diff options
30 files changed, 29269 insertions, 0 deletions
diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter25_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter25_6.ipynb new file mode 100644 index 00000000..884c7e96 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter25_6.ipynb @@ -0,0 +1,173 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:0a9697b2451ba5bc5f24eb67c66ef466539d8d3c214c7c35bb64d3c339daf3f9" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 25: Elements of Electro-Mechanical Energy Conversion" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.1, Page Number:876" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "sod=15#stator-core outer diameter\n", + "sid=10.05#stator-core inner diameter\n", + "rod=10.00#rotor-core outer diameter\n", + "rid=5#rotor-core inner diameter\n", + "a=8#axial lenght of the machine\n", + "b=1.20\n", + "ur=1000\n", + "#calculations\n", + "vs=(3.14/4)*((sod*sod)-(sid*sid))*a#volume of stator-core\n", + "vr=(3.14/4)*((rod*rod)-(rid*rid))*a#volume of rotor-core\n", + "va=(3.14/4)*((sid*sid)-(rod*rod))*a#volume of air-gap in the machine\n", + "ed=(.5*b*b)/(4*3.14*math.pow(10,-7))\n", + "e=ed*va*math.pow(10,-6)\n", + "edm=(.5*b*b)/(4*3.14*math.pow(10,-7)*ur)\n", + "es=edm*vs*math.pow(10,-6)\n", + "er=edm*vr*math.pow(10,-6)\n", + "kr=(vs+vr)/vs\n", + "ke=(es+er)/e\n", + "ratio=kr/ke\n", + "eratio=e/(es+er)\n", + "\n", + "#result\n", + "print \"Energy stored in air gap= \",e,\" Joules\"\n", + "print \"Energy stored in stator-core= \",round(es,2),\" Joules\"\n", + "print \"Energy stored in rotor core= \",er,\" Joules\"\n", + "print \"Ratio of energy dtored in air-gap to that stored in the cores=\",round(eratio)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy stored in air gap= 3.609 Joules\n", + "Energy stored in stator-core= 0.45 Joules\n", + "Energy stored in rotor core= 0.27 Joules\n", + "Ratio of energy dtored in air-gap to that stored in the cores= 5.0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.2, Page Number:877" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "n=800#turns\n", + "area=5*5#cross sectional area\n", + "i=1.25#amp\n", + "x=0.25#cm\n", + "l=0.402\n", + "#calculations\n", + "p=4*3.14*10**(-7)*area*10**(-4)/(0.5*10**(-2))\n", + "l=n**2*p\n", + "em=.5*i*i*l\n", + "W=-1*0.5*n**2*4*3.14*10**(-7)*area*10**(-4)*i**2/(0.5*10**(-2))**2\n", + "\n", + "#result\n", + "print \"a)i)coil inductance=\",l,\"H\"\n", + "print \" ii)field energy stored=\",em,\"J\"\n", + "print \"b)mechanical energy output=\",W,\"NW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)coil inductance= 0.40192 H\n", + " ii)field energy stored= 0.314 J\n", + "b)mechanical energy output= -62.8 NW\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.4, Page Number:882" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "lo=50#mH\n", + "xo=0.05#cm\n", + "r=0.5#ohm\n", + "x=0.075#cm\n", + "i2=3#A\n", + "x2=0.15#cm\n", + "\n", + "#calculation\n", + "l1=2*lo/(1+(x/xo))\n", + "lambda1=l1*i2*10**(-3)\n", + "W=0.5*l1*i2**2*10**(-3)\n", + "l2=2*lo/(1+(x2/xo))\n", + "lambda2=l2*i2*10**(-3)\n", + "w2=0.5*i2*(lambda1-lambda2)\n", + "\n", + "#result\n", + "print \"a)magnetic stored energy=\",W,\"J\"\n", + "print \"b)change in magnetic stored energy=\",w2,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)magnetic stored energy= 0.18 J\n", + "b)change in magnetic stored energy= 0.0675 J\n" + ] + } + ], + "prompt_number": 19 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter26_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter26_6.ipynb new file mode 100644 index 00000000..1af9bb80 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter26_6.ipynb @@ -0,0 +1,1600 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:fbc29937443ef7eae8e50df5118b16ddcc8ed6efb4b30db1cb412240bf7eac02" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 26: D.C. Generators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.3, Page Number:912" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=450#A\n", + "v=230#v\n", + "rs=50#ohm\n", + "ra=.03#ohm\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "va=ia*ra\n", + "E=v+va\n", + "\n", + "#result\n", + "print \"e.m.f. generated in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e.m.f. generated in the armature= 243.62 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.4, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=50#A\n", + "v=500#v\n", + "rs=250#ohm\n", + "ra=.05#ohm\n", + "rseries=0.03#ohm\n", + "b=1#V\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "vs=ia*rseries\n", + "va=ia*ra\n", + "vb=ish*b\n", + "E=v+va+vs+vb\n", + "\n", + "#result\n", + "print \"generated voltage in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "generated voltage in the armature= 506.16 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.5, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=30#A\n", + "v=220#v\n", + "rs=200#ohm\n", + "ra=.05#ohm\n", + "rseries=0.30#ohm\n", + "b=1#V\n", + "\n", + "#calculations\n", + "vs=i*rseries\n", + "vshunt=v+vs\n", + "ish=vshunt/v\n", + "ia=i+ish\n", + "vb=b*2\n", + "E=v+vs+vb+(ia*ra)\n", + "\n", + "#result\n", + "print \"generated voltage in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "generated voltage in the armature= 232.552045455 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.6, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "#variable declaration\n", + "v=230.0#v\n", + "i=150.0#A\n", + "rs=92.0#ohm\n", + "rseries=0.015#ohm\n", + "rd=0.03#ohm(divertor)\n", + "ra=0.032#ohm\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "sdr=(rd*rseries)/(rd+rseries)\n", + "tr=ra+sdr\n", + "vd=ia*tr\n", + "Eg=v+vd\n", + "tp=Eg*ia\n", + "pl=(ia*ia*ra)+(ia*ia*sdr)+(v*ish)+(v*i)\n", + "\n", + "#resuts\n", + "print \"i) Induced e.m.f.= \",Eg,\" V\"\n", + "print \"ii)Total power generated= \",tp,\" W\"\n", + "print \"iii)Distribution of the total power:\"\n", + "print \" power lost in armature= \", ia*ia*ra\n", + "print \"power lost in series field and divider= \", ia*ia*sdr\n", + "print \"power dissipated in shunt winding= \", v*ish\n", + "print \"power delivered to load= \", v*i\n", + "print \" ------------\"\n", + "print \"Total= \", pl" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Induced e.m.f.= 236.405 V\n", + "ii)Total power generated= 36051.7625 W\n", + "iii)Distribution of the total power:\n", + " power lost in armature= 744.2\n", + "power lost in series field and divider= 232.5625\n", + "power dissipated in shunt winding= 575.0\n", + "power delivered to load= 34500.0\n", + " ------------\n", + "Total= 36051.7625\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.7, Page Number:914" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=300000.0#w\n", + "v=600.0#v\n", + "sr=75.0#ohm\n", + "abr=0.03#ohm\n", + "cr=0.011#ohm\n", + "rseries=0.012#ohm\n", + "dr=0.036#ohm\n", + "\n", + "#calculatons\n", + "io=p/v#output current\n", + "ish=v/sr\n", + "ia=io+ish\n", + "sdr=(rseries*dr)/(rseries+dr)\n", + "tr=abr+cr+sdr\n", + "vd=ia*tr\n", + "va=v+vd\n", + "pg=va*ia\n", + "W=pg/1000\n", + "\n", + "#result\n", + "print \"Voltage generatedby the armature= \",va,\" V\"\n", + "print \"Power generated by the armature= \",W, \"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage generatedby the armature= 625.4 V\n", + "Power generated by the armature= 317.7032 kW\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.8, Page Number:915" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "phi=7*math.pow(10,-3)\n", + "z=51*20\n", + "a=p=4\n", + "n=1500#r.p.m\n", + "\n", + "#calculations\n", + "Eg=(phi*z*n*p)/(a*60)\n", + "\n", + "#result\n", + "print \"Voltage generated= \",Eg,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage generated= 178.5 V\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.9, Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=8\n", + "phi=0.05#Wb\n", + "n=1200#rpm\n", + "N=500#armature conductor\n", + "\n", + "#calculations\n", + "E=phi*(n/60)*(p/a)*N\n", + "\n", + "#result\n", + "print \"e.m.f generated= \",E,\" V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e.m.f generated= 500.0 V\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.10, Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=127#v\n", + "vt=120#v(terminal voltage)\n", + "r=15#ohms\n", + "i1=8.47#A\n", + "ra=0.02#ohms\n", + "fi=8#A\n", + "\n", + "#calculations\n", + "Eg=v+(i1*ra)\n", + "ia=(Eg-vt)/ra\n", + "il=ia-fi\n", + "\n", + "#result\n", + "print \"Load current \",il,\" A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load current 350.47 A\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.11(a), Page Number:917" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "z=778\n", + "n=500\n", + "ra=0.24\n", + "rl=12.5\n", + "r=250\n", + "v=250\n", + "a=2\n", + "#calculations\n", + "il=v/rl\n", + "si=v/r\n", + "ai=il+si\n", + "emf=v+(ai*ra)\n", + "phi=(emf*60*a)/(p*z*n)\n", + "\n", + "#result\n", + "print \"armature current= \",ai,\" A\"\n", + "print \"induced e.m.f.= \",emf,\" V\"\n", + "print \"flux per pole= \",round(phi*1000,2),\" mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 21.0 A\n", + "induced e.m.f.= 255.04 V\n", + "flux per pole= 9.83 mWb\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.11(b), Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "P=5000.0#w\n", + "P2=2500.0#W\n", + "v=250.0#v\n", + "ra=0.2#ohm\n", + "r=250.0#ohm\n", + "z=120\n", + "N=1000#rpm\n", + "\n", + "#calculations\n", + "gc=P/v\n", + "li=P2/v\n", + "ti=gc+li\n", + "fc=1\n", + "ai=ti+fc\n", + "ard=ai*ra\n", + "emf=v+ard+2\n", + "phi=(emf*60*a)/(p*z*N)\n", + "ac_perparralelpath=ai/p\n", + "\n", + "#result\n", + "print \"Flux per pole= \",phi*1000,\" mWb\"\n", + "print \"Armature current per parallel path= \",ac_perparralelpath,\" A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux per pole= 129.1 mWb\n", + "Armature current per parallel path= 7.75 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.12, Page Number:918" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=125.0#V\n", + "n1=1000#rpm\n", + "n2=800#rpm\n", + "ra=0.04#ohm\n", + "bd=2.0#V(brush drop)\n", + "\n", + "#calculations\n", + "R=v/i\n", + "E1=v+(i*ra)+bd\n", + "E2=(E1*n2)/n1\n", + "il=(E2-bd)/0.675\n", + "\n", + "#result\n", + "print \"Load current when speed drops to 800 r.p.m.= \",round(il,2),\" A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load current when speed drops to 800 r.p.m.= 157.04 A\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.13, Page Number:918" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=4\n", + "n=900 #rpm\n", + "V=220#V\n", + "E=240#V\n", + "ra=0.2#ohm\n", + "phi=10#mWb\n", + "N=8\n", + "\n", + "#calculations\n", + "ia=(E-V)/ra\n", + "Z=(E*600*2)/(phi*math.pow(10,-3)*n*p)\n", + "#since there ae 8 turns in a coil,it means there are 16 active conductor\n", + "number_of_coils=Z/16\n", + "\n", + "#result\n", + "print \"armature current= \",ia,\" A\"\n", + "print \"number of coils= \",number_of_coils" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 100.0 A\n", + "number of coils= 500.0\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.14, Page Number:919" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "V=120.0#V\n", + "ra=0.06#ohm\n", + "rs=25#ohm\n", + "rsw=0.04#ohm(series winding)\n", + "il=100.0#A\n", + "#i)Long shunt\n", + "ish=V/rs\n", + "ia=il+ish\n", + "vd=ia*rsw\n", + "vda=ia*ra\n", + "E=V+vd+vda\n", + "\n", + "print \"Induced e.m.f. when the machine is connected to long shunt= \",E,\" V\"\n", + "print \"Armature current when the machine is connected to long shunt=\",ia,\" A\"\n", + "\n", + "#i)Short shunt\n", + "vds=il*rsw\n", + "vs=V+vds\n", + "ish=vs/rs\n", + "ia=il+ish\n", + "vd=ia*rsw\n", + "vda=ia*ra\n", + "E=V+vd+vda\n", + "\n", + "print \"Induced e.m.f. when the machine is connected to short shunt= \",E,\" V\"\n", + "print \"Armature current when the machine is connected to short shunt=\",ia,\" A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Induced e.m.f. when the machine is connected to long shunt= 130.48 V\n", + "Armature current when the machine is connected to long shunt= 104.8 A\n", + "Induced e.m.f. when the machine is connected to short shunt= 130.496 V\n", + "Armature current when the machine is connected to short shunt= 104.96 A\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.15, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=25000.0#W\n", + "V=500.0#V\n", + "ra=0.03#ohm\n", + "rs=200.0#ohm\n", + "rseries=0.04#ohm\n", + "vb=1.0#V\n", + "n=1200#rpm\n", + "phi=0.02#Wb\n", + "\n", + "#calculations\n", + "i=p/V\n", + "ish=V/rs\n", + "ia=i+ish\n", + "p=4\n", + "vds=ia*rseries\n", + "vda=ia*ra\n", + "vdb=vb*2\n", + "E=V+vds+vda+vdb\n", + "Z=(E*60*4)/(phi*n*p)\n", + "\n", + "#result\n", + "print \"The e.m.f. generated= \",E,\" V\"\n", + "print \"The number of conductors=\",Z" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The e.m.f. generated= 505.675 V\n", + "The number of conductors= 1264.1875\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.16, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=750#rpm\n", + "e=240.0#V\n", + "z=792\n", + "phi=0.0145#Wb\n", + "\n", + "#calculations\n", + "phi_working=(e*60*2)/(n*z*p)\n", + "lambda_=phi/phi_working\n", + "\n", + "#results\n", + "print \"Leakage coefficient= \",round(lambda_,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Leakage coefficient= 1.2\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.17, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "phi=0.07#Wb\n", + "t=220\n", + "rt=0.004#ohm\n", + "n=900#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "z=2*t\n", + "E=(phi*z*n*p)/(60*a)\n", + "rtotal=t*rt\n", + "r_eachpath=rtotal/p\n", + "ra=r_eachpath/a\n", + "vda=ia*ra\n", + "V=E-vda\n", + "\n", + "#result\n", + "print \"Terminal Voltage= \",V, \" V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal Voltage= 459.25 V\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.18, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "phi=0.07#Wb\n", + "t=220\n", + "rturn=0.004#ohm\n", + "rs=100.0#ohm\n", + "rsc=0.02#ohm\n", + "n=900#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "z=2*t\n", + "E=(phi*z*n*p)/(60*a)\n", + "ra=0.055#ohm\n", + "ra=ra+rsc\n", + "va=ia*ra\n", + "v=E-va\n", + "ish=v/rs\n", + "i=ia-ish\n", + "output=v*i\n", + "\n", + "#result\n", + "print \"Output= \",round(output/1000,3),\" kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output= 20.813 kW\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.19, Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=1200#rpm\n", + "ia=200#A\n", + "v=125#V\n", + "n2=1000#rpm\n", + "ra=0.04#ohm\n", + "vb=2#V\n", + "\n", + "#calculations\n", + "E1=v+vb+(ia*ra)\n", + "E2=E1*n2/n1*0.8\n", + "\n", + "#results\n", + "print \"Generated e.m.f. when field current is reduced to 80%=\",E2,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated e.m.f. when field current is reduced to 80%= 90.0 V\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.20(a), Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "rs=100.0#ohm\n", + "ra=1.0#ohm\n", + "z=378\n", + "phi=0.02#Wb\n", + "rl=10.0#ohm\n", + "n=1000#rpm\n", + "a=2\n", + "\n", + "#calculations\n", + "E=(phi*z*n*p)/(60*a)\n", + "V=(100.0/111.0)*E\n", + "il=V/rl\n", + "P=il*V\n", + "\n", + "#result\n", + "print \"Power absorbed by the load is= \",P,\" W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power absorbed by the load is= 5154.12710007 W\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.20(b), Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "z=300\n", + "phi=0.1#Wb\n", + "n=1000#rpm\n", + "ra=0.2#rpm\n", + "rf=125#ohm\n", + "il=90#A\n", + "\n", + "#calculations\n", + "E=(phi*z*n*p)/(60*a)\n", + "ifield=E/rf\n", + "ia=ifield+il\n", + "V=E-(ia*ra)\n", + "\n", + "#result\n", + "print \"Terminal voltage= \",V,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal voltage= 481.2 V\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(a), Page Number:922" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "n=1200#rpm\n", + "e=250.0#V\n", + "d=350.0#mm\n", + "air_gap=3.0#mm\n", + "al=260.0#mm\n", + "fringing=0.8\n", + "coils=96\n", + "t=3\n", + "\n", + "#calculations\n", + "z=t*coils*2\n", + "a=p*2\n", + "phi=(e*60*a)/(n*z*p)\n", + "di=d+air_gap\n", + "pole_arc=(3.14*di*fringing)/6\n", + "B=phi/(pole_arc*0.000001*al)\n", + "\n", + "#result\n", + "print \"flux per pole= \",phi,\" Wb\"\n", + "print \"effective pole arc lenght= \",pole_arc*0.001,\" m\"\n", + "print \"flux density= \",B,\" T\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 0.0434027777778 Wb\n", + "effective pole arc lenght= 0.147789333333 m\n", + "flux density= 1.12953862717 T\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(b), Page Number:922" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "z=1200\n", + "e=250.0#v\n", + "n=500#rpm\n", + "b=35.0#cm\n", + "ratio=0.7\n", + "lpole=20.0#cm\n", + "\n", + "#calculations\n", + "pole_pitch=(b*3.14)/p\n", + "polearc=ratio*pole_pitch\n", + "pole_area=polearc*lpole\n", + "phi=(e*60*a)/(n*z*p)\n", + "mean_flux=phi/(pole_area*math.pow(10,-4))\n", + " \n", + "#result\n", + "print \"Mean flux density= \",mean_flux,\" Wb/m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Mean flux density= 0.649941505265 Wb/m2\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(d), Page Number:923" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=100.0#V\n", + "ra=0.04#ohm\n", + "rseries=0.03#ohm\n", + "rs=60.0#ohm\n", + "\n", + "#calculations\n", + "va=v+(i*rseries)\n", + "ish=va/rs\n", + "ia=i+ish\n", + "e=va+(ia*ra)\n", + "\n", + "#long shunt\n", + "ishunt=v/rs\n", + "vd=ia*(ra+rseries)\n", + "e2=v+vd\n", + "\n", + "#result\n", + "print \"emf generated(short shunt)\",e,\" V\"\n", + "print \"emf generated(long shunt)\",e2,\" V\"\n", + "\n", + "\n", + "#result\n", + "print " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf generated(short shunt) 114.070666667 V\n", + "emf generated(long shunt) 114.123666667 V\n", + "\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.22, Page Number:923" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "w=20000.0#W\n", + "v=220.0#v\n", + "ra=0.04#ohm\n", + "rs=110.0#ohm\n", + "rseries=0.05#ohm\n", + "efficiency=.85\n", + "\n", + "#calculations\n", + "il=w/v\n", + "i_f=v/rs\n", + "ia=il+i_f\n", + "ip=w/efficiency#input power\n", + "total_loss=ip-w\n", + "copper_loss=(ia*ia*(ra+rseries))+(i_f*i_f*rs)\n", + "ironloss=total_loss-copper_loss\n", + "omega=2*3.14*n/60\n", + "T=ip/omega\n", + "\n", + "#omega\n", + "print \"Copper loss= \",copper_loss,\" W\"\n", + "print \"Iron and friction loss= \",ironloss,\" W\"\n", + "print \"Torque developed by the prime mover= \",T,\"Nw-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Copper loss= 1216.88892562 W\n", + "Iron and friction loss= 2312.52283909 W\n", + "Torque developed by the prime mover= 224.803297115 Nw-m\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.23, Page Number:928" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declartaion\n", + "power=10000.0#W\n", + "v=250.0#V\n", + "p=a=6\n", + "n=1000.0#rpm\n", + "z=534\n", + "cu_loss=0.64*1000#W\n", + "vbd=1.0#V\n", + "\n", + "#calculations\n", + "ia=power/v\n", + "ra=cu_loss/(ia*ia)\n", + "E=v+(ia*ra)+vbd\n", + "phi=(E*60*a)/(n*z*p)\n", + "\n", + "#result\n", + "print \"flux per pole= \",phi*1000,\" mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 30.0 mWb\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.24(a), Page Number:928" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=195#A\n", + "pd=250#V\n", + "ra=0.02#ohm\n", + "rsh=50#ohm\n", + "p=250#W\n", + "strayloss=950#W\n", + "#calculations\n", + "ish=pd/rsh\n", + "ia=i+ish\n", + "vda=ia*ra\n", + "E=pd+vda\n", + "cu_loss=(ia*ia*ra)+(pd*ish)\n", + "output_prime=(pd*i)+strayloss+cu_loss\n", + "power_a=output_prime-strayloss\n", + "neu_m=(power_a/output_prime)\n", + "neu_e=(pd*i)/((pd*i)+cu_loss)\n", + "neu_c=(pd*i)/output_prime\n", + "\n", + "#result\n", + "print \"a)e.m.f. generated= \",E,\" V\"\n", + "print \" b)Cu losses= \",cu_loss,\" W\"\n", + "print \" c)output of prime mover= \",output_prime,\" W\"\n", + "print \" d)mechanical efficiency= \",neu_m*100,\" %\"\n", + "print \" electrical efficiency= \",neu_e*100,\" %\"\n", + "print \" commercial efficiency= \",neu_c*100,\" %\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)e.m.f. generated= 254.0 V\n", + " b)Cu losses= 2050.0 W\n", + " c)output of prime mover= 51750.0 W\n", + " d)mechanical efficiency= 98.1642512077 %\n", + " electrical efficiency= 95.9645669291 %\n", + " commercial efficiency= 94.2028985507 %\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.24(b), Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "i=5.0#A\n", + "ra=0.15#ohm\n", + "rf=200.0#ohm\n", + "il=40.0#A\n", + "\n", + "#calculations\n", + "output=v*il\n", + "total_loss=(v*i*0.5)+((il+i*0.5)*(il+i*0.5)*ra)+(v*i*0.5)\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"Efficiency= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 87.8312542029 %\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.25, Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=196#A\n", + "v=220#V\n", + "stray_loss=720#W\n", + "rsh=55#ohm\n", + "e=0.88\n", + "\n", + "#calculations\n", + "output=v*i\n", + "inpute=output/e\n", + "total_loss=inpute-output\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "cu_loss=v*ish\n", + "constant_loss=cu_loss+stray_loss\n", + "culoss_a=total_loss-constant_loss\n", + "ra=culoss_a/(ia*ia)\n", + "I=math.sqrt(constant_loss/ra)\n", + "\n", + "#result\n", + "print \"Load curent corresponding to maximum efficiency\",I,\" A\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load curent corresponding to maximum efficiency 122.283568103 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.26, Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "p=22*1000#w\n", + "v=220#V\n", + "ra=0.05#ohm\n", + "rsh=110#ohm\n", + "rseries=0.06#ohm\n", + "efficiency=.88\n", + "\n", + "#calculations\n", + "ish=v/rsh\n", + "I=p/v\n", + "ia=ish+I\n", + "vdseries=ia*rseries\n", + "cu_loss=(ia*ia*ra)+(ia*ia*rseries)+(rsh*ish*ish)\n", + "total_loss=(p/efficiency)-p\n", + "strayloss=total_loss-cu_loss\n", + "T=(p/efficiency*60)/(2*3.14*n)\n", + "\n", + "#result\n", + "print \"a)cu losses= \",cu_loss,\" W\"\n", + "print \"b)iron and friction loss= \",strayloss,\" W\"\n", + "print \"c)Torque exerted by the prime mover= \",T,\" N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cu losses= 1584.44 W\n", + "b)iron and friction loss= 1415.56 W\n", + "c)Torque exerted by the prime mover= 238.853503185 N-m\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.27, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "i=20#A\n", + "r=10#ohm\n", + "ra=0.5#ohm\n", + "rsh=50#ohm\n", + "vdb=1#V(voltage drop per brush)\n", + "\n", + "#calculations\n", + "v=i*r\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "E=v+(ia*ra)+(2*vdb)\n", + "totalpower=E*ia\n", + "output=v*i\n", + "efficiency=output/totalpower\n", + "\n", + "#result\n", + "print \"induced e.m.f.= \",E,\" V\"\n", + "print \"efficiency= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced e.m.f.= 214.0 V\n", + "efficiency= 77.8816199377 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.28, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240#V\n", + "i=100#A\n", + "ra=0.1#ohm\n", + "rseries=0.02#ohm\n", + "ri=0.025#ohm\n", + "rsh=100#ohm\n", + "ironloss=1000#W\n", + "frictionloss=500#W\n", + "\n", + "#calculations\n", + "output=v*i\n", + "totalra=ra+rseries+ri\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "copperloss=ia*ia*totalra\n", + "shculoss=ish*v\n", + "total_loss=copperloss+ironloss+frictionloss+shculoss\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"F.L. efficiency of the machine= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "F.L. efficiency of the machine= 87.3089843128 %\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.31, Page Number:931" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=10.0*1000#W\n", + "v=240.0#V\n", + "ra=0.6#ohm\n", + "rsh=160.0#ohm\n", + "mechcoreloss=500.0#W\n", + "culoss=360.0#W\n", + "\n", + "#calculations\n", + "ish=v/rsh\n", + "i=output/v\n", + "ia=ish+i\n", + "culossa=ia*ia*ra\n", + "totalloss=culoss+mechcoreloss+culossa\n", + "inputp=output+totalloss\n", + "efficiency=output/inputp\n", + "\n", + "#result\n", + "print \"Power required= \",inputp*0.001,\" kW\"\n", + "print \"efficinecy= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power required= 11.9780166667 kW\n", + "efficinecy= 83.486275552 %\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.32, Page Number:932" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=110*1000#W\n", + "v=220#V\n", + "ra=0.01#ohm\n", + "rse=0.002#ohm\n", + "rsh=110#ohm\n", + "\n", + "#calculations\n", + "il=p/v\n", + "ish=v/rsh\n", + "ia=il+ish\n", + "E=v+ia*(ra+rse)\n", + "\n", + "#result\n", + "print \"induced emf= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced emf= 226.024 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.33 Page Number:932" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "E=216.0#V\n", + "n=600.0#rpm\n", + "slots=144\n", + "con=6\n", + "n2=500.0#rpm\n", + "\n", + "#calculations\n", + "z=con*slots\n", + "a=p\n", + "phi=(E*60*a)/(n*z*p)\n", + "a=2\n", + "armatureE=(phi*z*n2*p)/(60*a)\n", + "\n", + "#result\n", + "print \"the armature emf= \",armatureE,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the armature emf= 360.0 V\n" + ] + } + ], + "prompt_number": 34 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter27_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter27_6.ipynb new file mode 100644 index 00000000..638b15f1 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter27_6.ipynb @@ -0,0 +1,730 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:02f2208937b2d82cdc7150d6d9062a1310b3e2fcf2346b8c885c3f6fe2fe5405" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 27: Armature Reaction and Commutation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.1, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=722\n", + "ia=100.0#A\n", + "theta_m=8.0#degrees\n", + "\n", + "#calculatons\n", + "i=ia/2\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 802.222222222\n", + "cross-magnetization= 3710.27777778\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.2, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "z=1280\n", + "v=500#V\n", + "ia=200.0#A\n", + "commuter=160\n", + "advanced_segments=4\n", + "\n", + "#calculatons\n", + "i=ia/8\n", + "theta_m=advanced_segments*360/commuter\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 800.0\n", + "cross-magnetization= 1200.0\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.3(a), Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=880\n", + "ia=120.0#A\n", + "theta_m=3.0#degrees\n", + "n=1100#tturns/pole\n", + "#calculatons\n", + "i=ia/2\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "iadditional=(atd_perpole/n)\n", + "\n", + "\n", + "#result\n", + "print \"a)armature demagnetization=\",atd_perpole,\"AT\"\n", + "print \"b)cross-magnetization=\",atc_perpole,\"AT\"\n", + "print \"c)additional field current=\",iadditional,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)armature demagnetization= 440.0 AT\n", + "b)cross-magnetization= 6160.0 AT\n", + "c)additional field current= 0.4 A\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.3(b), Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=480\n", + "ia=150.0#A\n", + "theta_m=10.0*2#degrees\n", + "\n", + "#calculatons\n", + "i=ia/4\n", + "total=(z*i)/(2*p)\n", + "atd_perpole=total*(2*theta_m/180)\n", + "atc_perpole=total*(1-(2*theta_m/180))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 500.0\n", + "cross-magnetization= 1750.0\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.4, Page Number:944" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=492\n", + "theta_m=10.0\n", + "ia=143.0+10.0\n", + "\n", + "#calculations\n", + "i1=ia/2#wave wound\n", + "i2=ia/4#lap wound\n", + "atd_perpole1=z*i1*theta_m/360#wave wound\n", + "extra_shunt1=atd_perpole1/theta_m\n", + "atd_perpole2=z*i2*(theta_m/360.0)#lap wound\n", + "extra_shunt2=atd_perpole2/theta_m\n", + "#result\n", + "print \"wave wound:\"\n", + "print \"demagnetization per pole=\",atd_perpole1,\"AT\"\n", + "print \"extra shunt field turns=\",int(extra_shunt1)\n", + "print \"lap wound:\"\n", + "print \"demagnetization per pole=\",atd_perpole2,\"AT\"\n", + "print \"extra shunt field turns=\",int(extra_shunt2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wave wound:\n", + "demagnetization per pole= 1045.5 AT\n", + "extra shunt field turns= 104\n", + "lap wound:\n", + "demagnetization per pole= 522.75 AT\n", + "extra shunt field turns= 52\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.5, Page Number:944" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pole=4\n", + "p=50*1000.0#W\n", + "v=250.0#V\n", + "z=400\n", + "commuter=4\n", + "rsh=50.0#ohm\n", + "a=2\n", + "\n", + "#calculations\n", + "i=p/v\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "i=ia/2\n", + "segments=z/a\n", + "theta=pole*360.0/segments\n", + "atd=z*i*(theta/360)\n", + "extra=atd/ish\n", + "\n", + "#result\n", + "print \"demagnetisation=\",atd,\"AT\"\n", + "print \"extra shunt turns/poles\",extra" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "demagnetisation= 820.0 AT\n", + "extra shunt turns/poles 164.0\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.6, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=500\n", + "ia=200.0#A\n", + "p=6\n", + "theta=10.0#degrees\n", + "lambda_=1.3\n", + "\n", + "#calculations\n", + "i=ia/2\n", + "atc=((1/(2.0*p))-(theta/360.0))*z*i\n", + "atd=z*i*theta/360\n", + "extra=lambda_*atd/ia\n", + "\n", + "#result\n", + "print \"i)cross magnetization ampere-turns=\",atc\n", + "print \"ii)back ampere-turns\",atd\n", + "print \"iii)series turns required to balance the demagnetising ampere turns\",int(extra)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)cross magnetization ampere-turns= 2777.77777778\n", + "ii)back ampere-turns 1388.88888889\n", + "iii)series turns required to balance the demagnetising ampere turns 9\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.7, Page Number:945" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=22.38#kW\n", + "v=440.0#V\n", + "pole=4\n", + "z=840\n", + "commutator=140\n", + "efficiency=0.88\n", + "ish=1.8#A\n", + "back=1.5\n", + "\n", + "#calculations\n", + "motor_input=p*1000.0/efficiency\n", + "input_i=motor_input/v\n", + "ia=input_i-ish\n", + "i=ia/2.0\n", + "theta=back*360/commutator\n", + "atd=z*i*(theta/360.0)\n", + "atc=((1/(2.0*pole))-(theta/360.0))*z*i\n", + "#result\n", + "print \"armature demagnetization amp-turns/pole=\",atd\n", + "print \"distorting amp-turns/pole=\",atc" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization amp-turns/pole= 251.998140496\n", + "distorting amp-turns/pole= 2687.98016529\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.8, Page Number:945" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "ia=1000#A\n", + "p=10\n", + "z=860\n", + "per=0.7\n", + "\n", + "#calculations\n", + "i=ia/p\n", + "at=per/p*z*(i/2)\n", + "\n", + "#result\n", + "print \"AT/pole for compensation winding=\",at" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "AT/pole for compensation winding= 3010.0\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.9, Page Number:948" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=800.0#rpm\n", + "segment=123\n", + "wb=3\n", + "#calculations\n", + "v=n/60.0*segment\n", + "commutation=wb/v\n", + "\n", + "#result\n", + "print \"commutation time=\",commutation*1000,\"millisecond\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "commutation time= 1.82926829268 millisecond\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.10, Page Number:948" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=1500#rpm\n", + "d=30#cm\n", + "ia=150#A\n", + "wb=1.25#cm\n", + "L=0.07*0.001#H\n", + "\n", + "#calculation\n", + "i=ia/2\n", + "v=3.14*d*(n/60)\n", + "tc=wb/v\n", + "E=L*2*i/tc\n", + "\n", + "#result\n", + "print \"average emf=\",E,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average emf= 19.782 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.11, Page Number:949" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "segments=55\n", + "n=900\n", + "wb=1.74\n", + "L=153*math.pow(10,-6)#H\n", + "i=27#A\n", + "\n", + "#calculations\n", + "v=segments*n/60\n", + "Tc=wb/v\n", + "E=L*2*i/Tc\n", + "\n", + "#result\n", + "print \"average emf=\",E,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average emf= 3.91732758621 V\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.12, Page Number:949" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=1500.0#rpm\n", + "ia=150.0#A\n", + "z=64\n", + "wb=1.2\n", + "L=0.05#mH\n", + "\n", + "#calculations\n", + "L=L*0.001\n", + "v=n/60*z\n", + "tc=wb/v\n", + "i=ia/p\n", + "#i.linear\n", + "E1=L*2*i/tc\n", + "#ii.sinusoidal\n", + "E2=1.11*E1\n", + "\n", + "#result\n", + "print \"Linear commutation,E=\",E1,\"V\"\n", + "print \"Sinosoidal commutation,E=\",E2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Linear commutation,E= 5.0 V\n", + "Sinosoidal commutation,E= 5.55 V\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.13, Page Number:951" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=6\n", + "B=0.5#Wb/m2\n", + "Ig=4.0#mm\n", + "ia=500.0#A\n", + "z=540\n", + "\n", + "#calculations\n", + "arm_mmf=z*(ia/p)/(2*p)\n", + "compole=int(B*Ig*0.001/(4*3.14*math.pow(10,-7)))\n", + "mag=0.1*compole\n", + "total_compole=int(compole+mag)\n", + "total_mmf=arm_mmf+total_compole\n", + "Ncp=total_mmf/ia\n", + "\n", + "#result\n", + "print \"Number of turns on each commutating pole=\",int(Ncp)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of turns on each commutating pole= 11\n" + ] + } + ], + "prompt_number": 89 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.14, Page Number:957" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p1=100.0#kW\n", + "V1=250#V\n", + "p2=300.0#kW\n", + "V2=250#V\n", + "i1=200#A\n", + "i2=500#A\n", + "il=600#A\n", + "\n", + "#calculations\n", + "delI1=p1/(p1+p2)*il\n", + "delI2=p2/(p1+p2)*il\n", + "\n", + "#result\n", + "print \"Current supplied by generator 1 with additional load=\",delI1,\"A\"\n", + "print \"Current supplied by generator 2 with additional load=\",delI2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current supplied by generator 1 with additional load= 150.0 A\n", + "Current supplied by generator 2 with additional load= 450.0 A\n" + ] + } + ], + "prompt_number": 92 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.23, Page Number:963" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "va=400#V\n", + "ra=0.25#ohm\n", + "vb=410#V\n", + "rb=0.4#ohm\n", + "V=390#V\n", + "\n", + "#calculations\n", + "loada=(va-V)/ra\n", + "loadb=(vb-V)/rb\n", + "pa=loada*V\n", + "pb=loadb*V\n", + "net_v=vb-va\n", + "total_r=ra+rb\n", + "i=net_v/total_r\n", + "terminal_v=va+(i*ra)\n", + "power_AtoB=terminal_v*i\n", + "\n", + "#result\n", + "print \"Current=\",i,\"A\"\n", + "print \"Voltage=\",terminal_v,\"V\"\n", + "print \"Power=\",power_AtoB,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 15.3846153846 A\n", + "Voltage= 403.846153846 V\n", + "Power= 6213.01775148 W\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter28_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter28_6.ipynb new file mode 100644 index 00000000..447ef8ab --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter28_6.ipynb @@ -0,0 +1,388 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:6743417a1c79c6197a7cd49755318e10828c09b3cb248c5af8d5364367840700" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 28: Generator Characteristics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.13, Page Number:984" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "#emf increases by 1 V for every increase of 6 A\n", + "ra=0.02#ohm\n", + "i=96#A\n", + "\n", + "#calculations\n", + "voltageincrease=i/6\n", + "vd=i*ra\n", + "voltage_rise=voltageincrease-vd\n", + "vconsumer=v+voltage_rise\n", + "power_supplied=voltage_rise*i\n", + "\n", + "#result\n", + "print \"voltage supplied ot consumer= \",vconsumer,\" V\"\n", + "print \"power supplied by the booster itself= \",power_supplied/1000,\" kW\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage supplied ot consumer= 234.08 V\n", + "power supplied by the booster itself= 1.35168 kW\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.14, Page Number:985" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=50.0#V\n", + "i=200.0#A\n", + "r=0.3#ohm\n", + "i1=200.0#A\n", + "i2=50.0#A\n", + "\n", + "#calculations\n", + "vd=i*r\n", + "voltage_decrease=v-vd\n", + "feeder_drop=v*r\n", + "booster_voltage=v*v/i1\n", + "voltage_net=feeder_drop-booster_voltage\n", + "\n", + "#result\n", + "print \"Net decrease in voltage= \",voltage_net,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net decrease in voltage= 2.5 V\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.15, Page Number:986" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "inl=5.0#A\n", + "v=440.0#V\n", + "il=6.0#A\n", + "i_full=200.0#A(full load)\n", + "turns=1600\n", + "\n", + "#calcuations\n", + "shunt_turns1=turns*inl\n", + "shunt_turns2=turns*il\n", + "increase=shunt_turns2-shunt_turns1\n", + "n=increase/i_full#number of series turns required\n", + "\n", + "#result\n", + "print \"Number of series turns required= \",n,\" tunrs/pole\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of series turns required= 8.0 tunrs/pole\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.16, Page Number:987" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#turns/pole\n", + "series_winding=4#turns/pole\n", + "r=0.05#ohm\n", + "increase_i=0.2#A\n", + "ia=80#A\n", + "\n", + "#calculations\n", + "additional_at=n*increase_i\n", + "current_required=additional_at/series_winding\n", + "R=(current_required*r)/(ia-current_required)\n", + "\n", + "#result\n", + "print \"Divertor resistance= \",R,\" ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Divertor resistance= 0.0833333333333 ohm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.17, Page Number:987" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "i=100.0#A\n", + "ra=0.1#ohm\n", + "rsh=50.0#ohm\n", + "rse=0.06#ohm\n", + "divertor=0.14#ohm\n", + "\n", + "#calculations\n", + "#short shunt\n", + "vd=i*rse\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "armature_drop=ia*ra\n", + "E=v+vd+armature_drop\n", + "#long shunt\n", + "vd=ia*(ra+rse)\n", + "print vd\n", + "E2=v+vd\n", + "current_divertor=(ia*divertor)/(divertor+rse)\n", + "change=(current_divertor/ia)*100\n", + "\n", + "#result\n", + "print \"a)emf induced using short shunt= \",E\n", + "print \"b)emf induced using long shunt= \",E2\n", + "print \"c)series amp-turns are reduced to \",change,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "16.704\n", + "a)emf induced using short shunt= 236.44\n", + "b)emf induced using long shunt= 236.704\n", + "c)series amp-turns are reduced to 70.0 %\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.18, Page Number:988" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=250*1000#W\n", + "v=240#V\n", + "v2=220#V\n", + "i=7#A\n", + "inl=12#A\n", + "shunt=650#turns/pole\n", + "series=4#turns/pole\n", + "rse=0.006#ohm\n", + "\n", + "#calculations\n", + "i_fulload=p/v\n", + "shunt_increase=shunt*(inl-i)\n", + "ise=shunt_increase/series\n", + "i_d=i_fulload-ise\n", + "Rd=(ise*rse)/i_d\n", + "\n", + "#results\n", + "print \"resistance of the series amp-turns at no-load\",Rd,\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of the series amp-turns at no-load 0.0212751091703 ohm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.19, Page Number:988" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "p=60.0*1000#W\n", + "n=1600.0#turns/pole\n", + "inl=1.25#A\n", + "vnl=125#V\n", + "il=1.75#A\n", + "vl=150.0#V\n", + "\n", + "#calculations\n", + "extra_excitation=n*(il-inl)\n", + "ise=p/vl\n", + "series=extra_excitation/ise\n", + "ise2=extra_excitation/3\n", + "i_d=ise-ise2\n", + "rd=(ise2*0.02)/i_d\n", + "reg=(vnl-vl)*100/vl\n", + "\n", + "#result\n", + "print \"i)minimum number of series turns/pole= \",series\n", + "print \"ii)divertor resistance= \",rd\n", + "print \"iii)voltage regulation= \",reg,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)minimum number of series turns/pole= 2.0\n", + "ii)divertor resistance= 0.04\n", + "iii)voltage regulation= -16.6666666667 %\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.20, Page Number:989" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=50.0#v\n", + "i=200.0#A\n", + "r=0.3#ohm\n", + "i1=160.0#A\n", + "i2=50.0#A\n", + "\n", + "#calculations\n", + "#160 A\n", + "vd=i1*(r-(v/i))\n", + "#50 A\n", + "vd2=i2*(r-(v/i))\n", + "\n", + "#result\n", + "print \"voltage drop at 160 A=\",vd,\"V\"\n", + "print \"voltage drop at 50 A=\",vd2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage drop at 160 A= 8.0 V\n", + "voltage drop at 50 A= 2.5 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter29_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter29_6.ipynb new file mode 100644 index 00000000..f3eda54f --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter29_6.ipynb @@ -0,0 +1,2343 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:f1e5688d45c7bb285838d2aad7b4c0c08dc93f4afbba4c253d97655938545a41" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 29: D.C. Motor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.1, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "r=0.5#ohm\n", + "i=20#A\n", + "\n", + "#calculation\n", + "#as generator \n", + "eg=v+i*r\n", + "#as motor\n", + "eb=v-i*r\n", + "\n", + "#result\n", + "print \"as generator:eg=\",eg,\"V\"\n", + "print \"as motor:eb=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "as generator:eg= 230.0 V\n", + "as motor:eb= 210.0 V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.2, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia=Symbol('ia')\n", + "r=0.1#ohm\n", + "brush_drop=2#V\n", + "n=1000#rpm\n", + "i=100#A\n", + "v=250#V\n", + "n2=700#rpm\n", + "\n", + "#calculations\n", + "rl=v/i\n", + "eg1=v+i*r+brush_drop\n", + "eg2=eg1*n2/n\n", + "ia=solve(eg2-2-ia*r-2.5*ia,ia)\n", + "\n", + "#result\n", + "print \"current delivered to the load=\",ia[0],\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current delivered to the load= 69.7692307692308 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.3, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "ra=0.8#ohm\n", + "rf=200#ohm\n", + "output=7.46#kW\n", + "efficiency=0.85\n", + "\n", + "#calculations\n", + "input_m=output*1000/efficiency\n", + "im=output*1000/(efficiency*v)\n", + "ish=v/rf\n", + "ia=im-ish\n", + "eb=v-ia*ra\n", + "\n", + "#results\n", + "print \"back emf=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "back emf= 425.642780749 V\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.4, Page Number:1000" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25#kW\n", + "v=250#V\n", + "ra=0.06#ohm\n", + "rf=100#ohm\n", + "\n", + "#calculations\n", + "#as generator\n", + "i=load*1000/v\n", + "ish=v/rf\n", + "ia=i+ish\n", + "eb=v+ia*ra\n", + "power=eb*ia/1000\n", + "\n", + "print \"As generator: power=\",power,\"kW\"\n", + "\n", + "#as motor\n", + "i=load*1000/v\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "power=eb*ia/1000\n", + "\n", + "print \"As generator: power=\",power,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "As generator: power= 26.12424 kW\n", + "As generator: power= 23.92376 kW\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.5, Page Number:1000" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "z=32\n", + "v=200.0#V\n", + "i=12.0#A\n", + "ra=2.0#ohm\n", + "rf=200.0#ohm\n", + "n=1000.0#rpm\n", + "i2=5.0#A\n", + "#calculations\n", + "ia=i+v/rf\n", + "eg=v+ia*ra\n", + "phi=eg*a*60/(z*n*p)\n", + "#as motor\n", + "ia=i2-v/rf\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "\n", + "#result\n", + "print \"flux per pole=\",phi,\"wb\"\n", + "print \"speed of the machine=\",math.ceil(n),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 0.42375 wb\n", + "speed of the machine= 850.0 rpm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.6, Page Number:1002" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=110#A\n", + "v=480#V\n", + "ra=0.2#ohm\n", + "z=864\n", + "p=a=6\n", + "phi=0.05#Wb\n", + "\n", + "#calculations\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "ta=0.159*phi*z*ia*p/a\n", + "\n", + "#result\n", + "print \"the speed=\",math.floor(n),\"rpm\"\n", + "print \"the gross torque=\",ta,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the speed= 636.0 rpm\n", + "the gross torque= 755.568 N-m\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.7, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "z=782\n", + "ra=rf=0.5#ohm\n", + "ia=40#A\n", + "phi=25*0.001#Wb\n", + "p=4\n", + "a=2\n", + "#calculation\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "ta=0.159*phi*z*ia*p/a\n", + "\n", + "print \"the speed=\",math.floor(n),\"rpm\"\n", + "print \"the gross torque=\",ta,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the speed= 705.0 rpm\n", + "the gross torque= 248.676 N-m\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.8, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "eb=250.0#V\n", + "n=1500.0#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "pm=eb*ia\n", + "ta=9.55*eb*ia/n\n", + "\n", + "#result\n", + "print \"torque=\",ta,\"N-m\"\n", + "print \"machanical power=\",pm,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 79.5833333333 N-m\n", + "machanical power= 12500.0 W\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.9, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "p=4\n", + "z=800\n", + "load=8.2#kW\n", + "ia=45#A\n", + "phi=25*0.001#Wb\n", + "ra=0.6#ohm\n", + "a=p/2\n", + "\n", + "#calculation\n", + "ta=0.159*phi*z*ia*p/a\n", + "eb=v-ia*ra\n", + "n=eb*a/(phi*z*p)\n", + "tsh=load*1000/(2*3.14*n)\n", + "\n", + "#result\n", + "print \"developed torque=\",ta,\"N-m\"\n", + "print \"shaft torque=\",tsh,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "developed torque= 286.2 N-m\n", + "shaft torque= 270.618131415 N-m\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.10, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "n=500.0#rpm\n", + "i=50.0#A\n", + "ra=0.2#ohm\n", + "\n", + "#calculation\n", + "ia2=2*i\n", + "fb1=v-(i*ra)\n", + "eb2=v-(ia2*ra)\n", + "n2=eb2*n/fb1\n", + "#result\n", + "print \"speed when torque is doubled=\",n2,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when torque is doubled= 476.19047619 N-m\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.11, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "r=Symbol('r')\n", + "v=500#V\n", + "load=37.3#kW\n", + "n=1000#rpm\n", + "efficiency=0.90\n", + "ra=0.24#ohm\n", + "vd=2#v\n", + "i=1.8#A\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "input_m=load*1000/efficiency\n", + "il=input_m/v\n", + "tsh=9.55*load*1000/n\n", + "il=ratio*il\n", + "ia=il-i\n", + "r=solve(ia*(r+ra)+vd-v,r)\n", + "\n", + "#result\n", + "print \"full-load line current=\",il,\"A\"\n", + "print \"full-load shaft torque\",tsh,\"N-m\"\n", + "print \"total resistance=\",r[0],\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load line current= 124.333333333 A\n", + "full-load shaft torque 356.215 N-m\n", + "total resistance= 3.82420021762787 ohm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.12, Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "v=220#V\n", + "z=540\n", + "i=32#A\n", + "output=5.595#kW\n", + "ra=0.09#ohm\n", + "i_f=1#A\n", + "phi=30*0.001#Wb\n", + "\n", + "#calculation\n", + "ia=i-i_f\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(phi*z*p)\n", + "tsh=9.55*output/n\n", + "\n", + "#result\n", + "print \"speed=\",n,\"rpm\"\n", + "print \"torque developed=\",tsh*1000,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 804.481481481 rpm\n", + "torque developed= 66.4182473183 N-m\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(a), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "load=20.0#kW\n", + "i=5.0#A\n", + "ra=0.04#ohm\n", + "phi=0.04#Wb\n", + "z=160\n", + "il=95.0#A\n", + "inl=9.0#A\n", + "p=4\n", + "a=2\n", + "#calculation\n", + "#no load\n", + "ea0=v-(inl-i)*ra\n", + "n0=ea0*a*60/(phi*z*p)\n", + "#load\n", + "ea=v-(il-i)*ra\n", + "n=ea*n0/ea0\n", + "\n", + "#result\n", + "print \"no-load speed=\",n0,\"rpm\"\n", + "print \"load speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no-load speed= 1030.5 rpm\n", + "load speed= 1014.375 rpm\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(b), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=6\n", + "i=400#A\n", + "n=350#rpm\n", + "phi=80*0.001#Wb\n", + "z=600*2\n", + "loss=0.03#percentage\n", + "\n", + "#calculation\n", + "e=phi*z*n*p/(60*a)\n", + "pa=e*i\n", + "t=pa/(2*3.14*n/60)\n", + "t_net=0.97*t\n", + "bhp=t_net*36.67*0.001/0.746\n", + "#result\n", + "print \"brake-horse-power\",bhp,\"HP\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "brake-horse-power 291.551578696 HP\n" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(c), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=774\n", + "phi=24*0.001#Wb\n", + "ia=50#A\n", + "a=2\n", + "#calculations\n", + "t=0.159*phi*z*ia*p/a\n", + "\n", + "#result\n", + "print \"torque=\",t,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 295.3584 N-m\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(d), Page Number:1005" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "i=5.0#A\n", + "ra=0.15#ohm\n", + "rf=200.0#ohm\n", + "il=40.0#A\n", + "\n", + "#calculations\n", + "ih=v/rf\n", + "pi=v*i\n", + "cu_loss_f=cu_loss=v*ih\n", + "output=v*il\n", + "cu_loss_a=(il+ih)**2*ra\n", + "total_loss=cu_loss+cu_loss_a+cu_loss_f\n", + "efficiency=output/(output+total_loss)\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 87.8312542029 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(e), Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable delcration\n", + "ia=40#A\n", + "v=220#V\n", + "n=800#rpm\n", + "ra=0.2#ohm\n", + "rf=0.1#ohm\n", + "loss=0.5#kW\n", + "\n", + "#calculations\n", + "eb=v-ia*(ra+rf)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*(ra+rf)\n", + "total_loss=cu_loss+loss*1000\n", + "input_m=v*ia\n", + "output=input_m-total_loss\n", + "\n", + "#result\n", + "print \"output of the motor=\",output/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output of the motor= 7.82 kW\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.14, Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=400.0#N\n", + "d=10.0#cm\n", + "n=840#rpm\n", + "v=220.0#V\n", + "n1=1800#rpm\n", + "efficiency=.80\n", + "d2=24.0#cm\n", + "\n", + "#calculations\n", + "tsh=f*d*0.01/2\n", + "output=tsh*2*3.14*n/60\n", + "input_m=output/efficiency\n", + "i=input_m/v\n", + "d1=n*d2/n1\n", + "\n", + "#calculation\n", + "print \"current taken by the motor=\",round(i),\"A\"\n", + "print \"size of motor pulley=\",d1,\"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current taken by the motor= 10.0 A\n", + "size of motor pulley= 11.2 cm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.15, Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "p=4\n", + "z=280\n", + "ia=45.0#A\n", + "phi=18*0.001#Wb\n", + "ra=0.5+0.3#ohm\n", + "loss=800.0#W\n", + "d=0.41\n", + "a=4\n", + "#calculation\n", + "eb=v-ia*ra\n", + "n=eb*60*a/(phi*z*p*4)\n", + "inpt=v*ia\n", + "cu_loss=ia**2*ra\n", + "total_loss=loss+cu_loss\n", + "output=inpt-total_loss\n", + "tsh=9.55*output/n\n", + "f=tsh*2/d\n", + "\n", + "#result\n", + "print \"pull at the rim of the pulley=\",f,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pull at the rim of the pulley= 628.016180845 N-m\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.16, Page Number:1007" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "v=240#V\n", + "output=11.19#kW\n", + "n=1000#rpm\n", + "ia=50#A\n", + "i=1#A\n", + "z=540\n", + "ra=0.1#ohm\n", + "vd=1#V\n", + "a=2\n", + "#calculation\n", + "eb=v-ia*ra\n", + "ta=9.55*eb*ia/n\n", + "tsh=9.55*output*1000/n\n", + "phi=eb*60*a*1000/(z*n*p)\n", + "input_a=v*ia\n", + "cu_loss=ia**2*ra\n", + "brush_loss=ia*2\n", + "power=input_a-(cu_loss+brush_loss)\n", + "rotational_loss=power-output*1000\n", + "input_m=v*(ia+i)\n", + "efficiency=output*1000/input_m\n", + "\n", + "#result\n", + "print \"total torque=\",ta,\"N-m\"\n", + "print \"useful torque=\",tsh,\"N-m\"\n", + "print \"flux/pole=\",phi,\"mWb\"\n", + "print \"rotational losses=\",rotational_loss,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "total torque= 112.2125 N-m\n", + "useful torque= 106.8645 N-m\n", + "flux/pole= 13.0555555556 mWb\n", + "rotational losses= 460.0 W\n", + "efficiency= 91.4215686275 %\n" + ] + } + ], + "prompt_number": 106 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.17, Page Number:1007" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=460.0#v\n", + "n=500.0#rpm\n", + "i=40.0#A\n", + "i2=30.0#A\n", + "ra=0.8#ohm\n", + "\n", + "#calculation\n", + "t2_by_t1=i2**2/i**2\n", + "change=(1-t2_by_t1)*100#percentage\n", + "eb1=v-i*ra\n", + "eb2=v-i2*ra\n", + "n2=eb2*i*n/(eb1*i2)\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"percentage change in torque=\",change,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 679.127725857 rpm\n", + "percentage change in torque= 43.75 %\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.18, Page Number:1008" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=460.0#V\n", + "output=55.95#kW\n", + "n=750#rpm\n", + "I=252.8#kg-m2\n", + "ia1=1.4\n", + "ia2=1.8\n", + "\n", + "#calculations\n", + "ia=(ia1+ia2)/2\n", + "n=n/60.0\n", + "tsh=output*1000/(2*3.14*n)\n", + "torque_avg=(ia-1)*tsh\n", + "dt=(I*2*3.14*n)/torque_avg\n", + "\n", + "#result\n", + "print \"approximate time to attain full speed=\",dt,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "approximate time to attain full speed= 46.4050282991 s\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.19, Page Number:1008" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=14.92#kW\n", + "v=400.0#V\n", + "n=400.0#rpm\n", + "i=40.0#A\n", + "I=7.5#kg-m2\n", + "ratio=1.2\n", + "\n", + "#calculations\n", + "n=n/60\n", + "t=output*1000/(2*3.14*n)\n", + "torque=(ratio-1)*t\n", + "dt=(I*2*3.14*n)/torque\n", + "\n", + "print \"time to attain full speed=\",dt,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "time to attain full speed= 4.4055406613 s\n" + ] + } + ], + "prompt_number": 138 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.20, Page Number:1009" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=944\n", + "phi=34.6*0.001#Wb\n", + "ta=209.0#N-m\n", + "v=500.0#V\n", + "ra=3.0#ohm\n", + "a=2\n", + "#calculation\n", + "ia=ta/(0.159*phi*z*(p/a))\n", + "ea=v-ia*ra\n", + "n=ea/(phi*z*(p/a))\n", + "\n", + "#result\n", + "print \"line current=\",ia,\"A\"\n", + "print \"speed=\",n*60,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= 20.1219966813 A\n", + "speed= 403.798260345 rpm\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.21, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#v\n", + "n=1000#rpm\n", + "ia=8#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i2=50#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "eb0=v-(ia-ish)*ra\n", + "eb=v-(i2-ish)*ra\n", + "n=eb*n/eb0\n", + "\n", + "#result\n", + "print \"speed when loaded=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when loaded= 966.21078037 rpm\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.22, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=800#rpm\n", + "ia=100#A\n", + "v=230#V\n", + "ra=0.15#ohm\n", + "rf=0.1#ohm\n", + "ia2=25#A\n", + "ratio=0.45\n", + "\n", + "#calculation\n", + "eb1=v-(ra+rf)*ia\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed at which motor runs=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which motor runs= 1940.37940379 rpm\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.23, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "#variable declaration\n", + "v=230.0#V\n", + "ra=0.5#ohm\n", + "rf=115.0#ohm\n", + "n1=1200#rpm\n", + "ia=2.5#A\n", + "n2=1120#rpm\n", + "\n", + "#calculation\n", + "eb1=v-ra*ia\n", + "x=n2*eb1/n1\n", + "ia2=solve((v-ra*ia2)-x,ia2)\n", + "ia=ia2[0]+(v/rf)\n", + "input_m=v*ia\n", + "\n", + "#result\n", + "print \"line current=\",round(ia,1),\"A\"\n", + "print \"power input=\",round(input_m,1),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= 35.0 A\n", + "power input= 8050.0 W\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.24, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "power=100.0#kW\n", + "n1=300#rpm\n", + "v=220.0#V\n", + "load=10.0#kW\n", + "ra=0.025#ohm\n", + "rf=60.0#ohm\n", + "vd=1.0#V\n", + "\n", + "#calculation\n", + "i=power*1000/v\n", + "ish=v/rf\n", + "ia=i+ish\n", + "eb=v+ia*ra+2*vd\n", + "i=load*1000/v\n", + "ia2=i-ish\n", + "eb2=v-ia2*ra-2*vd\n", + "n2=eb2*n1/eb\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 278.796797778 rpm\n" + ] + } + ], + "prompt_number": 174 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.25, Page Number:1011" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=250.0#V\n", + "n=1000.0#rpm\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "ia=4.0#A\n", + "i=40.0#A\n", + "ratio=0.04#percentage by whih armature reaction weakens field\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia2=ia-ish\n", + "eb0=v-ia2*ra\n", + "n0=n*eb0/v\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*n0/(eb0*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed of machine=\",math.floor(n),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of machine= 960.0 rpm\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.26, Page Number:1011" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ooutput=14.92#kW\n", + "n=1000#rpm\n", + "i=75#A\n", + "ra=0.25#ohm\n", + "ratio=0.20\n", + "\n", + "#calculation\n", + "eb1=v-i*ra\n", + "eb_inst=eb1*(1-ratio)\n", + "ia_inst=(v-eb_inst)/ra\n", + "t_inst=9.55*eb_inst*ia_inst/n\n", + "ia2=i/(1-ratio)\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 93.75 A\n", + "speed= 1224.66216216 rpm\n" + ] + } + ], + "prompt_number": 191 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.27, Page Number:1012" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "i=4.0#A\n", + "n=700.0#rpm\n", + "rf=100.0#A\n", + "v2=6.0#V\n", + "i2=10.0#A\n", + "input_m=8.0#kW\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "il=input_m*1000/v\n", + "ia=il-ish\n", + "ra=v2/i2\n", + "eb0=v-ish*ra\n", + "eb=v-ia*ra\n", + "n=eb*n/eb0\n", + "ta=9.55*eb*ia/n\n", + "inpt=v*i\n", + "cu_loss=ish**2*ra\n", + "constant_loss=inpt-cu_loss\n", + "cu_loss_arm=ia**2*ra\n", + "total_loss=constant_loss+cu_loss_arm\n", + "output=input_m*1000-total_loss\n", + "efficiency=output/(input_m*1000)\n", + "print \n", + "#result\n", + "print \"speed on load=\",n,\"rpm\"\n", + "print \"torque=\",ta,\"N-m\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "speed on load= 623.943661972 rpm\n", + "torque= 103.0636 N-m\n", + "efficiency= 79.2 %\n" + ] + } + ], + "prompt_number": 197 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.28, Page Number:1012" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabe declaration\n", + "v=220#V\n", + "load=11#kW\n", + "inl=5#A\n", + "n_nl=1150#rpm\n", + "ra=0.5#ohm\n", + "rsh=110#ohm\n", + "\n", + "#calculations\n", + "input_nl=v*inl\n", + "ish=v/rsh\n", + "ia0=inl-ish\n", + "cu_loss_nl=ia1**2*ra\n", + "constant_loss=input_nl-cu_loss_nl\n", + "i=load*1000/v\n", + "ia=i-ish\n", + "cu_loss_a=ia**2*ra\n", + "total_loss=cu_loss_a+constant_loss\n", + "output=load*1000-total_loss\n", + "efficiency=output*100/(load*1000)\n", + "eb_nl=v-(ia0*ra)\n", + "eb=v-ia*ra\n", + "n=n_nl*eb/eb_nl\n", + "ta=9.55*eb*ia/n\n", + "\n", + "#result\n", + "print \"torque developed=\",ta,\"N-m\"\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"the speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque developed= 87.096 N-m\n", + "efficiency= 79.5361818182 %\n", + "the speed= 1031.57894737 rpm\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.29, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=18.65#kW\n", + "v=250.0#V\n", + "ra=0.1#ohm\n", + "vb=3#V\n", + "rf=0.05#ohm\n", + "ia=80.0#A\n", + "n=600.0#rpm\n", + "i2=100.0#A\n", + "\n", + "#calculation\n", + "eb1=v-ia*(ra+rf)\n", + "eb2=v-i2*(ra+rf)\n", + "n2=eb2*ia*n/(eb1*i2)\n", + "\n", + "#result\n", + "print \"speed when current is 100 A=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when current is 100 A= 473.949579832 rpm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.30, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220.0#V\n", + "n=800.0#rpm\n", + "i=100.0#A\n", + "ra=0.1\n", + "ratio=1.0/2.0\n", + "#calculation\n", + "ia1=i*math.sqrt(ratio)\n", + "eb1=v-i*ra\n", + "eb2=v-ia1*ra\n", + "n2=eb2*i*n/(eb1*ia1)\n", + "#result\n", + "print \"speed when motor will run when developing half the torque=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when motor will run when developing half the torque= 1147.0 rpm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.31, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "n=600#rpm\n", + "ia=25#A\n", + "v=450#V\n", + "z=500\n", + "phi=1.7*0.01*math.pow(ia,0.5)\n", + "\n", + "#calculation\n", + "eb=n*phi*z*p/(60*a)\n", + "iara=v-eb\n", + "ra=iara/ia\n", + "i=math.pow((phi*ia*math.sqrt(ia)/(phi*2)),2.0/3.0)\n", + "eb2=v/2-i*ra\n", + "phi2=1.7*0.01*math.pow(i,0.5)\n", + "n2=eb2*phi*n/(eb*phi2)\n", + "\n", + "#result\n", + "print \"speed at which motor will run=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which motor will run= 372.0 rpm\n" + ] + } + ], + "prompt_number": 224 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.32, Page Number:1017" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "import math\n", + "#variable declaration\n", + "v=460.0#V\n", + "ra=0.5#ohm\n", + "\n", + "def f(ia,t):\n", + " n=(v*ia-ia**2*ra)*60/(2*3.14*t)\n", + " return(n)\n", + "\n", + "n1=f(20.0,128.8)\n", + "n2=f(30.0,230.5)\n", + "n3=f(40.0,349.8)\n", + "n4=f(50.0,469.2)\n", + "T=[128.8,230.5,349.8,469.2]\n", + "N=[n1,n2,n3,n4]\n", + "a=plot(T,N)\n", + "xlabel(\"Torque(NM.m)\") \n", + "ylabel(\"Speed(rpm)\") \n", + "plt.xlim((0,500))\n", + "plt.ylim((0,800))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Using matplotlib backend: TkAgg\n", + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.33, Page Number:1017" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "import math\n", + "#variable declaration\n", + "output=5.968#kW\n", + "n=700#rpm\n", + "v1=500#V\n", + "n2=600#rpm\n", + "ra=3.5#ohm\n", + "loss=450#W\n", + "\n", + "#calculation\n", + "\n", + "def fp(i,v):\n", + " p=5.968*((n2*(v1-i*ra)/(v*n))**2)\n", + " return(p)\n", + "\n", + "def fm(i,v):\n", + " m=((v1-i*ra)*i-loss)/1000\n", + " return(m)\n", + "\n", + "p1=fp(7.0,347.0)\n", + "p2=fp(10.5,393.0)\n", + "p3=fp(14.0,434.0)\n", + "p4=fp(27.5,468.0)\n", + "\n", + "m1=fm(7.0,347.8)\n", + "m2=fm(10.5,393.0)\n", + "m3=fm(14.0,434.0)\n", + "m4=fm(27.5,468.0)\n", + "\n", + "#plot\n", + "I=[7,10.5,14,27.5]\n", + "P=[p1,p2,p3,p4]\n", + "M=[m1,m2,m3,m4]\n", + "a=plot(I,P)\n", + "a=plot(I,M)\n", + "xlabel(\"Current\") \n", + "ylabel(\"Power(kW)\") \n", + "plt.xlim((0,30))\n", + "plt.ylim((0,12))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.34, Page Number:1022" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "i=3#A\n", + "ia=3.5#A\n", + "ib=4.5#A\n", + "\n", + "#calculation\n", + "loss=v*i\n", + "#B unexcited\n", + "loss1=v*(ia-i)\n", + "#B excited\n", + "loss2=v*(ib-i)\n", + "loss=loss2-loss1\n", + "\n", + "#result\n", + "print \"iron losses of B=\",loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "iron losses of B= 500.0 W\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.35, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.2#ohm\n", + "rf=110.0#ohm\n", + "ia=5.0#A\n", + "n=1500#rpm\n", + "i2=52.0#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "ia2=i2-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "n2=round(eb2*n/eb1,0)\n", + "input_nl=v*ia\n", + "cu_loss_nl=ia1**2*ra\n", + "constant_loss=input_nl-cu_loss_nl\n", + "cu_loss_l=ia2**2*ra\n", + "total_loss=constant_loss+cu_loss_l\n", + "input_l=v*i2\n", + "output=input_l-total_loss\n", + "tsh=9.55*output/n2\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"shaft torque=\",tsh,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.36, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "ia=5#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i=50#A\n", + "ratio=0.03#percentage by which armature reaction weakens field\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "ia2=i-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 994.0 rpm\n" + ] + } + ], + "prompt_number": 241 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.37, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "ia=5#A\n", + "ra=0.22#A\n", + "rf=250#ohm\n", + "i=100#A\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia0=ia-ish\n", + "eb0=v-ia0*ra\n", + "cu_loss=ia0**2*ra\n", + "input_m=v*ia\n", + "constant_loss=input_m-cu_loss\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "cu_loss=ia**2*ra\n", + "total_loss=cu_loss+constant_loss\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "efficiency=output*100/input_m\n", + "per=(eb-eb0)*100/eb0\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"\n", + "print \"percentage change in speed=\",round(per,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 90.8 %\n", + "percentage change in speed= -4.19 %\n" + ] + } + ], + "prompt_number": 244 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.38, Page Number:1024" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "i=25#A\n", + "i2=50#A\n", + "ratio=0.03#percentage by which the armature reaction weakens field\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "vd=1\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ebh=v-ia1*ra-2*vd\n", + "ia2=i2-ish\n", + "eb2=v-ia2*ra-2*vd\n", + "n2=eb2*n/(ebh*(1-ratio))\n", + "ta1=9.55*eb1*ia1/n\n", + "ta2=9.55*eb2*ia2/n2\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"torque in first case=\",ta1,\"N-m\"\n", + "print \"torque in second case=\",ta2,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1010.0 rpm\n", + "torque in first case= 57.11664 N-m\n", + "torque in second case= 110.3912768 N-m\n" + ] + } + ], + "prompt_number": 247 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.39, Page Number:1024" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "n1=1000.0#rpm\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "ia=4.0#A\n", + "i=40.0#A\n", + "ratio=0.04#percentage by which the armature reaction weakens field\n", + "eb1=250.0#V\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "eb2=v-(i-ish)*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "cu_loss=(ia-ish)**2*ra\n", + "input_m=v*ia\n", + "constant_loss=input_m-cu_loss\n", + "cu_loss_a=(i-ish)**2*ra\n", + "total_loss=constant_loss+cu_loss_a\n", + "inpt=v*i\n", + "output=inpt-total_loss\n", + "efficiency=output*100/inpt\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 960.0 rpm\n", + "efficiency= 82.44 %\n" + ] + } + ], + "prompt_number": 254 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.40, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "v=250#V\n", + "z=120*8\n", + "a=4\n", + "phi=20*0.001#Wb\n", + "i=25#A\n", + "ra=0.1#ohm\n", + "rf=125#ohm\n", + "loss=810#W\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(p*z*phi)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*ra\n", + "cu_loss_shunt=v*ish\n", + "total_loss=loss+cu_loss+cu_loss_shunt\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "tsh=9.55*output/n\n", + "efficiency=output*100/input_m\n", + "\n", + "#result\n", + "print \"gross torque=\",ta,\"N-m\"\n", + "print \"useful torque=\",tsh,\"N-m\"\n", + "print \"efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross torque= 70.288 N-m\n", + "useful torque= 60.2946209124 N-m\n", + "efficiency= 78.1936 %\n" + ] + } + ], + "prompt_number": 256 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.41, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=14.92#kW\n", + "n=1150#rpm\n", + "p=4\n", + "a=2\n", + "z=620\n", + "ra=0.2#ohm\n", + "i=74.8#A\n", + "i2=3#A\n", + "v=230#V\n", + "#calculation\n", + "ia=i-i2\n", + "eb=v-ia*ra\n", + "phi=eb*a*60/(p*z*n)\n", + "ta=9.55*eb*ia/n\n", + "power=eb*ia\n", + "loss_rot=power-output*1000\n", + "input_m=v*i\n", + "total_loss=input_m-output*1000\n", + "per=total_loss*100/input_m\n", + "\n", + "#result\n", + "print \"flux per pole=\",phi*1000,\"mWb\"\n", + "print \"torque developed=\",ta,\"N-m\"\n", + "print \"rotational losses=\",loss_rot,\"W\"\n", + "print \"total losses expressed as a percentage of power=\",per,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 9.07321178121 mWb\n", + "torque developed= 128.575818783 N-m\n", + "rotational losses= 562.952 W\n", + "total losses expressed as a percentage of power= 13.2759823297 %\n" + ] + } + ], + "prompt_number": 263 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.42, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia1=Symbol('ia1')\n", + "output=7.46#kW\n", + "v=250#V\n", + "i=5#A\n", + "ra=0.5#ohm\n", + "rf=250#ohm\n", + "\n", + "#calculation\n", + "input_m=v*i\n", + "ish=v/rf\n", + "ia=i-ish\n", + "cu_loss=v*ish\n", + "cu_loss_a=ra*ia**2\n", + "loss=input_m-cu_loss\n", + "ia1=solve(ra*ia1**2-v*ia1+output*1000+loss,ia1)\n", + "i2=ia1[0]+ish\n", + "input_m1=v*i2\n", + "efficiency=output*100000/input_m1\n", + "ia=math.sqrt((input_m-cu_loss_a)/ra)\n", + "input_a=v*ia\n", + "cu_loss=ia**2*ra\n", + "output_a=input_a-(cu_loss+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"output power at which efficiency is maximum=\",output_a/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 79.5621535016683 %\n", + "output power at which efficiency is maximum= 10.2179357944 kW\n" + ] + } + ], + "prompt_number": 271 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.43, Page Number:1026" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n2_by_n1=1.0/2.0\n", + "ia2_by_ia1=phi1_by_phi2=1.0/2.0\n", + "v2_by_v1=n2_by_n1*phi1_by_phi2\n", + "reduction_v=(1-v2_by_v1)*100\n", + "reduction_i=(1-ia2_by_ia1)*100\n", + "\n", + "#result\n", + "print \"percentage reduction in the motor terminal voltage=\",reduction_v,\"%\"\n", + "print \"percentage fall in the motor current=\",reduction_i,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction in the motor terminal voltage= 75.0 %\n", + "percentage fall in the motor current= 50.0 %\n" + ] + } + ], + "prompt_number": 272 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.44, Page Number:1026" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "v=500#V\n", + "z=1200\n", + "phi=20*0.001#Wb\n", + "ra=0.5#ohm\n", + "rf=250#ohm\n", + "i=20#A\n", + "loss=900#W\n", + "a=2\n", + "#calculation\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(p*z*phi)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*ra\n", + "cu_loss_f=v*ish\n", + "total_loss=cu_loss+cu_loss_f+loss\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "tsh=9.55*output/n\n", + "efficiency=output*100/input_m\n", + "\n", + "#result\n", + "print \"useful torque=\",ta,\"N-m\"\n", + "print \"output=\",output/1000,\"Kw\"\n", + "print \"efficiency==\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "useful torque= 206.28 N-m\n", + "output= 7.938 Kw\n", + "efficiency== 79.38 %\n" + ] + } + ], + "prompt_number": 275 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.45, Page Number:1027" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia1=Symbol('ia1')\n", + "output=37.3*1000#W\n", + "v=460#V\n", + "i=4#A\n", + "n=660#rpm\n", + "ra=0.3#ohm\n", + "rf=270#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "cu_loss=v*ish\n", + "ia=i-ish\n", + "cu_loss_a=ia**2*ra\n", + "input_a=loss=v*ia\n", + "ia1=solve(ra*ia1**2-v*ia1+output+loss,ia1)\n", + "i=ia1[0]+ish\n", + "eb1=v-(ia*ra)\n", + "eb2=v-(ia1[0]*ra)\n", + "n2=n*eb2/eb1\n", + "ia=math.sqrt((cu_loss+input_a)/ra)\n", + "\n", + "#result\n", + "print \"the current input=\",i,\"A\"\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"armature current at which efficiency is maximum=\",ia,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the current input= 90.2860908863713 A\n", + "speed= 623.0 rpm\n", + "armature current at which efficiency is maximum= 78.3156008298 A\n" + ] + } + ], + "prompt_number": 280 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter30_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter30_6.ipynb new file mode 100644 index 00000000..ce13ea95 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter30_6.ipynb @@ -0,0 +1,2629 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:072a977ff7e7f41108f647b699866e16f58bf91b148a03cefc5a07bc1eeda05b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 30:Speed Control of D.C. Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.1, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "n=250#rpm\n", + "ia=200#A\n", + "ra=0.12#ohm\n", + "ratio=0.80\n", + "ia2=100#A\n", + "\n", + "#calculations\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 320.0 rpm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.2, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ra=0.25#ohm\n", + "ia=50#A\n", + "n=750#rpm\n", + "ratio=1-0.10\n", + "\n", + "#calculation\n", + "ia2=ia/ratio\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 828.0 rpm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.3, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "n=800#rpm\n", + "ia=50.0#A\n", + "n2=1000#rpm\n", + "ia2=80.0#A\n", + "ra=0.15#ohm\n", + "rf=250.0#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "ish1=v/rf\n", + "r1=(n2*eb1*v)/(n*eb2*ish1)\n", + "r=r1-rf\n", + "ish2=v/r1\n", + "torque_ratio=ish2*ia2/(ish1*ia)\n", + "\n", + "#result\n", + "print \"resistance to be added=\",r,\"ohm\"\n", + "print \"ratio of torque=\",torque_ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 68.9506880734 ohm\n", + "ratio of torque= 1.25411235955\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.3, Page Number:1033" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "rf=250.0#ohm\n", + "ra=0.25#ohm\n", + "n=1500#rpm\n", + "ia=20.0#A\n", + "r=250.0#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ish2=v/(rf+r)\n", + "ia2=ia*1/ish2\n", + "eb2=v-ia2*ra\n", + "eb1=v-ia*ra\n", + "n2=eb2*n/(eb1*ish2)\n", + "\n", + "#result\n", + "print \"new speed=\",round(n2),\"rpm\"\n", + "print \"new armature current=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new speed= 2939.0 rpm\n", + "new armature current= 40.0 A\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.5, Page Number:1033" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "rt=Symbol('rt')\n", + "v=250.0#V\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "n=600.0#rpm\n", + "ia=20.0#A\n", + "n2=800.0#rpm\n", + "\n", + "#calculation\n", + "ish1=v/rf\n", + "eb1=v-ia*ra\n", + "rt=solve(((n2*eb1*(v/rt))/(n*(v-(ia*ra/(v/rt)))))-1,rt)\n", + "r=rt[0]-rf\n", + "\n", + "#result\n", + "print \"resistance to be inserted=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be inserted= 88.3128987990058 ohm\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.6, Page Number:1034" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "v=220#V\n", + "ra=0.5#ohm\n", + "ia=40#A\n", + "ratio=1+0.50\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "x=solve((ratio*eb1/((v-ia*ra*x)*x))-1,x)\n", + "per=1-1/x[0]\n", + "\n", + "#result\n", + "print\"main flux has to be reduced by=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "main flux has to be reduced by= 37.2991677469778 %\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.7, Page Number:1034" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "load=10#kW\n", + "i=41#A\n", + "ra=0.2#ohm\n", + "rw=0.05#ohm\n", + "ri=0.1#ohm\n", + "rf=110#ohm\n", + "ratio=1-0.25\n", + "r=1#ohm\n", + "ratio1=1-0.50\n", + "n=2500\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ia2=ratio1*ia1/ratio\n", + "eb1=v-ia1*(ra+ri+rw)\n", + "eb2=v-ia2*(r+ra+ri+rw)\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"motor speed=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 26.0 A\n", + "motor speed= 2987.0 rpm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.8, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "load=15#kW\n", + "n=850#rpm\n", + "ia=72.2#A\n", + "ra=0.25#ohm\n", + "rf=100#ohm\n", + "n2=1650#rpm\n", + "ia2=40#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "ratio=(n*eb2)/(n2*eb1)\n", + "per=1-ratio\n", + "#result\n", + "print \"percentage reduction=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction= 46.5636857585 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.9, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "v=220#V\n", + "ra=0.5#ohm\n", + "ia=40#A\n", + "ratio=0.50+1\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "ia2=solve((((v-ra*ia2)*ia2)/(eb1*ratio*ia))-1,ia2)\n", + "per=ia/ia2[0]\n", + "\n", + "#result\n", + "print \"mail flux should be reduced by=\",round(per,4)*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mail flux should be reduced by= 62.7 %\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.10, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=20.0#A\n", + "v=220.0#V\n", + "ra=0.5#ohm\n", + "ratio=0.50\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "eb2=ratio*(v-ia*ra)\n", + "r=(v-eb2)/ia-ra\n", + "\n", + "#result\n", + "print \"resistance required in the series=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance required in the series= 5.25 ohm\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.11, Page Number:1036" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "ia=8#A\n", + "i_f=1#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i=50#A\n", + "\n", + "#calculations\n", + "eb0=v-(ia-i_f)*ra\n", + "kpsi=eb0/1000\n", + "ia=i-i_f\n", + "eb1=v-ia*ra\n", + "n1=eb1/kpsi\n", + "\n", + "#result\n", + "print \"speed=\",round(n1,1),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 966.2 rpm\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.12, Page Number:1037" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240#V\n", + "ra=0.25#ohm\n", + "n=1000#rpm\n", + "ia=40#A\n", + "n2=800#rpm\n", + "i2=20#A\n", + "#calculation\n", + "eb=v-ia*ra\n", + "eb2=n2*eb/n\n", + "r=(v-eb2)/(ia)-ra\n", + "eb3=v-i2*(r+ra)\n", + "n3=eb3*n/eb\n", + "\n", + "#result\n", + "print \"additional resistance=\",r,\"ohm\"\n", + "print \"speed=\",round(n3),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "additional resistance= 1.15 ohm\n", + "speed= 922.0 rpm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.13, Page Number:1037" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=7.48#kW\n", + "v=220#V\n", + "n=990#rpm\n", + "efficiency=0.88\n", + "ra=0.08#ohm\n", + "ish=2#A\n", + "n2=450#rpm\n", + "\n", + "#calculation\n", + "input_p=load*1000/efficiency\n", + "losses=input_p-load*1000\n", + "i=input_p/v\n", + "ia=i-ish\n", + "loss=v*ish\n", + "cu_loss=ia**2*ra\n", + "loss_nl=losses-cu_loss-loss\n", + "eb1=v-20-(ia*ra)\n", + "eb2=n2*eb1/n\n", + "r=(eb1-eb2)/ia\n", + "total_loss=ia**2*(r+ra)+loss+loss_nl\n", + "output=input_p-total_loss\n", + "efficiency=output/(input_p)\n", + "\n", + "#result\n", + "print \"motor input=\",input_p/1000,\"kW\"\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"external resistance=\",r,\"ohm\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor input= 8.5 kW\n", + "armature current= 36.6363636364 A\n", + "external resistance= 2.93403113016 ohm\n", + "efficiency= 41.6691237902 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.14, Page Number:1038" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "eb1=230.0#V\n", + "n=990.0#rpm\n", + "n2=500.0#rpm\n", + "ia=25.0#A\n", + "\n", + "#calculation\n", + "eb2=eb1*n2/n\n", + "r=(eb1-eb2)/ia\n", + "\n", + "#result\n", + "print \"resistance required in series=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance required in series= 4.55353535354 ohm\n" + ] + } + ], + "prompt_number": 83 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.15, Page Number:1038" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.4#ohm\n", + "rf=200.0#ohm\n", + "ia=20.0#A\n", + "n=600.0#rpm\n", + "n2=900.0#rpm\n", + "\n", + "#calculation\n", + "if1=v/rf\n", + "eb1=v-ia*ra\n", + "k2=eb1/(if1*n)\n", + "if2=n*if1/n2\n", + "rf1=v/if1\n", + "rf2=v/if2\n", + "r=rf2-rf1\n", + "\n", + "#result\n", + "print \"resistance to be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 100.0 ohm\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.16, Page Number:1039" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "v=220.0#V\n", + "ra=0.4#ohm\n", + "rf=200.0#ohm\n", + "ia=22.0#A\n", + "n=600.0#rpm\n", + "n2=900.0#rpm\n", + "\n", + "#calculation\n", + "if1=v/rf\n", + "eb1=v-ia*ra\n", + "k1=eb1/(if1*n)\n", + "if2=n*if1/n2\n", + "if2=n2*ia/n\n", + "ia2=solve(v-ra*ia2-(k1*ia*if1*n2)/ia2,ia2)\n", + "if2=ia*if1/ia2[0]\n", + "r=v/if2\n", + "\n", + "#result\n", + "print \"new field resistance to be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new field resistance to be added= 306.828780053869 ohm\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.17, Page Number:1040" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "output=25#kW\n", + "efficiency=0.85\n", + "n=1000#rpm\n", + "ra=0.1#ohm\n", + "rf=125#ohm\n", + "ratio=1.50\n", + "\n", + "#calculation\n", + "input_p=output*1000/efficiency\n", + "i=input_p/v\n", + "if1=v/rf\n", + "ia=i-if1\n", + "il=ratio*ia\n", + "r=v/il\n", + "r_ext=r-ra\n", + "\n", + "#result\n", + "print \"starting resistance=\",round(r_ext,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting resistance= 1.341 ohm\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.18, Page Number:1042" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "n=1000.0#rpm\n", + "ia=17.5#A\n", + "n2=600.0#rpm\n", + "ra=0.4#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "rt=(v-(n2*eb1/n))/ia\n", + "r=rt-ra\n", + "#result\n", + "print \"resistance to be inserted=\",round(r,1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be inserted= 4.4 ohm\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.19, Page Number:1042" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "ra=1.2#ohm\n", + "rf=500#ohm\n", + "ia=4#A\n", + "n=1000#rpm\n", + "i=26#A\n", + "r=2.3#ohm\n", + "ratio=0.15\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "eb1=v-ia1*ra\n", + "ia2=i-ish\n", + "eb2=v-ia2*ra\n", + "n2=n*eb2/eb1\n", + "eb2=v-ia2*(r+ra)\n", + "n2_=n*eb2/eb1\n", + "n2__=n*eb2/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed when resistance 2.3 ohm is connected=\",round(n2_),\"rpm\"\n", + "print \"speed when shunt field is reduced by 15%=\",round(n2__),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when resistance 2.3 ohm is connected= 831.0 rpm\n", + "speed when shunt field is reduced by 15%= 978.0 rpm\n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.20, Page Number:1043" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "ia1=ia2=20.0#A\n", + "n=1000.0#rpm\n", + "ra=0.5#ohm\n", + "n2=500.0#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia1*ra\n", + "rt=(v-((n2/n)*eb1))/ia2\n", + "r=rt-ra\n", + "ia3=ia2/2\n", + "n3=n*(v-ia3*rt)/eb1\n", + "#result\n", + "print \"speed=\",round(n3),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 771.0 rpm\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.21, Page Number:1043" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "ra1=0.5#ohm\n", + "n=600.0#rpm\n", + "ia2=ia1=20#A\n", + "r=1.0#ohm\n", + "\n", + "#calculations\n", + "eb1=v-ia1*ra1\n", + "ra2=r+ra1\n", + "eb2=v-ia2*ra2\n", + "n2=eb2*n/eb1\n", + "#torque is half the full-load torque\n", + "ia2=1.0/2.0*ia1\n", + "eb22=v-ia2*ra2\n", + "n2_=eb22*n/eb1\n", + "#result\n", + "print \"speed at full load torque=\",round(n2),\"rpm\"\n", + "print \"speed at half full-load torque=\",round(n2_),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at full load torque= 550.0 rpm\n", + "speed at half full-load torque= 588.0 rpm\n" + ] + } + ], + "prompt_number": 137 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.22, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra1=0.5#ohm\n", + "n=500.0#rpm\n", + "ia2=ia1=30.0#A\n", + "r=1.0#ohm\n", + "\n", + "#calculations\n", + "eb1=v-ia1*ra1\n", + "ra2=r+ra1\n", + "eb2=v-ia2*ra2\n", + "n2=eb2*n/eb1\n", + "\n", + "#torque is half the full-load torque\n", + "ia2=2.0*ia1\n", + "eb22=v-ia2*ra2\n", + "n2_=eb22*n/eb1\n", + "#result\n", + "print \"speed at full load torque=\",round(n2),\"rpm\"\n", + "print \"speed at double full-load torque=\",round(n2_),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at full load torque= 427.0 rpm\n", + "speed at double full-load torque= 317.0 rpm\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.23, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=37.3*1000#W\n", + "v=500.0#V\n", + "n=750.0#rpm\n", + "efficiency=0.90\n", + "t2=250.0#N-m\n", + "r=5.0#ohm\n", + "ra=0.5#ohm\n", + "\n", + "#calculation\n", + "t1=load/(2*3.14*(n/60))\n", + "ia1=load/(efficiency*v)\n", + "ia2=ia1*math.sqrt(t2/t1)\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*(r+ra)\n", + "n2=eb2*ia1*n/(eb1*ia2)\n", + "\n", + "#result\n", + "print \"speed at which machine will run=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which machine will run= 381.789716486 rpm\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.24, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=7.46*1000#W\n", + "v=220.0#V\n", + "n=900.0#rpm\n", + "efficiency=0.88\n", + "ra=0.08#ohm\n", + "ish=2.0#A\n", + "n2=450.0#rpm\n", + "#calculation\n", + "i=output/(efficiency*v)\n", + "ia2=ia1=i-ish\n", + "eb1=v-ia2*ra\n", + "rt=(v-20-((n2/n)*eb1))/ia2\n", + "r=rt-ra\n", + "input_m=(v)*(ia2+ish)\n", + "total_loss=input_m-output\n", + "cu_loss=ia2**2*ra\n", + "cu_loss_f=v*ish\n", + "total_cu_loss=cu_loss+cu_loss_f\n", + "stray_loss=total_loss-total_cu_loss\n", + "stray_loss2=stray_loss*n2/n\n", + "cu_loss_a=ia1**2*rt\n", + "total_loss2=stray_loss2+cu_loss_f+cu_loss_a\n", + "output2=input_m-total_loss2\n", + "efficiency=output2*100/input_m\n", + "\n", + "#result\n", + "print \"motor output=\",output2,\"W\"\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"external resistance=\",r,\"ohm\"\n", + "print \"overall efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor output= 4460.66115702 W\n", + "armature current= 36.5330578512 A\n", + "external resistance= 2.42352222599 ohm\n", + "overall efficiency= 52.619059225 %\n" + ] + } + ], + "prompt_number": 175 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.25, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240.0#V\n", + "ia=15.0#A\n", + "n=800.0#rpm\n", + "ra=0.6#ohm\n", + "n2=400.0#rpm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "r=((v-(n2*eb1/n))/ia)-ra\n", + "ia3=ia/2\n", + "eb3=v-ia3*(r+ra)\n", + "n3=eb3*n/eb1\n", + "\n", + "#result\n", + "print \"speed=\",n3,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 615.584415584 rpm\n" + ] + } + ], + "prompt_number": 187 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.26, Page Number:1045" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "r=Symbol('r')\n", + "v=400.0#V\n", + "inl=3.5#A\n", + "il=59.5#A\n", + "rf=267.0#ohm\n", + "ra=0.2#ohm\n", + "vd=2.0#V\n", + "ratio=0.02\n", + "speed_ratio=0.50\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=inl-ish\n", + "eb1=v-ia1*ra-vd\n", + "ia2=il-ish\n", + "eb2=v-ia2*ra-vd\n", + "n1_by_n2=eb1*(1-ratio)/eb2\n", + "per_change=(1-1/n1_by_n2)*100\n", + "r=solve(eb2*speed_ratio/(eb2-ia2*r)-1,r)\n", + "#result\n", + "print \"change in speed=\",per_change,\"%\"\n", + "print \"resistance to be added=\",r[0],\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "change in speed= 0.83357557339 %\n", + "resistance to be added= 3.33092370774547 ohm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.27, Page Number:1046" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaraion\n", + "v=200.0#V\n", + "i=50.0#A\n", + "n=1000.0#rpm\n", + "n2=800.0#rpm\n", + "ra=0.1#ohm\n", + "rf=100.0#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ia2=ia1*(n2/n)**2\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "rt=(v-(n2*eb1/n))/ia2\n", + "r=rt-ra\n", + "#result\n", + "print \"resustance that must be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resustance that must be added= 1.32708333333 ohm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.28, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "load=37.3#kW\n", + "efficiency=0.90\n", + "n=1000#rpm\n", + "ra=0.1#ohm\n", + "rf=115#ohm\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "tsh=9.55*load*1000/n\n", + "i=load*1000/(v*efficiency)\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "ta=9.55*eb*ia/n\n", + "i_permissible=i*ratio\n", + "ia_per=i_permissible-ish\n", + "ra_total=v/ia_per\n", + "r_required=ra_total-ra\n", + "torque=ratio*ta\n", + "#result\n", + "print \"net torque=\",ta,\"N-m\"\n", + "print \"starting resistance=\",r_required,\"ohm\"\n", + "print \"torque developed at starting=\",torque,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "net torque= 365.403326173 N-m\n", + "starting resistance= 0.913513513514 ohm\n", + "torque developed at starting= 548.104989259 N-m\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.29, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "I=Symbol('I')\n", + "v=200.0#V\n", + "rf=40.0#ohm\n", + "ra=0.02#ohm\n", + "i=55.0#A\n", + "n=595.0#rpm\n", + "r=0.58#ohm\n", + "n2=630.0#rpm\n", + "ia_=15.0#A\n", + "rd=5.0#ohm\n", + "ia2=50.0#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ra1=r+ra\n", + "eb1=v-ra1*ia1\n", + "ia2=ia1\n", + "eb2=eb1*(n2/n)\n", + "r=(v-eb2)/ia1\n", + "eb2_=v-ia_*ra1\n", + "n2=eb2_*n/eb1\n", + "eb3=eb1\n", + "IR=v-eb3-ia2*ra\n", + "pd=v-IR\n", + "i_d=pd/rd\n", + "i=ia2+i_d\n", + "R=IR/i\n", + "I=solve(rd*(I-ia_)-v+R*I,I)\n", + "eb4=v-R*I[0]-ia_*ra\n", + "n4=n*(eb4/eb1)\n", + "\n", + "#result\n", + "print \"armature circuit resistance should be reduced by=\",ra1-r,\"ohm\"\n", + "print \"speed when Ia=\",n2,\"rpm\"\n", + "print \"value of series resistance=\",R,\"ohm\"\n", + "print \"speed when motor current falls to 15A=\",n4,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature circuit resistance should be reduced by= 0.2 ohm\n", + "speed when Ia= 668.5 rpm\n", + "value of series resistance= 0.344418052257 ohm\n", + "speed when motor current falls to 15A= 636.922222222222 rpm\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.31, Page Number:1051" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=15#A\n", + "n=600#rpm\n", + "\n", + "#calculation\n", + "ia2=math.sqrt(2*2**0.5*i**2)\n", + "n2=n*2*i/ia2\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"current=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 713.524269002 rpm\n", + "current= 25.2268924576 A\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.32, Page Number:1052" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=707#rpm\n", + "ia1=100#A\n", + "v=85#V\n", + "rf=0.03#ohm\n", + "ra=0.04#ohm\n", + "\n", + "#calculation\n", + "ra_total=ra+(2*rf)\n", + "eb1=v-ia1*ra_total\n", + "ia2=ia1*2**0.5\n", + "rf=rf/2\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=n*(eb2/eb1)*(2*ia1/ia2)\n", + "rt=(v-((n/n2)*eb2))/ia2\n", + "r=rt-ra-rf\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1029.46885374 rpm\n", + "additional resistance= 0.171040764009 ohm\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.33, Page Number:1052" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#varable declaration\n", + "v=240.0#V\n", + "ia=40.0#A\n", + "ra=0.3#ohm\n", + "n=1500.0#rpm\n", + "n2=1000.0#rpm\n", + "#calculation\n", + "R=v/ia-ra\n", + "eb1=v-ia*ra\n", + "r=(v-((n2/n)*eb1))/ia-ra\n", + "\n", + "#result\n", + "print \"resistance to be added at starting=\",R,\"ohm\"\n", + "print \"resistance to be added at 1000 rpm\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added at starting= 5.7 ohm\n", + "resistance to be added at 1000 rpm 1.9 ohm\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.34, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=600.0#rpm\n", + "v=250.0#V\n", + "ia1=20.0#A\n", + "ratio=2.0\n", + "\n", + "#calculations\n", + "ia2=ia1*2**(3.0/4.0)\n", + "n2=n*ratio*ia1/ia2\n", + "\n", + "#result\n", + "print \"current=\",ia2,\"A\"\n", + "print \"speed=\",n2,\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 33.6358566101 A\n", + "speed= 713.524269002 rpm\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.35, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "V=Symbol('V')\n", + "ra=1.0#ohm\n", + "v=220.0#V\n", + "n=350.0#rpm\n", + "ia=25.0#A\n", + "n2=500.0#rpm\n", + "\n", + "#calculation\n", + "ia2=ia*(n2/n)\n", + "eb1=v-ia*ra\n", + "V=solve((n2*eb1*ia2/(n*ia))+ia2-V,V)\n", + "\n", + "#result\n", + "print \" current=\",ia2,\"A\"\n", + "print \"voltage=\",V[0],\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " current= 35.7142857143 A\n", + "voltage= 433.673469387755 V\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.36, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000.0#rpm\n", + "ia=20.0#A\n", + "v=200.0#V\n", + "ra=0.5#ohm\n", + "rf=0.2#ohm\n", + "i=20.0#A\n", + "rd=0.2#ohm\n", + "i_f=10.0#A\n", + "ratio=0.70\n", + "\n", + "#calculation\n", + "eb1=v-(ra+rf)*ia\n", + "r_total=ra+rf/2\n", + "eb2=v-r_total*ia\n", + "n2=(eb2*n/(eb1*ratio))\n", + " \n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1444.0 rpm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.37, Page Number:1054" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "ia=40.0#A\n", + "n=700.0#rpm\n", + "ratio=0.50+1\n", + "ra=0.15#ohm\n", + "rf=0.1#ohm\n", + "\n", + "#calculations\n", + "ia2=(ratio*2*ia**2)**0.5\n", + "eb1=v-ia*(ra+rf)\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=(eb2/eb1)*(ia*2/ia2)*n\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"speed=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 777.147765122 rpm\n", + "speed= 69.2820323028 A\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.38, Page Number:1055" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ia=20#A\n", + "n=900#rpm\n", + "r=0.025#ohm\n", + "ra=0.1#ohm\n", + "rd=0.2#ohm\n", + "\n", + "#calculation\n", + "#when divertor is added\n", + "eb1=v-ia*(ra+4*r)\n", + "ia2=(ia**2*(ra+rd)/rd)**0.5\n", + "ra_=rd*ra/(ra+rd)\n", + "eb2=v-ia2*ra_\n", + "n2=(eb2/eb1)*(ia*3/(2*ia2))*n\n", + "\n", + "#rearranged field coils in two series and parallel group\n", + "ia2=(ia**2*2)**0.5\n", + "r=ra+r\n", + "eb2=v-ia2*r\n", + "n2_=(eb2/eb1)*(ia*2/(ia2))*n\n", + "\n", + "#result\n", + "print \"speed when divertor was added=\",n2,\"rpm\"\n", + "print \"speed when field coils are rearranged=\",n2_,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when divertor was added= 1112.87640676 rpm\n", + "speed when field coils are rearranged= 1275.19533144 rpm\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.39, Page Number:1055" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "n=1000.0#rpm\n", + "i=12.0#A\n", + "rf=0.8#ohm\n", + "ra=1.0#ohm\n", + "il=20#A\n", + "ratio=0.15\n", + "\n", + "#calculation\n", + "eb1=v-i*(ra+rf)\n", + "eb2=v-il*(ra+rf/4)\n", + "n2=(eb2/eb1)*(1/(1-ratio))*n\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1162.92198261 rpm\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.40, Page Number:1056" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i2=Symbol('i2')\n", + "v=200.0#v\n", + "n=500.0#rpm\n", + "i=25.0#A\n", + "ra=0.2#ohm\n", + "rf=0.6#ohm\n", + "rd=10.0#ohm\n", + "\n", + "#calculation\n", + "r=ra+rf\n", + "eb1=v-i*r\n", + "i2=solve(((rd+rf)*i2**2)-(v*i2)-(i**2*rd),i2)\n", + "pd=v-i2[1]*rf\n", + "ia2=((rd+rf)*i2[1]-v)/rd\n", + "eb2=pd-ia2*ra\n", + "n2=(eb2/eb1)*(i/i2[1])*n\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 342.848235418389 rpm\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.41, Page Number:1056" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "ra=0.3#ohm\n", + "i=20#A\n", + "n=1200#rpm\n", + "r=3#ohm\n", + "i2=15#A\n", + "ratio=0.80\n", + "\n", + "#calculation\n", + "eb1=v-i*ra\n", + "eb2=v-(r+ra)*i2\n", + "n2=n*(eb2/eb1)/ratio\n", + "power_ratio=(n*i)/(n2*i2*ratio)\n", + "\n", + "#result\n", + "print \"new speed=\",n2,\"rpm\"\n", + "print \"ratio of power outputs=\",power_ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new speed= 1349.65437788 rpm\n", + "ratio of power outputs= 1.48186086214\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.42, Page Number:1057" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=50#A\n", + "v=460#V\n", + "ratio=1-0.25\n", + "\n", + "#calculation\n", + "I=(i**2*ratio**3)**0.5\n", + "eb2=I*ratio*v/i\n", + "R=(v-eb2)/I\n", + "pa=v*i/1000\n", + "power_n=pa*ratio**4\n", + "pa=eb2*I\n", + "\n", + "#result\n", + "print \"Resistance required=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance required= 7.26432660412 ohm\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.44, Page Number:1060" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=500#rpm\n", + "n2=550#rpm\n", + "i=50#A\n", + "v=500#V\n", + "r=0.5#ohm\n", + "\n", + "#calculation\n", + "eb1=v-i*r\n", + "kphi1=eb1/n\n", + "eb2=v-i*r\n", + "kphi2=eb2/n2\n", + "eb_=v-i*2*r\n", + "n=eb_/((eb1/n2)+(eb2/n))\n", + "#result\n", + "print \"speed=\",n,\"rpm\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 248.120300752 rpm\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.45, Page Number:1061" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=14.92#kW\n", + "v=250#V\n", + "n=1000#rpm\n", + "ratio1=5.0\n", + "ratio2=4.0\n", + "t=882#N-m\n", + "\n", + "#calculation\n", + "i=load*1000/v\n", + "k=v/(n*i/60)\n", + "I=(t/((ratio1+ratio2)*0.159*k))**0.5\n", + "nsh=v/((ratio1+ratio2)*k*I)\n", + "eb1=ratio1*k*I*nsh\n", + "eb2=ratio2*k*I*nsh\n", + "\n", + "#result\n", + "print \"current=\",I,\"A\"\n", + "print \"speed of shaft=\",round(nsh*60),\"rpm\"\n", + "print \"voltage across the motors=\",round(eb1),\"V,\",round(eb2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 49.5202984449 A\n", + "speed of shaft= 134.0 rpm\n", + "voltage across the motors= 139.0 V, 111.0 V\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.46, Page Number:1063" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "t=700#N-m\n", + "n=1200#rpm\n", + "ra=0.008#ohm\n", + "rf=55#ohm\n", + "efficiency=0.90\n", + "t2=375#N-m\n", + "n2=1050#rpm\n", + "\n", + "#calculation\n", + "output=2*3.14*n*t/60\n", + "power_m=output/efficiency\n", + "im=power_m/v\n", + "ish=v/rf\n", + "ia1=im-ish\n", + "eb1=v-ia1*ra\n", + "ia2=ia1*t2/t\n", + "eb2=eb1*n2/n\n", + "r=eb2/ia2-ra\n", + "\n", + "#result\n", + "print \"dynamic break resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dynamic break resistance= 0.795525014538 ohm\n" + ] + } + ], + "prompt_number": 118 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.47, Page Number:1064" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "load=18.65#kW\n", + "n=450.0#rpm\n", + "efficiency=0.746\n", + "ra=0.2#ohm\n", + "\n", + "#calculations\n", + "I=load*1000/(efficiency*v)\n", + "eb=v-I*ra\n", + "vt=v+eb\n", + "i_max=2*I\n", + "r=vt/i_max\n", + "R=r-ra\n", + "N=n/60\n", + "phizp_by_a=eb/N\n", + "k4=phizp_by_a*v/(2*3.14*r)\n", + "k3=phizp_by_a**2/(2*3.14*r)\n", + "tb=k4+k3*N\n", + "tb0=k4\n", + "#result\n", + "print \"breaking resistance=\",R,\"ohm\"\n", + "print \"maximum breaking torque=\",tb,\"N-m\"\n", + "print \"maximum breaking torque when N=0 =\",tb0,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "breaking resistance= 6.1 ohm\n", + "maximum breaking torque= 1028.3970276 N-m\n", + "maximum breaking torque when N=0 = 522.360394972 N-m\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.48, Page Number:1069" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=120#V\n", + "ra=0.5#ohm\n", + "l=20*0.001#H\n", + "ka=0.05#V/rpm motor constant\n", + "ia=20#A\n", + "\n", + "#calculations\n", + "vt=ia*ra\n", + "alpha=vt/v\n", + "#when alpha=1\n", + "eb=v-ia*ra\n", + "N=eb/ka\n", + "\n", + "#result\n", + "print \"range of speed control=\",0,\"to\",N,\"rpm\"\n", + "print \"range of duty cycle=\",(alpha),\"to\",1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " range of speed control= 0 to 2200.0 rpm\n", + "range of duty cycle= 0.0833333333333 to 1\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.49, Page Number:1080" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=7.46#kW\n", + "v=200#V\n", + "efficiency=0.85\n", + "ra=0.25#ohm\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "i=load*1000/(v*efficiency)\n", + "i1=ratio*i\n", + "r1=v/i1\n", + "r_start=r1-ra\n", + "eb1=v-i*r1\n", + "\n", + "#result\n", + "print \"starting resistance=\",r_start,\"ohm\"\n", + "print \"back emf=\",eb1,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting resistance= 2.78842716711 ohm\n", + "back emf= 66.6666666667 V\n" + ] + } + ], + "prompt_number": 125 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.50, Page Number:1080" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.5#ohm\n", + "ia=40.0#A\n", + "n=7\n", + "\n", + "#calculations\n", + "r1=v/ia\n", + "k=(r1/ra)**(1.0/(n-1))\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 1.812 ohm\n", + "resistance of 2nd section= 1.215 ohm\n", + "resistance of 3rd section= 0.815 ohm\n", + "resistance of 4th section= 0.546 ohm\n", + "resistance of 5th section= 0.366 ohm\n", + "resistance of 6th section= 0.246 ohm\n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.51, Page Number:1081" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=6\n", + "load=3.73#kW\n", + "v=200#V\n", + "ratio=0.50\n", + "i1=0.6#A\n", + "efficiency=0.88\n", + "\n", + "#calculation\n", + "output=load/efficiency\n", + "total_loss=output-load\n", + "cu_loss=total_loss*ratio\n", + "i=output*1000/v\n", + "ia=i-i1\n", + "ra=cu_loss*1000/ia**2\n", + "i_per=i*2\n", + "ia_per=i_per-i1\n", + "r1=v/ia_per\n", + "k=(r1/ra)**(1.0/(n-1))\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-ra\n", + "\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 1.627 ohm\n", + "resistance of 2nd section= 1.074 ohm\n", + "resistance of 3rd section= 0.709 ohm\n", + "resistance of 4th section= 0.468 ohm\n", + "resistance of 5th section= 0.309 ohm\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.52, Page Number:1081" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=7\n", + "load=36.775#kW\n", + "v=400#V\n", + "ratio=0.05\n", + "rsh=200#ohm\n", + "efficiency=0.92\n", + "\n", + "#calculation\n", + "input_m=load*1000/efficiency\n", + "cu_loss=input_m*ratio\n", + "cu_loss_sh=v**2/rsh\n", + "cu_loss_a=cu_loss-cu_loss_sh\n", + "i=input_m/v\n", + "ish=v/rsh\n", + "ia=i-ish\n", + "ra=cu_loss_a/ia**2\n", + "k=(v/(ia*ra))**(1.0/(n))\n", + "i1=k*ia\n", + "r1=v/i1\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "r7=r5/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-r7\n", + "p7=r7-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n", + "print \"resistance of 7th section=\",round(p7,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 0.974 ohm\n", + "resistance of 2nd section= 0.592 ohm\n", + "resistance of 3rd section= 0.36 ohm\n", + "resistance of 4th section= 0.219 ohm\n", + "resistance of 5th section= 0.133 ohm\n", + "resistance of 6th section= 0.0 ohm\n", + "resistance of 7th section= 0.081 ohm\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.53, Page Number:1082" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "n=Symbol('n')\n", + "v=250.0#V\n", + "ra=0.125#ohm\n", + "i2=150.0#A\n", + "i1=200.0#A\n", + "\n", + "#calculation\n", + "r1=v/i1\n", + "n=solve((i1/i2)**(n-1)-(r1/ra),n)\n", + "k=i1/i2\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "r7=r6/k\n", + "r8=r7/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-r7\n", + "p7=r7-r8\n", + "p8=r8-ra\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n", + "print \"resistance of 7th section=\",round(p7,3),\"ohm\"\n", + "print \"resistance of 8th section=\",round(p8,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 0.313 ohm\n", + "resistance of 2nd section= 0.234 ohm\n", + "resistance of 3rd section= 0.176 ohm\n", + "resistance of 4th section= 0.132 ohm\n", + "resistance of 5th section= 0.099 ohm\n", + "resistance of 6th section= 0.074 ohm\n", + "resistance of 7th section= 0.056 ohm\n", + "resistance of 8th section= 0.042 ohm\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.54, Page Number:1083" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "n=Symbol('n')\n", + "v=500#V\n", + "z=20\n", + "ra=1.31#ohm\n", + "t=218#N-m\n", + "ratio=1.5\n", + "slot=60\n", + "phi=23*0.001#Wb\n", + "\n", + "#calculation\n", + "ia=t/(0.159*phi*slot*z)\n", + "i1=ia*ratio\n", + "i2=ia\n", + "k=i1/i2\n", + "r1=v/i1\n", + "n=solve(k**(n-1)-(r1/ra),n)\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 2.237 ohm\n", + "resistance of 2nd section= 1.491 ohm\n", + "resistance of 3rd section= 0.994 ohm\n", + "resistance of 4th section= 0.678 ohm\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.55, Page Number:1084" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=37.3#kW\n", + "v=440#V\n", + "drop=0.02\n", + "efficiency=0.95\n", + "i_per=1.30\n", + "\n", + "#calculation\n", + "il=load*1000/(v*efficiency)\n", + "i1=i_per*il\n", + "vd=drop*v\n", + "rm=vd/il\n", + "r1=v/i1\n", + "r=(r1-rm)/6\n", + "\n", + "#result\n", + "print \"resistance of each rheostat=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of each rheostat= 0.615721729566 ohm\n" + ] + } + ], + "prompt_number": 165 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.56, Page Number:1085" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=55.95#kW\n", + "v=650.0#V\n", + "r=0.51#ohm\n", + "i1=140.0#A\n", + "i2=100.0#A\n", + "per=0.20\n", + "\n", + "#calculation\n", + "ratio=i1/i2\n", + "r1=v/i1\n", + "r2=((per+1)/ratio-per)*r1\n", + "r3=(per+1)*r2/ratio-per*r1\n", + "r4=((per+1)*r3/ratio)-per*r1\n", + "\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "\n", + "#result\n", + "print \"number of steps=\",3\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "number of steps= 3\n", + "resistance of 1st section= 1.592 ohm\n", + "resistance of 2nd section= 1.364 ohm\n", + "resistance of 3rd section= 1.17 ohm\n" + ] + } + ], + "prompt_number": 170 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter31_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter31_6.ipynb new file mode 100644 index 00000000..88c66f5b --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter31_6.ipynb @@ -0,0 +1,935 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:02fdabadd118404eca71c942f203b8c36bfc89b9baf1e3f2f8e7065ab9807edb" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 31: Testing of DC Machines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.1, Page Number:1092" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "l=38.1#kg\n", + "d=63.53*0.01#cm\n", + "v=12#rps\n", + "i=49#A\n", + "V=220#V\n", + "\n", + "#calculations\n", + "r=d/2\n", + "torque=l*r*9.81\n", + "power=torque*2*3.14*v\n", + "motor_input=i*V\n", + "efficiency=power*100/motor_input\n", + "\n", + "#result\n", + "print \"Output power=\",round(power),\"W\"\n", + "print \"Efficiency=\",round(efficiency),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output power= 8947.0 W\n", + "Efficiency= 83.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.2(a), Page Number:1093" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "spring_b1=10.0#kg\n", + "spring_b2=35.0#kg\n", + "d=40*0.01#m\n", + "v=950.0#rpm\n", + "V=200.0#V\n", + "i=30.0#A\n", + "\n", + "#calculations\n", + "F=(spring_b2-spring_b1)*9.81\n", + "N=v/60\n", + "R=d/2\n", + "tsh=F*R\n", + "omega=2*3.14*N\n", + "output=tsh*omega\n", + "motor_input=V*i\n", + "efficiency=output/motor_input\n", + "\n", + "#result\n", + "print \"output power=\",output,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output power= 4877.205 W\n", + "efficiency= 81.28675 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.2(b), Page Number:1093" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "t1=2.9#kg\n", + "t2=0.17#kg\n", + "r=7*0.01#m\n", + "i=2.0#A\n", + "V=230.0#V\n", + "n=1500.0#rpm\n", + "\n", + "#calculations\n", + "force=(t1-t2)*9.81\n", + "torque=force*r\n", + "output=torque*2*3.14*n/60\n", + "efficiency=output/(V*i)\n", + "\n", + "#result\n", + "print \"torque=\",torque,\"N-m\"\n", + "print \"output\",output,\"W\"\n", + "print \"efficiency\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 1.874691 N-m\n", + "output 294.326487 W\n", + "efficiency 63.984018913 %\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.3, Page Number:1095" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "V=220.0#V\n", + "i=2.5#A\n", + "ra=0.8#ohm\n", + "rsh=200.0#ohm\n", + "I=20.0#A\n", + "\n", + "#calculations\n", + "input_noload=V*i\n", + "ish=V/rsh\n", + "ia0=i-ish\n", + "culoss=ia0**2*ra\n", + "constant_loss=input_noload-culoss\n", + "ia=32-ish\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "input_=V*I\n", + "output=input_-total_loss\n", + "efficiency=(output/input_)*100\n", + "\n", + "#result\n", + "print \"Efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 70.1754545455 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.4, Page Number:1096" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "V=400.0#V\n", + "i=5.0#A\n", + "ra=0.5#ohm\n", + "r=200.0#ohm\n", + "I=50.0#A\n", + "\n", + "#calculations\n", + "input_nl=V*i\n", + "ish=V/r\n", + "ia=i-ish\n", + "cu_loss=ia**2*ra\n", + "constant_loss=input_nl-cu_loss\n", + "Ia=I-ish\n", + "cu_lossa=Ia**2*ra\n", + "total_loss=constant_loss+cu_lossa\n", + "input_nl1=V*I\n", + "output=input_nl1-total_loss\n", + "efficiency=output/input_nl\n", + "Eb1=V-(ia*ra)\n", + "Eb2=V-(Ia*ra)\n", + "change=math.fabs((Eb1-Eb2)/Eb1)\n", + "\n", + "#result\n", + "print \"output=\",output,\"W\"\n", + "print \"efficiency=\",efficiency*10,\"%\"\n", + "print \"percentage change in speed=\",change*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 16852.5 W\n", + "efficiency= 84.2625 %\n", + "percentage change in speed= 5.64617314931 %\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.8, Page Number:1098" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=200*1000.0#W\n", + "v=250.0#V\n", + "i1=36.0#A\n", + "I1=12.0#A\n", + "v1=250.0#V\n", + "pd=6.0#V\n", + "i2=400.0#A\n", + "\n", + "#calculations\n", + "#no load\n", + "ia=i1-I1\n", + "ra=pd/i2\n", + "cu_loss=ia**2*ra\n", + "input_nl=v*i1\n", + "constant_loss=input_nl-cu_loss\n", + "\n", + "#full load\n", + "output_i=p/v\n", + "ia=output_i+I1\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "efficiency=p/(p+total_loss)\n", + "#result\n", + "print \"efficiency at full load=\",efficiency*100,\"%\"\n", + "\n", + "#half load\n", + "output_i=p/(2*v)\n", + "ia=output_i+I1\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "efficiency=p/((p/2+total_loss)*2)\n", + "\n", + "#result\n", + "print \"efficiency at half load=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency at full load= 91.3736344667 %\n", + "efficiency at half load= 89.6559292335 %\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.9, Page Number:1098" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "p=14.92*1000#W\n", + "e=0.88\n", + "n=700.0#rpn\n", + "rsh=100.0#ohm\n", + "i=78.0#A\n", + "\n", + "#calculations\n", + "input_=0.8*p/e\n", + "total_loss=input_-0.8*p\n", + "input_i=input_/v\n", + "ish=v/rsh\n", + "ia=input_i-ish\n", + "ra=total_loss/(2*(ia**2))\n", + "Ia=i-ish\n", + "total_loss2=Ia**2*ra+total_loss/2\n", + "input__=v*i\n", + "efficiency=(input__-total_loss2)*100/input__\n", + "Eb1=v-(ia*ra)\n", + "Eb2=v-(Ia*ra)\n", + "n2=(n*Eb2)/Eb1\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"speed=\",n2,\"r.p.m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 86.9450046554 %\n", + "speed= 678.443304738 r.p.m\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.10(a), Page Number:1101" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220.0#V\n", + "p=100*1000.0#W\n", + "i2=90.0#A\n", + "\n", + "#calculations\n", + "i1=p/v\n", + "efficiency=math.sqrt(i1/(i1+i2))*100\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 91.4 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.11, Page Number:1102" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=15#A\n", + "v=200#V\n", + "motor_i=100#A\n", + "shunt_i1=3#A\n", + "shunt_i2=2.5#A\n", + "ra=0.05#ohm\n", + "cu_loss=500#W\n", + "cu_lossa=361#W\n", + "ia=85#A\n", + "#calculations\n", + "mech_core_stray_loss=0.5*((v*i)-(motor_i**2*ra)-(ia**2*ra))\n", + "cu_motor=v*shunt_i1\n", + "generator_motor=v*shunt_i2\n", + "total_loss=mech_core_stray_loss+cu_motor+generator_motor\n", + "input_=v*i+cu_motor\n", + "output=v*ia*10**(-3)\n", + "loss=cu_loss*10**(-3)+1.07+0.36\n", + "efficiency=output*100/(output+loss)\n", + "\n", + "#result\n", + "print \"eficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eficiency= 89.8045430534 %\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.12, Page Number:1103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=110#V\n", + "i=48#A\n", + "i1=3#a\n", + "i2=3.5#A\n", + "motor_i=230#A\n", + "ra=0.035#ohm\n", + "\n", + "#calculations\n", + "#motor\n", + "cu_loss=motor_i**2*ra\n", + "brush_loss=motor_i*2\n", + "totalarm_culoss=cu_loss+brush_loss\n", + "shunt_cu=v*i1\n", + "total_cu_lossm=totalarm_culoss+shunt_cu\n", + "#generator\n", + "arm_i=233-i+i2\n", + "cu_loss=arm_i**2*ra\n", + "brush_loss=arm_i*2\n", + "totalarm_culoss=cu_loss+brush_loss\n", + "shunt_cu=v*i2\n", + "total_cu_lossg=totalarm_culoss+shunt_cu\n", + "#set\n", + "totalcu_loss=total_cu_lossm+total_cu_lossg\n", + "total_input=v*i\n", + "stray_loss=total_input-totalcu_loss\n", + "strayloss_per=stray_loss/2\n", + "#motor efficiency\n", + "input_=233*v\n", + "output=input_-(total_cu_lossm+strayloss_per)\n", + "e=output/input_*100\n", + "print \"motor efficiency=\",e,\"%\"\n", + "#generator efficiency\n", + "input_=110*185\n", + "output=input_-(total_cu_lossg+strayloss_per)\n", + "e=output/input_*100\n", + "100\n", + "print \"generator efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 88.4590884705 %\n", + "generator efficiency= 88.5893642506 %\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.13, Page Number:1103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable series\n", + "v=500.0#A\n", + "p=100*1000.0#w\n", + "auxiliary_i=30.0#A\n", + "output_i=200.0#A\n", + "i1=3.5#A\n", + "i2=1.8#A\n", + "ra=0.075#ohm\n", + "vdb=2.0#V\n", + "\n", + "#calculations\n", + "motor_arm=output_i+auxiliary_i\n", + "motorarm_culoss=(motor_arm**2*ra)+(motor_arm*2)\n", + "motorfield_culoss=v*i2\n", + "generatorarm_culoss=(output_i**2*ra)+(output_i*2)\n", + "generatoefield_culoss=v*i1\n", + "total_culoss=motorarm_culoss+motorfield_culoss+generatorarm_culoss+generatoefield_culoss\n", + "power=v*auxiliary_i\n", + "stray_loss=power-total_culoss\n", + "permachine=stray_loss/2\n", + "total_loss=generatorarm_culoss+generatoefield_culoss+permachine\n", + "output=v*output_i\n", + "e=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 93.1001175389 %\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.14, Page Number:1104" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "i=50.0#A\n", + "motor_i=400.0#A\n", + "i1=6.0#A\n", + "i2=5.0#A\n", + "ra=0.015#ohm\n", + "\n", + "#calculations\n", + "motora_culoss=motor_i**2*ra\n", + "generatora_culoss=(motor_i-i)**2*ra\n", + "power=v*i\n", + "stray_loss=power-(motora_culoss+generatora_culoss)\n", + "permachine=stray_loss/2\n", + "#motor\n", + "total_motor_loss=motora_culoss+(v*i2)+permachine\n", + "motor_input=(v*motor_i)+v*i2\n", + "motor_e=(motor_input-total_motor_loss)/motor_input\n", + "\n", + "#generator\n", + "total_gen_loss=generatora_culoss+(v*i1)+permachine\n", + "gen_output=v*(motor_i-i)\n", + "gen_e=(gen_output-total_gen_loss)/gen_output\n", + "\n", + "#result\n", + "print \"motor efficiency=\",motor_e*100,\"%\"\n", + "print \"generator efficiency\",gen_e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 92.3148148148 %\n", + "generator efficiency 91.4642857143 %\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.15, Page Number:1105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "i=50.0#A\n", + "ia=380.0#A\n", + "i1=5.0#A\n", + "i2=4.2#A\n", + "ra=0.2#ohm\n", + "\n", + "#calculations\n", + "motora_culoss=ia**2*ra\n", + "generatora_culoss=(ia-i)**2*ra\n", + "power=v*i\n", + "stray_loss=power-(motora_culoss+generatora_culoss)\n", + "permachine=stray_loss/2\n", + "#motor\n", + "total_motor_loss=motora_culoss+(v*i2)+permachine\n", + "motor_input=(v*ia)+v*i2\n", + "motor_e=(motor_input-total_motor_loss)/motor_input\n", + "\n", + "#generator\n", + "total_gen_loss=generatora_culoss+(v*i1)+permachine\n", + "gen_output=v*(ia-i)\n", + "gen_e=(gen_output-total_gen_loss)/gen_output\n", + "\n", + "#result\n", + "print \"motor efficiency=\",motor_e*100,\"%\"\n", + "print \"generator efficiency\",gen_e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 88.7038001041 %\n", + "generator efficiency 95.2121212121 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.16, Page Number:1107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "v2=190.0#V\n", + "t=30#sec\n", + "t2=20#sec\n", + "i=20.0#A\n", + "\n", + "#calculations\n", + "avg_v=(v+v2)/2\n", + "avg_i=i/2\n", + "power=avg_v*avg_i\n", + "W=power*(t2/(t-t2))\n", + "\n", + "#result\n", + "print \"Stray loss=\",W,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Stray loss= 4100.0 W\n" + ] + } + ], + "prompt_number": 85 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.17, Page Number:1107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabledeclaration\n", + "n1=1525.0#rpm\n", + "n2=1475.0#ohm\n", + "dt=25.0#sec\n", + "p=1000.0#W\n", + "t2=20.0#sec\n", + "\n", + "#calculations\n", + "N=(n1+n2)/2\n", + "w=p*(t2/(dt-t2))\n", + "dN=n1-n2\n", + "I=(w*dt)/((2*3.14/60)**2*N*dN)\n", + "\n", + "#result\n", + "print \"Moment of Inertia=\",I,\"kg-m2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Moment of Inertia= 121.708791432 kg-m2\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.18, Page Number:1108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240.0#V\n", + "v2=225.0#V\n", + "dt=25.0#sec\n", + "t2=6.0#ohm\n", + "iavg=10.0#A\n", + "i2=25.0#A\n", + "v3=250.0#V\n", + "ra=0.4#ohm\n", + "r=250.0#ohm\n", + "\n", + "#calculations\n", + "avg_v=(v+v2)/2\n", + "w_=avg_v*iavg\n", + "W=w_*(t2/(dt-t2))\n", + "ish=v3/r\n", + "ia=i2-ish\n", + "cu_loss=ia**2*ra\n", + "cu_shunt=v3*ia\n", + "total_loss=W+cu_loss+v3\n", + "e=((v*i2)-total_loss)/(v*i2)\n", + "\n", + "#result\n", + "print \"efficiency=\",e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "734.210526316\n", + "efficiency= 79.7564912281 %\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.19, Page Number:1108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "n1=1030#rpm\n", + "n2=970#rpm\n", + "t1=36#sec\n", + "t2=15#sec\n", + "t3=9#sec\n", + "i=10#A\n", + "v=219#V\n", + "\n", + "#calculations\n", + "W=v*i*(t2/(dt-t2))\n", + "dN=n1-n2\n", + "I=(W*t2)/((2*3.14/60)**2*n*dN)\n", + "Wm=W*t2/t1\n", + "iron_loss=W-Wm\n", + "\n", + "#result\n", + "print \"i)moment of inertia=\",I,\"kg.m2\"\n", + "print \"ii)iron loss=\",iron_loss,\"W\"\n", + "print \"iii)mechanical losses=\",Wm,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)moment of inertia= 74.9650087225 kg.m2\n", + "ii)iron loss= 1916.25 W\n", + "iii)mechanical losses= 1368.75 W\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.20, Page Number:1110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "iam=56.0#A\n", + "vam=590.0#V\n", + "vdm=40.0#V\n", + "iag=44.0#A\n", + "vag=400.0#V\n", + "vdg=40.0#V\n", + "r=0.3#ohm\n", + "\n", + "#calculations\n", + "input_total=(vdm+vam)*iam\n", + "output=vag*iag\n", + "total_loss=input_total-output\n", + "rse=vdg/iam\n", + "cu_loss=((r+2*rse)*iam**2)+(iag**2*r)\n", + "strayloss=total_loss-cu_loss\n", + "permachine=strayloss/2\n", + "#motor\n", + "inputm=vam*iam\n", + "culossm=(r+rse)*iam**2\n", + "totallossm=culossm+permachine\n", + "output=inputm-totallossm\n", + "em=output*100/inputm\n", + "#generator\n", + "inputg=vag*iag\n", + "culossg=(r)*iag**2\n", + "totalloss=culossg+permachine+(vdm*iam)\n", + "output=vag*iag\n", + "eg=output*100/(output+totalloss)\n", + "\n", + "print \n", + "#result\n", + "print \"motor efficiency=\",em,\"%\"\n", + "print \"generator efficiency=\",eg,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "motor efficiency= 72.6997578692 %\n", + "generator efficiency= 67.0220868241 %\n" + ] + } + ], + "prompt_number": 115 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter32_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter32_6.ipynb new file mode 100644 index 00000000..a29de087 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter32_6.ipynb @@ -0,0 +1,5311 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:69b299b5398cdb7b833f53d6a7d05a19c0a433537449ffb871db80e61817fe5c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 32: Transformer" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.1, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=250.0#V\n", + "v2=3000.0#V\n", + "f=50.0#Hz\n", + "phi=1.2#Wb-m2\n", + "e=8.0#V\n", + "\n", + "#calculations\n", + "n1=v1/e\n", + "n2=v2/e\n", + "a=v2/(4.44*f*n2*phi)\n", + "\n", + "#result\n", + "print \"primary turns=\",n1\n", + "print \"secondary turns=\",n2\n", + "print \"area of core=\",round(a,2),\"m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary turns= 31.25\n", + "secondary turns= 375.0\n", + "area of core= 0.03 m2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.2, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#KVA\n", + "v1=11000#V\n", + "v2=550#V\n", + "f=50#Hz\n", + "bm=1.3#Tesla\n", + "sf=0.9\n", + "per=10#%\n", + "a=20*20*sf/10000#m2\n", + "\n", + "#calculation\n", + "n1=v1/(4.44*f*bm*a)\n", + "n2=v2/(4.44*f*bm*a)\n", + "e_per_turn=v1/n1\n", + "\n", + "#result\n", + "print \"HV TURNS=\",round(n1)\n", + "print \"LV TURNS=\",round(n2)\n", + "print \"EMF per turns=\",round(e_per_turn,1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV TURNS= 1059.0\n", + "LV TURNS= 53.0\n", + "EMF per turns= 10.4 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.3, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=400.0\n", + "n2=1000.0\n", + "a=60.0/10000.0#cm2\n", + "f=50.0#Hz\n", + "e1=520.0#V\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "e2=k*e1\n", + "bm=e1/(4.44*f*n1*a)\n", + "\n", + "#result\n", + "print \"peak value of flux density=\",bm,\"WB/m2\"\n", + "print \"voltage induced in the secondary winding=\",e2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak value of flux density= 0.975975975976 WB/m2\n", + "voltage induced in the secondary winding= 1300.0 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.4, Page Number:1124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "n1=500.0\n", + "n2=50.0\n", + "v=3000.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "i1=load*1000/v\n", + "i2=i1/k\n", + "e1=v/n1\n", + "e2=e1*n2\n", + "phim=v/(4.44*f*n1)\n", + "\n", + "#result\n", + "print \"primary and secondary currents=\",i1,\"A\", i2,\"A\"\n", + "print \"secondary emf=\",e2,\"V\"\n", + "print \"flux=\",phim*1000,\"mWB\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary and secondary currents= 8.33333333333 A 83.3333333333 A\n", + "secondary emf= 300.0 V\n", + "flux= 27.027027027 mWB\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.5, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "v1=11000#V\n", + "v2=550#V\n", + "load=300#kVA\n", + "phim=0.05#Wb\n", + "\n", + "#calculation\n", + "e=4.44*f*phim\n", + "e2=v2/1.732\n", + "t1=v1/e\n", + "t2=e2/e\n", + "output=load/3\n", + "HV=100*1000/v1\n", + "LV=100*1000/e2\n", + "\n", + "#result\n", + "print \"HV turns=\",t1\n", + "print \"LV turns=\",t2\n", + "print \"emf per turn=\",e2\n", + "print \"full load HV=\",HV\n", + "print \"full load LV=\",LV" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV turns= 990.990990991\n", + "LV turns= 28.6082849593\n", + "emf per turn= 317.551963048\n", + "full load HV= 9\n", + "full load LV= 314.909090909\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.6, Page Number:1124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=500.0\n", + "n2=1200.0\n", + "a=80.0/10000.0#m2\n", + "f=50.0#Hz\n", + "v=500.0#V\n", + "\n", + "#calculation\n", + "phim=n1/(4.44*f*n1)\n", + "bm=phim/a\n", + "v2=n2*v/n1\n", + "\n", + "#result\n", + "print \"peak flux-density=\",bm,\"Wb\"\n", + "print \"voltage induced in the secondary=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak flux-density= 0.563063063063 Wb\n", + "voltage induced in the secondary= 1200.0 V\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.7, Page Number:1125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#varible declaration\n", + "load=25.0#kVA\n", + "n1=250.0\n", + "n2=40.0\n", + "v=1500.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculation\n", + "v2=n2*v/n1\n", + "i1=load*1000/v\n", + "i2=load*1000/v2\n", + "phim=v/(4.44*f*n1)\n", + "\n", + "#result\n", + "print \"i)primary current an secondary current=\",i1,\"A\",i2,\"A\"\n", + "print \"ii)seconary emf=\",v2,\"V\"\n", + "print \"iii)maximum flux=\",phim*1000,\"mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)primary current an secondary current= 16.6666666667 A 104.166666667 A\n", + "ii)seconary emf= 240.0 V\n", + "iii)maximum flux= 27.027027027 mWb\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.8, Page Number:1125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "a=20.0*20.0/10000#m2\n", + "phim=1.0#Wbm2\n", + "v1=3000.0#V\n", + "v2=220.0#V\n", + "\n", + "#calculation\n", + "t2=v2/(4.44*f*phim*a)\n", + "t1=t2*v1/v2\n", + "n1=t1/2\n", + "n2=t2/2\n", + "\n", + "#result\n", + "print \"HV turns=\",n1\n", + "print \"LV turns=\",n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV turns= 168.918918919\n", + "LV turns= 12.3873873874\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.9, Page Number:1126" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2200.0#V\n", + "v2=200.0#V\n", + "i1=0.6#A\n", + "p=400.0#W\n", + "v3=250.0#V\n", + "i0=0.5#A\n", + "pf=0.3\n", + "\n", + "#calculation\n", + "il=p/v1\n", + "imu=(i1**2-il**2)**0.5\n", + "iw=i0*pf\n", + "imu2=(i0**2-iw**2)**0.5\n", + "\n", + "#result\n", + "print \"magnetising currents=\",imu,\"A\"\n", + "print \"iron loss current=\",il,\"A\"\n", + "print \"magnetising components of no load primary current=\",imu2,\"A\"\n", + "print \"working components of no-load primary current=\",iw,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnetising currents= 0.571788552492 A\n", + "iron loss current= 0.181818181818 A\n", + "magnetising components of no load primary current= 0.476969600708 A\n", + "working components of no-load primary current= 0.15 A\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.10, Page Number:1127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=500.0\n", + "n2=40.0\n", + "l=150.0#cm\n", + "airgap=0.1#mm\n", + "e1=3000.0#V\n", + "phim=1.2#Wb/m2\n", + "f=50.0#Hz\n", + "d=7.8#grma/cm3\n", + "loss=2.0#watt/kg\n", + "\n", + "#calculation\n", + "a=e1/(4.44*f*n1*phim)\n", + "k=n2/n1\n", + "v2=k*e1\n", + "iron=l*5\n", + "air=phim*airgap/(1000*4*3.14*10**(-7))\n", + "bmax=iron+air\n", + "imu=bmax/(n1*2**0.5)\n", + "volume=l*a\n", + "im=volume*d*10\n", + "total_i=im*2\n", + "iw=total_i/(e1)\n", + "i0=(imu**2+iw**2)**0.5\n", + "pf=iw/i0\n", + "\n", + "#result\n", + "print \"a)cross sectional area=\",a*10000,\"cm2\"\n", + "print \"b)no load secondary voltage=\",v2,\"V\"\n", + "print \"c)no load current=\",imu,\"A\"\n", + "print \"d)power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cross sectional area= 225.225225225 cm2\n", + "b)no load secondary voltage= 240.0 V\n", + "c)no load current= 1.19577611723 A\n", + "d)power factor= 0.145353269536\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.11, Page Number:1127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "n1=1000\n", + "n2=200\n", + "i=3#A\n", + "pf=0.2\n", + "i2=280#A\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "phi1=math.acos(pf2)\n", + "i2_=i2/5\n", + "phi2=math.acos(pf)\n", + "sinphi=math.sin(phi2)\n", + "sinphi2=math.sin(math.acos(phi1))\n", + "i1=i*complex(pf,-sinphi)+i2_*complex(pf2,-sinphi2)\n", + "\n", + "#result\n", + "print \"primary current=\",abs(i1),\"/_\",math.degrees(phi1),\"degrees\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 64.4918252531 /_ 36.8698976458 degrees\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.12, Page Number:1130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=440.0#v\n", + "v2=110.0#V\n", + "i0=5.0#A\n", + "pf=0.2\n", + "i2=120.0#A\n", + "pf2=0.8\n", + "\n", + "#calculation\n", + "phi2=math.acos(pf2)\n", + "phi0=math.acos(pf)\n", + "k=v2/v1\n", + "i2_=k*i2\n", + "angle=phi2-phi0\n", + "i1=(i0**2+i2_**2+(2*i0*i2_*math.cos(angle)))**0.5\n", + "\n", + "#result\n", + "print \"current taken by the primary=\",i1,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current taken by the primary= 33.9022604184 A\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.13, Page Number:1130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=800.0\n", + "n2=200.0\n", + "pf=0.8\n", + "i1=25.0#A\n", + "pf2=0.707\n", + "i2=80.0#A\n", + "#calculations\n", + "k=n2/n1\n", + "i2_=i2*k\n", + "phi2=math.acos(pf)\n", + "phi1=math.acos(pf2)\n", + "i0pf2=i1*pf2-i2_*pf\n", + "i0sinphi=i1*pf2-i2_*math.sin(math.acos(pf))\n", + "phi0=math.atan(i0sinphi/i0pf2)\n", + "i0=i0sinphi/math.sin(phi0)\n", + "\n", + "#result\n", + "print \"no load current=\",i0,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no load current= 5.91703050525 A\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.14, Page Number:1131" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=10#A\n", + "pf=0.2\n", + "ratio=4\n", + "i2=200#A\n", + "pf=0.85\n", + "\n", + "#calculations\n", + "phi0=math.acos(pf)\n", + "phil=math.acos(pf)\n", + "i0=complex(2,-9.8)\n", + "i2_=complex(42.5,-26.35)\n", + "i1=i0+i2_\n", + "phi=math.acos(i1.real/57.333)\n", + "\n", + "#result\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"power factor=\",math.degrees(phi),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= (44.5-36.15j) A\n", + "power factor= 39.0890154959 degrees\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.15, Page Number:1136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable decaration\n", + "load=30.0#KVA\n", + "v1=2400.0#V\n", + "v2=120.0#V\n", + "f=50.0#Hz\n", + "r1=0.1#ohm\n", + "x1=0.22#ohm\n", + "r2=0.034#ohm\n", + "x2=0.012#ohm\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "r02=r2+r1*k**2\n", + "x02=x2+x1*k**2\n", + "z02=(r02**2+x02**2)**0.5\n", + "\n", + "#result\n", + "print \"high voltage side:\"\n", + "print \"equivalent winding resistance=\",r01,\"ohm\"\n", + "print \"reactance=\",x01,\"ohm\"\n", + "print \"impedence=\",z01,\"ohm\"\n", + "print \"low voltage side:\"\n", + "print \"equivalent winding resistance=\",r02,\"ohm\"\n", + "print \"reactance=\",x02,\"ohm\"\n", + "print \"impedence=\",z02,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "high voltage side:\n", + "equivalent winding resistance= 13.7 ohm\n", + "reactance= 5.02 ohm\n", + "impedence= 14.5907642021 ohm\n", + "low voltage side:\n", + "equivalent winding resistance= 0.03425 ohm\n", + "reactance= 0.01255 ohm\n", + "impedence= 0.0364769105051 ohm\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.16, Page Number:1136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50.0#KVA\n", + "v1=4400.0#V\n", + "v2=220.0#V\n", + "r1=3.45#ohm\n", + "r2=0.009#ohm\n", + "x1=5.2#ohm\n", + "x2=0.015#ohm\n", + "\n", + "#calculations\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "r02=r2+k**2*r1\n", + "x01=x1+x2/k**2\n", + "x02=x2+x1*k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "z02=(r02**2+x02**2)**0.5\n", + "cu_loss=i1**2*r01\n", + "\n", + "#result\n", + "print \"i)resistance=\"\n", + "print \"primary=\",r01,\"ohm\"\n", + "print \"secondary=\",r02,\"ohm\"\n", + "print \"iii)reactance=\"\n", + "print \"primary=\",x01,\"ohm\"\n", + "print \"secondary=\",x02,\"ohm\"\n", + "print \"iv)impedence=\"\n", + "print \"primary=\",z01,\"ohm\"\n", + "print \"secondary=\",z02,\"ohm\"\n", + "print \"v)copper loss=\",cu_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance=\n", + "primary= 7.05 ohm\n", + "secondary= 0.017625 ohm\n", + "reactance=\n", + "primary= 11.2 ohm\n", + "secondary= 0.028 ohm\n", + "impedence=\n", + "primary= 13.2341414531 ohm\n", + "secondary= 0.0330853536327 ohm\n", + "copper loss= 910.382231405 W\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.17, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratio=10.0\n", + "load=50.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "f=50.0#Hz\n", + "v=240.0#V\n", + "\n", + "#calculation\n", + "i2=load*1000/v\n", + "z2=v/(i2)\n", + "k=v2/v1\n", + "z2_=z2/k**2\n", + "i2_=k*i2\n", + "\n", + "#result\n", + "print \"a)load impedence=\",z2,\"ohm\"\n", + "print \"b)impedence referred to high tension side=\",z2_,\"ohm\"\n", + "print \"c)the value of current referred to the high tension side=\",i2_,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)load impedence= 1.152 ohm\n", + "b)impedence referred to high tension side= 115.2 ohm\n", + "c)the value of current referred to the high tension side= 20.8333333333 A\n" + ] + } + ], + "prompt_number": 70 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.18, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "v1=11000.0#V\n", + "v2=317.0#V\n", + "load2=0.62#kW\n", + "lvload=0.48#kW\n", + "\n", + "#calculations\n", + "k=v1/v2\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "r1=load2*1000/i**2\n", + "r2=lvload*1000/i2**2\n", + "r2_=r2*k**2\n", + "x01=4*v1/(i1*100)\n", + "x2_=x01*r2_/(r1+r2_)\n", + "x1=x01-x2_\n", + "x2=x2_*10/k**2\n", + "\n", + "#result\n", + "print \"i)r1=\",r1,\"ohm\"\n", + "print \"r2=\",r2,\"ohm\"\n", + "print \"r2_=\",r2_,\"ohm\"\n", + "print \"ii)reactance=\",x01,\"ohm\"\n", + "print \"x1=\",x1,\"ohm\"\n", + "print \"x2=\",x2,\"ohm\"\n", + "print \"x2_=\",x2_,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)r1= 7.502 ohm\n", + "r2= 0.004823472 ohm\n", + "r2_= 5.808 ohm\n", + "ii)reactance= 48.4 ohm\n", + "x1= 27.28 ohm\n", + "x2= 0.175398981818 ohm\n", + "x2_= 21.12 ohm\n" + ] + } + ], + "prompt_number": 76 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.19, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declarations\n", + "k=19.5\n", + "r1=25.0#ohm\n", + "x1=100.0#ohm\n", + "r2=0.06#ohm\n", + "x2=0.25#ohm\n", + "i=1.25#A\n", + "angle=30#degrees\n", + "i2=200#A\n", + "v=50#V\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "v2=complex(500,0)\n", + "i2=i2*complex(0.8,-0.6)\n", + "z2=complex(r2,x2)\n", + "e2=v2+i2*z2\n", + "beta=math.atan(e2.imag/e2.real)\n", + "e1=e2*k\n", + "i2_=i2/k\n", + "angle=beta+math.radians(90)+math.radians(angle)\n", + "i0=i*complex(math.cos(angle),math.sin(angle))\n", + "i1=-i2_+i0\n", + "v2=-e1+i1*complex(r1,x1)\n", + "phi=math.atan(v2.imag/v2.real)-math.atan(i1.imag/i1.real)\n", + "pf=math.cos(phi)\n", + "power=abs(v2)*i*math.cos(math.radians(60))\n", + "r02=r2+r1/k**2\n", + "cu_loss=abs(i2)**2*r02\n", + "output=500*abs(i2)*pf2\n", + "loss=cu_loss+power\n", + "inpt=output+loss\n", + "efficiency=output*100/inpt\n", + "\n", + "#result\n", + "print \"primary applied voltage=\",v2,\"V\"\n", + "print \"primary pf=\",pf\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary applied voltage= (-11464.2126901-1349.15424294j) V\n", + "primary pf= 0.698572087114\n", + "efficiency= 86.7261056254 %\n" + ] + } + ], + "prompt_number": 94 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.20, Page Number:1138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable description\n", + "load=100#KVA\n", + "v1=1100#V\n", + "v2=220#V\n", + "f=50#Hz\n", + "zh=complex(0.1,0.4)\n", + "zl=complex(0.006,0.015)\n", + "\n", + "#calculations\n", + "k=v1/v2\n", + "#HV \n", + "r1=zh.real+zl.real*k**2\n", + "x1=zh.imag+zl.imag*k**2\n", + "z1=(r1**2+x1**2)**0.5\n", + "#LV\n", + "r2=r1/k**2\n", + "x2=x1/k**2\n", + "z2=z1/k**2\n", + "\n", + "#result\n", + "print \"HV:\"\n", + "print \"resistance=\",r1,\"ohm\"\n", + "print \"reactance=\",x1,\"ohm\"\n", + "print \"impedence=\",z1,\"ohm\"\n", + "print \"LV:\"\n", + "print \"resistance=\",r2,\"ohm\"\n", + "print \"reactance=\",x2,\"ohm\"\n", + "print \"impedence=\",z2,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV:\n", + "resistance= 0.25 ohm\n", + "reactance= 0.775 ohm\n", + "impedence= 0.814324873745 ohm\n", + "LV:\n", + "resistance= 0.01 ohm\n", + "reactance= 0.031 ohm\n", + "impedence= 0.0325729949498 ohm\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.21, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=230#V\n", + "v2=460#V\n", + "r1=0.2#ohm\n", + "x1=0.5#ohm\n", + "r2=0.75#ohm\n", + "x2=1.8#ohm\n", + "i=10#A\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "k=v2/v1\n", + "r02=r2+k**2*r1\n", + "x02=x2+k**2*x1\n", + "vd=i*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "vt2=v2-vd\n", + "\n", + "#result\n", + "print \"secondary terminal voltage=\",vt2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary terminal voltage= 424.8 V\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.22, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=1.0#%\n", + "x=5.0#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "mu=r*pf+x*math.sin(math.acos(pf))\n", + "mu2=r**2+x*0\n", + "mu3=r*pf-x*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"regulation at pf=0.8 lag:\",mu,\"%\"\n", + "print \"regulation at pf=1:\",mu2,\"%\"\n", + "print \"regulation at pf=0.8 lead:\",mu3,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation at pf=0.8 lag: 3.8 %\n", + "regulation at pf=1: 1.0 %\n", + "regulation at pf=0.8 lead: -2.2 %\n" + ] + } + ], + "prompt_number": 98 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.23, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "x=5#%\n", + "r=2.5#%\n", + "\n", + "#calculation\n", + "phi=math.atan(x/r)\n", + "cosphi=math.cos(phi)\n", + "sinphi=math.sin(phi)\n", + "regn=r*cosphi+x*sinphi\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"pf=\",cosphi" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 5.59016994375 %\n", + "pf= 0.4472135955\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.24, Page Number:1142" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=2.5#%\n", + "x=5#%\n", + "load1=500#KVA\n", + "load2=400#KVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "kw=load2*pf\n", + "kvar=load2*math.sin(math.acos(pf))\n", + "drop=(r*kw/load1)+(x*kvar/load1)\n", + "\n", + "#result\n", + "print \"percentage voltage drop=\",drop,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage voltage drop= 4.0 %\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.26, Page Number:1145" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=600#V\n", + "v2=1080#V\n", + "v=720#V\n", + "load=8#W\n", + "load2=10#kVA\n", + "\n", + "#calculation\n", + "ir2=load*1000/v2\n", + "il2=load*1000/v\n", + "ir2_=ir2*v2/v1\n", + "il2_=il2*v/v1\n", + "ir2=math.sqrt(ir2_**2+il2_**2)\n", + "s=complex(load,load2)\n", + "s=abs(s)\n", + "pf=load/s\n", + "i=s*load2*100/v1\n", + "\n", + "#result\n", + "print \"primary current=\",i,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 21.3437474581 A\n", + "power factor= 0.624695047554\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.27, Page Number:1046" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220#V\n", + "v1=110#V\n", + "i=0.5#A\n", + "p=30#W\n", + "r=0.6#ohm\n", + "\n", + "#calculation\n", + "ratio=v/v1\n", + "pf=p/(i*v)\n", + "sinphi=math.sqrt(1-pf**2)\n", + "ip=i*sinphi\n", + "iw=i*pf\n", + "cu_loss=i**2*r\n", + "iron_loss=p-cu_loss\n", + "\n", + "#result\n", + "print \"i)turns ratio=\",ratio\n", + "print \"ii)magnetising component of no-load current=\",ip,\"A\"\n", + "print \"iii)working component of no-load current=\",iw,\"A\"\n", + "print \"iv)the iron loss=\",iron_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)turns ratio= 2\n", + "ii)magnetising component of no-load current= 0.481045692921 A\n", + "iii)working component of no-load current= 0.136363636364 A\n", + "iv)the iron loss= 29.85 W\n" + ] + } + ], + "prompt_number": 104 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.28, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=200.0#V\n", + "v2=1000.0#V\n", + "f=50.0#Hz\n", + "vo=2000.0#V\n", + "io=1.2#A\n", + "po=90.0#W\n", + "vs=50.0#V\n", + "i_s=5.0#A\n", + "ps=110.0#W\n", + "p=3.0#kW\n", + "pf=0.8\n", + "v=200.0#V\n", + "\n", + "#calculation\n", + "r0=v**2/po\n", + "ia0=v/r0\n", + "ip=math.sqrt(io**2-ia0**2)\n", + "xm=v/ip\n", + "z=vs/i_s\n", + "r=ps/25\n", + "x=math.sqrt(z**2-r**2)\n", + "r1=r*(v1/v2)**2\n", + "x1=x*(v1/v2)**2\n", + "i_lv1=load*1000/v\n", + "i_lv=(p*1000/pf)/v\n", + "sinphi=math.sin(math.acos(pf))\n", + "reg=i_lv*(r1*pf+x1*sinphi)/v\n", + "vt=v2-reg*1000/v\n", + "\n", + "#result\n", + "print \"LV crrent at rated load=\",i_lv1,\"A\"\n", + "print \"LV current at 3kW at 0.8 lagging pf\",i_lv,\"A\"\n", + "print \"output secondary voltage=\",vt,\"V\"\n", + "print \"percentage regulation=\",reg*100,\"%\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "LV crrent at rated load= 25.0 A\n", + "LV current at 3kW at 0.8 lagging pf 18.75 A\n", + "output secondary voltage= 999.832975251 V\n", + "percentage regulation= 3.34049498886 %\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.29, Page Number:1048" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "loss1=52.0#W\n", + "f1=40.0#Hz\n", + "loss2=90.0#W\n", + "f2=60.0#Hz\n", + "f=50.0#Hz\n", + "\n", + "#calculation\n", + "ans=solve([(loss1/f1)-(A+f1*B),(loss2/f2)-(A+f2*B)],[A,B])\n", + "wh=ans[A]*f\n", + "we=ans[B]*f**2\n", + "\n", + "#result\n", + "print \"hysteresis=\",round(wh),\"W\"\n", + "print \"eddy current=\",round(we),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hysteresis= 45.0 W\n", + "eddy current= 25.0 W\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.30, Page Number:1048" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "m=10#kg\n", + "f=50.0#Hz\n", + "f1=25.0\n", + "f2=40.0\n", + "f3=50.0\n", + "f4=60.0\n", + "f5=80.0\n", + "l1=18.5/f1\n", + "l2=36.0/f2\n", + "l3=50.0/f3\n", + "l4=66.0/f4\n", + "l5=104.0/f5\n", + "#calculation\n", + "ans=solve([l1/f1-(A+f1*B),l2/f2-(A+f2*B)],[A,B])\n", + "eddy_loss_per_kg=ans[B]*f**2/m\n", + "\n", + "#result\n", + "print\"eddy current loss per kg at 50 Hz=\",eddy_loss_per_kg,\"W\"\n", + "\n", + "#plot\n", + "F=[f1,f2,f3,f4,f5]\n", + "L=[l1,l2,l3,l4,l5]\n", + "a=plot(F,L)\n", + "xlabel(\"f -->\") \n", + "ylabel(\"Wi/f\") \n", + "plt.xlim((0,100))\n", + "plt.ylim((0.74,2))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Using matplotlib backend: TkAgg\n", + "Populating the interactive namespace from numpy and matplotlib\n", + "eddy current loss per kg at 50 Hz=" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " -0.118333333333333 W\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.31, Page Number:1148" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "v1=440#V\n", + "f1=50#Hz\n", + "p1=2500#W\n", + "v2=220#V\n", + "f2=25#Hz\n", + "p2=850#z\n", + "\n", + "#calculation\n", + "ans=solve([(p1/f1)-(A+f1*B),(p2/f2)-(A+f2*B)],[A,B])\n", + "wh=ans[A]*f\n", + "we=ans[B]*f**2\n", + "\n", + "#result\n", + "print \"hysteresis=\",round(wh),\"W\"\n", + "print \"eddy current=\",round(we),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hysteresis= 900.0 W\n", + "eddy current= 1600.0 W\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.32, Page Number:1149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=1000.0#V\n", + "f1=50.0#Hz\n", + "core=1000.0#W\n", + "wh=650.0#W\n", + "we=350.0#W\n", + "v2=2000.0#V\n", + "f2=100.0#Hz\n", + "\n", + "#calculation\n", + "a=wh/f1\n", + "b=we/f1**2\n", + "wh=a*f2\n", + "we=b*f2**2\n", + "new_core=wh+we\n", + "\n", + "#result\n", + "print \"new core loss=\",new_core,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " new core loss= 2700.0 W\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.33, Page Number:1149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "phi=1.4#Wb/m2\n", + "we=1000.0#W\n", + "wh=3000.0#W\n", + "per=10.0#%\n", + "\n", + "#calculation\n", + "wh1=wh*1.1**1.6\n", + "we1=we*1.1**2\n", + "wh2=wh*0.9**(-0.6)\n", + "wh3=wh*1.1**1.6*1.1**(-0.6)\n", + "#result\n", + "print \"a)wh and we when applied voltage is increased by 10%=\",wh1,\"W\",\"and\",we1,\"W\"\n", + "print \"b)wh when frequency is reduced by 10%=\",wh2,\"W\"\n", + "print \"c)wh and we when both voltage and frequency are increased y 10%=\",wh3,\"W\",\"and\",we1,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)wh and we when applied voltage is increased by 10%= 3494.21441464 W and 1210.0 W\n", + "b)wh when frequency is reduced by 10%= 3195.77171838 W\n", + "c)wh and we when both voltage and frequency are increased y 10%= 3300.0 W and 1210.0 W\n" + ] + } + ], + "prompt_number": 119 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.34, Page Number:1150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2200.0#V\n", + "f=40.0#Hz\n", + "loss=800.0#W\n", + "wh=600.0#W\n", + "we=loss-wh\n", + "v2=3300.0#V\n", + "f2=60.0#Hz\n", + "\n", + "#calculations\n", + "a=wh/f\n", + "b=we/f**2\n", + "core_loss=a*f2+b*f2**2\n", + "\n", + "#result\n", + "print \"core loss at 60 Hz=\",core_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "core loss at 60 Hz= 1350.0 W\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.35, Page Number:1151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=30.0#KvA\n", + "v1=6000.0#V\n", + "v2=230.0#V\n", + "r1=10.0#ohm\n", + "r2=0.016#ohm\n", + "x01=34.0#ohm\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=load*1000/v1\n", + "vsc=i1*z01\n", + "pf=r01/z01\n", + "\n", + "#result\n", + "print \"primary voltage=\",vsc,\"V\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary voltage= 199.519931911 V\n", + "pf= 0.523468222173\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.36, Page Number:1152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "f=50.0#Hz\n", + "vo=200.0#V\n", + "io=0.7#A\n", + "po=70.0#W\n", + "vs=15.0#v\n", + "i_s=10.0#A\n", + "ps=85.0#W\n", + "load=5.0#kW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cosphi0=po/(vo*io)\n", + "sinphi0=math.sin(math.acos(cosphi0))\n", + "iw=io*cosphi0\n", + "imu=io*sinphi0\n", + "r0=v1/iw\n", + "x0=v1/imu\n", + "z02=vs/i_s\n", + "k=v2/v1\n", + "z01=z02/k**2\n", + "r02=ps/i_s**2\n", + "r01=r02/k**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "output=load/pf\n", + "i2=output*1000/v2\n", + "x02=(z02**2-r02**2)**0.5\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "print z02\n", + "#result\n", + "print \"secondary voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.5\n", + "secondary voltage= 377.788243349 V\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.37, Page Number:1152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "k=1.0/6\n", + "r1=0.9#ohm\n", + "x1=5.0#ohm\n", + "r2=0.03#ohm\n", + "x2=0.13#ohm\n", + "vsc=330.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculations\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=vsc/z01\n", + "i2=i1/k\n", + "cosphisc=i1**2*r01/(vsc*i1)\n", + "\n", + "#result\n", + "print \"current in low voltage winding=\",i2,\"A\"\n", + "print \"pf=\",round(cosphisc,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current in low voltage winding= 200.396236149 A\n", + "pf= 0.2\n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.38, Page Number:1153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "f=50.0#Hz\n", + "r1=0.2#ohm\n", + "x1=0.4#ohm\n", + "r2=0.5#ohm\n", + "x2=0.1#ohm\n", + "r0=1500.0#ohm\n", + "x0=750.0#ohm\n", + "\n", + "#calculation\n", + "k=v2/v1\n", + "imu=v1/x0\n", + "iw=v1/r0\n", + "i0=(iw**2+imu**2)**0.5\n", + "pi=v1*iw\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=load*1000/v1\n", + "vsc=i1*z01\n", + "power=i1**2*r01\n", + "\n", + "#result\n", + "print \"reading of instruments=\",vsc,\"V,\",i1,\"A,\",power,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "reading of instruments= 46.8187996429 V, 20.0 A, 880.0 W\n" + ] + } + ], + "prompt_number": 140 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.39, Page Number:1153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "y=Symbol('y')\n", + "load=1000#kVA\n", + "v1=110#V\n", + "v2=220#V\n", + "f=50#Hz\n", + "per1=98.5#%\n", + "pf=0.8\n", + "per2=98.8#%\n", + "\n", + "#calculaions\n", + "output=load*1\n", + "inpt=output*100/per2\n", + "loss=inpt-output\n", + "inpt_half=(load/2)*pf*100/per1\n", + "loss2=inpt_half-400\n", + "ans=solve([x+y-loss,(x/4)+y-loss2],[x,y])\n", + "kva=load*(ans[y]/ans[x])*0.5\n", + "output=kva*1\n", + "cu_loss=ans[y]\n", + "total_loss=2*cu_loss\n", + "efficiency=output/(output+total_loss)\n", + "#result\n", + "print \"full load copper loss=\",cu_loss,\"kW\"\n", + "print \"maximum efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load copper loss= 4.07324441521606 kW\n", + "maximum efficiency= 0.968720013059872 %\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.40, Page Number:1154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=200.0#v\n", + "v2=400.0#V\n", + "r01=0.15#ohm\n", + "x01=0.37#ohm\n", + "r0=600.0#ohm\n", + "x0=300.0#ohm\n", + "i2=10.0#A\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "imu=v1/x0\n", + "iw=v1/r0\n", + "i0=(imu**2+iw**2)**0.5\n", + "tantheta=iw/imu\n", + "theta=math.atan(tantheta)\n", + "theta0=math.radians(90)-theta\n", + "angle=theta0-math.acos(pf)\n", + "k=v2/v1\n", + "i2_=i2*k\n", + "i1=(i0**2+i2_**2+2*i0*i2_*math.cos(angle))**0.5\n", + "r02=k**2*r01\n", + "x02=x01*k**2\n", + "vd=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-vd\n", + "\n", + "#result\n", + "print \"i)primary current=\",i1,\"A\"\n", + "print \"ii)secondary terminal voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)primary current= 20.6693546639 A\n", + "ii)secondary terminal voltage= 386.32 V\n" + ] + } + ], + "prompt_number": 149 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.43, Page Number:1158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "n1=400.0\n", + "n2=80.0\n", + "r1=0.3#ohm\n", + "r2=0.01#ohm\n", + "x1=1.1#ohm\n", + "x2=0.035#ohm\n", + "v1=2200.0#V\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=complex(r01,x01)\n", + "z02=k**2*z01\n", + "v2=k*v1\n", + "i2=load*1000/v2\n", + "vd=i2*(z02.real*pf-z02.imag*math.sin(math.acos(pf)))\n", + "regn=vd*100/v2\n", + "v2=v2-vd\n", + "\n", + "#result\n", + "print \"i)equivalent impedence=\",z02,\"ohm\"\n", + "print \"ii)voltage regulation=\",regn,\"%\"\n", + "print \"secondary terminal voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)equivalent impedence= (0.022+0.079j) ohm\n", + "ii)voltage regulation= -1.53925619835 %\n", + "secondary terminal voltage= 446.772727273 V\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.44, Page Number:1158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "va=450.0#V\n", + "vb=120.0#V\n", + "v1=120.0#V\n", + "i1=4.2#A\n", + "w1=80.0#W\n", + "v2=9.65#V\n", + "i2=22.2#A\n", + "w2=120.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=vb/va\n", + "i0=i1*k\n", + "cosphi0=w1/(va*i0)\n", + "phi0=math.acos(cosphi0)\n", + "sinphi0=math.sin(phi0)\n", + "iw=i0*cosphi0\n", + "imu=i0*sinphi0\n", + "r0=va/iw\n", + "x0=va/imu\n", + "z01=v2/i2\n", + "r01=vb/i2**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/va\n", + "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "regn=drop*100/va\n", + "loss=w1+w2\n", + "output=load*1000*pf\n", + "efficiency=output/(output+loss)\n", + "iron_loss=w1\n", + "cu_loss=(0.5**2)*w2\n", + "total_loss=iron_loss+cu_loss\n", + "output=load*1000*pf/2\n", + "efficiency2=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"i)equivalent circuit constants=\"\n", + "print \"z01=\",z01,\"ohm\"\n", + "print \"x01=\",x01,\"ohm\"\n", + "print \"r01=\",r01,\"ohm\"\n", + "print \"ii)efficiency and voltage regulation at pf=0.8=\",efficiency*100,\"%\",regn,\"%\"\n", + "print \"iii)efficiency at half load and pf=0.8=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)equivalent circuit constants=\n", + "z01= 0.434684684685 ohm\n", + "x01= 0.360090249002 ohm\n", + "r01= 0.243486729973 ohm\n", + "ii)efficiency and voltage regulation at pf=0.8= 97.5609756098 % 2.02885695496 %\n", + "iii)efficiency at half load and pf=0.8= 97.3236009732 %\n" + ] + } + ], + "prompt_number": 162 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.45, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#kVA\n", + "va=2200.0#V\n", + "vb=220.0#V\n", + "f=50.0#Hz\n", + "v1=220.0#V\n", + "i1=4.2#A\n", + "w1=148.0#W\n", + "v2=86.0#V\n", + "i2=10.5#A\n", + "w2=360.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "z01=v2/i2\n", + "r01=w2/i2**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/va\n", + "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "regn=drop*100/va\n", + "pf=r01/z01\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"pf=\",round(pf,1),\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 2.94177963326 %\n", + "pf= 0.4 lag\n" + ] + } + ], + "prompt_number": 172 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.46, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=2000.0#V\n", + "v2=400.0#V\n", + "v=60.0#V\n", + "i=4.0#A\n", + "w=100.0#W\n", + "pf=0.8\n", + "v_=400.0#V\n", + "\n", + "#calculations\n", + "z01=v/i\n", + "r01=w/i**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/v1\n", + "vd=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "\n", + "#result\n", + "print \"voltage applied to hv side=\",v1+vd,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage applied to hv side= 2065.90767043 V\n" + ] + } + ], + "prompt_number": 182 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.47, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=250.0#V\n", + "v2=500.0#V\n", + "vs=20.0#V\n", + "i_s=12.0#A\n", + "ws=100.0#W\n", + "vo=250.0#V\n", + "io=1.0#A\n", + "wo=80.0#W\n", + "i2=10#A\n", + "v2=500#V\n", + "pg=0.8\n", + "\n", + "#calculation\n", + "cosphi0=wo/(vo*io)\n", + "iw=io*cosphi0\n", + "imu=(1-iw**2)**0.5\n", + "r0=v1/iw\n", + "x0=v1/imu\n", + "r02=ws/i_s**2\n", + "z02=vs/i_s\n", + "x02=(z02**2-r02**2)**0.5\n", + "k=v2/v1\n", + "r01=r02/k**2\n", + "x01=x02/k**2\n", + "z01=z02/k**2\n", + "cu_loss=i2**2*r02\n", + "iron_loss=wo\n", + "total_loss=iron_loss+cu_loss\n", + "efficiency=i2*v2*pf/(i2*v2*pf+total_loss)\n", + "v1_=((vo*pf+x01)**2+(vo*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n", + "\n", + "#result\n", + "print \"applied voltage=\",v1_,\"V\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "applied voltage= 251.442641983 V\n", + "efficiency= 96.3984469139 %\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.48, Page Number:1160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=230.0#V\n", + "v2=230.0#V\n", + "load=3.0#kVA\n", + "vo=230.0#V\n", + "io=2.0#A\n", + "wo=100.0#W\n", + "vs=15.0#V\n", + "i_s=13.0#A\n", + "ws=120.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v1\n", + "cu_loss=ws\n", + "core_loss=wo\n", + "output=load*1000*pf\n", + "efficiency=output*100/(output+cu_loss+core_loss)\n", + "z=vs/i_s\n", + "r=ws/(vs**2)\n", + "x=(z**2-r**2)**0.5\n", + "regn=i*(r*pf+x*math.sin(math.acos(pf)))*100/v1\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 5.90121149256 %\n", + "efficiency= 91.6030534351 %\n" + ] + } + ], + "prompt_number": 194 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.49, Page Number:1161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "efficiency=0.94\n", + "per=0.90\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "output=per*load*1000\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "core_loss=loss/2\n", + "pc=core_loss/per**2\n", + "output=load*1000*pf\n", + "cu_loss=pc\n", + "efficiency=output/(output+cu_loss+core_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 92.5728354534 %\n" + ] + } + ], + "prompt_number": 196 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.50, Page Number:1161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "f=50.0#Hz\n", + "v1=2300.0#V\n", + "v2=230.0#V\n", + "r1=3.96#ohm\n", + "r2=0.0396#ohm\n", + "x1=15.8#ohm\n", + "x2=0.158#ohm\n", + "pf=0.8\n", + "v=230.0#V\n", + "\n", + "#calculations\n", + "i=load*1000/v\n", + "r=r2+r1*(v2/v1)**2\n", + "x=x1*(v2/v1)**2+x2\n", + "v1_=v2+i*(r*pf+x*math.sin(math.acos(pf)))\n", + "v1=v1_*(v1/v2)\n", + "phi=math.atan(r/x)\n", + "pf=math.cos(phi)\n", + "#result\n", + "print \"a)HV side voltage necessary=\",v1,\"V\"\n", + "print \"b)pf=\",round(pf,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)HV side voltage necessary= 2409.9826087 V\n", + "b)pf= 0.97\n" + ] + } + ], + "prompt_number": 199 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.51, Page Number:1162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#v\n", + "r1=3.4#ohm\n", + "x1=7.2#ohm\n", + "r2=0.028#ohm\n", + "x2=0.060#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v2\n", + "r=r1*(v2/v1)**2+r2\n", + "x=x1*(v2/v1)**2+x2\n", + "ad=i*r*pf\n", + "dc=i*x*math.sin(math.acos(pf))\n", + "oc=v2+ad+dc\n", + "bd=i*r*math.sin(math.acos(pf))\n", + "b_f=x*pf\n", + "cf=b_f-bd\n", + "v1_=(oc**2+cf**2)**0.5\n", + "v1=v1_*(v1/v2)\n", + "\n", + "#result\n", + "print \"terminal voltage on hv side=\",v1,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage on hv side= 2229.28500444 V\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.52, Page Number:1163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "i1=0.7#A\n", + "w1=65.0#W\n", + "v=15.0#V\n", + "i2=10.0#A\n", + "w2=75.0#W\n", + "pf=0.80\n", + "#calculation\n", + "il=load*1000/v1\n", + "ih=load*1000/v2\n", + "cu_loss=w2\n", + "constant_loss=w1\n", + "z=v/i2\n", + "r=w2/i2**2\n", + "x=(z**2-r**2)**0.5\n", + "efficiency=load*100000/(load*1000+cu_loss+constant_loss)\n", + "regn=i2*(r*pf+x*math.sin(math.acos(pf)))\n", + "\n", + "#result\n", + "print \"full load efficiency=\",efficiency,\"%\"\n", + "print \"full load regulation=\",regn,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency= 96.6183574879 %\n", + "full load regulation= 13.7942286341 V\n" + ] + } + ], + "prompt_number": 209 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.53, Page Number:1164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=3300.0#V\n", + "v2=230.0#V\n", + "load=50.0#kVA\n", + "z=4\n", + "cu_loss=1.8\n", + "\n", + "#calculations\n", + "x=(z**2-cu_loss**2)**0.5\n", + "i1=load*1000/v1\n", + "r01=cu_loss*v1/(100*i1)\n", + "x01=x*v1/(100*i1)\n", + "z01=z*v1/(100*i1)\n", + "isc=i1*100/z\n", + "print \n", + "#result\n", + "print \"%x=\",x,\"%\"\n", + "print \"resistance=\",r01,\"ohm\"\n", + "print \"reactance=\",x01,\"ohm\"\n", + "print \"impedence=\",z01,\"ohm\"\n", + "print \"primary sc current=\",isc,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "%x= 3.5721142199 %\n", + "resistance= 3.9204 ohm\n", + "reactance= 7.78006477094 ohm\n", + "impedence= 8.712 ohm\n", + "primary sc current= 378.787878788 A\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.54, Page Number:1164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#V\n", + "f=50.0#Hz\n", + "vo=220.0#V\n", + "i_o=4.2#A\n", + "wo=148.0#W\n", + "vs=86.0#V\n", + "i_s=10.5#A\n", + "ws=360.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=ws/i_s**2\n", + "r02=k**2*r01\n", + "z10=vs/i_s\n", + "x01=(z10**2-r01**2)**0.5\n", + "x02=k**2*x01\n", + "i1=load*1000/v1\n", + "v1_=((v1*pf+i1*r01)**2+(v1*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n", + "regn1=(v1_-v1)/v1\n", + "i2=i1/k\n", + "core_loss=wo\n", + "cu_loss=i1**2*r01\n", + "cu_loss_half=(i1/2)**2*r01\n", + "efficiency=load*1000*pf*100/(load*1000*pf+core_loss+cu_loss)\n", + "efficiency_half=(load/2)*1000*pf*100/((load/2)*1000*pf+core_loss+cu_loss)\n", + "print v1_ \n", + "#result\n", + "print \"a)core loss=\",wo,\"W\"\n", + "print \"b)equivalent resistance primary=\",r01,\"ohm\"\n", + "print \"c)equivalent resistance secondary=\",r02,\"ohm\"\n", + "print \"d)equivalent reactance primary=\",x01,\"ohm\"\n", + "print \"e)equivalent reactance secondary=\",x02,\"ohm\"\n", + "print \"f)regulation=\",regn1*100,\"%\"\n", + "print \"g)efficiency at full load=\",efficiency,\"%\"\n", + "print \"h)efficiency at half load=\",efficiency_half,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "2265.01840886\n", + "a)core loss= 148.0 W\n", + "b)equivalent resistance primary= 3.26530612245 ohm\n", + "c)equivalent resistance secondary= 0.0326530612245 ohm\n", + "d)equivalent reactance primary= 7.51143635755 ohm\n", + "e)equivalent reactance secondary= 0.0751143635755 ohm\n", + "f)regulation= 2.95538222101 %\n", + "g)efficiency at full load= 97.4548448466 %\n", + "h)efficiency at half load= 95.0360304208 %\n" + ] + } + ], + "prompt_number": 222 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.55, Page Number:1165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "er=1.0/100\n", + "ex=5.0/100\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "regn=er*pf+ex*math.sin(math.acos(pf))\n", + "regn2=er*1\n", + "regn3=er*pf-ex*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"i)regulation with pf=0.8 lag=\",regn*100,\"%\"\n", + "print \"ii)regulation with pf=1=\",regn2*100,\"%\"\n", + "print \"iii)regulation with pf=0.8 lead=\",regn3*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)regulation with pf=0.8 lag= 3.8 %\n", + "ii)regulation with pf=1= 1.0 %\n", + "iii)regulation with pf=0.8 lead= -2.2 %\n" + ] + } + ], + "prompt_number": 223 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.56, Page Number:1165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500#kVA\n", + "v1=3300#V\n", + "v2=500#V\n", + "f=50#Hz\n", + "per=0.97\n", + "ratio=3.0/4\n", + "zper=0.10\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "output=load*ratio*1\n", + "x=0.75\n", + "pi=0.5*(output*(1/per-1))\n", + "pc=pi/x**2\n", + "i1=load*1000/v1\n", + "r=pc*1000/i1**2\n", + "er=i1*r/v1\n", + "ez=zper\n", + "ex=(ez**2-er**2)**0.5\n", + "regn=er*pf+ex*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"regulation=\",regn*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 7.52529846012 %\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.57, Page Number:1166" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "cu_loss=1.5#%\n", + "xdrop=3.5#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "pur=cu_loss/100\n", + "pux=xdrop/100\n", + "regn2=pur*pf+pux*math.sin(math.acos(pf))\n", + "regn1=pur*1\n", + "regn3=pur*pf-pux*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"i)regulation at unity pf=\",regn1*100,\"%\"\n", + "print \"ii)regulation at 0.8 lag=\",regn2*100,\"%\"\n", + "print \"iii)regulation at 0.8 lead=\",regn3*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)regulation at unity pf= 1.5 %\n", + "ii)regulation at 0.8 lag= 3.3 %\n", + "iii)regulation at 0.8 lead= -0.9 %\n" + ] + } + ], + "prompt_number": 226 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.58, Page Number:1168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=250#KVA\n", + "w1=5.0#kW\n", + "w2=7.5#kW\n", + "efficiency=0.75\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "total_loss=w1+w2\n", + "loss=total_loss/2\n", + "cu_loss=efficiency**2*w2/2\n", + "output=load*efficiency*pf\n", + "efficiency=output*100/(output+cu_loss+2.5)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.0186963113 %\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.59, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "v1=2000.0#V\n", + "v2=200.0#V\n", + "w1=350.0#W\n", + "w2=400.0#W\n", + "\n", + "#calculation\n", + "total_loss=w1+w2\n", + "output=load*1000*1\n", + "efficiency=output/(output+total_loss)\n", + "cu_loss=w2*(0.5)**2\n", + "total_loss=cu_loss+w1\n", + "efficiency2=(load*1000/2)/((load*1000/2)+total_loss)\n", + "\n", + "#result\n", + "print \"i)efficiency at full load=\",efficiency*100,\"%\"\n", + "print \"ii)efficiency at half load=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)efficiency at full load= 97.0873786408 %\n", + "ii)efficiency at half load= 96.5250965251 %\n" + ] + } + ], + "prompt_number": 232 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.60, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.75\n", + "\n", + "#calculation\n", + "ratio=efficiency**2\n", + "\n", + "#result\n", + "print \"ratio of P1 and P2=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of P1 and P2= 0.5625\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.61, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11000.0#V\n", + "v2=230.0#V\n", + "load1=150.0#KVA\n", + "f=50.0#Hz\n", + "loss=1.4#kW\n", + "cu_loss=1.6#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "load=load1*(cu_loss/loss)**0.5\n", + "total_loss=loss*2\n", + "output=load*1\n", + "efficiency=output/(output+total_loss)\n", + "cu_loss=cu_loss*(0.5)**2\n", + "total_loss=total_loss+cu_loss\n", + "output2=(load/2)*pf\n", + "efficiency2=output2/(output2+total_loss)\n", + "\n", + "#result\n", + "print \"i)kVA load for max efficiency=\",load1,\"kVA\"\n", + "print \"max efficiency=\",efficiency*100,\"%\"\n", + "print \"ii)efficiency at half load=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)kVA load for max efficiency= 150.0 kVA\n", + "max efficiency= 98.283858876 %\n", + "ii)efficiency at half load= 95.2481856352 %\n" + ] + } + ], + "prompt_number": 237 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.62, Page Number:1171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "#variable declaration\n", + "load=5#kVA\n", + "v1=2300#V\n", + "v2=230#V\n", + "f=50#Hz\n", + "iron_loss=40#W\n", + "cu_loss=112#W\n", + "pf=0.8\n", + "#calculations\n", + "def e(k):\n", + " e=k*pf*1000*100/(k*pf*1000+(cu_loss*(k/5)**2+40))\n", + " return(e)\n", + "\n", + "e1=e(1.25)\n", + "e2=e(2.5)\n", + "e3=e(3.75)\n", + "e4=e(5.0)\n", + "e5=e(6.25)\n", + "e6=e(7.5)\n", + "\n", + "K=[1.25,2.5,3.75,5.0,6.25,7.5]\n", + "E=[e1,e2,e3,e4,e5,e6]\n", + "a=plot(K,E)\n", + "xlabel(\"load,kVA\") \n", + "ylabel(\"Efficiency\") \n", + "plt.xlim((0,8))\n", + "plt.ylim((92,98))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.63, Page Number:1171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=200.0#kVA\n", + "efficiency=0.98\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "output=load*pf\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "x=loss*1000/(1+9.0/16)\n", + "y=(9.0/16)*x\n", + "cu_loss=x*(1.0/2)**2\n", + "total_loss=cu_loss+y\n", + "output=load*pf*0.5\n", + "efficiency=output/(output+total_loss/1000)\n", + "\n", + "#result\n", + "print \"efficiency at hald load=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency at hald load= 97.9216626699 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.64, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#V\n", + "r1=1.0#ohm\n", + "r2=0.01#ohm\n", + "pf=0.8\n", + "loss=0.80\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=r2+k**2*r1\n", + "i2=load*1000/v2\n", + "cu_loss=i2**2*r02\n", + "iron_loss=loss*cu_loss\n", + "total_loss=cu_loss+iron_loss\n", + "output=load*pf*1000\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"secondary resistance=\",r02,\"ohm\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary resistance= 0.02 ohm\n", + "efficiency= 97.7284199899 %\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.65, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "r01=0.5#ohm\n", + "x01=1.5#ohm\n", + "ratio=3.0/4\n", + "pf=0.8\n", + "v=220.0#V\n", + "loss=100.0#W\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=k**2*r01\n", + "x02=k**2*x01\n", + "i2=1000*load*ratio/v2\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "cu_loss=i2**2*r02\n", + "total_loss=loss+cu_loss\n", + "output=load*ratio*pf\n", + "inpt=output*1000+total_loss\n", + "efficiency=output*1000/(inpt)\n", + "#result\n", + "print \"output=\",output,\"w\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 2.4 w\n", + "efficiency= 91.8660287081 %\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.66, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=440.0#V\n", + "v2=220.0#V\n", + "f=50.0#Hz\n", + "loss=324.0#W\n", + "cu_loss=100.0#W\n", + "pf=0.8\n", + "#calculations\n", + "cu_loss=4*cu_loss\n", + "efficiency=load*pf/(load*pf+cu_loss/1000+loss/1000)\n", + "per=(loss/cu_loss)**0.5\n", + "\n", + "#result\n", + "print \"i)efficiency=\",efficiency*100,\"%\"\n", + "print \"ii)percent of full-load=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)efficiency= 95.6708921311 %\n", + "ii)percent of full-load= 90.0 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.67, Page Number:1173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "pf=0.8\n", + "vo=200.0#V\n", + "io=0.8#A\n", + "wo=70.0#W\n", + "vs=20.0#V\n", + "i_s=10.0#A\n", + "ws=60.0#W\n", + "\n", + "#calculation\n", + "i2=load*1000/v2\n", + "loss=ws+wo\n", + "output=load*pf\n", + "efficiency=output/(output+loss/1000)\n", + "z02=vs/i_s\n", + "r02=ws/i2**2\n", + "x02=(z02**2-r02**2)**0.5\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "i1=load*1000/v1\n", + "load=load*(wo/ws)**0.5\n", + "load=load*1\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"secondary voltage=\",v2,\"V\"\n", + "print \"current=\",i1,\"A\"\n", + "print \"load at unity pf=\",load,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 96.0960960961 %\n", + "secondary voltage= 383.752729583 V\n", + "current= 20.0 A\n", + "load at unity pf= 4.32049379894 kW\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.69, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "y=Symbol('y')\n", + "load=600.0#KVA\n", + "efficiency=0.92\n", + "per=0.60\n", + "\n", + "#calculation\n", + "inpt=load/efficiency\n", + "loss1=inpt-load\n", + "inpt2=load/(2*efficiency)\n", + "loss2=inpt2-load/2\n", + "ans=solve([x+y-loss1,x+y/4-loss2],[x,y])\n", + "cu_loss=ans[y]*0.36\n", + "loss=cu_loss+ans[x]\n", + "output=load*per\n", + "efficiency=output/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "389.913043478261\n", + "efficiency= 92.3282783229260 %\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.70, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#kVA\n", + "e1=0.98\n", + "e2=0.80\n", + "pf=8\n", + "z=0.05\n", + "pf1=0.8\n", + "\n", + "#calculations\n", + "output=load*pf1*e2\n", + "inpt=output/e1\n", + "loss=-output+inpt\n", + "cu_loss=loss/2\n", + "cu_loss_full=cu_loss/pf1**2\n", + "r=round(cu_loss_full*100/load)\n", + "sin=math.sin(math.acos(pf1))\n", + "regn=(r*pf1+5*sin)+(1.0/200)*(5*pf1-r*sin)**2\n", + "#result\n", + "print \"voltage regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation= 3.8578 %\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.71, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#KVA\n", + "v1=5000.0#V\n", + "v2=440.0#V\n", + "f=25.0#Hz\n", + "cu_loss=1.5\n", + "we=0.5\n", + "wh=0.6\n", + "v2=10000.0\n", + "#calculations\n", + "cu_loss1=cu_loss*load/100\n", + "we1=we*load/100\n", + "wh1=wh*load/100\n", + "cu_loss2=cu_loss1\n", + "we2=(we1*(50.0/25.0)**2)\n", + "wh2=(wh1*(50.0/25))\n", + "e1=load*100/(load+cu_loss1+we1+wh1)\n", + "e2=load*2*100/(load*2+cu_loss2+we2+wh2)\n", + "\n", + "#result\n", + "print \"full load efficiency in first case=\",e1,\"%\"\n", + "print \"full load efficiency in second case=\",e2,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "20.47 0.06 0.05\n", + "full load efficiency in first case= 97.4658869396 %\n", + "full load efficiency in second case= 97.7039570103 %\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.72, Page Number:1175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=300#KVA\n", + "r=1.5#%\n", + "load1=173.2#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cu_loss=r*load*1000/100\n", + "iron_loss=(load1/load)**2*cu_loss\n", + "total_loss=cu_loss+iron_loss\n", + "efficiency=(load*pf)*100/((load*pf)+(total_loss/1000))\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.5610105096 %\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.73, Page Number:1175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#kVA\n", + "v1=2300#V\n", + "v2=230.0#V\n", + "f=50#Hz\n", + "phim=1.2#Wb/m2\n", + "a=0.04#m2\n", + "l=2.5#m\n", + "bm=1200\n", + "inpt=1200#W\n", + "pi=400#W\n", + "efficiency=0.75\n", + "pf=0.8\n", + "f2=100#Hz\n", + "\n", + "#calculation\n", + "n1=v1/(4.44*f*phim*a)\n", + "k=v2/v1\n", + "n2=k*n1\n", + "i=1989/n1\n", + "cu_loss=efficiency**2*inpt\n", + "total_loss=pi+cu_loss\n", + "output=load*efficiency*pf\n", + "efficiency=output*100/(output+total_loss/1000)\n", + "\n", + "#result\n", + "print \"a)n1=\",round(n1)\n", + "print \" n2=\",round(n2)\n", + "print \"b)magnetising current=\",i,\"A\"\n", + "print \"c)efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.00643416423287\n", + "a)n1= 216.0\n", + " n2= 22.0\n", + "b)magnetising current= 9.21512347826 A\n", + "c)efficiency= 98.2398690135 %\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.74, Page Number:1176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=1.8\n", + "x=5.4\n", + "\n", + "#calculation\n", + "pf=r/x\n", + "phi=math.atan(pf)\n", + "phi2=math.atan(x/r)\n", + "regn=r*math.cos(phi2)+x*math.sin(phi2)\n", + "efficiency=100/(100+r*2)\n", + "\n", + "#result\n", + "print \"a)i)phi=\",math.degrees(phi),\"degrees\"\n", + "print \" ii)regulation=\",regn,\"%\"\n", + "print \"b)efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)phi= 18.4349488229 degrees\n", + " ii)regulation= 5.6920997883 %\n", + "b)efficiency= 96.5250965251 %\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.75, Page Number:1176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "f=50.0#Hz\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "vo=250.0#V\n", + "io=3.0#A\n", + "wo=200.0#W\n", + "vsc=15.0#V\n", + "isc=30.0#A\n", + "wsc=300.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v2\n", + "cu_loss=(i/isc)**2*wsc\n", + "output=load*1000*pf\n", + "efficiency=output*100/(output+cu_loss+wo)\n", + "z=vsc/isc\n", + "r=wsc/isc**2\n", + "x=(z**2-r**2)**0.5\n", + "regn=(i/v2)*(r*pf-x*math.sin(math.acos(pf)))*v2\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 91.6030534351 %\n", + "regulation= 1.72239475667 %\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.76, Page Number:1177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=40.0#kVA\n", + "loss=400.0#W\n", + "cu_loss=800.0#W\n", + "\n", + "#calculation\n", + "x=(loss/cu_loss)**0.5\n", + "output=load*x*1\n", + "efficiency=output/(output+load*2/100)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.2493723732 %\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.77, Page Number:1178" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#kVA\n", + "v1=500#V\n", + "v2=250#V\n", + "vsc=60#V\n", + "isc=20#A\n", + "wsc=150#W\n", + "per=1.2\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "i=load*1000/v1\n", + "cu_loss=per**2*wsc\n", + "output=per*load*1.0\n", + "efficiency=output*100/(output+cu_loss*2/1000)\n", + "output=load*1000*pf\n", + "e2=output*100/(output+cu_loss+wsc)\n", + "\n", + "#result\n", + "print \"maximum efficiency=\",efficiency,\"%\"\n", + "print \"full-load efficiency=\",e2,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum efficiency= 96.5250965251 %\n", + "full-load efficiency= 95.6251494143 %\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.78, Page Number:1181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500.0#kVA\n", + "cu_loss=4.5#kW\n", + "iron_loss=3.5#kW\n", + "t1=6.0#hrs\n", + "t2=10.0#hrs\n", + "t3=4.0#hrs\n", + "t4=4.0#hrs\n", + "load1_=400.0#kW\n", + "load2_=300.0#kW\n", + "load3_=100.0#kW\n", + "pf1=0.8\n", + "pf2=0.75\n", + "pf3=0.8\n", + "\n", + "#calculations\n", + "load1=load1_/pf1\n", + "load2=load2_/pf2\n", + "load3=load3_/pf3\n", + "wc1=cu_loss\n", + "wc2=cu_loss*(load2/load1)**2\n", + "wc3=cu_loss*(load3/load1)**2\n", + "twc=(t1*wc1)+(t2*wc2)+(t3*wc3)+(t4*0)\n", + "iron_loss=24*iron_loss\n", + "total_loss=twc+iron_loss\n", + "output=(t1*load1_)+(t2*load2_)+(t3*load3_)\n", + "efficiency=output*100/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.6 %\n" + ] + } + ], + "prompt_number": 86 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.79, Page Number:1182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "loss=3.0#kW\n", + "tf=3.0#hrs\n", + "th=4.0#hrs\n", + "\n", + "#calculation\n", + "iron_loss=loss*24/2\n", + "wcf=loss*tf/2\n", + "wch=loss/8\n", + "wch=wch*4\n", + "total_loss=iron_loss+wch+wcf\n", + "output=load*tf+load*th/2\n", + "efficiency=output*100/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 92.2509225092 %\n" + ] + } + ], + "prompt_number": 89 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.80, Page Number:1182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#KW\n", + "efficiency=0.98\n", + "tf=4.0#hrs\n", + "th=6.0#hrs\n", + "t10=14.0#hrs\n", + "\n", + "#calculations\n", + "#1st transformer\n", + "inpt=load/efficiency\n", + "tloss=inpt-load\n", + "y=tloss/2\n", + "x=y\n", + "iron_loss=x*24\n", + "cu_loss=x*tf+th*(x/2**2)+t10*(x/10**2)\n", + "loss=iron_loss+cu_loss\n", + "output=tf*load+th*load/2+t10*10\n", + "e1=output/(output+loss)\n", + "#2nd transformer\n", + "y=tloss/(1+1.0/4)\n", + "x=(tloss-y)\n", + "iron_loss=x*24\n", + "wc=tf*y+th*(y/2**2)+t10*(y/10**2)\n", + "loss=iron_loss+wc\n", + "e2=output/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency of forst transformer=\",e1*100,\"%\"\n", + "print \"efficiency ofsecond transformer=\",e2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.408163265306 1.63265306122\n", + "efficiency of forst transformer= 96.5245532574 %\n", + "efficiency ofsecond transformer= 97.7876610788 %\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.81, Page Number:1183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "efficiency=0.95\n", + "nl=10.0#hrs\n", + "ql=7.0#hrs\n", + "hl=5.0#hrs\n", + "fl=2.0#hrs\n", + "\n", + "#calculations\n", + "inpt=load/efficiency\n", + "loss=inpt-load\n", + "wc_fl=loss/2\n", + "iron_loss=loss/2\n", + "wc_fl_4=(1.0/4)**2*wc_fl\n", + "wc_fl_2=(1.0/2)**2*wc_fl\n", + "wc_ql=ql*wc_fl_4\n", + "wc_hl=hl*wc_fl_2\n", + "wc_fl_2=fl*wc_fl\n", + "wc=wc_ql+wc_hl+wc_fl_2\n", + "wh=wc\n", + "loss=wh+24*iron_loss\n", + "output=load*1\n", + "half_output=(output/2)\n", + "q_load=(load/4)\n", + "output=ql*q_load+hl*half_output+fl*output\n", + "e=output*100/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 89.5592740985 %\n" + ] + } + ], + "prompt_number": 115 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.82, Page Number:1183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.98\n", + "load=15#kVA\n", + "t1=12.0#hrs\n", + "t2=6.0#hrs\n", + "t3=6.0#hrs\n", + "pf1=0.5\n", + "pf2=0.8\n", + "k1=2#kW\n", + "k2=12#kW\n", + "\n", + "#calculations\n", + "output=load*1\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "wc=loss/2\n", + "wi=loss/2\n", + "w1=k1/pf1\n", + "w2=k2/pf2\n", + "wc1=wc*(4/load)\n", + "wc2=wc\n", + "wc12=t1*wc1\n", + "wc6=t2*wc2\n", + "wc=(wc12+wc6)\n", + "wi=24*wi\n", + "output=(k1*t1)+(t2*k2)\n", + "inpt=output+wc+wi\n", + "e=output*100/inpt\n", + "\n", + "#result\n", + "print \"efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.918367346939 3.67346938776\n", + "efficiency= 95.4351795496 %\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.83, Page Number:1184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=150.0#KVA\n", + "l1_=100.0#kVA\n", + "t=3.0#hrs\n", + "loss=1.0#KW\n", + "\n", + "#calculations\n", + "l1=l1_/2\n", + "l2=l1_\n", + "output=load*1\n", + "loss=loss*2\n", + "e1=output/(output+loss)\n", + "wc1=t*(1.0/3)**2*1\n", + "wc2=8*(2.0/3)**2*1\n", + "wc=wc1+wc2\n", + "wi=24*1\n", + "loss=wc+wi\n", + "output=3*(l1*1)+8*(l2*1)\n", + "e2=(output*100)/(output+loss)\n", + "\n", + "#result\n", + "print \"ordinary efficiency=\",e1*100,\"%\"\n", + "print \"all day efficiency=\",e2,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ordinary efficiency= 98.6842105263 %\n", + "all day efficiency= 97.1480513578 %\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.84, Page Number:1184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50#KVA\n", + "efficiency=0.94#%\n", + "nl=10\n", + "hl=5.0\n", + "ql=6.0\n", + "fl=3.0\n", + "\n", + "#calculations\n", + "pi=0.5*(load*1000)*(1-efficiency)/efficiency\n", + "wch=(0.5)**2*pi\n", + "eh=wch*hl/1000\n", + "wcq=(0.25)**2*pi\n", + "eq=ql*wcq/1000\n", + "e3=pi*3/1000\n", + "e2=pi*24/1000\n", + "e=25*hl+12.5*ql+50*fl\n", + "efficiency=e/(e+e2+eh+eq+e3)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 88.4557217274 %\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.85, Page Number:1185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "t1=7.0#hrs\n", + "t2=4.0#hrs\n", + "t3=8.0#hrs\n", + "t4=5.0#hrs\n", + "k1=3.0#kW\n", + "k2=8.0#kW\n", + "pf1=0.6\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "x1=k1/(pf1*load)\n", + "x2=k2/(pf2*load)\n", + "x3=load/(1*load)\n", + "pc1=(0.5)**2*0.1\n", + "pc2=pc3=0.10\n", + "o1=k1*t1\n", + "o2=k2*t2\n", + "o3=k2*load\n", + "output=o1+o2+o3\n", + "wc1=pc1*t1\n", + "wc2=pc2*t2\n", + "wc3=pc3*t3\n", + "cu_loss=wc1+wc2+wc3\n", + "loss=400.0*24/10000\n", + "efficiency=output/(output+loss+cu_loss)\n", + "\n", + "#result\n", + "print \"efficency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficency= 98.27465179 %\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.86, Page Number:1185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=.98\n", + "load=15.0#kVA\n", + "t1=12.0\n", + "t2=6.0\n", + "t3=6.0\n", + "pf1=0.8\n", + "pf2=0.8\n", + "pf3=0.9\n", + "k1=2.0\n", + "k2=12.0\n", + "k3=18.0\n", + "#calculations\n", + "output=load*1000\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "cu_loss=loss/2\n", + "x1=k1/(0.5*load)\n", + "x2=k2/(pf2*load)\n", + "x3=k3/(pf3*load)\n", + "wc1=0.131\n", + "wc2=0.918\n", + "wc3=1.632\n", + "o1=t1*k1\n", + "o2=t2*k2\n", + "o3=t3*k3\n", + "output=o1+o2+o3\n", + "loss=wc1+wc2+wc3+0.153*24\n", + "efficiency=(output*100)/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 96.9798386522 %\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.87, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.0#kW\n", + "v1=115.0#V\n", + "v2=230.0#V\n", + "\n", + "#calculation\n", + "k=v1/v2\n", + "power=load*(1-k)\n", + "power2=k*load\n", + "\n", + "#result\n", + "print \"a)power transferred inductively=\",power,\"kW\"\n", + "print \"b)power transferred conductively=\",power2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)power transferred inductively= 1.5 kW\n", + "b)power transferred conductively= 1.5 kW\n" + ] + } + ], + "prompt_number": 145 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.88, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=500.0#V\n", + "v2=400.0#V\n", + "i=100.0#A\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "i1=k*i\n", + "saving=k*100\n", + "\n", + "#result\n", + "print \"economy of cu=\",saving" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "economy of cu= 80.0\n" + ] + } + ], + "prompt_number": 147 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.89, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500.0#KVA\n", + "f=50.0#Hz\n", + "v1=6600.0#V\n", + "v2=5000.0#V\n", + "e=8.0#V\n", + "phim1=1.3#Wb/m2\n", + "\n", + "#calculations\n", + "phim=e/(4.44*f)\n", + "area=phim/phim1\n", + "n1=v1/e\n", + "n2=v2/e\n", + "\n", + "#result\n", + "print \"core area=\",area*10000,\"m2\"\n", + "print \"number of turns on the hv side=\",n1\n", + "print \"number of turns on the lv side=\",n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "core area= 277.2002772 m2\n", + "number of turns on the hv side= 825.0\n", + "number of turns on the lv side= 625.0\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.90, Page Number:1189" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "\n", + "#calculation\n", + "i1=round(load*1000/v1,1)\n", + "k=v2/v1\n", + "i2=i1/k\n", + "kva=2640*i2*0.001\n", + "kva_per=kva*100/load\n", + "i1_=kva*1000/v1\n", + "ic=i1_-i2\n", + "over=ic*100/i1\n", + "\n", + "#result\n", + "print \"i)i1=\",i1,\"A\"\n", + "print \"ii)i2=\",i2,\"A\"\n", + "print \"iii)kVA rating=\",kva,\"kVA\"\n", + "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n", + "print \"v)I1=\",i1_,\"A\"\n", + "print \" Ic=\",ic,\"A\"\n", + "print \"vi)per cent overload=\",over,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)i1= 8.3 A\n", + "ii)i2= 83.0 A\n", + "iii)kVA rating= 219.12 kVA\n", + "iv)per cent increase in kVA= 1095.6 %\n", + "v)I1= 91.3 A\n", + " Ic= 8.3 A\n", + "vi)per cent overload= 100.0 %\n" + ] + } + ], + "prompt_number": 159 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.91, Page Number:1190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "\n", + "#calculation\n", + "i1=round(load*1000/v1,1)\n", + "k=v2/v1\n", + "i2=i1/k\n", + "kva=2160*i2*0.001\n", + "kva_per=kva*100/load\n", + "i1_=kva*1000/v1\n", + "ic=i2-i1_\n", + "over=ic*100/i1\n", + "\n", + "#result\n", + "print \"i)i1=\",i1,\"A\"\n", + "print \"ii)i2=\",i2,\"A\"\n", + "print \"iii)kVA rating=\",kva,\"kVA\"\n", + "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n", + "print \"v)I1=\",i1_,\"A\"\n", + "print \" Ic=\",ic,\"A\"\n", + "print \"vi)per cent overload=\",over,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)i1= 8.3 A\n", + "ii)i2= 83.0 A\n", + "iii)kVA rating= 179.28 kVA\n", + "iv)per cent increase in kVA= 896.4 %\n", + "v)I1= 74.7 A\n", + " Ic= 8.3 A\n", + "vi)per cent overload= 100.0 %\n" + ] + } + ], + "prompt_number": 160 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.92, Page Number:1190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=110.0#V\n", + "v2=110.0#V\n", + "f=50.0#Hz\n", + "efficiency=0.95\n", + "iron_loss=50.0#W\n", + "v=220.0#V\n", + "\n", + "#calculations\n", + "cu_loss=load*1000/efficiency-load*1000-iron_loss\n", + "efficiency=load*1000/(load*1000+cu_loss/4+iron_loss)\n", + "i2=(load*1000+cu_loss/4+iron_loss)/v\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"current drawn on hv side=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.9760216579 %\n", + "current drawn on hv side= 23.1967703349 A\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.93, Page Number:1191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11500#V\n", + "v2=2300#V\n", + "\n", + "#calculations\n", + "kva=(v1+v2)*50*0.001\n", + "\n", + "#result\n", + "print \"voltage output=\",v1+v2,\"V\"\n", + "print \"kVA rating of auto transformer=\",kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage output= 13800 V\n", + "kVA rating of auto transformer= 690.0 kVA\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.94, Page Number:1191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11500.0#V\n", + "v2=2300.0#V\n", + "load=100.0#KVA\n", + "\n", + "#calculations\n", + "i1=load*100/v1\n", + "i2=load*100/v2\n", + "kva1=(v1+v2)*i1/(100)\n", + "kva2=(v1+v2)*i2/(100)\n", + "#result\n", + "print \"voltage ratios=\",(v1+v2)/v1,\"or\",(v1+v2)/v2\n", + "print \"kVA rating in first case=\",kva1\n", + "print \"kVA rating in second case=\",kva2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage ratios= 1.2 or 6.0\n", + "kVA rating in first case= 120.0\n", + "kVA rating in second case= 600.0\n" + ] + } + ], + "prompt_number": 167 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.95, Page Number:1192" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2400.0#v\n", + "v2=240.0#V\n", + "load=50.0#kVA\n", + "\n", + "#calculations\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "output=2640*i2\n", + "i=i2*2640/v1\n", + "k=2640/v1\n", + "poweri=v1*i1*0.001\n", + "power=output/1000-poweri\n", + "\n", + "#result\n", + "print \"rating of the auto-transformer=\",output/1000,\"kVA\"\n", + "print \"inductively transferred powers=\",poweri,\"kW\"\n", + "print \"conductively transferred powers=\",power,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rating of the auto-transformer= 550.0 kVA\n", + "inductively transferred powers= 50.0 kW\n", + "conductively transferred powers= 500.0 kW\n" + ] + } + ], + "prompt_number": 169 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.96, Page Number:1196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "za=complex(0.5,3)\n", + "zb=complex(0.,10)\n", + "load=100#KW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "s=load/pf*complex(pf,math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa)*math.cos(math.atan(sa.imag/sa.real)),\"kW\"\n", + "print \"SB=\",abs(sb)*math.cos(math.atan(sb.imag/sb.real)),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "96.082805253\n", + "SA= 74.5937961595 kW\n", + "SB= 25.4062038405 kW\n" + ] + } + ], + "prompt_number": 174 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.97, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r1=0.005#ohm\n", + "r2=0.01#ohm\n", + "x1=0.05#ohm\n", + "x2=0.04#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "za=complex(r1,x1)\n", + "zb=complex(r2,x2)\n", + "pf=math.cos(math.degrees((-1)*math.acos(pf))*math.degrees(math.atan((za/zb).imag/(za/zb).real)))\n", + "\n", + "#result\n", + "print \"load of B=\",abs(za/zb)\n", + "print \"pf of B=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load of B= 1.21872643265\n", + "pf of B= 0.613584256393\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.98, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=250#kVA\n", + "za=complex(1,6)\n", + "zb=complex(1.2,4.8)\n", + "load1=500#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "s=load1*complex(-pf,math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 224.451917244 -39.3923099293\n", + "SB= 275.942423833 -34.8183886694\n" + ] + } + ], + "prompt_number": 205 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.99, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabledeclaration\n", + "load=100.0#KW\n", + "r1=0.5\n", + "x1=8.0\n", + "r2=0.75\n", + "x2=4.0\n", + "load1=180.0#kW\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "load=load1/pf\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "z1=complex(r1,x1)\n", + "z2=complex(r2,x2)\n", + "s1=s*z2/(z1+z2)\n", + "s2=s*z1/(z1+z2)\n", + "kw1=abs(s1)*math.cos(math.atan(s1.imag/s1.real))\n", + "kw2=abs(s2)*math.cos(math.atan(s2.imag/s2.real))\n", + "\n", + "#result\n", + "print \"kW1=\",kw1,\"kW\"\n", + "print \"kW2=\",kw2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(1.25+12j)\n", + "kW1= 58.119626171 kW\n", + "kW2= 121.880373829 kW\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.100, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=200.0#kW\n", + "pf=0.85\n", + "za=complex(1,5)\n", + "zb=complex(2,6)\n", + "\n", + "#calculations\n", + "s=load/pf*complex(0.85,-0.527)\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"kVA for A=\",abs(sa),math.cos(math.atan(sa.imag/sa.real)),\"lag\"\n", + "print \"kVA for B=\",abs(sb),math.cos(math.atan(sb.imag/sb.real)),\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kVA for A= 130.53263665 0.819364787986 lag\n", + "kVA for B= 105.238776124 0.884143252833 lag\n" + ] + } + ], + "prompt_number": 216 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.101, Page Number:1198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2200.0#V\n", + "v2=110.0#V\n", + "load=125.0#kVA\n", + "pf=0.8\n", + "za=complex(0.9,10)\n", + "zb=(100/50)*complex(1.0,5)\n", + "\n", + "#calculation\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 63.0780848499 -39.929442891 degrees\n", + "SB= 62.1031510961 -33.7622749748 degrees\n" + ] + } + ], + "prompt_number": 218 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.102, Page Number:1199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=500#kVA\n", + "za=complex(1,5)\n", + "load2=250#kVA\n", + "zb=complex(1.5,4)\n", + "v2=400#V\n", + "load=750#kVA\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "zb=(500/load2)*zb\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 471.125736359 -40.3232138964 degrees\n", + "SB= 281.165527855 -31.0771011508 degrees\n" + ] + } + ], + "prompt_number": 219 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.103, Page Number:1199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=1000#A\n", + "pf=0.8\n", + "za=complex(2,3)\n", + "zb=complex(2.5,5)\n", + "\n", + "#calculations\n", + "i=i*complex(pf,-math.sin(math.acos(pf)))\n", + "ratio=zb/za\n", + "ib=i/(1+ratio)\n", + "ia=i-ib\n", + "ratio=ia.real/ib.real\n", + "\n", + "#result\n", + "print \"IA=\",ia\n", + "print \"IB=\",ib\n", + "print \"ratio of output=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= (504.451038576-341.246290801j)\n", + "IB= (295.548961424-258.753709199j)\n", + "ratio of output= 1.70682730924\n" + ] + } + ], + "prompt_number": 220 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.104, Page Number:1200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=1000.0#V\n", + "v2=500.0#V\n", + "load=100.0#kVA\n", + "za=complex(1.0,5.0)\n", + "zb=complex(2.0,2.0)\n", + "load1=300.0#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "zb=(100.0/250)*zb\n", + "s=load1*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "zab=za*zb/(za+zb)\n", + "drop=zab.real*240/100+zab.imag*180/100\n", + "v2=v2-v2*drop/100\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n", + "print \"secondary voltage=\",v2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 55.8895719399 -64.6284382469 degrees\n", + "SB= 251.890896741 -30.9383707209 degrees\n", + "secondary voltage= 486.177874187 V\n" + ] + } + ], + "prompt_number": 223 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.105, Page Number:1200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n11=5000.0\n", + "n12=440.0\n", + "load1=200#kVA\n", + "n21=5000.0\n", + "n22=480.0\n", + "load2=350#kVA\n", + "x=3.5\n", + "\n", + "#calculation\n", + "i1=load1*1000/n12\n", + "i2=load2*1000/n22\n", + "x1=x*n12/(100*i1)\n", + "x2=x*n22/(100*i2)\n", + "ic=(n22-n12)/0.057\n", + "\n", + "#result\n", + "print \"no-load circulation current=\",ic/i1,\"times the normal current of 200 kVA unit\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no-load circulation current= 1.54385964912 times the normal current of 200 kVA unit\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.106, Page Number:1203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabe declaration\n", + "ea=6600#V\n", + "eb=6400#V\n", + "za=complex(0.3,3)\n", + "zb=complex(0.2,1)\n", + "zl=complex(8.0,6.0)\n", + "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "\n", + "#result\n", + "print \"IA=\",abs(ia),\"A\"\n", + "print \"IB=\",abs(ib),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= 195.492387533 A\n", + "IB= 422.567795916 A\n" + ] + } + ], + "prompt_number": 227 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.107, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=100.0#kVA\n", + "load2=50.0#kVA\n", + "v1=1000.0#V\n", + "v2=950.0#V\n", + "r1=2.0\n", + "r2=2.5\n", + "x1=8.0\n", + "x2=6.0\n", + "\n", + "#calculations\n", + "ia=load1*1000/v1\n", + "ra=v1*r1/(100*ia)\n", + "xa=v1*x1/(100*ia)\n", + "ib=load2*1000/v2\n", + "rb=v2*r2/(100*ib)\n", + "xb=v2*x2/(100*ib)\n", + "z=((ra+rb)**2+(xa+xb)**2)**0.5\n", + "ic=(v1-v2)/z\n", + "alpha=math.atan((xa+xb)/(ra+rb))\n", + "\n", + "#result\n", + "print \"no load circulating current=\",ic,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no load circulating current= 25.0948635944 A\n" + ] + } + ], + "prompt_number": 231 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Example Number 32.108, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=1000.0#KVA\n", + "load2=500.0#kVA\n", + "v1=500.0#V\n", + "v2=510.0#V\n", + "z1=3.0\n", + "z2=5.0\n", + "r=0.4\n", + "\n", + "#calculation\n", + "ia=load1*1000/480\n", + "ib=load2*1000/480\n", + "za=z1*v1/(100*ia)\n", + "zb=z2*v2/(100*ib)\n", + "ic=(v2-v1)/(za+zb)\n", + "\n", + "#result\n", + "print \"cross current=\",ic,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "cross current= 315.656565657 A\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.109, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "loada=500.0#KVA\n", + "loadb=250.0#kVA\n", + "load=750.0#KVA\n", + "pf=0.8\n", + "v1=405.0#V\n", + "v2=415.0#V\n", + "ra=1.0\n", + "rb=1.5\n", + "xa=5.0\n", + "xb=4.0\n", + "\n", + "#calculations\n", + "ia=loada*1000/400\n", + "ra=400/(100*ia)\n", + "xa=xa*400/(100*ia)\n", + "ib=loadb*1000/400\n", + "rb=rb*400/(100*ib)\n", + "xb=xb*400/(100*ib)\n", + "za=complex(ra,xa)\n", + "zb=complex(rb,xb)\n", + "zl=400**2*0.001/load*complex(pf,math.sin(math.acos(pf)))\n", + "ic=(v1-v2)/(za+zb)\n", + "ia=(v1*zb+(v1-v2)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(v2*za-(v1-v2)*zl)/(za*zb+zl*(za+zb))\n", + "sa=400*ia/1000\n", + "sb=400*ib/1000\n", + "pf1=math.cos(math.atan(sa.imag/sa.real))\n", + "pf2=math.cos(math.atan(sb.imag/sb.real))\n", + "\n", + "#result\n", + "print \"a)cross current=\",-abs(ic),math.degrees(math.atan(ic.imag/ic.real))\n", + "print \"b)SA=\",abs(sa),pf1,\"lag\"\n", + "print \" SB=\",abs(sb),pf2,\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cross current= -229.754569404 -72.8972710309\n", + "b)SA= 387.844943528 0.820048560714 lag\n", + " SB= 351.964386212 0.738709225528 lag\n" + ] + } + ], + "prompt_number": 243 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.110, Page Number:1205" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "zl=complex(2.0,1.5)\n", + "za=complex(0.15,0.5)\n", + "zb=complex(0.1,0.6)\n", + "ea=207#V\n", + "eb=205#V\n", + "\n", + "#calculations\n", + "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "v2_=(ia+ib)*zl\n", + "angle=math.atan(v2_.imag/v2_.real)-math.atan(ia.imag/ia.real)\n", + "pfa=math.cos(angle)\n", + "angle=math.atan(v2_.imag/v2_.real)-math.atan(ib.imag/ib.real)\n", + "pfb=math.cos(angle)\n", + "pa=abs(v2_)*abs(ia)*pfa\n", + "pb=abs(v2_)*abs(ib)*pfb\n", + "\n", + "#result\n", + "print \"power output:\"\n", + "print \" A:\",pa,\"W\"\n", + "print \" B:\",pb,\"W\"\n", + "print \"power factor:\"\n", + "print \" A:\",pfa\n", + "print \" B:\",pfb\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power output:\n", + " A: 6535.37583042 W\n", + " B: 4925.36941503 W\n", + "power factor:\n", + " A: 0.818428780129\n", + " B: 0.775705655277\n" + ] + } + ], + "prompt_number": 248 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.111, Page Number:1206" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=200.0#A\n", + "ib=600.0#A\n", + "ra=0.02#ohm\n", + "rb=0.025#ohm\n", + "xa=0.05#ohm\n", + "xb=0.06#ohm\n", + "ea=245.0#V\n", + "eb=240.0#V\n", + "zl=complex(0.25,0.1)\n", + "\n", + "#calculation\n", + "za=(ea/ia)*complex(ra,xa)\n", + "zb=(eb/ib)*complex(rb,xb)\n", + "i=(ea*zb+eb*za)/(za*zb+zl*(za+zb))\n", + "v2=i*zl\n", + "\n", + "#result\n", + "print \"terminal voltage=\",round(abs(v2)),round(math.degrees(math.atan(v2.imag/v2.real))),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 230.0 -3.0 degrees\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter33_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter33_6.ipynb new file mode 100644 index 00000000..495cee05 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter33_6.ipynb @@ -0,0 +1,1433 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:62e227cc38186a0706017dd159987c82bd21be1d7e8602e20c55cf079ab30efe" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 33: Transformer:Three Phase" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.1, Page Number:1216" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=3\n", + "f=50.0#Hz\n", + "vd=22000.0#V\n", + "vs=400.0#V\n", + "phi=0.8\n", + "i=5.0#A\n", + "\n", + "#calcuations\n", + "v_phase_secondary=vs/math.sqrt(3)\n", + "K=(vs/vd)/math.sqrt(3)\n", + "i_primary=i/math.sqrt(3)\n", + "i_secondary=i_primary/K\n", + "il=i_secondary\n", + "output=math.sqrt(3)*il*vs*phi\n", + "\n", + "#result\n", + "print \"Output=\",output/10000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output= 15.2420471066 kW\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.2, Page Number:1217" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=500.0#kVA\n", + "f=50.0#Hz\n", + "vls=11.0#kV\n", + "vld=33.0#kV\n", + "rh=35.0#ohm\n", + "rl=0.876#ohm\n", + "iron_loss=3050.0#W\n", + "phi1=1.0\n", + "phi2=0.8\n", + "\n", + "#calculations\n", + "\n", + "K=(vls*1000)/(math.sqrt(3)*vld*1000)\n", + "r02=rl+K**2*rh\n", + "i_Secondary=(w*1000)/(math.sqrt(3)*vls*1000)\n", + "#full load\n", + "fl_culoss=3*((w/(vls*math.sqrt(3)))**2)*r02\n", + "fl_totalloss=fl_culoss+iron_loss\n", + "fl_efficiency1=w*1000/(w*1000+fl_totalloss)\n", + "fl_efficiency2=(phi2*w*1000)/(w*phi2*1000+fl_totalloss)\n", + "#half load\n", + "cu_loss=.5**2*fl_culoss\n", + "totalloss=cu_loss+iron_loss\n", + "efficiency1=(w*1000/2)/((w*1000/2)+totalloss)\n", + "efficiency2=(w*1000*phi2/2)/((phi2*w*1000/2)+totalloss)\n", + "#result\n", + "print \"full load efficiency at p.f. 1=\",fl_efficiency1*100,\"%\"\n", + "print \"full load efficiency at p.f. 0.8=\",fl_efficiency2*100,\"%\"\n", + "print \"half load efficiency at p.f. 1=\",efficiency1*100,\"%\"\n", + "print \"half load efficiency at p.f. 0.8=\",round(efficiency2*100),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency at p.f. 1= 98.5147491838 %\n", + "full load efficiency at p.f. 0.8= 98.1503046336 %\n", + "half load efficiency at p.f. 1= 98.3585709725 %\n", + "half load efficiency at p.f. 0.8= 98.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.3, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=0.02\n", + "va=2000\n", + "reactance=0.1\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculation\n", + "cu_loss=r*100*va/100\n", + "regn=r*100*math.cos(phi)+reactance*100*math.sin(phi)\n", + "\n", + "#result\n", + "print \"Cu loss=\",cu_loss,\"kW\"\n", + "print \"Regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cu loss= 40.0 kW\n", + "Regulation= 7.6 %\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.4, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "w=120.0#kVA\n", + "v1=6000.0\n", + "v2=400.0\n", + "f=50.0#Hz\n", + "iron_loss=1600.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cu_loss_fl=iron_loss*((4/3)**2)\n", + "fl_output=w*pf*1000\n", + "total_loss=iron_loss+cu_loss_fl\n", + "efficiency1=fl_output/(fl_output+total_loss)\n", + "cu_loss_hl=0.5**2*cu_loss_fl\n", + "total_loss2=cu_loss_hl+iron_loss\n", + "efficiency2=(w*1000/2)/((w*1000/2)+total_loss2)\n", + "total_loss3=2*iron_loss\n", + "output=(3.0/4)*w*1000\n", + "inpt=output+total_loss3\n", + "efficiency=output/inpt\n", + "\n", + "\n", + "#result\n", + "print \"full load efficiency=\",efficiency1*100,\"%\"\n", + "print \"half load efficiency=\",efficiency2*100,\"%\"\n", + "print \"3/4 load efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency= 96.7741935484 %\n", + "half load efficiency= 96.7741935484 %\n", + "3/4 load efficiency= 96.5665236052 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.5, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "rp=8.0#ohm\n", + "rs=0.08#ohm\n", + "z=0.07\n", + "pf=0.75\n", + "v1=33.0\n", + "v2=6.6\n", + "w=2*10.0**6\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "fl_i=w/(math.sqrt(3)*v2*10**3)\n", + "K=v2/(math.sqrt(3)*v1)\n", + "r02=rs+(rp*(K*K))\n", + "z_drop=z*v2*1000/math.sqrt(3)\n", + "z02=z_drop/fl_i\n", + "x02=math.sqrt((z02*z02)-(r02*r02))\n", + "drop=fl_i*(r02*math.cos(phi)+x02*math.sin(phi))\n", + "secondary_v=v2*1000/math.sqrt(3)\n", + "V2=secondary_v-drop\n", + "line_v=V2*math.sqrt(3)\n", + "regn=drop*100/secondary_v\n", + "\n", + "#result\n", + "print \"secondary voltage\",line_v,\"V\"\n", + "print \"regulation=\",regn,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary voltage 6254.29059005 V\n", + "regulation= 5.23802136291 %\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.6, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=100.0#kWA\n", + "f=50.0#Hz\n", + "v1=3300.0#V\n", + "v2=400.0#V\n", + "rh=3.5#ohm\n", + "rl=0.02#ohm\n", + "pf=0.8\n", + "efficiency=0.958\n", + "\n", + "#calculations\n", + "output=0.8*100\n", + "inpt=output/efficiency\n", + "total_loss=(inpt-output)*1000\n", + "K=v2/(math.sqrt(3)*v1)\n", + "r02=rl+K**2*rh\n", + "i2=((w*1000)/math.sqrt(3))/v2\n", + "cu_loss=3*i2**2*r02\n", + "iron_loss=total_loss-cu_loss\n", + "#result\n", + "print \"ironloss=\",iron_loss,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.0371411080502\n", + "2321.31925314\n", + "ironloss= 1185.98763622 W\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.7, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=5000.0#kVA\n", + "v1=6.6#kV\n", + "v2=33.0#kV\n", + "nl=15.0#kW\n", + "fl=50.0#kW\n", + "drop=0.07\n", + "load=3200.0#kw\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "i2=w*1000/(math.sqrt(3)*v2*1000)\n", + "impedence_drop=drop*(v2/math.sqrt(3))*1000\n", + "z02=impedence_drop/i2\n", + "cu_loss=fl-nl\n", + "r02=cu_loss*1000/(3*i2**2)\n", + "x02=math.sqrt(z02**2-r02**2)\n", + "print \"full-load x02:\",x02\n", + "\n", + "#when load=3200#kW\n", + "i2=load/(math.sqrt(3)*v2*0.8)\n", + "drop_=drop*1000*(r02*math.cos(phi)+z02*math.sin(phi))\n", + "regn=(drop_*100)/(v2*1000/math.sqrt(3))\n", + "vp=v1+regn/100*v1\n", + "print \"Primary voltage=\",vp*1000,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load x02: 15.1695784661\n", + "Primary voltage= 6851.39317975 V\n" + ] + } + ], + "prompt_number": 95 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.8, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=1\n", + "x=6\n", + "v=6600#V\n", + "v2=4800#V\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "regn=(r*math.cos(phi)+z*math.sin(phi))\n", + "secondary_v=v2+regn/100*v2\n", + "secondary_vp=secondary_v/math.sqrt(3)\n", + "K=secondary_vp/v\n", + "\n", + "#result\n", + "print \"Transformation Ratio=\",K" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Transformation Ratio= 0.423426587968\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.9, Page Number:1220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=2000#kVA\n", + "v1=6600#V\n", + "v2=400#V\n", + "pf=0.8\n", + "scv=400#V\n", + "sci=175#A\n", + "scw=17#kW\n", + "ocv=400#V\n", + "oci=150#A\n", + "ocw=15#kW\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "i1=sci/math.sqrt(3)\n", + "z01=scv/i1\n", + "r01=scw*1000/(3*i1*i1)\n", + "x01=math.sqrt(z01**2-r01**2)\n", + "r=i1*r01*100/v1\n", + "x=i1*x01*100/v1\n", + "regn=(r*math.cos(phi)-x*math.sin(phi))\n", + "I1=w*1000/(math.sqrt(3)*v1)\n", + "total_loss=scw+ocw\n", + "fl_output=w*pf\n", + "efficiency=fl_output/(fl_output+total_loss)\n", + "\n", + "#result\n", + "print \"% resistance=\",r,\"%\"\n", + "print \"% reactance=\",x,\"%\"\n", + "print \"% efficiency=\",efficiency*100,\"%\"\n", + "print \"%regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "% resistance= 0.849779616989 %\n", + "% reactance= 6.00073499035 %\n", + "% efficiency= 98.0392156863 %\n", + "%regulation= -2.92061730062 %\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.10, Page Number:1220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=11000.0#V\n", + "v2=440.0#V\n", + "i=5.0#A\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "secondary_rating=v2/math.sqrt(3)\n", + "primary_i=i/math.sqrt(3)\n", + "voltsamps=v1*5/math.sqrt(3)\n", + "i2=voltsamps/secondary_rating\n", + "output=pf*voltsamps/1000\n", + "\n", + "#result\n", + "print \"Each coil current=\",i2,\"A\"\n", + "print \"Total output=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Each coil current= 125.0 A\n", + "Total output= 25.4034118443 kW\n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.12, Page Number:1224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=40#kVA\n", + "\n", + "#calculations\n", + "kVA_per_transformer=load/2*1.15\n", + "delta_delta_rating=kVA_per_transformer*3\n", + "increase=(delta_delta_rating-load)*100/load\n", + "\n", + "#result\n", + "print \"increase=\",increase,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase= 72.5 %\n" + ] + } + ], + "prompt_number": 126 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.13, Page Number:1224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=20#kVA\n", + "v1=2300#v\n", + "v2=230#V\n", + "load=40#kVA\n", + "\n", + "#calculations\n", + "kva_load=load/math.sqrt(3)\n", + "percent_rated=kva_load*100/w\n", + "kvarating_vv=2*w*0.866\n", + "vv_delta=kvarating_vv*100/60\n", + "percentage_increase=kva_load/(load/3)\n", + "\n", + "#result\n", + "print \"i)kVA load of each transformer=\",kva_load,\"kVA\"\n", + "print \"ii)per cent of rated load carried by each transformer=\",percent_rated,\"%\"\n", + "print \"iii)total kVA rating of the V-V bank\",kvarating_vv,\"kVA\"\n", + "print \"iv)ratio of the v-v bank to delta-delta bank\",vv_delta,\"%\"\n", + "print \"v)percent increase in load=\",percentage_increase*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)kVA load of each transformer= 23.0940107676 kVA\n", + "ii)per cent of rated load carried by each transformer= 115.470053838 %\n", + "iii)total kVA rating of the V-V bank 34.64 kVA\n", + "iv)ratio of the v-v bank to delta-delta bank 57.7333333333 %\n", + "v)percent increase in load= 177.646236674 %\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.14, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=150.0#kW\n", + "v1=1000.0#V\n", + "pf=0.866\n", + "v=2000.0#V\n", + "\n", + "#calculations\n", + "il=load*1000/(pf*math.sqrt(3)*1000)\n", + "ip=il/math.sqrt(3)\n", + "ratio=v1/v\n", + "ip=ip*ratio\n", + "I=il\n", + "Ip=I*ratio\n", + "pf=86.6/100*pf\n", + "\n", + "#result\n", + "print \"delta-delta:current in the windings=\",ip,\"A\"\n", + "print \"v-v:current in the windings=\",Ip,\"A\"\n", + "print \"Power factor\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta-delta:current in the windings= 28.8683602771 A\n", + "v-v:current in the windings= 50.0014667312 A\n", + "Power factor 0.749956\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.15, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=3000#kW\n", + "v=11#kV\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "I=load*1000/(math.sqrt(3)*v*1000*pf)\n", + "transformer_pf=86.6/100*pf\n", + "additional_load=72.5/100*load\n", + "total_load=additional_load+load\n", + "il=total_load*1000/(math.sqrt(3)*v*1000*pf)\n", + "\n", + "#result\n", + "print \"Il=\",il,\"A\"\n", + "print \"phase current=\",il/math.sqrt(3),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Il= 339.521323075 A\n", + "phase current= 196.022727273 A\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.16, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=400#kVA\n", + "pf=0.866\n", + "v=440#V\n", + "\n", + "#calculations\n", + "kVA_each=(load/2)/pf\n", + "phi=math.acos(pf)\n", + "p1=kVA_each*math.cos(math.radians(30-phi))\n", + "p2=kVA_each*math.cos(math.radians(30+phi))\n", + "p=p1+p2\n", + "\n", + "#result\n", + "print \"kVA supplied by each transformer=\",kVA_each,\"kVA\"\n", + "print \"kW supplied by each transformer=\",p,\"kW\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kVA supplied by each transformer= 230.946882217 kVA\n", + "kW supplied by each transformer= 399.995027715 kW\n" + ] + } + ], + "prompt_number": 136 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.17, Page Number:1228" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V\n", + "load=33.0#kVA\n", + "v2=3300.0#V\n", + "\n", + "#calculations\n", + "vl=0.866*v2\n", + "ilp=load*1000/(math.sqrt(3)*v2)\n", + "ils=ilp/(440/v2)\n", + "main_kva=v2*ilp*0.001\n", + "teaser_kva=0.866*main_kva\n", + "\n", + "#result\n", + "print \"voltage rating of each coil=\",vl\n", + "print \"current rating of each coil=\",ils\n", + "print \"main kVA=\",main_kva,\"kVA\"\n", + "print \"teaser kVA=\",teaser_kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage rating of each coil= 2857.8\n", + "current rating of each coil= 43.3012701892\n", + "main kVA= 19.0525588833 kVA\n", + "teaser kVA= 16.4995159929 kVA\n" + ] + } + ], + "prompt_number": 139 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.18, Page Number:1231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "v2=200.0#V\n", + "output=150.0#kVA\n", + "\n", + "#calculations\n", + "ratio=v2/v\n", + "i2=output*1000/(2*v2)\n", + "i1=i2*ratio\n", + "primary_volts=(math.sqrt(3)*v)/2\n", + "ratio=v2/primary_volts\n", + "\n", + "#result\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"turns ratio\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 170.454545455 A\n", + "turns ratio 0.524863881081\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.19, Page Number:1231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=100.0#V\n", + "v2=3300.0#V\n", + "p=400.0#kW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "K=v/v2\n", + "i2=p*1000/(pf*v)\n", + "ip=1.15*K*i2\n", + "I2m=K*i2\n", + "i2=ip/2\n", + "i1m=math.sqrt(I2m**2+i2**2)\n", + "\n", + "#reslult\n", + "print \"Current=\",i1m,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 174.77684841 A\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.20, Page Number:1232" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "w1=300#kW\n", + "w2=450#kW\n", + "v1=100#V\n", + "pf=0.707\n", + "v2=3300#V\n", + "\n", + "#calculations\n", + "K=v/v2\n", + "i2t=(w2*1000)/(100*pf)\n", + "i1t=1.15*K*i2t\n", + "I2m=(K*w1*1000)/(100*pf)\n", + "i2=i1t/2\n", + "i1m=math.sqrt(I2m**2+i2**2)\n", + "\n", + "#result\n", + "print \"Current=\",i1m,\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 169.804606659 A\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.21, Page Number:1233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=80.0#V\n", + "v2=11000.0#V\n", + "w1=500.0#kW\n", + "w2=800.0#kW\n", + "pf=0.5\n", + "\n", + "#calculations\n", + "K=v1/v2\n", + "#unity pf\n", + "i2t=w1*1000/v1\n", + "i1t=1.15*K*i2t\n", + "i2m=K*w2*1000/v1\n", + "i1t_half=i1t/2\n", + "ip=math.sqrt(i2m**2+i1t_half**2)\n", + "\n", + "print \"unity pf\"\n", + "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n", + "#0.5 pf\n", + "i2t=w1*1000/(v1*pf)\n", + "i1t=1.15*K*i2t\n", + "i2m=K*w2*1000/(v1*pf)\n", + "i1t_half=i1t/2\n", + "ip=math.sqrt(i2m**2+i1t_half**2)\n", + "print \"0.5 pf\"\n", + "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "unity pf\n", + "one 3 phase line carries 52.2727272727 A whereas the other 2 carry 77.281082436 A each\n", + "0.5 pf\n", + "one 3 phase line carries 104.545454545 A whereas the other 2 carry 154.562164872 A each\n" + ] + } + ], + "prompt_number": 171 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.22, Page Number:1234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=50#V\n", + "v2=4.6*1000#V\n", + "load=350#kW\n", + "w=200#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "K=v1/v2\n", + "i2t=w*1000/(v1*pf)\n", + "i1t=1.15*K*i2t\n", + "i2m=load*1000/(v1*pf)\n", + "Ki2m=K*i2m\n", + "i1t_half=i1t/2\n", + "i1m=math.sqrt(Ki2m**2+i1t_half**2)\n", + "\n", + "#result\n", + "print \"current in line A=\",i1t\n", + "print \"current in line B=\",i1m\n", + "print \"current in line C=\",i1m" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current in line A= 62.5\n", + "current in line B= 100.11107076\n", + "current in line C= 100.11107076\n" + ] + } + ], + "prompt_number": 173 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.23, Page Number:1234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=231#V\n", + "v2=6600#v\n", + "volt_induced=8#v\n", + "\n", + "#calculations\n", + "hv=v2/volt_induced\n", + "vl=v*math.sqrt(3)\n", + "n_lv1=vl/volt_induced\n", + "n_lv2=math.sqrt(3)*n_lv1/2\n", + "n=2*n_lv2/3\n", + "\n", + "#result\n", + "print \"neutral point is located on the\",math.ceil(n),\"th turn from A downwards\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "neutral point is located on the 29.0 th turn from A downwards\n" + ] + } + ], + "prompt_number": 176 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.24, Page Number:1235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6000.0#V\n", + "v2=440.0#V\n", + "f=50.0#Hz\n", + "area=300.0#cm2\n", + "flux=1.2#Wb/m2\n", + "\n", + "#calculations\n", + "n1=v/(4.44*f*flux*area*0.0001*0.9)\n", + "K=v2/v\n", + "n2=n1*K\n", + "n_lv=math.sqrt(3)*n2/2\n", + "turns=n_lv*2/3\n", + "\n", + "#result\n", + "print \"NUmber of turns in AN=\",math.floor(turns)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " NUmber of turns in AN= 35.0\n" + ] + } + ], + "prompt_number": 183 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.25, Page Number:1235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=250.0#V\n", + "load=30.0#kVA\n", + "v2=250.0#V\n", + "\n", + "#calculations\n", + "il=load*1000/(math.sqrt(3)*v2)\n", + "vl=0.866*v2\n", + "kva=il*vl*(0.001)\n", + "\n", + "#result\n", + "print \"Voltage=\",vl,\"V\"\n", + "print \"kVA rating\",kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage= 216.5 V\n", + "kVA rating 14.9995599935 kVA\n" + ] + } + ], + "prompt_number": 185 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.26, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#vaiable declaration\n", + "load=500#kVA\n", + "pf=0.8\n", + "za=complex(2,6)\n", + "zb=complex(2,5)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "s=load*complex(math.cos(phi),math.sin(phi))\n", + "z1=za/zb\n", + "z2=zb/za\n", + "sa=s/(1+z1)\n", + "sb=s/(1+z2)\n", + "pfa=cmath.phase(sa)\n", + "pfb=cmath.phase(sb)\n", + "#result\n", + "print \"sa=\",abs(sa)\n", + "print \"sb=\",abs(sb)\n", + "print \"cos phi_a=\",pfa\n", + "print \"cos phi_b=\",pfb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= 230.042839552\n", + "sb= 270.171613479\n", + "cos phi_a= 0.611765735265\n", + "cos phi_b= 0.670521557981\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.27, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "w=2000#kVA\n", + "w1=4000#kVA\n", + "w2=5000#kVA\n", + "pf=0.8\n", + "za=complex(2,8)\n", + "zb=complex(1.6,3)\n", + "\n", + "#calculations\n", + "za_per=(w1/w)*za\n", + "zb_per=zb\n", + "z=za_per+zb_per\n", + "s=complex(w1,w-w2)\n", + "sb=s*(za/z)\n", + "sa=s-sb\n", + "\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (2284.2287695-1821.49046794j)\n", + "sb= (1715.7712305-1178.50953206j)\n" + ] + } + ], + "prompt_number": 211 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.28, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "load=1400#kVA\n", + "pf=0.866\n", + "w1=1000#kVA\n", + "w2=500#kVA\n", + "v1=6600\n", + "v2=400\n", + "za=complex(0.001,0.003)\n", + "zb=complex(0.0028,0.005)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "zb=(w1/w2)*zb\n", + "z=za/(za+zb)\n", + "x=math.cos(-phi)\n", + "y=math.sin(-phi)*1j\n", + "s=load*(x+y)\n", + "sb=s*z\n", + "sa=s-sb\n", + "\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (929.911014012-588.664867724j)\n", + "sb= (282.488985988-111.396729565j)\n" + ] + } + ], + "prompt_number": 240 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.29, Page Number:1238" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "load=750#kVA\n", + "pf=0.707\n", + "w1=500#kVA\n", + "w2=250#kVA\n", + "v1=3300\n", + "v2=400\n", + "za=complex(2,3)\n", + "zb=complex(1.5,4)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "zb=(w1/w2)*zb\n", + "z=za/(za+zb)\n", + "x=math.cos(-phi)\n", + "y=math.sin(-phi)*1j\n", + "s=load*(x+y)\n", + "sb=s*z\n", + "sa=s-sb\n", + "per_r=za.real*(sa.real)/w1\n", + "per_x=(za.imag)*(sa.imag)/w1\n", + "total_per=per_r+per_x\n", + "vl=v2-(total_per*4)\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (399.511103547-348.770523615j)\n", + "sb= (130.738896453-181.639636072j)\n" + ] + } + ], + "prompt_number": 242 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.30, Page Number:1240" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratio=100/5\n", + "i=5#A\n", + "i1=3.5#A\n", + "\n", + "#calculations\n", + "il=i1*ratio\n", + "\n", + "#result\n", + "print \"Line current=\",il,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Line current= 70.0 A\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.31, Page Number:1240" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i1=2000#A\n", + "i2=2500#A\n", + "i=5#A\n", + "\n", + "#calculations\n", + "ratio1=i1/i\n", + "ratio2=i2/i\n", + "\n", + "#result\n", + "print \"ratio in first case=\",ratio1\n", + "print \"ratio in second case=\",ratio2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio in first case= 400\n", + "ratio in second case= 500\n" + ] + } + ], + "prompt_number": 216 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter34_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter34_6.ipynb new file mode 100644 index 00000000..d05f1eeb --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter34_6.ipynb @@ -0,0 +1,3065 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:0f43ef5b4c05930620c5e3871d199970ead64e15a20629e8e926abd11e2e9167" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 34:Induction Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.1, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=290.0#rpm\n", + "f=50.0#Hz\n", + "Ns=300.0#rpm(considered)\n", + "#calculation\n", + "P=120*f/Ns\n", + "s=(Ns-n)/Ns\n", + "\n", + "#result\n", + "print \"no. of poles=\",P\n", + "print \"slip=\",s*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no. of poles= 20.0\n", + "slip= 3.33333333333 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.2, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "slot=3\n", + "f=50#Hz\n", + "\n", + "#calculation\n", + "P=2*n\n", + "slots_total=slot*P*n\n", + "Ns=120*f/P\n", + "\n", + "#result\n", + "print \"No. of stator poles=\",P\n", + "print \"Total number of slots=\",slots_total\n", + "print \"Speed=\",Ns,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " No. of stator poles= 6\n", + "Total number of slots= 54\n", + "Speed= 1000 rpm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.3, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=3\n", + "f=50#Hz\n", + "slip1=0.04\n", + "slip2=0.03\n", + "\n", + "#calculation\n", + "Ns=120*f/p\n", + "N=Ns*(1-slip1)\n", + "f1=slip2*f*60\n", + "#at standstill s=1\n", + "f2=1*f\n", + "\n", + "#calculation\n", + "print \"speed at which magnetic field of the stator is rotating=\",Ns,\"rpm\"\n", + "print \"speed of the rotor when the slip is 0.04=\",N\n", + "print \"frequency of rotor current=\",f1,\"rpm\"\n", + "print \"frequency of the rotor current at standstill=\",f2,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which magnetic field of the stator is rotating= 1500 rpm\n", + "speed of the rotor when the slip is 0.04= 1440.0\n", + "frequency of rotor current= 90.0 rpm\n", + "frequency of the rotor current at standstill= 50 Hz\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.4, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3.0\n", + "p=4.0\n", + "f=50.0#Hz\n", + "slip=0.04\n", + "n=600.0#rpm\n", + "\n", + "#calculations\n", + "Ns=120*f/p\n", + "N=Ns*(1-slip)\n", + "s=(Ns-n)/Ns\n", + "f1=s*f\n", + "\n", + "#result\n", + "print \"the synchronous speed=\",Ns,\"rpm\"\n", + "print \"the rotor speed=\",N,\"rpm\"\n", + "print \"the rotor frequency when n=600 rpm=\",f1,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the synchronous speed= 1500.0 rpm\n", + "the rotor speed= 1440.0 rpm\n", + "the rotor frequency when n=600 rpm= 30.0 Hz\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.5, Page Number:1256" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=12\n", + "n=3\n", + "N=500#rpm\n", + "p2=8\n", + "slip=0.03\n", + "\n", + "#calculation\n", + "f=p*N/120\n", + "Ns=120*f/p2\n", + "N=Ns-slip*Ns\n", + "\n", + "#result\n", + "print \"full load speed of the motor=\",N,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load speed of the motor= 727.5 rpm\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.6, Page Number:1258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "e=80#V\n", + "r=1#ohm\n", + "x=4#ohm\n", + "rheo=3#ohm\n", + "\n", + "#calculation\n", + "E=e/(3)**0.5\n", + "z=(r**2+x**2)**0.5\n", + "i=E/z\n", + "pf=r/z\n", + "R=rheo+r\n", + "z2=(R**2+x**2)**0.5\n", + "i2=E/z2\n", + "\n", + "pf2=R/z2\n", + "\n", + "#result\n", + "print \"slip rings are short circuited:\"\n", + "print \"current/phase\",i,\"A\"\n", + "print \"pf=\",pf\n", + "print \"slip rings are onnected to a star-connected rheostat of 3 ohm\",\n", + "print \"current/phase\",i2,\"A\"\n", + "print \"pf=\",pf2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip rings are short circuited:\n", + "current/phase 11.2022406722 A\n", + "pf= 0.242535625036\n", + "slip rings are onnected to a star-connected rheostat of 3 ohm current/phase 8.16496580928 A\n", + "pf= 0.707106781187\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.7, Page Number:1258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "v=400#V\n", + "ratio=6.5\n", + "r=0.05#ohm\n", + "x=0.25#ohm\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e2=v*k/(3**0.5)\n", + "R=x-r\n", + "r2=x\n", + "z=(x**2+r2**2)**0.5\n", + "i2=e2/z\n", + "\n", + "#result\n", + "print \"external resistance=\",R,\"ohm\"\n", + "print \"starting current=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.2 ohm\n", + "starting current= 100.491886883 A\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.8, Page Number:1259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=1100#V\n", + "f=50#Hz\n", + "ratio=3.8\n", + "r=0.012#ohm\n", + "x=0.25#ohm\n", + "s=0.04\n", + "#calculation\n", + "e=v/ratio\n", + "z=(r**2+x**2)**0.5\n", + "i=e/z\n", + "pf=r/z\n", + "xr=s*x\n", + "zr=(r**2+xr**2)**0.5\n", + "er=s*e\n", + "i2=er/zr\n", + "pf2=r/zr\n", + "i2=100*ratio\n", + "z2=e/i2\n", + "r2=(z2**2-x**2)**0.5\n", + "R=r2-r\n", + "\n", + "#result\n", + "print \"current with slip rings shorted=\",i,\"A\"\n", + "print \"pf with slip rings shorted=\",pf\n", + "print \"current with slip=4% and slip rings shorted=\",i2\n", + "print \"pf withslip=4% and slip rings shorted=\",pf2\n", + "print \"external resistance=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current with slip rings shorted= 1156.56314266 A\n", + "pf with slip rings shorted= 0.0479447993684\n", + "current with slip=4% and slip rings shorted= 380.0\n", + "pf withslip=4% and slip rings shorted= 0.768221279597\n", + "external resistance= 0.70758173952 ohm\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.9, Page Number:1259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=15#kW\n", + "v=3000#V\n", + "f=50#Hz\n", + "p=6\n", + "ratio=3.6\n", + "r=0.13#ohm\n", + "l=3.61*0.001#H\n", + "\n", + "#calculation\n", + "v=v/3**0.5\n", + "x2=2*3.14*l*f\n", + "k=1/ratio\n", + "r2_=0.1/k**2\n", + "x2_=ratio**2*x2\n", + "is1=v/((r**2+x2_**2)**0.5)\n", + "ns=120*f/p\n", + "ts=(3*3/(2*3.14*f))*((v**2)*r2_)/(r2_**2+x2_**2)\n", + "\n", + "#result\n", + "print \"starting current=\",is1,\"A\"\n", + "print \"ts=\",ts,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting current= 117.896733436 A\n", + "ts= 512.375725888 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.10, Page Number:1261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "zs=complex(0.4,4)\n", + "zr=complex(6,2)\n", + "v=80#V\n", + "s=0.03\n", + "\n", + "#calculation\n", + "e2=v/3**0.5\n", + "i=e2/abs(zr+zs)\n", + "er=s*e2\n", + "xr=s*zs.imag\n", + "ir=er/abs(complex(zs.real,xr))\n", + "\n", + "#result\n", + "print \"rotor current at standstill=\",i,\"A\"\n", + "print \"rotor current when slip-rings are short-circuited=\",ir,\"A\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor current at standstill= 5.26498126493 A\n", + "rotor current when slip-rings are short-circuited= 3.31800758166 A\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.11, Page Number:1261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "e=120#V\n", + "r2=0.3#ohm\n", + "x2=1.5#ohm\n", + "s=0.04\n", + "\n", + "#calculations\n", + "e2=e/3**0.5\n", + "er=s*e2\n", + "xr=s*x2\n", + "zr=(r2**2+xr**2)**0.5\n", + "i=er/zr\n", + "s=r2/x2\n", + "xr=s*x2\n", + "zr=(xr**2+r2**2)**0.5\n", + "er=s*e2\n", + "i2=er/zr\n", + "\n", + "#result\n", + "print \"rotor when running short-circuited=\",i,\"A\"\n", + "print \"slip=\",s\n", + "print \"current when torque is maximum=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor when running short-circuited= 9.05821627316 A\n", + "slip= 0.2\n", + "current when torque is maximum= 32.6598632371 A\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.12, Page Number:1264" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50.0#Hz\n", + "s=0.04\n", + "tb=150.0#kg-m\n", + "n=660.0#rpm\n", + "r=0.5#ohm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "t=tb*(2/((sb/s)+s/sb))\n", + "\n", + "#result\n", + "print \"torque=\",t,\"kg-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 90.0 kg-m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.13(a), Page Number:1266" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variablde declaration\n", + "n=3\n", + "vd=0.90\n", + "\n", + "#calculation\n", + "ratio_s=(1/vd)**2\n", + "ratio_i=ratio_s*vd\n", + "cu_loss_increase=ratio_i**2\n", + "\n", + "#result\n", + "print \"increase in motor copper losses=\",cu_loss_increase" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase in motor copper losses= 1.23456790123\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.13(b), Page Number:1264" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "p=6\n", + "f=50.0#Hz\n", + "p1=15.0#kW\n", + "n=980.0#rpm\n", + "efficiency=0.93\n", + "vd=0.10\n", + "fd=0.05\n", + "\n", + "#calculation\n", + "v2=(1-vd)*v\n", + "f2=(1-fd)*f\n", + "n1=120*f/p\n", + "n2=120*f2/p\n", + "s1=(n1-n)/n1\n", + "ratio_f=s1*(v*(1-vd)/v)**2*f2/f\n", + "n2=n2*(1-ratio_f)\n", + "p2=p1*n2/n1\n", + "#result\n", + "print \"the new operating speed=\",n2,\"rpm\"\n", + "print \"the new output power=\",p2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the new operating speed= 935.3795 rpm\n", + "the new output power= 14.0306925 kW\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(a), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=3\n", + "v1=400#V\n", + "v2=200#V\n", + "r=0.06#ohm\n", + "x=0.3#ohm\n", + "a=1\n", + "#calculations\n", + "r=x-r\n", + "\n", + "#result\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "additional resistance= 0.24 ohm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(b), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "f=50#Hz\n", + "p=8\n", + "s=0.02\n", + "r=0.001#ohm\n", + "x=0.005#ohm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "a=r/x\n", + "n2=(1-s)*ns\n", + "ratio=2*s**2*a/(a**2+s**2)\n", + "\n", + "#result\n", + "print \"ratio of the maximum to full-load torque=\",ratio*1000,\"10^-3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of the maximum to full-load torque= 3.9603960396 10^-3\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(c), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=12\n", + "v=600#V\n", + "f=50#Hz\n", + "r=0.03#ohm\n", + "x=0.5#ohm\n", + "n=495#rpm\n", + "s=0.01\n", + "#calculation\n", + "Ns=120*f/p\n", + "a=r/x\n", + "n=Ns*(1-a)\n", + "ratio=2*a*s/(a**2+s**2)\n", + "\n", + "#result\n", + "print \"speed of max torque=\",n,\"rpm\"\n", + "print \"ratio of torques=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of max torque= 470.0 rpm\n", + "ratio of torques= 0.324324324324\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.15, Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=746.0#kW\n", + "f=50.0#Hz\n", + "p=16\n", + "zr=complex(0.02,0.15)\n", + "n=360.0#rpm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "a=zr.real/zr.imag\n", + "ratio=2*a*s/(a**2+s**2)\n", + "N=ns*(1-a)\n", + "R=zr.imag-zr.real\n", + "\n", + "#result\n", + "print \"ratio of torques=\",ratio\n", + "print \"speed at maximum torque=\",N,\"rpm\"\n", + "print \"rotor resistance=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of torques= 0.550458715596\n", + "speed at maximum torque= 325.0 rpm\n", + "rotor resistance= 0.13 ohm\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.16, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "a=Symbol('a')\n", + "p=4\n", + "f=50.0#Hz\n", + "r=0.025#ohm\n", + "x=0.12#ohm\n", + "ratio=3.0/4.0\n", + "\n", + "#calculations\n", + "s=r/x\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "a=solve(ratio-(2*a/(1+a**2)),a)\n", + "r=a[0]*x-r\n", + "\n", + "#result\n", + "print \"speed at maximum torque=\",n,\"rpm\"\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at maximum torque= 1187.5 rpm\n", + "additional resistance= 0.0291699475574164 ohm\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.17, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "s=0.04\n", + "r=0.01#ohm\n", + "x=0.1#ohm\n", + "p=8\n", + "#calculation\n", + "a=r/x\n", + "t_ratio=2*a*s/(a**2+s**2)\n", + "ns=120*f/p\n", + "n=(1-a)*ns\n", + "\n", + "#result\n", + "print \"ratio of torques=\",1/t_ratio\n", + "print \"speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of torques= 1.45\n", + "speed= 675.0 rpm\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.18, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "a=Symbol('a')\n", + "a2=Symbol('a2')\n", + "p=3\n", + "t_ratio=2.5\n", + "t_ratio2=1.5\n", + "s=0.03\n", + "\n", + "#calculation\n", + "t_ratio3=t_ratio2/t_ratio\n", + "a=solve(t_ratio3-(2*a/(1+a**2)),a)\n", + "a2=solve(a2**2-0.15*a2+0.0009,a2)\n", + "r_red=(a[0]-a2[1])/a[0]\n", + "#result\n", + "print \"percentage reduction in rotor circuit resistance=\",r_red*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction in rotor circuit resistance= 56.8784093726987 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.19, Page Number:1269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50#Hz\n", + "r=0.08#ohm\n", + "n=650.0#rpm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "a=1\n", + "r=a*x2-r\n", + "#result\n", + "print \"extra resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "extra resistance= 0.52 ohm\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.20, Page Number:1269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "R=Symbol('R')\n", + "p=4\n", + "f=50.0#Hz\n", + "t=162.8#N-m\n", + "n=1365.0#rpm\n", + "r=0.2#ohm\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "R=solve(1.0/(4*x2)-((r+R)/((r+R)**2+x2**2)),R)\n", + "\n", + "#result\n", + "print \"resistance to be added=\",round(R[0],1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 0.4 ohm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.21, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "f=50.0#Hz\n", + "load=7.46#kW\n", + "t_ratios=1.60\n", + "t_ratiom=2.0\n", + "\n", + "#calcualtion\n", + "t_ratio=t_ratios/t_ratiom\n", + "#0.8a2-2*a+0.8 a=0.04\n", + "#0.5=2*a*sf/a2+sf2 sf=0.01\n", + "a=0.04\n", + "sf=0.01\n", + "ns=120*f/p\n", + "n=ns-sf*ns\n", + "N=ns-a*ns\n", + "\n", + "#result\n", + "print \"full-load speed=\",n,\"rpm\"\n", + "print \"speed at maximum torque=\",N,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load speed= 1485.0 rpm\n", + "speed at maximum torque= 1440.0 rpm\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.22, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "v=240#V\n", + "f=50#Hz\n", + "r=0.12#ohm\n", + "x=0.85#ohm\n", + "ratio=1.8\n", + "s=0.04\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e2=k*(v/3**0.5)\n", + "ns=120*f/p\n", + "tf=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n", + "s=r/x\n", + "tmax=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n", + "n=ns*(1-s)\n", + "\n", + "#result\n", + "print \"developed torque=\",tf,\"N-m\"\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"speed at maximum torque=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "developed torque= 52.4097855621 N-m\n", + "maximum torque= 99.9125764956 N-m\n", + "speed at maximum torque= 858.823529412 rpm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.23, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=0.015#ohm\n", + "x=0.09#ohm\n", + "s=0.03\n", + "\n", + "#calculation\n", + "ns=100#rpm considered\n", + "n=(1-s)*ns\n", + "n2=n/2\n", + "s2=(ns-n2)/ns\n", + "ratio=((s2/s)*(r**2+(s*x)**2)/(r**2+(s2*x)**2))**0.5\n", + "per=1-1/ratio\n", + "phi=math.atan(s2*x/r)\n", + "pf=math.cos(phi)\n", + "\n", + "#result\n", + "print \"percentage reduction=\",per*100,\"%\"\n", + "print \"pf=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction= 22.8528060715 %\n", + "pf= 0.307902262948\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.26, Page Number:1272" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "p=4\n", + "t=100#N-m\n", + "n=1200#rpm\n", + "\n", + "#calculation\n", + "e2=v/2\n", + "ns=120*f/p\n", + "n=ns-n\n", + "n2=n+ns/2\n", + "\n", + "#result\n", + "print \"stator supply voltage=\",e2,\"V\"\n", + "print \"new speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator supply voltage= 220 V\n", + "new speed= 1050 rpm\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.24, Page Number:1274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable delclaration\n", + "v=400.0#V\n", + "f=60.0#Hz\n", + "p=8.0\n", + "n=1140.0#rpm\n", + "e=440.0#V\n", + "e2=550.0#V\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "s1=(ns-n)/ns\n", + "s2=s1*(e/e2)**2\n", + "n2=ns*(1-s2)\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1053.6 rpm\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.25, Page Number:1274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=450.0#V\n", + "f=60.0#Hz\n", + "p=8.0\n", + "n=873.0#rpm\n", + "t=23.0#degrees\n", + "n2=864.0#rpm\n", + "alpha=1.0/234.0#per degrees centrigrade\n", + "\n", + "#calculation\n", + "s1=(900-n)/900\n", + "s2=(900-n2)/900\n", + "ratio=s2/s1-1\n", + "t2=(s2/s1-1)/alpha+23 \n", + "\n", + "#result\n", + "print \"increase in rotor resistance=\",ratio*100,\"%\"\n", + "print \"approx temperature=\",t2,\"degrees centigrade\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase in rotor resistance= 33.3333333333 %\n", + "approx temperature= 101.0 degrees centigrade\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.27, Page Number:1283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=500.0#Hz\n", + "p=6.0\n", + "load=80.0#kW\n", + "alt=100.0\n", + "ns=120.0*f/60.0\n", + "#calculation\n", + "s=alt/(60.0*f)\n", + "n=(1-s)*ns\n", + "cu_loss=(1.0/3.0)*load*1000/3.0\n", + "\n", + "#result\n", + "print \"slip=\",s*1000,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"rotor copper loss=\",cu_loss/10000,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.33333333333 %\n", + "rotor speed= 996.666666667 rpm\n", + "rotor copper loss= 0.888888888889 kW\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.28, Page Number:1283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=50.0#Hz\n", + "p=4.0\n", + "n=1425.0#rpm\n", + "z=complex(0.4,4)\n", + "ratio=0.8\n", + "loss=500.0#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=75/ns\n", + "e1=v/3**0.5\n", + "tf=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n", + "ir=s*ratio*e1/(z.real**2+(s*z.imag)**2)**0.5\n", + "cu_loss=3*ir**2*z.real\n", + "pm=2*3.4*(n/60)*tf\n", + "pout=pm-loss\n", + "s=z.real/z.imag\n", + "tmax=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n", + "nmax=ns-s*ns\n", + "i=ratio*e1/abs(z)\n", + "tst=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real)/(z.real**2+(z.imag)**2)\n", + "\n", + "#result\n", + "print \" full load torque=\",tf,\"N-m\"\n", + "print \"rotor current=\",ir,\"A\"\n", + "print \"cu_loss=\",cu_loss,\"W\"\n", + "print \"power output=\",pout,\"W\"\n", + "print \"max torque=\",tmax,\"N-m\"\n", + "print \"speed at max torque=\",nmax,\"rpm\"\n", + "print \"starting current=\",i,\"A\"\n", + "print \"starting torque=\",tst,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " full load torque= 78.9197452229 N-m\n", + "rotor current= 22.7215022978 A\n", + "cu_loss= 619.52 W\n", + "power output= 12245.5388535 W\n", + "max torque= 98.6496815287 N-m\n", + "speed at max torque= 1350.0 rpm\n", + "starting current= 50.5546790867 A\n", + "starting torque= 19.5345904017 N-m\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.30, Page Number:1286" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=60#kW\n", + "loss=1#kW\n", + "s=0.03\n", + "\n", + "#calculations\n", + "p2=load-loss\n", + "pm=(1-s)*p2\n", + "cu_loss=s*p2\n", + "rotor_loss=cu_loss*1000/3\n", + "\n", + "#result\n", + "print \"mechanical power developed=\",pm,\"kW\"\n", + "print \"rotor copper loss=\",rotor_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mechanical power developed= 57.23 kW\n", + "rotor copper loss= 590.0 W\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.31, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=6\n", + "load=20#KW\n", + "s=0.03\n", + "i=60#A\n", + "\n", + "#calculation\n", + "fr=s*f\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "cu_loss=s*load*1000\n", + "r2=cu_loss/(3*i**2)\n", + "\n", + "#result\n", + "print \"frequency of rotor current=\",fr,\"Hz\"\n", + "print \"rotor copper loss=\",cu_loss,\"W\"\n", + "print \"rotor resistance=\",r2,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of rotor current= 1.5 Hz\n", + "rotor copper loss= 600.0 W\n", + "rotor resistance= 0.0555555555556 ohm\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.32, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "f=50#Hz\n", + "load=3.73#KW\n", + "n=960#rpm\n", + "loss=280#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "input_r=load*1000*ns/n\n", + "input_s=input_r+loss\n", + "\n", + "#result\n", + "print \"stator input=\",input_s,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator input= 4165.41666667 W\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.33, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "p2=75.0#KW\n", + "alt=100.0\n", + "\n", + "#calculations\n", + "f1=alt/60\n", + "s=f1/f\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "cu_loss_r_per_phase=s*p2/3\n", + "pm=(1-s)*p2\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"rotor copper loss per phase=\",cu_loss_r_per_phase,\"kW\"\n", + "print \"mechancal power=\",pm,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.33333333333 %\n", + "rotor speed= 966.666666667 rpm\n", + "rotor copper loss per phase= 0.833333333333 kW\n", + "mechancal power= 72.5 kW\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.34, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "n=975.0#rpm\n", + "p1=40.0#KW\n", + "loss_s=1.0#kW\n", + "loss=2.0#KW\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "p2=p1-loss_s\n", + "cu_loss=s*p2\n", + "pm=p2-cu_loss\n", + "pout=pm-loss\n", + "efficiency=pout/p1\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor copper loss=\",cu_loss,\"kW\"\n", + "print \"shaft power=\",pout,\"kW\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 2.5 %\n", + "rotor copper loss= 0.975 kW\n", + "shaft power= 36.025 kW\n", + "efficiency= 90.0625 %\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.35, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=100#KW\n", + "v=3300#V\n", + "f=50#Hz\n", + "n=500#rpm\n", + "s=0.018\n", + "pf=0.85\n", + "cu_loss=2440#W\n", + "iron_loss=3500#W\n", + "rotational_loss=1200#W\n", + "\n", + "#calculations\n", + "pm=output+rotational_loss/1000\n", + "cu_loss_r=(s/(1-s))*pm\n", + "p2=pm+cu_loss_r\n", + "input_s=p2+cu_loss/1000+iron_loss/1000\n", + "il=input_s*1000/(3**0.5*v*pf)\n", + "efficiency=output/input_s\n", + "\n", + "#result\n", + "print \"rotor copper loss=\",cu_loss_r,\"kW\"\n", + "print \"line current=\",il,\"A\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor copper loss= 1.85132382892 kW\n", + "line current= 22.1989272175 A\n", + "efficiency= 92.7202341611 %\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.36, Page Number:1288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "p2=100.0#W\n", + "c=120.0\n", + "\n", + "#calculations\n", + "s=c/(f*60)\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "pm=(1-s)*p2\n", + "cu_loss=s*p2/3\n", + "n2=ns-n\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"mechanical power=\",pm,\"kW\"\n", + "print \"copper loss=\",cu_loss,\"kW\"\n", + "print \"speed of stator field with respect to rotor=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 4.0 %\n", + "rotor speed= 960.0 rpm\n", + "mechanical power= 96.0 kW\n", + "copper loss= 1.33333333333 kW\n", + "speed of stator field with respect to rotor= 40.0 rpm\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.37, Page Number:1288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.9\n", + "output=37#kW\n", + "ratio=1.0/3.0\n", + "\n", + "#calculation\n", + "input_m=output*1000/efficiency\n", + "total_loss=input_m-output*1000\n", + "x=total_loss/(3+0.5)\n", + "input_r=output*1000+x/2+x\n", + "s=x/input_r\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.0303030303 %\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.38, Page Number:1289" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=6\n", + "load=45#KW\n", + "i=75#A\n", + "s=0.03\n", + "iron_loss=1200#kW\n", + "loss=900#kW\n", + "r=0.12#ohm\n", + "\n", + "#calculations\n", + "pf=load*1000/(3**0.5*v*i)\n", + "r=r*3/2\n", + "cu_loss=3*(i/3**0.5)**2*r\n", + "cu_loss_r=s*42788\n", + "pm=42788-cu_loss_r\n", + "output_s=pm-loss\n", + "efficiency=output_s/(load*1000)\n", + "t=(output_s*60)/(2*3.14*970)\n", + "\n", + "#result\n", + "print \"pf=\",pf\n", + "print \"rotor cu loss=\",cu_loss_r,\"W\"\n", + "print \"p out=\",output_s,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"torque=\",t,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf= 0.866025403784\n", + "rotor cu loss= 1283.64 W\n", + "p out= 40604.36 W\n", + "efficiency= 90.2319111111 %\n", + "torque= 399.937881673 N-m\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.39(a), Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "v=220.0#V\n", + "f=50.0#Hz\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "ratio=1.75\n", + "s=0.05\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e1=v/3**0.5\n", + "e2=k*e1\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=s*e2/z\n", + "pcr=3*i2**2*r\n", + "pm=pcr*(1-s)/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "sm=r/x\n", + "n=ns*(1-sm)\n", + "e3=sm*e2\n", + "\n", + "#result\n", + "print \"load torque=\",tg/9.81,\"kg-m\"\n", + "print \"speed at maximum torque=\",n,\"rpm\"\n", + "print \"rotor emf at max torque=\",e3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load torque= 4.26478644041 kg-m\n", + "speed at maximum torque= 1333.33333333 rpm\n", + "rotor emf at max torque= 8.06457518868 V\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.39(b), Page Number:1290" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=4\n", + "i=10#A\n", + "pf=0.86\n", + "loss=0.05\n", + "cu_r=0.04\n", + "m_loss=0.03\n", + "\n", + "#calculation\n", + "input_m=3**0.5*v*i*pf\n", + "loss_s=loss*input_m\n", + "input_r=input_m-loss_s\n", + "cu_lossr=cu_r*input_r\n", + "mec_loss=m_loss*input_r\n", + "output_shaft=input_r-cu_lossr-mec_loss\n", + "s=cu_lossr/input_r\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "wr=2*3.14*n/60\n", + "output_r=input_r-cu_lossr\n", + "tr=output_r/wr\n", + "tin=output_shaft/wr\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"torque developed in the rotor=\",tr,\"Nw-m\"\n", + "print \"shaft torque=\",tin,\"Nw-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 4.0 %\n", + "rotor speed= 1440.0 rpm\n", + "torque developed in the rotor= 36.0531340072 Nw-m\n", + "shaft torque= 34.9264735695 Nw-m\n" + ] + } + ], + "prompt_number": 91 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.40, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "p=40.0\n", + "f=50.0#Hz\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "ratio=3.5\n", + "s=0.05\n", + "\n", + "#calculation\n", + "e1=v/3**0.5\n", + "k=1/ratio\n", + "e2=k*e1\n", + "er=s*e2\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=er/z\n", + "cu_loss=3*i2**2*r\n", + "output=cu_loss*(1-s)/s\n", + "sm=r/x\n", + "er=sm*e2\n", + "zr=(r**2+(x*sm)**2)**0.5\n", + "i2=er/zr\n", + "cu_loss=3*i2**2*r\n", + "input_r=cu_loss/sm\n", + "\n", + "#result\n", + "print \"gross output at 5% slip=\",output,\"W\"\n", + "print \"maximum torque=\",input_r,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross output at 5% slip= 6242.77652849 W\n", + "maximum torque= 8780.04535147 W\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.41, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pout=18.65#kW\n", + "p=4.0\n", + "f=50.0#Hz\n", + "loss=0.025\n", + "s=0.04\n", + "\n", + "#calculations\n", + "pw=loss*pout*1000\n", + "pm=pout*1000+pw\n", + "cu_loss=s*pm/(1-s)\n", + "p2=cu_loss/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tsh=9.55*pout*1000/n\n", + "tg=9.55*pm/n\n", + "\n", + "#result\n", + "print \"rotor cu loss=\",cu_loss,\"W\"\n", + "print \"rotor input=\",p2,\"W\"\n", + "print \"shaft torque=\",tsh,\"N-m\"\n", + "print \"gross electromagnetic torque=\",tg,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor cu loss= 796.510416667 W\n", + "rotor input= 19912.7604167 W\n", + "shaft torque= 123.685763889 N-m\n", + "gross electromagnetic torque= 126.777907986 N-m\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.42, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50.0#Hz\n", + "n=710#rpm\n", + "load=35#kW\n", + "loss=1200#W\n", + "loss_r=600#W\n", + "\n", + "#calculation\n", + "p2=load*1000-loss\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "cu_loss=s*p2\n", + "pm=p2-cu_loss\n", + "tg=9.55*pm/n\n", + "pout=pm-loss_r\n", + "tsh=9.55*pout/n\n", + "\n", + "#result\n", + "print \"rotor copper loss=\",cu_loss/1000,\"kW\"\n", + "print \"gross torque=\",tg,\"N-m\"\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"net torque=\",tsh,\"N-m\"\n", + "print \"mechanical power output=\",pout,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor copper loss= 1.80266666667 kW\n", + "gross torque= 430.386666667 N-m\n", + "mechanical power= 31997.3333333 W\n", + "net torque= 422.316244131 N-m\n", + "mechanical power output= 31397.3333333 W\n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.43, Page Number:1292" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "f=50.0#Hz\n", + "s=0.04\n", + "tsh=149.3#N-m\n", + "loss=200#W\n", + "cu_loss=1620#W\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "pout=tsh*2*3.14*(n/60)\n", + "output=pout+loss\n", + "p2=output*ns/n\n", + "cu_lossr=p2-output\n", + "p1=p2+cu_loss\n", + "efficiency=pout*100/p1\n", + "\n", + "#result\n", + "print \"output power=\",pout/1000,\"kW\"\n", + "print \"rotor cu loss=\",cu_lossr,\"W\"\n", + "print \"the efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output power= 15.001664 kW\n", + "rotor cu loss= 633.402666667 W\n", + "the efficiency= 85.9444669361 %\n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.44, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pout=18.65#kW\n", + "p=6\n", + "f=50.0#Hz\n", + "n=960#rpm\n", + "i2=35#A\n", + "loss=1#kW\n", + "\n", + "#calculation\n", + "pm=pout+loss\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "cu_lossr=pm*s*1000/(1-s)\n", + "r2=cu_lossr/(3*i2**2)\n", + "\n", + "#result\n", + "print \"resistane per phase=\",r2,\"ohm/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistane per phase= 0.222789115646 ohm/phase\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.45, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "sf=Symbol('sf')\n", + "v=400#V\n", + "p=4\n", + "f=50#Hz\n", + "r=0.01#ohm\n", + "x=0.1#ohm\n", + "ratio=4\n", + "\n", + "#calculation\n", + "e1=v/3**0.5\n", + "e2=e1/ratio\n", + "sm=r/x\n", + "ns=120*f/p\n", + "tmax=(3/(2*3.14*25))*(e2**2/(2*x))\n", + "a=r/x\n", + "sf=solve(0.5*(a**2+sf**2)-2*a*sf,sf)\n", + "n=ns*(1-sf[0])\n", + "tf=tmax/2\n", + "output=2*3.14*n*tf/60\n", + "\n", + "#result\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"full load slip=\",sf[0]\n", + "print \"power output=\",output,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum torque= 318.47133758 N-m\n", + "full load slip= 0.0267949192431123\n", + "power output= 24330.1270189222 W\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.46, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "f=50.0#Hz\n", + "v=200.0#V\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "k=0.67\n", + "s=0.04\n", + "#calculations\n", + "e1=v/3**0.5\n", + "e2=e1*k\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=s*e2/z\n", + "cu_loss=3*i2**2*r\n", + "pm=cu_loss*(1-s)/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "sm=r/x\n", + "er=sm*e2\n", + "zr=(r**2+(sm*x)**2)**0.5\n", + "i2=er/zr\n", + "cu_lossr=3*i2**2*r\n", + "output=cu_lossr*(1-sm)/sm\n", + "n=(1-sm)*ns\n", + "tmax=9.55*output/n\n", + "\n", + "#result\n", + "print \"torque=\",tg,\"N-m\"\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"speed at max torque=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 40.4815391879 N-m\n", + "maximum torque= 63.511037037 N-m\n", + "speed at max torque= 1333.33333333 rpm\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.47, Page Number:1293" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=0.015#ohm\n", + "x=0.09#ohm\n", + "f=50#Hz\n", + "s=0.04\n", + "p=4\n", + "e2=110#V\n", + "\n", + "#calculations\n", + "z=(r**2+x**2)**0.5\n", + "pf=r/z\n", + "xr=s*x\n", + "zr=(r**2+xr**2)**0.5\n", + "pf2=r/zr\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "er=s*e2\n", + "i2=er/zr\n", + "cu_loss=3*i2**2*r\n", + "pm=cu_loss*(1-s)/s\n", + "tg=9.55*pm/n\n", + "\n", + "#result\n", + "print \"pf of motor at start=\",pf\n", + "print \"pf of motor at s=4%\",pf2\n", + "print \"full load torque=\",tg,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf of motor at start= 0.164398987305\n", + "pf of motor at s=4% 0.972387301981\n", + "full load torque= 582.728189612 N-m\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.48, Page Number:1294" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6.0\n", + "f=50.0#Hz\n", + "tsh=162.84#N-m\n", + "c=90.0\n", + "t=20.36#N-m\n", + "loss=830.0#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "fr=c/60\n", + "s=fr/f\n", + "n=ns*(1-s)\n", + "output=2*3.14*n*tsh/60\n", + "tg=tsh+t\n", + "p2=tg*ns/9.55\n", + "cu_lossr=s*p2\n", + "p1=p2+cu_lossr\n", + "efficiency=output*100/p1\n", + "\n", + "#result\n", + "print \"motor output=\",output,\"W\"\n", + "print \"cu loss=\",cu_lossr,\"W\"\n", + "print \"motor input\",p1,\"W\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor output= 16532.6024 W\n", + "cu loss= 575.497382199 W\n", + "motor input 19758.7434555 W\n", + "efficiency= 83.6723369441 %\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.49, Page Number:1294" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=18.65#kW\n", + "v=420.0#V\n", + "p=6\n", + "f=50.0#Hz\n", + "r=1.0#ohm\n", + "z=complex(0.25,0.75)\n", + "zr=complex(0.173,0.52)\n", + "v1=420.0#V\n", + "v2=350.0#V\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=zr.real+k**2*z.real\n", + "x02=zr.imag+k**2*z.imag\n", + "z02=((r+r02)**2+x02**2)**0.5\n", + "i2=v2/(3**0.5*z02)\n", + "cu_loss=i2**2*(r+zr.real)\n", + "p2=cu_loss*3\n", + "ns=120*f/p\n", + "tst=9.55*p2/(ns*9.81)\n", + "#result\n", + "print \"torque=\",tst,\"kg-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 48.2909354778 kg-m\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.50, Page Number:1295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "load=37.3#ohm\n", + "v=280#V\n", + "f=50.0#Hz\n", + "i=200#A\n", + "pf=0.25\n", + "r=0.15#ohm\n", + "k=1.0/3\n", + "#calculation\n", + "wsc=2*v*i*pf\n", + "power_phase=v*i*pf\n", + "R=power_phase/i**2\n", + "r2_=R-r\n", + "r2=k**2*r2_\n", + "p2=3*i**2*r2_\n", + "ns=120*f/p\n", + "t=9.55*p2/ns\n", + "\n", + "#result\n", + "print \"resistance perphaseof therotor winding=\",r2,\"ohm\"\n", + "print \"startingtorque=\",t,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance perphaseof therotor winding= 0.0222222222222 ohm\n", + "startingtorque= 305.6 N-m\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.51, Page Number:1295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratios=1.6\n", + "ratiom=2.0\n", + "sf=0.01\n", + "sb=0.04\n", + "#calculation\n", + "i=(ratios/sf)**0.5\n", + "\n", + "#result\n", + "print \"slip at full load=\",sf\n", + "print \"slip at maximum torque=\",sb\n", + "print \"rotor current=\",i" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip at full load= 0.01\n", + "slip at maximum torque= 0.04\n", + "rotor current= 12.6491106407\n" + ] + } + ], + "prompt_number": 159 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.52, Page Number:1297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200#km/h\n", + "f=100#Hz\n", + "\n", + "#calculation\n", + "w=v*5.0/18/(2*f)\n", + "\n", + "#result\n", + "print \"pole pitch=\",w*1000,\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pole pitch= 277.777777778 mm\n" + ] + } + ], + "prompt_number": 162 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.53, Page Number:1297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "w=6#mm\n", + "f=25#Hz\n", + "p=6#kW\n", + "loss=1.2#kW\n", + "v=2.4#m/s\n", + "\n", + "#calculation\n", + "vs=2*f*w/100\n", + "s=(vs-v)/vs\n", + "p2=p-loss\n", + "pcr=s*p2\n", + "pm=p2-pcr\n", + "f=p2*1000/vs\n", + "\n", + "#result\n", + "print \"synchronous speed=\",vs,\"m/s\"\n", + "print \"slip=\",s\n", + "print \"cu loss=\",pcr,\"kW\"\n", + "print \"mechanical power=\",pm,\"kW\"\n", + "print \"thrust=\",f/1000,\"kN\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous speed= 3 m/s\n", + "slip= 0.2\n", + "cu loss= 0.96 kW\n", + "mechanical power= 3.84 kW\n", + "thrust= 1.6 kN\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.54, Page Number:1304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "s=0.12\n", + "r=0.08#ohm/phase\n", + "pg=9000.0#W\n", + "\n", + "#calculations\n", + "rl=r*(1/s-1)\n", + "v=(pg*rl/3)**0.5\n", + "il=v/rl\n", + "\n", + "#result\n", + "print \"load resistance=\",rl,\"ohm\"\n", + "print \"load voltage=\",v,\"V\"\n", + "print \"load current=\",il,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load resistance= 0.586666666667 ohm\n", + "load voltage= 41.9523539268 V\n", + "load current= 71.5096941934 A\n" + ] + } + ], + "prompt_number": 166 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.55, Page Number:1305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "p=4\n", + "r1=0.15#ohm\n", + "x1=0.45#ohm\n", + "r2_=0.12#ohm\n", + "x2_=0.45#ohm\n", + "xm=complex(0,28.5)#ohm\n", + "s=0.04\n", + "#calculations\n", + "rl_=r2_*(1/s-1)\n", + "i2_=(v/3**0.5)/complex(r1+rl_,x1)\n", + "i0=(v/3**0.5)/xm\n", + "i1=i0+i2_\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "\n", + "#result\n", + "print \"stator current=\",i1,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator current= (74.5730253701-19.1783634605j) A\n", + "power factor= 0.968485280755\n" + ] + } + ], + "prompt_number": 177 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.56, Page Number:1305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220#V\n", + "p=4\n", + "f=50#Hz\n", + "power=3.73#kW\n", + "r1=0.45#ohm\n", + "x1=0.8#ohm\n", + "r2_=0.4#ohm\n", + "x2_=0.8#ohm\n", + "b0=-1.0/30\n", + "loss=50#W\n", + "lossr=150#W\n", + "s=0.04\n", + "\n", + "#calculations\n", + "zab=complex(30*complex(r2_/s,x2_))/complex(r2_/s,x2_-1/b0)\n", + "z01=complex(r1,x1)+zab\n", + "vph=v/3**0.5\n", + "i1=v1/z01\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "p2=3*i1.real**2*zab.real\n", + "pm=(1-s)*p2\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "power_o=pm-lossr\n", + "cu_loss=3*i1.real**2*r1\n", + "cu_lossr=s*p2\n", + "total_loss=loss+cu_loss+cu_lossr+lossr\n", + "efficiency=power_o/(power_o+total_loss)\n", + "\n", + "#result\n", + "print \"input current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"air gap power=\",p2,\"W\"\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"electro magnetic torque=\",tg,\"N-m\"\n", + "print \"output power=\",power_o,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input current= (21.9914486234+42.6194245913j) A\n", + "pf= 0.45854949826\n", + "air gap power= 5173.46132109 W\n", + "mechanical power= 4966.52286825 W\n", + "electro magnetic torque= 32.9377037443 N-m\n", + "output power= 4816.52286825 W\n", + "efficiency= 81.9644851937 %\n" + ] + } + ], + "prompt_number": 184 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.57, Page Number:1306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "load=37.3#kW\n", + "r1=0.1#ohm\n", + "x1=0.4#ohm\n", + "r2_=0.15#ohm\n", + "x2_=0.44#ohm\n", + "loss=1250#W\n", + "lossr=1000#W\n", + "i=20#A\n", + "pf=0.09\n", + "s=0.03\n", + "\n", + "#calculation\n", + "v1=v/3**0.5\n", + "i2_=v1/complex(r1+r2_/s,x1+x2_)\n", + "i1=i2_+complex(1.78,19.9)\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "p2=3*i2_.real**2*r2_/s\n", + "ns=120*f/p\n", + "tg=9.55*p2/ns\n", + "pm=p2*(1-s)\n", + "pout=pm-1000\n", + "cu_losss=3*i1.real**2*r1\n", + "cu_lossr=s*p2\n", + "total_loss=loss+cu_losss+cu_lossr+lossr\n", + "efficiency=pout/(pout+total_loss)\n", + "\n", + "#result\n", + "print \"line current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"electromagnetic torque=\",tg,\"N-m\"\n", + "print \"output=\",pout,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= (50.2750367599+11.9125821807j) A\n", + "pf= 0.973057118792\n", + "electromagnetic torque= 224.593900377 N-m\n", + "output= 33218.2329894 W\n", + "efficiency= 89.0932246577 %\n" + ] + } + ], + "prompt_number": 186 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.58, Page Number:1306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "z=complex(0.06,0.2)\n", + "zr=complex(0.06,0.22)\n", + "\n", + "#calculation\n", + "r01=z.real+zr.real\n", + "x01=z.imag+zr.imag\n", + "z01=(r01**2+x01**2)**0.5\n", + "s=z.real/(z.real+z01)\n", + "v1=v/3**0.5\n", + "pmax=3*v1**2/(2*(r01+z01))\n", + "\n", + "#result\n", + "print \"maximum gross power=\",pmax,\"W\"\n", + "print \"slip=\",s" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum gross power= 143676.459572 W\n", + "slip= 0.120771344025\n" + ] + } + ], + "prompt_number": 188 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.59, Page Number:1307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=115#V\n", + "f=60.0#Hz\n", + "p=6\n", + "z=complex(0.07,0.3)\n", + "zr=complex(0.08,0.3)\n", + "gd=0.022#mho\n", + "bo=0.158#mho\n", + "s=0.02\n", + "\n", + "#calculation\n", + "rl_=1/bo*(1/s-1)\n", + "z=complex(z.real+zr.real+rl_,0.6)\n", + "v=v1/3**0.5\n", + "i2=complex(16,-2.36)\n", + "io=v*complex(gd,-bo)\n", + "i1=io+i2\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "pg=3*abs(i2)**2*rl_/100\n", + "ns=120*f/p\n", + "n=(1-s)*ns\n", + "tg=9.55*pg/n\n", + "p2=3**0.5*v1*abs(i1)*pf\n", + "efficiency=pg*100/p2\n", + "\n", + "#result\n", + "print \"secondary current=\",i2,\"A\"\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"power output=\",pg,\"W\"\n", + "print \"torque=\",tg,\"N-m\"\n", + "print \"input=\",p2,\"W\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary current= (16-2.36j) A\n", + "primary current= (17.460696181-12.8504543912j) A\n", + "pf= 0.805393212665\n", + "power output= 2433.59058228 W\n", + "torque= 19.7625765823 N-m\n", + "input= 3477.92348593 W\n", + "efficiency= 69.9725164204 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.60, Page Number:1308" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "z=complex(0.4,1)\n", + "zr=complex(0.6,1)\n", + "zm=complex(10,50)\n", + "s=0.05\n", + "\n", + "#calculation\n", + "sm=zr.real/(z.real**2+(z.imag+zr.imag)**2)**0.5\n", + "v1=v/3**0.5\n", + "i2=v1/((z.real+zr.real)**2+(zr.imag+z.imag)**2)**0.5\n", + "tgmax=3*i2**2*z.real*60/(sm*2*3.14*1500)\n", + "#result\n", + "print \"maximum torque=\",tgmax,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum torque= 277.144160399 N-m\n" + ] + } + ], + "prompt_number": 208 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter35_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter35_6.ipynb new file mode 100644 index 00000000..1c89c3bd --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter35_6.ipynb @@ -0,0 +1,1220 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:87ef53401e46d15eef2e50d8ed392f8c9e3784abe371e55cb0923dbffffe7b33" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 35: Computations and Circle Diagrams" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.1, Page Number:1316" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=10#A\n", + "p=450#W\n", + "v=110#V\n", + "r=0.05#ohm\n", + "loss=135#w\n", + "\n", + "#calculations\n", + "cu_loss=3*i**2*r\n", + "core_loss=p-loss-cu_loss\n", + "volt=v/math.sqrt(3)\n", + "g=core_loss/(3*(v/math.sqrt(3))**2)\n", + "y=i*math.sqrt(3)/v\n", + "b=math.sqrt(y**2-g**2)\n", + "\n", + "#result\n", + "print \"exciting conductance=\",g,\"seimens/phase\"\n", + "print \"susceptance/phase=\",b,\"seimens/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "exciting conductance= 0.0247933884298 seimens/phase\n", + "susceptance/phase= 0.155494939853 seimens/phase\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.2, Page Number:1317" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=110.0#V\n", + "i=25.0#A\n", + "v2=30.0#V\n", + "inpt=440.0#W\n", + "loss=40.0#W\n", + "r=0.1#ohm\n", + "ratio=1.6\n", + "\n", + "#calculations\n", + "vs=v2/math.sqrt(3)\n", + "z01=vs/i\n", + "losses=inpt-loss\n", + "r01=losses/(3*i**2)\n", + "x01=math.sqrt(z01**2-r01**2)\n", + "dc_r=r/2.0\n", + "ac_r=dc_r*ratio\n", + "effective_r=r01-ac_r\n", + "\n", + "#result\n", + "print \"x01=\",x01,\"ohm\"\n", + "print \"r1=\",ac_r,\"ohm\"\n", + "print \"r2=\",effective_r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "x01= 0.659157711696 ohm\n", + "r1= 0.08 ohm\n", + "r2= 0.133333333333 ohm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.10, Page Number:1333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "ratio=1/4.0\n", + "slip=3.0\n", + "ratio2=4.0\n", + "\n", + "#calculations\n", + "K=math.sqrt(ratio/((ratio2**2)*0.01*slip))\n", + "\n", + "#result\n", + "print \"Percentage Tapping=\",K*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage Tapping= 72.1687836487 %\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.11, Page Number:1333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=14.92#kW\n", + "v1=400#V\n", + "n=950#rpm\n", + "f=50.0#Hz\n", + "v2=400#V\n", + "ratio=1.8\n", + "i=30#A\n", + "\n", + "#calculations\n", + "v=v1/math.sqrt(ratio)\n", + "If=6*v*i/v1\n", + "K=v/v1\n", + "kisc=K**2*6*i\n", + "ts_tf=(1/6.0)*6**2*(f/1000.0)\n", + "\n", + "#result\n", + "print \"a)voltage=\",v,\"V\"\n", + "print \"b)current=\",If,\"A\"\n", + "print \"c)line current=\",kisc,\"A\"\n", + "print \"d)percentage=\",ts_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)voltage= 298.142397 V\n", + "b)current= 134.16407865 A\n", + "c)line current= 100.0 A\n", + "d)percentage= 30.0 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.12, Page Number:1334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "ratio=5.0\n", + "per=5\n", + "\n", + "#calculations\n", + "k=math.sqrt(ratio/3)\n", + "tst_tf=(3.0/5)*5**2*0.01*per*100\n", + "\n", + "#result\n", + "print \"auto-transformation ratio=\",tst_tf,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-transformation ratio= 75.0 %\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.13, Page Number:1334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V\n", + "per=3.5\n", + "v2=92.0#V\n", + "\n", + "#calculations\n", + "k=math.sqrt(2/(v/v2))\n", + "ts_tf=k**2*(v/v2)**2*0.01*per\n", + "\n", + "#result\n", + "print \"auto-transformation ratio=\",ts_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-transformation ratio= 30.4347826087 %\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.14, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=12.0#kW\n", + "v=440.0#V\n", + "efficiency=0.85\n", + "pf=0.8\n", + "i=45.0#A\n", + "v2=220.0#V\n", + "\n", + "#calculations\n", + "isc=i*v/v2\n", + "if_=load*1000/(efficiency*math.sqrt(3)*pf*v)\n", + "ist=isc/math.sqrt(3)\n", + "ratio=ist/if_\n", + "\n", + "#result\n", + "print \"ratio=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio= 2.244\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.15, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=60.0#A\n", + "n1=940.0#rpm\n", + "t=150.0#N-m\n", + "i2=300.0#A\n", + "\n", + "#calculations\n", + "sf=(1000-n1)/1000\n", + "tst=t*(i2/i)**2*sf\n", + "s_i=i2/3\n", + "sd_tst=tst/3\n", + "\n", + "#result\n", + "print \"Starting torque=\",tst,\"N-m\"\n", + "print\"when star/delta is used:\"\n", + "print \"starting current=\",s_i,\"A\"\n", + "print \"starting torque=\",sd_tst,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Starting torque= 225.0 N-m\n", + "when star/delta is used:\n", + "starting current= 100.0 A\n", + "starting torque= 75.0 N-m\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.16, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "tapping=70.7\n", + "ratio=6.0\n", + "slip=4.0\n", + "\n", + "#calculation\n", + "tst_tf=(1.0/3.0)*ratio**2.0*slip*0.01\n", + "tst_tf2=(1.0/2)*ratio**2.0*slip*0.01\n", + "\n", + "#result\n", + "print \"star-delta switch:starting torque=\",tst_tf*100,\"%\"\n", + "print \"auto-transformer switch:starting torque=\",tst_tf2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "star-delta switch:starting torque= 48.0 %\n", + "auto-transformer switch:starting torque= 72.0 %\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.17, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=11.2#W\n", + "f=50.0#Hz\n", + "v=400.0#V\n", + "n=960.0#rpm\n", + "i=86.4#A\n", + "efficiency=0.88\n", + "pf=0.85\n", + "\n", + "#calculations\n", + "isc=i/math.sqrt(3)\n", + "ist=isc/math.sqrt(3)\n", + "il=load*1000/(efficiency*pf*math.sqrt(3)*v)\n", + "iph=il/math.sqrt(3)\n", + "tst_tf=(ist*math.sqrt(3)/il)**2*0.05\n", + "\n", + "#result\n", + "print \"starting torque=\",tst_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting torque= 26.6369577796 %\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.18, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "output=10.0#kW\n", + "v=400.0#V\n", + "pf=0.85\n", + "efficiency=0.88\n", + "v2=200.0#V\n", + "i=40.0#A\n", + "\n", + "#calculations\n", + "il=load*1000/(efficiency*math.sqrt(3)*v*pf)\n", + "isc=i*v/v2\n", + "iscp=isc/math.sqrt(3)\n", + "ist=iscp/math.sqrt(3)\n", + "ratio=ist/il\n", + "\n", + "#result\n", + "print \"ratio=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio= 1.23388000387\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.19, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.73*1000#W\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "slip=4.5\n", + "t=250.0\n", + "i=650.0\n", + "tap=60.0\n", + "\n", + "#calculation\n", + "il=i/3\n", + "im=i/3\n", + "tst=t/3\n", + "ilm=(tap/100)**2*i\n", + "imk=(tap/100)*i\n", + "tstk=(tap/100)**2*t\n", + "\n", + "#result\n", + "print \"star/delta:\"\n", + "print \"line current=\",il,\"%\"\n", + "print \"motor current=\",im,\"%\"\n", + "print \"starting torque=\",tst,\"%\"\n", + "print \"60% taps:\"\n", + "print \"line current=\",ilm,\"%\"\n", + "print \"motor current=\",imk,\"%\"\n", + "print \"starting torque=\",tstk,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " star/delta:\n", + "line current= 216.666666667 %\n", + "motor current= 216.666666667 %\n", + "starting torque= 83.3333333333 %\n", + "60% taps:\n", + "line current= 234.0 %\n", + "motor current= 390.0 %\n", + "starting torque= 90.0 %\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.20, Page Number:1338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=180.0\n", + "flt=35.0\n", + "tap=75.0\n", + "\n", + "#calculations\n", + "isc=load*3.0/100\n", + "isck=tap**2*isc/100\n", + "sf=flt*3\n", + "tst_tf=tap**2*sf/100\n", + "#result\n", + "print \"starting current=\",isck,\"%\"\n", + "print \"starting torque=\",tst_tf/100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting current= 303.75 %\n", + "starting torque= 59.0625 %\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.21, Page Number:1338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "w=7.46#kW\n", + "ic=1.7\n", + "t=35.0\n", + "ratio=60.0\n", + "\n", + "#calculations\n", + "sf=t*3/100\n", + "il1=ic*3\n", + "tst=(ratio/1000)**2*sf*10000\n", + "il2=(ratio/100)*3*ic\n", + "\n", + "#results\n", + "print \"auto-starter:\"\n", + "print \"line-current=\",il1,\"%\"\n", + "print \"torque=\",tst,\"%\"\n", + "print \"voltage decreased to 60%\"\n", + "print \"line-current\",il2,\"%\"\n", + "print \"torque=\",tst,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-starter:\n", + "line-current= 5.1 %\n", + "torque= 37.8 %\n", + "voltage decreased to 60%\n", + "line-current 3.06 %\n", + "torque= 37.8 %\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.22, Page Number:1342" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "slip=2.0\n", + "r=0.02#ohm\n", + "n=6.0\n", + "#calculations\n", + "smax=r2=slip/100.0\n", + "R1=r2/smax\n", + "K=math.pow(smax,1.0/5)\n", + "R2=K*R1\n", + "R3=K*R2\n", + "R4=K*R3\n", + "R5=K*R4\n", + "p1=R1-R2\n", + "p2=R2-R3\n", + "p3=R3-R4\n", + "p4=R4-R5\n", + "p5=R5-r2\n", + "\n", + "#result\n", + "print \"resistances of various starter sections:\"\n", + "print \"p1=\",p1,\"ohm\"\n", + "print \"p2=\",p2,\"ohm\"\n", + "print \"p3=\",p3,\"ohm\"\n", + "print \"p4=\",p4,\"ohm\"\n", + "print \"p5=\",p5,\"ohm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistances of various starter sections:\n", + "p1= 0.542694948073 ohm\n", + "p2= 0.248177141409 ohm\n", + "p3= 0.113492660539 ohm\n", + "p4= 0.0519007670213 ohm\n", + "p5= 0.0237344829577 ohm\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.23, Page Number:1345" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "primary=complex(1,3)\n", + "outer=complex(3,1)\n", + "inner=complex(0.6,5)\n", + "s=4\n", + "outer2=complex(3/(s*0.01),1)\n", + "inner2=complex(0.6/(s*0.01),5)\n", + "v=440#V\n", + "\n", + "\n", + "#calculations\n", + "#s=1\n", + "z01=primary+1/((1/outer)+(1/inner))\n", + "current_per_phase=v/abs(z01)\n", + "torque=3*current_per_phase**2*(z01.real-1)\n", + "\n", + "print \"s=1: torque=\",torque,\"synch watt\"\n", + "\n", + "#s=4\n", + "z01=primary+1/((1/outer2)+(1/inner2))\n", + "current_per_phase=v/abs(z01)\n", + "torque=3*current_per_phase**2*(z01.real-1)\n", + "\n", + "print \"s=4: torque=\",torque,\"synch watt\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1: torque= 35065.3642462 synch watt\n", + "s=4: torque= 32129.9449695 synch watt\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.24, Page Number:1346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inner=complex(0.4,2)\n", + "outer=complex(2,0.4)\n", + "s=5\n", + "inner2=complex(0.4/(s*0.01),2)\n", + "outer2=complex(2/(s*0.01),0.4)\n", + "print \n", + "#calculations\n", + "#s=1\n", + "zi=abs(inner)\n", + "zo=abs(outer)\n", + "r_ratio=inner.imag/outer.imag\n", + "to_ti=r_ratio*(zo/zi)**2\n", + "print \"Ratio of torques when s=1:\",to_ti\n", + "\n", + "#s=5\n", + "zi=abs(inner2)\n", + "zo=abs(outer2)\n", + "print zi\n", + "r_ratio=inner2.imag/outer2.imag\n", + "to_ti=r_ratio*(zi/zo)**2\n", + "\n", + "print \"Ratio of torques when s=5:\",to_ti" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "Ratio of torques when s=1: 5.0\n", + "8.24621125124\n", + "Ratio of torques when s=5: 0.212478752125\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.25, Page Number:1346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "s=5\n", + "zi=complex(0.05,0.4)\n", + "zo=complex(0.5,0.1)\n", + "v=100#V\n", + "\n", + "#calculations\n", + "#s=1\n", + "z=zo*zi/(zo+zi)\n", + "r2=z.real\n", + "z=abs(z)\n", + "i2=v/z\n", + "t=i2**2*r2\n", + "print \"s=1:torque=\",t,\"synch watts\"\n", + "\n", + "#s=0.01\n", + "zi=complex(0.05/(s*0.01),0.4)\n", + "zo=complex(0.5/(s*0.01),0.1)\n", + "z=zo*zi/(zo+zi)\n", + "r2=z.real\n", + "z=abs(z)\n", + "i2=v/z\n", + "t=i2**2*r2\n", + "print \"s=5:torque=\",t,\"synch watts\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1:torque= 22307.6923077 synch watts\n", + "s=5:torque= 9620.58966517 synch watts\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.27, Page Number:1347" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "zo=complex(1,0)\n", + "zi=complex(0.15,3)\n", + "v=250#V\n", + "n=1000#rpm\n", + "\n", + "#calculations\n", + "z2=zo*zi/(zo+zi)\n", + "stator=complex(0.25,3.5)\n", + "z01=z2+stator\n", + "i=complex(v,0)/z01\n", + "i=abs(i)\n", + "cu_loss=i**2*z01.real\n", + "T=cu_loss*3/(2*math.pi*(n/60))\n", + "#result\n", + "print \"torque=\",T,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 135.560320318 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.28, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z1=complex(1,2.8)\n", + "zo=complex(3,1)\n", + "zi=complex(0.5,5)\n", + "v=440#V\n", + "s=0.04\n", + "\n", + "#calculations\n", + "#s=1\n", + "z2=zo*zi/(zo+zi)\n", + "z01=z1+z2\n", + "i2=v/z01\n", + "r2=z2.real\n", + "t=abs(i2)**2*r2\n", + "\n", + "print \"s=1:torque=\",t,\"synch. watt\"\n", + "\n", + "#s=0.04\n", + "zo=complex(3.0/s,1.0)\n", + "zi=complex(0.5/s,5.0)\n", + "z2=zo*zi/(zo+zi)\n", + "z01=z1+z2\n", + "i2=v/z01\n", + "r2=z2.real\n", + "t=abs(i2)**2*r2\n", + "print \"s=4:torque=\",t,\"synch. watt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1:torque= 12388.3258184 synch. watt\n", + "s=4:torque= 11489.1141244 synch. watt\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.29, Page Number:1351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "r=0.30#ohm\n", + "n1=1440.0#rpm\n", + "n2=1320.0#rpm\n", + "ns=120.0*f/4.0\n", + "#calculations\n", + "s1=(ns-n1)/ns\n", + "s2=(ns-n2)/ns\n", + "r=s2*r/s1-r\n", + "\n", + "#result\n", + "print \"external resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.6 ohm\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.30, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "s=0.03\n", + "ratio=10.0\n", + "r=0.2\n", + "\n", + "#calculations\n", + "ns=120*f/6\n", + "s1=s\n", + "n1=ns*(1-s1)\n", + "n2=n1-10*n1/100\n", + "s2=(ns-n2)/ns\n", + "r=s2*r/s1-r\n", + "\n", + "#result\n", + "print \"external resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.646666666667 ohm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.31, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f=50#Hz\n", + "s=0.02\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "n=(1-s)*nsc\n", + "nsa=120*f/6\n", + "sa=(nsa-n)/nsa\n", + "f_=sa*f\n", + "n_=(120*f_)/4\n", + "sb=(n_-n)/n_\n", + "f__=sb*f_\n", + "\n", + "#resu;t\n", + "print \"f_=\",f_,\"Hz\"\n", + "print \"f_ _=\",f__,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f_= 20.6 Hz\n", + "f_ _= 1.0 Hz\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.32, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "f2=1.0#Hz\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "s=f2/f\n", + "n=nsc-s*nsc\n", + "nsa=120*f/4\n", + "sa=(nsa-n)/nsa\n", + "f1=sa*f\n", + "n2=120*f1/6\n", + "sb=(n2-n)/n2\n", + "\n", + "#result\n", + "print \"sa=\",sa*100,\"%\"\n", + "print \"sb=\",sb*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= 60.8 %\n", + "sb= 3.28947368421 %\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.33, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "load=74.6#kW\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "output=load*4/10\n", + "\n", + "#result\n", + "print \"speed of set=\",nsc,\"rpm\"\n", + "print \"electric power transferred=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of set= 600 rpm\n", + "electric power transferred= 29.84 kW\n" + ] + } + ], + "prompt_number": 79 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.34, Page Number:1355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "load=25#kW\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "output=load*4/10\n", + "\n", + "#result\n", + "print \"speed of set=\",nsc,\"rpm\"\n", + "print \"electric power transferred=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of set= 600 rpm\n", + "electric power transferred= 10 kW\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter36_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter36_6.ipynb new file mode 100644 index 00000000..a28f10ba --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter36_6.ipynb @@ -0,0 +1,393 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a362cd0373fe77cde513a2a109a4d7c05a5dbd87d086b1227fbc532438b6bbb6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 36: Single-Phase Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.1, Page Number:1374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "R1=1.86\n", + "X1=2.56\n", + "R2=3.56\n", + "X2=2.56\n", + "Xm=53.5\n", + "r1=R1/2\n", + "x1=X1/2\n", + "r2=R2/2\n", + "x2=X2/2\n", + "xm=Xm/2\n", + "v=110\n", + "f=60\n", + "s=0.05\n", + "\n", + "#calculations\n", + "xo=xm+x2\n", + "\n", + "zf=(((r2/s)*xm)/(((r2/s)*(r2/s))+(xo*xo)))*xm\n", + "jf=(((r2/s)*(r2/s)+(x2*xo))/(((r2/s)*(r2/s))+(xo*xo)))*xm\n", + "Jf=math.degrees(math.atan(jf/zf))\n", + "\n", + "zb=(((r2/(2-s))*xm)/(((r2/s)*(r2/(2-s)))+(xo*xo)))*xm\n", + "jb=(((r2/(2-s))*(r2/(2-s))+(x2*xo))/(((r2/(2-s))*(r2/(2-s)))+(xo*xo)))*xm\n", + "Jb=math.degrees(math.atan(jb/zb))\n", + "\n", + "Z1=R1\n", + "J1=X1\n", + "z01=Z1+zf+zb\n", + "j01=jf+jb+J1\n", + "J01=math.degrees(math.atan(j01/z01))\n", + "\n", + "i1=v/z01\n", + "vf=i1*zf\n", + "vb=i1*zb\n", + "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n", + "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "\n", + "i3=vf/z3\n", + "i5=vb/z5\n", + "tf=(i3*i3*r2)/s\n", + "tb=t5=(i5*i5*r2)/(2-s)\n", + "t=tf-tb\n", + "output=t*(1-s)\n", + "\n", + "#result\n", + "print \"output = \",output" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output = 206.798750547\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Example Number 36.2, Page Number:1375" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "p=185\n", + "v=110\n", + "f=50\n", + "s=0.05\n", + "R1=1.86\n", + "X1=2.56\n", + "Xo=53.5\n", + "R2=3.56\n", + "X2=2.56\n", + "Xm=53.5\n", + "cl=3.5#core loss\n", + "fl=13.5#friction loss\n", + "vf=(82.5/100)*v\n", + "ic=(cl*100)/vf\n", + "r1=R1/2\n", + "x1=X1/2\n", + "r2=R2/2\n", + "x2=X2/2\n", + "xm=Xm/2\n", + "rc=vf/ic\n", + "\n", + "#calculations\n", + "\n", + "#motor 1\n", + "c=1/rc #conductance of corebranch\n", + "s=-(1/xm)#susceptance\n", + "a1=(r2/s)/(((r2/s)*r2/s)+(x2*x2))#admittance\n", + "a1j=-x2/(((r2/s)*r2/s)+(x2*x2))#admittance j\n", + "yf=c+a1\n", + "yfj=s+a1j\n", + "zf=(yf*yf)+(yfj*yfj)\n", + "zfr=yf/zf\n", + "zfj=yfj/zf\n", + "\n", + "#motor 2\n", + "a2=(r2/2-s)/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "a2j=-x2/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "Z1=R1\n", + "J1=X1\n", + "yb=yf+a2\n", + "ybj=yfj+a2j\n", + "zb1=(yb*yb)+(ybj*ybj)\n", + "zbr=yb/zb1\n", + "zbj=ybj/zb1\n", + "z01=Z1+zf+zbr\n", + "z01j=J1+zfj+zbj\n", + "\n", + "i1=v/z01\n", + "vf=i1*zf\n", + "vb=i1*zbr\n", + "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n", + "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "\n", + "i3=vf/z3\n", + "i5=vb/z5\n", + "tf=(i3*i3*r2)/s\n", + "tb=t5=(i5*i5*r2)/(2-s)\n", + "t=tf-tb\n", + "watt=t*(1-s)\n", + "net_output=watt-fl\n", + "\n", + "#result\n", + "print \"Net output = \",net_output" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net output = -446.423232085\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.3, Page Number:1376" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "w=250\n", + "v=230\n", + "f=50\n", + "zm=4.5\n", + "zmj=3.7\n", + "za=9.5\n", + "zaj=3.5\n", + "\n", + "#calculations\n", + "zma=math.degrees(math.atan(zmj/zm))\n", + "ialeadv=90-zma\n", + "x=za*(math.tan(math.radians(ialeadv)))\n", + "xc=x+zaj\n", + "c=1000000/(xc*2*50*3.14)\n", + "\n", + "#result\n", + "print \"C= \",c,\" uf\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "C= 211.551875951 uf\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.4, Page Number:1393" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "\n", + "p=250\n", + "f=50\n", + "v=220\n", + "ndc=2000\n", + "ia=1\n", + "ra=20\n", + "la=0.4\n", + "\n", + "#calculations\n", + "ebdc=v-(ia*ra)\n", + "#ac\n", + "xa=2*3.14*f*la\n", + "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n", + "nac=(ebac*ndc)/ebdc\n", + "cos_phi=(ebac+(ia*ra))/v\n", + "pmech=ebac*ia\n", + "T=(pmech*9.55)/nac\n", + "\n", + "#result\n", + "print \"Speed= \",nac,\" rpm\"\n", + "print \"Torque= \",T,\" N-m\"\n", + "print \"Power Factor= \",cos_phi,\" lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed= 1606.22922133 rpm\n", + "Torque= 0.955 N-m\n", + "Power Factor= 0.821013282424 lag\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "Example Number 36.5, Page Number:1394" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "r=30\n", + "l=0.5\n", + "v=250\n", + "idc=0.8\n", + "ndc=2000\n", + "f=50\n", + "ia=0.8\n", + "\n", + "#calculations\n", + "\n", + "xa=2*3.14*f*l\n", + "ra=r\n", + "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n", + "ebdc=v-(r*idc)\n", + "nac=(ndc*ebac)/ebdc\n", + "cos_phi=(ebac+(ia*ra))/v\n", + "\n", + "#result\n", + "print \"Speed= \",nac,\" rpm\"\n", + "print \"Power Factor= \",cos_phi,\" lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed= 1700.52062383 rpm\n", + "Power Factor= 0.864635321971 lag\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.6, Page Number:1396" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "f=50\n", + "a=30\n", + "w=8\n", + "v=220\n", + "v2=205\n", + "pole=4\n", + "\n", + "#calculations\n", + "\n", + "ns=(120*f)/pole\n", + "tsh=(9.55*w*1000)/ns\n", + "alpha=0.5*(math.degrees(math.asin((v*v*math.sin(math.radians(2*a)))/(v2*v2))))\n", + "\n", + "#result\n", + "print \"Torque angle if voltage drops to 205 V = \",alpha,\" degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Torque angle if voltage drops to 205 V = 42.9327261097 degrees\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter37_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter37_6.ipynb new file mode 100644 index 00000000..7e0be0a9 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter37_6.ipynb @@ -0,0 +1,2781 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:3f52bfdb4973d016ec59d44992f6a2ce15bb8cca394c854d00d33c6af91049f3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 37: Alternators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.1, Page Number:1412" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "s1=36.0\n", + "p1=4.0\n", + "span1=8.0\n", + "s2=72.0\n", + "p2=6.0\n", + "span2=10.0\n", + "s3=96.0\n", + "p3=6.0\n", + "span3=12.0\n", + "\n", + "#calculations\n", + "alpha1=2*p1*180/s1\n", + "alpha2=3*p2*180/s2\n", + "alpha3=5*p3*180/s3\n", + "kc1=math.cos(math.radians(alpha1/2))\n", + "kc2=math.cos(math.radians(alpha2/2))\n", + "kc3=math.cos(math.radians(alpha3/2))\n", + "\n", + "#result\n", + "print \"a)kc=\",kc1\n", + "print \"b)kc=\",kc2\n", + "print \"c)kc=\",kc3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)kc= 0.939692620786\n", + "b)kc= 0.923879532511\n", + "c)kc= 0.881921264348\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.2, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "s=36.0\n", + "p=4.0\n", + "\n", + "#calculations\n", + "n=s/p\n", + "beta=180/n\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "\n", + "#result\n", + "print \"distribution factor=\",kd" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "distribution factor= 0.959795080524\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.3, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=10.0#V\n", + "beta=30.0#degrees\n", + "m=6.0\n", + "\n", + "#calculations\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "arith_sum=6*v\n", + "vector_sum=kd*arith_sum\n", + "\n", + "#calculation\n", + "print \"emf of six coils in series=\",vector_sum,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf of six coils in series= 38.6370330516 V\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.4, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "beta=180/9\n", + "ratio=2.0/3.0\n", + "m1=9\n", + "m2=6\n", + "m3=3\n", + "\n", + "#calculation\n", + "kd1=math.sin(m1*math.radians(beta/2))/(m1*math.sin(math.radians(beta/2)))\n", + "kd2=math.sin(m2*math.radians(beta/2))/(m2*math.sin(math.radians(beta/2)))\n", + "kd3=math.sin(m3*math.radians(beta/2))/(m3*math.sin(math.radians(beta/2)))\n", + "\n", + "#result\n", + "print \"i) kd=\",kd1\n", + "print \"ii)kd=\",kd2\n", + "print \"iii)kd=\",kd3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) kd= 0.639863387016\n", + "ii)kd= 0.831206922161\n", + "iii)kd= 0.959795080524\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.5, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "slot=18.0\n", + "s=16.0\n", + "m1=3.0\n", + "m2=5.0\n", + "m3=7.0\n", + "\n", + "#calculations\n", + "span=(s-1)\n", + "alpha=180*3/slot\n", + "kc1=math.cos(math.radians(alpha/2))\n", + "kc3=math.cos(math.radians(m1*alpha/2))\n", + "kc5=math.cos(math.radians(m2*alpha/2))\n", + "kc7=math.cos(math.radians(m3*alpha/2))\n", + "\n", + "#result\n", + "print \"kc1=\",kc1\n", + "print \"kc3=\",kc3\n", + "print \"kc5=\",kc5\n", + "print \"kc7=\",kc7" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kc1= 0.965925826289\n", + "kc3= 0.707106781187\n", + "kc5= 0.258819045103\n", + "kc7= -0.258819045103\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.6, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=16.0\n", + "s=144.0\n", + "z=10.0\n", + "phi=0.03#Wb\n", + "n=375.0#rpm\n", + "\n", + "#calculation\n", + "f=p*n/120\n", + "n=s/p\n", + "beta=180/9\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "t=s*z/(3*2)\n", + "eph=4.44*1*0.96*f*phi*t\n", + "el=3**0.5*eph\n", + "#result\n", + "print \"frequency=\",f,\"Hz\"\n", + "print \"phase emf=\",eph,\"V\"\n", + "print \"line emf=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency= 50.0 Hz\n", + "phase emf= 1534.464 V\n", + "line emf= 2657.76961039 V\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.7, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "s=54\n", + "phi=0.1#Wb\n", + "n=1200#rpm\n", + "t=8\n", + "#calculations\n", + "beta=180/9\n", + "kc=math.cos(beta/2)\n", + "f=p*n/120\n", + "n=s/p\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "z=s*8/3\n", + "t=z/2\n", + "eph=4.44*0.98*0.96*f*phi*t\n", + "el=3**0.*eph\n", + "\n", + "#result\n", + "print \"eph=\",eph,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eph= 1804.529664 V\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.8, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=16.0\n", + "slots=144.0\n", + "z=4.0\n", + "n=375.0\n", + "airgap=5*0.01\n", + "theta=150.0\n", + "\n", + "#calculation\n", + "kf=1.11\n", + "alpha=(180-theta)\n", + "kc=math.cos(math.radians(alpha/2))\n", + "beta=180/9\n", + "m=slots/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "f=p*n/120\n", + "s=slots/3\n", + "eph=4*kf*kc*kd*f*airgap*s*4/2\n", + "\n", + "#result\n", + "print \"emf per phase=\",eph,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf per phase= 987.908016392 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.9, Page Number:1417" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=10\n", + "f=50#Hz\n", + "n=600#rpm\n", + "slots=180\n", + "s=15\n", + "d=1.2#m\n", + "l=0.4#m\n", + "m=6\n", + "beta=180/18\n", + "#calculations\n", + "area=(1.2*3.14/p)*l\n", + "phi1=area*0.637\n", + "vr=1.1*2*f*phi1\n", + "vp=2**0.5*vr\n", + "v3=0.4*vp\n", + "v5=0.2*vp\n", + "vf=6*vp*0.966\n", + "vf3=6*v3*0.707\n", + "vf5=6*v5*0.259\n", + "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "kd2=math.sin(math.radians(3*m*beta/2))/(6*math.sin(3*math.radians(beta/2)))\n", + "kd3=math.sin(math.radians(5*m*beta/2))/(6*math.sin(5*math.radians(beta/2)))\n", + "vph=vf*2**0.5*60*kd1\n", + "vph3=vf3*2**0.5*60*kd2\n", + "vph5=vf5*2**0.5*60*kd3\n", + "rmsv=(vph**2+vph3**2+vph5**2)**0.5\n", + "rmsvl=3**0.5*(vph**2+vph5**2)**0.5\n", + "\n", + "#result\n", + "print \"i)e=\",vp,\"sin theta+\",v3,\"sin 3theta+\",v5,\"sin 5theta\"\n", + "print \"ii)e=\",vf,\"sin theta+\",vf3,\"sin 3theta+\",vf5,\"sin 5theta\"\n", + "print \"iii)rms value of phase voltage=\",rmsv,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)e= 14.9354392872 sin theta+ 5.97417571489 sin 3theta+ 2.98708785745 sin 5theta\n", + "ii)e= 86.5658061088 sin theta+ 25.3424533826 sin 3theta+ 4.64193453047 sin 5theta\n", + "iii)rms value of phase voltage= 7158.83679423 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.10, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=4\n", + "f=50.0#Hz\n", + "slot=60.0\n", + "z=4.0\n", + "s=3.0\n", + "theta=60.0\n", + "phi=0.943#Wb\n", + "\n", + "#calculation\n", + "m=slot/(p*s)\n", + "beta=slot/5\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "alpha=(s/15)*180\n", + "kc=math.cos(math.radians(alpha/2))\n", + "z=slot*z/s\n", + "t=z/2\n", + "kf=1.11\n", + "eph=z*kf*kc*kd*f*phi*t/2\n", + "el=3**0.5*eph*0.1\n", + "\n", + "#result\n", + "print \"line voltage=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage= 13196.4478482 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.11, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "f=50.0#Hz\n", + "slot=15.0\n", + "z=10.0\n", + "kd=0.95\n", + "e=1825#v\n", + "kc=1\n", + "kf=1.11\n", + "#calculations\n", + "slots=p*slot\n", + "slotsp=slots/3\n", + "turnp=20*z/2\n", + "phi=e/(3**0.5*p*kc*kf*kd*f*turnp)\n", + "z=slots*z\n", + "n=120*f/p\n", + "eg=(phi*0.001*z*n)/slots\n", + "\n", + "#result\n", + "print \"emf=\",eg*1000,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf= 749.405577006 V\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.12, Page Number:1419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=360#V\n", + "f=60.0#Hz\n", + "i=3.6#A\n", + "f2=40#Hz\n", + "i2=2.4#A\n", + "\n", + "#calculations\n", + "e2=v*i2*f2/(f*i)\n", + "\n", + "#result\n", + "print \"e2=\",e2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e2= 160.0 V\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.13, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=0\n", + "f=50.0#Hz\n", + "slot=2\n", + "z=4\n", + "theta=150#degrees\n", + "phi=0.12#Wb\n", + "per=20#%\n", + "\n", + "#calculations\n", + "alpha=180-theta\n", + "slotp=6\n", + "m=2\n", + "beta=180/slotp\n", + "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "z=10*slot*z\n", + "t=z/2\n", + "e1=4.44*kd1*kd1*f*0.12*t\n", + "kc3=math.cos(3*math.radians(alpha/2))\n", + "f2=f*3\n", + "phi3=(1.0/3)*per*0.12\n", + "e3=4.44*kd3*kd3*theta*0.008*40\n", + "e=(e1**2+e3**2)**0.5\n", + "\n", + "#result\n", + "print \"e=\",e,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e= 994.25286629 V\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.14, Page Number:1419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "per=10.0#%\n", + "per2=6.0#%\n", + "f=50.0#Hz\n", + "r=10.0#ohm\n", + "\n", + "#calculation\n", + "#star connection\n", + "e5=per*v/100\n", + "e=(v**2+e5**2)**0.5\n", + "eph=3**0.5*e\n", + "\n", + "#delta\n", + "e3=10*v/100\n", + "f3=10*3\n", + "i=e3/f3\n", + "\n", + "#result\n", + "print \"line voltage for star=\",eph,\"V\"\n", + "print \"line voltage for delta=\",e3,\"V\"\n", + "print \"current=\",i,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage for star= 400.358589267 V\n", + "line voltage for delta= 23.0 V\n", + "current= 0.766666666667 A\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.15(a), Page Number:1420" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=10.0\n", + "p1=24.0\n", + "f=25#Hz\n", + "p3=6.0\n", + "s=0.05\n", + "\n", + "#calculation\n", + "n=120*f/p\n", + "f1=p1*n/120\n", + "n2=120*f1/6\n", + "n3=(1-s)*n2\n", + "f2=s*f1p\n", + "\n", + "\n", + "#result\n", + "print \"frequency=\",f1,\"Hz\"\n", + "print \"speed=\",n3,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency= 60.0 Hz\n", + "speed= 1140.0 rpm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.15(b), Page Number:1420" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "phi=0.12#Wb\n", + "slotsp=4\n", + "cp=4\n", + "theta=150#degrees\n", + "\n", + "#calculation\n", + "slots=slotsp*3*p\n", + "c=cp*slots\n", + "turns=32\n", + "kb=math.sin(math.radians(60/2))/(p*math.sin(math.radians(7.5)))\n", + "kp=math.cos(math.radians(15))\n", + "eph=4.44*50*0.12*kb*0.966*turns\n", + "el=eph*3**0.5\n", + "\n", + "#result\n", + "print \"line voltage\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage 1365.94840977 V\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.16, Page Number:1426" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#MW\n", + "pf=0.85\n", + "v=11#kV\n", + "r=0.1#ohm\n", + "x=0.66#ohm\n", + "\n", + "#calculation\n", + "i=load*10**6/(3**0.5*v*1000*pf)\n", + "iradrop=i*r\n", + "ixsdrop=i*x\n", + "vp=v*1000/3**0.5\n", + "phi=math.acos(pf)\n", + "sinphi=math.sin(phi)\n", + "e0=((vp*pf+i*r)**2+(vp*sinphi+i*x)**2)**0.5\n", + "el=3**0.5*e0\n", + "\n", + "#result\n", + "print \"linevalue of emf=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "linevalue of emf= 11475.6408913 V\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.17(a), Page Number:1428" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2200.0#V\n", + "f=50.0#Hz\n", + "load=440.0#KVA\n", + "r=0.5#ohm\n", + "i=40.0#A\n", + "il=200.0#A\n", + "vf=1160.0#V\n", + "\n", + "#calculations\n", + "zs=vf/200\n", + "xs=(zs**2-r**2)**0.5\n", + "\n", + "#result\n", + "print \"synchronous impedence=\",zs,\"ohm\"\n", + "print \"synchronous reactance=\",xs,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous impedence= 5.8 ohm\n", + "synchronous reactance= 5.77840808528 ohm\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.17(b), Page Number:1428" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=60.0#kVA\n", + "v=220.0#V\n", + "f=50.0#Hz\n", + "r=0.016#ohm\n", + "x=0.07#ohm\n", + "pf=0.7\n", + "\n", + "#calculations\n", + "i=load*1000/v\n", + "ira=i*r\n", + "ixl=i*x\n", + "#unity pf\n", + "e=((v+ira)**2+(ixl)**2)**0.5\n", + "#pf of 0.7 lag\n", + "e2=((v*pf+ira)**2+(v*pf+ixl)**2)**0.5\n", + "#pf of 0.7 lead\n", + "e3=((v*pf+ira)**2+(v*pf-ixl)**2)**0.5\n", + "\n", + "#result\n", + "print \"voltage with pf=1\",e,\"V\"\n", + "print \"voltage with pf=0.7 lag\",e2,\"V\"\n", + "print \"voltage with pf=0.7 lead\",e3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage with pf=1 225.174386048 V\n", + "voltage with pf=0.7 lag 234.604995966 V\n", + "voltage with pf=0.7 lead 208.03726621 V\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.18(a), Page Number:1429" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50.0#KVA\n", + "v1=440.0#V\n", + "f=50.0#Hz\n", + "r=0.25#ohm\n", + "x=3.2#ohm\n", + "xl=0.5#ohm\n", + "\n", + "#calculation\n", + "v=v1/3**0.5\n", + "i=load*1000/(3**0.5*v1)\n", + "rd=i*r\n", + "ixl=i*xl\n", + "ea=((v+rd)**2+(ixl)**2)**0.5\n", + "el=3**0.5*ea\n", + "e0=((v+rd)**2+(i*x)**2)**0.5\n", + "e0l=e0*3**0.5\n", + "per=(e0-v)/v\n", + "xa=x-xl\n", + "#result\n", + "print \"internal emf Ea=\",el,\"V\"\n", + "print \"no load emf=\",e0l,\"V\"\n", + "print \"percentage regulation=\",per*100,\"%\"\n", + "print \"valueof synchronous reactance=\",xa,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "internal emf Ea= 471.842539659 V\n", + "no load emf= 592.991130967 V\n", + "percentage regulation= 34.7707115833 %\n", + "valueof synchronous reactance= 2.7 ohm\n" + ] + } + ], + "prompt_number": 87 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.19, Page Number:1432" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=50.0#V\n", + "r=0.1#ohm\n", + "il=100.0#A\n", + "pf=0.8\n", + "vt=200.0#V\n", + "\n", + "#calculation\n", + "zs=v/vt\n", + "xs=(zs**2-r**2)**0.5\n", + "ira=il*r\n", + "ixs=il*xs\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n", + "\n", + "#result\n", + "print \"induced voltage=\",e0,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced voltage= 222.090276316 V\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.20, Page Number:1433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2000.0#V\n", + "i=100.0#A\n", + "pf=0.8\n", + "pf2=0.71\n", + "i2=2.5#A\n", + "v2=500.0#V\n", + "r=0.8#ohm\n", + "\n", + "#calculations\n", + "sinphi1=math.sin(math.acos(pf))\n", + "sinphi2=math.sin(math.acos(pf2))\n", + "zs=v2/i\n", + "xs=(zs**2-r**2)**.5\n", + "#unity pf\n", + "e01=((v+r*i)**2+(i*xs)**2)**0.5\n", + "reg1=(e01-v)*100/v\n", + "#at pf=0.8\n", + "e02=((v*pf+r*i)**2+(v*sinphi1-i*xs)**2)**0.5\n", + "reg2=(e02-v)*100/v\n", + "#at pf=0.71\n", + "e03=((v*pf2+r*i)**2+(v*sinphi2+i*xs)**2)**0.5\n", + "reg3=(e03-v)*100/v\n", + "\n", + "#result\n", + "print \"voltage regulation unity pf=\",reg1,\"%\"\n", + "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n", + "print \"voltage regulation 0.71 lead pf=\",reg3,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.6\n", + "voltage regulation unity pf= 6.88779163216 %\n", + "voltage regulation 0.8 lag pf= -8.875640156 %\n", + "voltage regulation 0.71 lead pf= 21.1141910671 %\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.21, Page Number:1433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=3000.0#V\n", + "load=100.0#kVA\n", + "f=50.0#Hz\n", + "r=0.2\n", + "i1=40.0#A\n", + "i2=200.0#A\n", + "v2=1040.0#V\n", + "pf=0.8\n", + "v1=v/3**0.5\n", + "#calculations\n", + "sinphi1=math.sin(math.acos(pf))\n", + "zs=v2/(3**0.5*i2)\n", + "xs=(zs**2-r**2)**.5\n", + "i=load*1000/(3**0.5*v)\n", + "\n", + "\n", + "#at pf=0.8 lag\n", + "e01=((v1*pf+r*i)**2+(v1*sinphi1+i*xs)**2)**0.5\n", + "reg1=(e01-v1)*100/v1\n", + "#at pf=0.8 lead\n", + "e02=((v1*pf+r*i)**2+(v1*sinphi1-i*xs)**2)**0.5\n", + "reg2=(e02-v1)*100/v1\n", + "\n", + "#result\n", + "print \"voltage regulation 0.8 lag pf=\",reg1,\"%\"\n", + "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation 0.8 lag pf= 2.20611574348 %\n", + "voltage regulation 0.8 lag pf= -1.77945143824 %\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.22, Page Number:1434" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1600.0#kVA\n", + "v=13500.0#V\n", + "r=1.5#ohm\n", + "x=30.0#ohm\n", + "load1=1280.0#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi1=math.sin(math.acos(pf))\n", + "i=load1*1000/(3**0.5*v*pf)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v/3**0.5\n", + "e0=((vp*pf+ira)**2+(vp*sinphi1-ixs)**2)**0.5\n", + "regn=(e0-vp)*100/vp\n", + "\n", + "#result\n", + "print \"percentage regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage regulation= -11.9909032489 %\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.23, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "pf=0.8\n", + "r=0.5#ohm\n", + "x=10.0#ohm\n", + "\n", + "#calculations\n", + "i=load*1000/(3**0.5*v)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v/3**0.5\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n", + "regn=(e0-vp)/vp\n", + "thetadel=math.atan((vp*sinphi+ixs)/(vp*pf+ira))\n", + "delta=math.degrees(thetadel)-math.degrees(math.acos(pf))\n", + "\n", + "#result\n", + "print \"voltage regulation=\",regn*100,\"%\"\n", + "print \"power angle=\",delta,\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation= 48.0405877623 %\n", + "power angle= 18.9704078085 degrees\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.24, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=6000.0#KVA\n", + "v=6600.0#V\n", + "p=2.0\n", + "f=50.0#Hz\n", + "i2=125.0#A\n", + "v1=8000.0#V\n", + "i3=800.0#A\n", + "d=0.03\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "sinphi=math.sin(math.acos(pf))\n", + "zs=v1/(3**0.5*i3)\n", + "vp=v/3**0.5\n", + "rd=d*vp\n", + "il=load*1000/(3**0.5*v)\n", + "ira=rd\n", + "ra=ira/il\n", + "xs=(zs**2-ra**2)**0.5\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+il*xs)**2)**0.5\n", + "reg=(e0-vp)/vp\n", + "\n", + "#result\n", + "print \"percentage regulation=\",reg*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage regulation= 62.2972136768 %\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.25, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "load=2000#KVA\n", + "v=2300#V\n", + "i=600#A\n", + "v2=900#V\n", + "r=0.12#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi=math.sin(math.acos(pf))\n", + "zs=v2/(3**0.5*i)\n", + "rp=r/2\n", + "re=rp*1.5\n", + "xs=(zs**2-re**2)**0.5\n", + "il=load*1000/(3**0.5*v)\n", + "ira=il*rp\n", + "ixs=il*xs\n", + "vp=v/3**0.5\n", + "e0=((vp+ira)**2+(ixs)**2)**0.5\n", + "reg1=(e0-vp)/vp\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n", + "reg2=(e0-vp)/vp\n", + "#result\n", + "print \"regulation at pf=1\",reg1*100,\"%\"\n", + "print \"regulation at pf=0.8\",reg2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation at pf=1 7.32796146323 %\n", + "regulation at pf=0.8 23.8398862235 %\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.26, Page Number:1436" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=Symbol('v')\n", + "load=2000#KVA\n", + "load1=11#KV\n", + "r=0.3#ohm\n", + "x=5#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi=math.sin(math.acos(pf))\n", + "i=load*1000/(3**0.5*load1*1000)\n", + "vt=load1*1000/3**0.5\n", + "ira=i*r\n", + "ixs=i*x\n", + "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n", + "v=solve(((pf*v+ira)**2+(sinphi*v-ixs)**2)**0.5-e0,v)\n", + "\n", + "#result\n", + "print \"terminal voltage=\",v[1],\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 6978.31767618569 V\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.27, Page Number:1436" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1200#KVA\n", + "load1=3.3#KV\n", + "f=50#Hz\n", + "r=0.25#ohm\n", + "i=35#A\n", + "i2=200#A\n", + "v=1.1#kV\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "zs=v*1000/(3**0.5*i2)\n", + "xs=(zs**2-r**2)**0.5\n", + "v=load1*1000/3**0.5\n", + "theta=math.atan(xs/r)\n", + "ia=load*1000/(3**0.5*load1*1000)\n", + "e=v+ia*zs\n", + "change=(e-v)/v\n", + "\n", + "#result\n", + "print \"per unit change=\",change" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "per unit change= 0.349909254054\n" + ] + } + ], + "prompt_number": 151 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.28, Page Number:1437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "v1=11#kV\n", + "load=3#MVA\n", + "i=100#A\n", + "v2=12370#V\n", + "vt=11000#V\n", + "pf=0.8\n", + "r=0.4#ohm\n", + "\n", + "#calculation\n", + "E0=v1*1000/3**0.5\n", + "v=v2/3**0.5\n", + "pf=0\n", + "sinphi=1\n", + "xs=(v-(E0**2-(i*r)**2)**0.5)/i\n", + "il=load*10**6/(3**0.5*v1*1000)\n", + "ira=il*r\n", + "ixs=il*xs\n", + "e0=((E0*pf+ira)**2+(E0*sinphi+ixs)**2)**0.5\n", + "regn=(e0-E0)*100/E0\n", + "#result\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 19.6180576177 %\n" + ] + } + ], + "prompt_number": 175 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.29, Page Number:1437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pf=0.8\n", + "vt=3500#v\n", + "load=2280#KW\n", + "v1=3300#V\n", + "r=8#ohm\n", + "x=6#ohm\n", + "\n", + "#calculation\n", + "vl=vt/3**0.5\n", + "vp=v1/3**0.5\n", + "il=load*1000/(3**0.5*v1*pf)\n", + "drop=vl-vp\n", + "z=(r**2+x**2)**0.5\n", + "x=vl/(z+drop/il)\n", + "vtp=vl-x*drop/il\n", + "vtpl=vtp*3**0.5\n", + "\n", + "#result\n", + "print \"terminal voltage=\",vtpl,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 3420.781893 V\n" + ] + } + ], + "prompt_number": 176 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.30, Page Number:1441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.5#MVA\n", + "v=4160#V\n", + "f=50#Hz\n", + "i=200#A\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "il=load*10**6/(3**0.5*v)\n", + "zs=4750/(3**0.5*il)\n", + "ra=0\n", + "ixs=il*zs\n", + "vp=v/3**0.5\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vp*pf)**2+(vp*sinphi+ixs)**2)**0.5\n", + "regn=(e0-vp)/vp\n", + "#result\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 0.91675794767 %\n" + ] + } + ], + "prompt_number": 184 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.39, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "xd=0.7\n", + "xq=0.4\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "v=1\n", + "sinphi=math.sin(math.acos(pf))\n", + "ia=1\n", + "tandelta=ia*xq*pf/(v+xq*sinphi)\n", + "delta=math.atan(tandelta)\n", + "i_d=ia*math.sin(math.radians(36.9)+delta)\n", + "e0=v*math.cos(delta)+i_d*xd\n", + "\n", + "#result\n", + "print \"load angle=\",math.degrees(delta),\"degrees\"\n", + "print \"no load voltage=\",e0,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 14.4702941001 degrees\n", + "no load voltage= 1.51511515874 V\n" + ] + } + ], + "prompt_number": 185 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.40, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "xd=0.6\n", + "xq=0.45\n", + "ra=0.015\n", + "pf=0.8\n", + "ia=1\n", + "v=1\n", + "sinphi=math.sin(math.acos(pf))\n", + "#calculation\n", + "tanpsi=(v*sinphi+ia*xq)/(v*pf+ia*ra)\n", + "psi=math.atan(tanpsi)\n", + "delta=psi-math.acos(pf)\n", + "i_d=ia*math.sin(psi)\n", + "iq=ia*math.cos(psi)\n", + "e0=v*math.cos(delta)+iq*ra+i_d*xd\n", + "regn=(e0-v)*100/v\n", + "\n", + "#result\n", + "print \"open circuit voltage=\",e0,\"V\"\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "open circuit voltage= 1.44767600311 V\n", + "regulation= 44.7676003107 %\n" + ] + } + ], + "prompt_number": 187 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.41, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=10#A\n", + "phi=math.radians(20)\n", + "v=400#V\n", + "xd=10#ohm\n", + "xq=6.5#ohm\n", + "\n", + "#calculations\n", + "pf=math.cos(phi)\n", + "sinphi=math.sin(phi)\n", + "tandelta=ia*xq*pf/(v+ia*xq*sinphi)\n", + "delta=math.atan(tandelta)\n", + "i_d=ia*math.sin(phi+delta)\n", + "iq=ia*math.cos(phi+delta)\n", + "e0=v*math.cos(delta)+i_d*xd\n", + "regn=(e0-v)/v\n", + "\n", + "#result\n", + "print \"load angle=\",math.degrees(delta),\"degrees\"\n", + "print \"id=\",i_d,\"A\"\n", + "print \"iq=\",iq,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 8.23131209115 degrees\n", + "id= 4.7303232581 A\n", + "iq= 8.81045071911 A\n" + ] + } + ], + "prompt_number": 189 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.42, Page Number:1459" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "e1=220#V\n", + "f1=60#Hz\n", + "e2=222#V\n", + "f2=59#Hz\n", + "\n", + "#calculation\n", + "emax=(e1+e2)/2\n", + "emin=(e2-e1)/2\n", + "f=(f1-f2)\n", + "epeak=emax/0.707\n", + "pulse=(f1-f2)*60\n", + "\n", + "#result\n", + "print \"max voltage=\",emax,\"V\"\n", + "print \"min voltage=\",emin,\"V\"\n", + "print \"frequency=\",f,\"Hz\"\n", + "print \"peak value of voltage=\",epeak,\"V\"\n", + "print \"number of maximum light pulsations/minute=\",pulse" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max voltage= 221 V\n", + "min voltage= 1 V\n", + "frequency= 1 Hz\n", + "peak value of voltage= 312.588401697 V\n", + "number of maximum light pulsations/minute= 60\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.43, Page Number:1462" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "power=1500#kVA\n", + "v=6.6#kV\n", + "r=0.4#ohm\n", + "x=6#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=power*1000/(3**0.5*v*1000)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v*1000/3**0.5\n", + "phi=math.acos(pf)\n", + "tanphialpha=(vp*math.sin(phi)+ixs)/(vp*pf+ira)\n", + "phialpha=math.atan(tanphialpha)\n", + "alpha=phialpha-phi\n", + "\n", + "#result\n", + "print \"power angle=\",math.degrees(alpha)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power angle= 7.87684146241\n" + ] + } + ], + "prompt_number": 198 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.44, Page Number:1464" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3000#KVA\n", + "p=6\n", + "n=1000#rpm\n", + "v=3300#v\n", + "x=0.25\n", + "\n", + "#calculation\n", + "vp=v/3**0.5\n", + "i=load*1000/(3**0.5*v)\n", + "ixs=x*vp\n", + "xs=x*vp/i\n", + "alpha=1*p/2\n", + "psy=3*3.14*vp**2/(60*xs*n)\n", + "tsy=9.55*psy/n\n", + "\n", + "#result\n", + "print \"synchronizing power=\",psy,\"kW\"\n", + "print \"torque=\",tsy*1000,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronizing power= 628.0 kW\n", + "torque= 5997.4 N-m\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.45, Page Number:1465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3#MVA\n", + "n=1000#rpm\n", + "v1=3.3#kV\n", + "r=0.25\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "vp=v1*1000/3**0.5\n", + "i=load*1000000/(3**0.5*v1*1000)\n", + "ixs=complex(0,r*vp)\n", + "xs=ixs/i\n", + "v=vp*complex(pf,math.sin(math.acos(pf)))\n", + "e0=v+ixs\n", + "alpha=math.atan(e0.imag/e0.real)-math.acos(pf)\n", + "p=6/2\n", + "psy=abs(e0)*vp*math.cos(alpha)*math.sin(math.radians(3))/xs\n", + "tsy=9.55*3*psy*100/n\n", + "\n", + "#result\n", + "print \"synchronous power=\",-psy*3/1000,\"kW\"\n", + "print \"toque=\",-tsy/100,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power= 722.236196153j kW\n", + "toque= 6897.35567326j N-m\n" + ] + } + ], + "prompt_number": 221 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.46, Page Number:1465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=750#KVA\n", + "v=11#kV\n", + "p=4\n", + "r=1#%\n", + "x=15#%\n", + "pf=0.8\n", + "#calculation\n", + "i=load*1000/(3**0.5*v*1000)\n", + "vph=v*1000/3**0.5\n", + "ira=r*vph/1000\n", + "ra=ira/i\n", + "xs=x*vph/(100*i)\n", + "zs=(ra**2+xs**2)**0.5\n", + "#no load\n", + "alpha=p/2\n", + "psy=math.radians(alpha)*vph**2/xs\n", + "#fl 0.8 pf\n", + "e=((vph*pf+i*ra)**2+(vph*math.sin(math.acos(pf)+i*xs))**2)**0.5\n", + "psy2=math.radians(alpha)*e*vph/xs\n", + "\n", + "#result\n", + "print \"Synchronous power at:\"\n", + "print \"no load=\",psy,\"W\"\n", + "print \"at pf of 0.8=\",psy2,\"w\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Synchronous power at:\n", + "no load= 58177.6417331 W\n", + "at pf of 0.8= 73621.2350169 w\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.47, Page Number:1466" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=2000#KVA\n", + "p=8\n", + "n=750#rpm\n", + "v1=6000#V\n", + "pf=0.8\n", + "r=6#ohm\n", + "\n", + "#calculations\n", + "alpha=math.radians(4)\n", + "v=v1/3**0.5\n", + "i=load*1000/(3**0.5*v1)\n", + "e0=((v*pf)**2+(v*math.sin(math.acos(pf))+i*r)**2)**0.5\n", + "psy=alpha*e0*v*3/r\n", + "tsy=9.55*psy/n\n", + "\n", + "#result\n", + "print \"synchronous power=\",psy,\"W\"\n", + "print \"synchronous torque=\",tsy,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power= 514916.500204 W\n", + "synchronous torque= 6556.60343593 N-m\n" + ] + } + ], + "prompt_number": 226 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.48, Page Number:1467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5000#KVA\n", + "v=10000#V\n", + "n=1500#rpm\n", + "f=50#Hz\n", + "r=20#%\n", + "pf=0.8\n", + "phi=0.5\n", + "\n", + "#calculations\n", + "vp=v/3**0.5\n", + "i=load*1000/(3**0.5*v)\n", + "xs=r*vp/(1000*i)\n", + "p=120*f/n\n", + "alpha=math.radians(2)\n", + "#no load\n", + "psy=3*alpha*vp**2/(p*1000)\n", + "tsy=9.55*psy*1000/(n*2)\n", + "#pf=0.8\n", + "v2=vp*complex(pf,math.sin(math.acos(pf)))\n", + "ixs=complex(0,i*4)\n", + "e0=v+ixs\n", + "psy2=abs(e0)*vp*math.cos(math.radians(8.1))*math.sin(math.radians(2))*3/4\n", + "tsy2=9.55*psy2/(n*20)\n", + "\n", + "#result\n", + "print \"synchronous power:\"\n", + "print \"atno load=\",psy,\"w\"\n", + "print \"at 0.8 pf=\",psy2,\"w\"\n", + "print \"torque:\"\n", + "print \"at no load=\",tsy,\"N-m\"\n", + "print \"at pf=0.8=\",tsy2,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power:\n", + "atno load= 872.664625997 w\n", + "at 0.8 pf= 1506057.44405 w\n", + "torque:\n", + "at no load= 2777.98239276 N-m\n", + "at pf=0.8= 479.428286357 N-m\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.49, Page Number:1468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=6.6#kW\n", + "load1=3000#kW\n", + "pf=0.8\n", + "xa=complex(0.5,10)\n", + "xb=complex(0.4,12)\n", + "i0=150#A\n", + "\n", + "#calculation\n", + "v=complex(load*1000/3**0.5,0)\n", + "cosphi1=1500*1000/(load*1000*i0*3**0.5)\n", + "phi1=math.acos(cosphi1)\n", + "sinphi1=math.sin(phi1)\n", + "i=328*complex(pf,-math.sin(math.acos(pf)))\n", + "i1=i0*complex(cosphi1,-sinphi1)\n", + "i2=i-i1\n", + "coshi2=i2.real/181\n", + "ea=v+i1*xa\n", + "eal=3**0.5*abs(ea)\n", + "eb=v+i2*xb\n", + "ebl=3**0.5*abs(eb)\n", + "alpha1=(ea.imag/ea.real)\n", + "alpha2=(eb.imag/eb.real)\n", + "#result\n", + "print \"Ea=\",ea,\"V\"\n", + "print \"Eb=\",eb,\"V\"\n", + "print \"alpha1=\",math.degrees(alpha1),\"degrees\"\n", + "print \"alpha2=\",math.degrees(alpha2),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ea= (4602.91884998+1275.81974829j) V\n", + "Eb= (5352.42648271+1524.56032028j) V\n", + "alpha1= 15.8810288383 degrees\n", + "alpha2= 16.3198639435 degrees\n" + ] + } + ], + "prompt_number": 245 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.50, Page Number:1468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declration\n", + "e1=complex(230,0)\n", + "e2=230*complex(0.985,0.174)\n", + "z1=complex(0,2)\n", + "z2=complex(0,3)\n", + "z=6\n", + "i1=((e1-e2)*z+e1*z2)/(z*(z1+z2)+z1*z2)\n", + "i2=((e2-e1)*z+e2*z1)/(z*(z1+z2)+z1*z2)\n", + "i=i1+i2\n", + "v=i*z\n", + "p1=abs(v)*abs(i1)*math.cos(math.atan(i1.imag/i1.real))\n", + "p2=abs(v)*abs(i2)*math.cos(math.atan(i2.imag/i2.real))\n", + "\n", + "#result\n", + "print \"terminal voltage=\",v,\"V\"\n", + "print \"current\",i,\"A\"\n", + "print \"power 1=\",p1,\"W\"\n", + "print \"power 2=\",p2,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= (222.905384615-28.5730769231j) V\n", + "current (37.1508974359-4.76217948718j) A\n", + "power 1= 3210.60292765 W\n", + "power 2= 5138.29001053 W\n" + ] + } + ], + "prompt_number": 249 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.51, Page Number:1471" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1500#kW\n", + "v=11#KV\n", + "pf=0.867\n", + "x=50#ohm\n", + "r=4#ohm\n", + "i=50#A\n", + "\n", + "#calculations\n", + "il=load*1000/(3**0.5*v*1000*pf)\n", + "phi=math.acos(pf)\n", + "sinphi=math.sin(phi)\n", + "iwatt=il*pf\n", + "iwattless=il*sinphi\n", + "i1=il/2\n", + "i2=iwatt/2\n", + "iw1=(i**2-i1**2)**0.5\n", + "iw2=i2-iw1\n", + "ia=(i2**2+iw2**2)**0.5\n", + "vt=v*1000/3**0.5\n", + "ir=i*r\n", + "ix=x*i\n", + "cosphi=i2/i\n", + "sinphi=math.sin(math.acos(cosphi))\n", + "e=((vt*cosphi+ir)**2+(vt*sinphi+ix)**2)**0.5\n", + "el=3**0.5*e\n", + "\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"line voltage=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 43.4628778514 A\n", + "line voltage= 14304.0798593 V\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.52, Page Number:1472" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#MW\n", + "pf=0.8\n", + "output=6000#kW\n", + "pfa=0.92\n", + "\n", + "#calculations\n", + "phi=math.acos(pf)\n", + "phia=math.acos(pfa)\n", + "tanphi=math.tan(phi)\n", + "tanphia=math.tan(phia)\n", + "loadkvar=load*1000*tanphi\n", + "akvar=output*tanphia\n", + "kwb=(load*1000-output)\n", + "kvarb=loadkvar-akvar\n", + "kvab=complex(kwb,kvarb)\n", + "pfb=math.cos(math.atan(kvab.imag/kvab.real))\n", + "kvarb=kwb*pfb\n", + "kvara=-loadkvar-kvarb\n", + "kvaa=complex(output,kvara)\n", + "pfa=math.cos(math.atan(kvaa.imag/kvaa.real))\n", + "\n", + "#result\n", + "print \"new pfb=\",pfb\n", + "print \"new pfa=\",pfa" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new pfb= 0.628980253433\n", + "new pfa= 0.513894032194\n" + ] + } + ], + "prompt_number": 253 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.54, Page Number:1473" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=6600#V\n", + "load=1000#KVA\n", + "x=20#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "i=87.5\n", + "x=8.7\n", + "vp=3810\n", + "e0=4311\n", + "ir=70\n", + "ix=52.5\n", + "IX=762\n", + "vb1=(e0**2-vp**2)**0.5\n", + "i1x=vb1\n", + "i1=i1x/x\n", + "output=3**0.5*v*i1/1000\n", + "b2v=(vp**2+e0**2)**0.5\n", + "i2z=b2v\n", + "i2=b2v/x\n", + "i2rx=e0\n", + "i2r=i2rx/x\n", + "i2x=vp/x\n", + "tanphi2=i2x/i2r\n", + "phi2=math.atan(tanphi2)\n", + "cosphi2=math.cos(phi2)\n", + "output1=3**0.5*v*i2*cosphi2/1000\n", + "\n", + "#result\n", + "print \"power output at unity pf=\",output,\"kW\"\n", + "print \"max power output=\",output1,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " power output at unity pf= 2650.38477722 kW\n", + "max power output= 5664.52285143 kW\n" + ] + } + ], + "prompt_number": 255 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.55, Page Number:1474" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "x=10.0#ohm\n", + "i=220.0#A\n", + "load=11.0#kV\n", + "per=25.0#%\n", + "\n", + "#calculations\n", + "oa1=load*1000/3**0.5\n", + "a1c1=i*x\n", + "e0=(oa1**2+a1c1**2)**0.5\n", + "emf=(1+per/100)*e0\n", + "a1a2=(emf**2-a1c1**2)**0.5-oa1\n", + "ix=a1a2/x\n", + "i1=(i**2+ix**2)**0.5\n", + "pf=i/i1\n", + "bv=(oa1**2+emf**2)**0.5\n", + "imax=bv/x\n", + "ir=emf/x\n", + "ix=oa1/x\n", + "pfmax=ir/imax\n", + "output=3**0.5*load*1000*imax*pfmax*0.001\n", + "#result\n", + "print \"new current=\",i1,\"A\"\n", + "print \"new power factor=\",pf\n", + "print \"max power output=\",output,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new current= 281.573453399 A\n", + "new power factor= 0.781323655849\n", + "max power output= 16006.7954319 kW\n" + ] + } + ], + "prompt_number": 258 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.56, Page Number:1475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#MVA\n", + "load1=35.0#MVA\n", + "pf=0.8\n", + "output=25.0#MVA\n", + "cosphi1=0.9\n", + "\n", + "#calculations\n", + "loadmw=load1*pf\n", + "loadmvar=load1*0.6\n", + "sinphi=math.sin(math.acos(cosphi))\n", + "mva1=25\n", + "mw1=mva1*cosphi1\n", + "mvar1=25*sinphi1\n", + "mw2=loadmw-mw1\n", + "mvar2=loadmvar-mvar1\n", + "mva2=(mw2**2+mvar2**2)**0.5\n", + "cosphi2=mw2/mva2\n", + "\n", + "#result\n", + "print \"output=\",mva2\n", + "print \"pf=\",cosphi2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 10.4509862952\n", + "pf= 0.52626611926\n" + ] + } + ], + "prompt_number": 260 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.57, Page Number:1475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declarations\n", + "load=600#KW\n", + "loadm=707#kW\n", + "pf=0.707\n", + "output=900#kW\n", + "pf1=0.9\n", + "\n", + "#calculation\n", + "kva=1000\n", + "kvar=kva*(1-pf1**2)**0.5\n", + "active_p=1307-output\n", + "reactive_p=loadm-kvar\n", + "\n", + "#result\n", + "print \"active power shared by second machine=\",active_p,\"kW\"\n", + "print \"reactive power shared by second machine=\",reactive_p,\"kVAR\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "active power shared by second machine= 407 kW\n", + "reactive power shared by second machine= 271.110105646 kVAR\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.58, Page Number:1476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "l1=500#kW\n", + "l2=1000#kW\n", + "pf1=0.9\n", + "l3=800#kW\n", + "pf2=0.8\n", + "l4=500#kW\n", + "pf3=0.9\n", + "output=1500#kW\n", + "pf=0.95\n", + "\n", + "#calculation\n", + "kw1=l1\n", + "kw2=l2\n", + "kw3=l3\n", + "kw4=500\n", + "kvar2=kw2*0.436/pf1\n", + "kvar3=kw3*0.6/pf2\n", + "kvar4=kw4*0.436/pf3\n", + "kvar=output/pf\n", + "kw=kw1+kw2+kw3+kw4-output\n", + "kvar=kvar2+kvar3+kvar4-kvar\n", + "cosphi=math.cos(math.atan(kvar/kw))\n", + "\n", + "#result\n", + "print \"kW output=\",kw\n", + "print \"pf=\",cosphi" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kW output= 1300\n", + "pf= 0.981685651341\n" + ] + } + ], + "prompt_number": 264 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.59, Page Number:1476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=complex(0.2,2)\n", + "ze=complex(3,4)\n", + "emf1=complex(2000,0)\n", + "emf2=complex(22000,100)\n", + "\n", + "#calculations\n", + "i1=complex(68.2,-102.5)\n", + "i2=complex(127,-196.4)\n", + "i=i1+i2\n", + "v=i*ze\n", + "pva1=v*i1\n", + "kw1=pva1.real*3\n", + "a11=math.atan(-i1.imag/i1.real)\n", + "a12=math.atan(-v.imag/v.real)\n", + "pf1=math.cos(a11-a12)\n", + "pva2=v*i2\n", + "kw2=pva2.real*3\n", + "a21=math.atan(-i2.imag/i2.real)\n", + "a22=math.atan(-v.imag/v.real)\n", + "pf2=math.cos(a21-a22)\n", + "\n", + "#result\n", + "print \"kw output 1=\",kw1/1000\n", + "print \"pf 1=\",pf1\n", + "print \"kw output 2=\",kw2/1000\n", + "print \"pf 2=\",pf2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kw output 1= 328.79427\n", + "pf 1= 0.606839673468\n", + "kw output 2= 610.34892\n", + "pf 2= 0.596381892841\n" + ] + } + ], + "prompt_number": 273 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.63, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5000#KVA\n", + "v=10000#V\n", + "f=50#Hz\n", + "ns=1500#rpm\n", + "j=1.5*10**4#khm2\n", + "ratio=5\n", + "\n", + "#calculation\n", + "t=0.0083*ns*(j/(load*ratio*f))**0.5\n", + "\n", + "#result\n", + "print \"natural time period of oscillation=\",round(t,3),\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "natural time period of oscillation= 1.364 s\n" + ] + } + ], + "prompt_number": 275 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.64, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10000#KVA\n", + "p=4\n", + "v=6600#V\n", + "f=50#Hz\n", + "xs=25#%\n", + "pf=1.5\n", + "\n", + "#calculations\n", + "ratio=100/xs\n", + "ns=120*f/p\n", + "j=(pf/(0.0083*ns))**2*load*ratio*f\n", + "\n", + "#result\n", + "print \"moment of inertia=\",j/1000,\"x10^4 kg-m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "moment of inertia= 29.0317898098 x10^4 kg-m2\n" + ] + } + ], + "prompt_number": 277 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.65, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#MVA\n", + "v=10.0#kV\n", + "f=50.0#Hz\n", + "ns=1500.0#rpm\n", + "j=2.0*10**5#kgm2\n", + "x=40.0\n", + "\n", + "#calculation\n", + "ratio=100.0/x\n", + "t=0.0083*ns*(j/(load*1000*ratio*f))**0.5\n", + "\n", + "#result\n", + "print \"frequency of oscillation of the rotor=\",round(1/t,1),\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of oscillation of the rotor= 0.2 Hz\n" + ] + } + ], + "prompt_number": 283 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.66, Page Number:1483" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=11#kV\n", + "z=complex(1,10)\n", + "emf=14#kV\n", + "\n", + "#calculations\n", + "e=emf*1000/3**0.5\n", + "v=v*1000/3**0.5\n", + "costheta=z.real/abs(z)\n", + "pmax=e*v*3/(z.imag*1000)\n", + "pmax_per_phase=(v/abs(z))*(e-(v/abs(z)))*3\n", + "\n", + "#result\n", + "print \"max output =\",pmax_per_phase/1000,\"kW\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max output = 14125.5529273 kW\n" + ] + } + ], + "prompt_number": 285 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.67, Page Number:1484" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=11#kVA\n", + "load1=10#MW\n", + "z=complex(0.8,8.0)\n", + "v=14#kV\n", + "\n", + "#calculations\n", + "pmax=(load*1000/3**0.5)*(v*1000/3**0.5)*3/z.imag\n", + "imax=((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5/z.imag\n", + "pf=(v/3**0.5)*1000/((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5\n", + "\n", + "#result\n", + "print \"maximum output=\",pmax/1000000,\"MW\"\n", + "print \"current=\",imax,\"A\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum output= 19.25 MW\n", + "current= 1284.92866209 A\n", + "pf= 0.786318338822\n" + ] + } + ], + "prompt_number": 289 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter38_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter38_6.ipynb new file mode 100644 index 00000000..eb91f537 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter38_6.ipynb @@ -0,0 +1,1682 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a6bbecd88376ba06b11df7bbad39447a579ab954844d7c4715263117b7255967" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 38: Synchronous Motor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.1, Page Number:1495" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=75#kW\n", + "f=50#Hz\n", + "v=440#V\n", + "pf=0.8\n", + "loss=0.95\n", + "xs=2.5#ohm\n", + "\n", + "#calculations\n", + "ns=120*f/4\n", + "pm=p*1000/loss\n", + "ia=pm/(math.sqrt(3)*v*pf)\n", + "vol_phase=v/math.sqrt(3)\n", + "\n", + "#calculations\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"armature current=\",ia,\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mechanical power= 78947.3684211 W\n", + "armature current= 129.489444346 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.2, Page Number:1498" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "p=20\n", + "vl=693#V\n", + "r=10#ohm\n", + "lag=0.5#degrees\n", + "\n", + "#calculations\n", + "#lag=0.5\n", + "alpha=p*lag/2\n", + "eb=vp=vl/math.sqrt(3)\n", + "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n", + "zs=complex(0,10)\n", + "ia=er/zs\n", + "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n", + "print \"displacement:0.5%\"\n", + "print \"alpha=\",alpha,\"degrees\"\n", + "print \"armature emf/phase=\",eb,\"V\"\n", + "print \"armature current/phase=\",ia,\"A\"\n", + "print \"power drawn=\",power_input,\"W\"\n", + "print \"\"\n", + "\n", + "#lag=5\n", + "lag=5\n", + "alpha=p*lag/2\n", + "eb=vp=vl/math.sqrt(3)\n", + "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n", + "zs=complex(0,10)\n", + "ia=er/zs\n", + "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n", + "\n", + "print \"displacement:5%\"\n", + "print \"alpha=\",alpha,\"degrees\"\n", + "print \"armature emf/phase=\",eb,\"V\"\n", + "print \"armature current/phase=\",ia,\"A\"\n", + "print \"power drawn=\",power_input,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "displacement:0.5%\n", + "alpha= 5.0 degrees\n", + "armature emf/phase= 400.103736548 V\n", + "armature current/phase= (3.4871338335-0.152251551219j) A\n", + "power drawn= 4189.63221768 W\n", + "\n", + "displacement:5%\n", + "alpha= 50 degrees\n", + "armature emf/phase= 400.103736548 V\n", + "armature current/phase= (30.6497244054-14.2922012106j) A\n", + "power drawn= 40591.222447 W\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.3, Page Number:1499" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V/ph\n", + "i=32.0#A/ph\n", + "xs=10.0#ohm\n", + "\n", + "#calculations\n", + "e=math.sqrt(v**2+(i*xs)**2)\n", + "delta=math.atan((i*xs)/v)\n", + "power=3*v*i\n", + "power_other=3*(v*e/10)*math.sin(delta)*0.001\n", + "\n", + "#result\n", + "print \"E=\",e,\"V\"\n", + "print \"delta=\",math.degrees(delta),\"degrees\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E= 512.249938995 V\n", + "delta= 38.6598082541 degrees\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.4, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=150#kW\n", + "f=50#Hz\n", + "v=2300#V\n", + "n=1000#rpm\n", + "xd=32#ohm\n", + "xq=20#ohm\n", + "alpha=16#degrees\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "eb=2*vp\n", + "ex_power=eb*vp*math.sin(math.radians(alpha))/xd\n", + "rel_power=(vp**2*(xd-xq)*math.sin(math.radians(2*alpha)))/(2*xd*xq)\n", + "pm=3*(ex_power+rel_power)\n", + "tg=9.55*pm/1000\n", + "\n", + "#result\n", + "print \"torque=\",tg,\"N-m\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 1121.29686485 N-m\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.6, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=11000#V\n", + "ia=60#A\n", + "r=1#ohm\n", + "x=30#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "p2=math.sqrt(3)*v*ia*pf\n", + "cu_loss=ia**2*3\n", + "pm=p2-cu_loss\n", + "vp=v/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=x\n", + "z_drop=ia*zs\n", + "eb=math.sqrt((vp**2+z_drop**2-(2*vp*z_drop*math.cos(theta+phi))))*math.sqrt(3)\n", + "\n", + "#result\n", + "print \"power supplied=\",p2/1000,\"kW\"\n", + "print \"mechanical power=\",pm/1000,\"KW\"\n", + "print \"induced emf=\",eb,\"V\"\n", + "\n", + " " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power supplied= 914.522826396 kW\n", + "mechanical power= 903.722826396 KW\n", + "induced emf= 13039.2734763 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.7, Page Number:1507" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "i=32#A\n", + "pf=1\n", + "xd=10#ohm\n", + "xq=6.5#ohm\n", + "\n", + "#calculations\n", + "e=math.sqrt(v**2+(i*xq)**2)+((xd-xq)*14.8)\n", + "delta=math.atan((i*xq)/v)\n", + "power=3*v*i\n", + "power_other=3*(v*e/10)*math.sin(delta)*0.001\n", + "\n", + "#result\n", + "print \"E=\",e,\"V\"\n", + "print \"delta=\",math.degrees(delta),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E= 502.648089715 V\n", + "delta= 27.4744316263 degrees\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.8, Page Number:1508" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=500#V\n", + "output=7.46#kW\n", + "pf=0.9\n", + "r=0.8#ohm\n", + "loss=500#W\n", + "ex_loss=800#W\n", + "\n", + "#calculations\n", + "pm=output*1000+loss+ex_loss\n", + "ia=(v*pf-math.sqrt(v**2*pf**2-4*r*pm))/(2*r)\n", + "m_input=loss*ia*pf\n", + "efficiency=output*1000/m_input\n", + "\n", + "#result\n", + "print \"commercial efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "commercial efficiency= 82.1029269497 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.9, Page Number:1509" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=2300#V\n", + "r=0.2#ohm\n", + "x=2.2#ohm\n", + "pf=0.5\n", + "il=200#A\n", + "\n", + "#calculations\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x//r)\n", + "v=v/math.sqrt(3)\n", + "zs=math.sqrt(r**2+x**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))\n", + "\n", + "#result\n", + "print \"Eb=\",eb,\"volt/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Eb= 1708.04482042 volt/phase\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.10, Page Number:1509" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "vl=6600#V\n", + "f=50#Hz\n", + "il=50#A\n", + "r=1#ohm\n", + "x=20#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "#0.8 lagging\n", + "power_i=math.sqrt(3)*v*f*pf\n", + "v=vl/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=math.sqrt(x**2+r**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi-theta)))*math.sqrt(3)\n", + "\n", + "print \"0.8 lag: Eb=\",eb\n", + "\n", + "#0.8 leading\n", + "power_i=math.sqrt(3)*v*f*pf\n", + "v=vl/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=math.sqrt(x**2+r**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))*math.sqrt(3)\n", + "\n", + "print \"0.8 leading:Eb=\",eb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.8 lag: Eb= 5651.1180113\n", + "0.8 leading:Eb= 7705.24623679\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.11, Page Number:1510" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "x=0.4\n", + "pf=0.8\n", + "v=100#V\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "#pf=1\n", + "eb=math.sqrt(v**2+(x*v)**2)\n", + "#pf=0.8 lag\n", + "eb2=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)-phi)))\n", + "#pf=0.8 lead\n", + "eb3=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)+phi)))\n", + "#result\n", + "print \"pf=1: Eb=\",eb,\"V\"\n", + "print \"pf=0.8 lag:Eb=\",eb2,\"V\"\n", + "print \"pf=0.8 lead:Eb=\",eb3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf=1: Eb= 107.703296143 V\n", + "pf=0.8 lag:Eb= 82.4621125124 V\n", + "pf=0.8 lead:Eb= 128.062484749 V\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.12, Page Number:1510" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaraion\n", + "load=1000#kVA\n", + "v=11000#V\n", + "r=3.5#ohm\n", + "x=40#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "ia=load*1000/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "ra=ia*r\n", + "xa=ia*x\n", + "za=math.sqrt(ra**2+xa**2)\n", + "theta=math.atan(x/r)\n", + "\n", + "#pf=1\n", + "eb1=math.sqrt(vp**2+za**2-(2*vp*za*math.cos(theta)))\n", + "alpha1=math.asin(xa*math.sin(theta)/eb1)\n", + "\n", + "#pf=0.8 lag\n", + "eb2=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta-phi)))*math.sqrt(3)\n", + "alpha2=math.asin(xa*math.sin(theta-phi)/eb2)\n", + "#pf=1\n", + "eb3=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta+phi)))*math.sqrt(3)\n", + "alpha3=math.asin(xa*math.sin(theta+phi)/eb3)\n", + "\n", + "#result\n", + "print \"at pf=1\"\n", + "print \"Eb=\",eb1*math.sqrt(3),\"V\"\n", + "print \"alpha=\",math.degrees(alpha1),\"degrees\"\n", + "print \"at pf=0.8 lagging\"\n", + "print \"Eb=\",eb2,\"V\"\n", + "print \"alpha=\",math.degrees(alpha2),\"degrees\"\n", + "print \"at pf=0.8 leading\"\n", + "print \"Eb=\",eb3,\"V\"\n", + "print \"alpha=\",math.degrees(alpha3),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "at pf=1\n", + "Eb= 11283.8105339 V\n", + "alpha= 18.7256601694 degrees\n", + "at pf=0.8 lagging\n", + "Eb= 8990.39249633 V\n", + "alpha= 10.0142654731 degrees\n", + "at pf=0.8 leading\n", + "Eb= 13283.8907748 V\n", + "alpha= 7.71356041367 degrees\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.14, Page Number:1513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z=complex(0.5,0.866)\n", + "v=200#V\n", + "output=6000#W\n", + "loss=500#W\n", + "i=50#A\n", + "\n", + "#calculations\n", + "cu_loss=i**2*z.real\n", + "motor_intake=output+loss+cu_loss\n", + "phi=math.acos(motor_intake/(v*i))\n", + "theta=math.atan(z.imag/z.real)\n", + "zs=abs(z)*i\n", + "eb1=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)-phi)))\n", + "eb2=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)+phi)))\n", + "#result\n", + "print \"lag:eb=\",eb1,\"V\"\n", + "print \"lag:eb=\",eb2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "lag:eb= 154.286783862 V\n", + "lag:eb= 213.765547573 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.15, Page Number:1513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=2200#V\n", + "f=50#Hz\n", + "z=complex(0.4,6)\n", + "lag=3#degrees\n", + "\n", + "#calculations\n", + "eb=v/math.sqrt(3)\n", + "alpha=lag*8/2\n", + "er=math.sqrt(eb**2+eb**2-(2*eb*eb*(math.cos(math.radians(alpha)))))\n", + "zs=abs(z)\n", + "ia=er/zs\n", + "theta=math.atan(z.imag/z.real)\n", + "phi=theta-(math.asin(eb*math.sin(math.radians(alpha))/er))\n", + "pf=math.cos(phi)\n", + "total_input=3*eb*ia*pf\n", + "cu_loss=3*ia**2*z.real\n", + "pm=total_input-cu_loss\n", + "pm_max=(eb*eb/zs)-(eb**2*z.real/(zs**2))\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"power factor=\",pf\n", + "print \"power of the motor=\",pm/1000,\"kW\"\n", + "print \"max power of motor=\",pm_max/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 44.1583059199 A\n", + "power factor= 0.99927231631\n", + "power of the motor= 165.803353329 kW\n", + "max power of motor= 250.446734776 kW\n" + ] + } + ], + "prompt_number": 72 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.16, Page Number:1514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "eb=250#V\n", + "lead=150#degrees\n", + "v=200#V\n", + "x=2.5#times resistance\n", + "alpha=lead/3\n", + "#calculations\n", + "er=math.sqrt(v**2+eb**2-(2*v*eb*math.cos(math.radians(alpha))))\n", + "theta=math.atan(x)\n", + "phi=math.radians(90)-theta\n", + "pf=math.cos(phi)\n", + "\n", + "#results\n", + "print \"pf at which the motor is operating=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf at which the motor is operating= 0.928476690885\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.17, Page Number:1514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6600#V\n", + "r=10#ohm\n", + "inpt=900#kW\n", + "e=8900#V\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "eb=e/math.sqrt(3)\n", + "icos=inpt*1000/(math.sqrt(3)*v)\n", + "bc=r*icos\n", + "ac=math.sqrt(eb**2-bc**2)\n", + "oc=ac-vp\n", + "phi=math.atan(oc/bc)\n", + "i=icos/math.cos(phi)\n", + "\n", + "#result\n", + "print \"Line current=\",i,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Line current= 149.188331836 A\n" + ] + } + ], + "prompt_number": 82 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.18, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6600#V\n", + "x=20#ohm\n", + "inpt=1000#kW\n", + "pf=0.8\n", + "inpt2=1500#kW\n", + "\n", + "#variable declaration\n", + "va=v/math.sqrt(3)\n", + "ia1=inpt*1000/(math.sqrt(3)*v*pf)\n", + "zs=x\n", + "phi=math.acos(pf)\n", + "ia1zs=ia1*zs\n", + "eb=math.sqrt(va**2+ia1zs**2-(2*va*ia1zs*math.cos(math.radians(90)+phi)))\n", + "ia2cosphi2=inpt2*1000/(math.sqrt(3)*v)\n", + "cosphi2=x*ia2cosphi2\n", + "ac=math.sqrt(eb**2-cosphi2*2)\n", + "phi2=math.atan(ac/cosphi2)\n", + "pf=math.cos(phi2)\n", + "alpha2=math.atan(cosphi2/ac)\n", + "\n", + "#results\n", + "print \"new power angle=\",math.degrees(alpha2),\"degrees\"\n", + "print \"new power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new power angle= 25.8661450552 degrees\n", + "new power factor= 0.436270181217\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.19, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=5472#W\n", + "x=10#ohm\n", + "\n", + "#calculations\n", + "va=v/math.sqrt(3)\n", + "iacosphi=inpt/(math.sqrt(3)*v)\n", + "zs=x\n", + "iazs=iacosphi*zs\n", + "ac=math.sqrt(va**2-iazs**2)\n", + "oc=va-ac\n", + "bc=iazs\n", + "phi=math.atan(oc/iazs)\n", + "pf=math.cos(phi)\n", + "ia=iacosphi/pf\n", + "alpha=math.atan(bc/ac)\n", + "#result\n", + "print \"load angle=\",math.degrees(alpha),\"degrees\"\n", + "print \"power factor=\",pf\n", + "print \"armature current=\",ia,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 19.9987718079 degrees\n", + "power factor= 0.984809614116\n", + "armature current= 8.01997824686 A\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.20, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import scipy\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i2=Symbol('i2')\n", + "v=2000.0#V\n", + "r=0.2#ohm\n", + "xs=2.2#ohm\n", + "inpt=800.0#kW\n", + "e=2500.0#V\n", + "\n", + "#calculations\n", + "i1=inpt*1000/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "ep=e/math.sqrt(3)\n", + "theta=math.atan(xs/r)\n", + "i2=solve(((i1*xs+r*i2)**2+(vp+i1*r-xs*i2)**2)-ep**2,i2)\n", + "i=math.sqrt(i1**2+i2[0]**2)\n", + "pf=i1/i\n", + "\n", + "#result\n", + "print \"line currrent=\",i,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line currrent= 241.492937915 A\n", + "power factor= 0.956301702525\n" + ] + } + ], + "prompt_number": 152 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.21, Page Number:1516" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "inpt=7.46#kW\n", + "r=0.5#ohm\n", + "pf=0.75\n", + "loss=500#W\n", + "ex_loss=650#W\n", + "\n", + "#calculations\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "cu_loss=3*ia**2*r\n", + "power=inpt*1000+ex_loss\n", + "output=inpt*1000-cu_loss-loss\n", + "efficiency=output/power\n", + "\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"power=\",power,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 13.0516151762 A\n", + "power= 8110.0 W\n", + "efficiency= 82.6693343026 %\n" + ] + } + ], + "prompt_number": 156 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.22, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "v=3300#V\n", + "x=18#ohm\n", + "pf=0.707\n", + "inpt=800#kW\n", + "\n", + "#calculations\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "ip=ia/math.sqrt(3)\n", + "zs=x\n", + "iazs=ip*zs\n", + "phi=math.acos(pf)\n", + "theta=math.radians(90)\n", + "eb=math.sqrt(v**2+iazs**2-(2*v*iazs*(-1)*pf))\n", + "alpha=math.asin(iazs*math.sin(theta+phi)/eb)\n", + "\n", + "#result\n", + "print \"excitation emf=\",eb,\"V\"\n", + "print \"rotor angle=\",math.degrees(alpha),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "excitation emf= 4972.19098879 V\n", + "rotor angle= 17.0098509277 degrees\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.23, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inpt=75#kW\n", + "v=400#V\n", + "r=0.04#ohm\n", + "x=0.4#ohm\n", + "pf=0.8\n", + "efficiency=0.925\n", + "\n", + "#calculations\n", + "input_m=inpt*1000/efficiency\n", + "ia=input_m/(math.sqrt(3)*v)\n", + "zs=math.sqrt(r**2+x**2)\n", + "iazs=ia*zs\n", + "phi=math.atan(x/r)\n", + "theta=math.radians(90)-phi\n", + "vp=v/math.sqrt(3)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n", + "cu_loss=3*ia**2*r\n", + "ns=120*50/40\n", + "pm=input_m-cu_loss\n", + "tg=9.55*pm/ns\n", + "\n", + "#result\n", + "print \"emf=\",eb,\"eb\"\n", + "print \"mechanical power=\",pm,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf= 235.683320812 eb\n", + "mechanical power= 79437.5456538 W\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.24, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "r=0.5#ohm\n", + "zs=x=4#ohm\n", + "i=15#A\n", + "i2=60#A\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "iazs=i*zs\n", + "xs=math.sqrt(x**2-r**2)\n", + "theta=math.atan(xs/r)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta)))\n", + "iazs2=i2*zs\n", + "phi=theta-math.acos(vp**2-vp**2+iazs2**2/(2*vp*iazs2))\n", + "pf=math.cos(phi)\n", + "input_m=math.sqrt(3)*v*i2*pf\n", + "cu_loss=3*i2**2*r\n", + "pm=input_m-cu_loss\n", + "ns=120*50/6\n", + "tg=9.55*pm/ns\n", + "\n", + "#result\n", + "print \"gross torque developed=\",tg,\"N-m\"\n", + "print \"new power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross torque developed= 310.739709828 N-m\n", + "new power factor= 0.912650996943\n" + ] + } + ], + "prompt_number": 161 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.25, Page Number:1518" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=7.46#kW\n", + "xs=10#W/phase\n", + "efficiency=0.85\n", + "\n", + "#calculations\n", + "input_m=inpt*1000/efficiency\n", + "il=input_m/(math.sqrt(3)*v)\n", + "zs=il*xs\n", + "vp=v/math.sqrt(3)\n", + "eb=math.sqrt(vp**2+zs**2)\n", + "\n", + "#result\n", + "print \"minimum current=\",il,\"A\"\n", + "print \"inducedemf=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum current= 12.6677441416 A\n", + "inducedemf= 263.401798584 V\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.26, Page Number:1518" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "inpt=37.5#kW\n", + "efficiency=0.88\n", + "zs=complex(0.2,1.6)\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "input_m=inpt/efficiency\n", + "ia=input_m*1000/(math.sqrt(3)*v*pf)\n", + "vp=v/math.sqrt(3)\n", + "er=ia*abs(zs)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(zs.imag/zs.real)\n", + "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n", + "alpha=math.asin(math.sin(theta+phi)*er/eb)\n", + "pm=3*eb*vp*math.sin(alpha)/abs(zs)\n", + "#result\n", + "print \"excitation emf=\",eb*math.sqrt(3),\"V\"\n", + "print \"total mechanical power developed=\",pm,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "excitation emf= 495.407915636 V\n", + "total mechanical power developed= 44844.4875189 W\n" + ] + } + ], + "prompt_number": 206 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.27, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import scipy\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=6600.0#V\n", + "xs=20.0#ohm\n", + "inpt=1000.0#kW\n", + "pf=0.8\n", + "inpt2=1500.0#kW\n", + "phi2=Symbol('phi2')\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "theta=math.radians(90)\n", + "er=ia*xs\n", + "zs=xs\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n", + "alpha=math.asin(inpt2*1000*zs/(3*eb*vp))\n", + "#vp/eb=cos(alpha+phi2)/cos(phi2)\n", + "#solving we get\n", + "phi2=math.radians(19.39)\n", + "pf=math.cos(phi2)\n", + "#result\n", + "print \"new power factor=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new power factor= 0.943280616635\n" + ] + } + ], + "prompt_number": 228 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.28, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "x=4#ohms/phase\n", + "r=0.5#ohms/phase\n", + "ia=60#A\n", + "pf=0.866\n", + "loss=2#kW\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "zs=abs(complex(r,x))\n", + "phi=math.acos(pf)\n", + "iazs=ia*zs\n", + "theta=math.atan(x/r)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n", + "pm_max=(eb*vp/zs)-(eb**2*r/zs**2)\n", + "pm=3*pm_max\n", + "output=pm-loss*1000\n", + "\n", + "#result\n", + "print \"maximum power output=\",output/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum power output= 51.3898913442 kW\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.29, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z=10#ohm\n", + "x=0.5#ohm\n", + "v=2000#V\n", + "f=25#Hz\n", + "eb=1600#V\n", + "\n", + "#calculations\n", + "pf=x/z\n", + "pm_max=(eb*v/z)-(eb**2*pf/zs)\n", + "ns=120*f/6\n", + "tg_max=9.55*pm_max/ns\n", + "\n", + "#result\n", + "print \"maximum total torque=\",tg_max,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum total torque= 5505.51976175 N-m\n" + ] + } + ], + "prompt_number": 231 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.30, Page Number:1520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variabke declaration\n", + "v=2000#V\n", + "n=1500#rpm\n", + "x=3#ohm/phase\n", + "ia=200#A\n", + "\n", + "#calculations\n", + "eb=vp=v/math.sqrt(3)\n", + "zs=ia*x\n", + "sinphi=(eb**2-vp**2-zs**2)/(2*zs*vp)\n", + "phi=math.asin(sinphi)\n", + "pf=math.cos(phi)\n", + "pi=math.sqrt(3)*v*ia*pf/1000\n", + "tg=9.55*pi*1000/n\n", + "\n", + "#result\n", + "print \"power input=\",pi,\"kW\"\n", + "print \"power factor=\",pf\n", + "print \"torque=\",tg,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power input= 669.029147347 kW\n", + "power factor= 0.965660395791\n", + "torque= 4259.48557144 N-m\n" + ] + } + ], + "prompt_number": 234 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.31, Page Number:1520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=3300#V\n", + "r=2#ohm\n", + "x=18#ohm\n", + "e=3800#V\n", + "\n", + "#calculations\n", + "theta=math.atan(x/r)\n", + "vp=v/math.sqrt(3)\n", + "eb=e/math.sqrt(3)\n", + "alpha=theta\n", + "er=math.sqrt(vp**2+eb**2-(2*vp*eb*math.cos(theta)))\n", + "zs=math.sqrt(r**2+x**2)\n", + "ia=er/zs\n", + "pm_max=((eb*vp/zs)-(eb**2*r/zs**2))*3\n", + "cu_loss=3*ia**2*r\n", + "input_m=pm_max+cu_loss\n", + "pf=input_m/(math.sqrt(3)*v*ia)\n", + "\n", + "#result\n", + "print \"maximum total mechanical power=\",pm_max,\"W\"\n", + "print \"current=\",ia,\"A\"\n", + "print \"pf=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum total mechanical power= 604356.888001 W\n", + "current= 151.417346198 A\n", + "pf= 0.857248980398\n" + ] + } + ], + "prompt_number": 235 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.32, Page Number:1521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=415#V\n", + "e=520#V\n", + "z=complex(0.5,4)\n", + "loss=1000#W\n", + "\n", + "#calculations\n", + "theta=math.atan(z.imag/z.real)\n", + "er=math.sqrt(v**2+e**2-(2*v*e*math.cos(theta)))\n", + "zs=abs(z)\n", + "i=er/zs\n", + "il=math.sqrt(3)*i\n", + "pm_max=((e*v/zs)-(e**2*z.real/zs**2))*3\n", + "output=pm_max-loss\n", + "cu_loss=3*i**2*z.real\n", + "input_m=pm_max+cu_loss\n", + "pf=input_m/(math.sqrt(3)*il*v)\n", + "efficiency=output/input_m\n", + "\n", + "#result\n", + "print \"power output=\",output/1000,\"kW\"\n", + "print \"line current=\",il,\"A\"\n", + "print \"power factor=\",pf\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power output= 134.640174346 kW\n", + "line current= 268.015478962 A\n", + "power factor= 0.890508620247\n", + "efficiency= 78.4816159071 %\n" + ] + } + ], + "prompt_number": 240 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.33, Page Number:1524" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=37.3#kW\n", + "efficiency=0.88\n", + "z=complex(0.2,1.6)\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "zs=abs(z)\n", + "il=inpt*1000/(math.sqrt(3)*v*efficiency*pf)\n", + "izs=zs*il\n", + "theta=math.atan(z.imag/z.real)\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta+phi)))\n", + "input_m=inpt*1000/efficiency\n", + "cu_loss=3*il**2*z.real\n", + "pm=input_m-cu_loss\n", + "\n", + "#result\n", + "print \"induced emf=\",eb*math.sqrt(3),\"V\"\n", + "print \"total mechanical power=\",pm/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced emf= 494.75258624 V\n", + "total mechanical power= 39.6138268735 kW\n" + ] + } + ], + "prompt_number": 243 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.34, Page Number:1525" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inpt=48#kW\n", + "v=693#V\n", + "pf=0.8\n", + "ratio=0.3\n", + "x=2#W/phase\n", + "\n", + "#calculations\n", + "il=inpt*1000/(math.sqrt(3)*v*pf)\n", + "vp=v/math.sqrt(3)\n", + "zs=x\n", + "izs=zs*il\n", + "theta=math.atan(float(\"inf\"))\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta-phi)))\n", + "i_cosphi=pf*il\n", + "bc=i_cosphi*x\n", + "eb=eb+(ratio*eb)\n", + "ac=math.sqrt(eb**2-bc**2)\n", + "oc=ac-vp\n", + "phi2=math.atan(oc/bc)\n", + "pf=math.cos(phi2)\n", + "i2=i_cosphi/pf\n", + "\n", + "#result\n", + "print \"current=\",i2,\"A\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 46.3871111945 A\n", + "pf= 0.862084919821\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.35, Page Number:1526" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=60.0#kW\n", + "inpt=240.0#kW\n", + "pf=0.8\n", + "pf2=0.9\n", + "\n", + "#calculations\n", + "total_load=inpt+load\n", + "phi=math.acos(pf2)\n", + "kVAR=total_load*math.tan(phi)\n", + "#factory load\n", + "phil=math.acos(pf)\n", + "kVAR=inpt*math.tan(phil)\n", + "kVA=inpt/pf\n", + "kVAR1=total_load*math.sin(phil)\n", + "lead_kVAR=kVAR1-kVAR\n", + "#synchronous motor\n", + "phim=math.atan(lead_kVAR/load)\n", + "motorpf=math.cos(phim)\n", + "motorkVA=math.sqrt(load**2+lead_kVAR**2)\n", + "\n", + "#result\n", + "print \"leading kVAR supplied by the motor=\",motorkVA\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "leading kVAR supplied by the motor= 60.0\n", + "pf= 0.8\n" + ] + } + ], + "prompt_number": 253 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter39_6.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter39_6.ipynb new file mode 100644 index 00000000..e889465f --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter39_6.ipynb @@ -0,0 +1,256 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c262c33cbbcf1d1756b9358f8cf1d8ed92f53825858905e2598fd8e15870c7ca" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 39: Special Machines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.1, Page Number:1537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable description\n", + "p=8.0 #number of poles\n", + "tp=5.0 #number of teeth for each pole\n", + "nr=50.0 #number of rotor teeth\n", + "\n", + "#calculation\n", + "ns=p*tp #number of stator teeth\n", + "B=((nr-ns)*360)/(nr*ns) #stepping angle\n", + "\n", + "#result\n", + "print \"stepping angle is \",B,\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stepping angle is 1.8 degrees\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.2, Page Number:1537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=2.5\n", + "rn=25\n", + "f=3600\n", + "\n", + "#calculation\n", + "r=360/B\n", + "s=r*rn\n", + "n=(B*f)/360\n", + "\n", + "#result\n", + "print \"Resolution =\",int(r),\"steps/revolution\"\n", + "print \" Number of steps required for the shaft to make 25 revolutions =\",int(s)\n", + "print \" Shaft speed\", int(n),\"rps\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Resolution = 144 steps/revolution\n", + "Number of steps required for the shaft to make 25 revolutions = 3600\n", + "Shaft speed 25 rps\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.3, Page Number:1544" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=15 #stepping angle\n", + "pn=3 #number of phases\n", + "nr=360/(pn*B) #number of rotor teeth\n", + "\n", + "#number of stator teeth\n", + "ns1=((360*nr)/(360-(nr*B))) #ns>nr\n", + "ns2=((360*nr)/(360+(nr*B))) #nr>ns\n", + "\n", + "#result\n", + "print \"When ns>nr: ns= \",ns1\n", + "print \"When nr>ns: ns= \",ns2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When ns>nr: ns= 12\n", + "When nr>ns: ns= 6\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.4, Page Number:1545" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=1.8\n", + "pn=4\n", + "\n", + "#calculation\n", + "nr=360/(pn*B) #number of rotor teeth\n", + "ns=nr\n", + "\n", + "#result\n", + "print \"Number of rotor teeth = \",int(nr)\n", + "print \"Number of statot teeth = \",int(ns)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of rotor teeth = 50.0\n", + "Number of statot teeth = 50.0\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.5, Page Number:1555" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "er=20\n", + "\n", + "#calculation\n", + "a=40\n", + "e2=er*math.cos(math.radians(a))\n", + "e1=er*math.cos(math.radians(a-120))\n", + "e3=er*math.cos(math.radians(a+120))\n", + "\n", + "#result\n", + "print \"a) For a=40 degrees\"\n", + "print \" e2s=\" ,e2,\"V\"\n", + "print \" e1s=\" ,e1,\"V\"\n", + "print \" e3s=\" ,e3,\"V\"\n", + "\n", + "#calculation\n", + "a=(-40)\n", + "e2=er*math.cos(math.radians(a))\n", + "e1=er*math.cos(math.radians(a-120))\n", + "e3=er*math.cos(math.radians(a+120))\n", + "\n", + "#result\n", + "print \"b) For a=-40 degrees\"\n", + "print \" e2s=\" ,e2,\"V\"\n", + "print \" e1s=\" ,e1,\"V\"\n", + "print \" e3s=\" ,e3,\"V\"\n", + "\n", + "#calculation\n", + "a=30\n", + "e12=math.sqrt(3)*er*math.cos(math.radians(a-150))\n", + "e23=math.sqrt(3)*er*math.cos(math.radians(a-30))\n", + "e31=math.sqrt(3)*er*math.cos(math.radians(a+90))\n", + "\n", + "#result\n", + "print \"c) For a=30 degrees\"\n", + "print \" e12=\" ,e12,\"V\"\n", + "print \" e23=\" ,e23,\"V\"\n", + "print \" e31=\" ,e31,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) For a=40 degrees\n", + " e2s= 15.3208888624 V\n", + " e1s= 3.47296355334 V\n", + " e3s= -18.7938524157 V\n", + "b) For a=-40 degrees\n", + " e2s= 15.3208888624 V\n", + " e1s= -18.7938524157 V\n", + " e3s= 3.47296355334 V\n", + "c) For a=30 degrees\n", + " e12= -17.3205080757 V\n", + " e23= 34.6410161514 V\n", + " e31= -17.3205080757 V\n" + ] + } + ], + "prompt_number": 41 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example32_6.png b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example32_6.png Binary files differnew file mode 100644 index 00000000..0c99fa16 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example32_6.png diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example33_6.png b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example33_6.png Binary files differnew file mode 100644 index 00000000..3db6b46d --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example33_6.png diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter32example30_6.png b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter32example30_6.png Binary files differnew file mode 100644 index 00000000..1e7a1724 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter32example30_6.png diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10_1.ipynb new file mode 100644 index 00000000..1c137a08 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10_1.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10 - Bilinear forms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 363 Example 10.4" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = [x1 x2]\n", + "b = [y1 y2]\n", + "f(a,b) = x1*y1 + x1*y2 + x2*y1 + x2*y2\n", + "so, f(a,b) = \n", + "[x1 x2] * |1 1| * |y1|\n", + " |1 1| |y2|\n", + "So the matrix of f in standard order basis B = {e1,e2} is:\n", + "[f]B = \n", + "[[1 1]\n", + " [1 1]]\n", + "P = \n", + "[[ 1 1]\n", + " [-1 1]]\n", + "Thus, [f]B = P*[f]B*P\n", + "[f]B = \n", + "[[ 1 -1]\n", + " [-1 1]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print 'a = [x1 x2]'\n", + "print 'b = [y1 y2]'\n", + "print 'f(a,b) = x1*y1 + x1*y2 + x2*y1 + x2*y2'\n", + "print 'so, f(a,b) = '\n", + "print '[x1 x2] * |1 1| * |y1|'\n", + "print ' |1 1| |y2|'\n", + "print 'So the matrix of f in standard order basis B = {e1,e2} is:'\n", + "fb = np.array([[1, 1],[1, 1]])\n", + "print '[f]B = \\n',fb\n", + "P = np.array([[1 ,1],[-1, 1]])\n", + "print 'P = \\n',P\n", + "print 'Thus, [f]B'' = P''*[f]B*P'\n", + "fb1 = np.transpose(P) * fb * P\n", + "print '[f]B'' = \\n',fb1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 365 Example 10.5" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 56.0\n", + "a = 410.0\n", + "b = 70.0\n", + "f(a,b) = 28700.0\n", + "f is non-degenerate billinear form on R**n.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "n = round(np.random.randint(2,90))\n", + "a = round(np.random.randint(1,n) * 10)#\n", + "b = round(np.random.randint(1,n) * 10)#\n", + "print 'n = ',n\n", + "print 'a = ',a\n", + "print 'b = ',b\n", + "f = a * np.transpose(b)\n", + "print 'f(a,b) = ',f\n", + "print 'f is non-degenerate billinear form on R**n.'\n", + "#end" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter1_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter1_1.ipynb new file mode 100644 index 00000000..b45b10cf --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter1_1.ipynb @@ -0,0 +1,754 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 - Linear Equations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 8 Example 1.5" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=\n", + "[[ 2 -1 3 2]\n", + " [ 1 4 0 -1]\n", + " [ 2 6 -1 5]]\n", + "Applying row transformations:\n", + "R1 = R1-2*R2\n", + "a = \n", + "[[ 0 -9 3 4]\n", + " [ 1 4 0 -1]\n", + " [ 2 6 -1 5]]\n", + "R3 = R3-2*R2\n", + "a = \n", + "[[ 0 -9 3 4]\n", + " [ 1 4 0 -1]\n", + " [ 0 -2 -1 7]]\n", + "R3 = R3/-2\n", + "a = \n", + "[[ 0 -9 3 4]\n", + " [ 1 4 0 -1]\n", + " [ 0 1 0 -3]]\n", + "R2 = R2-4*R3\n", + "a = \n", + "[[ 0 -9 3 4]\n", + " [ 1 0 0 11]\n", + " [ 0 1 0 -3]]\n", + "R1 = R1+9*R3\n", + "a = \n", + "[[ 0 0 3 -23]\n", + " [ 1 0 0 11]\n", + " [ 0 1 0 -3]]\n", + "R1 = R1*2/15\n", + "a = \n", + "[[ 0 0 0 -4]\n", + " [ 1 0 0 11]\n", + " [ 0 1 0 -3]]\n", + "R2 = R2+2*R1\n", + "a = \n", + "[[ 0 0 0 -4]\n", + " [ 1 0 0 3]\n", + " [ 0 1 0 -3]]\n", + "R3 = R3-R1/2\n", + "a = \n", + "[[ 0 0 0 -4]\n", + " [ 1 0 0 3]\n", + " [ 0 1 0 -1]]\n", + "We get the system of equations as:\n", + "2*x1 - x2 + 3*x3 + 2*x4 = 0\n", + "x1 + 4*x2 - x4 = 0\n", + "2*x1 + 6* x2 - x3 + 5*x4 = 0\n", + "and\n", + "x2 - 5/3*x4 = 0 x1 + 17/3*x4 = 0 x3 - 11/3*x4 = 0\n", + "now by assigning any rational value c to x4 in system second, the solution is evaluated as:\n", + "(-17/3*c,5/3,11/3*c,c)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a = np.array([[2, -1, 3, 2],[1, 4, 0 ,-1],[2, 6, -1, 5]])\n", + "print 'a=\\n',a\n", + "print 'Applying row transformations:'\n", + "print 'R1 = R1-2*R2'\n", + "a[0,:] = a[0,:] - 2*a[1,:]#\n", + "print 'a = \\n',a\n", + "print 'R3 = R3-2*R2'\n", + "a[2,:] = a[2,:] - 2*a[1,:]\n", + "print 'a = \\n',a\n", + "print 'R3 = R3/-2'\n", + "a[2,:] = -1.0/2*a[2,:]#\n", + "print 'a = \\n',a\n", + "print 'R2 = R2-4*R3'\n", + "a[1,:] = a[1,:] - 4*a[2,:]\n", + "print 'a = \\n',a\n", + "print 'R1 = R1+9*R3'\n", + "a[0,:] = a[0,:] + 9*a[2,:]#\n", + "print 'a = \\n',a\n", + "print 'R1 = R1*2/15'\n", + "a[0,:] = a[0,:] * 2/15\n", + "print 'a = \\n',a\n", + "print 'R2 = R2+2*R1'\n", + "a[1,:] = a[1,:] + 2*a[0,:]\n", + "print 'a = \\n',a\n", + "print 'R3 = R3-R1/2'\n", + "a[2,:] = a[2,:] - 1.0/2*a[0,:]\n", + "print 'a = \\n',a\n", + "print 'We get the system of equations as:'\n", + "print '2*x1 - x2 + 3*x3 + 2*x4 = 0'\n", + "print 'x1 + 4*x2 - x4 = 0'\n", + "print '2*x1 + 6* x2 - x3 + 5*x4 = 0'\n", + "print 'and'\n", + "print 'x2 - 5/3*x4 = 0','x1 + 17/3*x4 = 0','x3 - 11/3*x4 = 0'\n", + "print 'now by assigning any rational value c to x4 in system second, the solution is evaluated as:'\n", + "print '(-17/3*c,5/3,11/3*c,c)'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 9 Example 1.6" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = \n", + "[[-1.+0.j 0.+1.j]\n", + " [ 0.-1.j 3.+0.j]\n", + " [ 1.+0.j 2.+0.j]]\n", + "Applying row transformations:\n", + "R1 = R1+R3 and R2 = R2 + i *R3\n", + "a = \n", + "[[ 0.+0.j 2.+1.j]\n", + " [ 0.+0.j 3.+2.j]\n", + " [ 1.+0.j 2.+0.j]]\n", + "R1 = R1 * (1/2+i)\n", + "a = \n", + "[[ 0.+0.j 1.+0.j]\n", + " [ 0.+0.j 3.+2.j]\n", + " [ 1.+0.j 2.+0.j]]\n", + "R2 = R2-R1*(3+2i) and R3 = R3 - 2 *R1\n", + "a = \n", + "[[ 0.+0.j 1.+0.j]\n", + " [ 0.+0.j 0.+0.j]\n", + " [ 1.+0.j 0.+0.j]]\n", + "Thus the system of equations is:\n", + "x1 + 2*x2 = 0 -i*x1 + 3*x2 = 0 -x1+i*x2 = 0\n", + "It has only trivial solution x1 = x2 = 0\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a=np.array([[-1, 1J],[-1J, 3],[1 ,2]])\n", + "print 'a = \\n',a\n", + "print 'Applying row transformations:'\n", + "print 'R1 = R1+R3 and R2 = R2 + i *R3'\n", + "a[0,:] = a[0,:] +a[2,:]\n", + "a[1,:] = a[1,:] + 1J * a[2,:]\n", + "print 'a = \\n',a\n", + "print 'R1 = R1 * (1/2+i)'\n", + "a[0,:] = 1.0/(2 + 1J) * a[0,:]\n", + "print 'a = \\n',a\n", + "print 'R2 = R2-R1*(3+2i) and R3 = R3 - 2 *R1'\n", + "a[1,:] = (a[1,:] - (3 + 2 * 1J) * a[0,:])\n", + "a[2,:] = (a[2,:] - 2 * a[0,:])\n", + "print 'a = \\n',a\n", + "print 'Thus the system of equations is:'\n", + "print 'x1 + 2*x2 = 0','-i*x1 + 3*x2 = 0','-x1+i*x2 = 0'\n", + "print 'It has only trivial solution x1 = x2 = 0'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 9 Example 1.7" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 1. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 1. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 1. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 1. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 1. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 1.]]\n", + "This is an Identity matrix of order 8 * 8\n", + "And It is a row reduced matrix.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "n = np.random.randint(9)\n", + "print np.identity(n)\n", + "print 'This is an Identity matrix of order %d * %d'%(n,n)\n", + "print 'And It is a row reduced matrix.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 12 Example 1.8" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1. 0. 0. 0. 0. 0.]\n", + " [ 0. 1. 0. 0. 0. 0.]\n", + " [ 0. 0. 1. 0. 0. 0.]\n", + " [ 0. 0. 0. 1. 0. 0.]\n", + " [ 0. 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 0. 1.]]\n", + "This is an Identity matrix of order 6 * 6\n", + "And It is a row reduced matrix.\n", + "[[ 0. 0. 0. 0. 0.]]\n", + "This is an Zero matrix of order 1 * 5\n", + "And It is also a row reduced matrix.\n", + "a = \n", + "[[ 0. 1. -3. 0. 0.5]\n", + " [ 0. 0. 0. 1. 2. ]\n", + " [ 0. 0. 0. 0. 0. ]]\n", + "This is a non-trivial row reduced matrix.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "n = np.random.randint(9)\n", + "print np.identity(n)\n", + "print 'This is an Identity matrix of order %d * %d'%(n,n)\n", + "print 'And It is a row reduced matrix.'\n", + "m = np.random.randint(0,9)\n", + "n = np.random.randint(9)\n", + "print np.zeros([m,n])\n", + "print 'This is an Zero matrix of order %d * %d'%(m,n)\n", + "print 'And It is also a row reduced matrix.'\n", + "a = np.array([[0, 1, -3, 0, 1.0/2],[0, 0, 0, 1, 2],[0, 0 ,0 ,0 ,0]])\n", + "print 'a = \\n',a\n", + "print 'This is a non-trivial row reduced matrix.'\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 14 Example 1.9" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[ 1 -2 1]\n", + " [ 2 1 1]\n", + " [ 0 5 -1]]\n", + "Applying row transformations:\n", + "R2 = R2 - 2*R1\n", + "A = \n", + "[[ 1 -2 1]\n", + " [ 0 5 -1]\n", + " [ 0 5 -1]]\n", + "R3 = R3 - R2\n", + "A = \n", + "[[ 1 -2 1]\n", + " [ 0 5 -1]\n", + " [ 0 0 0]]\n", + "R2 = 1/5*R2\n", + "A = \n", + "[[ 1 -2 1]\n", + " [ 0 1 0]\n", + " [ 0 0 0]]\n", + "R1 = R1 - 2*R2\n", + "A = \n", + "[[1 0 1]\n", + " [0 1 0]\n", + " [0 0 0]]\n", + "The condition that the system have a solution is:\n", + "2*y1 - y2 + y3 = 0\n", + "where, y1,y2,y3 are some scalars\n", + "If the condition is satisfied then solutions are obtained by assigning a value c to x3\n", + "Solutions are:\n", + "x2 = 1/5*c + 1/5*(y2 - 2*y1) x1 = -3/5*c + 1/5*(y1 + 2*y2)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "A = np.array([[1, -2, 1],[2, 1, 1],[0, 5, -1]])\n", + "print 'A = \\n',A\n", + "print 'Applying row transformations:'\n", + "print 'R2 = R2 - 2*R1'\n", + "A[1,:] = A[1,:] - 2*A[0,:]\n", + "print 'A = \\n',A\n", + "print 'R3 = R3 - R2'\n", + "A[2,:] = A[2,:] - A[1,:]\n", + "print 'A = \\n',A\n", + "print 'R2 = 1/5*R2'\n", + "A[1,:] = 1.0/5*A[1,:]\n", + "print 'A = \\n',A\n", + "print 'R1 = R1 - 2*R2'\n", + "A[0,:] = A[0,:] + 2*A[1,:]\n", + "print 'A = \\n',A\n", + "print 'The condition that the system have a solution is:'\n", + "print '2*y1 - y2 + y3 = 0'\n", + "print 'where, y1,y2,y3 are some scalars'\n", + "print 'If the condition is satisfied then solutions are obtained by assigning a value c to x3'\n", + "print 'Solutions are:'\n", + "print 'x2 = 1/5*c + 1/5*(y2 - 2*y1)','x1 = -3/5*c + 1/5*(y1 + 2*y2)'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 17 Example 1.10" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=\n", + "[[ 1 0]\n", + " [-3 1]]\n", + "b=\n", + "[[ 5 -1 2]\n", + " [15 4 8]]\n", + "ab = \n", + "[[ 5 -1 2]\n", + " [ 0 7 2]]\n", + "-----------------------------------------------------------------\n", + "a=\n", + "[[ 1 0]\n", + " [-2 3]\n", + " [ 5 4]\n", + " [ 0 1]]\n", + "b=\n", + "[[ 0 6 1]\n", + " [ 3 8 -2]]\n", + "ab = \n", + "[[ 0 6 1]\n", + " [ 9 12 -8]\n", + " [12 62 -3]\n", + " [ 3 8 -2]]\n", + "-----------------------------------------------------------------\n", + "a=\n", + "[[2 1]\n", + " [5 4]]\n", + "b=\n", + "[[1]\n", + " [6]]\n", + "ab = \n", + "[[ 8]\n", + " [29]]\n", + "-----------------------------------------------------------------\n", + "a=\n", + "[[-1]\n", + " [ 3]]\n", + "b=\n", + "[[2 4]]\n", + "ab = \n", + "[[-2 -4]\n", + " [ 6 12]]\n", + "-----------------------------------------------------------------\n", + "a=\n", + "[[2 4]]\n", + "b=\n", + "[[-1]\n", + " [ 3]]\n", + "ab = \n", + "[[10]]\n", + "-----------------------------------------------------------------\n", + "a=\n", + "[[0 1 0]\n", + " [0 0 0]\n", + " [0 0 0]]\n", + "b=\n", + "[[ 1 -5 2]\n", + " [ 2 3 4]\n", + " [ 9 -1 3]]\n", + "ab = \n", + "[[2 3 4]\n", + " [0 0 0]\n", + " [0 0 0]]\n", + "-----------------------------------------------------------------\n", + "a=\n", + "[[ 1 -5 2]\n", + " [ 2 3 4]\n", + " [ 9 -1 3]]\n", + "b=\n", + "[[0 1 0]\n", + " [0 0 0]\n", + " [0 0 0]]\n", + "ab = \n", + "[[0 1 0]\n", + " [0 2 0]\n", + " [0 9 0]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Part a\n", + "a = np.array([[1, 0],[-3, 1]])\n", + "b = np.array([[5, -1, 2],[15, 4, 8]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)\n", + "\n", + "print '-----------------------------------------------------------------'\n", + "#Part b\n", + "a = np.array([[1, 0],[-2, 3],[5 ,4],[0, 1]])\n", + "b = np.array([[0, 6, 1],[3 ,8 ,-2]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)\n", + "print '-----------------------------------------------------------------'\n", + "#Part c\n", + "a = np.array([[2, 1],[5, 4]])\n", + "b = np.array([[1],[6]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)\n", + "print '-----------------------------------------------------------------'\n", + "#Part d\n", + "a = np.array([[-1],[3]])\n", + "b = np.array([[2, 4]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)\n", + "print '-----------------------------------------------------------------'\n", + "#Part e\n", + "a = np.array([[2, 4]])\n", + "b = np.array([[-1],[3]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)\n", + "print '-----------------------------------------------------------------'\n", + "#Part f\n", + "a = np.array([[0, 1 ,0],[0, 0, 0],[0, 0, 0]])\n", + "b = np.array([[1, -5, 2],[2, 3, 4],[9 ,-1, 3]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)\n", + "print '-----------------------------------------------------------------'\n", + "#Part g\n", + "a = np.array([[1, -5, 2],[2, 3, 4],[9, -1, 3]])\n", + "b = np.array([[0, 1, 0],[0 ,0 ,0],[0, 0, 0]])\n", + "print 'a=\\n',a\n", + "print 'b=\\n',b\n", + "print 'ab = \\n',a.dot(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 22 Example 1.14" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = \n", + "[[0 1]\n", + " [1 0]]\n", + "inverse a = \n", + "[[ 0. 1.]\n", + " [ 1. 0.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a = np.array([[0, 1],[1, 0]])\n", + "print 'a = \\n',a\n", + "print 'inverse a = \\n',np.linalg.inv(a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 25 Example 1.15" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = \n", + "[[ 2 -1]\n", + " [ 1 3]]\n", + "Applying row tranformations\n", + "Interchange R1 and R2\n", + "a = \n", + "[[ 1 3]\n", + " [ 2 -1]]\n", + "R2 = R2 - 2 * R1\n", + "a =\n", + " [[ 1 3]\n", + " [ 0 -7]]\n", + "R2 = R2 *1/(-7)\n", + "a = \n", + "[[1 3]\n", + " [0 1]]\n", + "R1 = R1 - 3 * R2\n", + "a = \n", + "[[1 0]\n", + " [0 1]]\n", + "Since a has become an identity matrix. So, a is invertible\n", + "inverse of a = \n", + "[[ 0.42857143 0.14285714]\n", + " [-0.14285714 0.28571429]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a = np.array([[2, -1],[1 ,3]])\n", + "b = np.array([[2, -1],[1 ,3]]) #Temporary variable to store a\n", + "print 'a = \\n',a\n", + "print 'Applying row tranformations'\n", + "print 'Interchange R1 and R2'\n", + "a[0,:] = a[1,:]\n", + "a[1,:] = b[0,:]\n", + "print 'a = \\n',a\n", + "print 'R2 = R2 - 2 * R1'\n", + "a[1,:] = a[1,:] - 2 * a[0,:]\n", + "print 'a =\\n ',a\n", + "print 'R2 = R2 *1/(-7)'\n", + "a[1,:] = (-1.0/7) * a[1,:]\n", + "print 'a = \\n',a\n", + "print 'R1 = R1 - 3 * R2'\n", + "a[0,:] = a[0,:] - 3 * a[1,:]\n", + "print 'a = \\n',a\n", + "print 'Since a has become an identity matrix. So, a is invertible'\n", + "print 'inverse of a = '\n", + "print np.linalg.inv(b)# #a was stored in b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 25 Example 1.16" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = \n", + "[[ 1. 0.5 0.33333333]\n", + " [ 0.5 0.33333333 0.25 ]\n", + " [ 0.33333333 0.25 0.2 ]]\n", + "b = \n", + "[[ 1. 0. 0.]\n", + " [ 0. 1. 0.]\n", + " [ 0. 0. 1.]]\n", + "Applying row transformations on a and b simultaneously,\n", + "R2 = R2 - 1/2 * R1 and R3 = R3 - 1/3*R1\n", + "a = \n", + "[[ 1. 0.5 0.33333333]\n", + " [ 0. 0.08333333 0.08333333]\n", + " [ 0. 0.08333333 0.08888889]]\n", + "b = \n", + "[[ 1. 0. 0. ]\n", + " [-0.5 1. 0. ]\n", + " [-0.33333333 0. 1. ]]\n", + "R3 = R3 - R2\n", + "a = \n", + "[[ 1.00000000e+00 5.00000000e-01 3.33333333e-01]\n", + " [ 0.00000000e+00 8.33333333e-02 8.33333333e-02]\n", + " [ 0.00000000e+00 2.77555756e-17 5.55555556e-03]]\n", + "b = \n", + "[[ 1. 0. 0. ]\n", + " [-0.5 1. 0. ]\n", + " [ 0.16666667 -1. 1. ]]\n", + "R2 = R2 * 12 and R3 = R3 * 180\n", + "a = \n", + "[[ 1.00000000e+00 5.00000000e-01 3.33333333e-01]\n", + " [ 0.00000000e+00 1.00000000e+00 1.00000000e+00]\n", + " [ 0.00000000e+00 4.99600361e-15 1.00000000e+00]]\n", + "b = \n", + "[[ 1. 0. 0.]\n", + " [ -6. 12. 0.]\n", + " [ 30. -180. 180.]]\n", + "R2 = R2 - R3 and R1 = R1 - 1/3*R3\n", + "a = \n", + "[[ 1.00000000e+00 5.00000000e-01 -4.44089210e-16]\n", + " [ 0.00000000e+00 1.00000000e+00 -1.33226763e-15]\n", + " [ 0.00000000e+00 4.99600361e-15 1.00000000e+00]]\n", + "b = \n", + "[[ -9. 60. -60.]\n", + " [ -36. 192. -180.]\n", + " [ 30. -180. 180.]]\n", + "R1 = R1 - 1/2 * R2\n", + "a = \n", + "[[ 1. 0. 0.]\n", + " [ 0. 1. -0.]\n", + " [ 0. 0. 1.]]\n", + "b = \n", + "[[ 9. -36. 30.]\n", + " [ -36. 192. -180.]\n", + " [ 30. -180. 180.]]\n", + "Since, a = identity matrix of order 3*3. So, b is inverse of a\n", + "inverse(a) = \n", + "[[ 9. -36. 30.]\n", + " [ -36. 192. -180.]\n", + " [ 30. -180. 180.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a = np.array([[1 ,1./2, 1.0/3],[1.0/2 ,1.0/3, 1.0/4],[1.0/3, 1.0/4, 1.0/5]])\n", + "print 'a = \\n',a\n", + "b = np.identity(3)\n", + "print 'b = \\n',b\n", + "print 'Applying row transformations on a and b simultaneously,'\n", + "print 'R2 = R2 - 1/2 * R1 and R3 = R3 - 1/3*R1'\n", + "a[1,:] = a[1,:] - 1.0/2 * a[0,:]\n", + "a[2,:] = a[2,:] - 1.0/3 * a[0,:]\n", + "b[1,:] = b[1,:] - 1.0/2 * b[0,:]\n", + "b[2,:] = b[2,:] - 1.0/3 * b[0,:]\n", + "print 'a = \\n',a\n", + "print 'b = \\n',b\n", + "print 'R3 = R3 - R2'\n", + "a[2,:] = a[2,:] - a[1,:]#\n", + "b[2,:] = b[2,:] - b[1,:]\n", + "print 'a = \\n',a\n", + "print 'b = \\n',b\n", + "print 'R2 = R2 * 12 and R3 = R3 * 180'\n", + "a[1,:] = a[1,:] *12#\n", + "a[2,:] = a[2,:] * 180#\n", + "b[1,:] = b[1,:] * 12#\n", + "b[2,:] = b[2,:] * 180#\n", + "print 'a = \\n',a\n", + "print 'b = \\n',b\n", + "print 'R2 = R2 - R3 and R1 = R1 - 1/3*R3'\n", + "a[1,:] = a[1,:] - a[2,:]#\n", + "a[0,:] = a[0,:] - 1./3 * a[2,:]#\n", + "b[1,:] = b[1,:] - b[2,:]#\n", + "b[0,:] = b[0,:] - 1./3 * b[2,:]#\n", + "print 'a = \\n',a\n", + "print 'b = \\n',b\n", + "print 'R1 = R1 - 1/2 * R2'\n", + "a[0,:] = a[0,:] - 1./2 * a[1,:]#\n", + "b[0,:] = b[0,:] - 1./2 * b[1,:]#\n", + "print 'a = \\n',np.matrix.round(a)\n", + "print 'b = \\n',b\n", + "print 'Since, a = identity matrix of order 3*3. So, b is inverse of a'\n", + "print 'inverse(a) = \\n',b" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter2_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter2_1.ipynb new file mode 100644 index 00000000..cac42c12 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter2_1.ipynb @@ -0,0 +1,822 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 - Vector spaces" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 37 Example 2.8" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a1 = [1, 2, 0, 3, 0]\n", + "a2 = [0, 0, 1, 4, 0]\n", + "a3 = [0, 0, 0, 0, 1]\n", + "By theorem 3, vector a is in subspace W of F**5 spanned by a1, a2, a3\n", + "if and only if there exist scalars c1, c2, c3 such that\n", + "a= c1a1 + c2a2 + c3a3\n", + "So, a = (c1,2*c1,c2,3c1+4c2,c3)\n", + "c1 = -3\n", + "c2 = 1\n", + "c3 = 2\n", + "Therefore, a = [0, 0, 1, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]\n", + "This shows, a is in W\n", + "And (2,4,6,7,8) is not in W as there is no value of c1 c2 c3 that satisfies the equation\n" + ] + } + ], + "source": [ + "\n", + "a1 = [1, 2 ,0 ,3, 0]#\n", + "a2 =[0, 0 ,1 ,4 ,0]#\n", + "a3 = [0 ,0 ,0 ,0, 1]#\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print 'By theorem 3, vector a is in subspace W of F**5 spanned by a1, a2, a3'\n", + "print 'if and only if there exist scalars c1, c2, c3 such that'\n", + "print 'a= c1a1 + c2a2 + c3a3'\n", + "print 'So, a = (c1,2*c1,c2,3c1+4c2,c3)'\n", + "c1 = -3#\n", + "c2 = 1#\n", + "c3 = 2#\n", + "a = c1*a1 + c2*a2 + c3*a3#\n", + "print 'c1 = ',c1\n", + "print 'c2 = ',c2\n", + "print 'c3 = ',c3\n", + "print 'Therefore, a = ',a\n", + "print 'This shows, a is in W'\n", + "print 'And (2,4,6,7,8) is not in W as there is no value of c1 c2 c3 that satisfies the equation'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 38 Example 2.10" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[1 2 0 3 0]\n", + " [0 0 1 4 0]\n", + " [0 0 0 0 1]]\n", + "The subspace of F**5 spanned by a1 a2 a3(row vectors of A) is called row space of A.\n", + "a1 = [1 2 0 3 0]\n", + "a2 = [0 0 1 4 0]\n", + "a3 = [0 0 0 0 1]\n", + "And, it is also the row space of B.\n", + "B = \n", + "[[ 1 2 0 3 0]\n", + " [ 0 0 1 4 0]\n", + " [ 0 0 0 0 1]\n", + " [-4 -8 1 -8 0]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "A = np.array([[1, 2, 0 ,3 ,0],[0, 0, 1, 4, 0],[0, 0, 0, 0, 1]])\n", + "print 'A = \\n',A\n", + "print 'The subspace of F**5 spanned by a1 a2 a3(row vectors of A) is called row space of A.'\n", + "a1 = A[0,:]\n", + "a2 = A[1,:]\n", + "a3 = A[2,:]\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print 'And, it is also the row space of B.'\n", + "B = np.array([[1, 2, 0, 3, 0],[0, 0, 1, 4, 0],[0, 0, 0, 0, 1],[-4, -8, 1 ,-8, 0]])\n", + "print 'B = \\n',B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 39 Example 2.11" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V is the space of all polynomial functions over F.\n", + "S contains the functions as:\n", + "n = 17\n", + "f0(x) = 1\n", + "f1(x) = x\n", + "f2(x) = x**2\n", + "f3(x) = x**3\n", + "f4(x) = x**4\n", + "f5(x) = x**5\n", + "f6(x) = x**6\n", + "f7(x) = x**7\n", + "f8(x) = x**8\n", + "f9(x) = x**9\n", + "f10(x) = x**10\n", + "f11(x) = x**11\n", + "f12(x) = x**12\n", + "f13(x) = x**13\n", + "f14(x) = x**14\n", + "f15(x) = x**15\n", + "f16(x) = x**16\n", + "Then, V is the subspace spanned by set S.\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "import numpy as np\n", + "print 'V is the space of all polynomial functions over F.'\n", + "print 'S contains the functions as:'\n", + "x = sp.Symbol(\"x\")\n", + "#n = round(rand()*10)#\n", + "n=np.random.randint(0,19)\n", + "print 'n = ',n\n", + "for i in range (0,n):\n", + " f = x**i#\n", + " print 'f%d(x) = '%(i,),f\n", + " \n", + "\n", + "print 'Then, V is the subspace spanned by set S.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 41 Example 2.12" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a1 = [ 3 0 -3]\n", + "a2 = [-1 1 2]\n", + "a3 = [ 4 2 -2]\n", + "a4 = [2 1 1]\n", + " Since, 2 * a1 + 2 * a2 - a3 + 0 * a4 = [0 0 0] = 0\n", + "a1,a2,a3,a4 are linearly independent\n", + "Now, e1 = [1, 0, 0]\n", + "e2 = [0, 1, 0]\n", + "e3 = [0, 0, 1]\n", + "Also, e1,e2,e3 are linearly independent.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a1 = np.array([3 ,0, -3])\n", + "a2 = np.array([-1 ,1 ,2])\n", + "a3 = np.array([4 ,2, -2])\n", + "a4 = np.array([2 ,1, 1])\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print 'a4 = ',a4\n", + "t = 2 * a1 + 2 * a2 - a3 + 0 * a4\n", + "print ' Since, 2 * a1 + 2 * a2 - a3 + 0 * a4 = ',t,'= 0'\n", + "print 'a1,a2,a3,a4 are linearly independent'\n", + "e1 = [1, 0, 0]#\n", + "e2 = [0 ,1 ,0]#\n", + "e3 = [0 ,0, 1]#\n", + "print 'Now, e1 = ',e1\n", + "print 'e2 = ',e2\n", + "print 'e3 = ',e3\n", + "print 'Also, e1,e2,e3 are linearly independent.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 41 Example 2.13" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "S is the subset of F**n consisting of n vectors.\n", + "n = 10\n", + "e1 = \n", + "[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + "e2 = \n", + "[ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + "e3 = \n", + "[ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]\n", + "e4 = \n", + "[ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + "e5 = \n", + "[ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + "e6 = \n", + "[ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n", + "e7 = \n", + "[ 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]\n", + "e8 = \n", + "[ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n", + "e9 = \n", + "[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", + "e10 = \n", + "[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + "x1,x2,x3...xn are the scalars in F\n", + "Putting a = x1*e1 + x2*e2 + x3*e3 + .... + xn*en\n", + "So, a = (x1,x2,x3,...,xn)\n", + "Therefore, e1,e2..,en span F**n\n", + "a = 0 if x1 = x2 = x3 = .. = xn = 0\n", + "So,e1,e2,e3,..,en are linearly independent.\n", + "The set S = {e1,e2,..,en} is called standard basis of F**n\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print 'S is the subset of F**n consisting of n vectors.'\n", + "#n = round(rand() *10 + 1)#\\\n", + "n=np.random.randint(0,19)\n", + "print 'n = ',n\n", + "I = np.identity(n)\n", + "for i in range(0,n):\n", + " e = I[i,:]\n", + " print 'e%d = '%(i+1)\n", + " print e\n", + "\n", + "print 'x1,x2,x3...xn are the scalars in F'\n", + "print 'Putting a = x1*e1 + x2*e2 + x3*e3 + .... + xn*en'\n", + "print 'So, a = (x1,x2,x3,...,xn)'\n", + "print 'Therefore, e1,e2..,en span F**n'\n", + "print 'a = 0 if x1 = x2 = x3 = .. = xn = 0'\n", + "print 'So,e1,e2,e3,..,en are linearly independent.'\n", + "print 'The set S = {e1,e2,..,en} is called standard basis of F**n'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 54 Example 2.20" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "P = \n", + "[[-1 4 5]\n", + " [ 0 2 -3]\n", + " [ 0 0 8]]\n", + "\n", + "inverse(P) = \n", + "[[-1. 2. 1.375 ]\n", + " [ 0. 0.5 0.1875]\n", + " [ 0. 0. 0.125 ]]\n", + "The vectors forming basis of F**3 are a1, a2, a3\n", + "a1' = \n", + "[-1 0 0]\n", + "\n", + "a2' = \n", + "[4 2 0]\n", + "\n", + "a3' = \n", + "[ 5 -3 8]\n", + "The coordinates x1,x2,x3 of vector a = [x1,x2,x3] is given by inverse(P)*[x1# x2# x3]\n", + "And, -10*a1 - 1/2*a2 - a3 = [ 3. 2. -8.]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "P = np.array([[-1, 4, 5],[ 0, 2, -3],[ 0, 0, 8]])\n", + "print 'P = \\n',P\n", + "print '\\ninverse(P) = \\n',np.linalg.inv(P)\n", + "a1 = P[:,0]\n", + "a2 = P[:,1]\n", + "a3 = P[:,2]\n", + "print 'The vectors forming basis of F**3 are a1'', a2'', a3'''\n", + "print \"a1' = \\n\",np.transpose(a1)\n", + "print \"\\na2' = \\n\",np.transpose(a2)\n", + "print \"\\na3' = \\n\",np.transpose(a3)\n", + "print 'The coordinates x1'',x2'',x3'' of vector a = [x1,x2,x3] is given by inverse(P)*[x1# x2# x3]'\n", + "t = -10*a1 - 1./2*a2 - a3#\n", + "print 'And, -10*a1'' - 1/2*a2'' - a3'' = ',t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 60 Example 2.21" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given row vectors are:\n", + "a1 = [1, 2, 2, 1]\n", + "a2 = [0, 2, 0, 1]\n", + "a3 = [-2, 0, -4, 3]\n", + "The matrix A from these vectors will be:\n", + "A = \n", + "[[ 1 2 2 1]\n", + " [ 0 2 0 1]\n", + " [-2 0 -4 3]]\n", + "Finding Row reduced echelon matrix of A that is given by R\n", + "And applying same operations on identity matrix Q such that R = QA\n", + "Q = \n", + "[[ 1. 0. 0.]\n", + " [ 0. 1. 0.]\n", + " [ 0. 0. 1.]]\n", + "Applying row transformations on A and Q,we get\n", + "R1 = R1-R2\n", + "A = \n", + "[[ 1 0 2 0]\n", + " [ 0 2 0 1]\n", + " [-2 0 -4 3]]\n", + "Q = \n", + "[[ 1. -1. 0.]\n", + " [ 0. 1. 0.]\n", + " [ 0. 0. 1.]]\n", + "R3 = R3 + 2*R1\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 2 0 1]\n", + " [0 0 0 3]]\n", + "Q = \n", + "[[ 1. -1. 0.]\n", + " [ 0. 1. 0.]\n", + " [ 2. -2. 1.]]\n", + "R3 = R3/3\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 2 0 1]\n", + " [0 0 0 1]]\n", + "Q = \n", + "[[ 1. -1. 0. ]\n", + " [ 0. 1. 0. ]\n", + " [ 0.66666667 -0.66666667 0.33333333]]\n", + "R2 = R2/2\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 1 0 0]\n", + " [0 0 0 1]]\n", + "Q = \n", + "[[ 1. -1. 0. ]\n", + " [ 0. 5. 0. ]\n", + " [ 0.66666667 -0.66666667 0.33333333]]\n", + "R2 = R2 - 1/2*R3\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 1 0 0]\n", + " [0 0 0 1]]\n", + "Q = \n", + "[[ 1. -1. 0. ]\n", + " [-0.33333333 5.33333333 -0.16666667]\n", + " [ 0.66666667 -0.66666667 0.33333333]]\n", + "Row reduced echelon matrix:\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 1 0 0]\n", + " [0 0 0 1]]\n", + "Q = \n", + "[[ 1. -1. 0. ]\n", + " [-0.33333333 5.33333333 -0.16666667]\n", + " [ 0.66666667 -0.66666667 0.33333333]]\n", + "rank of R = 2\n", + "Since, Rank of R is 3, so a1, a2, a3 are independent\n", + "Now, basis for W can be given by row vectors of R i.e. p1,p2,p3\n", + "b is any vector in W. b = [b1 b2 b3 b4]\n", + "Span of vectors p1,p2,p3 consist of vector b with b3 = 2*b1\n", + "So,b = b1p1 + b2p2 + b4p3\n", + "And,[p1 p2 p3] = R = Q*A\n", + "So, b = [b1 b2 b3]* Q * A\n", + "hence, b = x1a1 + x2a2 + x3a3 where x1 = [b1 b2 b4] * Q(1) and so on\n", + "Now, given 3 vectors a1 a2 a3:\n", + "a1 = [1, 0, 2, 0]\n", + "a2 = [0, 2, 0, 1]\n", + "a3 = [0, 0, 0, 3]\n", + "Since a1 a2 a3 are all of the form (y1 y2 y3 y4) with y3 = 2*y1, hence they are in W.\n", + "So, they are independent.\n", + "Required matrix P such that X = PX is:\n", + "P = \n", + "[[ 0. -0. 2.]\n", + " [-0. 0. -2.]\n", + " [ 0. -0. 1.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a1 = [1 ,2 ,2, 1]#\n", + "a2 = [0 ,2 ,0 ,1]#\n", + "a3 = [-2, 0, -4, 3]#\n", + "print 'Given row vectors are:'\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print 'The matrix A from these vectors will be:'\n", + "#A = [a1],[a2], [a3]]\n", + "A=np.array([a1,a2,a3])\n", + "print 'A = \\n',A\n", + "\n", + "print 'Finding Row reduced echelon matrix of A that is given by R'\n", + "print 'And applying same operations on identity matrix Q such that R = QA'\n", + "Q = np.identity(3)\n", + "print 'Q = \\n',Q\n", + "T = A# #Temporary matrix to store A\n", + "print 'Applying row transformations on A and Q,we get'\n", + "print 'R1 = R1-R2'\n", + "A[0,:] = A[0,:] - A[1,:]\n", + "Q[0,:] = Q[0,:] - Q[1,:]\n", + "print 'A = \\n',A\n", + "print 'Q = \\n',Q\n", + "print 'R3 = R3 + 2*R1'\n", + "A[2,:] = A[2,:] + 2*A[0,:]\n", + "Q[2,:] = Q[2,:] + 2*Q[0,:]\n", + "print 'A = \\n',A\n", + "print 'Q = \\n',Q\n", + "print 'R3 = R3/3'\n", + "A[2,:] = 1./3*A[2,:]\n", + "Q[2,:] = 1./3*Q[2,:]\n", + "print 'A = \\n',A\n", + "print 'Q = \\n',Q\n", + "print 'R2 = R2/2'\n", + "A[1,:] = 1./2*A[1,:]\n", + "Q[1,:] = 10/2*Q[1,:]\n", + "print 'A = \\n',A\n", + "print 'Q = \\n',Q\n", + "print 'R2 = R2 - 1/2*R3'\n", + "A[1,:] = A[1,:] - 1./2*A[2,:]\n", + "Q[1,:] = Q[1,:] - 1./2*Q[2,:]\n", + "print 'A = \\n',A\n", + "print 'Q = \\n',Q\n", + "R = A#\n", + "A = T#\n", + "print 'Row reduced echelon matrix:'\n", + "print 'A = \\n',A\n", + "print 'Q = \\n',Q\n", + "#part a\n", + "print 'rank of R = ',np.rank(R)\n", + "\n", + "print 'Since, Rank of R is 3, so a1, a2, a3 are independent'\n", + "#part b\n", + "print 'Now, basis for W can be given by row vectors of R i.e. p1,p2,p3'\n", + "print 'b is any vector in W. b = [b1 b2 b3 b4]'\n", + "print 'Span of vectors p1,p2,p3 consist of vector b with b3 = 2*b1'\n", + "print 'So,b = b1p1 + b2p2 + b4p3'\n", + "print 'And,[p1 p2 p3] = R = Q*A'\n", + "print 'So, b = [b1 b2 b3]* Q * A'\n", + "print 'hence, b = x1a1 + x2a2 + x3a3 where x1 = [b1 b2 b4] * Q(1) and so on' # #Equation 1\n", + "#part c\n", + "print 'Now, given 3 vectors a1'' a2'' a3'':'\n", + "c1 = [1, 0, 2, 0]#\n", + "c2 = [0 ,2 ,0, 1]#\n", + "c3 = [0 ,0 ,0 ,3]#\n", + "print 'a1'' = ',c1\n", + "print 'a2'' = ',c2\n", + "print 'a3'' = ',c3\n", + "print 'Since a1'' a2'' a3'' are all of the form (y1 y2 y3 y4) with y3 = 2*y1, hence they are in W.'\n", + "print 'So, they are independent.'\n", + "#part d\n", + "c = np.array([c1,c2,c3])\n", + "P = np.identity(3)\n", + "for i in range(0,3):\n", + " b1 = c[i,0]\n", + " b2 = c[i,1]\n", + " b4 = c[i,3]\n", + " x1 = np.array([b1, b2, b4]) * Q[:,0]\n", + " x2 = np.array([b1, b2, b4])*Q[:,1]\n", + " x3 = np.array([b1, b2, b4])*Q[:,2]\n", + " \n", + "\n", + "print 'Required matrix P such that X = PX'' is:'\n", + "P=np.vstack([x1,x2,x3])\n", + "print 'P = \\n',P\n", + "#print x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 63 Example 2.22" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[ 1 2 0 3 0]\n", + " [ 1 2 -1 -1 0]\n", + " [ 0 0 1 4 0]\n", + " [ 2 4 1 10 1]\n", + " [ 0 0 0 0 1]]\n", + "Taking an identity matrix P:\n", + "P = \n", + "[[ 1. 0. 0. 0. 0.]\n", + " [ 0. 1. 0. 0. 0.]\n", + " [ 0. 0. 1. 0. 0.]\n", + " [ 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 1.]]\n", + "Applying row transformations on P and A to get a row reduced echelon matrix R:\n", + "R2 = R2 - R1 and R4 = R4 - 2* R1\n", + "A = \n", + "[[ 1 2 0 3 0]\n", + " [ 0 0 -1 -4 0]\n", + " [ 0 0 1 4 0]\n", + " [ 0 0 1 4 1]\n", + " [ 0 0 0 0 1]]\n", + "P = \n", + "[[ 1. 0. 0. 0. 0.]\n", + " [-1. 1. 0. 0. 0.]\n", + " [ 0. 0. 1. 0. 0.]\n", + " [-2. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 1.]]\n", + "R2 = -R2 , R3 = R3 - R1 + R2 and R4 = R4 - R1 + R2\n", + "A = \n", + "[[1 2 0 3 0]\n", + " [0 0 1 4 0]\n", + " [0 0 0 0 0]\n", + " [0 0 0 0 1]\n", + " [0 0 0 0 1]]\n", + "P = \n", + "[[ 1. 0. 0. 0. 0.]\n", + " [ 1. -1. -0. -0. -0.]\n", + " [-1. 1. 1. 0. 0.]\n", + " [-3. 1. 0. 1. 0.]\n", + " [-3. 1. 0. 1. 0.]]\n", + "Mutually interchanging R3, R4 and R5\n", + "Row reduced echelon matrix R = \n", + "[[1 2 0 3 0]\n", + " [0 0 1 4 0]\n", + " [0 0 0 0 1]\n", + " [0 0 0 0 1]\n", + " [0 0 0 0 0]]\n", + "Invertible Matrix P = \n", + "[[ 1. 0. 0. 0. 0.]\n", + " [ 1. -1. -0. -0. -0.]\n", + " [-3. 1. 0. 1. 0.]\n", + " [-3. 1. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 0.]]\n", + "Invertible matrix P is not unique. There can be many that depends on operations used to reduce A\n", + "-----------------------------------------\n", + "For the basis of row space W of A, we can take the non-zero rows of R\n", + "It can be given by p1, p2, p3\n", + "p1 = [1 2 0 3 0]\n", + "p2 = [0 0 1 4 0]\n", + "p3 = [0 0 0 0 1]\n", + "-----------------------------------------\n", + "The row space W consists of vectors of the form:\n", + "b = c1p1 + c2p2 + c3p3\n", + "i.e. b = (c1,2*c1,c2,3*c1+4*c2,c3) where, c1 c2 c3 are scalars.\n", + "So, if b2 = 2*b1 and b4 = 3*b1 + 4*b3 => (b1,b2,b3,b4,b5) = b1p1 + b3p2 + b5p3\n", + "then,(b1,b2,b3,b4,b5) is in W\n", + "-----------------------------------------\n", + "The coordinate matrix of the vector (b1,2*b1,b2,3*b1+4*b2,b3) in the basis (p1,p2,p3) is column matrix of b1,b2,b3 such that:\n", + " b1\n", + " b2\n", + " b3\n", + "-----------------------------------------\n", + "Now, to write each vector in W as a linear combination of rows of A:\n", + "Let b = (b1,b2,b3,b4,b5) and if b is in W, then\n", + "we know,b = (b1,2*b1,b3,3*b1 + 4*b3,b5) => [b1,b3,b5,0,0]*R\n", + "=> b = [b1,b3,b5,0,0] * P*A => b = [b1+b3,-b3,0,0,b5] * A\n", + "if b = (-5,-10,1,-11,20)\n", + "b = ( [-4, -1, 0, 0, 20] ) *[ [[1 2 0 3 0]\n", + " [0 0 1 4 0]\n", + " [0 0 0 0 1]\n", + " [0 0 0 0 1]\n", + " [0 0 0 0 0]] ]\n", + "-----------------------------------------\n", + "The equations in system RX = 0 are given by R * [x1 x2 x3 x4 x5]\n", + "i.e., x1 + 2*x2 + 3*x4\n", + "x3 + 4*x4\n", + "x5\n", + "so, V consists of all columns of the form\n", + "[ X=\n", + " -2*x2 - 3*x4\n", + " x2\n", + " -4*x4\n", + " x4\n", + " 0\n", + "where x2 and x4 are arbitrary ]\n", + "-----------------------------------------\n", + "Let x2 = 1,x4 = 0 then the given column forms a basis of V\n", + "[[-2], [1], [0], [0], [0]]\n", + "Similarly,if x2 = 0,x4 = 1 then the given column forms a basis of V\n", + "[[-3], [0], [-4], [1], [0]]\n", + "-----------------------------------------\n", + "The equation AX = Y has solutions X if and only if\n", + "-y1 + y2 + y3 = 0\n", + "-3*y1 + y2 + y4 -y5 = 0\n", + "where, Y = (y1 y2 y3 y4 y5)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "A = np.array([[1, 2, 0, 3, 0],[1, 2, -1, -1, 0],[0 ,0 ,1 ,4 ,0],[2, 4 ,1 ,10, 1],[0 ,0 ,0 ,0 ,1]])\n", + "print 'A = \\n',A\n", + "#part a\n", + "T = A# #Temporary storing A in T\n", + "print 'Taking an identity matrix P:'\n", + "P = np.identity(5)\n", + "print 'P = \\n',P\n", + "print 'Applying row transformations on P and A to get a row reduced echelon matrix R:'\n", + "print 'R2 = R2 - R1 and R4 = R4 - 2* R1'\n", + "A[1,:] = A[1,:] - A[0,:]\n", + "P[1,:] = P[1,:] - P[0,:]\n", + "A[3,:] = A[3,:] - 2 * A[0,:]\n", + "P[3,:] = P[3,:] - 2 * P[0,:]\n", + "print 'A = \\n',A\n", + "print 'P = \\n',P\n", + "print 'R2 = -R2 , R3 = R3 - R1 + R2 and R4 = R4 - R1 + R2'\n", + "A[1,:] = -A[1,:]\n", + "P[1,:] = -P[1,:]\n", + "A[2,:] = A[2,:] - A[1,:]\n", + "P[2,:] = P[2,:] - P[1,:]\n", + "A[3,:] = A[3,:] - A[1,:]\n", + "P[3:] = P[3,:] - P[1,:]\n", + "print 'A = \\n',A\n", + "print 'P = \\n',P\n", + "print 'Mutually interchanging R3, R4 and R5'\n", + "x = A[2,:]\n", + "A[2,:] = A[4,:]\n", + "y = A[3,:]\n", + "A[3,:] = x#\n", + "A[4,:] = y - A[2,:]\n", + "x = P[2,:]\n", + "P[2,:] = P[4,:]\n", + "y = P[3,:]\n", + "P[3,:] = x#\n", + "P[4,:] = y - P[2,:]\n", + "R = A#\n", + "A = T#\n", + "print 'Row reduced echelon matrix R = \\n',R\n", + "print 'Invertible Matrix P = \\n',P\n", + "print 'Invertible matrix P is not unique. There can be many that depends on operations used to reduce A'\n", + "print '-----------------------------------------'\n", + "#part b\n", + "print 'For the basis of row space W of A, we can take the non-zero rows of R'\n", + "print 'It can be given by p1, p2, p3'\n", + "p1 = R[0,:]\n", + "p2 = R[1,:]\n", + "p3 = R[2,:]\n", + "print 'p1 = ',p1\n", + "print 'p2 = ',p2\n", + "print 'p3 = ',p3\n", + "print '-----------------------------------------'\n", + "#part c\n", + "print 'The row space W consists of vectors of the form:'\n", + "print 'b = c1p1 + c2p2 + c3p3'\n", + "print 'i.e. b = (c1,2*c1,c2,3*c1+4*c2,c3) where, c1 c2 c3 are scalars.'\n", + "print 'So, if b2 = 2*b1 and b4 = 3*b1 + 4*b3 => (b1,b2,b3,b4,b5) = b1p1 + b3p2 + b5p3'\n", + "print 'then,(b1,b2,b3,b4,b5) is in W'\n", + "print '-----------------------------------------'\n", + "#part d\n", + "print 'The coordinate matrix of the vector (b1,2*b1,b2,3*b1+4*b2,b3) in the basis (p1,p2,p3) is column matrix of b1,b2,b3 such that:'\n", + "print ' b1'\n", + "print ' b2'\n", + "print ' b3'\n", + "print '-----------------------------------------'\n", + "#part e\n", + "print 'Now, to write each vector in W as a linear combination of rows of A:'\n", + "print 'Let b = (b1,b2,b3,b4,b5) and if b is in W, then'\n", + "print 'we know,b = (b1,2*b1,b3,3*b1 + 4*b3,b5) => [b1,b3,b5,0,0]*R'\n", + "print '=> b = [b1,b3,b5,0,0] * P*A => b = [b1+b3,-b3,0,0,b5] * A'\n", + "print 'if b = (-5,-10,1,-11,20)'\n", + "b1 = -5#\n", + "b2 = -10#\n", + "b3 = 1#\n", + "b4 = -11#\n", + "b5 = 20#\n", + "x = [b1 + b3,-b3,0,0,b5]#\n", + "print 'b = (',x,')','*[',A,']'\n", + "print '-----------------------------------------'\n", + "#part f\n", + "print 'The equations in system RX = 0 are given by R * [x1 x2 x3 x4 x5]'\n", + "print 'i.e., x1 + 2*x2 + 3*x4'\n", + "print 'x3 + 4*x4'\n", + "print 'x5'\n", + "print 'so, V consists of all columns of the form'\n", + "print '[','X='\n", + "print ' -2*x2 - 3*x4'\n", + "print ' x2'\n", + "print ' -4*x4'\n", + "print ' x4'\n", + "print ' 0'\n", + "print 'where x2 and x4 are arbitrary',']'\n", + "print '-----------------------------------------'\n", + "#part g\n", + "print 'Let x2 = 1,x4 = 0 then the given column forms a basis of V'\n", + "\n", + "x2 = 1#\n", + "x4 = 0#\n", + "print [[-2*x2-3*x4],[ x2],[ -4*x4],[ x4],[ 0]]\n", + "print 'Similarly,if x2 = 0,x4 = 1 then the given column forms a basis of V'\n", + "x2 = 0#\n", + "x4 = 1#\n", + "print [[-2*x2-3*x4],[ x2],[ -4*x4],[ x4],[ 0]]\n", + "print '-----------------------------------------'\n", + "#part h\n", + "print 'The equation AX = Y has solutions X if and only if'\n", + "print '-y1 + y2 + y3 = 0'\n", + "print '-3*y1 + y2 + y4 -y5 = 0'\n", + "print 'where, Y = (y1 y2 y3 y4 y5)'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter3_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter3_1.ipynb new file mode 100644 index 00000000..2e2e4be2 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter3_1.ipynb @@ -0,0 +1,637 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3 - Linear transformation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 70 Example 3.6" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a1 = [1, 2]\n", + "a2 = [3, 4]\n", + "a1 and a2 are linearly independent and hence form a basis for R**2\n", + "According to theorem 1, there is a linear transformation from R**2 to R**3 with the transformation functions as:\n", + "Ta1 = [3, 2, 1]\n", + "Ta2 = [6, 5, 4]\n", + "Now, we find scalars c1 and c2 for that we know T(c1a1 + c2a2) = c1(Ta1) + c2(Ta2))\n", + "if(1,0) = c1(1,2) + c2(3,4), then \n", + "c1 = 1\n", + "c2 = 3\n", + "The transformation function T(1,0) will be:\n", + "T(1,0) = [3, 2, 1, 6, 5, 4, 6, 5, 4, 6, 5, 4]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a1 = [1, 2]#\n", + "a2 = [3 ,4]#\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a1 and a2 are linearly independent and hence form a basis for R**2'\n", + "print 'According to theorem 1, there is a linear transformation from R**2 to R**3 with the transformation functions as:'\n", + "Ta1 = [3 ,2 ,1]#\n", + "Ta2 = [6, 5, 4]#\n", + "print 'Ta1 = ',Ta1\n", + "print 'Ta2 = ',Ta2\n", + "print 'Now, we find scalars c1 and c2 for that we know T(c1a1 + c2a2) = c1(Ta1) + c2(Ta2))'\n", + "print 'if(1,0) = c1(1,2) + c2(3,4), then '\n", + "#c = inv([a1#a2]') * [1#0]#\n", + "c=np.array([a1,a2]).dot(np.array([[1],[0]]))\n", + "c1 = c[0,0]\n", + "c2 = c[1,0]\n", + "print 'c1 = ',c1\n", + "print 'c2 = ',c2\n", + "print 'The transformation function T(1,0) will be:'\n", + "T = c1*Ta1 + c2*Ta2#\n", + "print 'T(1,0) = ',T\n", + "#end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 81 Example 3.12" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x1 = 5\n", + "x2 = 2\n", + "T(5,2) = [7, 5]\n", + "If, T(x1,x2) = 0, then\n", + "x1 = x2 = 0\n", + "So, T is non-singular\n", + "z1,z2 are two scalars in F\n", + "z1 = 0\n", + "z2 = 8\n", + "So, x1 = 8\n", + "x2 = -8\n", + "Hence, T is onto.\n", + "inverse(T) = [8, -8]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#x = round(rand(1,2) * 10)#\n", + "x1 = np.random.randint(1,9)\n", + "x2 = np.random.randint(1,9)\n", + "T = [x1+x2 ,x1]\n", + "print 'x1 = ',x1\n", + "print 'x2 = ',x2\n", + "print 'T(%d,%d) = '%(x1,x2),\n", + "print T\n", + "print 'If, T(x1,x2) = 0, then'\n", + "print 'x1 = x2 = 0'\n", + "print 'So, T is non-singular'\n", + "print 'z1,z2 are two scalars in F'\n", + "\n", + "z1 = np.random.randint(0,9)\n", + "z2 = np.random.randint(0,9)\n", + "print 'z1 = ',z1\n", + "print 'z2 = ',z2\n", + "x1 = z2#\n", + "x2 = z1 - z2#\n", + "print 'So, x1 = ',x1\n", + "print 'x2 = ',x2\n", + "print 'Hence, T is onto.'\n", + "Tinv = [z2, z1-z2]# \n", + "print 'inverse(T) = ',Tinv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 89 Example 3.14" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T is a linear operator on F**2 defined as:\n", + "T(x1,x2) = (x1,0)\n", + "B = {e1,e2} is a standard ordered basis for F**2,then\n", + "So, Te1 = T(1,0) = [1, 0]\n", + "So, Te2 = T(0,1) = [0, 0]\n", + "so,matrix T in ordered basis B is: \n", + "T = \n", + "[[1, 0], [0, 0]]\n" + ] + } + ], + "source": [ + "print 'T is a linear operator on F**2 defined as:'\n", + "print 'T(x1,x2) = (x1,0)'\n", + "print 'B = {e1,e2} is a standard ordered basis for F**2,then'\n", + "x1 = 1#\n", + "x2 = 0#\n", + "Te1 = [x1, 0]#\n", + "x1 = 0#\n", + "x2 = 1#\n", + "Te2 = [x1 ,0]#\n", + "print 'So, Te1 = T(1,0) = ',Te1\n", + "print 'So, Te2 = T(0,1) = ',Te2\n", + "print 'so,matrix T in ordered basis B is: '\n", + "T = [Te1,Te2]\n", + "print 'T = \\n',T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 89 Example 3.15" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Differentiation operator D is defined as:\n", + "(Df1)(x) = 0\n", + "(Df2)(x) = 1\n", + "(Df3)(x) = 2*x\n", + "(Df4)(x) = 3*x**2\n", + "Matrix of D in ordered basis is:\n", + "[D] = \n", + "[[ 0. 1. 0. 0.]\n", + " [ 0. 0. 2. 0.]\n", + " [ 0. 0. 0. 3.]\n", + " [ 0. 0. 0. 0.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "print 'Differentiation operator D is defined as:'\n", + "D = np.zeros([4,4])\n", + "x=sp.Symbol('x')\n", + "for i in range(1,5):\n", + " t= i-1#\n", + " f = sp.diff(x**t,'x')\n", + " print '(Df%d)(x) = '%(i),\n", + " print f\n", + " if not(i == 1):\n", + " D[i-2,i-1] = i-1#\n", + " \n", + "\n", + "print 'Matrix of D in ordered basis is:'\n", + "print '[D] = \\n',D" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 92 Example 3.16" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T is a linear operator on R**2 defined as T(x1,x2) = (x1,0)\n", + "So, the matrix T in standard ordered basis B = {e1,e2} is \n", + "[T]B = [[1 0]\n", + " [0 0]]\n", + "Let B is the ordered basis for R**2 consisting of vectors:\n", + "E1 = [1 1]\n", + "E2 = [2 1]\n", + "So, matrix P = \n", + "[[1 2]\n", + " [1 1]]\n", + "P inverse = \n", + "[[-1. 2.]\n", + " [ 1. -1.]]\n", + "So, matrix T in ordered basis B is [T]B = \n", + "[[-1. 0.]\n", + " [ 0. -0.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print 'T is a linear operator on R**2 defined as T(x1,x2) = (x1,0)'\n", + "print 'So, the matrix T in standard ordered basis B = {e1,e2} is '\n", + "T = np.array([[1, 0],[0, 0]])\n", + "print '[T]B = ',T\n", + "print 'Let B'' is the ordered basis for R**2 consisting of vectors:'\n", + "E1 = np.array([1, 1])\n", + "E2 = np.array([2 ,1])\n", + "print 'E1 = ',E1\n", + "print 'E2 = ',E2\n", + "P = np.transpose(([E1,E2]))\n", + "print 'So, matrix P = \\n',P\n", + "Pinv=np.linalg.inv(P)\n", + "print 'P inverse = \\n',Pinv\n", + "T1 = Pinv*T*P#\n", + "print 'So, matrix T in ordered basis B'' is [T]B'' = \\n',T1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 93 Example 3.17" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "g1 = f1\n", + "g2 = t*f1 + f2\n", + "g3 = t**2*f1 + 2*t*f2 + f3\n", + "g4 = t**3*f1 + 3*t**2*f2 + 3*t*f3 + f4\n", + "P = \n", + "Matrix([[1, t, t**2, t**3], [0, 1, 2*t, 3*t**2], [0, 0, 1, 3*t], [0, 0, 0, 1]])\n", + "inverse P = \n", + "Matrix([[1, -t, t**2, -t**3], [0, 1, -2*t, 3*t**2], [0, 0, 1, -3*t], [0, 0, 0, 1]])\n", + "Matrix of differentiation operator D in ordered basis B is:\n", + "D = \n", + "Matrix([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]])\n", + "Matrix of D in ordered basis B is:\n", + "inverse(P) * D * P = Matrix([[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]])\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "t = sp.Symbol(\"t\")\n", + "print 'g1 = f1'\n", + "print 'g2 = t*f1 + f2'\n", + "print 'g3 = t**2*f1 + 2*t*f2 + f3'\n", + "print 'g4 = t**3*f1 + 3*t**2*f2 + 3*t*f3 + f4'\n", + "P = sp.Matrix(([1, t, t**2, t**3],[0 ,1 ,2*t, 3*t**2],[0, 0, 1, 3*t],[0, 0, 0, 1]))\n", + "print 'P = \\n',P\n", + "\n", + "print 'inverse P = \\n',sp.Matrix.inv(P)\n", + "\n", + "\n", + "\n", + "print 'Matrix of differentiation operator D in ordered basis B is:'# #As found in example 15\n", + "D = sp.Matrix(([0, 1, 0, 0],[0, 0, 2, 0],[0, 0, 0, 3],[0, 0, 0, 0]))\n", + "print 'D = \\n',D\n", + "print 'Matrix of D in ordered basis B'' is:'\n", + "print 'inverse(P) * D * P = ',sp.Matrix.inv(P)*D*P\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 98 Example 3.19" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 8\n", + "A = \n", + "[[ 7. 3. 0. 4. 6. 8. 4. 4.]\n", + " [ 6. 4. 2. 8. 7. 8. 1. 7.]\n", + " [ 7. 0. 9. 3. 10. 9. 3. 8.]\n", + " [ 7. 5. 10. 1. 8. 6. 6. 5.]\n", + " [ 8. 8. 9. 9. 1. 9. 10. 4.]\n", + " [ 6. 3. 5. 2. 2. 4. 8. 4.]\n", + " [ 5. 1. 1. 2. 6. 9. 9. 5.]\n", + " [ 8. 6. 9. 9. 8. 9. 1. 2.]]\n", + "Trace of A:\n", + "tr(A) = 37.0\n", + "--------------------------------\n", + "c = 3\n", + "B = \n", + "[[ 4. 6. 10. 5. 8. 4. 1. 9.]\n", + " [ 9. 9. 3. 6. 3. 8. 2. 6.]\n", + " [ 1. 6. 0. 7. 7. 2. 8. 4.]\n", + " [ 5. 5. 9. 7. 9. 3. 9. 9.]\n", + " [ 7. 7. 10. 6. 1. 1. 7. 4.]\n", + " [ 0. 3. 10. 9. 5. 2. 8. 4.]\n", + " [ 1. 8. 2. 4. 5. 4. 4. 8.]\n", + " [ 7. 0. 1. 8. 2. 7. 4. 7.]]\n", + "Trace of B:\n", + "tr(B) = 34.0\n", + "tr(cA + B) = 145.0\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "def trace_matrix(M,n):\n", + " tr=0\n", + " for i in range(0,n):\n", + " tr = tr + M[i,i]#\n", + " return tr\n", + "#n = round(rand() * 10 + 2)#\n", + "n=np.random.randint(1,9)\n", + "print 'n = ',n\n", + "#A = round(rand(n,n) * 10)#\n", + "A=np.random.rand(n,n)\n", + "for x in range(0,n):\n", + " for y in range(0,n):\n", + " A[x,y]=round(A[x,y]*10)\n", + "print 'A = \\n',A\n", + "\n", + "\n", + "tr = 0#\n", + "print 'Trace of A:'\n", + "tr1 = trace_matrix(A,n)#\n", + "print 'tr(A) = ',tr1\n", + "print '--------------------------------'\n", + "#c = round(rand() * 10 + 2)#\n", + "c=np.random.randint(2,9)\n", + "print 'c = ',c\n", + "\n", + "B=np.random.rand(n,n)\n", + "for x in range(0,n):\n", + " for y in range(0,n):\n", + " B[x,y]=round(B[x,y]*10)\n", + "print 'B = \\n',B\n", + "\n", + "print 'Trace of B:'\n", + "tr2 = trace_matrix(B,n)#\n", + "print 'tr(B) = ',tr2\n", + "print 'tr(cA + B) = ',(c*tr1+tr2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 103 Example 3.23" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Matrix represented by given linear functionals on R**4:\n", + "A = \n", + "[[ 1 2 2 1]\n", + " [ 0 2 0 1]\n", + " [-2 0 -4 3]]\n", + "To find Row reduced echelon matrix of A given by R:\n", + "Applying row transformations on A,we get\n", + "R1 = R1-R2\n", + "A = \n", + "[[ 1 0 2 0]\n", + " [ 0 2 0 1]\n", + " [-2 0 -4 3]]\n", + "R3 = R3 + 2*R1\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 2 0 1]\n", + " [0 0 0 3]]\n", + "R3 = R3/3\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 2 0 1]\n", + " [0 0 0 1]]\n", + "R2 = R2/2\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 1 0 0]\n", + " [0 0 0 1]]\n", + "R2 = R2 - 1/2*R3\n", + "A = \n", + "[[1 0 2 0]\n", + " [0 1 0 0]\n", + " [0 0 0 1]]\n", + "Row reduced echelon matrix of A is:\n", + "R = \n", + "[[1 0 2 0]\n", + " [0 1 0 0]\n", + " [0 0 0 1]]\n", + "Therefore,linear functionals g1,g2,g3 span the same subspace of (R**4)* as f1,f2,f3 are given by:\n", + "g1(x1,x2,x3,x4) = x1 + 2*x3\n", + "g1(x1,x2,x3,x4) = x2\n", + "g1(x1,x2,x3,x4) = x4\n", + "The subspace consists of the vectors with\n", + "x1 = -2*x3\n", + "x2 = x4 = 0\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print 'Matrix represented by given linear functionals on R**4:'\n", + "A = np.array([[1, 2 ,2 ,1],[0, 2, 0, 1],[-2 ,0 ,-4, 3]])\n", + "print 'A = \\n',A\n", + "T = A #Temporary matrix to store A\n", + "print 'To find Row reduced echelon matrix of A given by R:'\n", + "print 'Applying row transformations on A,we get'\n", + "print 'R1 = R1-R2'\n", + "A[0,:] = A[0,:] - A[1,:]\n", + "print 'A = \\n',A\n", + "print 'R3 = R3 + 2*R1'\n", + "A[2,:] = A[2,:] + 2*A[0,:]\n", + "print 'A = \\n',A\n", + "print 'R3 = R3/3'\n", + "A[2,:] = 1./3*A[2,:]#\n", + "print 'A = \\n',A\n", + "print 'R2 = R2/2'\n", + "A[1,:] = 1./2*A[1,:]\n", + "print 'A = \\n',A\n", + "print 'R2 = R2 - 1/2*R3'\n", + "A[1,:] = A[1,:] - 1./2*A[2,:]\n", + "print 'A = \\n',A\n", + "R = A#\n", + "A = T#\n", + "print 'Row reduced echelon matrix of A is:'\n", + "print 'R = \\n',R\n", + "print 'Therefore,linear functionals g1,g2,g3 span the same subspace of (R**4)* as f1,f2,f3 are given by:'\n", + "print 'g1(x1,x2,x3,x4) = x1 + 2*x3'\n", + "print 'g1(x1,x2,x3,x4) = x2'\n", + "print 'g1(x1,x2,x3,x4) = x4'\n", + "print 'The subspace consists of the vectors with'\n", + "print 'x1 = -2*x3'\n", + "print 'x2 = x4 = 0'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 104 Example 3.24" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "W be the subspace of R**5 spanned by vectors:\n", + "a1 = [2, -2, 3, 4, -1]\n", + "a2 = [-1, 1, 2, 5, 2]\n", + "a3 = [0, 0, -1, -2, 3]\n", + "a4 = [1, -1, 2, 3, 0]\n", + "Matrix A by the row vectors a1,a2,a3,a4 will be:\n", + "A = \n", + "[[ 2 -2 3 4 -1]\n", + " [-1 1 2 5 2]\n", + " [ 0 0 -1 -2 3]\n", + " [ 1 -1 2 3 0]]\n", + "After Applying row transformations, we get the row reduced echelon matrix R of A\n", + "R = \n", + "[[ 1 -1 0 -1 0]\n", + " [ 0 0 1 2 0]\n", + " [ 0 0 0 0 1]\n", + " [ 0 0 0 0 0]]\n", + "Then we obtain all the linear functionals f by assigning arbitrary values to c2 and c4\n", + "Let c2 = a, c4 = b then c1 = a+b, c3 = -2b, c5 = 0.\n", + "So, W0 consists all linear functionals f of the form\n", + "f(x1,x2,x3,x4,x5) = (a+b)x1 + ax2 -2bx3 + bx4\n", + "Dimension of W0 = 2 and basis {f1,f2} can be found by first taking a = 1, b = 0. Then a = 0,b = 1\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print 'W be the subspace of R**5 spanned by vectors:'\n", + "a1 = [2, -2, 3 ,4 ,-1]#\n", + "a2 = [-1, 1, 2, 5, 2]#\n", + "a3 = [0 ,0 ,-1, -2, 3]#\n", + "a4 = [1 ,-1, 2, 3 ,0]#\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print 'a4 = ',a4\n", + "print 'Matrix A by the row vectors a1,a2,a3,a4 will be:'\n", + "A = np.array([a1,a2,a3,a4])\n", + "print 'A = \\n',A\n", + "print 'After Applying row transformations, we get the row reduced echelon matrix R of A'\n", + "\n", + "T = A# #Temporary matrix to store A\n", + "#R1 = R1 - R4 and R2 = R2 + R4\n", + "A[0,:] = A[0,:] - A[3,:]#\n", + "A[1,:] = A[1,:] + A[3,:]#\n", + "#R2 = R2/2\n", + "A[1,:] = 1./2 * A[1,:]#\n", + "#R3 = R3 + R2 and R4 = R4 - R1\n", + "A[2,:] = A[2,:] + A[1,:]#\n", + "A[3,:] = A[3,:] - A[0,:]#\n", + "#R3 = R3 - R4\n", + "A[2,:] = A[2,:] - A[3,:]#\n", + "#R3 = R3/3\n", + "A[2,:] = 1./3 * A[2,:]#\n", + "#R2 = R2 - R3\n", + "A[1,:] = A[1,:] - A[2,:]#\n", + "#R2 = R2/2 and R4 = R4 - R2 - R3\n", + "A[1,:] = 1./2 * A[1,:]#\n", + "A[3,:] = A[3,:] - A[1,:] - A[2,:]#\n", + "#R1 = R1 - R2 + R3\n", + "A[0,:] = A[0,:] - A[1,:] + A[2,:]#\n", + "R = A#\n", + "A = T#\n", + "print 'R = \\n',R\n", + "print 'Then we obtain all the linear functionals f by assigning arbitrary values to c2 and c4'\n", + "print 'Let c2 = a, c4 = b then c1 = a+b, c3 = -2b, c5 = 0.'\n", + "print 'So, W0 consists all linear functionals f of the form'\n", + "print 'f(x1,x2,x3,x4,x5) = (a+b)x1 + ax2 -2bx3 + bx4'\n", + "print 'Dimension of W0 = 2 and basis {f1,f2} can be found by first taking a = 1, b = 0. Then a = 0,b = 1'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter4_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter4_1.ipynb new file mode 100644 index 00000000..3fb3b384 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter4_1.ipynb @@ -0,0 +1,328 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4 - Polynomials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 121 Example 4.3" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C is the field of complex numbers\n", + "f = x**2 + 2\n", + "if a = C and z belongs to C, then f(z) = z**2 + 2\n", + "f(2) = 6\n", + "f(1+1J/1-1J) = (1+0j)\n", + "----------------------------------------\n", + "If a is the algebra of all 2*2 matrices over C and\n", + "B = \n", + "[[ 1 0]\n", + " [-1 2]]\n", + "[[ 3. 0.]\n", + " [ 1. 6.]] then, f(B) = \n", + "----------------------------------------\n", + "If a is algebra of all linear operators on C**3\n", + "And T is element of a as:\n", + "T(c1,c2,c3) = (i*2**1/2*c1,c2,i*2**1/2*c3)\n", + "Then, f(T)(c1,c2,c3) = (0,3*c2,0)\n", + "----------------------------------------\n", + "If a is the algebra of all polynomials over C\n", + "And, g = x**4 + 3.0*I\n", + "Then f(g) = (16+3j)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "from sympy.polys.polyfuncs import horner\n", + "print 'C is the field of complex numbers'\n", + "x = sp.Symbol(\"x\")\n", + "def f(x):\n", + " ff= x**2 + 2\n", + " return ff\n", + "print 'f = ',f(x)\n", + "#part a\n", + "print 'if a = C and z belongs to C, then f(z) = z**2 + 2'\n", + "print 'f(2) = ',f(2)\n", + "\n", + "\n", + "print 'f(1+1J/1-1J) = ',f((1+1J)/(1-1J))\n", + "print '----------------------------------------'\n", + "\n", + "\n", + "#part b\n", + "print 'If a is the algebra of all 2*2 matrices over C and'\n", + "B = np.array([[1 ,0],[-1, 2]])\n", + "print 'B = \\n',B\n", + "print 2*np.identity(2) + B**2,'then, f(B) = '\n", + "print '----------------------------------------'\n", + "\n", + "#part c\n", + "print 'If a is algebra of all linear operators on C**3'\n", + "print 'And T is element of a as:'\n", + "print 'T(c1,c2,c3) = (i*2**1/2*c1,c2,i*2**1/2*c3)'\n", + "print 'Then, f(T)(c1,c2,c3) = (0,3*c2,0)'\n", + "print '----------------------------------------'\n", + "#part d\n", + "print 'If a is the algebra of all polynomials over C'\n", + "def g(x):\n", + " gg= x**4 + 3*1J\n", + " return gg\n", + "print 'And, g = ',g(x)\n", + "print 'Then f(g) = ',g(2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 131 Example 4.7" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M = (x+2)F[x] + (x**2 + 8x + 16)F[x]\n", + "We assert, M = F[x]\n", + "M contains: x**2 - x*(x + 2) + 8*x + 16\n", + "And hence M contains: x**2 - x*(x + 2) + 2*x + 4\n", + "Thus the scalar polynomial 1 belongs to M as well all its multiples.\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "x = sp.Symbol('x')\n", + "p1 = x + 2#\n", + "p2 = x**2 + 8*x + 16#\n", + "print 'M = (x+2)F[x] + (x**2 + 8x + 16)F[x]'\n", + "print 'We assert, M = F[x]'\n", + "print 'M contains:',\n", + "t = p2 - x*p1#\n", + "print t\n", + "print 'And hence M contains:',\n", + "print t - 6*p1\n", + "print 'Thus the scalar polynomial 1 belongs to M as well all its multiples.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 133 Example 4.8" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p1 = x + 2\n", + "p2 = x**2 + 8*x + 16\n", + "M = (x+2)F[x] + (x**2 + 8x + 16)F[x]\n", + "We assert, M = F[x]\n", + "M contains: x**2 - x*(x + 2) + 8*x + 16\n", + "And hence M contains: x**2 - x*(x + 2) + 2*x + 4\n", + "Thus the scalar polynomial 1 belongs to M as well all its multiples\n", + "So, gcd(p1,p2) = 1\n", + "----------------------------------------------\n", + "p1 = (x - 2)**2*(x + 1.0*I)\n", + "p2 = (x - 2)*(x**2 + 1)\n", + "M = (x - 2)**2*(x+1J)F[x] + (x-2)*(x**2 + 1\n", + "The ideal M contains p1 - p2 i.e., (x - 2)**2*(x + 1.0*I) - (x - 2)*(x**2 + 1)\n", + "Hence it contains (x-2)(x+i), which is monic and divides both,\n", + "So, gcd(p1,p2) = (x-2)(x+i)\n", + "----------------------------------------------\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "x = sp.Symbol('x')\n", + "\n", + "#part a\n", + "p1 = x + 2#\n", + "p2 = x**2 + 8*x + 16#\n", + "print 'p1 = ',p1\n", + "print 'p2 = ',p2\n", + "print 'M = (x+2)F[x] + (x**2 + 8x + 16)F[x]'\n", + "print 'We assert, M = F[x]'\n", + "print 'M contains:',\n", + "t = p2 - x*p1#\n", + "print t\n", + "print 'And hence M contains:',\n", + "print t - 6*p1\n", + "print 'Thus the scalar polynomial 1 belongs to M as well all its multiples'\n", + "print 'So, gcd(p1,p2) = 1'\n", + "print '----------------------------------------------'\n", + "#part b\n", + "p1 = (x - 2)**2*(x+1J)#\n", + "p2 = (x-2)*(x**2 + 1)#\n", + "print 'p1 = ',p1\n", + "print 'p2 = ',p2\n", + "print 'M = (x - 2)**2*(x+1J)F[x] + (x-2)*(x**2 + 1'\n", + "print 'The ideal M contains p1 - p2 i.e.,',\n", + "print p1 - p2\n", + "print 'Hence it contains (x-2)(x+i), which is monic and divides both,'\n", + "print 'So, gcd(p1,p2) = (x-2)(x+i)'\n", + "print '----------------------------------------------'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 133 Example 4.9" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M is the ideal in F[x] generated by:\n", + "(x-1)*(x+2)**2\n", + "(x+2)**2*(x+3)\n", + "(x-3) and\n", + "M = (x-1)*(x+2)**2 F[x] + (x+2)**2*(x-3) + (x-3)\n", + "Then M contains: 0\n", + "i.e., M contains (x+2)**2\n", + "and since, (x+2)**2 = (x-3)(x-7) - 17\n", + "So M contains the scalar polynomial 1.\n", + "So, M = F[x] and given polynomials are relatively prime.\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "x = sp.Symbol('x')\n", + "\n", + "print 'M is the ideal in F[x] generated by:'\n", + "print '(x-1)*(x+2)**2'\n", + "print '(x+2)**2*(x+3)'\n", + "print '(x-3)','and'\n", + "p1 = (x-1)*(x+2)**2#\n", + "p2 = (x+2)**2*(x-3)#\n", + "p3 = (x-3)#\n", + "print 'M = (x-1)*(x+2)**2 F[x] + (x+2)**2*(x-3) + (x-3)'\n", + "print 'Then M contains:',\n", + "t = 1/2*(x+2)**2*((x-1) - (x-3))#\n", + "print t\n", + "print 'i.e., M contains (x+2)**2'\n", + "print 'and since, (x+2)**2 = (x-3)(x-7) - 17'\n", + "print 'So M contains the scalar polynomial 1.'\n", + "print 'So, M = F[x] and given polynomials are relatively prime.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 135 Example 4.10" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x**2 + 1 P = \n", + "P is reducible over complex numbers as: = x**2 + 1\n", + "(x-i)(x+i)\n", + "Whereas, P is irreducible over real numbers as: = x**2 + 1\n", + "(ax + b)(ax + b)\n", + "For, a,a,b,b to be in R,\n", + "aa = 1\n", + "ab + ba = 0\n", + "bb = 1\n", + "=> a**2 + b**2 = 0\n", + "=> a = b = 0\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "x = sp.Symbol('x')\n", + "P = x**2 + 1#\n", + "print P,'P = '\n", + "print 'P is reducible over complex numbers as: ',\n", + "print '=',P\n", + "print '(x-i)(x+i)'\n", + "print 'Whereas, P is irreducible over real numbers as:',\n", + "print '=',P\n", + "print '(ax + b)(a''x + b'')'\n", + "print 'For, a,a'',b,b'' to be in R,'\n", + "print 'aa'' = 1'\n", + "print 'ab'' + ba'' = 0'\n", + "print 'bb'' = 1'\n", + "print '=> a**2 + b**2 = 0'\n", + "print '=> a = b = 0'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter5_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter5_1.ipynb new file mode 100644 index 00000000..9d29340c --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter5_1.ipynb @@ -0,0 +1,358 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5 - Determinants" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 143 Example 5.3" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[ 3. 9.]\n", + " [ 3. 1.]]\n", + "D1(A) = 3.0\n", + "D2(A) = -27.0\n", + "D(A) = D1(A) + D2(A) = -24.0\n", + "That is, D is a 2-linear function.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "A = np.random.rand(2,2)\n", + "for x in range(0,2):\n", + " for y in range(0,2):\n", + " A[x,y]=round(A[x,y]*10)\n", + "print 'A = \\n',A\n", + "\n", + "D1 = A[0,0]*A[1,1]\n", + "D2 = - A[0,1]*A[1,0]\n", + "print 'D1(A) = ',D1\n", + "print 'D2(A) = ',D2\n", + "print 'D(A) = D1(A) + D2(A) = ',D1 + D2\n", + "print 'That is, D is a 2-linear function.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 145 Example 5.4" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "Matrix([[x, 0, -x**2], [0, 1, 0], [1, 0, x**3]])\n", + "e1,e2,e3 are the rows of 3*3 identity matrix, then\n", + "e1 = [ 1. 0. 0.]\n", + "e2 = [ 0. 1. 0.]\n", + "e3 = [ 0. 0. 1.]\n", + "D(A) = D(x*e1 - x**2*e3, e2, e1 + x**3*e3)\n", + "Since, D is linear as a function of each row,\n", + "D(A) = x*D(e1,e2,e1 + x**3*e3) - x**2*D(e3,e2,e1 + x**3*e3)\n", + "D(A) = x*D(e1,e2,e1) + x**4*D(e1,e2,e3) - x**2*D(e3,e2,e1) - x**5*D(e3,e2,e3)\n", + "As D is alternating, So\n", + "D(A) = (x**4 + x**2)*D(e1,e2,e3)\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "\n", + "x = sp.Symbol(\"x\")\n", + "A = sp.Matrix(([x, 0, -x**2],[0, 1, 0],[1, 0, x**3]))\n", + "print 'A = \\n',A\n", + "print 'e1,e2,e3 are the rows of 3*3 identity matrix, then'\n", + "T = np.identity(3)\n", + "e1 = T[0,:]\n", + "e2 = T[1,:]\n", + "e3 = T[2,:]\n", + "print 'e1 = ',e1\n", + "print 'e2 = ',e2\n", + "print 'e3 = ',e3\n", + "print 'D(A) = D(x*e1 - x**2*e3, e2, e1 + x**3*e3)'\n", + "print 'Since, D is linear as a function of each row,'\n", + "print 'D(A) = x*D(e1,e2,e1 + x**3*e3) - x**2*D(e3,e2,e1 + x**3*e3)'\n", + "print 'D(A) = x*D(e1,e2,e1) + x**4*D(e1,e2,e3) - x**2*D(e3,e2,e1) - x**5*D(e3,e2,e3)'\n", + "print 'As D is alternating, So'\n", + "print 'D(A) = (x**4 + x**2)*D(e1,e2,e3)'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 147 Example 5.5" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "Matrix([[x - 1, x**2, x**3], [0, x - 2, 1], [0, 0, x - 3]])\n", + "\n", + "E(A) = x**3 - 6*x**2 + 11*x - 6\n", + "--------------------------------------\n", + "A = \n", + "Matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n", + "\n", + "E(A) = 1\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "\n", + "#part a\n", + "x = sp.Symbol('x')\n", + "A = sp.Matrix(([x-1, x**2, x**3],[0, x-2, 1],[0, 0, x-3]))\n", + "print 'A = \\n',A\n", + "print '\\nE(A) = ',A.det()\n", + "print '--------------------------------------'\n", + "#part b\n", + "A = sp.Matrix(([0 ,1, 0],[0, 0, 1],[1 ,0, 0]))\n", + "print 'A = \\n',A\n", + "print '\\nE(A) = ',A.det()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 158 Example 5.6" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given Matrix:\n", + "A = \n", + "[[ 1 -1 2 3]\n", + " [ 2 2 0 2]\n", + " [ 4 1 -1 -1]\n", + " [ 1 2 3 0]]\n", + "After, Subtracting muliples of row 1 from rows 2 3 4\n", + "R2 = R2 - 2*R1\n", + "R3 = R3 - 4*R1\n", + "R4 = R4 - R1\n", + "A = \n", + "[[ 1 -1 2 3]\n", + " [ 0 4 -4 -4]\n", + " [ 0 5 -9 -13]\n", + " [ 0 3 1 -3]]\n", + "We obtain the same determinant as before.\n", + "Now, applying some more row transformations as:\n", + "R3 = R3 - 5/4 * R2\n", + "R4 = R4 - 3/4 * R2\n", + "We get B as:\n", + "B = \n", + "[[ 1 -1 2 3]\n", + " [ 0 4 -4 -4]\n", + " [ 0 0 -4 -8]\n", + " [ 0 0 4 0]]\n", + "Now,determinant of A and B will be same\n", + "det A = det B = 128.0\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "print 'Given Matrix:'\n", + "A = np.array([[1, -1, 2, 3],[ 2, 2, 0, 2],[ 4, 1 ,-1, -1],[1, 2, 3, 0]])\n", + "print 'A = \\n',A\n", + "print 'After, Subtracting muliples of row 1 from rows 2 3 4'\n", + "print 'R2 = R2 - 2*R1'\n", + "A[1,:] = A[1,:] - 2 * A[0,:]\n", + "print 'R3 = R3 - 4*R1'\n", + "A[2,:] = A[2,:] - 4 * A[0,:]\n", + "print 'R4 = R4 - R1'\n", + "A[3,:] = A[3,:] - A[0,:]\n", + "print 'A = \\n',A\n", + "T = A# #Temporary matrix to store A\n", + "print 'We obtain the same determinant as before.'\n", + "print 'Now, applying some more row transformations as:'\n", + "print 'R3 = R3 - 5/4 * R2'\n", + "T[2,:] = T[2,:] - 5./4 * T[1,:]\n", + "print 'R4 = R4 - 3/4 * R2'\n", + "T[3,:] = T[3,:] - 3./4 * T[1,:]\n", + "B = T#\n", + "print 'We get B as:'\n", + "print 'B = \\n',B\n", + "print 'Now,determinant of A and B will be same'\n", + "print 'det A = det B = ',np.linalg.det(B)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 160 Example 5.7" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "Matrix([[x**2 + x, x + 1], [x - 1, 1]])\n", + "B = \n", + "Matrix([[x**2 - 1, x + 2], [x**2 - 2*x + 3, x]])\n", + "det A = x + 1\n", + "det B = -6\n", + "Thus, A is not invertible over K whereas B is invertible\n", + "adj A = Matrix([[(x + 1)*((x - 1)/(x*(x + 1)) + 1/(x*(x + 1))), -x - 1], [-x + 1, x*(x + 1)]])\n", + "adj B = Matrix([[-6*(x + 2)*(-x**2/6 + 1/6)*(x**2 - 2*x + 3)/(x**2 - 1)**2 - 6/(x**2 - 1), 6*(x + 2)*(-x**2/6 + 1/6)/(x**2 - 1)], [6*(-x**2/6 + 1/6)*(x**2 - 2*x + 3)/(x**2 - 1), x**2 - 1]])\n", + "(adj A)A = (x+1)I\n", + "(adj B)B = -6I\n", + "B inverse = Matrix([[(x + 2)*(-x**2/6 + 1/6)*(x**2 - 2*x + 3)/(x**2 - 1)**2 + 1/(x**2 - 1), -(x + 2)*(-x**2/6 + 1/6)/(x**2 - 1)], [-(-x**2/6 + 1/6)*(x**2 - 2*x + 3)/(x**2 - 1), -x**2/6 + 1/6]])\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "import numpy as np\n", + "\n", + "x = sp.Symbol(\"x\")\n", + "A = sp.Matrix(([x**2+x, x+1],[x-1, 1]))\n", + "B = sp.Matrix(([x**2-1, x+2],[x**2-2*x+3, x]))\n", + "print 'A = \\n',A\n", + "print 'B = \\n',B\n", + "print 'det A = ',A.det()\n", + "print 'det B = ',B.det()\n", + "print 'Thus, A is not invertible over K whereas B is invertible'\n", + "\n", + "print 'adj A = ',(A**-1)*A.det()\n", + "print 'adj B = ',(B**-1)*B.det()\n", + "print '(adj A)A = (x+1)I'\n", + "print '(adj B)B = -6I'\n", + "print 'B inverse = ',B**-1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 161 Example 5.8" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[1 2]\n", + " [3 4]]\n", + "det A = Determinant of A is: -2.0\n", + "Adjoint of A is: [[-2. -0. ]\n", + " [-0. -0.5]]\n", + "Thus, A is not invertible as a matrix over the ring of integers.\n", + "But, A can be regarded as a matrix over field of rational numbers.\n", + "Then, A is invertible and Inverse of A is: [[-2. 1. ]\n", + " [ 1.5 -0.5]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "A = np.array([[1, 2],[3, 4]])\n", + "print 'A = \\n',A\n", + "d = np.linalg.det(A)#\n", + "print 'det A = ','Determinant of A is:',d\n", + "\n", + "\n", + "ad = (d* np.identity(2)) / A\n", + "print 'Adjoint of A is:',ad\n", + "\n", + "\n", + "print 'Thus, A is not invertible as a matrix over the ring of integers.'\n", + "print 'But, A can be regarded as a matrix over field of rational numbers.'\n", + "In = np.linalg.inv(A)#\n", + "#The A inverse matrix given in book has a wrong entry of 1/2. It should be -1/2.\n", + "print 'Then, A is invertible and Inverse of A is:',In\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter6_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter6_1.ipynb new file mode 100644 index 00000000..9ad1cbe2 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter6_1.ipynb @@ -0,0 +1,503 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6 - Elementary canonical forms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 184 Example 6.1" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Standard ordered matrix for Linear operator T on R**2 is:\n", + "A = \n", + "Matrix([[0, -1], [1, 0]])\n", + "The characteristic polynomial for T or A is: Matrix([[x, 1], [-1, x]])\n", + "Since this polynomial has no real roots,T has no characteristic values.\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "print 'Standard ordered matrix for Linear operator T on R**2 is:'\n", + "A = sp.Matrix(([0, -1],[1 ,0]))\n", + "print 'A = \\n',A\n", + "print 'The characteristic polynomial for T or A is:',\n", + "x = sp.Symbol(\"x\")\n", + "p = (x*sp.eye(2)-A)\n", + "print p\n", + "print 'Since this polynomial has no real roots,T has no characteristic values.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 184 Example 6.2" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "Matrix([[3, 1, -1], [2, 2, -1], [2, 2, 0]])\n", + "Characteristic polynomial for A is: x**3 - 5*x**2 + 8*x - 4\n", + "or\n", + "(x-1)(x-2)**2\n", + "The characteristic values of A are:\n", + "[1, 2]\n", + "Now, A-I = \n", + "Matrix([[2, 1, -1], [2, 1, -1], [2, 2, -1]])\n", + "rank of A - I= 2\n", + "So, nullity of T-I = 1\n", + "The vector that spans the null space of T-I = [1, 0, 2]\n", + "Now,A-2I = \n", + "Matrix([[1, 1, -1], [2, 0, -1], [2, 2, -2]])\n", + "rank of A - 2I= 2\n", + "T*alpha = 2*alpha if alpha is a scalar multiple of a2\n", + "a2 = [1, 1, 2]\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "A = sp.Matrix(([3, 1, -1],[ 2, 2, -1],[2, 2, 0]))\n", + "print 'A = \\n',A\n", + "print 'Characteristic polynomial for A is:',\n", + "x=sp.Symbol('x')\n", + "p = A.charpoly(x)#\n", + "print p.as_expr()\n", + "print 'or'\n", + "print '(x-1)(x-2)**2'\n", + "\n", + "r = sp.solve(p.as_expr())#\n", + "[m,n] = A.shape\n", + "print 'The characteristic values of A are:'\n", + "print r #print round(r)\n", + "B = A-sp.eye(m)\n", + "print 'Now, A-I = \\n',B\n", + "\n", + "print 'rank of A - I= ',B.rank()\n", + "print 'So, nullity of T-I = 1'\n", + "a1 = [1 ,0 ,2]#\n", + "print 'The vector that spans the null space of T-I = ',a1\n", + "B = A-2*sp.eye(m)\n", + "print 'Now,A-2I = \\n',B\n", + "print 'rank of A - 2I= ',B.rank()\n", + "print 'T*alpha = 2*alpha if alpha is a scalar multiple of a2'\n", + "a2 = [1 ,1 ,2]\n", + "print 'a2 = ',a2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 187 Example 6.3" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Standard ordered matrix for Linear operator T on R**3 is:\n", + "A = \n", + "Matrix([[5, -6, -6], [-1, 4, 2], [3, -6, -4]])\n", + "xI - A = \n", + "Matrix([[x - 5, 6, 6], [1, x - 4, -2], [-3, 6, x + 4]])\n", + "Applying row and column transformations:\n", + "C2 = C2 - C3\n", + "=>\n", + "Matrix([[x - 5, 0, 6], [1, x - 2, -2], [-3, -x + 2, x + 4]])\n", + "Taking (x-2) common from C2\n", + "=>\n", + " * x - 2\n", + "Matrix([[x - 5, 0, 6], [1, 1, -2], [-3, (-x + 2)/(x - 2), x + 4]])\n", + "R3 = R3 + R2\n", + "=>\n", + " * x - 2\n", + "Matrix([[x - 5, 0, 6], [1, 1, -2], [-2, (-x + 2)/(x - 2) + 1, x + 2]])\n", + "=>\n", + " * x - 2\n", + "Matrix([[x - 5, 6], [-2, x + 2]])\n", + "=>\n", + " * x - 2\n", + "x**2 - 3*x + 2\n", + "This is the characteristic polynomial\n", + "Now, A - I = Matrix([[4, -6, -6], [-1, 3, 2], [3, -6, -5]])\n", + "And, A- 2I = Matrix([[3, -6, -6], [-1, 2, 2], [3, -6, -6]])\n", + "rank(A-I) = 2\n", + "rank(A-2I) = 2\n", + "W1,W2 be the spaces of characteristic vectors associated with values 1,2\n", + "So by theorem 2, T is diagonalizable\n", + "Null space of (T- I) i.e basis of W1 is spanned by a1 = [[ 3 -1 3]]\n", + "Null space of (T- 2I) i.e. basis of W2 is spanned by vectors x1,x2,x3 such that x1 = 2x1 + 2x3\n", + "One example :\n", + "a2 = [[2 1 0]]\n", + "a3 = [[2 0 1]]\n", + "The diagonal matrix is:\n", + "D = [[1 0 0]\n", + " [0 2 0]\n", + " [0 0 2]]\n", + "The standard basis matrix is denoted as:\n", + "P = [[ 3 2 2]\n", + " [-1 1 0]\n", + " [ 3 0 1]]\n", + "AP = Matrix([[3, 4, 4], [-1, 2, 0], [3, 0, 2]])\n", + "PD = [[3 0 0]\n", + " [0 2 0]\n", + " [0 0 2]]\n", + "That is, AP = PD\n", + "=> inverse(P)*A*P = D\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "import numpy as np\n", + "print 'Standard ordered matrix for Linear operator T on R**3 is:'\n", + "A = sp.Matrix(([5, -6, -6],[ -1, 4, 2],[ 3, -6, -4]))\n", + "print 'A = \\n',A\n", + "print 'xI - A = '\n", + "B = sp.eye(3)\n", + "x = sp.Symbol('x')\n", + "P = x*B - A#\n", + "print P\n", + "\n", + "print 'Applying row and column transformations:'\n", + "print 'C2 = C2 - C3'\n", + "P[:,1] = P[:,1] - P[:,2]\n", + "print '=>'\n", + "print P\n", + "print 'Taking (x-2) common from C2'\n", + "c = x-2#\n", + "P[:,1] = P[:,1] / (x-2)\n", + "print '=>'\n", + "print ' * ', c\n", + "print P\n", + "print 'R3 = R3 + R2'\n", + "P[2,:] = P[2,:] + P[1,:]\n", + "print '=>'\n", + "print ' * ', c\n", + "print P\n", + "P = sp.Matrix(([P[0,0], P[0,2]],[P[2,0], P[2,2]]))\n", + "print '=>'\n", + "print ' * ', c\n", + "print P\n", + "print '=>'\n", + "print ' * ',c\n", + "print P.det()\n", + "print 'This is the characteristic polynomial'\n", + "\n", + "print 'Now, A - I = ',A-B\n", + "print 'And, A- 2I = ',A-2*B\n", + "print 'rank(A-I) = ',np.rank(A-B)\n", + "\n", + "print 'rank(A-2I) = ',np.rank(A-2*B)\n", + "print 'W1,W2 be the spaces of characteristic vectors associated with values 1,2'\n", + "print 'So by theorem 2, T is diagonalizable'\n", + "a1 = np.array([[3, -1 ,3]])\n", + "a2 = np.array([[2, 1, 0]])\n", + "a3 = np.array([[2, 0, 1]])\n", + "print 'Null space of (T- I) i.e basis of W1 is spanned by a1 = ',a1\n", + "print 'Null space of (T- 2I) i.e. basis of W2 is spanned by vectors x1,x2,x3 such that x1 = 2x1 + 2x3'\n", + "print 'One example :'\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print 'The diagonal matrix is:'\n", + "D = np.array([[1 ,0 ,0 ],[0, 2, 0],[0, 0, 2]])\n", + "print 'D = ',D\n", + "print 'The standard basis matrix is denoted as:'\n", + "P = np.transpose(np.vstack([a1,a2,a3]))\n", + "print 'P = ',P\n", + "print 'AP = ',A*P\n", + "print 'PD = ',P*D\n", + "print 'That is, AP = PD'\n", + "print '=> inverse(P)*A*P = D'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 193 Example 6.4" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[ 5 -6 -6]\n", + " [-1 4 2]\n", + " [ 3 -6 -4]]\n", + "Characteristic polynomial of A is:\n", + "f = (x-1)(x-2)**2\n", + "i.e., f = (x - 2)**2*(x - 1)\n", + "(A-I)(A-2I) = Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n", + "Since, (A-I)(A-2I) = 0. So, Minimal polynomial for above is:\n", + "p = (x - 2)*(x - 1)\n", + "---------------------------------------\n", + "A = \n", + "[[ 3 1 -1]\n", + " [ 2 2 -1]\n", + " [ 2 2 0]]\n", + "Characteristic polynomial of A is:\n", + "f = (x-1)(x-2)**2\n", + "i.e., f = (x - 2)**2*(x - 1)\n", + "(A-I)(A-2I) = Matrix([[2, 0, -1], [2, 0, -1], [4, 0, -2]])\n", + "Since, (A-I)(A-2I) is not equal to 0. T is not diagonalizable. So, Minimal polynomial cannot be p.\n", + "---------------------------------------\n", + "A = \n", + "[[ 0 -1]\n", + " [ 1 0]]\n", + "Characteristic polynomial of A is:\n", + "f = x**2 + 1\n", + "A**2 + I = Matrix([[1, 1], [1, 1]])\n", + "Since, A**2 + I = 0, so minimal polynomial is\n", + "p = x**2 + 1\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "\n", + "x = sp.Symbol(\"x\")\n", + "A = np.array([[5, -6, -6],[ -1, 4 ,2],[ 3, -6, -4]]) #Matrix given in Example 3\n", + "print 'A = \\n',A\n", + "f = (x-1)*(x-2)**2# \n", + "print 'Characteristic polynomial of A is:'\n", + "print 'f = (x-1)(x-2)**2'\n", + "print 'i.e., f = ',f\n", + "p = (x-1)*(x-2)#\n", + "print '(A-I)(A-2I) = ',(A-sp.eye(3))*(A-2 * sp.eye(3))\n", + "print 'Since, (A-I)(A-2I) = 0. So, Minimal polynomial for above is:'\n", + "print 'p = ',p\n", + "print '---------------------------------------'\n", + "\n", + "A = np.array([[3, 1 ,-1],[ 2, 2 ,-1],[2, 2, 0]]) #Matrix given in Example 2\n", + "print 'A = \\n',A\n", + "f = (x-1)*(x-2)**2# \n", + "print 'Characteristic polynomial of A is:'\n", + "print 'f = (x-1)(x-2)**2'\n", + "print 'i.e., f = ',f\n", + "print '(A-I)(A-2I) = ',(A-sp.eye(3))*(A-2 * sp.eye(3))\n", + "print 'Since, (A-I)(A-2I) is not equal to 0. T is not diagonalizable. So, Minimal polynomial cannot be p.'\n", + "print '---------------------------------------'\n", + "A = np.array([[0, -1],[1, 0]])\n", + "print 'A = \\n',A\n", + "f = x**2 + 1#\n", + "print 'Characteristic polynomial of A is:'\n", + "print 'f = ',f\n", + "print 'A**2 + I = ',A**2 + sp.eye(2)\n", + "print 'Since, A**2 + I = 0, so minimal polynomial is'\n", + "p = x**2 + 1\n", + "print 'p = ',p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 197 Example 6.5" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[0 1 0 1]\n", + " [1 0 1 0]\n", + " [0 1 0 1]\n", + " [1 0 1 0]]\n", + "Computing powers on A:\n", + "A**2 = \n", + "[[0 1 0 1]\n", + " [1 0 1 0]\n", + " [0 1 0 1]\n", + " [1 0 1 0]]\n", + "A**3 = \n", + "[[0 1 0 1]\n", + " [1 0 1 0]\n", + " [0 1 0 1]\n", + " [1 0 1 0]]\n", + "if p = x**3 - 4x, then\n", + "p(A) = [[ 0 -3 0 -3]\n", + " [-3 0 -3 0]\n", + " [ 0 -3 0 -3]\n", + " [-3 0 -3 0]]\n", + "Minimal polynomial for A is: x**3 - 4*x\n", + "Characteristic values for A are: [-2, 0, 2]\n", + "Rank(A) = 2\n", + "So, from theorem 2, characteristic polynomial for A is: x**4 - 4*x**2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "A = np.array([[0, 1, 0, 1],[1, 0 ,1 ,0],[0, 1, 0, 1],[1, 0, 1, 0]])\n", + "print 'A = \\n',A\n", + "print 'Computing powers on A:'\n", + "print 'A**2 = \\n',A*A\n", + "print 'A**3 = \\n',A*A*A\n", + "def p(x):\n", + " pp = x**3 - 4*x\n", + " return pp\n", + "print 'if p = x**3 - 4x, then'\n", + "print 'p(A) = ',p(A)\n", + "x = sp.Symbol(\"x\")\n", + "f = x**3 - 4*x\n", + "print 'Minimal polynomial for A is: ',f\n", + "print 'Characteristic values for A are:',sp.solve(f,x)\n", + "print 'Rank(A) = ',np.rank(A)\n", + "print 'So, from theorem 2, characteristic polynomial for A is:',sp.Matrix(A).charpoly(x).as_expr()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 210 Example 6.12" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[ 9. 1. 3.]\n", + " [ 10. 1. 3.]\n", + " [ 10. 5. 1.]]\n", + "A transpose is:\n", + "A' = \n", + "[[ 9. 10. 10.]\n", + " [ 1. 1. 5.]\n", + " [ 3. 3. 1.]]\n", + "Since, A' is not equal to A, A is not a symmetric matrix.\n", + "Since, A' is not equal to -A, A is not a skew-symmetric matrix.\n", + "A can be expressed as sum of A1 and A2\n", + "i.e., A = A1 + A2\n", + "A1 = \n", + "[[ 9. 5.5 6.5]\n", + " [ 5.5 1. 4. ]\n", + " [ 6.5 4. 1. ]]\n", + "A2 = \n", + "[[ 0. -4.5 -3.5]\n", + " [ 4.5 0. -1. ]\n", + " [ 3.5 1. 0. ]]\n", + "A1 + A2 = \n", + "[[ 9. 1. 3.]\n", + " [ 10. 1. 3.]\n", + " [ 10. 5. 1.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "A = np.random.rand(3,3)\n", + "for i in range(0,3):\n", + " for j in range(0,3):\n", + " A[i,j]=round(A[i,j]*10)\n", + " \n", + "print 'A = \\n',A\n", + "print 'A transpose is:\\n',\n", + "Adash=np.transpose(A)\n", + "print \"A' = \\n\",Adash\n", + "if np.equal(Adash,A).all():\n", + " print \"Since, A' = A, A is a symmetric matrix.\"\n", + "else:\n", + " print \"Since, A' is not equal to A, A is not a symmetric matrix.\"\n", + "\n", + "if np.equal(Adash,-A).all():\n", + " print \"Since, A' = -A, A is a skew-symmetric matrix.\"\n", + "else:\n", + " print \"Since, A' is not equal to -A, A is not a skew-symmetric matrix.\"\n", + "\n", + "A1 = 1./2*(A + Adash)\n", + "A2 = 1./2*(A - Adash)\n", + "print 'A can be expressed as sum of A1 and A2'\n", + "print 'i.e., A = A1 + A2'\n", + "print 'A1 = \\n',A1\n", + "print 'A2 = \\n',A2\n", + "print 'A1 + A2 = \\n',A1 + A2" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter7_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter7_1.ipynb new file mode 100644 index 00000000..bd958b35 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter7_1.ipynb @@ -0,0 +1,239 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7 - The rational and jordan forms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 239 Example 7.3" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "Matrix([[5, -6, -6], [-1, 4, 2], [3, -6, -4]])\n", + "Characteristic polynomial for linear operator T on R**3 will be:\n", + "f = x**3 - 5*x**2 + 8*x - 4\n", + "or\n", + "(x-1)(x-2)**2\n", + "The minimal polynomial for T is:\n", + "p = (x - 2)*(x - 1)\n", + "or\n", + "p = (x-1)(x-2)\n", + "So in cyclic decomposition of T, a1 will have p as its T-annihilator.\n", + "Another vector a2 that generate cyclic subspace of dimension 1 will have its T-annihilator as p2.\n", + "p2 = x - 2\n", + "pp2 = (x - 2)**2*(x - 1)\n", + "i.e., pp2 = f\n", + "Therefore, A is similar to B\n", + "B = \n", + "[[ 0 -2 0]\n", + " [ 1 3 0]\n", + " [ 0 0 2]]\n", + "Thus, we can see thet Matrix of T in ordered basis is B\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "A = sp.Matrix(([5, -6, -6],[-1, 4 ,2],[3, -6, -4]))\n", + "print 'A = \\n',A\n", + "x=sp.Symbol('x')\n", + "f = A.charpoly(x).as_expr()\n", + "print 'Characteristic polynomial for linear operator T on R**3 will be:'\n", + "print 'f = ',f\n", + "print 'or'\n", + "print '(x-1)(x-2)**2'\n", + "print 'The minimal polynomial for T is:'\n", + "p = (x-1)*(x-2)#\n", + "print 'p = ',p\n", + "print 'or'\n", + "print 'p = (x-1)(x-2)'\n", + "print 'So in cyclic decomposition of T, a1 will have p as its T-annihilator.'\n", + "print 'Another vector a2 that generate cyclic subspace of dimension 1 will have its T-annihilator as p2.'\n", + "p2 = x-2#\n", + "print 'p2 = ',p2\n", + "print 'pp2 = ',p*p2\n", + "print 'i.e., pp2 = f'\n", + "print 'Therefore, A is similar to B'\n", + "B = np.array([[0, -2, 0],[1, 3, 0],[0, 0 ,2]])\n", + "print 'B = \\n',B\n", + "print 'Thus, we can see thet Matrix of T in ordered basis is B'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 247 Example 7.6" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "2 0 0\n", + "a 2 0\n", + "b c -1\n", + "A = \n", + "Matrix([[2, 0, 0], [1, 2, 0], [0, 0, -1]])\n", + "Characteristic polynomial for A is:\n", + "p = x**3 - 3*x**2 + 4\n", + "In this case, minimal polynomial is same as characteristic polynomial.\n", + "-----------------------------------------\n", + "A = \n", + "Matrix([[2, 0, 0], [0, 2, 0], [0, 0, -1]])\n", + "Characteristic polynomial for A is:\n", + "p = x**3 - 3*x**2 + 4\n", + "In this case, minimal polynomial is: (x-2)(x+1)\n", + "or\n", + "(x - 2)*(x + 1)\n", + "(A-2I)(A+I) = \n", + "0 0 0\n", + "3a 0 0\n", + "ac 0 0\n", + "if a = 0, A is similar to diagonal matrix.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "print 'A = '\n", + "print '2 0 0'\n", + "print 'a 2 0'\n", + "print 'b c -1'\n", + "a = 1#\n", + "b = 0#\n", + "c = 0#\n", + "A = sp.Matrix(([2, 0, 0],[a, 2, 0],[b, c, -1]))\n", + "print 'A = \\n',A\n", + "print 'Characteristic polynomial for A is:'\n", + "x=sp.Symbol('x')\n", + "print 'p = ',A.charpoly(x).as_expr()\n", + "print 'In this case, minimal polynomial is same as characteristic polynomial.'\n", + "print '-----------------------------------------'\n", + "a = 0#\n", + "b = 0#\n", + "c = 0#\n", + "A = sp.Matrix(([2, 0, 0],[a, 2, 0],[b, c, -1]))\n", + "print 'A = \\n',A\n", + "print 'Characteristic polynomial for A is:'\n", + "x=sp.Symbol('x')\n", + "print 'p = ',A.charpoly(x).as_expr()\n", + "print 'In this case, minimal polynomial is:',\n", + "print '(x-2)(x+1)'\n", + "print 'or'\n", + "s = (x-2)*(x+1)#\n", + "print s\n", + "print '(A-2I)(A+I) = '\n", + "print '0 0 0'\n", + "print '3a 0 0'\n", + "print 'ac 0 0'\n", + "print 'if a = 0, A is similar to diagonal matrix.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 247 Example 7.7" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "2 0 0 0\n", + "1 2 0 0\n", + "0 0 2 0\n", + "0 0 a 2\n", + "Considering a = 1\n", + "Characteristic polynomial for A is:\n", + "p = x**4 - 8*x**3 + 24*x**2 - 32*x + 16\n", + "or\n", + "(x-2)**4\n", + "Minimal polynomial for A =\n", + "(x-2)**2\n", + "For a = 0 and a = 1, characteristic and minimal polynomial are same.\n", + "But for a=0, the solution space of (A - 2I) has 3 dimension whereas for a = 1, it has 2 dimension. \n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import sympy as sp\n", + "print 'A = '\n", + "print '2 0 0 0'\n", + "print '1 2 0 0'\n", + "print '0 0 2 0'\n", + "print '0 0 a 2'\n", + "print 'Considering a = 1'\n", + "A = sp.Matrix(([2, 0 ,0 ,0],[1, 2, 0, 0],[0, 0 ,2 ,0],[0, 0, 1, 2]))\n", + "x=sp.Symbol('x')\n", + "p = A.charpoly(x).as_expr()\n", + "print 'Characteristic polynomial for A is:'\n", + "print 'p = ',p\n", + "print 'or'\n", + "print '(x-2)**4'\n", + "print 'Minimal polynomial for A ='\n", + "print '(x-2)**2'\n", + "print 'For a = 0 and a = 1, characteristic and minimal polynomial are same.'\n", + "print 'But for a=0, the solution space of (A - 2I) has 3 dimension whereas for a = 1, it has 2 dimension. '" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter8_1.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter8_1.ipynb new file mode 100644 index 00000000..6f1bfe72 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter8_1.ipynb @@ -0,0 +1,561 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8 - Inner product spaces" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 271 Example 8.1" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 5\n", + "a = [[ 1. 4. 2. 8. 8.]]\n", + "b = [[ 10. 8. 3. 1. 8.]]\n", + "Then, (a|b) = \n", + "\n", + "[[ 10. 40. 20. 80. 80.]\n", + " [ 8. 32. 16. 64. 64.]\n", + " [ 3. 12. 6. 24. 24.]\n", + " [ 1. 4. 2. 8. 8.]\n", + " [ 8. 32. 16. 64. 64.]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "n=np.random.randint(2,9)\n", + "a=np.random.rand(1,n)\n", + "b=np.random.rand(1,n)\n", + "for i in range(0,n):\n", + " a[0,i]=round(a[0,i]*10)\n", + " b[0,i]=round(b[0,i]*10)\n", + "print 'n = ',n\n", + "print 'a = ',a\n", + "print 'b = ',b\n", + "print 'Then, (a|b) = \\n\\n',a*np.transpose(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 271 Example 8.2" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a = [[ 4. 3.]]\n", + "b = [[ 7. 5.]]\n", + "Then, a|b = 47.0\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "a=np.random.rand(1,2)\n", + "b=np.random.rand(1,2)\n", + "for i in range(0,2):\n", + " a[0,i]=round(a[0,i]*10)\n", + " b[0,i]=round(b[0,i]*10)\n", + "print 'a = ',a\n", + "print 'b = ',b\n", + "x1 = a[0,0]#\n", + "x2 = a[0,1]#\n", + "y1 = b[0,0]#\n", + "y2 = b[0,1]#\n", + "t = x1*y1 - x2*y1 - x1*y2 + 4*x2*y2#\n", + "print 'Then, a|b = ',t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 307 Example 8.28" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x1 and x2 are two real nos. i.e., x1**2 + x2**2 = 1\n", + "x1 = 0.383547227589\n", + "x2 = 0.923521263539\n", + "B = \n", + "[[ 0.38354723 0.92352126 0. ]\n", + " [ 0. 1. 0. ]\n", + " [ 0. 0. 1. ]]\n", + "Applying Gram-Schmidt process to B:\n", + "a1 = [ 0.38354723 0.92352126 0. ]\n", + "a2 = [-0.35421402 0.14710848 0. ]\n", + "a3 = [0 0 1]\n", + "U = \n", + "[[[ 0.38354723 0.92352126 0. ]]\n", + "\n", + " [[-0.92352126 0.38354723 0. ]]\n", + "\n", + " [[ 0. 0. 1. ]]]\n", + "M = \n", + "[[ 1. 0. 0. ]\n", + " [-2.40784236 2.60724085 0. ]\n", + " [ 0. 0. 1. ]]\n", + "inverse(M) * U = [[[ 3.83547228e-01 -4.25822963e-17 0.00000000e+00]\n", + " [ 3.54214020e-01 3.54214020e-01 0.00000000e+00]\n", + " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00]]\n", + "\n", + " [[ -9.23521264e-01 -1.76848356e-17 0.00000000e+00]\n", + " [ -8.52891524e-01 1.47108476e-01 0.00000000e+00]\n", + " [ -0.00000000e+00 0.00000000e+00 0.00000000e+00]]\n", + "\n", + " [[ 0.00000000e+00 -0.00000000e+00 0.00000000e+00]\n", + " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n", + " [ 0.00000000e+00 0.00000000e+00 1.00000000e+00]]]\n", + "So, B = inverse(M) * U\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "print 'x1 and x2 are two real nos. i.e., x1**2 + x2**2 = 1'\n", + "x1 = np.random.rand()\n", + "x2 = np.sqrt(1 - x1**2)\n", + "print 'x1 = ',x1\n", + "print 'x2 = ',x2\n", + "B = np.array([[x1, x2, 0],[0, 1, 0],[0, 0, 1]])\n", + "print 'B = \\n',B\n", + "print 'Applying Gram-Schmidt process to B:'\n", + "a1 = np.array([x1, x2, 0])\n", + "a2 = np.array([0 ,1 ,0]) - x2 * np.array([x1 ,x2 ,0])\n", + "a3 = np.array([0, 0, 1])\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "U = np.array([[a1],[a2/x1],[a3]])\n", + "print 'U = \\n',U\n", + "M = np.array([[1, 0, 0],[-x2/x1, 1/x1, 0],[0, 0, 1]])\n", + "print 'M = \\n',M\n", + "print 'inverse(M) * U = ',np.linalg.inv(M) * U\n", + "print 'So, B = inverse(M) * U'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 278 Example 8.9" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(x,y) = [[ 5. 3.]]\n", + "(-y,x) = [-3.0, 5.0]\n", + "Inner product of these vectors is:\n", + "(x,y)|(-y,x) = 0.0\n", + "So, these are orthogonal.\n", + "------------------------------------------\n", + "If inner product is defined as:\n", + "(x1,x2)|(y1,y2) = x1y1- x2y1 - x1y2 + 4x2y2\n", + "Then, (x,y)|(-y,x) = -x*y+y**2-x**2+4*x*y = 0 if,\n", + "y = 1/2(-3 + sqrt(13))*x\n", + "or\n", + "y = 1/2(-3 - sqrt(13))*x\n", + "Hence,\n", + "[[ 5. 3.]]\n", + "is orthogonal to\n", + "[-3.0, 5.0]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#a = round(rand(1,2) * 10)#\n", + "a=np.random.rand(1,2)\n", + "for j in [0,1]:\n", + " a[0,j]=round(a[0,j]*10)\n", + "\n", + "x = a[0,0]\n", + "y = a[0,1]\n", + "b = [-y, x]#\n", + "print '(x,y) = ',a\n", + "print '(-y,x) = ',b\n", + "print 'Inner product of these vectors is:'\n", + "t = -x*y + y*x#\n", + "print '(x,y)|(-y,x) = ',t\n", + "\n", + "print 'So, these are orthogonal.'\n", + "print '------------------------------------------'\n", + "print 'If inner product is defined as:'\n", + "print '(x1,x2)|(y1,y2) = x1y1- x2y1 - x1y2 + 4x2y2'\n", + "print 'Then, (x,y)|(-y,x) = -x*y+y**2-x**2+4*x*y = 0 if,'\n", + "print 'y = 1/2(-3 + sqrt(13))*x'\n", + "print 'or'\n", + "print 'y = 1/2(-3 - sqrt(13))*x'\n", + "print 'Hence,'\n", + "if y == (1./2*(-3 + np.sqrt(13))*x) or (1./2*(-3 - np.sqrt(13))*x):\n", + " print a\n", + " print 'is orthogonal to'\n", + " print b\n", + "else:\n", + " print a\n", + " print 'is not orthogonal to'\n", + " print b\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 282 Example 8.12" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "b1 = [3 0 4]\n", + "b2 = [-1 0 7]\n", + "b3 = [ 2 9 11]\n", + "Applying the Gram-Schmidt process to b1,b2,b3:\n", + "a1 = [3 0 4]\n", + "a2 = [2 0 3]\n", + "a3 = [2 9 4]\n", + "{a1,a2,a3} are mutually orthogonal and hence forms orthogonal basis for R**3\n", + "Any arbitrary vector {x1,x2,x3} in R**3 can be expressed as:\n", + "y = {x1,x2,x3} = (3*x1 + 4*x3)/25*a1 + (-4*x1 + 3*x3)/25*a2 + x2/9*a3\n", + "x1 = 1\n", + "x2 = 2\n", + "x3 = 3\n", + "y = [0 0 0]\n", + "i.e. y = [x1 x2 x3], according to above equation.\n", + "Hence, we get the orthonormal basis as:\n", + ", [ 0.6 0. 0.8]\n", + ", [ 0.4 0. 0.6]\n", + "[ 0.22222222 1. 0.44444444]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "b1 = np.array([3, 0, 4])\n", + "b2 = np.array([-1 ,0 ,7])\n", + "b3 = np.array([2 ,9 ,11])\n", + "print 'b1 = ',b1\n", + "print 'b2 = ',b2\n", + "print 'b3 = ',b3\n", + "print 'Applying the Gram-Schmidt process to b1,b2,b3:'\n", + "a1 = b1\n", + "print 'a1 = ',a1\n", + "a2 = b2-(np.transpose((b2*np.transpose(b1)))/25*b1)\n", + "print 'a2 = ',a2\n", + "a3 = b3-(np.transpose(b3*np.transpose(b1))/25*b1) - (np.transpose(b3*np.transpose(a2))/25*a2)\n", + "print 'a3 = ',a3\n", + "print '{a1,a2,a3} are mutually orthogonal and hence forms orthogonal basis for R**3'\n", + "print 'Any arbitrary vector {x1,x2,x3} in R**3 can be expressed as:'\n", + "print 'y = {x1,x2,x3} = (3*x1 + 4*x3)/25*a1 + (-4*x1 + 3*x3)/25*a2 + x2/9*a3'\n", + "x1 = 1#\n", + "x2 = 2#\n", + "x3 = 3#\n", + "y = (3*x1 + 4*x3)/25*a1 + (-4*x1 + 3*x3)/25*a2 + x2/9*a3#\n", + "print 'x1 = ',x1\n", + "print 'x2 = ',x2\n", + "print 'x3 = ',x3\n", + "print 'y = ',y\n", + "print 'i.e. y = [x1 x2 x3], according to above equation.'\n", + "print 'Hence, we get the orthonormal basis as:'\n", + "\n", + "print ',',1./5*a1\n", + "print ',',1./5*a2\n", + "print 1/9.*a3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 283 Example 8.13" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = [[ 1.25598176 1.81258697]\n", + " [ 0.6193707 0.80341686]]\n", + "b1 = [ 1.25598176 1.81258697]\n", + "b2 = [ 0.6193707 0.80341686]\n", + "Applying the orthogonalization process to b1,b2:\n", + "[1.255981755902444, 1.8125869670307564] a1 = \n", + "[] a2 = \n", + "a2 is not equal to zero if and only if b1 and b2 are linearly independent.\n", + "That is, if determinant of A is non-zero.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "A = np.random.rand(2,2)\n", + "A[0,:] = A[0,:] + 1# #so b1 is not equal to zero\n", + "a = A[0,0]\n", + "b = A[0,1]\n", + "c = A[1,0]\n", + "d = A[1,1]\n", + "b1 = A[0,:]\n", + "b2 = A[1,:]\n", + "print 'A = ',A\n", + "print 'b1 = ',b1\n", + "print 'b2 = ',b2\n", + "print 'Applying the orthogonalization process to b1,b2:'\n", + "\n", + "a1 = [a, b]\n", + "a2 = (np.linalg.det(A)/(a**2 + b**2))*[-np.transpose(b), np.transpose(a)]\n", + "print a1,'a1 = '\n", + "print a2,'a2 = '\n", + "print 'a2 is not equal to zero if and only if b1 and b2 are linearly independent.'\n", + "print 'That is, if determinant of A is non-zero.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 286 Example 8.14" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "v = [-10 2 8]\n", + "u = [ 3 12 -1]\n", + "Orthogonal projection of v1 on subspace W spanned by v2 is given by:\n", + "[-3 0 1]\n", + "Orthogonal projection of R**3 on W is the linear transformation E given by:\n", + "(x1,x2,x3) -> (3*x1 + 12*x2 - x3)/%d * (3 12 -1) 154\n", + "Rank(E) = 1\n", + "Nullity(E) = 2\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "v = np.array([-10 ,2 ,8])\n", + "u = np.array([3, 12, -1])\n", + "print 'v = ',v\n", + "print 'u = ',u\n", + "print 'Orthogonal projection of v1 on subspace W spanned by v2 is given by:'\n", + "a = (np.transpose(u*np.transpose(v)))/(u[0]**2 + u[1]**2 + u[2]**2) * u\n", + "print a\n", + "print 'Orthogonal projection of R**3 on W is the linear transformation E given by:'\n", + "print '(x1,x2,x3) -> (3*x1 + 12*x2 - x3)/%d * (3 12 -1)',(u[0]**2 + u[1]**2 + u[2]**2)\n", + "print 'Rank(E) = 1'\n", + "print 'Nullity(E) = 2'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 288 Example 8.15" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f = (sqrt(2)*cos(2*pi*t) + sqrt(2)*sin(4*pi*t))**2\n", + "Integration (f dt) in limits 0 to 1 = 2.0\n" + ] + } + ], + "source": [ + "from sympy.mpmath import quad,cos,sin,pi,sqrt\n", + "\n", + "#part c\n", + "print 'f = (sqrt(2)*cos(2*pi*t) + sqrt(2)*sin(4*pi*t))**2'\n", + "print 'Integration (f dt) in limits 0 to 1 = ',\n", + "x0 = 0#\n", + "x1 = 1#\n", + "X = quad(lambda t:(sqrt(2)*cos(2*pi*t) + sqrt(2)*sin(4*pi*t))**2,[x0,x1])\n", + "print X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page 294 Example 8.17" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Matrix of projection E in orthonormal basis is:\n", + "A = 1/154 * [[ 9 36 -3]\n", + " [ 36 144 -12]\n", + " [ -3 -12 1]]\n", + "A* = [[ 9 36 -3]\n", + " [ 36 144 -12]\n", + " [ -3 -12 1]]\n", + "Since, E = E* and A = A*, then A is also the matrix of E*\n", + "a1 = [154, 0, 0]\n", + "a2 = [145, -36, 3]\n", + "a3 = [-36, 10, 12]\n", + "{a1,a2,a3} is the basis.\n", + "Ea1 = [9, 36, -3]\n", + "Ea2 = [0, 0, 0]\n", + "Ea3 = [0, 0, 0]\n", + "Matrix B of E in the basis is:\n", + "B = \n", + "[[-1 0 0]\n", + " [-1 0 0]\n", + " [ 0 0 0]]\n", + "B* = \n", + "[[-1 -1 0]\n", + " [ 0 0 0]\n", + " [ 0 0 0]]\n", + "Since, B is not equal to B*, B is not the matrix of E*\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "#Equation given in example 14 is used.\n", + "def transform(x,y,z):\n", + " x1 = 3*x#\n", + " x2 = 12*y#\n", + " x3 = -z#\n", + " m = [x1 ,x2, x3]\n", + " return m\n", + "\n", + "print 'Matrix of projection E in orthonormal basis is:'\n", + "t1 = transform(3,3,3)#\n", + "t2 = transform(12,12,12)#\n", + "t3 = transform(-1,-1,-1)#\n", + "A = np.vstack([t1,t2,t3])#[t1# t2# t3]#\n", + "print 'A = 1/154 * ',A\n", + "\n", + "A1 = np.transpose(np.conj(A))\n", + "print 'A* = ',A1\n", + "print 'Since, E = E* and A = A*, then A is also the matrix of E*'\n", + "a1 = [154, 0, 0]#\n", + "a2 = [145 ,-36, 3]#\n", + "a3 = [-36 ,10 ,12]#\n", + "print 'a1 = ',a1\n", + "print 'a2 = ',a2\n", + "print 'a3 = ',a3\n", + "print '{a1,a2,a3} is the basis.'\n", + "Ea1 = [9 ,36 ,-3]#\n", + "Ea2 = [0 ,0, 0]#\n", + "Ea3 = [0 ,0 ,0]#\n", + "print 'Ea1 = ',Ea1\n", + "print 'Ea2 = ',Ea2\n", + "print 'Ea3 = ',Ea3\n", + "B = np.array([[-1, 0, 0],[-1, 0 ,0],[0, 0, 0]])\n", + "print 'Matrix B of E in the basis is:'\n", + "print 'B = \\n',B\n", + "B1 = np.transpose(np.conj(B))\n", + "print 'B* = \\n',B1\n", + "print 'Since, B is not equal to B*, B is not the matrix of E*'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/InverseMatrix_1.png b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/InverseMatrix_1.png Binary files differnew file mode 100644 index 00000000..90f061e8 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/InverseMatrix_1.png diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/determinant_1.png b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/determinant_1.png Binary files differnew file mode 100644 index 00000000..6ace8492 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/determinant_1.png diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/scalorpolynomial_1.png b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/scalorpolynomial_1.png Binary files differnew file mode 100644 index 00000000..f75da6e2 --- /dev/null +++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/screenshots/scalorpolynomial_1.png |