } + ], + "source": [ + "# Given data\n", + "V = 10.# V\n", + "R = 10# ohm\n", + "# Current through resistance,\n", + "I = V/R# A\n", + "print \"Part (a): The current through resistance = %.2f A\"%I\n", + "print \"Part (b) : Current through 10 ohm resistance will be Zero\"\n", + "print \"Part (c): Current will be zero\"\n", + "print \"Part (d): The diode will be ON and current = %.2f A\"%I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.40 Page No 74" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The operating point is : (0.50V,4.50mA)\n" + ] + } + ], + "source": [ + "# Given data\n", + "Vth= 0.5# V\n", + "R_F= 1*10**3# ohm\n", + "V= 5# V\n", + "# Applying KVL for loop, V-Vd-R_F*Ii= 0 (i)\n", + "# When Ii=0\n", + "Vd= V# V\n", + "# When Vd= 0\n", + "Ii= V/R_F# A\n", + "# From eq(i)\n", + "Ii= (V-Vth)/R_F# A\n", + "Vd= V-R_F*Ii# V\n", + "print \"The operating point is : (%.2fV,%.2fmA)\"%(Vd,Ii*1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.43 Page No 76" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage at V1 = 6.00 volts\n", + "The voltage at V2 = 5.40 volts\n" + ] + } + ], + "source": [ + "# Given data\n", + "V_CC = 6# V\n", + "Vr = 0.6# V\n", + "V1= V_CC##in V\n", + "V2 = V1-Vr# V\n", + "print \"The voltage at V1 = %.2f volts\"%V1\n", + "print \"The voltage at V2 = %.2f volts\"%V2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.44 Page No 76" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of I1 = 1.80 mA\n", + "The value of I2 = 1.80 mA\n" + ] + } + ], + "source": [ + "# Given data\n", + "V_T = 0.7# V\n", + "V = 5# V\n", + "R = 2# k ohm\n", + "R = R * 10**3# ohm\n", + "Vs = 0.7\n", + "Vx = Vs+V_T# V\n", + "# The value of I1 \n", + "I1 = (V-Vx)/R# A\n", + "I1 = I1 * 10**3# mA\n", + "print \"The value of I1 = %.2f mA\"%I1\n", + "# The value of I2 \n", + "I2 = I1# mA\n", + "print \"The value of I2 = %.2f mA\"%I2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 1.45 Page No 77" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of Vo = 1.00 V\n" + ] + } + ], + "source": [ + "# Given data\n", + "Rf = 300.# ohm\n", + "V = 0.5# V\n", + "R = 600.# ohm\n", + "Vi = 2.# V\n", + "# The output voltage \n", + "Vo = (Vi-V)*( R/(R+Rf) )# V\n", + "print \"The value of Vo = %.2f V\"%Vo" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/PreetiRani/ch4.ipynb b/sample_notebooks/PreetiRani/ch4.ipynb new file mode 100644 index 00000000..75f81a8f --- /dev/null +++ b/sample_notebooks/PreetiRani/ch4.ipynb @@ -0,0 +1,387 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter4 - Three phase transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.1 Pg No: 329" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of line currents = 276.74 Amperes\n" + ] + } + ], + "source": [ + "#Caption:Find the value of line current\n", + "\n", + "a=2200./200##transformation ratio\n", + "P=450*1000. # watts\n", + "pf=0.85\n", + "V_s=200. # volts\n", + "I_2=P/(pf*V_s) # amperes\n", + "I_1=1.15*I_2/a\n", + "print 'Value of line currents = %.2f Amperes'%I_1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.2 Pg No: 329" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of line current = 312.71 Amperes\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Caption:Find the value of line current\n", + "\n", + "a=2200./200##transformation ratio\n", + "P_1=400.*1000 # watts\n", + "P_2=500.*1000 # watts\n", + "pf=0.8\n", + "V_s=200. # volts\n", + "I_2=P_1/(pf*V_s) # amperes\n", + "I_1=1.15*I_2/a\n", + "I_1T=I_1/2\n", + "I_2M=P_2/(pf*V_s*a)\n", + "I_p=np.sqrt((I_1T**2)+(I_2M**2))\n", + "print 'Value of line current = %.2f Amperes'%I_p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.3 Pg No: 330" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Efficiency at full load and 0.85pf = 95.67 %\n", + "(b)Efficiency at 75 percent of full load and unity pf = 95.84 %\n", + "(c)max efficieny at unity pf = 97.09 %\n" + ] + } + ], + "source": [ + "#Caption:Determine the efficiency of transformer at (a)full load and 0.85pf (b)75 percent of full load and unity pf (c)max efficieny at unity pf\n", + "\n", + "P=100*1000 # watts\n", + "P_iron=1500 # watts\n", + "x=0.8\n", + "P_cu=1500/x**2 # watts\n", + "pf=0.8\n", + "a=5000/400##transformation ratio\n", + "P_t=P_iron+P_cu\n", + "P_o=0.85*P # watts\n", + "Eff=P_o/(P_o+P_t)\n", + "print '(a)Efficiency at full load and 0.85pf = %.2f %%'%(Eff*100)\n", + "P_cu_1=0.75*P_cu # watts\n", + "P_t_1=P_cu_1+P_iron # watts\n", + "P_o_1=0.75*P\n", + "Eff_1=P_o_1/(P_o_1+P_t_1)\n", + "print '(b)Efficiency at 75 percent of full load and unity pf = %.2f %%'%(Eff_1*100)\n", + "P_t_2=2.*P_iron\n", + "P_o_2=P\n", + "Eff_2=P_o_2/(P_o_2+P_t_2)\n", + "print '(c)max efficieny at unity pf = %.2f %%'%(Eff_2*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.4 Pg No: 331" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For Star-Delta Configruation\n", + "Line voltage = 190.53 volts\n", + "Line current = 173.21 amperes\n", + "Output = 57157.68 watts\n", + "For Delta-Star Configruation\n", + "Line voltage = 571.58 volts\n", + "Line current = 57.74 amperes\n", + "Output = 57157.68 watts\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Caption:Find the value of line voltage,line current,and output when the transformer winding is connected as (a) Star-delta (b)delta-star\n", + "\n", + "a=10. ##transformation ratio\n", + "V_s=3300. # volts\n", + "I_1=10. # amperes\n", + "V_1=V_s/np.sqrt(3)\n", + "V_2=V_1/a\n", + "I_2=np.sqrt(3)*a*I_1\n", + "P_o=np.sqrt(3)*V_2*I_2\n", + "print \"For Star-Delta Configruation\"\n", + "print 'Line voltage = %.2f volts'%V_2\n", + "print 'Line current = %.2f amperes'%I_2\n", + "print 'Output = %.2f watts'%P_o\n", + "V_2p=V_s/a\n", + "V_2L=np.sqrt(3)*V_2p\n", + "I_2L=I_1*a/np.sqrt(3)\n", + "P_o2=np.sqrt(3)*V_2*I_2\n", + "print \"For Delta-Star Configruation\"\n", + "print 'Line voltage = %.2f volts'%V_2L\n", + "print 'Line current = %.2f amperes'%I_2L\n", + "print 'Output = %.2f watts'%P_o2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.5 Pg No: 332" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Efficiency = 93.29 %\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Caption:Find the Efficiency\n", + "\n", + "P=1200.*1000 # watts\n", + "R_1=2.# ohms\n", + "R_2=0.03 # ohms\n", + "P_iron=20000. # watts\n", + "V_1p=6600. # volts\n", + "V_2p=1100./np.sqrt(3) # volts\n", + "a=V_1p/V_2p\n", + "R_o2=R_2+(R_1/a**2) # ohms\n", + "I_2p=P/(np.sqrt(3)*1100) # amperes\n", + "P_cu=3*R_o2*I_2p**2\n", + "P_t=P_iron+P_cu\n", + "P_o=0.9*P # watts\n", + "Eff=P_o/(P_o+P_t)\n", + "print 'Efficiency = %.2f %%'%(Eff*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.6 Pg No: 332" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "% Resistance drop = 2.00 %\n", + "% Reactance drop = 4.08 %\n", + "Voltage regulation = 4.43 %\n", + "Efficiency = 95.62 %\n" + ] + } + ], + "source": [ + "import math as mt\n", + "#Caption:Find the percentage resistance,reactance drop,efficiency and voltage regulation\n", + "\n", + "P=1500.*1000 # watts\n", + "phy=mt.acos(0.8)*180/mt.pi\n", + "V_1P=300 # volts\n", + "V_1L=6600 # volts\n", + "I_1P=131.21/mt.sqrt(3)\n", + "Z_1=V_1P/I_1P # ohms\n", + "R_1=30*1000/(3*I_1P**2)\n", + "X_1=mt.sqrt((Z_1**2)-(R_1**2))\n", + "R=I_1P*R_1*100/V_1L\n", + "X=I_1P*X_1*100/V_1L\n", + "print '%% Resistance drop = %.2f %%'%R\n", + "print '%% Reactance drop = %.2f %%'%X\n", + "VR=(R*mt.cos(phy*180/mt.pi))+(X*mt.sin(phy*180/mt.pi))\n", + "print 'Voltage regulation = %.2f %%'%VR\n", + "I_1_FL=P/(mt.sqrt(3)*V_1L)\n", + "P_t=(30+25)*1000 # watts\n", + "P_o=P*0.8 # watts\n", + "Eff=P_o/(P_o+P_t)\n", + "print 'Efficiency = %.2f %%'%(Eff*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.7 Pg No: 334" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)KVA Load supplied by each transformer = 28.87 KVA\n", + "(b)Percent of rated load = 1.15 %\n", + "(c)Total KVA rating = 43.30 KVA\n", + "(d)Ratio=0.577\n", + "(e)Increase in load = 173.21 %\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Caption:Determine the (a)KVA Load (b)Percentage rated load (c)Total KVA Rating (d)Ratio of star-star bank to delta-delta bank transformer rating (e)% increase in load\n", + "\n", + "KVA=25.\n", + "KVA_s=50./np.sqrt(3)\n", + "print '(a)KVA Load supplied by each transformer = %.2f KVA'%KVA_s\n", + "r=KVA_s/KVA\n", + "print '(b)Percent of rated load = %.2f %%'%r\n", + "KVA_t=2*25*0.866\n", + "print '(c)Total KVA rating = %.2f KVA'%KVA_t\n", + "ratio=KVA_t/75\n", + "print '(d)Ratio=%.3f'%ratio\n", + "KVA_s2=50./3\n", + "Inc=KVA_s/KVA_s2\n", + "print '(e)Increase in load = %.2f %%'%(Inc*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa:4.8 Pg No: 335" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Currents in sections Oa,Ob and Oc = 131.22 amperes\n", + " Currents in sections Aa,Bb and Cc = 524.86 amperes\n", + "(b)Power transformed by transformer action = 80.00 Kw\n", + "(c)Power Conducted directly = 320.00 Kw\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Caption:Determine the (a)Current flowing in various sections (b)Power transformed (c)Power conducted directly\n", + "\n", + "P=400.*1000 # watts\n", + "pf=0.8\n", + "V_1=550. # volts\n", + "V_2=440. # volts\n", + "I_2=P/(np.sqrt(3)*V_2*pf)## in amperes\n", + "I_1=I_2*V_2/V_1 # amperes\n", + "I=I_2-I_1\n", + "print '(a)Currents in sections Oa,Ob and Oc = %.2f amperes'%I\n", + "print ' Currents in sections Aa,Bb and Cc = %.2f amperes'%I_1\n", + "P_trans=P*(1-(V_2/V_1))\n", + "print '(b)Power transformed by transformer action = %.2f Kw'%(P_trans/1000)\n", + "P_cond=P-P_trans\n", + "print '(c)Power Conducted directly = %.2f Kw'%(P_cond/1000)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb b/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb new file mode 100644 index 00000000..67fc73ce --- /dev/null +++ b/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb @@ -0,0 +1,480 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5: Uncertainity Principle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 177" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in momentum is 1.65e-24 kg m/sec\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.6*10**-34; #plancks constant(J s)\n", + "deltax=4*10**-10; #uncertainity(m)\n", + "\n", + "#Calculations\n", + "delta_px=h/deltax; #uncertainity in momentum(kg m/sec)\n", + "\n", + "#Result\n", + "print \"uncertainity in momentum is\",delta_px,\"kg m/sec\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 177" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in position is 0.02418 m\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.6*10**-34; #plancks constant(J s)\n", + "m=9.1*10**-31; #mass(kg)\n", + "v=600; #speed(m/s)\n", + "deltapx=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n", + "\n", + "#Calculations\n", + "deltax=h/deltapx; #uncertainity in position(m)\n", + "\n", + "#Result\n", + "print \"uncertainity in position is\",round(deltax,5),\"m\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 177" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in momentum is 6.63e-23 kg m/sec\n", + "uncertainity in velocity is 7.286 *10**7 m/sec\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #plancks constant(J s)\n", + "deltax=0.1*10**-10; #uncertainity(m)\n", + "m0=9.1*10**-31; #mass(kg)\n", + "\n", + "#Calculations\n", + "deltap=h/deltax; #uncertainity in momentum(kg m/sec)\n", + "deltav=deltap/m0; #uncertainity in velocity(m/sec) \n", + "\n", + "#Result\n", + "print \"uncertainity in momentum is\",deltap,\"kg m/sec\"\n", + "print \"uncertainity in velocity is\",round(deltav/10**7,3),\"*10**7 m/sec\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 178" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in velocity is 1835\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "me=9.1*10**-31; #mass of electron(kg)\n", + "mp=1.67*10**-27; #mass of proton(kg)\n", + "\n", + "#Calculations\n", + "deltavebydeltavp=mp/me; #uncertainity in velocity\n", + "\n", + "#Result\n", + "print \"uncertainity in velocity is\",int(deltavebydeltavp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 178" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smallest possible uncertainity in position is 0.0388 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.62*10**-34; #plancks constant(J s)\n", + "v=3*10**7; #velocity(m/sec)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "m0=9*10**-31; #mass(kg)\n", + "\n", + "#Calculations\n", + "deltaxmin=h*math.sqrt(1-(v**2/c**2))/(2*math.pi*m0*v); #smallest possible uncertainity in position(m)\n", + "\n", + "#Result\n", + "print \"smallest possible uncertainity in position is\",round(deltaxmin*10**10,4),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 179" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum uncertainity in velocity is 7.3 *10**5 m/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.6*10**-34; #plancks constant(J s)\n", + "deltapmax=10**-9; #uncertainity in momentum(kg m/sec)\n", + "m=9*10**-31; #mass(kg)\n", + "\n", + "#Calculations\n", + "deltapmin=h/deltapmax; #smallest possible uncertainity in momentum(kg m/sec)\n", + "deltavxmin=deltapmin/m; #minimum uncertainity in velocity(m/s) \n", + "\n", + "#Result\n", + "print \"minimum uncertainity in velocity is\",round(deltavxmin/10**5,1),\"*10**5 m/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 179" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time required is 1.9 *10**-8 second\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda=6000*10**-10; #wavelength(m)\n", + "dlamda=10**-4*10**-10; #width(m)\n", + "\n", + "#Calculations\n", + "deltat=lamda**2/(2*math.pi*c*dlamda); #time required(second)\n", + "\n", + "#Result\n", + "print \"time required is\",round(deltat*10**8,1),\"*10**-8 second\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 180" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in position is 3.381 *10**-6 m\n", + "answer given in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #plancks constant(J s)\n", + "m=9.1*10**-31; #mass(kg)\n", + "v=3.5*10**5; #speed(m/s)\n", + "deltap=(0.0098/100)*m*v; #uncertainity in momentum(kg m/sec)\n", + "\n", + "#Calculations\n", + "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n", + "\n", + "#Result\n", + "print \"uncertainity in position is\",round(deltax*10**6,3),\"*10**-6 m\"\n", + "print \"answer given in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 180" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in momentum is 5.276 *10**-20 kg m/sec\n", + "kinetic energy of electron is 9559.1 MeV\n", + "answer for kinetic energy given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "h=6.63*10**-34; #plancks constant(J s)\n", + "m0=9.1*10**-31; #mass(kg)\n", + "deltax=2*10**-15; #uncertainity in position(m)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "\n", + "#Calculations\n", + "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n", + "K=deltap**2/(2*m0*e); #kinetic energy of electron(eV)\n", + "\n", + "#Result\n", + "print \"uncertainity in momentum is\",round(deltap*10**20,3),\"*10**-20 kg m/sec\"\n", + "print \"kinetic energy of electron is\",round(K/10**6,1),\"MeV\"\n", + "print \"answer for kinetic energy given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 180" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum uncertainity in momentum is 1.05e-20 kg m/sec\n", + "minimum kinetic energy is 2.06 *10**5 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "chi=1.05*10**-34; #plancks constant(J s)\n", + "deltaxmax=2*5*10**-15; #uncertainity in momentum(kg m/sec)\n", + "m=1.67*10**-27; #mass(kg)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "\n", + "#Calculations\n", + "deltapmin=chi/deltaxmax; #minimum uncertainity in momentum(kg m/sec)\n", + "Emin=deltapmin**2/(2*m*e); #minimum kinetic energy(eV)\n", + "\n", + "#Result\n", + "print \"minimum uncertainity in momentum is\",deltapmin,\"kg m/sec\"\n", + "print \"minimum kinetic energy is\",round(Emin/10**5,2),\"*10**5 eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 181" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular orbital position is 10 radian\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "e=5/100; #error\n", + "h=1; #assume\n", + "\n", + "#Calculations\n", + "deltaJ=e*2*h; #uncertainity in angular momentum\n", + "delta_theta=h/deltaJ; #angular orbital position(radian)\n", + "\n", + "#Result\n", + "print \"angular orbital position is\",int(delta_theta),\"radian\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/SundeepKatta/Chapter7.ipynb b/sample_notebooks/SundeepKatta/Chapter7.ipynb new file mode 100644 index 00000000..fad1281c --- /dev/null +++ b/sample_notebooks/SundeepKatta/Chapter7.ipynb @@ -0,0 +1,489 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 7: Nuclear Structure" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 235" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total mass is 11.7167 *10**-27 kg\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "mp=1.6725*10**-27; #mass of proton(kg)\n", + "mn=1.6748*10**-27; #mass of neutron(kg)\n", + "\n", + "#Calculations\n", + "m=(3*mp)+(4*mn); #total mass(kg)\n", + "\n", + "#Result\n", + "print \"total mass is\",m*10**27,\"*10**-27 kg\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 235" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of electrons is 36 *10**23\n", + "number of protons is 36 *10**23\n", + "number of neutrons is 48 *10**23\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "N=6*10**23; #avagadro number\n", + "\n", + "#Calculations\n", + "e=6*N; #number of electrons\n", + "p=6*N; #number of protons\n", + "n=8*N; #number of neutrons\n", + "\n", + "#Result\n", + "print \"number of electrons is\",int(e/10**23),\"*10**23\"\n", + "print \"number of protons is\",int(p/10**23),\"*10**23\"\n", + "print \"number of neutrons is\",int(n/10**23),\"*10**23\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 235" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mass number of nucleus is 9\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "r=2.71*10**-15; #radius(m)\n", + "r0=1.3*10**-15; \n", + "\n", + "#Calculations\n", + "A=(r/r0)**3; #mass number of nucleus\n", + "\n", + "#Result\n", + "print \"mass number of nucleus is\",int(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 235" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "radius of He is 2.2375 fermi\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "r1=7.731; #radius(fermi)\n", + "A1=165; #mass number of Ho\n", + "A2=4; #mass number of He \n", + "\n", + "#Calculations\n", + "r2=r1*(A2/A1)**(1/3); #radius of He(fermi)\n", + "\n", + "#Result\n", + "print \"radius of He is\",round(r2,4),\"fermi\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 236" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "radius of nucleus is 4.8 fermi\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "r1=6; #radius(fermi)\n", + "A1=125; #mass number of nucleus\n", + "A2=64; #mass number of nucleus \n", + "\n", + "#Calculations\n", + "r2=r1*(A2/A1)**(1/3); #radius of nucleus(fermi)\n", + "\n", + "#Result\n", + "print \"radius of nucleus is\",r2,\"fermi\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 236" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density of nuclear matter is 1.8 *10**17 kg/m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "A=1; #assume\n", + "r=1.3*A**(1/3)*10**-15; #radius(m) \n", + "amu=1.66*10**-27; #amu(kg)\n", + "\n", + "#Calculations\n", + "V=4*math.pi*r**3/3; #volume(m**3)\n", + "M=A*amu;\n", + "rho=M/V; #density of nuclear matter(kg/m**3)\n", + "\n", + "#Result\n", + "print \"density of nuclear matter is\",round(rho/10**17,1),\"*10**17 kg/m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 236" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "electrostatic potential energy is 3.91 *10**-11 eV\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "A=235/2; #mass number\n", + "r=1.3*A**(1/3)*10**-15; #radius(m) \n", + "Z=46; #atomic number\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "epsilon0=8.65*10**-12; \n", + "\n", + "#Calculations\n", + "U=(Z*e)**2/(4*math.pi*epsilon0*2*r); #electrostatic potential energy(eV)\n", + "\n", + "#Result\n", + "print \"electrostatic potential energy is\",round(U*10**11,2),\"*10**-11 eV\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 240" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binding energy of alpha particle is 28.5229 MeV\n", + "binding energy per nucleon is 7.1307 MeV\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "mp=1.007277; #mass of proton(amu)\n", + "mhn=4.001265; #mass of helium nucleus(amu)\n", + "mn=1.008666; #mass of neutron(amu)\n", + "amu=931.4812; #amu(MeV)\n", + "\n", + "#Calculations\n", + "m=(2*mp)+(2*mn); #total initial mass(amu)\n", + "deltam=m-mhn; #mass defect(amu)\n", + "BEalpha=deltam*amu; #binding energy of alpha particle(MeV)\n", + "BEn=BEalpha/4; #binding energy per nucleon(MeV)\n", + "\n", + "#Result\n", + "print \"binding energy of alpha particle is\",round(BEalpha,4),\"MeV\"\n", + "print \"binding energy per nucleon is\",round(BEn,4),\"MeV\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 240" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy released is 63.0 *10**10 J\n", + "electrical energy is 8.75 *10**3 kilowatt hour\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "mh=1*10**-3; #mass of hydrogen(kg)\n", + "mhe=0.993*10**-3; #mass of helium(kg)\n", + "e=5/100; #efficiency\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "x=36*10**5; \n", + "\n", + "#Calculations\n", + "deltam=mh-mhe; #mass defect(kg)\n", + "E=deltam*c**2; #energy released(J)\n", + "EE=e*E/x; #electrical energy(kilowatt hour)\n", + "\n", + "#Result\n", + "print \"energy released is\",E/10**10,\"*10**10 J\"\n", + "print \"electrical energy is\",round(EE/10**3,2),\"*10**3 kilowatt hour\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 241" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy released is 0.73 MeV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "mp=1.6725*10**-27; #mass of proton(kg)\n", + "me=9*10**-31; #mass of electron(kg)\n", + "mn=1.6747*10**-27; #mass of neutron(kg)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "\n", + "#Calculations\n", + "deltam=mn-(mp+me); #mass defect(kg)\n", + "E=deltam*c**2/(e*10**6); #energy released(MeV)\n", + "\n", + "#Result\n", + "print \"energy released is\",round(E,2),\"MeV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 241" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "atomic mass is 34.96908 amu\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "mp=1.007825; #mass of proton(amu)\n", + "mn=1.008665; #mass of neutron(amu)\n", + "BE=298; #binding energy(MeV)\n", + "amu=931.5; #amu(MeV)\n", + "\n", + "#Calculations\n", + "m=(17*mp)+(18*mn); #total initial mass(amu)\n", + "deltam=BE/amu; #mass defect(amu)\n", + "Am=m-deltam; #atomic mass(amu)\n", + "\n", + "#Result\n", + "print \"atomic mass is\",round(Am,5),\"amu\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |