diff options
-rw-r--r-- | sample_notebooks/MeenaChandrupatla/Chapter_2_The_Device.ipynb | 249 |
1 files changed, 249 insertions, 0 deletions
diff --git a/sample_notebooks/MeenaChandrupatla/Chapter_2_The_Device.ipynb b/sample_notebooks/MeenaChandrupatla/Chapter_2_The_Device.ipynb new file mode 100644 index 00000000..9406e5a1 --- /dev/null +++ b/sample_notebooks/MeenaChandrupatla/Chapter_2_The_Device.ipynb @@ -0,0 +1,249 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 The Device" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1,Page number 7" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of voltage safety factor= 2.56\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "import math \n", + "Vpiv=1500 # peak inverse voltage\n", + "V=415 # main supply\n", + "Vf=Vpiv/(sqrt(2)*V) # voltage safety factor\n", + "Vf=round(Vf,2)\n", + "print 'value of voltage safety factor=',Vf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2,Page number 7" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of peak inverse voltage= 683.07 volts\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "import math \n", + "Vf=2.1 # voltage safety factor \n", + "V=230 # main supply\n", + "Vpiv=sqrt(2)*Vf*V # peak inverse voltage\n", + "Vpiv=round(Vpiv,2)\n", + "print 'value of peak inverse voltage=',Vpiv,'volts'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3,Page number 8" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of capacitive current= 0.0045 Amp\n" + ] + } + ], + "source": [ + "import math \n", + "C=30*10**-12 # equivalent capacitance \n", + "diffV=150*10**6 # dv/dt value of capacitor\n", + "Ic=C*(diffV) # capacitive current\n", + "print 'value of capacitive current=',Ic,'Amp'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4,Page number 8" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of equivalent capacitance= 28.57 pico farad\n" + ] + } + ], + "source": [ + "import math \n", + "Ic=5.0 # capacitive current in milli amperes\n", + "difV=175.0 # dv/dt value in mega V/s\n", + "C=Ic/(difV)*10**3 # equivalent capacitance in pico farad\n", + "C=round(C,2)\n", + "print 'value of equivalent capacitance=',C,'pico farad'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5,Page number 8" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of dv/dt= 240000000.0 v/s\n" + ] + } + ], + "source": [ + "import math \n", + "Ic=6*10**-3 # capacitive current\n", + "C=25*10**-12 # equivalent capacitance\n", + "diffV=Ic/C # dv/dt value of capacitor\n", + "print 'value of dv/dt=',diffV,'v/s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6,Page number 9" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of dv/dt that can trigger the device= 142 V/microseconds\n" + ] + } + ], + "source": [ + "import math \n", + "Ic=5 # capacitive current in milli amperes\n", + "C=35 # equivalent capacitance in pico farad\n", + "difV=Ic*10**3/C # value of dv/dt that can trigger the device in V/ microseconds\n", + "print 'value of dv/dt that can trigger the device=',difV,'V/microseconds'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7,Page number 9" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of voltage safety factor= 2.3 v\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "import math \n", + "Vpiv=1350 # peak inverse voltage in volts\n", + "V=415 # main supply in volts\n", + "Vf=Vpiv/(sqrt(2)*V) # voltage safety factor\n", + "Vf=round(Vf,2)\n", + "print 'value of voltage safety factor=',Vf,'v'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |