summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter10_3.ipynb1289
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter11_3.ipynb1025
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_3.ipynb968
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter13_3.ipynb1139
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_3.ipynb502
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_3.ipynb482
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter16_3.ipynb936
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter17_3.ipynb877
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter18_3.ipynb804
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter19_3.ipynb1671
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_3.ipynb646
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter20_3.ipynb677
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter21_3.ipynb467
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter22_3.ipynb668
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter23_3.ipynb133
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter24_3.ipynb604
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter25_3.ipynb2522
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter26_3.ipynb472
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter2_3.ipynb125
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter6_3.ipynb1624
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter7_3.ipynb212
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter8_3.ipynb1851
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter9_3.ipynb1907
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter10_ac_load_line_3.pngbin0 -> 17473 bytes
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter18_clipping_ckt_output_3.pngbin0 -> 21213 bytes
-rw-r--r--Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter8_dc_load_line_3.pngbin0 -> 25388 bytes
-rw-r--r--sample_notebooks/AdityaR/Chapter_5-Sample_Notebook.ipynb279
27 files changed, 21880 insertions, 0 deletions
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter10_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter10_3.ipynb
new file mode 100644
index 00000000..0aa8bc1a
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter10_3.ipynb
@@ -0,0 +1,1289 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 10 : SINGLE STAGE TRANSISTOR AMPLIFIERS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Using matplotlib backend: Qt4Agg\n"
+ ]
+ }
+ ],
+ "source": [
+ "%matplotlib "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2 : page number 243-244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of the emitter capacitor = 1.42 𝜇F\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "#Variable declaration\n",
+ "f_min=2.0; #Minimum frequency of operation of amplifier, kHz\n",
+ "f_max=10.0; #Maximum frequency of operation of amplifier, kHz\n",
+ "RE=560.0; #Emitter resistor, Ω\n",
+ "\n",
+ "#Calculations\n",
+ "#X_CE(Emitter capacitor's capacitive reactance)\n",
+ "#X_CE=1/(2*pi*f_min*CE)=RE/10\n",
+ "#From the above equation.\n",
+ "CE=1/(2*pi*f_min*1000*(RE/10)); #Emitter capacitor, F,\n",
+ "\n",
+ "CE=CE*10**6; #Emitter capacitor, 𝜇F\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print('The value of the emitter capacitor = %.2f 𝜇F'%(CE));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Page number 252-253"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The operating point: VCE=8.55V and IC=2.15mA.\n",
+ "Maximum v_CE=9.62V and maximum i_C=19.25mA\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEZCAYAAAB1mUk3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVOWZ9vHfhagsCiKioCi4oROXqHEjbm3MuIK4Ni4T\nkzhvkskyZrI7zjtBzDuTmJk4YzJZJok60ajQgKiIKEbpYXBJxCURJS5xQ6MMiqi4sd3vH89pqyl7\nqeru6lPVdX0/n/rYdeqcOneXTV/9nHPu8ygiMDOz+tYv7wLMzCx/DgMzM3MYmJmZw8DMzHAYmJkZ\nDgMzM8NhYDVM0lWSLunme4yRtEFSj/9bkLRA0vntvDZF0jXZ1ztKekOSeroGs1L1z7sAsyqQV7NN\nAETEMmBITjWYAR4ZmJkZDgOrIZL2l/SApNclTQMGdLBuP0kXSXoqW/9+STuUsI9Rkm6S9KqkJyT9\nn1avHSTpHkmvSXpR0o8k9W/1+l9KWpq9/iOgpMM+xYeqssNLl0halB0+uk3S1q3WP1TS3dl+HpJ0\nVCn7MeuIw8BqgqRNgdnAr4CtgRnA6R1s8jVgMnB8RAwFzgfeLmFX04HngZHAmcA/S2rIXlsP/F22\n//HAx4AvZPUNB2YBFwHbAH8CDiv5G/zgoaqzgU8CI4DNga9n+9kBuAW4JCKGZctnZfs36zKHgdWK\nQ4H+EfHDiFgfEbOA+ztY/6+Bf4iIpwAi4pGIeK2jHUjakfRL/lsRsTYifg/8Ejgve48HI+J3kTwP\n/Bxo+av8RGBJRMzO6vt34OVufL9XRcSfIuI9oAnYL1t+LjA3Im7ParoTWJzt36zLfALZasX2wItF\ny57rYP0dgafL3McoYGVEtB5BPAd8BEDS7sBlwIHAQNK/nwda1bes6P2Kn5ejdZC8DWyRfT0GaJQ0\nMXuurI67urEvM48MrGa8BBQf89+pg/WfB3Ytcx9/BraWNLhoHy0h9FNgKbBrRGwF/AOF8wIvtVHP\njmXuvxTLgKsjYuvsMSwitoyI71dgX1ZHHAZWK+4F1kn6W0n9JZ0GHNzB+lcA35G0G4CkfSQNa2dd\nAUTEC8A9wHclbS5pX9Lhpmuy9bYE3oiItyXtCXy+1XvMBT4k6RRJm0j6MrBdGd9fqT0GvwYmSjo2\nO0k+QNJRkrYvY19mH+AwsJoQEWuB04BPA6+STu7Oanm9VePW6GzRZaRj7fMlvU469j+wvbdv9fXZ\nwM6kUcIs4B8jYkH22teBcyW9AfwnMK1VfS01XQq8QhqV3F3Ot9jO1xuvlAJrEulE9QrSYayv43/L\n1k3Ka3IbSUNJ/0D3BjYA50fEb3MpxsyszuV5Avly4NaIODO7VntQjrWYmdW1XEYGkoYAD0VEuSf4\nzMysAvI6zrgz8Ep2o7EHJf1cUnvHc83MrMLyCoP+wAHAjyPiANJ11BfmVIuZWd3L65zBC8CyiFic\nPZ8JfKt4JUl53U3SzKymRURZt0TPZWQQEcuBZZLGZYuOAR5rZ10/eugxZcqU3GvoKw9/lv48q/nR\nFXleTXQBcG12A7KnSdePm5lZDnILg0g3ATsor/2bmVmBuxbrSENDQ94l9Bn+LHuWP8/85daBXApJ\nUc31mZlVI0lELZxANjOz6uIwMDMzh4GZmTkMzMwMh4GZmeEwMDMzcmw6k/Qs8DppYpu1EdHRFIZm\nZlZBed6OYgPQEBGv5ViDmZmR72Ei5bx/MzPL5PnLOIA7JN0v6TM51mFmVvfyDIPDIk1scyLwRUmH\nt7XS1KmwdGnvFmZmVm/yvGvpS9l/V0iaDRwMLCpeb968i/nBD2DAAJgwoYELL2xg3LjitczM6ldz\nczPNzc3deo9cblQnaRDQLyJWSxoMzAemRsT8ovUiItiwAe65B5qaYOZM2HZbaGxMj9126/Xyzcyq\nWlduVJdXGOwMzCadN+gPXBsR32tjvQ/ctXT9erj77kIwbL99IRh22aVXyjczq2o1Ewal6uwW1uvX\nw8KFKRhmzYIxY1IonHkmjB3be3WamVWTuguD1tatg//+b5g+HWbPTqOElmDYaacKF2pmVkXqOgxa\nW7sWFixIwXDTTTBuXAqGM86A0aMrUKiZWRVxGLRh7Vq4885CMOy1VwqG009P5xvMzPoah0En1qyB\nO+5I5xhuvhn23bcQDCNH9thuzMxy5TAow3vvwfz5KRhuuQX23z8Fw2mnpUtXzcxqlcOgi959F267\nLQXDrbfCgQfC5Mlw6qmwzTYV372ZWY9yGPSAd96BefNSMNx2GxxySBoxnHoqbL11r5ZiZtYlDoMe\n9tZbaaTQ1JQOKX30o2nEMGkSDBuWW1lmZh2quTCQ1A9YDLwQESe38XquYdDa6tUwd24Kht/8Bo44\nIo0YJk2CoUPzrs7MrKAWw+ArwEeAIdUeBq29+SbMmZOCYcECaGhIwTBxIgwZknd1ZlbvuhIGud3C\nWtJo0u2rf5lXDV215ZZwzjlw443w/POpy3n6dNhxx3Ru4frr00jCzKxW5DYykDQD+CdgKPC1WhoZ\ntGfVqtTY1tQEixbBX/5lGjGcdBIMHpx3dWZWL7oyMshlPgNJJwHLI+JhSQ2kKTDbdPHFF7//dUND\nAw0NDZUur8u22go++cn0WLkyBcNVV8FnPwvHHZeC4YQTYNCgvCs1s76klucz+Gfgr4B1wEBgS+CG\niDivaL2aGhm059VX083zmprgd79LgdDYCMcfDwMH5l2dmfU1NXcCGUDSUfSRw0SlWLECbrghBcOD\nD6ZDSI2NaeSw+eZ5V2dmfUFuJ5AlDZO0l6RdsstFrR0jRsDnPpdunvfHP8Jhh8Fll6V7I513Xro1\nxpo1eVdpZvWmyyMDSUOBLwJnA5sBK4ABwHbAfcBPImJBt4rrgyOD9rz0Upqgp6kJlixJ/QuNjXDM\nMbDZZnlXZ2a1pFcPE0m6A7gamBMRq4peO5B0TuCRiLiiSzugvsKgtRdfTFN6NjWl0cMpp6Rg+NjH\nYNNN867OzKpdTZ4z6Ei9hkFry5bBjBnp8dRTqY+hsTE1uvXP5VowM6t2uYeBpF2Bc4CzImKvHni/\nug+D1p57LoVCU1P6+rTTUjAceSRsskne1ZlZtcglDCRtD0wmhcA+wHdJl4k+0q03xmHQkWeeKQTD\nCy+kCXoaG+Hwwx0MZvWut88ZfJZ08ngHoCl73BQRO3fpDdveh8OgBE89VQiG5cvTXM+Njekuq/18\nbZdZ3entMFgD3EvqEVicLXs6Inbp0hu2vQ+HQZmeeCKFQlNT6oI+88wUDIcc4mAwqxe9HQbDgTNJ\no4ORpJHBpyJixy69Ydv7cBh0w9KlhRHDG28UguHgg0Fl/ZiYWS3J7QRydgfSyaRgGAzMjoiLeuB9\nHQY95NFHUyhMn56m+WxsTI+PfMTBYNbX5H41UVbE7sDZEXFJB+tsDiwkNav1B2ZGxNQ21nMY9LCI\n1NTWEgzr1hWCYf/9HQxmfUFeVxNtApwEjKXVXVAj4rJOthsUEW9n298NXBARvytax2FQQRHw+98X\ngkEqBMOHP+xgMKtVeYXBrcC7wCPAhmxxdDQyKNp+EGmU8PmIuL/oNYdBL4mAhx4qBMNmmxWCYe+9\nHQxmtSSvMPhDROzbhe36AQ8AuwI/joi/b2Mdh0EOImDx4sJVSYMGFYJhr263EppZpeU1uc08ScdG\nxPxyNoqIDcD+koYAN0r6UEQ8VrxeLU1u01dIcNBB6fH976c5GKZPT/MvDB1aCIY998y7UjODKpnc\nRtKpwK9Jt8NeS5q1LCKi5KnhJf0j8FbxeQaPDKrLhg1w331ptDBjBgwfXgiGcePyrs7MWuR1mOgZ\nYBLpDqUlvZmkbYC1EfG6pIHA7cD3IuLWovUcBlVqwwa4++4UDDNnpvkYGhtTL8Nuu+VdnVl9yysM\nFgIN2WGfUrfZB/gVaTTRD5geEf/UxnoOgxqwfj0sWpQOJc2aBaNHF0YMO/fYzUnMrFR5hcF/AbsA\n84D3WpZ3dmlpie/tMKgx69bBwoVpxHDDDTB2bGHEMGZM3tWZ1Ye8wmBKW8vbaiLrwns7DGrYunWw\nYEEKhtmzYffdUzCccQbs2GM3LTGzYlXRgdyTHAZ9x9q1ad7npia46aZ0JVJLMOywQ97VmfUtvX2j\nul8AP2xr3gJJg0n3KnovIq7t0g5wGPRVa9bAb36TguHmm1NTW2NjmpNh1Ki8qzOrfb0dBvsBF5Em\ntFkCrAAGALsDQ4ArgZ9FxHvtvknn+3AY9HHvvQd33JFOPt9yS7oNRkswbLdd3tWZ1aa8zhlsARwI\njALeAZZGxOPdetPCezsM6si778Ltt6cRw9y56Y6qjY1pes8RI/Kuzqx29PbIYAQworhrWNKHgBUR\nsaJLb7zxezkM6tQ778C8eSkY5s1LczBMngynnpqa3cysfV0Jg+7MffUjYJs2lg8HLu/G+5oxcGAa\nEUybBi+9BJ/7HMyfD7vskm6LceWVaSY3M+sZ3RkZLI6IA9t5bUlE7N2tyvDIwD5o9ep0CKmpKZ2E\nPvzwdChp0iTYaqu8qzOrDr19mOjxiNij3Ney10cDVwPbkW57/YuI+GEb6zkMrF1vvglz5qRguOsu\nOOqoQjAMKfnOWGZ9T28fJnpK0oltFHEC8HQn264DvhoRewHjgS9K8j0wrSxbbgnnnAM33gjLlqVz\nCjNmpNthnHIKXHddCgwz61x3Rga7A3OBe0jzEkC6qmg8MCEinijjvW4EfhQRdxYt98jAyrZqVWps\na2pK90z6+MfTiOGkk2CLLfKuzqzyev3S0mwu43OAlvMDjwLXRcS7ZbzHWKAZ2DsiVhe95jCwblm5\nMgXD9Olw771w7LEpGE48EQYPzrs6s8qoudtRZD0KzcB3IuKmNl6PKVMKtz7y5DbWHa++mu6RNH16\nmrDnhBNSMJxwQrp6yaxWFU9uM3Xq1F49gfwm0NbGJU1uI6k/cAswLyLavBTVIwOrlBUrCsHwwANp\npDB5Mhx3HAwYkHd1Zt1TUyMDSVcDr0TEVztYx2FgFbd8ebrddlMTPPwwTJiQRgzHHgubb553dWbl\nq5kwkHQYsBB4hDS6COCiiLitaD2HgfWql15KE/Q0NcGSJXDyySkYPv5x2GyzvKszK03NhEGpHAaW\npxdfLATD0qWpf6GxEY45BjbdNO/qzNrnMDCrkGXL0lzPTU3w5JPpHkmNjXD00dC/f97VmW3MYWDW\nC557LjW3NTXBM8+keyhNngxHHulgsOrgMDDrZc88UwiGZcvSPAyNjXDEEbDJJnlXZ/XKYWCWoz/9\nKYVCUxO8/HKa0rOxEQ47DPp158YvZmVyGJhViSeeKIwYXnmlEAzjxzsYrPIcBmZVaOnSQjC8/jqc\neWYKhkMOAZX1z9WsNA4Dsyr36KMpGKZPh7ffLgTDQQc5GKznOAzMakREamprakrBsHZtCoXGRjjg\nAAeDdU9NhYGkK4AJwPKI2LeddRwG1udFwB/+kEKhqSktawmGD3/YwWDlq7UwOBxYDVztMDBLIuCh\nhwojhk03LQTDPvs4GKw0NRUGAJLGAHMcBmYfFAGLFxcuVx00qBAMe+2Vd3VWzRwGZn1URJqDoSUY\nhgxJoTB5MuzpCWOtSFfCoOqb5y+++OL3v/bkNlavpHQp6iGHwL/8C9x3XzqMdMwxMHx4YcQwblze\nlVoeiie36QqPDMxq2IYNcM89abQwYwaMHJlC4cwzYbfd8q7O8lKLh4nGksJgn3ZedxiYlWj9eli0\nKAXDrFmwww6FYNhll7yrs95UU2Eg6TqgARgOLAemRMRVRes4DMy6YP16WLiwEAxjxxaCYcyYvKuz\nSqupMCiFw8Cs+9atg+bmFAyzZ8OuuxaCYccd867OKsFhYGYdWrsWFixIwXDjjbDHHikYzjgjHVay\nvsFhYGYlW7MG7rwzBcNNN6XehcmT05wMo0blXZ11h8PAzLpkzRq4444UDHPmwL77phHD6afDdtvl\nXZ2Vy2FgZt323ntw++0pGObOTTfOa2xM03uOGJF3dVYKh4GZ9ah33ikEw623pltttwTD8OF5V2ft\ncRiYWcW8/TbMm5eC4fbb4dBDUzCccgpsvXXe1VlrDgMz6xVvvZVGCk1NMH9+mud58mSYNAm22irv\n6sxhYGa9bvVquOWWFAx33glHHplGDCefDEOH5l1dfepKGOQ2Nbek4yX9UdITkr6VVx31pLs3srIC\nf5YFW2wBZ50FN9wAy5alr2fOhJ12SiOFa6+FN9/s+D38eeYvlzCQ1A/4D+A4YC/gbEm+EW+F+R9c\nz/Fn2bYhQ+Dcc1PfwvPPp2a2adNg9Oh00nnatDSSKObPM395jQwOBp6MiOciYi0wDZiUUy1mVgFD\nh8InPpH6Fp59Nh02uvrq1Ol8xhnpsNJbb+VdpbXIKwx2AJa1ev5CtszM+qBhw+BTn0onnZ95Bk44\nAa64ArbfPp14fvbZvCu0XE4gSzodOC4iPps9/yvg4Ii4oGg9nz02M+uCWpnp7EVgp1bPR2fLNlLu\nN2NmZl2T12Gi+4HdJI2RtBlwFnBzTrWYmdW9XEYGEbFe0peA+aRAuiIiluZRi5mZVXnTmZmZ9Y7c\nms464oa0niXpWUm/l/SQpN/lXU+tkXSFpOWS/tBq2TBJ8yU9Lul2Se61LVE7n+cUSS9IejB7HJ9n\njbVC0mhJd0l6VNIjki7Ilpf981l1YeCGtIrYADRExP4RcXDexVQTSUdJWtbJaleRfh5buxD4TUTs\nAdwF/H0b7/2MpI+1s9+rJF2SfX24pHo6TNrW5wlwWUQckD1u6+2iatQ64KsRsRcwHvhi9vuy05/P\nYlUXBrghrRJEdf6/rhYdHiuNiEXAa0WLJwG/yr7+FXBKl3cesSgi/qKr29eadj5PSD+nVoaIeDki\nHs6+Xg0sJV2dWfbPZzX+gnBDWs8L4A5J90v6TN7F9BHbRsRySP8ggW1zrqcv+JKkhyX90ofdyidp\nLLAfcB+wXbk/n9UYBtbzDouIA4ATScPIw/MuqCskfUvSU5LekLREUrt/7UgaIOkH2fmS1yQtlLR5\nCfvYU9KCbJtHJE1s9fKW2fHs14Ghkqa0ei0kfSLb3wpJF5XxfW10qCo7vPS17DzPa5Kuzy7Bbnl9\nQnb+5zVJiyTtU+q+qthPgF0iYj/gZeCynOupKZK2AGYCX85GCMWj3U6vFKrGMCipIc1KFxEvZf9d\nAcwmHYqrRU+Rgm0IMBX4taT2Zuj9AbA/cCiwNfBN0rmTdknqD8wBbgNGABcA10raPVtlA/CJiBgK\nPAd8QdLJkkYCq0i/0M4FtgeGU96Itvgf65nAscDOwIeBT2U17g9cAXwm+77+E7hZ0qZl7KvqRMSK\nVver/wVwUJ711JLs53YmcE1E3JQtXt7ybyP7+fzfzt6nGsPADWk9SNKg7K8GJA0m/YJZkm9VXRMR\ns1oNfWcAT9JGsEkS8GngguyYakTEfdk5qI6MBwZHxKURsS4iFgC3AGeTjme/HRGPZuvOAJ4AjgI+\nSfqDZU5E3J3t5x8p4a+xDlweEcsjYhUpoPbLln8G+FlELM6+r2uA90ihV0tEq3ME2S+sFqdRoz+j\nObkSeCwiLm+17GayPyBIP583FW9ULK/bUbTLDWk9bjtgdnafp/7AtRExP+eaukTSecBXgLHZosHA\nNm2sug2wOfB0mbsYxcbnqyCNAD4B/A2wjaR3gTWkX/RbAPsCvyUF0ystG0XE25JeLXP/rS1v9fXb\nWW0AY4DzJP1t9lzApqTRSE2QdB3QAAyX9DwwBTha0n6k0dezwOdyK7CGSDqMNBp9RNJDpJ/Li4BL\ngSZJ55N+hhs7e6+qCwOA7LKyPfKuoy+IiGco/FVZsyTtBPwcODoi7s2WPUTbV6C8ArwL7Ao8UsZu\n/gzsWLRsJ9Lw+xJJTwE/BH4aEWsl/RswPCLOk/Rt4P1LoCUNIh0q6mnLgH+KiO9W4L17RUSc08bi\nq3q9kD4gIu4GNmnn5Y+X817VeJjIrC2DSX81viKpn6RPA3u3tWJ27PlK4DJJo7L1Dy3huPpvgbcl\nfVNSf0kNwATg+uz1LYDXsiA4GGj9S20mMEHSR7P9XEJlLpX8BfA32f6RNFjSidkhQLMucxhYTcgO\nFf6AdNncy6SGxEUtr2eNW2+02uTrpFHB/cCrwPfo5Oc9O9Y/kXTV1Suk5sdPRMST2SpfAL6TXU30\nf4HprbZ9DPgiKTj+nO3zha5+ux3U+ADpvMF/SFpJOm/xyS7ux+x9Fb03kaTRwNWk49YbgF9ExA8l\nDSP9QxpDOj7YGBGvV6wQMzPrUKXDYCQwMiIezq5oeYDUGfdp4NWI+L7SvYeGRcSFFSvEzMw6VNHD\nRD3ZKm1mZpXTa7ewzlqlm0kn/ZZFxLBWr62MiK17pRAzM/uAXrm0tLhVWh+c27jNRGpjPTMzK0G5\n0wZX/Gqi7rZKR4QfEUyZMiX3Gqrl4c/Cn4U/i44fXdEbl5b2SKu0mZlVTkUPE/VEq/SGDdDP3RBm\nZhVV0TCIHmiVHj0aJkyAk0+GY46BgQN7rr5a0tDQkHcJVcOfRYE/iwJ/Ft3Ta1cTdYWkeOKJYM4c\nmDMHHngAjj46BcNJJ8HIkZ2/h5lZvZFElHkCuerDoHV9K1fCvHkpGG6/HfbYAyZOTOGw994gT5pn\nZtb3w6C1NWvgf/4Hbr45PaAQDEceCZtt1uZmZmZ9Xl2FQWsR8OijKRTmzIE//hGOPTaFw4knwtZu\nZzOzOlK3YVBs+XKYOzeFw4IFsP/+hVHD7rt3vr2ZWS1zGLThnXfgrrsKo4YhQ1IoTJwI48dD/6qc\n3sfMrOscBp3YsAEefDCFws03w7Jl6aqkiRPhuONgyy17bFdmZrlxGJTp+efhlltSMNxzTxoptIwa\ndtqpYrs1M6soh0E3vPkmzJ+fRg1z58IOOxSC4SMfcRe0mdUOh0EPWb8e7ruvcNnq66+7C9rMaofD\noEKefBJ3QZtZzXAY9AJ3QZtZtXMY9LLiLuiIFArugjazPDkMcuQuaDOrFg6DKuIuaDPLi8OgSrkL\n2sx6U9WFgaQrgAnA8ojYN1s2BfgMhXmPL4qI29rZvk+EQWttdUGfeGIKB3dBm1lPqMYwOBxYDVxd\nFAZvRsRlJWzf58KgmLugzaynVV0YAEgaA8wpCoPVEfGDErbt82HQWltd0C3nGdwFbWalqqUw+BTw\nOrAY+FpEvN7OtnUVBq25C9rMuqpWwmAE8EpEhKT/B4yKiL9uZ9u6DYNi7oI2s1LVRBiU+lr2ekyZ\nMuX95w0NDTQ0NFSq1JrhLmgza625uZnm5ub3n0+dOrUqw2As6Rf+PtnzkRHxcvb1V4CDIuKcdrb1\nyKAT7XVBT5wIRx3lLmizelR1IwNJ1wENwHBgOTAFOBrYD9gAPAt8LiKWt7O9w6AM7oI2M6jCMOgu\nh0H3FHdB77dfYdQwblze1ZlZpTgMrF3ugjarHw4DK4m7oM36NoeBdYm7oM36FoeBdZu7oM1qn8PA\nepS7oM1qk8PAKqqtLuiJE1NAuAvarHo4DKzXFHdBjxtXmPLTXdBm+ap4GEgaBmwPvAM8GxEbyiux\nPA6D2uAuaLPqUpEwkDQU+CJwNrAZsAIYAGwH3Af8JCIWdKnizopzGNQcd0Gb5a9SYXAHcDXp/kKr\nil47EPgr4JGIuKLMejsvzmFQ89wFbdb7fM7AqlpbXdAtl626C9qs5/RaGEjaFTgHOCsi9ir7DUrf\nj8Ogj+qoC/rYY1NQmFnXVDQMJG0PTCaFwD7Ad4EbIuKRcgstuTiHQd1wF7RZz6nUOYPPkk4e7wA0\nZY+bImLnrhZacnEOg7rkLmiz7qlUGKwB7iXNVbw4W/Z0ROzS5UpLLc5hUPfcBW1WvkqFwXDgTNLo\nYCRpZPCpiNixq4WWXJzDwIq4C9qsc73RdDaadN7gbGAwMDsiLiqryjI4DKwj7XVBT5wI++zjLmir\nX716aamk3YGzI+KSDta5ApgALG+Z9D7rYp4OjCFNe9kYEa+3s73DwEriLmizgkpfTbQJcBIwFnj/\nivCIuKyDbQ4HVgNXtwqDS4FXI+L7kr4FDIuIC9vZ3mFgZSvugl66NF2uevLJ7oK2+lDpMLgVeBd4\nhDSZPUB0NDLIthtD6l5uCYM/AkdFxHJJI4HmiNiznW0dBtZt7oK2elPpMPhDyy/0MosqDoOVEbF1\nq9c3el60rcPAepS7oK0edCUMyvnRnyfp2IiYX2Zdnenwt/3FF1/8/tcNDQ00NDT08O6tngwcCCed\nlB4//WmhC/qCC9wFbbWrubmZ5ubmbr1HOSODU4FfA/2AtYBIh4k6/CfTxshgKdDQ6jDRgoj4i3a2\n9cjAek1bXdATJ6bHmDF5V2dWukofJnoGmES6Q2nJv6EljSWFwT7Z80uBlRFxqU8gW7Uq7oLefvvC\n5D3ugrZqV+kwWEj6i77kCW0kXQc0AMOB5cAU4EZgBrAj8Bzp0tJV7WzvMLDcFXdBr1pVGDEccwwM\nGpR3hWYbq3QY/BewCzAPeK9leUeXlnaXw8CqkbugrdpVOgymtLU8IqaWs8NyOAys2q1cCbfdlkYM\n7oK2auHJbcxy5C5oqxaVulHdL4AftjVvgaTBpHsVvRcR15az45KKcxhYjeqoC/qEE2D48LwrtL6s\nUmGwH3ARaUKbJcAKYACwOzAEuBL4WUS81+6bdJHDwPqKtrqgW5rd3AVtPa3S5wy2AA4ERgHvAEsj\n4vGyqyyDw8D6opYu6JaT0Ftu6S5o61mVGhmMAEZExGNFyz8ErIiIFWVXWmpxDgPr4zwXtFVCpcJg\nGvCTiFhYtPwI4PMRcU7ZlZZanMPA6oy7oK0nVCoMFkfEge28tiQi9i5nh+VwGFg9cxe0dVWlwuDx\niNij3Nd6gsPALHEXtJWjUmEwF/hxRNxatPwE4IKIOKHsSkstzmFg1qbiLuiGhjRicBe0QeXCYHdg\nLnAP8EC2+EBgPDAhIp7oQq2lFecwMOuUu6CtWMUuLZW0OXAO0HJ+4FHguoh4t+wqy+AwMCuPu6AN\nfDsKM2vFXdD1q1KHiRZFxOGS3mTjWclKmtymOxwGZj3HXdD1wyMDMyuJu6D7NoeBmZWtvS7oiRPh\nuOPcBV3n7ydcAAAHsUlEQVSLaioMJD0LvA5sANZGxMFtrOMwMOtlrbug774bPvpRd0HXmloLg6eB\nj0TEax2s4zAwy5G7oGtTrYXBM8CBEfFqB+s4DMyqhLuga0ethcHTwCpgPfDziPhFG+s4DMyqlLug\nq1ethcGoiHgpu0X2HcCXImJR0ToxZUph6uWGhgYaGhp6t1Az65S7oPPV3NxMc3Pz+8+nTp1aO2Gw\nURHSFODNiLisaLlHBmY1pq0u6JbLVt0F3TtqZmQgaRDQLyJWZ/MozwemRsT8ovUcBmY1zF3Q+ail\nMNgZmE3qaO4PXBsR32tjPYeBWR/iLujeUTNhUCqHgVnf5S7oynEYmFlNchd0z3IYmFmfUNwFPX58\n4eokd0F3zmFgZn1Oe13QEyfCgQe6C7otDgMz69PcBV0ah4GZ1RV3QbfNYWBmdctd0AUOAzMz3AXt\nMDAzK9JeF/TEieny1b7YBe0wMDPrROsu6Lvugv3373td0A4DM7MyFHdBb7FFYfKeWu6CdhiYmXVR\nX+qCdhiYmfWQWu6CdhiYmVVArXVBOwzMzCqsrS7oCRNSOFRLF7TDwMysl1VjF7TDwMwsR211Qbdc\nttqbXdA1FQaSjgf+HegHXBERl7axjsPAzGpSnl3QXQmDXE57SOoH/AdwHLAXcLakPfOopVY0Nzfn\nXULV8GdR4M+ioNo+i802S+cQLr8cnn46XZk0ahR8+9uw7bbQ2AjXXAOvvpp3pUle58APBp6MiOci\nYi0wDZiUUy01odp+0PPkz6LAn0VBNX8WEuy9N1x0Edx7Lzz+OBx/PMyaBTvvnEYK//qv8MQT+dWY\nVxjsACxr9fyFbJmZWZ+33XZw/vlw443p9hjf/CY89RQcfTTssQd84xuwcCGsW9d7NVXZ1bFmZvVl\n4EA46ST42c9S1/O116bLU7/85XQ10sUX904duZxAlnQocHFEHJ89vxCI4pPIknz22MysC2riaiJJ\nmwCPA8cALwG/A86OiKW9XoyZmZHLPfkiYr2kLwHzKVxa6iAwM8tJVTedmZlZ76jKE8iSjpf0R0lP\nSPpW3vXkRdJoSXdJelTSI5IuyLumvEnqJ+lBSTfnXUueJA2VNEPS0uzn45C8a8qLpK9IWiLpD5Ku\nldTHJ7XcmKQrJC2X9IdWy4ZJmi/pcUm3Sxra2ftUXRi4IW0j64CvRsRewHjgi3X8WbT4MvBY3kVU\ngcuBWyPiL4APA3V5mFXS9sDfAgdExL6kQ99n5VtVr7uK9PuytQuB30TEHsBdwN939iZVFwa4Ie19\nEfFyRDycfb2a9A++bvsxJI0GTgR+mXcteZI0BDgiIq4CiIh1EfFGzmXlaRNgsKT+wCDgzznX06si\nYhHwWtHiScCvsq9/BZzS2ftUYxi4Ia0NksYC+wG/zbeSXP0b8A2g3k907Qy8Iumq7JDZzyUNzLuo\nPETEn4EfAM8DLwKrIuI3+VZVFbaNiOWQ/qgEtu1sg2oMAysiaQtgJvDlbIRQdySdBCzPRkrKHvWq\nP3AA8OOIOAB4m3RYoO5I2or0V/AYYHtgC0nn5FtVVer0D6hqDIMXgZ1aPR+dLatL2dB3JnBNRNyU\ndz05Ogw4WdLTwPXA0ZKuzrmmvLwALIuIxdnzmaRwqEcfB56OiJURsR64AfhozjVVg+WStgOQNBL4\n3842qMYwuB/YTdKY7KqAs4B6vnLkSuCxiLg870LyFBEXRcROEbEL6Wfirog4L++68pAN/5dJGpct\nOob6Pan+PHCopAGSRPos6vFkevFo+WbgU9nXnwQ6/UMyl6azjrghrUDSYcC5wCOSHiIN9S6KiNvy\nrcyqwAXAtZI2BZ4GPp1zPbmIiN9Jmgk8BKzN/vvzfKvqXZKuAxqA4ZKeB6YA3wNmSDofeA5o7PR9\n3HRmZmbVeJjIzMx6mcPAzMwcBmZm5jAwMzMcBmZmhsPAzMxwGJiZGQ4Ds41I2l3S3Ow+8IslTZM0\nQtJRklZlN4Z7KPvvx7JtBkhqzuZa+JOk3Yve898kfUPS3pKuyuc7M+tY1XUgm+VF0ubAXODvIuLW\nbNmRwIhslYURcXIbm54PzIqIDZKuJ90u4zvZ9gLOAMZHxAuSdpA0OiJeqPT3Y1YOjwysLkn6rqQv\ntHo+hXSLh3taggAgIhZGRMt9f9q7U+q5FO79Mo2NJ1c5Eni21S//W6i/yVesBjgMrF5NZ+P7tTQC\newIPdLDNEUWHiXbO7g20c0Q8DxARS4D1kvbJtjmLdJfVFouBI3rsuzDrIT5MZHUpIh7OzgWMJE38\nsZIPzhZV7AOHiSSNAlYVrTcNOEvSY6QZpr7d6rX/Jd1336yqOAysns0AzgRGkkYKb5Hu/liOd4AB\nRcumke66uxD4fUSsaPXagGwbs6riw0RWz5pIh3FOJwXD9cB4SSe0rCDpCEkfanla/AYRsQrYJJt7\no2XZ08ArpNsIX1+0yThgSU9+E2Y9wWFgdSs7Mbwl8EJELI+Id4EJwAXZpaVLgM8DLX/ZH150zuC0\nbPl84PCit78e2IM081ZrR5OuWDKrKp7PwKybJO1Puhz1k52stxnQDBweERt6ozazUnlkYNZNEfEQ\nsCDrKejITsCFDgKrRh4ZmJmZRwZmZuYwMDMzHAZmZobDwMzMcBiYmRnw/wEk8Ab9sEQ31wAAAABJ\nRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7fb5303cd278>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pylab as plt\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage in V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "R1=10.0; #Resistor R1, kΩ\n",
+ "R2=5.0; #Resistor R2, kΩ\n",
+ "RC=1.0; #Collector resistor, kΩ\n",
+ "RE=2.0; #Emitter resistor, kΩ\n",
+ "RL=1.0; #Load resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#For d.c load line, from the equation: VCE=VCC-IC*(RC+RE),\n",
+ "#VCE is maximum when IC=0 and IC is maximum when VCE=0.\n",
+ "VCE_max=VCC; #Maximum collector-emitter voltage, V\n",
+ "IC_max=VCC/(RC+RE); #Maximum collector current, mA\n",
+ "\n",
+ "\n",
+ "#plot\n",
+ "VCE_plot=[i for i in range(0,(int)(VCC+1))]; #Plot variable for V_CE\n",
+ "IC_plot=[((VCC-i)/(RC+RE)) for i in (VCE_plot[:])]; #Plot variable for I_C\n",
+ "\n",
+ "plt.subplot(211)\n",
+ "plt.xlim(0,20)\n",
+ "plt.ylim(0,6)\n",
+ "plt.plot(VCE_plot,IC_plot);\n",
+ "plt.xlabel(\"VCE(V)\");\n",
+ "plt.ylabel(\"IC(mA)\");\n",
+ "plt.title(\"d.c load line\");\n",
+ "\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "#For operating point:\n",
+ "#Assuming VCC drops almost completely across R1 and R2,\n",
+ "V2=VCC*R2/(R1+R2); #Voltage across resistor R2, V\n",
+ "IE=(V2-VBE)/RE; #Emitter current, mA\n",
+ "IC=IE; #Collector current, mA\n",
+ "VCE=VCC-IC*(RC+RE); #Collector-emitter voltage , V\n",
+ "\n",
+ "print(\"The operating point: VCE=%.2fV and IC=%.2fmA.\"%(VCE,IC));\n",
+ "\n",
+ "\n",
+ "#(iii)\n",
+ "#For a.c load line\n",
+ "RAC=(RC*RL)/(RC+RL); #a.c load, kΩ\n",
+ "VCE_ac_max=VCE+IC*RAC; #Maximum collector-emitter voltage, V\n",
+ "IC_ac_max=IC+VCE/RAC; #Maximum collector current, mA\n",
+ "print(\"Maximum v_CE=%.2fV and maximum i_C=%.2fmA\"%(VCE_ac_max,IC_ac_max));\n",
+ "\n",
+ "#plot\n",
+ "vCE_plot=[0,VCE_ac_max]; #Plot variable for V_CE\n",
+ "iC_plot=[IC_ac_max,0]; #Plot variable for I_C\n",
+ "\n",
+ "plt.subplot(212)\n",
+ "plt.xlim(0,10)\n",
+ "plt.ylim(0,20)\n",
+ "plt.plot(vCE_plot,iC_plot);\n",
+ "plt.xlabel(\"vCE(V)\");\n",
+ "plt.ylabel(\"iC(mA)\");\n",
+ "plt.title(\"a.c load line\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Page number 253-254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH5FJREFUeJzt3X2UHVWd7vHvE0ISkkCEEJOQQIIYQd4kpGXJDUirVwYR\nwaUXJejgiBe9isJcX0bF6yTguleZtUTxBWcGkUsYXkQwgiKKd0gvFiiQF4IJCQGFkPAWA4YohGBC\nfvePqqZPn5zuPtXddeqcU89nrVqcrtqn9j5F5Ve79q7aWxGBmZm1vxFFF8DMzBrDAd/MrCQc8M3M\nSsIB38ysJBzwzcxKwgHfzKwkHPCtqUm6UtJFQ9zHDEk7JQ37+S5psaSz+9g2X9LV6ef9Jf1Fkoa7\nDGb1Gll0AcwapKgXTgIgIjYAexVUBjPANXwzs9JwwLemImm2pGWStki6HhjTT9oRki6Q9Ic0/RJJ\n0+rIY6qkmyU9J+lhSf+9YtubJf1W0mZJT0r6rqSRFdvfKWlNuv27QF1NNNXNSmlT0EWS7kqben4l\naZ+K9G+RdHeaz/2STqgnH7P+OOBb05C0O7AIuArYB/gJ8P5+vvI54IPASRExATgb2FpHVj8G1gNT\ngNOB/yOpM932CvCPaf7HAm8HPpWWbyJwE3ABsC/wR2Bu3T9w12alecBHgEnAaODzaT7TgF8AF0XE\n3un6m9L8zQbNAd+ayVuAkRHxnYh4JSJuApb0k/5jwFci4g8AEbEyIjb3l4Gk/UkC+RcjYntEPAD8\nEDgr3cfyiLgvEuuBfwe6a9cnA6siYlFavm8Dzwzh914ZEX+MiJeBG4Cj0vUfAm6NiF+nZfpPYGma\nv9mgudPWmsl+wJNV6x7vJ/3+wKMZ85gK/DkiKu8EHgfmAEiaBVwCdAB7kPwbWVZRvg1V+6v+O4vK\ni8VWYHz6eQbwAUnvSf9WWo47hpCXmWv41lSeBqrb4A/oJ/164KCMeTwF7CNpXFUe3ReaHwBrgIMi\n4jXAV+hpp3+6Rnn2z5h/PTYACyNin3TZOyL2jIh/ySEvKxEHfGsmvwN2SPqMpJGS3gcc00/6K4Cv\nSXo9gKQjJO3dR1oBRMQTwG+Br0saLelIkqahq9N0ewJ/iYitkg4BPlmxj1uBQyW9V9Juks4HJmf4\nffU+g/8fwHsknZh2TI+RdIKk/TLkZbYLB3xrGhGxHXgf8FHgOZIO1Zu6t1e8vDQ9XXUJSdv37ZK2\nkLTF79HX7is+zwMOJKnt3wR8NSIWp9s+D3xI0l+AfwOuryhfd5kuBp4lubu4O8tP7ONz70TJRek0\nks7hTSRNTp/H/15tiJT3BCiS1gFbgJ3A9ojor8ZmZmY5aUSn7U6gc6CnJ8zMLF+NuEVUg/IxM7N+\nNCIQB/Cb9C3IcxqQn5mZ1dCIJp25EfG0pEkkgX9NRNzVgHzNzKxC7gE/Ip5O/7tJ0iKSx+x6BXxJ\nRY1kaGbWsiIi03DbuTbpSBoraXz6eRxwIrCqVtqI8DIMy/z58wsvQzstPp4+ns26DEbeNfzJwKK0\nBj8SuCYibs85TzMzqyHXgB8Rj9EzIJSZmRXIj0u2mc7OzqKL0FZ8PIeXj2excn/Ttq5CSNEM5TAz\naxWSiGbqtDUzs+bhgG9mVhIO+GZmJeGAb2ZWEg74ZmYl4YBvZlYSDvhmZiXhgG9mVhIO+GZmJdGQ\ngC9phKTlkm5pRH5mZrarRtXwzwdWNygvMzOrIfeAL2k6cDLww7zzMjOzvjWihv8t4Askc9uamVlB\n8p7x6t3AxohYAShdzMysAHnPeDUXOFXSycAewJ6SFkbEWdUJFyxY8Ornzs5Oj5ttZlahq6uLrq6u\nIe2jYePhSzoB+FxEnFpjm8fDNzPLwOPhm5lZnzzjlZlZC3IN38zM+uSAb2ZWEg74ZmYl4YBvZlYS\nDvhmZiXhgG9mVhIO+GZmJeGAb2ZWEg74ZmYl4YBvZlYSDvhmZiXhgG9mVhKZxsOXtDewH/ASsC4i\ndg6QfjRwJzAqzevGiLhwkGU1M7MhGHC0TEkTgHOBeSSBexMwBpgM3ANcFhGL+/n+2IjYKmk34G7g\nvIi4ryqNR8s0M8tgMKNl1lPDvxFYCBwfEc9XZdgBfFjS6yLiilpfjoit6cfRaX6O7GZmBch9PHxJ\nI4BlwEHA9yPiyzXSuIZvZpZBXjX8WhkdBJwJnBERh/WXNm3nny1pL+Bnkg6NiNXV6TynrZlZ3xo6\np62k/YAPkgT6I4CvAz+NiJV1ZyZ9FXgxIi6pWu8avplZBrnMeCXp45IWA13AROBjwNMRceFAwV7S\nvmmnL5L2AN4JPJSlgGZmNjzqadL5HvA74MyIWApJjbzO/U8Frkrb8UcAP46IXw6qpGZmNiT1BPyp\nwOnANyVNAW4Adq9n5+kdwNGDL56ZmQ2XTE/pSJpO0o4/DxgHLIqIC4ZcCLfhm5llMpg2/EE/lilp\nFjAvIi4a1A5678sB38wsg1wfy0zflH03MLPiey9kyczMzIqT5Tn8nwPbgJVA9xg6rpabmbWILAF/\nekQcmVtJzMwsV1mGR75N0om5lcTMzHKVpYZ/D7AofaZ+OyAgImKvXEpmZmbDKsvQCo8BpwErh/uR\nGj+lY2aWTS5DK1TYAKxyZDYza01ZmnQeBbok3Qa83L2yeiA0MzNrTlkC/mPpMipdzMysheQ6AUo6\nFMNCkukQdwKXR8R3aqRzS5GZWQZ5DY98uaQj+tg2TtLZkj7Ux9d3AJ9NJ0k5FjhX0iFZCmhmZsOj\nniad7wNfTYP+KnomMZ8F7AX8CLim1hcj4hngmfTzC5LWANPwmPhmZg2X5bHM8UAHyXDJLwFrImJt\n3RlJM0kmUTk8Il6o2uYmHTOzDHIZPE3SJGBSOg9tV8X6QyVNiohNdexjPHAjcH51sO82deoCXvMa\nmDABOjo6ecc7OpkxA2bMgH32AWX6WWZm7aUhc9pKuh64LCLurFp/PPDJiDhzgO+PBH4B3BYRl/aR\nJu69N3j8cWouO3bwavCvtUydCiOyvFFgZtbichkPX9LSiOjoY9uqiDh8gO8vBJ6NiM/2k6bfJp0t\nW2pfCLqXzZth+vS+Lwj77w+j/CCpmbWRvAL+2og4OOu2dPtc4E6SIZUjXS6IiF9VpRtSG/62bbB+\nfd8XhKeegkmTel8EZs7s/fe4cYPO3sys4fIK+LcC36+efFzSu4DzIuJdmUu6ax65dtru2JEE/f7u\nEsaN67/ZyP0IZtZM8gr4s4Bbgd8Cy9LVHSTP1Z8SEQ8PoqzVeRT6lE4E/OlP/V8Q3I9gZs0ktzlt\nJY0GzgS62+sfBK6NiG2ZS1l7/03/WKb7EcysmTR0EvPh1AoBfyDuRzCzRsqrSeev1J67dtgmQGmH\ngD8Q9yOY2XByDb+FuR/BzLJwwG9z7kcws24O+CX30kuwYUO2foTqZfz4on+FmdXDAd/6Vd2PsG5d\n7wvC+vXuRzBrFQ74NiTuRzBrHQ74ljv3I5g1Bwd8K5z7Ecwao+kCvqQrgFOAjRFxZD/pHPBLwv0I\nZsOjGQP+ccALwEIHfKuH+xHM6tN0AR9A0gzg5w74Nlzcj2DmgG8GuB/BysEB36wO7kewdpDLJOaN\nsmDBglc/d3Z20tnZWVhZrL2NHAkHHJAsxx+/6/Za/Qh//CPccYf7Eaw4DZnEfKgkzSSp4R/RTxrX\n8K2luB/BitZ0TTqSrgU6gYnARmB+RFxZI50DvrUV9yNY3pou4NddCAd8Kxn3I9hQOeCbtQm/j2AD\nccA3KxH3I5SbA76Zvcr9CO3NAd/M6uZ+hNbmgG9mw8b9CM3NAd/MGsr9CMVxwDezpuJ+hPw44JtZ\nS3E/wuA54JtZW3E/Qt8c8M2sdMraj+CAb2ZWpV37ERzwzcwyatV+hKYM+JJOAr4NjACuiIiLa6Rx\nwB8mXV1dnktgGPl4Dq9WPJ7N2o/QdBOgSBoBfA94B/AUsETSzRHxUJ75llkr/oNqZj6ew6sVj6cE\nkycnyzHH1E5Tqx9h+fLm60fIe8arY4BHIuJxAEnXA6cBDvhm1jYmTIAjj0yWWmr1Iyxe3Ph+hLwD\n/jRgQ8XfT5BcBMzMSmOPPeANb0iWWmr1IyxfDosW9fQjjB3bE/xnzhxcOfKe8er9wN9FxMfTvz8M\nHBMR51WlcwO+mVlGTdWGDzwJHFDx9/R0XS9ZC21mZtnl/f7ZEuD1kmZIGgWcAdySc55mZlZDrjX8\niHhF0qeB2+l5LHNNnnmamVltTfHilZmZ5a/QIYUknSTpIUkPS/pikWVpB5LWSXpA0v2S7iu6PK1G\n0hWSNkr6fcW6vSXdLmmtpF9LmlBkGVtFH8dyvqQnJC1Pl5OKLGMrkTRd0h2SHpS0UtJ56fpM52dh\nAb/ipay/Aw4D5kk6pKjytImdQGdEzI4IP/6aknSCpA0Dp+RKkvOx0peA/xcRBwN3AF+u2vdjkt7e\nR75XSroo/XycpDI1Z9Y6lgCXRMTR6fKrRheqhe0APhsRhwHHAuem8bLf87NakTX8V1/KiojtQPdL\nWTZ4ouC7tiY2YNtlRNwFbK5afRpwVfr5KuC9g8o84q6IeONgvtuK+jiWkJyjllFEPBMRK9LPLwBr\nSJ56zHR+Fhkcar2UNa2gsrSLAH4jaYmkc4ouTJt4bURshOQfHfDagsvT6j4taYWkH7p5bHAkzQSO\nAu4BJmc5P10bbC9zI+Jo4GSSW77jii5QVpK+KOkPkv4iaZWkPmssksZI+mbad7FZ0p2SRteRxyGS\nFqffWSnpPRWb3wbMkrRF0uPAmKqv757mt0nSBRl+V69mpbQp6HNpn8tmSdeljy53bz8l7YvZLOku\nSUfUm1cTuwx4XUQcBTwDXFJweVqOpPHAjcD5aU2/+s613zvZIgN+XS9lWf0i4un0v5uARbTmMBZ/\nILlw7QVcCPyHpMl9pP0mMBt4C7AP8E8k/Rh9kjQS+DnwK2AScB5wjaRZaZIXgfURMQF4N0mA//v0\nu28FxgIfAvYDJpLtrrT6H+PpwInAgcCbgH9I85kNXAGck/6ufwNukbR7hryaTkRsqhgW93LgzUWW\np9Wk5+6NwNURcXO6emP3vw9JU4A/9bePIgO+X8oaRpLGpld/JI0jCSSrii1VdhFxU8Ut6k+AR6hx\n4ZIk4KPAeWn7ZkTEPWl/UH+OBcZFxMURsSMiFgO/AOal25cAf0vzXwWsIAm8AF8BHoqIu9N8vkod\nfQP9uDQiNkbE8yQXoaPS9ecA/xoRS9PfdTXwMsmFrZWIijb7NCB1ex8teH4W7EfA6oi4tGLdLaQV\nBeAjwM3VX6qU99AKffJLWcNuMrAoHZdoJHBNRNxecJkyk3QW8D+BmemqccC+NZLuC4wGHs2YxVR6\n9x0BPA5Mk3Qt8E5goqRXSIIswPOS1pLU7m/q/lJEbJX0XMb8K22s+Lw1LRvADOAsSZ9J/xawO8ld\nRUtIj2UnybFcD8wH3ibpKJK7sHXAJworYIuRNJfkznKlpPtJKhoXABcDN0g6m+Q8/kB/+yks4AOk\nj2UdXGQZ2kVEPEZPDbElSToA+HfgbRHxu3Td/dR+suNZYBtwELAyQzZPAftXrTsAWBsRF0n6A/A1\n4AcRsV3St4CJEXGWpH8GXn10WNJYkmad4bYB+N8R8fUc9t0QEXFmjdVXNrwgbSIi7gZ262Pzf613\nP+60tWYyjqT296ykEZI+ChxeK2HaFvwj4BJJU9P0b6mjnfteYKukf5I0UlIncApwXbp9PLA5DfbH\nAJWB60bgFEn/Jc3nIvJ5zPBy4H+k+SNpnKST06Y6s0FzwLemkTbpfZPkcbNnSF7Iu6t7e/ry0l8q\nvvJ5ktr9EuA54BsMcE6nbe/vIXmS6VmSl//+PiIeSZN8CviapC3A/wJ+XPHd1cC5JBeHp9I8nxjs\nz+2njMtI2vG/J+nPwMMk7bNmQ9KIOW3XAVtIam7b/QaomVkxGtGG3/26f6237szMrEEa0aTj1/3N\nzJpAIwKxX/c3M2sCjWjSmRsRT0uaRBL416QDK71KntPWzCyzrNPD5l7Dr/d1/4jwEsH8+fMLL0Mz\nLD4OPhY+Fv0vg5FrwG+X1/3NzNpB3k06bfG6v5lZO8h7EvOWf92/0To7O4suQlPwcejhY9HDx2Jo\nmmISc0nRDOUwM2sVkohm67Q1M7Pm4IBvZlYSDvhmZiXhgG9mVhIO+GZmJeGAb2ZWEg74ZmYl4YBv\nZlYSDvhmZiXhgG9mVhINCfiSRkhaLumWRuRnZma7alQN/3xgdYPyMjOzGnIP+JKmAycDP8w7LzMz\n61sjavjfAr5AMretmZkVJO8Zr94NbIyIFYDSxczMCpD3jFdzgVMlnQzsAewpaWFEnFWdcMGCBa9+\n7uzs9EQHZmYVurq66OrqGtI+GjYBiqQTgM9FxKk1tnkCFDOzDDwBipmZ9clTHJqZtSDX8M3MrE8O\n+GZmJeGAb2ZWEg74ZmYl4YBvZlYSDvhmZiXhgG9mVhIO+GZmJeGAb2ZWEg74ZmYl4YBvZlYSDvhm\nZiWRaTx8SXsD+wEvAesiYucA6UcDdwKj0rxujIgLB1lWMzMbggFHy5Q0ATgXmEcSuDcBY4DJwD3A\nZRGxuJ/vj42IrZJ2A+4GzouI+6rSeLRMM7MMBjNaZj01/BuBhcDxEfF8VYYdwIclvS4irqj15YjY\nmn4cnebnyG5mVoDcx8OXNAJYBhwEfD8ivlwjjWv4ZmYZ5FXDr5XRQcCZwBkRcVh/adN2/tmS9gJ+\nJunQiFhdnc5z2pqZ9a2hc9pK2g/4IEmgPwL4OvDTiFhZd2bSV4EXI+KSqvWu4ZuZZZDLjFeSPi5p\nMdAFTAQ+BjwdERcOFOwl7Zt2+iJpD+CdwENZCmhmZsOjniad7wG/A86MiKWQ1Mjr3P9U4Kq0HX8E\n8OOI+OWgSmpmZkNST8CfCpwOfFPSFOAGYPd6dp7eARw9+OKZmdlwyfSUjqTpJO3484BxwKKIuGDI\nhXAbvplZJoNpwx/0Y5mSZgHzIuKiQe2g974c8M3MMsj1scz0Tdl3AzMrvvdClszMzKw4WZ7D/zmw\nDVgJdI+h42q5mVmLyBLwp0fEkbmVxMzMcpVleOTbJJ2YW0nMzCxXWWr49wCL0mfqtwMCIiL2yqVk\nZmY2rLIMrfAYcBqwcrgfqfFTOmZm2eQ9eNoGYFVekfn006GjA+bMSZa9984jFzOz8spSw/+/wOuA\n24CXu9dXD4Q2qEJIcc01wdKlsHQp3H8/TJ7ccwHo6ICjj4YJE4aak5lZe8j1xStJ82utH44pC6ub\ndF55BR5+mFcvAMuWwYoVMG1azwWgowNmz4Y99xxq7mZmraehb9rWtfNkKIaFJNMh7gQuj4jv1Eg3\nYEvRjh3w0ENJ8O++EPz+93DAAT0XgDlzkovAuHG5/Bwzs6aRS8CXdDnwnVpDIUsaRzK2zssRcU2N\n7VOAKRGxQtJ4kpmvTouIh6rSDaprYPt2WLOm953AqlVw4IG97wTe9CYYOzbz7s3MmlZeAf8o4AKS\nSU9W0TOJ+SxgL+BHwL9GxMt97qRnXz8DvhsR/1m1ftj6gv/2N3jwwZ4LwNKlsHo1vP71ve8E3vQm\nGDNmWLI0M2u4vNvwxwMdJMMlvwSsiYi1GQo3k2QSlcMj4oWqbbk+lvnyy7ByZe/moLVr4eCDe3cM\nH3EEjB6dWzHMzIZNXjX8ScCk6nloJR0KbIqITXUUbDxJsP9aRNxcY3vMn9/TJ9yIOW23bUv6ACqb\ngx55BN74xp47gY4OOOwwGDUq16KYmQ2oek7bCy+8MJeAfz1wWUTcWbX+eOCTEXHmAN8fCfwCuC0i\nLu0jTVO8eLV1KzzwQO87gUcfhcMP730ncOihsHtdU8CYmeUjrxr+0ojo6GPbqog4fIDvLwSejYjP\n9pOmKQJ+LS++mDwSWnkn8PjjcOSRvTuGDzkERmZ5jc3MbAjyCvhrI+LgrNvS7XOBO0mGVI50uSAi\nflWVrmkDfi1//Wvyclhlx/CTTyYdwZUdwwcfDLvtVnRpzawd5RXwbwW+Xz35uKR3AedFxLsyl3TX\nPFoq4NeyZUvPRaB72bgxeS+gsjlo1iwYkWWMUjOzGvIK+LOAW4HfkjxHD8nTOscCp0TEw4Moa3Ue\nLR/wa9m8GZYv730n8NxzPReB7uWgg0CZ/reZWdnl9limpNHAmUB3e/2DwLURsS1zKWvvvy0Dfi3P\nPZcE/8qO4S1beu4Auv974IG+CJhZ35puaIW6C1GigF/Lpk29LwDLliWdxZWdwh0dyTASvgiYGeTX\npHNXRBwn6a/0nsN22CZAKXvAr+WZZ3ouAsuWwZIlyVASlReAOXNg+nRfBMzKyDX8NvfUU73vBJYu\nTdZXNgV1dMB++xVbTjPLnwN+yUQkj4NWNgUtXZq8FFZ5AZgzB6ZMKbq0ZjacHPCNCFi/ftc7gbFj\ne18AOjpg0qSiS2tmg+WAbzVFwLp1vS8Ay5fDXnv1vgDMmQMTJxZdWjOrhwO+1W3nzmScoMqmoOXL\nYZ99et8JeH5hs+bkgG9DsnNnMmJoZXOQ5xc2a04O+DbsPL+wWXNquoAv6QrgFGBjRBzZTzoH/Bbi\n+YXNiteMAf844AVgoQN+e/P8wmaN1XQBH0DSDODnDvjl4/mFzfLjgG9Nz/MLmw0PB3xrSZ5f2Cy7\nwQT8ppmUb8GCBa9+bsQk5tY8xoyBY45Jlm6V8wvffTdcemnv+YW77wY8v7CVRfUk5oPRiBr+TJIa\n/hH9pHEN3wbk+YXNejRdk46ka4FOYCKwEZgfEVfWSOeAb4Pi+YWtrJou4NddCAd8G0aeX9jKwAHf\nrA+eX9jajQO+WQYDzS/cfTfg+YWtGTngmw1RX/MLV88q5vmFrWgO+GY5qDW/8I4du94JeH5hayQH\nfLMG8fzCVjQHfLOCeH5hazQHfLMm4vmFLU8O+GZNzvML23BxwDdrQfXML9w9taTnF7ZuDvhmbcLz\nC9tAHPDN2pjnF7ZKTRnwJZ0EfBsYAVwRERfXSOOAbzYInl+4vJou4EsaATwMvAN4ClgCnBERD1Wl\nc8BPdXV1eS4AfBwqZT0W/c0vXNkc1IrzC/u86DGYgJ/3WIHHAI9ExOMRsR24Hjgt5zxb2lAnOGgX\nPg49sh6L3XdP5gg4+2y47DK4995k8Lirr4a5c5N5hj/zGdh3313TbduWz28YLj4vhibvaSKmARsq\n/n6C5CJgZg00alTSrDN7NpxzTrKuen7hyy/3/MLtzvMCmZXU6NE97fyf+ESyrnJ+4fvugx/8oGd+\n4fnz4dRTiy2zDU3ebfhvARZExEnp318CorrjVpIb8M3MMmq2TtvdgLUknbZPA/cB8yJiTW6ZmplZ\nTbk26UTEK5I+DdxOz2OZDvZmZgVoihevzMwsf4VO4SzpJEkPSXpY0heLLEvRJK2T9ICk+yXdV3R5\nGknSFZI2Svp9xbq9Jd0uaa2kX0sqxQACfRyL+ZKekLQ8XU4qsoyNImm6pDskPShppaTz0vWlOzdq\nHIvPpOsznRuF1fDrfSmrLCQ9CsyJiM1Fl6XRJB0HvAAsjIgj03UXA89FxL+klYG9I+JLRZazEfo4\nFvOBv0bEJYUWrsEkTQGmRMQKSeOBZSTv8XyUkp0b/RyLD5Lh3Ciyhu+XsnoTBd9xFSUi7gKqL3Sn\nAVeln68C3tvQQhWkj2MByflRKhHxTESsSD+/AKwBplPCc6OPYzEt3Vz3uVFkgKn1Uta0PtKWQQC/\nkbRE0jlFF6YJvDYiNkJysgOvLbg8Rfu0pBWSfliGJoxqkmYCRwH3AJPLfG5UHIt701V1nxulrFE2\nqbkRcTRwMnBuemtvPcr8dMFlwOsi4ijgGaBsTTvjgRuB89PabfW5UJpzo8axyHRuFBnwnwQOqPh7\nerqulCLi6fS/m4BFeAiKjZImw6vtl38quDyFiYhNFaMLXg68ucjyNJKkkSQB7uqIuDldXcpzo9ax\nyHpuFBnwlwCvlzRD0ijgDOCWAstTGElj0ys3ksYBJwKrii1Vw4nebZG3AP+Qfv4IcHP1F9pYr2OR\nBrVu76Nc58aPgNURcWnFurKeG7sci6znRqHP4aePEF1Kz0tZ3yisMAWSdCBJrT5IXoa7pkzHQtK1\nQCcwEdgIzAd+BvwE2B94HPhARDxfVBkbpY9j8TaSNtudwDrgE91t2O1M0lzgTmAlyb+NAC4geWP/\nBkp0bvRzLM4kw7nhF6/MzErCnbZmZiXhgG9mVhIO+GZmJeGAb2ZWEg74ZmYl4YBvZlYSDvhmZiXh\ngG+lI2mWpFvT8dSXSrpe0iRJJ0h6Ph1X/P70v29PvzNGUpekEZL+KGlW1T6/JekLkg6XdGUxv8ys\nf7lOcWjWbCSNBm4F/jEifpmueyswKU1yZ0ScWuOrZwM3RcROSdeRDAXytfT7Av4bcGxEPCFpmqTp\nEfFE3r/HLAvX8K1tSfq6pE9V/D0fOA/4bXewB4iIOyNidXeyPnb3IXrGbLmeJOB3eyuwriLA/6Jq\nu1lTcMC3dvZj4AMVf38AOIRktqC+HF/VpHOgpN2BAyNiPUBErAJekXRE+p0zgOsq9rEUOH7YfoXZ\nMHGTjrWtdDq4SemIgq8F/kzt2aQq7dKkI2kqUD041/XAGZJWk8y49M8V2/4E7DekwpvlwAHf2t1P\ngNOBKSQ1/hdJRqPM4iVgTNW664HbSUYwfCCdx6DbmPQ7Zk3FTTrW7m4gaXJ5P0nwvw44VtK7uhNI\nOl7Sod1/Vu8gHXp3t3Tehu51jwLPAt+gd3MOwBso15j11iIc8K2tpZ2xewJPRMTGiNgGnAKclz6W\nuQr4JNBdQz+uqg3/fen624HqaSevAw4Gflq1/m0kTwKZNRWPh29WB0mzSR7l/MgA6UYBXcBxEbGz\nEWUzq5dr+GZ1iIj7gcXpM/f9OQD4koO9NSPX8M3MSsI1fDOzknDANzMrCQd8M7OScMA3MysJB3wz\ns5L4/1kCJflW+/pRAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7fb50cf60f28>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pylab as p\n",
+ "\n",
+ "#Variable declaration\n",
+ "RC=10; #Collector resistor, kΩ\n",
+ "RL=30; #Load resistor, kΩ\n",
+ "VCC=20; #Collector supply voltage, V\n",
+ "IC=1; #Collector current, mA\n",
+ "VCE=10; #Collector-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#For d.c load line:\n",
+ "#From the equation: VCE=VCC-IC*(RC+RE),\n",
+ "#When VCE=0, IC is maximum.\n",
+ "#Emitter resistor is neglected, assuming it as negligible\n",
+ "IC_max=VCC/RC; #Maximum collector current, mA\n",
+ "\n",
+ "#And, when IC=0, VCE is maximum\n",
+ "VCE_max=VCC; #Maximum collector-emitter voltage, V\n",
+ "\n",
+ "#plot\n",
+ "p.subplot(211)\n",
+ "p.xlim(0,20)\n",
+ "p.ylim(0,5)\n",
+ "VCE_plot=[0,VCE_max]; #Plot variable for V_CE\n",
+ "IC_plot=[IC_max,0]; #Plot variable for I_C\n",
+ "\n",
+ "p.plot(VCE_plot,IC_plot);\n",
+ "p.xlabel(\"VCE(V)\");\n",
+ "p.ylabel(\"IC(mA)\");\n",
+ "p.title(\"d.c load line\");\n",
+ "\n",
+ "\n",
+ "#For a.c load line:\n",
+ "RAC=(RC*RL)/(RC+RL); #a.c Load resistor, kΩ\n",
+ "\n",
+ "VCE_ac_max=VCE+IC*RAC; #Maximum collector-emitter voltage, V\n",
+ "IC_ac_max=IC+ VCE/RAC; #Maximum collector current, mA\n",
+ "\n",
+ "#plot\n",
+ "p.subplot(212)\n",
+ "p.xlim([0,25])\n",
+ "p.ylim([0,5])\n",
+ "vCE_plot=[0,VCE_ac_max]; #Plot variable for V_CE\n",
+ "iC_plot=[IC_ac_max,0]; #Plot variable for I_C\n",
+ "\n",
+ "p.plot(vCE_plot,iC_plot);\n",
+ "p.xlabel(\"vCE(V)\");\n",
+ "p.ylabel(\"iC(mA)\");\n",
+ "p.title(\"a.c load line\");\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7 : Page number 254-255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGNhJREFUeJzt3XuUZWV55/HvT4gygtJGDSoI7Q0FI7bGhRBR2jg6ogYy\niSagURtdkRk1YuIkOkQlmJUZ+EMjKAniDTEKBDJLQY3DypIeQhzBC8UdhUGuSiuB1lHUAXzmj7OL\nXVVUV9XpU6f2uXw/a53VZ5+z99lvPau7nzrPs993p6qQJGnWg7oegCRptJgYJEnzmBgkSfOYGCRJ\n85gYJEnzmBgkSfOYGKRGkoOT3DKkz/5ukt/axnufTPK+5vlBSa4Zxhikldqx6wFII6bTiT1VdRGw\nT5djkPzGIEmax8SgsZTknUmuT/LjJFcm+Z0l9t0pyfuT3JjkriQXJnnICs7xtCQXNMdckeS357z3\nsiTfSvKjJDclOXbBsa9tzvfDJMf08XPNK2c1Jah3JLmsGccZSR485/1XJLm0ee+iJM9Y6bmkbTEx\naFxdDzyvqh4OHAf8fZLdtrHv+4FnAQcAvwr8OfDLpT48yY7AecCXgUcDbwM+k+QpzS4/AV5bVbsC\nLwf+U5JDm2P3Bf4WeA3wOOCRwO59/GwLy1mvAl4CPAF4JrCpOc+zgI8Df9T8XB8Bzk3yK32cS3oA\nE4PGUlX9Y1VtaZ6fDVwH7L9wvyQBjgTeVlW3V8/XquqeZU5xILBzVZ1QVfdW1QXAF4AjmnNeWFVX\nNc+vBM4EDm6O/T3gvKr61+Y872Gw3sWJVbWlqrbSS1Ybmtf/CDilqr7R/FyfBn5BLwFK283EoLGU\n5HVzSih3AU8HHrXIro8CHgLc0OcpHgssvELpJprf/JM8N8lXkvwgyVbgqDnnf9zcY6vqbuDf+jz/\nXFvmPL8b2KV5vhfwjiR3No+7gD2a80vbzcSgsZNkT+BU4M1V9YiqegRwFZBFdr8D+DnwpD5P8z3g\n8Qte2xO4rXn+GeBzwO5VtY5eGWf2/N+fe2ySh9IrJ622W4C/rqpfbR6PqKpdquqsIZxLU8TEoHG0\nM70ewR1JHpTkSODXF9uxeuvKfwL4QJLHNvsfsII6/MXA3Un+PMmOSTYCrwDOaN7fBbirqu5Jsj/w\n6jnHngO8IslvNud5H4snrUF9lF5vY3+AJDs3TfGdh3AuTRETg8ZOVV1Dr6H8NeB2emWki2bfbyaJ\n/XjOIf8FuAL4Or2SzvEs83e/6Q38NvAyet86Pkyv2Xxds8ubgb9K8iPg3cBZc469GngLvSTyveac\nt27vj7vEGL9Jr8/w4SR3At8BXr+d55Hul2HeqCfJHsDpwG70fsP7aFWdtMh+JwGHAD8FNlXVzNAG\nJUla0rBnPt8L/GlVzSTZBfhmkvOr6trZHZIcAjypqp6S5LnAKXhVhSR1ZqilpObywJnm+U+Aa3jg\n9dyH0ftWQVVdDOy6xPXokqQhW7MeQ5L19K6/vnjBW7sz/7LA2+hvMpAkaRWtSWJoykjnAEc33xwk\nSSNq6KurNksLnAN8uqo+v8gutzH/evE9aK8Vn/s5na56KUnjqqr6ulx6Lb4xfAK4uqpO3Mb75wKv\nA0hyALB1dqmDharKRxXHHnts52MYlYexMBbGYunH9hjqN4Ykz6O3kNgVSS6ld032MfSm8ldVnVpV\nX2om5VxP73LVI4c5pklw4403dj2EkWEsWsaiZSwGM9TEUFX/Cuywgv3eOsxxSJJWzpnPY2jTpk1d\nD2FkGIuWsWgZi8EMdebzakpS4zJWSRoVSagRbD5rlW3evLnrIYwMY9EyFi1jMRgTgyRpHktJkjTB\nLCVJkgZmYhhD1k9bxqJlLFrGYjAmBknSPPYYJGmC2WOQJA3MxDCGrJ+2jEXLWLSMxWBMDJKkeewx\nSNIEs8cgSRqYiWEMWT9tGYuWsWgZi8GYGCRJ89hjkKQJZo9BkjQwE8MYsn7aMhYtY9EyFoMxMUiS\n5rHHIEkTzB6DJGlgJoYxZP20ZSxaxqJlLAZjYpAkzWOPQZImmD0GSdLATAxjyPppy1i0jEXLWAzG\nxCBJmscegyRNMHsMkqSBmRjGkPXTlrFoGYuWsRiMiUGSNI89BkmaYPYYJEkDMzGMIeunLWPRMhYt\nYzEYE4MkaR57DJI0wewxSJIGZmIYQ9ZPW8aiZSxaxmIwJgZJ0jz2GCRpgtljkCQNzMQwhqyftoxF\ny1i0jMVgTAySpHnsMUjSBLPHIEkamIlhDFk/bRmLlrFoGYvBDDUxJPl4ki1JLt/G+wcn2ZrkW83j\n3cMcjyRpeUPtMSQ5CPgJcHpV7bfI+wcD76iqQ1fwWfYYJKlPI9djqKqLgLuW2a2vAUuShmsUegwH\nJplJ8sUk+3Y9mHFg/bRlLFqjEIvbb+96BD2jEItxtmPH5/8msGdV3Z3kEOBzwN7b2nnTpk2sX78e\ngHXr1rFhwwY2btwItH8R3J6u7VmjMp4ut2dmZjo9/733whvfuJGzz4a77+42HjMzM52ev8vtzZs3\nc9pppwHc//9lv4Y+jyHJXsB5i/UYFtn3u8BvVNWdi7xnj0EacZ/+NJx0Enzta7DDDl2PRjCCPYZG\n2EYfIcluc57vTy9RPSApSBoPf/iHsNNO8LGPdT0SDWLYl6t+FvgqsHeSm5McmeSoJG9qdnllkiuT\nXAp8EPiDYY5nUiwso0wzY9EahVgkcPLJ8N73wh13dDeOUYjFOBtqj6GqXr3M+ycDJw9zDJLW1n77\nwRFHwDHHwKmndj0abQ/XSpK06n70I9hnH/jc52D//bsezXQb1R6DpCmz665wwgnwlrfAffd1PRr1\ny8QwhqyftoxFa9Ri0WUjetRiMW5MDJKGYlQa0eqfPQZJQ/X2t8Pdd9uI7sr29BhMDJKGykZ0t2w+\nTwnrpy1j0RrVWHTRiB7VWIwLE4OkoXNG9HixlCRpTVx+Obz4xXDVVfCoR3U9mulhj0HSSLMRvfbs\nMUwJ66ctY9Eah1gcdxx84QtwySXDPc84xGKUmRgkrRlnRI8HS0mS1lQVvOAFvYb0UUd1PZrJZ49B\n0liwEb127DFMCeunLWPRGqdYzF2aexjGKRajyMQgqRNr1YhW/ywlSeqM94gePktJksaKM6JHk4lh\nDFk/bRmL1jjGYlhLc49jLEaJiUFSp/bbDw4/fHiNaPXPHoOkzm3dCvvu69Lcw2CPQdJYWrfOGdGj\nxMQwhqyftoxFa9xjsZqN6HGPRddMDJJGgveIHh32GCSNlKOPhp/9zKW5V4trJUkaezaiV5fN5ylh\n/bRlLFqTEovVaERPSiy6YmKQNHKcEd0tS0mSRpJLc68OewySJoqN6MHZY5gS1k9bxqI1ibHY3qW5\nJzEWa8nEIGlkOSO6G5aSJI007xE9GHsMkiaSjejtZ49hSlg/bRmL1iTHot+luSc5FmvBxCBpLHiP\n6LVjKUnS2PAe0f0beikpySOSPD3JE5P4bUPSmnJG9NpY9j/3JLsmOSbJFcDXgI8A/wDclOTsJC8c\n9iA1n/XTlrFoTUMsVro09zTEYphW8lv/OcAtwPOr6qlVdVBVPaeqHg+cAByW5I1DHaUkNbxH9PDZ\nY5A0dlyae+XW7HLVJE9K8p4kV23P8ZI0iHXr4PjjnRE9LCtODEkel+RPknwduKo59vChjUzbZP20\nZSxa0xaL1752243oaYvFaltJ8/lNSS4ANgOPBN4IfL+qjquqK4Y8PklalPeIHp5lewxJ/h/wv4F3\nVNU3mtduqKonrsH45o7DHoOkB3Bp7qUNZa2kJI8EXgUcATyG3qWqm5qrktaMiUHSYmxEL20ozeeq\n+reqOqWqDgZeBGwFtiS5Jsl/286xagDWT1vGojWtsVisET2tsVgtfV2VVFW3VtX7q+o5wKHAz5fa\nP8nHk2xJcvkS+5yU5LokM0k29DMeSYKlG9Hq34rnMSTZAXg5sB7Ycfb1qvrAEsccBPwEOL2q9lvk\n/UOAt1bVy5M8Fzixqg7YxmdZSpK0TS7Nvbhhz2M4D9hE78qkhzWPXZY6oKouAu5aYpfDgNObfS8G\ndk2yWx9jkiTAGdGrqZ/EsEdV/W5VHdtcqnpcVb1vwPPvTm+5jVm3Na9pCdZPW8aiZSzapbn/7u82\ndz2Usbbj8rvc75+SvKSqzh/aaJaxadMm1q9fD8C6devYsGEDGzduBNp/FG5P1/asURlPl9szMzMj\nNZ6uto8/Hv7iL2bYe2940Yu6H89ab2/evJnTTjsN4P7/L/vVT4/hPwJ/T+9bxj1AgKqqhy9z3F7A\nedvoMZwCXFBVZzXb1wIHV9WWRfa1xyBpWd4jer5h9xg+ABwIPLSqHl5VD1suKcyOq3ks5lzgdQBJ\nDgC2LpYUJGmlnBE9uH4Swy3Alf382p7ks8BXgb2T3JzkyCRHJXkTQFV9Cfhukuvp3efhzX2MZ2ot\nLKNMM2PRMhatO+/cbCN6AP30GG4ANif5J+AXsy8udblqVb16uQ+tqrf2MQZJWpHjjuvNiL7kEmdE\n96ufHsOxi71eVcet6oi2fX57DJL6cvrp8KEPTfc9ooeyVtKoMDFI6peN6CE1n5N8NMkztvHezkne\nkOQ1/ZxUg7GW3DIWLWPRmo2Fjejts5Lm88nAe5pF885O8rdJPpHkX+g1lh9G777QkjRynBHdv356\nDLsAzwEeC/wMuKaqvj3EsS08v6UkSdtlmpfmHtb9GB4NPLqqrl7w+r7AD6vqh32PdDuYGCQNYlob\n0cOa4PYhYLG1Ch8JnNjPybQ6rCW3jEXLWLQWi4VLc6/cShLDk6vqwoUvVtW/AA9Y5kKSRlECH/6w\njeiVWEkp6dtV9dR+31ttlpIkrYZpu0f0sEpJ1yd52SInO4TebGhJGhuzS3NfcknXIxldK0kMbwc+\nmOS0JH/cPD5Fr79w9HCHp8VYS24Zi5axaC0Vi8XuEa35lk0MVXUd8Azgf9G7ref65vl+VfWdYQ5O\nkobBRvTSXBJD0lS67DJ4yUsm/x7Rw5rHcFFVHZTk/wJzd17RjXpWi4lB0mqbhkb0UJrPVXVQ8+fD\nmhv0zD5WeqMerTJryS1j0TIWrZXGwkb04vq5UY8kTRQb0YuzxyBpqk360tzej0GStsNll8GLXwxX\nXz15jehhTXDTiLGW3DIWLWPR6jcWz3wmHHGES3PPMjFIEjai57KUJEmNSVya21KSJA3AGdE9JoYx\nZC25ZSxaxqK1vbGYXZr7Pe+Z7qW5TQySNIeNaHsMkvQAk3SPaHsMkrQKpn1GtIlhDFlLbhmLlrFo\nrUYsprkRbWKQpEVMcyPaHoMkLWHcl+Z2rSRJWmVbt8I++8DnPz+ejWibz1PCWnLLWLSMRWs1Y7Fu\nHZxwwnQ1ok0MkrSMaWtEW0qSpBUY16W57TFI0hCNYyPaHsOUsJbcMhYtY9EaViyOOw7OO2/yl+Y2\nMUjSCk1LI9pSkiT1YdzuEW2PQZLWwDg1ou0xTAlryS1j0TIWrWHHYtKX5jYxSNJ2mORGtKUkSdpO\n43CPaEtJkrSGJnVGtIlhDFlLbhmLlrForVUsJnVpbhODJA1gEhvR9hgkaUCjvDS3PQZJ6sCkzYg2\nMYwha8ktY9EyFq0uYjFJjeihJ4YkL01ybZLvJHnnIu8fnGRrkm81j3cPe0yStNomqRE91B5DkgcB\n3wFeBHwP+DpweFVdO2efg4F3VNWhy3yWPQZJI2/UluYexR7D/sB1VXVTVd0DnAkctsh+fQ1akkbV\nJMyIHnZi2B24Zc72rc1rCx2YZCbJF5PsO+QxjT1ryS1j0TIWrS5jMQmN6B27HgDwTWDPqro7ySHA\n54C9F9tx06ZNrF+/HoB169axYcMGNm7cCLR/Edyeru1ZozKeLrdnZmZGajxdbs/MzHR6/sc/fjPP\nfjb84hcbeehD1/b8mzdv5rTTTgO4///Lfg27x3AA8JdV9dJm+11AVdUJSxzzXeA3qurOBa/bY5Ck\nPo1ij+HrwJOT7JXkwcDhwLlzd0iy25zn+9NLVnciSerEUBNDVd0HvBU4H7gKOLOqrklyVJI3Nbu9\nMsmVSS4FPgj8wTDHNAkWllGmmbFoGYuWsRjM0HsMVfVl4KkLXvvInOcnAycPexySpJVxrSRJmmCj\n2GOQJI0ZE8MYsn7aMhYtY9EyFoMxMUiS5rHHIEkTzB6DJGlgJoYxZP20ZSxaxqJlLAZjYpAkzWOP\nQZImmD0GSdLATAxjyPppy1i0jEXLWAzGxCBJmscegyRNMHsMkqSBmRjGkPXTlrFoGYuWsRiMiUGS\nNI89BkmaYPYYJEkDMzGMIeunLWPRMhYtYzEYE4MkaR57DJI0wewxSJIGZmIYQ9ZPW8aiZSxaxmIw\nJgZJ0jz2GCRpgtljkCQNzMQwhqyftoxFy1i0jMVgTAySpHnsMUjSBLPHIEkamIlhDFk/bRmLlrFo\nGYvBmBgkSfPYY5CkCWaPQZI0MBPDGLJ+2jIWLWPRMhaDMTFIkuaxxyBJE8wegyRpYCaGMWT9tGUs\nWsaiZSwGY2KQJM1jj0GSJpg9BknSwEwMY8j6actYtIxFy1gMxsQgSZrHHoMkTTB7DJKkgQ09MSR5\naZJrk3wnyTu3sc9JSa5LMpNkw7DHNO6sn7aMRctYtIzFYIaaGJI8CPgw8B+ApwNHJHnagn0OAZ5U\nVU8BjgJOGeaYJsHMzEzXQxgZxqJlLFrGYjDD/sawP3BdVd1UVfcAZwKHLdjnMOB0gKq6GNg1yW5D\nHtdY27p1a9dDGBnGomUsWsZiMMNODLsDt8zZvrV5bal9bltkH0nSGrH5PIZuvPHGrocwMoxFy1i0\njMVghnq5apIDgL+sqpc22+8CqqpOmLPPKcAFVXVWs30tcHBVbVnwWV6rKknbod/LVXcc1kAaXwee\nnGQv4PvA4cARC/Y5F3gLcFaTSLYuTArQ/w8mSdo+Q00MVXVfkrcC59MrW328qq5JclTv7Tq1qr6U\n5GVJrgd+Chw5zDFJkpY2NjOfJUlrYyyazyuZJDcNkuyR5CtJrkpyRZK3dT2mLiV5UJJvJTm367F0\nLcmuSc5Ock3z9+O5XY+pC0n+JMmVSS5P8pkkD+56TGspyceTbEly+ZzXHpHk/CTfTvI/k+y63OeM\nfGJYySS5KXIv8KdV9XTgQOAtUxwLgKOBq7sexIg4EfhSVe0DPBO4puPxrLkkjwP+GHh2Ve1Hr1R+\neLejWnOfpPd/5VzvAv65qp4KfAX4r8t9yMgnBlY2SW4qVNXtVTXTPP8JvX/8UznnI8kewMuAj3U9\nlq4leTjw/Kr6JEBV3VtVP+54WF3ZAdg5yY7AQ4HvdTyeNVVVFwF3LXj5MOBTzfNPAb+z3OeMQ2JY\nySS5qZNkPbABuLjbkXTmb4A/A2ySwROAO5J8simtnZrk33U9qLVWVd8D3g/cTG+i7Naq+uduRzUS\nfm32Ss+quh34teUOGIfEoAWS7AKcAxzdfHOYKkleDmxpvj2leUyzHYFnAydX1bOBu+mVD6ZKknX0\nfjveC3gcsEuSV3c7qpG07C9T45AYbgP2nLO9R/PaVGq+Ip8DfLqqPt/1eDryPODQJDcAZwAvTHJ6\nx2Pq0q3ALVX1jWb7HHqJYtr8e+CGqrqzqu4D/gfwmx2PaRRsmV1/LsljgB8sd8A4JIb7J8k1Vxgc\nTm9S3LT6BHB1VZ3Y9UC6UlXHVNWeVfVEen8fvlJVr+t6XF1pygS3JNm7eelFTGdT/mbggCQ7JQm9\nOExdE54Hfos+F9jUPH89sOwvlMOe+TywbU2S63hYnUjyPOA1wBVJLqX3lfCYqvpytyPTCHgb8Jkk\nvwLcwBROFK2qS5KcA1wK3NP8eWq3o1pbST4LbAQemeRm4FjgeODsJG8AbgJ+f9nPcYKbJGmucSgl\nSZLWkIlBkjSPiUGSNI+JQZI0j4lBkjSPiUGSNI+JQZI0j4lB2oYkT0nyxWYd+28kOTPJo5McnGRr\ns2Ddpc2fv9Ucs1OSzc29Iv5Pkqcs+My/SfJnSX49ySe7+cmkpY38zGepC0keAnwReHtVfal57QXA\no5tdLqyqQxc59A3AP1bVL5OcQW/Jjr9qjg/wSuDAqro1ye5J9qiqW4f980j98BuDpl6S/57kzXO2\nj6W3xMRXZ5MCQFVdWFWzaxBta0XX19CuRXMm828U8wLgxjmJ4AtM341kNAZMDBKcxfz1Y34feBrw\nzSWOef6CUtITmnWKnlBVNwNU1ZXAfUme0RxzOL3VYGd9A3j+qv0U0iqxlKSpV1UzTe/gMfRuYnIn\nD7wL1kIPKCUleSywdcF+ZwKHJ7ma3p2z3jvnvR/Qu2+ANFJMDFLP2cCrgMfQ+wbxU3qrVPbjZ8BO\nC147k97KwBcCl1XVD+e8t1NzjDRSLCVJPf9Ar9Tze/SSxBnAgUkOmd0hyfOT7Du7ufADqmorsENz\n35DZ124A7qC39PEZCw7ZG7hyNX8IaTWYGCSgaSo/DLi1qrZU1c+BVwBvay5XvRL4z8Dsb/wHLegx\n/G7z+vnAQQs+/gzgqfTuKDbXC+ld+SSNFO/HIK2iJM+id4nr65fZ78HAZuCgqvrlWoxNWim/MUir\nqKouBS5o5iwsZU/gXSYFjSK/MUiS5vEbgyRpHhODJGkeE4MkaR4TgyRpHhODJGme/w9CYQ9RD7Ux\nvQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7fb5280aca20>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pylab as p\n",
+ "\n",
+ "#Variabe declaration\n",
+ "VCE_Q=8.0; #Q-point collector emitter voltage, V\n",
+ "IC_Q=1; #Q-point collector current, mA\n",
+ "ic_positive_peak=1.5; #Collector current at positive peak of signal, mA\n",
+ "ic_negative_peak=0.5; #Collector current at negative peak of signal, mA\n",
+ "vce_positive_peak=7; #Collector emitter voltage at positive peak of signal, V\n",
+ "vce_negative_peak=9; #Collector emitter voltage at negative peak of signal, V\n",
+ "\n",
+ "#Plot\n",
+ "vce_plot=[vce_positive_peak,vce_negative_peak]; #Plot variable of vce\n",
+ "ic_plot=[ic_positive_peak,ic_negative_peak]; #Plot variable of ic\n",
+ "\n",
+ "p.xlim(0,10)\n",
+ "p.ylim(0,2)\n",
+ "p.plot(vce_plot,ic_plot);\n",
+ "p.xlabel(\"vCE(V)\");\n",
+ "p.ylabel(\"iC(mA)\");\n",
+ "p.title(\"a.c load line\");\n",
+ "p.grid();\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.8 : Page number 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage gain= 24.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "RC=2.0; #Collector resistor, kΩ\n",
+ "Rin=1.0; #Input resistance, kΩ\n",
+ "beta=60.0; #Base current amplification factor\n",
+ "RL=0.5; #Load resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "RAC=(RC*RL)/(RC+RL); #a.c load resistor, kΩ\n",
+ "Av=beta*(RAC/Rin); #Voltage gain\n",
+ "\n",
+ "#Results\n",
+ "print(\"Voltage gain= %d.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.9 : Page number 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage= 200mV.\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "#Variable declaration\n",
+ "V_in=1.0; #Input voltage , mV\n",
+ "RC=10.0; #Collector resistor, kΩ\n",
+ "Rin=2.5; #Input resistance, kΩ\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "RL=10.0; #Load resistor, kΩ\n",
+ "\n",
+ "#Calculations\n",
+ "RAC=(RC*RL)/(RC+RL); #Effective load, kΩ\n",
+ "Av=beta*(RAC/Rin); #Voltage gain\n",
+ "\n",
+ "V_out=V_in*Av; #Output voltage, V\n",
+ "\n",
+ "#Results\n",
+ "print(\"Output voltage= %dmV.\"%V_out);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.10 : Page number 256-257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Beta= 100.\n",
+ "Input impedance=2 kΩ.\n",
+ "a.c load=3.3 kΩ.\n",
+ "Voltage gain= 165.\n",
+ "Power gain=16500.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "change_in_IB=10.0; #Change in base current, 𝜇A\n",
+ "change_in_IC=1.0; #Change in collector current, mA\n",
+ "change_in_VBE=0.02; #Change in Base-emitter voltage, V\n",
+ "RC=5.0; #Collector resistor, kΩ\n",
+ "RL=10.0; #Emitter resistor, kΩ\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "beta=(change_in_IC*1000)/change_in_IB; #Base current amplification factor\n",
+ "\n",
+ "#(ii)\n",
+ "Rin=(change_in_VBE/change_in_IB)*1000; #Input impedance, kΩ\n",
+ "\n",
+ "#(iii)\n",
+ "RAC=round((RC*RL)/(RC+RL),1); #a.c load, kΩ\n",
+ "\n",
+ "#(iv)\n",
+ "Av=beta*RAC/Rin; #Voltage gain\n",
+ "\n",
+ "#(v)\n",
+ "Ap=beta*Av; #Power gain\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Beta= %d.\"%beta);\n",
+ "print(\"Input impedance=%d kΩ.\"%Rin);\n",
+ "print(\"a.c load=%.1f kΩ.\"%RAC);\n",
+ "print(\"Voltage gain= %d.\"%Av);\n",
+ "print(\"Power gain=%d.\"%Ap);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.11 : Page number 257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=200mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "RC=3.0; #Collector resistor,kΩ\n",
+ "RL=6.0; #Load resistor, kΩ\n",
+ "Rin=0.5; #Input impedance, kΩ\n",
+ "Vin=1; #Input voltage, mV\n",
+ "\n",
+ "#Calculation\n",
+ "RAC=(RC*RL)/(RC+RL); #a.c load, kΩ\n",
+ "Av=beta*RAC/Rin; #Voltage gain\n",
+ "Vout=Vin*Av; #Output voltage, V\n",
+ "\n",
+ "#Results\n",
+ "print(\"Output voltage=%dmV\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.12 : Page number 257-258"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The circuit is not operating properly.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VT=6.0; #Collector potential, V\n",
+ "R1=1.0; #Resistor R1, kΩ\n",
+ "R2=2.0; #Resistor R2, kΩ\n",
+ "VB_found=4.0; #Measured base voltage, V\n",
+ "\n",
+ "#Calculations\n",
+ "VB=(VT*R1)/(R1+R2); #Theoretical base voltage, V\n",
+ "\n",
+ "if(VB_found==VB):\n",
+ " print(\"The circuit is operating properly.\");\n",
+ "else:\n",
+ " print(\"The circuit is not operating properly.\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.13 : Page number 258-259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a.c emitter resistance= 38.46 Ω.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "R1=40.0; #Resistor R1, kΩ\n",
+ "R2=10.0; #Resistor R2, kΩ\n",
+ "RC=6.0; #Collector resistor, kΩ\n",
+ "RE=2.0; #Emitter resistor, kΩ\n",
+ "beta=80; #Base current amplification factor\n",
+ "VBE=0.7; #Base emitter voltage, V\n",
+ "\n",
+ "#Calculations\n",
+ "V2=(VCC*R2)/(R1+R2); #Voltage across resistor R2, V\n",
+ "VE=V2-VBE; #Emitter voltage, V\n",
+ "IE=VE/RE; #Emitter current, mA\n",
+ "re=25/IE; #a.c emitter resistance, Ω\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"a.c emitter resistance= %.2f Ω.\"%re);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.14 : Page number 262-263"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i)Voltage gain= 360.\n",
+ "(ii)Voltage gain= 5.37.\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "R1=150.0; #Resistor R1, kΩ\n",
+ "R2=20.0 #Resistor R2, kΩ\n",
+ "RC=12.0; #Collector resistor, kΩ\n",
+ "RE=2.2; #Emitter resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "V2=round(VCC*R2/(R1+R2),2); #Voltage across R2, V\n",
+ "VE=round(V2-VBE,2); #Voltage across emitter resistor, V\n",
+ "IE=round(VE/RE,2); #Emitter current, mA\n",
+ "re=round(25/IE,1); #a.c emitter resistance, Ω\n",
+ "\n",
+ "\n",
+ "#(i)\n",
+ "#CE(emitter capacitor) connected in the circuit:\n",
+ "Av=(RC*1000)/re; #Voltage gain for emitter capacitor connected.\n",
+ "\n",
+ "print(\"(i)Voltage gain= %d.\"%Av);\n",
+ "\n",
+ "#(ii)\n",
+ "#CE(emitter capacitor) removed from the circuit:\n",
+ "Av=(RC*1000)/(re+RE*1000); #Voltage gain for emitter capacitor removed.\n",
+ "\n",
+ "print(\"(ii)Voltage gain= %.2f.\"%Av);\n",
+ "\n",
+ "#Note: The answer in the text book has been approximated to 5.38 but it's actually coming 5.37.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.15 : Page number 263"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage gain= 120.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "RC=6.0; #Collector resistor, kΩ\n",
+ "RL=12.0; #Load resistor, kΩ\n",
+ "re=33.3; #a.c emitter resistance, Ω\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "RAC=RC*RL/(RC+RL); #a.c effective load, kΩ\n",
+ "Av=RAC*1000/re; #Voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"Voltage gain= %d.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.16 : Page number 263-264"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) a.c emitter resistance=250 Ω.\n",
+ "(ii) Voltage gain =80.\n",
+ "(iii) d.c voltage across input capacitor= 1V and emitter capacitor=0.3V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=9.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "R1=240.0; #Resistor R1, kΩ\n",
+ "R2=30.0 #Resistor R2, kΩ\n",
+ "RC=20.0; #Collector resistor, kΩ\n",
+ "RE=3.0; #Emitter resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "V2=round(VCC*R2/(R1+R2),1); #Voltage across R2, V\n",
+ "VE=round(V2-VBE,1); #Voltage across emitter resistor, V\n",
+ "IE=round(VE/RE,1); #Emitter current, mA\n",
+ "re=25/IE; #a.c emitter resistance, Ω\n",
+ "\n",
+ "#(ii)\n",
+ "Av=RC*1000/re; #Voltage gain\n",
+ "\n",
+ "#(iii)\n",
+ "V_C_in=V2; #d.c voltage across input capacitor, V\n",
+ "V_C_E=VE; #d.c vooltage across emitter capacitor, V\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"(i) a.c emitter resistance=%d Ω.\"%re);\n",
+ "print(\"(ii) Voltage gain =%d.\"%Av);\n",
+ "print(\"(iii) d.c voltage across input capacitor= %dV and emitter capacitor=%.1fV.\"%(V_C_in,V_C_E));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.17 : Page number 264-265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) D.C bias levels: V2=3V, VE=2.3V, IE=2.3mA, IC=2.3mA, IB=0.023mA and VC=10.4V.\n",
+ "(ii) D.c voltage across: Cin=3V and CE=2.3V and CC=10.4V.\n",
+ "(iii) a.c emitter resistance=10.9Ω.\n",
+ "(iv) Voltage gain=61.2.\n",
+ "(v) VC>VE. Therefore, the transistor is in active state.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "R1=40.0; #Resistor R1, kΩ\n",
+ "R2=10.0 #Resistor R2, kΩ\n",
+ "RC=2.0; #Collector resistor, kΩ\n",
+ "RE=1.0; #Emitter resistor, kΩ\n",
+ "RL=1.0; #Load resistor, kΩ\n",
+ "beta=100; #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) D.C bias levels\n",
+ "V2=VCC*R2/(R1+R2); #Voltage across R2, V\n",
+ "VE=round(V2-VBE,1); #Voltage across emitter resistor, V\n",
+ "IE=round(VE/RE,1); #Emitter current, mA\n",
+ "IC=IE; #Collector current, mA\n",
+ "IB=IC/beta; #Base current, mA\n",
+ "VC=VCC-IC*RC; #Collector voltage, V\n",
+ "print(\"(i) D.C bias levels: V2=%dV, VE=%.1fV, IE=%.1fmA, IC=%.1fmA, IB=%.3fmA and VC=%.1fV.\"%(V2,VE,IE,IC,IB,VC));\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "Cin_V=V2; #Voltage across Cin capacitor, V\n",
+ "CE_V=VE; #Voltage across CE capacitor, V \n",
+ "CC_V=VC; #Voltage across CC capacitor, V\n",
+ "print(\"(ii) D.c voltage across: Cin=%dV and CE=%.1fV and CC=%.1fV.\"%(Cin_V,CE_V,CC_V));\n",
+ "\n",
+ "#(iii)\n",
+ "re=round(25/IE,1); #a.c emitter resistance, Ω\n",
+ "print(\"(iii) a.c emitter resistance=%.1fΩ.\"%re);\n",
+ "\n",
+ "\n",
+ "#(iv)\n",
+ "RAC=round(RC*RL/(RC+RL),3); #Total a.c collector resistance, kΩ\n",
+ "Av=RAC/(re/1000); #Voltage gain\n",
+ "print(\"(iv) Voltage gain=%.1f.\"%Av);\n",
+ "\n",
+ "#(v)\n",
+ "print(\"(v) VC>VE. Therefore, the transistor is in active state.\" );\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.18 : page number 265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The power gain = 26400 and output power = 1.584W.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=132.0; #Voltage gain\n",
+ "beta=200.0; #Base current amplification factor\n",
+ "P_in=60.0; #Input power, 𝜇W\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "Ap=beta*Av; #Power gain\n",
+ "P_out=Ap*(P_in/10**6); #Output power, W\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The power gain = %d and output power = %.3fW.\"%(Ap,P_out));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.19 : page number 265-266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Current gain=49\n",
+ "(ii) Voltage gain=2.14\n",
+ "(iii) Power gain=105.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "IB=200.0; #Base current, microampere\n",
+ "IE=10.0; #Emitter current, mA\n",
+ "R1=27.0; #Resistor R1, kilo ohm\n",
+ "R2=13.0 #Resistor R2, kilo ohm\n",
+ "RC=4.7; #Collector resistor, kilo ohm\n",
+ "RE=2.2; #Emitter resistor, kilo ohm\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "IC=IE-(IB/1000); #Collector current, mA\n",
+ "beta=IC/(IB/1000); #Current gain\n",
+ "\n",
+ "print(\"(i) Current gain=%d\"%beta);\n",
+ "\n",
+ "#(ii)\n",
+ "#a.c emitter resistance is neglected, voltage gain=(collector resistor)/(emitter resistor)\n",
+ "Av=RC/RE; #Voltage gain\n",
+ "\n",
+ "print(\"(ii) Voltage gain=%.2f\"%Av);\n",
+ "\n",
+ "#(iii)\n",
+ "Ap=round(beta*Av,0); #Power gain\n",
+ "\n",
+ "#Results\n",
+ "print(\"(iii) Power gain=%d.\"%Ap);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.20 : Page number 266-267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The input impedance of the amplifier circuit= 3.46 kΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=30.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base emitter voltage, V\n",
+ "R1=45.0; #Resistor R1, kΩ\n",
+ "R2=15.0 #Resistor R2, kΩ\n",
+ "RC=10.0; #Collector resistor,kΩ\n",
+ "RE=7.5; #Emitter resistor, kΩ\n",
+ "beta=200.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "V2=round(VCC*R2/(R1+R2),1); #Voltage across R2, V (Voltage divider rule)\n",
+ "VE=V2; #Voltage across emitter resistor(base-emitter voltage is neglected), V\n",
+ "IE=VE/RE; #Emitter current, mA (OHM's LAW)\n",
+ "re=25/IE; #a.c emitter resistance, ohm\n",
+ "Zin_base=(beta*re)/1000; #input impedance of transistor base,kΩ\n",
+ "R1_R2=(R1*R2)/(R1+R2); #Parallel resistance between R1 and R2, kΩ\n",
+ "Zin=((R1_R2)*Zin_base)/(R1_R2+Zin_base); #Input impedance of the amplifier circuit, kΩ\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The input impedance of the amplifier circuit= %.2f kΩ.\"%Zin); \n",
+ "\n",
+ "#Note: The input impedance of the amplifier circuit is approximated as 3.45 kΩ in the text book, but actually it's 3.46 kΩ.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.21 : Page Number 268-269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain of the swamped amplifier= 4.67.\n",
+ "Input impedance of transistor base of the swamped amplifier= 48.21 kΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V.\n",
+ "RC=1.5; #Collector resistor, kΩ.\n",
+ "R1=18.0; #Resistor R1, kΩ.\n",
+ "R2=4.7; #Resistor R2, kΩ.\n",
+ "RE1=300.0; #Emitter resistor 1, Ω.\n",
+ "RE2=900.0; #Emitter resistor 2, Ω.\n",
+ "VBE=0.7; #Base-emitter voltage, V.\n",
+ "beta=150.0; #Base current amplification factor.\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "V2=round(VCC*R2/(R1+R2),1); #d.c voltage across R2, V. (Voltage divider rule)\n",
+ "VE=round(V2-VBE,1); #d.c voltage across RE, V.\n",
+ "IE=round((VE/(RE1+RE2))*1000,2); #d.c emitter current, mA.(OHM'S LAW)\n",
+ "re=round(25/IE,1); #a.c emitter resistance, Ω.\n",
+ "Av=RC*1000/(re+RE1); #Voltage gain\n",
+ "Zin_base=(beta*(re+RE1))/1000; #Input impedance of transistor base, kΩ.\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The voltage gain of the swamped amplifier= %.2f.\"%Av);\n",
+ "print(\"Input impedance of transistor base of the swamped amplifier= %.2f kΩ.\"%Zin_base);\n",
+ "\n",
+ "#Note:In the textbook Av is approximated to 4.66and Zin_base to 48.22 kilo ohm, but the actual answers come as 4.67 and 48.21 kilo ohm.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.22 : Page number 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The percentage change from the original value= 6.42%(decrease)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "RC=1.5; #Collector resistor, kΩ.\n",
+ "RE1=300.0; #Emitter resistor 1, Ω.\n",
+ "re=21.5; #a.c emitter resistance, Ω.\n",
+ "\n",
+ "#Calculations\n",
+ "Av=round(RC*1000/(re+RE1),2); #Voltage gain.\n",
+ "Av_1=round(RC*1000/(2*re+RE1),2); #Voltage gain when re doubles.\n",
+ "change_in_gain=round(Av-Av_1,2); #Change in voltage gain.\n",
+ "change_percentage=change_in_gain*100/Av; #Change percentage\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "if(change_in_gain>0):\n",
+ " print(\"The percentage change from the original value= %.2f%%(decrease)\"%change_percentage);\n",
+ "else:\n",
+ " print(\"The percentage change from the original value= %.2f%%(increase)\"%change_percentage);\n",
+ "\n",
+ "\n",
+ "#Note: The percentage has been approximated in the text book as 6.22%, but the answer comes as 6.42%.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.23 : Page number 269-270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) input impedance of transistor base for standard amplifier= 5 kilo ohm\n",
+ " input impedance of transistor base for swamped amplifier= 47 kilo ohm\n",
+ "(ii) input impedance for standard amplifier= 1.33 kilo ohm\n",
+ " input impedance for swamped amplifier= 1.74 kilo ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base emitter voltage, V\n",
+ "R1=10.0; #Resistor R1, kilo ohm\n",
+ "R2=2.2; #Resistor R2, kilo ohm\n",
+ "RC=4.0; #Collector resistor, kilo ohm\n",
+ "RE=1.1; #Emitter resistor, kilo ohm\n",
+ "beta=200.0; #Base current amplification factor\n",
+ "RE1=210.0; #Emitter resistor 1 of swamped amplifier, ohm.\n",
+ "RE2=900.0; #Emitter resistor 2 of swamped amplifier, ohm.\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "V2=round(VCC*R2/(R1+R2),1); #d.c voltage across R2, V. (Voltage divider rule)\n",
+ "VE=round(V2-VBE,1); #d.c voltage across RE, V.\n",
+ "IE=(VE/RE); #d.c emitter current, mA.(OHM'S LAW)\n",
+ "re=25/IE; #a.c emitter resistance, ohm.\n",
+ "\n",
+ "\n",
+ "#(i) Zin_base:\n",
+ "Zin_base_standard=(beta*re)/1000; #input impedance of transistor base for standard amplifier , kilo ohm.\n",
+ "Zin_base_swamped=(beta*(re+RE1))/1000; #input impedance of transistor base for swamped amplifier, kilo ohm.\n",
+ "\n",
+ "\n",
+ "#(ii) Zin:\n",
+ "#input impedance for standard amplifier circuit\n",
+ "Zin_standard=(((R1*R2)/(R1+R2))*Zin_base_standard)/(Zin_base_standard +((R1*R2)/(R1+R2))); #kilo ohm\n",
+ "\n",
+ "#input impedance for standard amplifier circuit\n",
+ "Zin_swamped=(((R1*R2)/(R1+R2))*Zin_base_swamped)/(Zin_base_swamped +((R1*R2)/(R1+R2))); #kilo ohm\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"(i) input impedance of transistor base for standard amplifier= %d kilo ohm\"%Zin_base_standard);\n",
+ "print(\" input impedance of transistor base for swamped amplifier= %d kilo ohm\"%Zin_base_swamped);\n",
+ "print(\"(ii) input impedance for standard amplifier= %.2f kilo ohm\"%Zin_standard);\n",
+ "print(\" input impedance for swamped amplifier= %.2f kilo ohm\"%Zin_swamped);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.24 : Page number 270-271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain of standard amplifier=160.\n",
+ "The voltage gain of swamped amplifier=17.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "RC=4.0; #Collector resistor, kilo ohm\n",
+ "re=25.0; #a.c emitter resistance, ohm (calculated in example 10.23)\n",
+ "RE_1=210.0; #Emitter resistor 1 of swamped amplifier,ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Av_standard=(RC*1000)/re; #Voltage gain of standard common emitter amplifier\n",
+ "Av_swamped=(RC*1000)/(re+RE_1); #Voltage gain of swamped amplifier\n",
+ "\n",
+ "#Results\n",
+ "print(\"The voltage gain of standard amplifier=%d.\"%Av_standard);\n",
+ "print(\"The voltage gain of swamped amplifier=%d.\"%Av_swamped);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.26 : Page number 273-274"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The required input signal voltage =2.5mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_0=1000.0; #Open circuit voltage gain\n",
+ "R_in=2.0; #Input resistance, kilo ohm\n",
+ "R_out=1.0; #Output resistance, ohm\n",
+ "RL=4; #Load resistor across the output, ohm\n",
+ "I_2=0.5; #Output signal current, A.\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#Since A_0*(I_1*R_in) = I_2*(R_out+RL)\n",
+ "I_1=I_2*(R_out+RL)/(A_0*(R_in*1000)); #Input current, A\n",
+ "V_1=I_1*(R_in*1000); #Input signal voltage, V\n",
+ "V_1=V_1*1000; #Input signal voltage, mV\n",
+ "\n",
+ "print(\"The required input signal voltage =%.1fmV\"%V_1);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.27 : Page number 274"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The magnitude of output voltage = 4.9V\n",
+ "The power gain =98e-06.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_0=1000.0; #Open circuit voltage gain\n",
+ "R_in=7.0; #Input resistance, kilo ohm\n",
+ "R_out=15.0; #Output resistance, ohm\n",
+ "RL=35.0; #Load resistor across the output, ohm\n",
+ "R_s=3.0; #Internal resistance, kilo ohm\n",
+ "E_s=10.0; #Input signal voltage, mV.\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "I_1=E_s*(10**-3)/(R_s*1000+R_in*1000); #Input current, A\n",
+ "V_1=I_1*(R_in*1000); #Voltage across input resistance, V\n",
+ "\n",
+ "#Since, A_v=V_2/V_1 = A_0*RL/(R_out+RL)\n",
+ "A_v=A_0*RL/(R_out+RL); #Voltage gain\n",
+ "V_2=A_v*V_1; #Outout voltage, V\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "P_2=V_2**2/RL; #Output power, W\n",
+ "P_1=V_1**2/(R_in*1000); #Input power, W\n",
+ "A_p=round(P_2/P_1,-6); #Power gain\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The magnitude of output voltage = %.1fV\"%V_2);\n",
+ "print(\"The power gain =%de-06.\"%(A_p/10**6));\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.28 : Page number 274-275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Necessary input signal voltage= 12.5mV\n",
+ "Input signal current =4.17 μA\n",
+ "Power gain = 9600.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_v=80.0; #Voltage gain\n",
+ "V_2=1.0; #Output voltage, V\n",
+ "A_i=120.0; #Current gain\n",
+ "RL=2; #Load resistor, kilo ohm\n",
+ "\n",
+ "#Calculation\n",
+ "V_1=(V_2/A_v)*1000; #Input signal voltage, mV\n",
+ "\n",
+ "#Since, A_i=A0*R_in/(R_out+RL) and A_v=A0*RL/(R_out+RL)\n",
+ "#So, A_v/A_i=RL/R_in\n",
+ "R_in=RL*A_i/A_v; #Input resistance, kilo ohm\n",
+ "I_1=V_1/R_in; #Input current, μA\n",
+ "A_p=A_i*A_v; #Power gain\n",
+ "\n",
+ "#Results\n",
+ "print(\"Necessary input signal voltage= %.1fmV\"%V_1);\n",
+ "print(\"Input signal current =%.2f μA\"%I_1);\n",
+ "print(\"Power gain = %d.\"%A_p);\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter11_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter11_3.ipynb
new file mode 100644
index 00000000..6e0fb200
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter11_3.ipynb
@@ -0,0 +1,1025 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8e425c9c2dfbfee43b3a89e44b0fd7936ba869da73ac3c372e9b23848f1cded1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#CHAPTER 11 : MULTISTAGE TRANSISTOR AMPLIFIERS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 11.1 : Page number 285"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import log10\n",
+ "#Variable declaration\n",
+ "#(i)\n",
+ "A_v=30; #Voltage gain\n",
+ "\n",
+ "#(ii)\n",
+ "A_p=100; #Power gain\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "A_v_dB=20*log10(A_v); #Voltage gain, dB\n",
+ "A_p_dB=10*log10(A_p); #Power gain, dB\n",
+ "\n",
+ "#Results\n",
+ "print(\"(i) Voltage gain in dB=%.2fdB\"%A_v_dB);\n",
+ "print(\"(ii) Power gain in dB=%ddB\"%A_p_dB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Voltage gain in dB=29.54dB\n",
+ "(ii) Power gain in dB=20dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2 : Page number 285-286\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#(i)\n",
+ "A_p_dB=40.0; #Power gain in dB\n",
+ "A_p_b=A_p_dB/10; #Power gain in bel\n",
+ "A_p=10**A_p_b; #Power gain in number\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Power gain in number=%d\"%A_p);\n",
+ "\n",
+ "#(ii)\n",
+ "A_p_dB=43.0; #Power gain in dB\n",
+ "A_p_b=A_p_dB/10; #Power gain in bel\n",
+ "A_p=round(10**A_p_b,-4); #Power gain in number\n",
+ "\n",
+ "#Result\n",
+ "print(\"(ii) Power gain in number=%d\"%A_p);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Power gain in number=10000\n",
+ "(ii) Power gain in number=20000\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3 : Page number 286\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "Av_1=100.0; #Voltage gain of stage 1\n",
+ "Av_2=200.0; #Voltage gain of stage 2\n",
+ "Av_3=400.0; #Voltage gain of stage 3\n",
+ "\n",
+ "#Calculations\n",
+ "Av_1_dB=20*log10(Av_1); #Voltage gain of stage 1, dB\n",
+ "Av_2_dB=20*log10(Av_2); #Voltage gain of stage 2, dB\n",
+ "Av_3_dB=20*log10(Av_3); #Voltage gain of stage 3, dB\n",
+ "\n",
+ "Av_T=Av_1_dB+Av_2_dB+Av_3_dB; #Total voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"The total voltage gain=%ddB\"%Av_T);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total voltage gain=138dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4 : Page number 286\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "A_p_absolute=30.0; #Absolute gain of each stage\n",
+ "number_of_stages=5.0; #number of stages\n",
+ "negative_feedback=10.0; #negative feedback, dB\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "A_p_dB=round(10*log10(A_p_absolute),2); #Power gain of one stage. dB\n",
+ "A_p_T=number_of_stages * A_p_dB; #Total power gain, dB\n",
+ "\n",
+ "#(ii)\n",
+ "A_p_resultant=A_p_T-negative_feedback; #Resultant power gain with negative feedback, dB\n",
+ "\n",
+ "#Results\n",
+ "print(\"The total power gain = %.2fdB.\"%A_p_T);\n",
+ "print(\"The resultant power gain with negative feedback = %.2fdB.\"%A_p_resultant);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total power gain = 73.85dB.\n",
+ "The resultant power gain with negative feedback = 63.85dB.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.5 : Page number 286\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "P_out_2kHz=1.5; #Output power at 2 kHz, W\n",
+ "P_out_20kHz=0.3; #Output power at 20 kHz, W\n",
+ "P_in=10.0; #Input power, mW\n",
+ "\n",
+ "#Calculations\n",
+ "A_p_dB_2kHz=10*log10(P_out_2kHz*1000/P_in); #dB power gain at 2 kHz\n",
+ "A_p_dB_20kHz=10*log10(P_out_20kHz*1000/P_in); #dB power gain at 20 kHz\n",
+ "Fall_in_gain=A_p_dB_2kHz-A_p_dB_20kHz; #Fall in gain from 2kHz to 20kHz\n",
+ "\n",
+ "#Results\n",
+ "print(\"The fall in gain from 2kHz to 20kHz=%.2fdB\"%Fall_in_gain);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fall in gain from 2kHz to 20kHz=6.99dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.6 : Page number 287\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "A_v=15.0; #Voltage gain, dB\n",
+ "V_1=0.8; #Input signal voltage, V\n",
+ "\n",
+ "#Calculations\n",
+ "#Since, Av(in decibel)=20*log10(V_2/V_1),\n",
+ "V_2=V_1*(10**(A_v/20)); #Output voltage, V\n",
+ "\n",
+ "#Results\n",
+ "print(\"The output voltage= %.1fV.\"%V_2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output voltage= 4.5V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.7 : Page number 287\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "A_0_dB=70.0; #Open circuit voltage gain, dB\n",
+ "A_v_dB=67.0; #Voltage gain, dB\n",
+ "R_out=1.5; #Output resistance, kilo ohm\n",
+ "\n",
+ "#Calculations\n",
+ "#Since, A_0_dB-A_v_dB=20*log10(A_0/A_v)\n",
+ "ratio_A0_Av=round(10**((A_0_dB-A_v_dB)/20),2); #Ratio of open-circuit voltage gain to normal voltage gain\n",
+ "\n",
+ "#Since, A_v/A_0 = RL/(R_out+RL)\n",
+ "RL=R_out/(ratio_A0_Av-1); #Load resistor, kilo ohm\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The load resistance=%.2f kilo ohm.\"%RL);\n",
+ "\n",
+ "#Note: The value of load resistor is calculated to be 3.6585 kilo ohm and approximated to 3.66. But, in the text it has been approximated to 3.65.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The load resistance=3.66 kilo ohm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.8 : Page number 287\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RL=1.0; #Load resistance, kilo ohm\n",
+ "A_v=40.0; #Voltage gain, dB\n",
+ "V_in=10.0; #Input signal voltage, mV\n",
+ "\n",
+ "#Calcultaions\n",
+ "#(i)\n",
+ "#Since, A_v=20*log10(V_out/V_in)\n",
+ "V_out=V_in*(10**(A_v/20))/1000; #Output voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "P_L=(V_out**2/RL); #The load power, mW\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"(i)The output voltage is %dV.\"%V_out);\n",
+ "print(\"(ii)The load poweris %dmW.\"%P_L);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The output voltage is 1V.\n",
+ "(ii)The load poweris 1mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.9 : Page number 287-288\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "P_2=40.0; #Output power, W\n",
+ "R=10.0; #Resistance of speaker, ohm\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "A_p_dB=25.0; #Power gain, dB\n",
+ "#Since, A_p_dB=10*log10(P_2/P_1)\n",
+ "P_1=(P_2/10**(A_p_dB/10))*1000; #Input power, mW\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "A_v_dB=40.0; #Voltage gain, dB\n",
+ "\n",
+ "#Since, P=(V**2)/R,\n",
+ "V_2=(P_2*R)**0.5; #Output voltage, V\n",
+ "\n",
+ "#Since, A_v_dB=20*log10(V_2/V_1)\n",
+ "V_1=(V_2/10**(A_v_dB/20))*1000; #Input voltage, mV\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "\n",
+ "print(\"(i)The input power=%.1fmW.\"%P_1);\n",
+ "print(\"(ii)The input voltage=%dmV.\"%V_1);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The input power=126.5mW.\n",
+ "(ii)The input voltage=200mV.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.10 : Page number 288\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "A_v_max=2000.0; #Maximum voltage gain\n",
+ "f_max=2.0; #Frequency at which maximum voltage gain occurs,kHz\n",
+ "A_v=1414.0; #Voltage gain at 50 Hz and 10kHz\n",
+ "f1=50; #Lower frequency at which gain is 1414, Hz\n",
+ "f2=10; #Upper frequency at which gain is 1414, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, bandwidth is the range of frequency over which gain is greater than or equal to 70.7% of maximum gain\n",
+ "if((A_v/A_v_max)*100 ==70.7): \n",
+ " print(\"(i)The bandwidth is from %dHz to %dkHz.\"%(f1,f2));\n",
+ " print(\"(ii)The lower cut-off frequency=%dHz.\"%f1);\n",
+ " print(\"(iii)The upper cut-off frequency=%dkHz.\"%f2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The bandwidth is from 50Hz to 10kHz.\n",
+ "(ii)The lower cut-off frequency=50Hz.\n",
+ "(iii)The upper cut-off frequency=10kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11 : Page number 291\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "A_v=60.0; #Voltage gain of single stage amplifier\n",
+ "R_C=500.0; #Collector load, ohm\n",
+ "R_in=1.0; #Input impedance, kilo ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, there is no loading , second stage gain remains at A_v\n",
+ "#But, due to loading effect of input impedance of second stage, gain of first stage decreases\n",
+ "A_v_2=A_v; #Voltage gain of second stage\n",
+ "R_AC=round((R_C*R_in*1000)/(R_C+R_in*1000),0); #Effective load of first stage, ohm\n",
+ "A_v_1=A_v*R_AC/R_C; #Gain of first stage\n",
+ "A_v_T=A_v_1*A_v_2; #Total gain\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The total gain=%d.\"%A_v_T);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total gain=2397.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.12 : Page number 291-292\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Rin=1.0; #Input resistance, kilo ohm\n",
+ "beta=100.0; #base current amplification factor\n",
+ "RC=2.0; #Collector load, kilo ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "R_AC=(RC*Rin)/(RC+Rin); #Effective load on first stage, kilo ohm\n",
+ "A_v_1=round(beta*(R_AC/Rin),0); #Voltage gain of first stage\n",
+ "\n",
+ "#(ii)\n",
+ "A_v_2=round(beta*RC/Rin,0); #Voltage gain of second stage\n",
+ "\n",
+ "#(iii)\n",
+ "A_v_T=A_v_1*A_v_2; #Total voltage gain\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"(i)The voltage gain of first stage =%d.\"%A_v_1);\n",
+ "print(\"(ii)The voltage gain of second stage =%d.\"%A_v_2);\n",
+ "print(\"(iii)The total voltage gain =%d.\"%A_v_T);\n",
+ "\n",
+ "#Note: The approximation inthe text for A_v_1=66.66 is taken as 66 but here it has been taken 67 and therefore the total voltage is 13400 instead of 13200.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The voltage gain of first stage =67.\n",
+ "(ii)The voltage gain of second stage =200.\n",
+ "(iii)The total voltage gain =13400.\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.13 : Page number 292\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RC=10.0; #Collector load of single stage amplifier, kilo ohm\n",
+ "Rin=1.0; #Input resistance, kilo ohm\n",
+ "beta=100.0; #base current amplification factor\n",
+ "RL=100.0; #Load resistor, ohm\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "R_AC=round((RC*1000)*RL/(RC*1000+RL),-1); #Effective collector load,\n",
+ "A_v=beta*R_AC/(Rin*1000); #Voltage gain\n",
+ "\n",
+ "#Results\n",
+ "print(\"The voltage gain=%d.\"%A_v);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage gain=10.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.14 : Page number 292-293\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector suppply voltage, V\n",
+ "R1=10.0; #resistor R1, kilo ohm\n",
+ "R2=2.2; #resistor R2, kilo ohm\n",
+ "R3=10.0; #resistor R3, kilo ohm\n",
+ "R4=2.2; #resistor R4, kilo ohm\n",
+ "RC_1=3.6; #Collector resistor of first stage, kilo ohm\n",
+ "RC_2=4.0; #Collector resistor of second stage, kilo ohm\n",
+ "RE_1=900.0; #Emitter resistor of first stage, ohm\n",
+ "RE_2=1.0; #Emitter resistor of second stage, kilo ohm\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#Biasing potential for the second stage is the voltage across R4 resistor,\n",
+ "#so, by voltage divider rule:\n",
+ "VB=VCC*R4/(R3+R4); #Biasing potential for second stage,(Voltage across R4), V\n",
+ "\n",
+ "print(\"The biasing voltage for the second stage=%.1fV.\"%VB);\n",
+ "\n",
+ "#If coupling capacitor C_c is replaced by a wire, RC_1 and R3 become parallel\n",
+ "Req=round((RC_1*R3)/(RC_1+R3),2); #Equivalent resistance of R3 parallel with RC_1, kilo ohm\n",
+ "VB=VCC*R4/(Req+R4); #Biasing voltage if coupling capacitor is replaced by a wire, V\n",
+ "\n",
+ "print(\"The biasing voltage after replacing coupling capacitor by wire=%.2fV.\"%VB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The biasing voltage for the second stage=3.6V.\n",
+ "The biasing voltage after replacing coupling capacitor by wire=9.07V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.15 : Page number 293-294\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Function for calculating parallel resistance\n",
+ "def pr(r1,r2):\n",
+ " return (r1*r2)/(r1+r2);\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage, V\n",
+ "R1=22.0; #Resistor R1, kilo ohm\n",
+ "R2=3.3; #Resistor R2, kilo ohm\n",
+ "R3=5.0; #Resistor R3, kilo ohm\n",
+ "R4=1.0; #Resistor R4, kilo ohm\n",
+ "R5=15.0; #Resistor R5, kilo ohm\n",
+ "R6=2.5; #Resistor R6, kilo ohm\n",
+ "R7=5.0; #Resistor R7, kilo ohm\n",
+ "R8=1.0; #Resistor R8, kilo ohm\n",
+ "beta=200; #Base current amplification factor\n",
+ "RL=10.0; #Load resistor, kilo ohm\n",
+ "V_BE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#for 2nd stage\n",
+ "V_R6=round(VCC*R6/(R5+R6),2); #Voltage across R6, V (voltage divider rule)\n",
+ "V_R8=round(V_R6-V_BE,2); #Voltage across R8, V\n",
+ "IE_2=round(V_R8/R8,2); #Emitter current through R8, mA (OHM's LAW)\n",
+ "re_2nd_stage=round(25/IE_2,1); #a.c emitter resistance for 2nd stage, ohm\n",
+ "\n",
+ "#For 1st stage\n",
+ "V_R2=round(VCC*R2/(R1+R2),2); #Voltage across R2, V (voltage divider rule)\n",
+ "V_R4=round(V_R2-V_BE,2); #Voltage across R4, V\n",
+ "IE_1=round(V_R4/R4,2); #Emitter current through R4, mA (OHM's LAW)\n",
+ "re_1st_stage=round(25/IE_1,1); #a.c emitter resistance for 1st stage, ohm\n",
+ "\n",
+ "#(i)\n",
+ "Zin_base_2nd_stage=round((beta*re_2nd_stage)/1000,2); #input resistance of transistor base of 2nd stage, kilo ohm\n",
+ "Zin=round(pr(pr(R5,R6),Zin_base_2nd_stage),2); #Input impedance of the 2nd stage, kilo ohm\n",
+ "R_AC_1st_stage=round(pr(R3,Zin),2); #Effective collector load for 1st stage, kilo ohm\n",
+ "A_v_1=round(R_AC_1st_stage*1000/re_1st_stage,0); #voltage gain of 1st stage\n",
+ "\n",
+ "#(ii)\n",
+ "R_AC_2nd_stage=round(pr(R7,RL),2); #Effective collector load for 2nd stage, kilo ohm\n",
+ "A_v_2=round(R_AC_2nd_stage*1000/re_2nd_stage,1); #voltage gain of 2nd stage\n",
+ "\n",
+ "#(iii)\n",
+ "A_v_overall=A_v_1*A_v_2; #overall voltage gain\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "print(\"(i)The voltage gain of 1st stage=%.0f.\"%A_v_1);\n",
+ "print(\"(i)The voltage gain of 2nd stage=%.1f.\"%A_v_2);\n",
+ "print(\"(i)The overall voltage gain =%d.\"%A_v_overall);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The voltage gain of 1st stage=53.\n",
+ "(i)The voltage gain of 2nd stage=191.4.\n",
+ "(i)The overall voltage gain =10144.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.16 : Page number 297\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Primary_impedance=1000.0; #Primary impedance, ohm\n",
+ "Load_impedance=10.0; #Load impedance, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#since,for maximum power transfer primary impedance should be equal to output impedance\n",
+ "#and, impedance of secondary should be equal to load impedance\n",
+ "#therfore, primary_impedance/load_impedance=square of(primary to secondary turn ratio)\n",
+ "n=(Primary_impedance/Load_impedance)**0.5; #Primary to secondary turn ratio\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print('The primary to secondary turn ratio for maximum power transfer=%d.'%n);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The primary to secondary turn ratio for maximum power transfer=10.\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.17 : Page number 297\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RL=16.0; #Load resistor, ohm\n",
+ "R_p=10.0; #Output impedance of primary, kilo ohm\n",
+ "Vp=10.0; #Terminal voltage of the source, V\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, for maximum power transfer, the impedance of the primary should be equal to output impedance of the source\n",
+ "n=(R_p*1000/RL)**0.5; #Primary to secondary turns ratio\n",
+ "\n",
+ "#Since, power in a transformer remains constant,\n",
+ "#ratio of primary to secondary voltageis equal to primary to secondary turns ratio\n",
+ "Vs=Vp/n; #Voltage across the external load, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The primary to secondary turns ratio=%d.\"%n);\n",
+ "print(\"The voltage across the external load=%.1fV.\"%Vs);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The primary to secondary turns ratio=25.\n",
+ "The voltage across the external load=0.4V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.18 : Page number 297-298\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Rp=300.0; #D.C resistance of primary, ohm\n",
+ "RL=3.0; #Load resistance, ohm\n",
+ "R_out=3.0; #Ouput resistance of the transistor, kilo ohm \n",
+ "\n",
+ "#Calculation\n",
+ "#when no signal is applied, only Rp is seen to be the load.\n",
+ "#But, when a.c signal is applied, RL in secondary reflects as RL*(squre of turns ratio).\n",
+ "#Therefore, load is seen to be Rp in series with the reflected RL in primary.\n",
+ "#i.e, R_out=Rp+(n**2 * RL), where n is the turns ratio\n",
+ "n=((R_out*1000-Rp)/RL)**0.5; #turns ratio\n",
+ "\n",
+ "#Result\n",
+ "print(\"Turns ratio for maximum power transfer=%d.\"%n);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Turns ratio for maximum power transfer=30.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.19 : Page number 298"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "f=200.0; #Frequency, Hz\n",
+ "Z_out=10.0; #Output impedance of the transistor, kilo ohm\n",
+ "Z_in=2.5; #Input impedance of the next stage, kilo ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#For perfect impedance matching,\n",
+ "#Z_out should be equal to primary impedance\n",
+ "#Z_out=2*pi*f*(primary inductance)\n",
+ "Lp=(Z_out*1000)/(2*pi*f); #Primary inductance, H\n",
+ "\n",
+ "#for the secondary side,\n",
+ "#Z_in should be equal to impedance of secondary\n",
+ "Ls=(Z_in*1000)/(2*pi*f); #Secondary inductance, H\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print(\"The primary inductance=%.0fH.\"%Lp);\n",
+ "print(\"The secondary inductance=%.0fH.\"%Ls);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The primary inductance=8H.\n",
+ "The secondary inductance=2H.\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.20 : Page number 299\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Lp=8.0; #Primary inductance, H\n",
+ "Ls=2.0; #Secondary inductance, H\n",
+ "K=10**-5; #Inductance to turns ratio, constant\n",
+ "\n",
+ "#Calculations\n",
+ "Np=(Lp/K)**0.5; #Primary turns\n",
+ "Ns=(Ls/K)**0.5; #Secondary turns\n",
+ "\n",
+ "#Result\n",
+ "print(\"The primary turns=%.0f.\"%Np);\n",
+ "print(\"The secondary turns=%.0f.\"%Ns);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The primary turns=894.\n",
+ "The secondary turns=447.\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.21 : Page number 300-301\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage, V\n",
+ "R1=100.0; #Resistor R1, kilo ohm\n",
+ "R2=22.0; #Resistor R2, kilo ohm\n",
+ "R3=22.0; #Resistor R3, kilo ohm\n",
+ "R4=4.7; #Resistor R4, kilo ohm\n",
+ "R5=10.0; #Resistor R5, kilo ohm\n",
+ "R6=10.0; #Resistor R6, kilo ohm\n",
+ "beta=125; #Base current amplification factor\n",
+ "V_BE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) D.C voltages\n",
+ "#For 1st stage:\n",
+ "V_B1=VCC*R2/(R1+R2); #Voltage at the base of 1st transistor, V (Voltage across R2, using voltage divider rule)\n",
+ "V_E1=V_B1-V_BE; #Emitter voltage of the 1st transistor, V\n",
+ "I_E1=round(V_E1/R4,2); #Emitter current of 1st transistor, mA (OHM's LAW)\n",
+ "I_C1=I_E1; #Collector current of 1st transistor, mA(approximately equals to emitter current)\n",
+ "V_C1=VCC-I_C1*R3; #Collector voltage of 1st transistor, V\n",
+ "\n",
+ "#For 2nd stage:\n",
+ "V_B2=V_C1; #Voltage at the base of 2nd transistor, V (equals to collector voltage of 1st transistor)\n",
+ "V_E2=V_C1-V_BE; #Emitter voltage of the 2nd transistor, V\n",
+ "I_E2=V_E2/R6; #Emitter current of 2nd transistor, mA (OHM's LAW)\n",
+ "I_C2=I_E2; #Collector current 2nd transistor, mA(approximately equals to emitter current)\n",
+ "V_C2=VCC-I_C2*R5; #Collector voltage of 2nd transistor, V\n",
+ "\n",
+ "print(\"(i) D.C voltages\");\n",
+ "print(\"First stage: VB1=%.2fV , VE1=%.2fV and VC1=%.2fV\"%(V_B1,V_E1,V_C1));\n",
+ "print(\"First stage: VB2=%.2fV , VE2=%.2fV and VC2=%.2fV\"%(V_B2,V_E2,V_C2));\n",
+ "\n",
+ "#(ii)Voltage gain\n",
+ "#First stage\n",
+ "re_1=25/I_E1; #a.c emitter resistance of 1st transistor, ohm\n",
+ "re_2=25/I_E2; #a.c emitter resistance of 2nd transistor, ohm\n",
+ "Zin_2nd_stage=beta*re_2/1000; #Input impedance of 2nd stage, kilo ohm\n",
+ "R_AC=R3*Zin_2nd_stage/(R3+Zin_2nd_stage); #Total a.c collector load, kilo ohm\n",
+ "A_v1=round(R_AC*1000/re_1,0); #Voltage gain of first stage\n",
+ "\n",
+ "print(\"The voltage gain of first stage=%d.\"%A_v1);\n",
+ "\n",
+ "#Second stage\n",
+ "R_AC=R5; #Total a.c collector load for 2nd stage, kilo ohm(Due to no loading effect, equal to R5)\n",
+ "A_v2=round(R5*1000/re_2,0); #Voltage gain of 2nd stage\n",
+ "\n",
+ "print(\"The voltage gain of second stage=%d.\"%A_v2);\n",
+ "\n",
+ "A_vT=A_v1*A_v2; #Overall voltage gain\n",
+ "\n",
+ "print(\"Overall voltage gain=%d.\"%A_vT);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) D.C voltages\n",
+ "First stage: VB1=2.16V , VE1=1.46V and VC1=5.18V\n",
+ "First stage: VB2=5.18V , VE2=4.48V and VC2=7.52V\n",
+ "The voltage gain of first stage=66.\n",
+ "The voltage gain of second stage=179.\n",
+ "Overall voltage gain=11814.\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_3.ipynb
new file mode 100644
index 00000000..05e3d9d8
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_3.ipynb
@@ -0,0 +1,968 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1e9209171152811793fc18d1ee8c80ddcef574d69421ec87eeaa8fb87a304f6d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 12: TRANSISTOR AUDIO POWER AMPLIFIERS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1 : Page number 308\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "R1=10.0; #Resistor R1, kilo ohm\n",
+ "R2=2.2; #Resistor R2, kilo ohm\n",
+ "RC=3.6; #Collector resistor, kilo ohm\n",
+ "RE=1.1; #Emitter resistor, kilo ohm\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "I1=VCC/(R1+R2); #Current through R1 and R2, mA (OHM's LAW)\n",
+ "V2=I1*R2; #Voltage across R2 resistor, V (OHM's LAW)\n",
+ "VE=V2-VBE; #Emitter voltage, V\n",
+ "IE=VE/RE; #Emitter current, mA (OHM's LAW)\n",
+ "IC=IE; #Collector current, mA (approximately equal to emitter current)\n",
+ "I_T=I1+IC; #Total current drawn from the supply, mA\n",
+ "P_dc=VCC*I_T; #Total power drawn from the supply, mW\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The total power drawn from the supply=%.1fmW.\"%P_dc);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total power drawn from the supply=18.2mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 : Page number 309\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_L=10.6; #Voltage across load, V.(from a.c voltmeter, therfore r.m.s value)\n",
+ "R_L=200.0; #Load resistance, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, power =V**2/R,\n",
+ "P_O=(V_L**2/R_L)*1000; #A.C output power, mW\n",
+ "\n",
+ "#Result\n",
+ "print(\"The a.c output power = %.1fmW.\"%P_O);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The a.c output power = 561.8mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3 : Page number 309\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RL=100.0; #Load resistance, ohm\n",
+ "V_PP=18.0; #Peak-to-peak a.c voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, V(r.m.s)=(V(peak-to-peak)/2)/sqrt(2)\n",
+ "VL=V_PP/(2*(2**0.5)); #r.m.s value, V\n",
+ "\n",
+ "#Since, power=(square of voltage)/resistance\n",
+ "P_O_max=(VL**2/RL)*1000; #Maximum possible a.c load power, mW\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum possible a.c load power=%dmW.\"%P_O_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum possible a.c load power=405mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4 : Page number 310\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_battery=12.0; #Battery voltage, V\n",
+ "P_out=2.0; #Output power, W\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Power=Current*Voltage\n",
+ "IC=(P_out/V_battery)*1000; #Maximum collector current , mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum collector current=%.1fmA.\"%IC);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum collector current=166.7mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5 : Page number 310\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_battery=12.0; #Battery voltage, V\n",
+ "RL=4.0; #Collector load, kilo ohm\n",
+ "\n",
+ "#Calculation\n",
+ "IC_max=V_battery/RL; #Maximum collector current, mA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum collector current=%dmA.\"%IC_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum collector current=3mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6 : Page number 310-311\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "P=50.0; #Power supplied by power amplifier, W\n",
+ "R=8.0; #Resistance of speaker, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#Since, Power=Voltage _square/Resistance,\n",
+ "V=(P*R)**0.5; #a.c output voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "I=V/R; #a.c output current, A (OHM's LAW)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The a.c output voltage=%dV.\"%V);\n",
+ "print(\"(ii) The a.c output current=%.1fA.\"%I);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The a.c output voltage=20V.\n",
+ "(ii) The a.c output current=2.5A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.7 : Page number 315\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage, V\n",
+ "ib_peak=10.0; #Base current(peak), mA\n",
+ "RB=1.0; #Base resistance, kilo ohm\n",
+ "RC=20.0; #Collector resistance, ohm\n",
+ "beta=25.0; #Base current amplification factor\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "IB=round(VCC-VBE/RB,1); #Base current, mA (OHM's LAW)\n",
+ "IC=int(beta*IB); #Collector current, mA\n",
+ "VCE=VCC-(IC/1000)*RC; #Collector emitter voltage, V (KVL)\n",
+ "\n",
+ "#(i)\n",
+ "ic_peak=beta*ib_peak; #Collector current(peak), mA\n",
+ "P_o_ac=(ic_peak/1000)**2*RC/2; #Output power, W\n",
+ "\n",
+ "#(ii)\n",
+ "P_dc=VCC*IC/1000; #Input power, W\n",
+ "\n",
+ "#(iii)\n",
+ "collector_efficiency=(P_o_ac/P_dc)*100; #Collector efficiency of the amplifier circuit,\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The output power=%.3fW.\"%P_o_ac);\n",
+ "print(\"(ii) The input power=%.1fW.\"%P_dc);\n",
+ "print(\"(iii) The collector efficiency=%.1f%%.\"%collector_efficiency);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The output power=0.625W.\n",
+ "(ii) The input power=9.6W.\n",
+ "(iii) The collector efficiency=6.5%.\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.8 : Page number 317\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "P_dc=10.0; #zero signal power dissipation, W\n",
+ "P_o=4.0; #a.c output power, W\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Collector_eff=(P_o/P_dc)*100; #collector efficiency\n",
+ "\n",
+ "#(ii)\n",
+ "#Zero signal power is the maximum power dissipation in a transistor, therefore,\n",
+ "Power_rating=P_dc; #Power rating of the transistor, W\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The collector efficiency=%d%%.\"%Collector_eff);\n",
+ "print(\"(i) The power rating of the transistor=%dW.\"%Power_rating);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The collector efficiency=40%.\n",
+ "(i) The power rating of the transistor=10W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.9 : Page number 317-318\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RL=100.0; #Secondary load, ohm\n",
+ "n=10.0; #Transformer turn ratio\n",
+ "IC=100.0; #Zero signal collector current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "RL_reflected=n**2*RL; #Reflected load as seen by the primary of the transformer, ohm\n",
+ "P_o_ac_max=(IC/1000)**2*RL_reflected/2; #Maximum a.c power output, W \n",
+ "\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum a.c power output=%dW.\"%P_o_ac_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum a.c power output=50W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.10 : Page number 318\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=5.0; #Collector supply voltage, V\n",
+ "IC=50.0; #Zero signal collector current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "P_o_max=VCC*IC/2; #Maximum a.c output power, mW\n",
+ "\n",
+ "#(ii)\n",
+ "P_dc=VCC*IC; #D.C input power, mW\n",
+ "#Since, maximum power is dissipated in the zero signal conditions\n",
+ "Power_rating=P_dc; #Power rating of transistor, mW\n",
+ "\n",
+ "#(iii)\n",
+ "Max_collector_eff=(P_o_max/P_dc)*100; #Maximum collector efficiency\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The maximum a.c output power=%dmW\"%P_o_max);\n",
+ "print(\"(ii) The power rating of the transistor=%dmW.\"%Power_rating);\n",
+ "print(\"(iii) The maximum collector efficiency =%d%%.\"%Max_collector_eff);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The maximum a.c output power=125mW\n",
+ "(ii) The power rating of the transistor=250mW.\n",
+ "(iii) The maximum collector efficiency =50%.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.11 : Page number 318\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "ic_max=160.0; #Maximum a.c collector current, mA\n",
+ "ic_min=10.0; #Minimum a.c collector current, mA\n",
+ "vce_max=12.0; #Maximum collector-emitter voltage, V\n",
+ "vce_min=2.0; #Minimum collector-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "vce_pp=vce_max-vce_min; #peak to peak collector emitter voltage, V\n",
+ "ic_pp=ic_max-ic_min; #peak to peak collector current, V\n",
+ "P_o=(vce_pp/(2*sqrt(2)))*(ic_pp/(2*sqrt(2))); #a.c output power, mW\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The a.c output power=%.1fmW.\"%P_o);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The a.c output power=187.5mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12 : Page number 319-320\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt \n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12.0; #Battey voltage, V\n",
+ "IC_max_change=100.0; #maximum collector current change, mA\n",
+ "RL=5.0; #Loudspeaker resistance, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "VCE_max_change=VCC; #Maximum collector-emitter voltage change\n",
+ "#(i) Loud speaker directly connected in the collector\n",
+ "Vmax_speaker=(IC_max_change/1000)*RL; #Maximum voltage across the loudspeaker, V\n",
+ "P_speaker_directly_coupled=Vmax_speaker*IC_max_change; #Power developed in the loudspeaker,mW\n",
+ "\n",
+ "#(ii) Loudspeaker transformer coupled\n",
+ "Z_out=(VCE_max_change/IC_max_change)*1000; #Output impedance of transistor, ohm\n",
+ "\n",
+ "#For max power transfer, primary impedance should be Z_out\n",
+ "RL_reflected=Z_out; #Load resistance as seen by primary, ohm\n",
+ "n=sqrt(RL_reflected/RL); #Turns ratio of transformer\n",
+ "Vp=VCC; #Transformer primary voltage, V\n",
+ "Vs=Vp/n; #Transformer secondary voltage, V\n",
+ "IL=Vs/RL; #Load current, A\n",
+ "P_speaker_transformer_coupled=IL**2*RL*1000; #Power delivered to the speaker, mW\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The power transferred to the speaker when directly coupled=%dmW.\"%P_speaker_directly_coupled);\n",
+ "print(\"(ii) The power trasnferred to the speaker when transformer-coupled=%dmW.\"%P_speaker_transformer_coupled);\n",
+ "print(\" The turns ratio=%.1f.\"%n);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The power transferred to the speaker when directly coupled=50mW.\n",
+ "(ii) The power trasnferred to the speaker when transformer-coupled=1200mW.\n",
+ " The turns ratio=4.9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.13 : Page number 320-321\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "RL=81.6; #Load resistance, ohm\n",
+ "VCE_peak=30.0; #Peak value of collector voltage, V\n",
+ "IC_peak=35.0; #Peak value of collector current, mA\n",
+ "VCE_min=5.0; #Minimum value of collector voltage, V\n",
+ "IC_min=1.0; #Minimum value of collector current, mA\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IC_zero_signal=(IC_peak-IC_min)/2 +1; #Zero signal collector current, mA\n",
+ "\n",
+ "#(ii)\n",
+ "IB_zero_signal=IC_zero_signal/beta; #Zero signal base current, mA\n",
+ "\n",
+ "#(iii)\n",
+ "VCE_zero_signal=(VCE_peak-VCE_min)/2 +5; #Zero signal collector-emitter voltage, V\n",
+ "VCC=VCE_zero_signal; #Collector supply voltage,V (due to transformer coupling, aproximately equal to zero signal VCE)\n",
+ "P_dc=VCC*IC_zero_signal; #d.c input power, mW\n",
+ "VCE_ac=(VCE_peak-VCE_min)/(2*sqrt(2)); #a.c output voltage, V\n",
+ "IC_ac=(IC_peak-IC_min)/(2*sqrt(2)); #a.c output current, mA\n",
+ "P_ac=VCE_ac*IC_ac; #a.c output power, mW\n",
+ "\n",
+ "#(iv)\n",
+ "collector_eff=(P_ac/P_dc)*100; #Collector efficiency\n",
+ "\n",
+ "#(v)\n",
+ "#a.c resistance RL'=negative inverse of slope of the d.c load line\n",
+ "slope=(IC_peak-IC_min)/(VCE_min-VCE_peak); #Slope of he d.c load line, kilo mho\n",
+ "RL_ac=-(1/slope)*1000; #a.c resistance, ohm\n",
+ "n=sqrt(RL_ac/RL); #Transformer turn ratio\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The approximate value of zero signal collector current=%dmA.\"%IC_zero_signal);\n",
+ "print(\"(ii) The zero signal base current=%.2fmA.\"%IB_zero_signal);\n",
+ "print(\"(iii) The d.c input power= %dmW and a.c output power =%dmW.\"%(P_dc,P_ac));\n",
+ "print(\"(iv) The collector efficiency=%.1f%%.\"%collector_eff);\n",
+ "print(\"(v) The turn ratio of the transformer=%d.\"%n);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The approximate value of zero signal collector current=18mA.\n",
+ "(ii) The zero signal base current=0.18mA.\n",
+ "(iii) The d.c input power= 315mW and a.c output power =106mW.\n",
+ "(iv) The collector efficiency=33.7%.\n",
+ "(v) The turn ratio of the transformer=3.\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.14 : Page number 321-322\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "RL=13.0; #Load resistance, ohm\n",
+ "RL_reflected=325.0; #Load resistance, when referred to primary, ohm\n",
+ "VCC=20.0; #Supply voltage, V\n",
+ "IC=58.0; #Quiscent value of collector current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "n=sqrt(RL_reflected/RL); #Transformer turn ratio\n",
+ "\n",
+ "#(ii)\n",
+ "P_ac=(((IC/1000)**2)*RL_reflected/2)*1000; #A.C output power, mW\n",
+ "\n",
+ "#(iii)\n",
+ "P_dc=VCC*IC; #d.c input power, mW\n",
+ "collector_eff=(P_ac/P_dc)*100; #Collector efficiency\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Transformer turn ratio=%d.\"%n);\n",
+ "print(\"(ii) The a.c output power=%dmW.\"%P_ac);\n",
+ "print(\"(iii) The collector efficiency=%d%%.\"%collector_eff);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Transformer turn ratio=5.\n",
+ "(ii) The a.c output power=546mW.\n",
+ "(iii) The collector efficiency=47%.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.15 : Page number 323\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "P_total=4.0; #Total power dissipated by the power transistor, W\n",
+ "T_j_max=90.0; #Maximum junction temperature, degree celsius\n",
+ "theta=10.0; #Thermal resistance, degree celsius per watt\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Total power dissipation=half of(max. junc. temp. - ambient temp.)\n",
+ "T_amb=T_j_max-(P_total*theta); #Ambient temperature, degree celsius\n",
+ "\n",
+ "#Result\n",
+ "print(\"The ambient temperature=%d degree celsius.\"%T_amb);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ambient temperature=50 degree celsius.\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.16 : Page number 323-324\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "theta=300.0; #Thermal resistance, degree celsius per watt\n",
+ "T_j_max=90.0; #Maximum junction temperature, degree celsius\n",
+ "T_amb=30.0; #Ambient temperature, degree celsius\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) Without heat sink\n",
+ "P_total=((T_j_max-T_amb)/theta)*1000; #Maximum permissible power dissipation without sink, mW\n",
+ "\n",
+ "print(\"(i)The maximum permissible power dissipation without heat sink=%dmW.\"%P_total);\n",
+ "\n",
+ "#(ii) With heat sink\n",
+ "theta=60.0; #reduced thermal resistance, degree celsius per watt\n",
+ "P_total=((T_j_max-T_amb)/theta)*1000; #Maximum permissible power dissipation with heat sink, mW\n",
+ "\n",
+ "print(\"(ii)The maximum permissible power dissipation with heat sink=%dmW.\"%P_total);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The maximum permissible power dissipation without heat sink=200mW.\n",
+ "(ii)The maximum permissible power dissipation with heat sink=1000mW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.17 : Page number 324\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "theta=20.0; #Thermal resistance, degree celsius per watt\n",
+ "T_j_max=200.0; #Maximum junction temperature, degree celsius\n",
+ "T_amb=25.0; #Ambient temperature, degree celsius\n",
+ "VCE=4.0; #Collector-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "P_total=(T_j_max-T_amb)/theta; #Maximum permissible power dissipation, W\n",
+ "\n",
+ "#since, the max. power dissipation=VCE_max*IC_max,therefore\n",
+ "IC_max=P_total/VCE; #Maximum collector current, A\n",
+ "\n",
+ "print(\"The maximum collector current that the transistor can carry without destruction=%.2fA.\"%IC_max);\n",
+ "\n",
+ "#The ambient temperature rises\n",
+ "T_amb=75.0; #The risen ambibent temperature, degree celsius\n",
+ "P_total=(T_j_max-T_amb)/theta; #Maximum permissible power dissipation, W\n",
+ "IC_max=P_total/VCE; #Maximum collector current, A\n",
+ "\n",
+ "print(\"The maximum collector current for the risen ambient temperature=%.2fA.\"%IC_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum collector current that the transistor can carry without destruction=2.19A.\n",
+ "The maximum collector current for the risen ambient temperature=1.56A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.18 : Page number 328-329\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12.0; #Supply voltage, V\n",
+ "RL=8.0; #Driving load, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IC_sat=VCC/(2*RL); #Collector saturation current, A\n",
+ "P_o_max=round(VCC*IC_sat*0.25,2); #Maximum load power, W\n",
+ "\n",
+ "#(ii)\n",
+ "P_dc=round(VCC*IC_sat/round(pi,2),2); #d.c input power, W\n",
+ "\n",
+ "#(iii)\n",
+ "Collector_eff=(P_o_max/P_dc)*100; #Collector efficiency\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The maximum load power =%.2fW.\"%P_o_max);\n",
+ "print(\"(ii) The d.c input power=%.2fW.\"%P_dc);\n",
+ "print(\"(iii) The collector efficiency=%.1f%%.\"%Collector_eff);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The maximum load power =2.25W.\n",
+ "(ii) The d.c input power=2.87W.\n",
+ "(iii) The collector efficiency=78.4%.\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.19 : Page number 329\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "P_T=10.0; #Power rating of each transistor, W\n",
+ "max_eff=0.785; #Maximum collector effciency\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, input power=max. a.c power + Power rating of transistor\n",
+ "#And, max. efficiency=max. a.c power/input d.c power\n",
+ "P_2T=2*P_T; #Total power dissipation by two transistors\n",
+ "P_o_max=(max_eff*P_2T)/(1-max_eff); #Maximum output a.c power, W\n",
+ "\n",
+ "#result\n",
+ "print(\"The maximum output power that can be obtained=%.2fW.\"%P_o_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum output power that can be obtained=73.02W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.20 : Page number 329\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "eff=60.0/100; #Efficiency of the amplifier\n",
+ "P_T=2.5; #Power dissipated by each transistor, W\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, input power=max. a.c power + Power rating of transistor\n",
+ "#And, max. efficiency=max. a.c power/input d.c power\n",
+ "P_2T=2*P_T; #Total power dissipated by both transistors, W\n",
+ "P_ac=(eff*P_2T)/(1-eff); #Output a.c power, W\n",
+ "P_dc=P_ac+P_2T; #Input d.c power, W\n",
+ "\n",
+ "#Result\n",
+ "print(\"The a.c output power= %.1fW.\"%P_ac);\n",
+ "print(\"The d.c input power= %.1fW.\"%P_dc);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The a.c output power= 7.5W.\n",
+ "The d.c input power= 12.5W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.21 : Page number 329-330\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Supply voltage, V\n",
+ "RL=10.0; #Load resistance, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "IC_sat=(VCC/(2*RL))*1000; #Saturated collector current, mA\n",
+ "VCE_off=VCC/2; #Collector-emitter voltage in off state, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"1st end point of a.c load line, IC(sat)=%dmA.\"%IC_sat);\n",
+ "print(\"2nd end point of a.c load line, VCE(off)=%dV.\"%VCE_off);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1st end point of a.c load line, IC(sat)=500mA.\n",
+ "2nd end point of a.c load line, VCE(off)=5V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter13_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter13_3.ipynb
new file mode 100644
index 00000000..afa98f3a
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter13_3.ipynb
@@ -0,0 +1,1139 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 13: AMPLIFIERS WITH NEGATIVE FEEDBACK"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1 : Page number 338"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain of the amplifier with negative feedback=97.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=3000.0; #Voltage gain without feedback\n",
+ "m_v=0.01; #Feedback fraction\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Avf=Av/(1+Av*m_v); #Voltage gain of the amplifier with negative feedback\n",
+ "\n",
+ "#Result\n",
+ "print(\"The voltage gain of the amplifier with negative feedback=%.0f.\"%Avf);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2 : Page number 339"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fraction of output fedback to the input=1/20.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=140.0; #Voltage gain\n",
+ "Avf=17.5; #Voltage gain with negative feedback\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Avf=Av/(1+Av*mv), so,\n",
+ "mv=(Av-Avf)/(Av*Avf); #Fraction of output fedback to the input\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The fraction of output fedback to the input=1/%.0f.\"%(1.0/mv));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3 : Page number 339"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The fraction of output fedback to input=0.01.\n",
+ "(ii) The required amplifier gain for overall gain to be 75=300.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=100.0; #Voltage gain\n",
+ "Avf=50.0; #Voltage gain with negative feedback\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "mv=(Av-Avf)/(Av*Avf); #The fraction of output fedback to input\n",
+ "\n",
+ "#(ii) Overall gain is to be 75:\n",
+ "Avf=75.0; #The required overall gain\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Av=Avf/(1-Avf*mv); #The required value of amplifier gain\n",
+ "\n",
+ "#result\n",
+ "print(\"(i) The fraction of output fedback to input=%.2f.\"%mv);\n",
+ "print(\"(ii) The required amplifier gain for overall gain to be 75=%d.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4 : Page number 339-340"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The voltage gain without feedback=40.\n",
+ "(ii) The feedback fraction = 1/40.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Vout=10.0; #output voltage , V\n",
+ "Vin_f=0.5; #Input votage for amplifier with feedback, V\n",
+ "Vin=0.25; #Input votage for amplifier without feedback, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Av=Vout/Vin; #Voltage gain without negative feedback\n",
+ "\n",
+ "#(ii)\n",
+ "Avf=Vout/Vin_f; #Voltage gain with negative feedback\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "mv=(Av-Avf)/(Av*Avf); #Feedback fraction\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The voltage gain without feedback=%d.\"%Av);\n",
+ "print(\"(ii) The feedback fraction = 1/%d.\"%(1/mv));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5 : Page number 340"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The percentage of reduction in stage gain without feedback=20%.\n",
+ "(ii) The percentage of reduction in net gain with feedback=11.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=50.0; #Gain without feedback\n",
+ "Avf=25.0; #Gain with negative feedback\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "mv=(Av-Avf)/(Av*Avf); #Feedback fraction\n",
+ "\n",
+ "#(i)\n",
+ "#percentage of reduction without feedback\n",
+ "Av_reduced=40.0; #Reduced amplifier gain due to ageing\n",
+ "percentage_of_reduction=((Av-Av_reduced)/Av)*100; #Percentage of reduction in stage gain\n",
+ "\n",
+ "print(\"(i) The percentage of reduction in stage gain without feedback=%d%%.\"%percentage_of_reduction);\n",
+ "\n",
+ "#(ii)\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Avf_reduced=round(Av_reduced/(1+mv*Av_reduced),1); #Reduced net gain with negative feedback \n",
+ "percentage_of_reduction_f=((Avf-Avf_reduced)/Avf)*100; #Percentage of reduction in net gain with feedback\n",
+ "\n",
+ "print(\"(ii) The percentage of reduction in net gain with feedback=%.1f%%\"%percentage_of_reduction_f);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6 : Page number 340"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The percentage change in system gain=8.36%\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=100.0; #Gain\n",
+ "mv=0.1; #feedback fraction\n",
+ "Av_fall=6.0; #fall in gain, dB\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Avf=round(Av/(1+Av*mv),2); #Total system gain with feedback\n",
+ "\n",
+ "#Since, fall in gain=20*log10(Av/Av_1)\n",
+ "Av1=round(Av/10**(Av_fall/20),0); #New absolute voltage gain without feedback\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Avf_new=round(Av1/(1+Av1*mv),2); #New net system gain with feedback\n",
+ "\n",
+ "percentage_change=((Avf-Avf_new)/Avf)*100; #Percentage change in system gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"The percentage change in system gain=%.2f%%\"%percentage_change);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.7 : Page number 341"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The feedback fraction=0.008.\n",
+ "The percentage fall in system gain=4.8%.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=500.0; #Voltage gain without feedback\n",
+ "Avf=100.0; #Voltage gain with negative feedback\n",
+ "Av_fall_percentage=20.0; #Gain fall percentage due to ageing\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "mv=(Av-Avf)/(Av*Avf); #Feedback fraction\n",
+ "Av_reduced=((100-Av_fall_percentage)/100)*Av; #Reduced voltage gain\n",
+ "Avf_reduced=round(Av_reduced/(1+Av_reduced*mv),1); #Reduced total gain of the system\n",
+ "percentage_fall=((Avf-Avf_reduced)/Avf)*100; #Percentage of fall in total system gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"The feedback fraction=%.3f.\"%mv);\n",
+ "print(\"The percentage fall in system gain=%.1f%%.\"%percentage_fall);\n",
+ "\n",
+ "#Note: The percentage gain is calculated in the text as 4.7% due to approximation of Avf to 95.3 whose actual approximation will be (95.238)~95.2. So, the percentage fall calculated here is 4.8%\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.8 : Page number 341"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain with feedback=31622.\n",
+ "The feedback fraction=2.16e-05.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "Av=100000.0; #Open loop voltage gain\n",
+ "f_dB=10.0; #Negative feedback, dB\n",
+ "\n",
+ "#Calculation\n",
+ "Av_dB=20*log10(Av); #dB voltage gain without feedback, dB\n",
+ "Avf_dB=Av_dB-f_dB; #dB voltage gain with feedback, dB\n",
+ "Avf=10**(Avf_dB/20); #Voltage gain with feedback\n",
+ "\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "mv=(Av-Avf)/(Av*Avf); #feedback fraction\n",
+ "\n",
+ "#Result\n",
+ "print(\"The voltage gain with feedback=%d.\"%Avf);\n",
+ "print(\"The feedback fraction=%.2e.\"%mv);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.9 : Page number 341-342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain with feedback=47.4.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Ao=1000.0; #Open circuit voltage gain\n",
+ "Rout=100.0; #Output resistance, ohm\n",
+ "RL=900.0; #Resistive load, ohm\n",
+ "mv=1/50; #feedback fraction\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Av=Ao*RL/(Rout+RL)\n",
+ "Av=Ao*RL/(Rout+RL); #Voltage gain without feedback\n",
+ "Avf=Av/(1+Av*mv); #Voltage gain with feedback\n",
+ "\n",
+ "#Result\n",
+ "print(\"The voltage gain with feedback=%.1f.\"%Avf);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.10 : Page number 342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "100=Av/(1+Av*mv) ------Eq. 1\n",
+ "99=0.8*Av/(1+0.8*Av*mv) ------Eq. 2\n",
+ "99 + 79.2*Av*mv=0.8Av ------Eq. 3 from Eq. 2\n",
+ "79.2 + 79.2*Av*mv=0.792Av ------Eq. 4 from Eq. 1\n",
+ "Subtracting Eq.4 from Eq.3\n",
+ "19.8 = 0.008*Av\n",
+ "Av=2475.\n",
+ "mv=0.0096.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Avf=100.0; #Voltage gain with feedback\n",
+ "vary_f=1; #Vary percentage in voltage gain with feedback\n",
+ "vary_wf=20; #Vary percentage in voltage gain without feedback\n",
+ "\n",
+ "#Calculation\n",
+ "#Avf=Av/(1+Av*mv)\n",
+ "print(\"%d=Av/(1+Av*mv) ------Eq. 1\"%Avf); #Equation 1\n",
+ "\n",
+ "#considering variation in gains\n",
+ "Avf_vary=Avf*(1- vary_f/100.0); #Gain with feedback, considering variation\n",
+ "print(\"%d=%.1f*Av/(1+%.1f*Av*mv) ------Eq. 2\"%(Avf_vary,(1-vary_wf/100.0),(1-vary_wf/100.0))); #Equation 2\n",
+ "\n",
+ "#Solving the above two equations\n",
+ "print(\"%d + %.1f*Av*mv=%.1fAv ------Eq. 3 from Eq. 2\"%(Avf_vary,Avf_vary*(1-vary_wf/100.0),(1-vary_wf/100.0))); #Equation 3\n",
+ "\n",
+ "#multiplying Eq. 1 with (Avf_vary*(1-vary_wf/100.0))/100=0.792\n",
+ "print(\"%.1f + %.1f*Av*mv=%.3fAv ------Eq. 4 from Eq. 1\"%(Avf*Avf_vary*(1-vary_wf/100.0)/100.0,Avf*Avf_vary*(1-vary_wf/100.0)/100.0,Avf_vary*(1-vary_wf/100.0)/100.0)); #Equation 4\n",
+ "\n",
+ "print(\"Subtracting Eq.4 from Eq.3\" );\n",
+ "print(\"%.1f = %.3f*Av\"%(Avf_vary-Avf*Avf_vary*(1-vary_wf/100.0)/100.0,(1-vary_wf/100.0)-Avf_vary*(1-vary_wf/100.0)/100.0));\n",
+ "Av=(Avf_vary-Avf*Avf_vary*(1-vary_wf/100.0)/100.0)/((1-vary_wf/100.0)-Avf_vary*(1-vary_wf/100.0)/100.0);\n",
+ "print(\"Av=%.0f.\"%Av);\n",
+ "mv=(Av-Avf)/(Av*Avf);\n",
+ "print(\"mv=%.4f.\"%mv);\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.11 : Page number 345"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Feedback fraction=0.1.\n",
+ "(ii) Voltage gain with feedback=10.\n",
+ "(iii) Output voltage=10mV.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=10000.0; #Volage gain without feedback\n",
+ "R1=2.0; #Resistor R1, kilo ohm\n",
+ "R2=18.0; #Resistor R2, kilo ohm\n",
+ "Vin=1.0; #input voltage, mV\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "mv=R1/(R1+R2); #feedback fraction\n",
+ "\n",
+ "#(ii)\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Avf=round(Av/(1+Av*mv),0); #Voltage gain with feedback\n",
+ "\n",
+ "#(iii)\n",
+ "Vout=Avf*Vin; #Output voltage, mV\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Feedback fraction=%.1f.\"%mv);\n",
+ "print(\"(ii) Voltage gain with feedback=%d.\"%Avf);\n",
+ "print(\"(iii) Output voltage=%dmV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.12 : Page number 345-346"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Feedback fraction=0.1.\n",
+ "(ii) The voltage gain with feedback=10.\n",
+ "(iii) Increased input impedance due to negative feedback=10 mega ohm\n",
+ "(iv) Decreased output impedance due to negative feedback=0.1 ohm.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=10000.0; #Volateg gain without feedback\n",
+ "Zin=10.0; #Input impedance, kilo ohm\n",
+ "Zout=100.0; #Output impedance, ohm\n",
+ "R1=10.0; #Resistor R1, kilo ohm\n",
+ "R2=90.0; #Resistor R2, kilo ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "mv=R1/(R1+R2); #Feedback fraction\n",
+ "\n",
+ "#(ii)\n",
+ "#Since, Gain_with_feedback= Gain_without_feedback/(1+Gain_without_feedback*feedback_fraction),\n",
+ "Avf=round(Av/(1+Av*mv),0); #Voltage gain with feedback\n",
+ "\n",
+ "#(iii)\n",
+ "Zin_feedback=((1+Av*mv)*Zin)/1000; #Increased input impedance due to negative feedback, mega ohm\n",
+ "\n",
+ "#(iv)\n",
+ "Zout_feedback=Zout/(1+Av*mv); #Decreased output impedance due to negative feedback, ohm\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Feedback fraction=%.1f.\"%mv);\n",
+ "print(\"(ii) The voltage gain with feedback=%d.\"%Avf);\n",
+ "print(\"(iii) Increased input impedance due to negative feedback=%.0f mega ohm\"%Zin_feedback);\n",
+ "print(\"(iv) Decreased output impedance due to negative feedback=%.1f ohm.\"%Zout_feedback);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.13 : Page number 346"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Distortion with negative feedback=0.312%\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=150.0; #Voltage gain\n",
+ "D=5/100.0; #Distortion\n",
+ "mv=10/100.0; #Feedback fraction\n",
+ "\n",
+ "#Calculation\n",
+ "Dvf=round((D/(1+Av*mv))*100,3); #Distortion with negative feedback\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Distortion with negative feedback=%.3f%%\"%Dvf);\n",
+ "\n",
+ "#Note: In the text, value of Dvf=0.3125% has been approximated to 0.313%. But, here the approximation is done to 0.312%\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.14 : Page number 346"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The new lower cut-off frequency=136.4Hz\n",
+ "The new upper cut-off frequency=5.52MHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Av=1000.0; #Voltage gain\n",
+ "f1=1.5; #Lower cut-off frequency, kHz\n",
+ "f2=501.5; #Upper cut-off frequency, kHz\n",
+ "mv=1/100.0; #Feedbcack fraction\n",
+ "\n",
+ "#Calculation\n",
+ "f1_f=(f1/(1+mv*Av))*1000; #New lower cut-off frequency, Hz\n",
+ "f2_f=(f2*(1+mv*Av))/1000; #New upper cut-off frequency, MHz\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The new lower cut-off frequency=%.1fHz\"%f1_f);\n",
+ "print(\"The new upper cut-off frequency=%.2fMHz\"%f2_f);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.15 : Page number 348"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The effective current gain=58.82.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Ai=200.0; #Current gain without feedback\n",
+ "mi=0.012; #Current attenuation\n",
+ "\n",
+ "#Calculation\n",
+ "Aif=Ai/(1+Ai*mi);\n",
+ "\n",
+ "#Result\n",
+ "print(\"The effective current gain=%.2f.\"%Aif);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.16 : Page number 349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The input impedance when negative feedback is applied=3.26 kilo ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Ai=240.0; #Current gain\n",
+ "Zin=15.0; #Input impedance without feedback, kilo ohm\n",
+ "mi=0.015; #Current feedback fraction\n",
+ "\n",
+ "#Calculations\n",
+ "Zin_f=Zin/(1+mi*Ai); #Input impedance with feedback, kilo ohm\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The input impedance when negative feedback is applied=%.2f kilo ohm\"%Zin_f);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.17 : Page number 349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output impedance with negative feedback=9kilo ohm.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Ai=200.0; #Current gain without feedback\n",
+ "Zout=3.0; #Output impedance without feedback, kilo ohm\n",
+ "mi=0.01; #current feedback fraction\n",
+ "\n",
+ "#Calculation\n",
+ "Zout_f=Zout*(1+mi*Ai); #Output impedance with negative feedback, kilo ohm\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output impedance with negative feedback=%dkilo ohm.\"%Zout_f);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.18 : Page number 349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bandwidth when negative feedback is applied=1400kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Ai=250.0; #Current gain without feedback\n",
+ "BW=400.0; #Bandwidth, kHz\n",
+ "mi=0.01; #current feedback fraction\n",
+ "\n",
+ "#Calculation\n",
+ "BW_f=BW*(1+mi*Ai); #Bandwidth when negative feedback is applied, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"Bandwidth when negative feedback is applied=%dkHz.\"%BW_f);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.19 : Page number 350-351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of VE=9.72V and IE=10.68mA\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEZCAYAAAB1mUk3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVdXV//HPAlRUDGDFwgMSDU10VER5wB+jxG6CIYqF\nPAqWGBUF0QhiISoKJoIg9oKABQwarIiE6I0NGwLSLFGxRRELKlaU9ftjn9FhnBnmzpw75557v+/X\na17OPbet2V5mzVnr7L3N3RERkeLWIOkAREQkeUoGIiKiZCAiIkoGIiKCkoGIiKBkICIiKBlIipnZ\nrWZ2cR1fo5WZrTGz2P8tmNljZnZ8FfcNN7Pbou9bmtnnZmZxxyBSU42SDkAkDyQ12cYB3P0d4BcJ\nxSAC6MxARERQMpAUMbNdzWyumX1mZlOBxtU8toGZDTOz/0SPf97Mtq3Be2xtZveZ2cdm9qqZnVju\nvj3M7Gkz+9TM3jOz8WbWqNz9+5nZ0uj+8UCNyj4VS1VReeliM3syKh/NNLNNyz1+LzN7KnqfeWbW\noybvI1IdJQNJBTNbD5gOTAI2BaYBv6/mKWcBRwIHuntT4Hjgqxq81V3A20AL4AjgMjMrje77ARgU\nvX9XYF/g1Ci+zYB7gGHA5sDrQLca/4A/L1UdDRwHbAFsAJwdvc+2wIPAxe7ePDp+T/T+IrWmZCBp\nsRfQyN2vcvcf3P0e4PlqHn8CcJ67/wfA3Re6+6fVvYGZtST8kh/i7qvdfQFwM3Bs9BovuvtzHrwN\n3AiU/VV+MLDI3adH8Y0FPqjDz3uru7/u7t8CfwdKouN9gYfc/ZEopn8BL0TvL1JraiBLWmwDvFfh\n2FvVPL4l8EaW77E18Im7lz+DeAvYHcDMdgTGAJ2BDQn/fuaWi++dCq9X8XY2yieSr4Am0fetgD5m\n9pvotkVxPFqH9xLRmYGkxvtAxZr//1Tz+LeBX2b5Hv8FNjWzjSu8R1kSug5YCvzS3ZsB5/FTX+D9\nSuJpmeX718Q7wGR33zT6au7um7j7X3PwXlJElAwkLeYA35vZ6WbWyMx6A12qefwtwCVmtgOAmXUy\ns+ZVPNYA3P1d4GlgpJltYGY7E8pNt0WP2wT43N2/MrN2wCnlXuMhoIOZHWZmDc1sILBVFj9fTecY\n3A78xsz2j5rkjc2sh5ltk8V7ifyMkoGkgruvBnoD/YGPCc3de8ruLzdxa7vo0BhCrX2WmX1GqP1v\nWNXLl/v+aGB7wlnCPcAF7v5YdN/ZQF8z+xy4AZhaLr6ymC4HPiKclTyVzY9YxfdrPygkrF6ERvUK\nQhnrbPRvWerIcrm5TfQPczLhL6Q1wI3uPt7MhgMnAR9GDx3m7jNzFoiIiFQr18mgBdDC3eebWRNC\ns60X4ZK/L9x9TM7eXEREaiynVxO5+wdEV0W4+yozW8pPTUCtwyIikifqrc5oZq0J10o/Gx0aYGbz\nzexmM2taX3GIiMjP1UsyiEpEdwMD3X0VcC3Qxt1LCGcOKheJiCQopz0DgGjtlgeBh919XCX3twIe\ncPedK7kvqdUkRURSzd2zKsXXx5nBBGBJ+UQQNZbL9AYWVfVkd9dXTF/Dhw9PPIZC+dJYajzz+as2\nctpANrNuhLVUFprZPML108OAY8yshHC56TLg5FzGIcGyZcuSDqFgaCzjpfFMXq6vJnoKaFjJXZpT\nICKSRzRrsYj069cv6RAKhsYyXhrP5OW8gVwXZub5HJ+ISD4yMzwPG8iSJzKZTNIhFAyNZbw0nslT\nMhAREZWJREQKjcpEIiJSK0oGRUR12fhoLOOl8UyekoGIiKhnICJSaNQzEBGRWlEyKCKqy8ZHYxkv\njWfylAxEREQ9AxGRQqOegYiI1IqSQRFRXTY+Gst4aTyTp2QgIiLqGYiIFBr1DEREpFaUDIqI6rLx\n0VjGS+OZPCUDERFRz0BEpNCoZyAiIrWiZFBEVJeNj8YyXhrP5CkZiIiIegYiIoVGPQMREakVJYMi\norpsfDSW8dJ4Jk/JQERE1DMQESk06hmIiEitKBkUEdVl46OxjJfGM3lKBiIiop6BiEihUc9ARERq\nRcmgiKguGx+NZbw0nslTMhARkdz2DMxsO2AysBWwBrjJ3a8ys+bAXUArYBnQx90/q+T56hmIiGSp\nNj2DXCeDFkALd59vZk2AuUAvoD/wsbv/1cyGAM3dfWglz1cyEBHJUt41kN39A3efH32/ClgKbEdI\nCJOih00CDstlHBKoLhsfjWW8NJ7Jq7eegZm1BkqAZ4Ct3H05hIQBbFlfcYiIyM81qo83iUpEdwMD\n3X2VmVWs/VRZC+rXrx+tW7cGoFmzZpSUlFBaWgr89NeEbtfsdtmxfIknzbdLS0vzKp6039Z41u12\nJpNh4sSJAD/+vsxWziedmVkj4EHgYXcfFx1bCpS6+/Kor/CYu7ev5LnqGYiIZCnvegaRCcCSskQQ\nuR/oF31/HHBfVU8eNQq+/TZ3wRWTsr8kpO40lvHSeCYvp8nAzLoBfYF9zWyemb1oZgcClwP7mdkr\nQE9gVFWvMWcOdOwIDz4IOkkQEcmNVKxNNHMmDBoEbdrAlVdC27ZJRyYikr/ytUxUZwceCC+9BD17\nQrducM458PnnSUclIlI4UpEMANZfH846CxYtghUroF07mDwZ1qxJOrL0UF02PhrLeGk8k5eaZFCm\nRQu49VaYPh2uvjqcKbzwQtJRiYikWyp6BlVZswYmTYJhw+CQQ+Cyy2BLTV8TkSJXsD2DqjRoAP37\nw8svQ9Om4aqjsWNh9eqkIxMRSZdUJ4MyTZvC6NHw+OMwYwbssgvMnp10VPlHddn4aCzjpfFMXkEk\ngzLt28Mjj8DIkfDHP0Lv3vDmm0lHJSKS/1LdM6jON9/AFVeEeQkDBsCQIbDRRjEHKCKSh4quZ1Cd\nxo3h/PNh/nx45ZVw1jBtmmYxi4hUpmCTQZmWLWHq1DAnYcQI2HdfWLgw6aiSobpsfDSW8dJ4Jq/g\nk0GZHj1g7lw44ogwk3nAAPjkk6SjEhHJDwXbM6jOxx/DhRfC3XfDxRfDiSdCw4axv42ISCLybg/k\nusr1fgbz58MZZ8AXX8D48dC9e87eSkSk3qiBnKWSEvj3v8OVRkcfDX37wnvvJR1V7qguGx+NZbw0\nnskr6mQAYAZHHRVmMW+/fZiwNnJkuDRVRKRYFHWZqDKvv/7T6qhXXgmHHhoShohIWqhnEKNHHoGB\nA8PZwtix2lBHRNJDPYMYHXBA2FBnv/3CMtl//nP6N9RRXTY+Gst4aTyTp2RQjfXXh8GDQ8no44/D\nhjqTJmlDHREpPCoTZeHZZ8OlqGbhUtQ99kg6IhGRn1OZKMf23BPmzIE//Ql++1s44QRYvjzpqERE\n6k7JIEsNGkC/fuFS1ObNYaedwlVHadhQR3XZ+Ggs46XxTJ6SQS01bRqWyH7iCZg5M8xP+Oc/k45K\nRKR21DOIgTvcfz+ceWZICqNHQ5s2SUclIsVKPYOEmEGvXrBkCXTuHBrLF1wAX36ZdGQiIjWjZBCj\nxo3hvPNgwYIwk7l9e7jrrvzZUEd12fhoLOOl8UyekkEObLcd3Hkn3H57WOdon33CBDYRkXylnkGO\n/fAD3HgjDB8OffqE/RM23TTpqESkkKlnkIcaNoRTToGlS0O5qH17uP76kCRERPKFkkE92WwzuOYa\nmDULpkyB3XcPl6XWJ9Vl46OxjJfGM3lKBvVsl10gk4Fzzw2b6RxzDLz7btJRiUixU88gQV9+CaNG\nwbXXhj0UBg8OVySJiNSFegYps/HGcMkl8Pzz4atjxzB5rYDzn4jkKSWDPNCmDUyfDtddF/ZjPuig\nsPZR3FSXjY/GMl4az+QpGeSR/fcP8xEOOAC6d4ezz07/hjoikg457RmY2S3AocByd985OjYcOAn4\nMHrYMHefWcXzC7pnUJ3ly2HYMHj4YbjsMjj22LBiqojIuuTdHshm1h1YBUyukAy+cPcxNXh+0SaD\nMs89FzbUcQ8b6nTpknREIpLv8q6B7O5PAp9WcldWQRazLl3g6afh1FPhsMPg+ONrv6GO6rLx0VjG\nS+OZvKQKDwPMbL6Z3WxmTROKITUaNIDjjguzmDfdNFx1NGZMOjbUEZF0yPk8AzNrBTxQrky0BfCR\nu7uZjQC2dvcTqnhu0ZeJKvPyyzBoELz1FowbFxrPIiJlalMmapSrYKri7ivK3bwJeKC6x/fr14/W\nrVsD0KxZM0pKSigtLQV+OrUsxtsPPwwjR2bo1w+6dCllzBh4++38iU+3dVu36+92JpNh4sSJAD/+\nvsxWfZwZtCacGXSKbrdw9w+i788E9nD3Y6p4rs4M1uGbb8IezFdcERbEO/fcMJmtMplM5scPktSN\nxjJeGs945V0D2czuBJ4GfmVmb5tZf+CvZvaSmc0HegBn5jKGQte4cUgACxbAG2/k34Y6IpIOWpuo\nwDzxBJx+OjRtClddFRbGE5HikndnBlL/9t4b5s6Fo48OjeXTToOPP046KhHJd0oGBahhQ/jTn8Kl\nqGahdHTddfCvf2WSDq1glDXvJB4az+QpGRSwTTeFq6+G2bNDH+Hkk+Hxx5OOSkTykXoGRcIdpk0L\ni9916wZ//Su0bJl0VCKSCznvGZhZczPraGZtzExnFSliBn36hNLRjjtCSQlcemm4NFVEZJ2/0M2s\nqZkNM7OFwDPADcDfgbfMbJqZ7ZPrICUemUyGjTeGiy+GF14IjeaOHeG++3QparZU446XxjN5Nfnr\n/m7gHWBvd2/r7t3dvbO7twQuB3qZWaXLSUj+2n57+Mc/4PrrwzyFAw8MZw0iUpzUMxBWr4Zrrgll\no2OPhQsvDPMURCSd6m2egZn90swuMLPFtXm+5Jf11gsL3y1eDJ99Bu3awa23wpo1SUcmIvWlxsnA\nzLYxszPN7HlgcfTco3IWmcRuXXXZLbeEm2+G+++HG26Arl3h2WfrJ7a0UY07XhrP5NWkgfxHM3sM\nyACbAScA77v7Re6+MMfxSQL22CNsqHPaafC730H//vDBB0lHJSK5tM6egZl9B8wBznL3F6Jjb7h7\nm5wHp55B4j7/HEaMgAkTQqP59NNh/fWTjkpEqpOrnsHWwBRgtJm9YmaXAOvVJkBJn1/8IkxQe+qp\nMJN5553hkUeSjkpE4rbOZODuH7v79e7eA+gJrASWm9lSM7ss5xFKbOpSl23bFmbMCPsmnHZa2I/5\njTfiiy1tVOOOl8YzeVldTeTu77r7aHfvDPwW0PzVImIGhx4arjrac8/QWzj/fPjyy6QjE5G6qvE8\nAzNrCBwCtKbcdpnuPiYnkaGeQb57910YMiQsfve3v8GRR4aEISLJqk3PIJtkMINwJrAQKLsC3d39\n4qyizIKSQTo8+WRoLG+ySdhQp6Qk6YhEiluuJ51t5+693X14dFnpRblMBBK/XNVlu3cPax317QsH\nHACnnlr4G+qoxh0vjWfyskkGD5vZ/jmLRFKtYcOwX8LSpeH79u3h2mvh+++TjkxEaiKbMtHvgNsJ\nCWQ1YIQy0S9yFpzKRKm1cCGccQZ88kkoHfXokXREIsUj1z2DN4FewML6+g2tZJBu7nD33WFDna5d\nQ5NZG+qI5F6uewbvAIv02zm96rsuawZHHBFKR23bhsbyiBGFsaGOatzx0ngmL5tk8AaQMbNzzWxw\n2VeuApPCsdFGcNFFock8bx506AD33qsNdUTySTZlouGVHXf3i2KNaO331IlIAZo9GwYOhG23hXHj\nQrNZROKT055BEpQMCtfq1eFqoxEj4P/+D4YP14Y6InHJSc/AzG4ys05V3LexmR1vZn2zeVNJRj7V\nZddbL5wdLF4MX3wRNtSZMCE9G+rk01gWAo1n8mrSM7gGuCBamG6amV1rZhPM7AngaWATwj7JIlnb\ncku46SZ44IHw3732gmeeSToqkeKTTc+gCdCZsKT118BSd38lh7GpTFRk1qyBO+6AoUNhv/1g1Cho\n0SLpqETSJ1dloi3MrIO7r3L3jLtPcfd7gYZmtkWtoxWpoEGD0D94+WXYaivYaScYPRq++y7pyEQK\nX03KROOBzSs5vhkwLt5wJJfSUpfdZBO4/PKw9ea//hU21Jk5M+mo1paWsUwLjWfyapIMdnD3xyse\ndPcngJ3jD0kk+NWv4KGHwoY6AwZAr17w+utJRyVSmGqyB/Ir7t422/vioJ6BlPn2W7jyypAYTj45\n7MfcpEnSUYnkp1wtR/EfMzu4kjc7iDArWSTnNtggNJYXLIC33goT1aZM0SxmkbjU5MxgR+AhwmWk\nc6PDnYGuwKHu/mrOgtOZQawymQylpaVJhxGLp54KG+psvDGMH1//G+oU0ljmA41nvHJyZuDurwGd\ngH8TtrxsHX2/cy4TgUh1unWD558PVx8dcACccgp89FHSUYmkl5ajkNT79NOwnMXUqeG/J58MjRqt\n+3kihSonaxOZ2RdAZQ9a5+Y2ZnYLcCiw3N13jo41B+4CWgHLgD7u/lkVz1cykBpbuDAscfHRR2FD\nHVUdpFjlqky0ibv/opKvTWqwy9mtwAEVjg0FZkdXIT0KnJtNwFJ7hX4td6dOYV7ChRfCccfBkUfC\n22/n5r0KfSzrm8YzednsZ5A1d38S+LTC4V7ApOj7ScBhuYxBiosZHH542FCnfXvYdVe45BL4+uuk\nIxPJbznvGZhZK+CBcmWiT9x903L3r3W7wnNVJpI6WbYsbLs5dy6MGQOHHRYShkghy/W2l7mi3/aS\nM61bh32Yb74Zzj8f9t8flixJOiqR/JPENRfLzWwrd19uZi2AD6t7cL9+/WjdujUAzZo1o6Sk5Mfr\nkcvqjLpds9tjx44t2vHr2RPGjctw333Qo0cpf/gD9OyZoUmT2r1e+Rp3Pvx8ab+t8az7+E2cOBHg\nx9+X2aqPMlFrQpmoU3T7cuATd7/czIYAzd19aBXPVZkoRhlN7AFgxQo47zy4/3649FLo3z+smJoN\njWW8NJ7xyrttL83sTqCUsMLpcmA4cC8wDWgJvEW4tHRlFc9XMpCcmTs3zGJevTrMYt5rr6QjEolH\n3iWDulIykFxzDxvqDBkSNtQZORK23jrpqETqJq0NZKkn5euyEpjBH/7w04Y6nTrB3/627g11NJbx\n0ngmT8lAhLU31MlkQlJ4+OGkoxKpPyoTiVTioYdg0CBo1y7so7DDDklHJFJzKhOJxOSQQ2DRIth7\n79BYHjYMVq1KOiqR3FEyKCKqy2Zngw3gnHPgpZfgnXfCWcKdd4ams8YyXhrP5CkZiKzDNtvAbbfB\nXXfB6NHhbOG115KOSiRe6hmIZOGHH2DCBLjggrDO0YgRsPnmSUclsjb1DERyrGFDOOmksCrqBhtA\nhw5w9dXw/fdJRyZSN0oGRUR12fgsWJBh3Dh49FGYPj0slf3YY0lHlV76bCZPyUCkDnbaCWbPhr/8\nJaxx1KdP7jbUEckl9QxEYvLVV2H28lVXhe03//xn2HDDpKOSYqSegUiCNtoIhg+HF18M+zF36AD/\n+Ee4FFUk3ykZFBHVZeNT3Vi2agXTpsEtt4T9mPfbDxYvrr/Y0kifzeQpGYjkyL77wvz50KsXlJbC\nmWfCykoXaxdJnnoGIvVgxYqw7eZ994W5Cf37h8tURXJB+xmI5LmyDXW++y5sqNO1a9IRSSFSA1mq\npbpsfGo7lrvvDk89FUpGhx8Oxx4L778fb2xppM9m8pQMROqZGfTtGzbU2Xbbmm+oI5JLKhOJJOy1\n12DwYHj1VRg7Fg46KOmIJO3UMxBJsRkzwoY6bdtqQx2pG/UMpFqqy8YnF2N58MFhslrZhjrnnls8\nG+ros5k8JQORPFJ+Q5333gsb6txxh2YxS+6pTCSSx55+Gs44IySJ8eNht92SjkjSQGUikQLzv/8L\nzz4bJqkdfDCcfHKYwCYSNyWDIqK6bHzqcywbNoQTTwyXom64YVgAb/z4wtpQR5/N5CkZiKREs2bh\n0tNMBu69N2yo8+ijSUclhUI9A5EUcg87rA0eDHvsAVdcEVZLFQH1DESKhhn07h32Yu7UKTSWL7oI\nvv466cgkrZQMiojqsvHJl7HccMOwZ8KLL4Y9Ezp0gHvuSd+lqPkynsVMyUCkALRqBX//O0yYEPZj\n/vWvtaGOZEc9A5EC8/33cP31oWx0zDEhOTRvnnRUUp/UMxARGjWCAQNgyRL49lto3x5uugl++CHp\nyCSfKRkUEdVl45OGsdxii3CGMGMGTJoEe+4ZZjTnozSMZ6FTMhApcLvtBk88ES5D7dMnbKjz3/8m\nHZXkG/UMRIrIqlVw6aWhbHTOOTBwYFj3SAqLegYiUq0mTWDkSJgzJ5wtdOoUykgiiSUDM1tmZgvM\nbJ6ZPZdUHMVEddn4pH0sd9wRHnggLG8xaBAcemjYcS0paR/PQpDkmcEaoNTdd3X3LgnGIVK0Dj4Y\nFi2CHj2ga1cYOhS++CLpqCQJifUMzOxNoLO7f1zNY9QzEKkn778fksHs2XD55dC3b1j2QtInVXsg\nm9kbwErgB+BGd7+pkscoGYjUszlz4PTTQ2P5qqtg992TjkiyVZtk0ChXwdRAN3d/38y2AP5pZkvd\n/cmKD+rXrx+tW7cGoFmzZpSUlFBaWgr8VGfU7ZrdHjt2rMYvptvla9z5EE/ct597DoYMybDffnD4\n4aVceiksXpy79yv08cz17Uwmw8SJEwF+/H2Zrby4tNTMhgNfuPuYCsd1ZhCjTCbz4wdJ6qZYxnLl\nyrCsxe23wwUXwCmnwHrrxf8+xTKe9SU1ZSIz2who4O6rzGxjYBZwkbvPqvA4JQORPLBkSdiL+YMP\nQulo332Tjkiqk6ZksD0wHXBCqeoOdx9VyeOUDETyhHvYYW3w4NBHuOIKqGVFQnIsNZPO3P1Ndy+J\nLivtVFkikPiVr8tK3RTjWJrB734XzhJ22SUkhL/8Bb76qu6vXYzjmW80A1lEsrLhhqF/MG9e2Gmt\nQwe4++70bagja8uLBnJVVCYSyX+ZTOgnbL556CfstFPSEUlqykQiUjhKS8O2m7//fWgsn3EGfPpp\n0lFJtpQMiojqsvHRWK6tUSM47bTQT1i9OvsNdTSeyVMyEJHYbL45XHcdPPwwTJ4MXbrAU08lHZXU\nhHoGIpIT7jBlStg3YZ99wnpH22yTdFTFQT0DEckbZnDMMfDyy9CyJey8c0gI336bdGRSGSWDIqK6\nbHw0ljXXpAlcdhk880woGe20Ezz00NqP0XgmT8lAROrFDjvA/feHy08HD4ZDDoFXX006KimjnoGI\n1LvvvgtJYdQoOOEEOP982GSTpKMqHOoZiEgqrL8+nH02LFwIy5dDu3Zw222wZk3SkRUvJYMiorps\nfDSW8dh6a5g4Ec47L8NVV0H37vDCC0lHVZyUDEQkcR06wLPPwoknwm9+AyedBB9+mHRUxUU9AxHJ\nKytXwsUXh7LR+efDqafmZkOdQpaa/QxqSslApHgtWQIDB8J//xuazT17Jh1ReqiBLNVSnTs+Gst4\nVTaeHTrArFlw6aWhfPT738OyZfUeWtFQMhCRvGUGhx0WzhJ23TVsqDN8eDwb6sjaVCYSkdR4++2w\n1tGcOWHbzcMPDwlD1qaegYgUhX//G04/PaySOm4cdOqUdET5RT0DqZbq3PHRWMYr2/Hs0eOnDXV6\n9tSGOnFQMhCRVKq4oU67dnDjjTXfUEfWpjKRiBSEefPCGcKXX8L48dCtW9IRJUc9AxEpau4wdWpo\nMvfoEfZP2HbbpKOqf+oZSLVU546PxjJecY2nGRx9NCxdCq1bwy67hJVRtaHOuikZiEjBadIERowI\n6x3NmQMdO8KDD4YzB6mcykQiUvBmzoRBg6BNG7jySmjbNumIcktlIhGRShx4ILz0UrgMtVu30FP4\n/POko8ovSgZFRHXu+Ggs41Uf47n++nDWWbBoEaxYES5FnTxZG+qUUTIQkaLSogXceitMnw5XXx3O\nFLShjnoGIlLE1qyBSZNg2DA45BC47DLYcsuko6o79QxERLLQoAH07w8vvwxNm4arjsaODTOai42S\nQRFRnTs+Gst4JT2eTZvC6NHw+OMwY0aYnzB7dqIh1TslAxGRSPv28MgjMHIk/PGP0Ls3vPlm0lHV\nD/UMREQq8c034WzhyivDgnhDhsBGGyUdVc2oZyAiEpPGjeG888ICeK+8Es4apk0r3FnMiSUDMzvQ\nzF42s1fNbEhScRSTpOuyhURjGa98Hs+WLcPid5MnhyUu9t0XFi5MOqr4JZIMzKwBcDVwANARONrM\n2iURSzGZP39+0iEUDI1lvNIwnj16wNy5cMQRYSbzgAHwySdJRxWfpM4MugCvuftb7r4amAr0SiiW\norFy5cqkQygYGst4pWU8GzWCU08Nq6K6h9LRDTcUxoY6SSWDbYF3yt1+NzomIpL3NtsMrrkGZs2C\nO++Ezp3hySeTjqpu1EAuIsuWLUs6hIKhsYxXWsdzl10gk4GhQ+GYY8JZQ1olcmmpme0F/MXdD4xu\nDwXc3S+v8LgC7duLiORWKra9NLOGwCtAT+B94DngaHdfWu/BiIgIjZJ4U3f/wcwGALMIpapblAhE\nRJKT1zOQRUSkfuRlA1kT0uJlZsvMbIGZzTOz55KOJ23M7BYzW25mL5U71tzMZpnZK2b2iJk1TTLG\nNKliPIeb2btm9mL0dWCSMaaFmW1nZo+a2WIzW2hmZ0THs/585l0y0IS0nFgDlLr7ru7eJelgUuhW\nwuexvKHAbHdvCzwKnFvvUaVXZeMJMMbdd4u+ZtZ3UCn1PTDY3TsCXYHTot+XWX8+8y4ZoAlpuWDk\n5//rVHD3J4FPKxzuBUyKvp8EHFavQaVYFeMJ4XMqWXD3D9x9fvT9KmApsB21+Hzm4y8ITUiLnwP/\nNLPnzeykpIMpEFu6+3II/yCBAtgfK3EDzGy+md2sslv2zKw1UAI8A2yV7eczH5OBxK+bu+8GHEw4\njeyedEAFSFdi1M21QBt3LwE+AMYkHE+qmFkT4G5gYHSGUPHzuM7PZz4mg/eA/yl3e7vomNSSu78f\n/XcFMJ1QipO6WW5mWwGYWQvgw4TjSTV3X1Fu85KbgD2SjCdNzKwRIRHc5u73RYez/nzmYzJ4HtjB\nzFqZ2fqfn90YAAAC40lEQVTAUcD9CceUWma2UfRXA2a2MbA/sCjZqFLJWLumfT/QL/r+OOC+ik+Q\naq01ntEvrDK90Wc0GxOAJe4+rtyxrD+feTnPILqsbBw/TUgblXBIqWVm2xPOBpwwyfAOjWd2zOxO\noBTYDFgODAfuBaYBLYG3gD7uno6lNxNWxXjuQ6h3rwGWASeX1bylambWDXgcWEj4N+7AMMKqDn8n\ni89nXiYDERGpX/lYJhIRkXqmZCAiIkoGIiKiZCAiIigZiIgISgYiIoKSgYiIoGQgRSha/32/CscG\nmtk1ZrajmT0UrQP/gplNNbMtzKyHma2M1tqfF/133+i5jc0sY2YNzOx1M9uxwmtfaWZ/NrOdzOzW\n+vxZRWpKyUCK0Z3A0RWOHQVMAR4CrnH3tu7embCA2hbRYx6P1trfNfrvo9Hx44F73H1N9BpHlb2o\nmRlwODDF3RcB25rZdjn7yURqSclAitE9wMHRAl+YWStga+BXwNPuPqPsge7+uLsviW5Wtd5+X35a\n+2Uq5ZIB8P+AZe7+bnT7wQr3i+QFJQMpOu7+KWHtloOiQ0cR1nHpCMyt5ql7VygTbW9m6wHbu/vb\n0WsvAn4ws07lXntKudd4Adg7xh9HJBZKBlKsyv8FX/EXdlUqloneBDYHKi4ANhU4yswaEnaYmlbu\nvg+BbeoWukj8lAykWN0H9DSzXYEN3X0esBjonOXrfA00rnBsKnAk8GtgQbSPRJnG0XNE8oqSgRQl\nd/8SyBDWgi87K7gT6GpmZeUjzGxvM+tQdrOS11kJNIz23ig79gbwETCKn59x/Aqt1S95SMlAitkU\nYOfov7j7N8ChwBnRpaWLgFOAsr/su1foGfSOjs8CKm4lOgVoC/yjwvF9CFcsieQV7WcgUkdRqWmQ\nux+3jsetTzgb6R5dhiqSN3RmIFJHUb/hsWhOQXX+BxiqRCD5SGcGIiKiMwMREVEyEBERlAxERAQl\nAxERQclARESA/w8INYcwb/NOegAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f9a7522f0b8>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pylab as p\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=18.0; #Supply voltage, V\n",
+ "R1=16.0; #Resistor R1, kilo ohm\n",
+ "R2=22.0; #Resistor R2, kilo ohm\n",
+ "RE=910.0; #Emitter resistor, ohm\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculations\n",
+ "V2=VCC*R2/(R1+R2); #Voltage across R2, V (Voltage divider rule)\n",
+ "VE=V2-VBE; #Emitter voltage, V\n",
+ "IE=(VE/RE)*1000; #Emitter current, mA (OHM's LAW)\n",
+ "\n",
+ "#D.C load line\n",
+ "IC_sat=(VCC/RE)*1000; #Collector saturation current, mA\n",
+ "VCE_off=VCC; #Collector-emitter voltage in off state, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Value of VE=%.2fV and IE=%.2fmA\"%(VE,IE));\n",
+ "\n",
+ "#Plotting\n",
+ "VCE_plot=[0,VCE_off]; #Plotting variable for VCE\n",
+ "IC_plot=[IC_sat,0]; #Plotting variable for IC\n",
+ "p.plot(VCE_plot,IC_plot);\n",
+ "p.xlim(0,20)\n",
+ "p.ylim(0,25)\n",
+ "p.xlabel('VCE(V)');\n",
+ "p.ylabel('IC(mA)');\n",
+ "p.title('d.c load line');\n",
+ "p.grid();\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.20 : Page number 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain of the emitter follower circuit=0.994.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Supply voltage, V\n",
+ "R1=10.0; #Resistor R1, kilo ohm\n",
+ "R2=10.0; #Resistor R2, kilo ohm\n",
+ "RE=5.0; #Emitter resistance, kilo ohm\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V2=VCC*R2/(R1+R2); #Voltage across R2, V (Voltage divider rule)\n",
+ "VE=V2-VBE; #Emitter voltage, V\n",
+ "IE=(VE/RE); #Emitter current, mA (OHM's LAW)\n",
+ "re=25/IE; #a.c emitter resistance, ohm\n",
+ "Av=RE*1000/(re+RE*1000); #Voltage gain\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The voltage gain of the emitter follower circuit=%.3f.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.21 : Page number 352-353"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage gain=0.988\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "RE=5.0; #Emitter resistance, kilo ohm\n",
+ "re=29.1; #a.c emitter resistance, ohm\n",
+ "RL=5.0; #Load resistance, kilo ohm\n",
+ "\n",
+ "#Calculation\n",
+ "RE_ac=(RE*RL)/(RE+RL); #New effective value of emitter resistance, kilo ohm\n",
+ "Av=RE_ac*1000/(re+RE_ac*1000); #Voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"The voltage gain=%.3f\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.22 : Page number 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The input impedance of the emitter follower =4.96 kilo ohm\n",
+ "The approximate value of the input impedance=5 kilo ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "def pr(r1,r2): #Function for calculating parallel resistance\n",
+ " return (r1*r2)/(r1+r2);\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=10.0; #Supply voltage, V\n",
+ "R1=10.0; #Resistor R1, kilo ohm\n",
+ "R2=10.0; #Resistor R2, kilo ohm\n",
+ "RE=4.3; #Emitter resistor, kilo ohm\n",
+ "RL=10.0; #Load resistance, kilo ohm\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=200.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "V2=VCC*R2/(R1+R2); #Voltage across R2, V (Voltage divider rule)\n",
+ "VE=V2-VBE; #Emitter voltage, V\n",
+ "IE=(VE/RE); #Emitter current, mA (OHM's LAW)\n",
+ "re=25/IE; #a.c emitter resistance, ohm\n",
+ "RE_eff=pr(RE,RL); #Effective external emitter resistance, kilo ohm\n",
+ "Zin_base=beta*(re/1000+RE_eff); #Input impedance of the base of the transistor, kilo ohm\n",
+ "Zin=pr(pr(R1,R2),Zin_base); #Input impedance of emitter follower, kilo ohm\n",
+ "#Approximate value of input impedance taken as parallel resistance of R1 and R2 and ignoring Zin_base due to its relatively large value\n",
+ "Zin_approx=pr(R1,R2); #Approximate input impedance, kilo ohm\n",
+ "\n",
+ "#Result\n",
+ "print(\"The input impedance of the emitter follower =%.2f kilo ohm\"%Zin);\n",
+ "print(\"The approximate value of the input impedance=%d kilo ohm\"%Zin_approx);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.23 : Page number 355"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output impedance=22.3 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "def pr(r1,r2): #Function for calculating parallel resistance\n",
+ " return (r1*r2)/(r1+r2);\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "re=20.0; #a.c emitter resistance, ohm\n",
+ "R1=3.0; #Resistor R1, kilo ohm\n",
+ "R2=4.7; #Resistor R2, kilo ohm\n",
+ "RS=600.0; #Source resistance, kilo ohm\n",
+ "beta=200.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "Rin_ac=pr(pr(R1,R2)*1000,RS); #Input a.c resistance, ohm\n",
+ "Zout=re + Rin_ac/beta; #Output impedance, ohm\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output impedance=%.1f ohm\"%Zout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.24 : Page number 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) d.c value of current in RE=1.09mA\n",
+ "(ii) Input impedance=16.17 mega ohm.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Supply voltage, V\n",
+ "R1=120.0; #Resistor R1, kilo ohm\n",
+ "R2=120.0; #Resistor R2, kilo ohm\n",
+ "RE=3.3; #Emitter resistor, kilo ohm\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta_1=70.0; #Base current amplification factor of 1st transistor\n",
+ "beta_2=70.0; #Base current amplification factor of 2nd transistor\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "V2=VCC*R2/(R1+R2); #Voltage across R2, V (Voltage divider rule)\n",
+ "IE_2=(V2-2*VBE)/RE; #Emitter current, mA (OHM's LAW)\n",
+ "\n",
+ "#(ii)\n",
+ "Zin=(beta_1*beta_2*RE)/1000; #Input impedance, mega ohm\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) d.c value of current in RE=%.2fmA\"%IE_2);\n",
+ "print(\"(ii) Input impedance=%.2f mega ohm.\"%Zin);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.25 : Page number 358-359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) D.C Bias levels: \n",
+ " VB1= 4V, VE1=3.3V, VB2=3.3V, VE2=2.6V, IE2=1.3mA and IE1=0.013mA.\n",
+ "(ii) A.C Analysis: \n",
+ " re1=1923 ohm and re2=19.23 ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Supply voltage, V\n",
+ "R1=20.0; #Resistor R1, kilo ohm\n",
+ "R2=10.0; #Resistor R2, kilo ohm\n",
+ "RC=4.0; #Collector resistor, kilo ohm\n",
+ "RE=2.0; #Emitter resistor, kilo ohm\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=100.0; #Base current amplification factor of 1st transistor\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) D.C Bias levels\n",
+ "VB1=VCC*R2/(R1+R2); #Base voltage of 1st transistor, V (Voltage divider rule)\n",
+ "VE1=VB1-VBE; #Emitter voltage of 1st transistor, V\n",
+ "VB2=VE1; #Base voltage of 2nd transistor, V\n",
+ "VE2=VB2-VBE; #Emitter voltage of 2nd transistor, V\n",
+ "IE2=VE2/RE; #Emitter current of 2nd transistor, mA (OHM' LAW)\n",
+ "IE1=IE2/beta; #Emitter current of 1st transistor, mA (IE~IC=beta*IB, here IB2=IE1)\n",
+ "\n",
+ "#(ii) A.C analysis\n",
+ "re1=25/IE1; #a.c emitter resistance of 1st transistor\n",
+ "re2=25/IE2; #a.c emitter resistance of 2nd transistor\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) D.C Bias levels: \\n VB1= %dV, VE1=%.1fV, VB2=%.1fV, VE2=%.1fV, IE2=%.1fmA and IE1=%.3fmA.\"%(VB1,VE1,VB2,VE2,IE2,IE1));\n",
+ "print(\"(ii) A.C Analysis: \\n re1=%d ohm and re2=%.2f ohm \"%(re1,re2));\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_3.ipynb
new file mode 100644
index 00000000..5e35882c
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_3.ipynb
@@ -0,0 +1,502 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ec0d27209d08b0b95750f66ce9ee21af5ef586e23d0bf0ea218aa20a4ce63e43"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#CHAPTER 14: SINUSOIDAL OSCILLATORS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.1 : Page number 371-372\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "L1=58.6; #Inductance, micro henry\n",
+ "C1=300.0; #Capacitance, pF\n",
+ "\n",
+ "#Calculation\n",
+ "f=(1/(2*round(pi,2)*sqrt(L1*10**-6*C1*10**-12)))/1000; #Frequency of oscillation, kHz\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"frequency of oscillation=%dkHz\"%f);\n",
+ "\n",
+ "\n",
+ "#Note : The frequency has been calculated in the text as 1199kHz but here the answer gets approximated to 1200kHz.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of oscillation=1200kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2 : Page number 372\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "L1=1.0; #Inductance , mH\n",
+ "f=1.0; #frequency of oscillation, GHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, f=1/(2*pi*sqrt(L1*C1)),\n",
+ "C1=(1/(L1*10**-3*(f*10**12*2*pi)**2))*10**12; #Capacitance, pF\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The Capacitance of the capacitor of the LC oscillator=%.2epF\"%C1);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Capacitance of the capacitor of the LC oscillator=2.53e-11pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.3 : Page number 373-374\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "C1=0.001; #Capacitor C1, microfarad\n",
+ "C2=0.01; #Capacitor C2, microfarad\n",
+ "L=15.0; #Inductance, microhenry\n",
+ "\n",
+ "#Calculation\n",
+ "CT=C1*C2/(C1+C2); #Total capacitance\n",
+ "\n",
+ "#(i) Operating frequency\n",
+ "f=(1/(2*pi*sqrt(CT*10**-6*L*10**-6)))/1000; #Operating frequency, kHz\n",
+ "\n",
+ "#(ii) Feedback fraction\n",
+ "mv=C1/C2; #Feedback fraction\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The operating frequency=%dkHz\"%f);\n",
+ "print(\"(ii) The feedback fraction=%.1f\"%mv);\n",
+ "\n",
+ "#Note : The operating frequency is calculated in the text as 1361kHz but here it has been approximated to 1362kHz\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The operating frequency=1362kHz\n",
+ "(ii) The feedback fraction=0.1\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4 : Page number 374: Page number\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "mv=0.25; #Feedback fraction\n",
+ "L=1.0; #Inductance, mH\n",
+ "f=1.0; #Operating frequeny, MHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, f=1/(2*pi*sqrt(L*C))\n",
+ "CT=round((1/(L*10**-3*(2*pi*f*10**6)**2))*10**12,1); #Total capacitance, pF\n",
+ "\n",
+ "#Since, mv=C1/C2 and CT=C1*C2/(C1+C2) or CT=C2/(1+ (C2/C1)),\n",
+ "#From the above equations, substituting value of mv and calculaing value of C2,\n",
+ "C2=CT*(1+(1/mv)); #Capacitance of C2 capactior, pF\n",
+ "C1=mv*C2; #Capacitance of C1 capacitor, pF\n",
+ "\n",
+ "#Result\n",
+ "print(\"C1=%.1fpF and C2=%.1fpF\"%(C1,C2));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "C1=31.6pF and C2=126.5pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.5 : Page number 375-376\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable decalaration\n",
+ "L1=1000.0; #Inductance of L1 inductor, microhenry\n",
+ "L2=100.0; #Inductance of L2 inductor, microhenry\n",
+ "M=20.0; #Mutual inductance, microhenry\n",
+ "C=20.0; #Capacitance, pF\n",
+ "\n",
+ "#Calculation\n",
+ "LT=L1+L2+2*M; #Total inductance, microhenry\n",
+ "\n",
+ "#(i) Operating frequency\n",
+ "f=(1/(2*pi*sqrt(LT*10**-6*C*10**-12)))/1000; #Operating frequency, kHz\n",
+ "\n",
+ "#(ii)\n",
+ "mv=L2/L1; #feedback fraction\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The operating frequency=%dkHz.\"%f);\n",
+ "print(\"(ii) The feedback fraction=%.1f.\"%mv);\n",
+ "\n",
+ "#Note : The operating frequecy has been calculated in the text as 1052kHz but here it gets approximated to 1054kHz\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The operating frequency=1054kHz.\n",
+ "(ii) The feedback fraction=0.1.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.6 : Page number 376\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=1.0; #Capacitance, pF\n",
+ "f=1.0; #Frequency, MHz\n",
+ "mv=0.2; #Feedback frequency\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "LT=(1/(C*10**-12*(2*pi*f*10**6)**2))*1000; #Total inductance, mH\n",
+ "\n",
+ "#Since, mv=L2/L1 or L2=mv*L1 and L1+L2=LT or L1(1+mv)=LT,\n",
+ "L1=LT/(1+mv); #Inductance of L1 inductor, mH\n",
+ "L2=L1*mv; #inductance of L2 inductor, mH\n",
+ "\n",
+ "#Result\n",
+ "print(\"L1=%.1fmH and L2=%.2fmH.\"%(L1,L2));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "L1=21.1mH and L2=4.22mH.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.7 : Page number 378\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "R1=1.0; #Resistor R1, mega ohm\n",
+ "R2=R1; #Resistor R2, mega ohm\n",
+ "R3=R1; #Resistor R3, mega ohm\n",
+ "C1=68.0; #Capacitor C1, pF\n",
+ "C2=C1; #Capacitor C2, pF\n",
+ "C3=C1; #Capacitor C3, pF\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "R=R1*10**6; #Resistance of the resistors of phase shift circuit, ohm\n",
+ "C=C1*10**-12; #Capacitance of the capacitors of phase shift circuit, F\n",
+ "fo=1/(2*pi*R*C*sqrt(6)); #Frequency of oscillation, Hz\n",
+ "\n",
+ "#Result\n",
+ "print(\"The frequency of oscillation=%dHz\"%fo);\n",
+ "\n",
+ "#Note: The frequency of oscillation had been calculated in the text as 954Hz, but here it gets approximated to 955 HZ.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of oscillation=955Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.8 : Page number 378\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=5.0; #Capacitance of the capacitors of phase shift circuit, pF\n",
+ "fo=800.0; #Required frequency of oscillation, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, fo=1/(2*pi*R*C*sqrt(6))\n",
+ "R=(1/(2*pi*C*10**-12*fo*10**3*sqrt(6)))/1000; #Resistance of the resistors of phase shift circuit, kilo ohm\n",
+ "\n",
+ "#Result\n",
+ "print(\"R=%.1f kilo ohm.\"%R);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R=16.2 kilo ohm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.9 : Page number 380\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "#Resistance of R1 and R2 resistors of the R-C bridge circuit\n",
+ "R1=220.0; #kilo ohm \n",
+ "R2=220.0; #kilo ohm\n",
+ "\n",
+ "#Capacitance of C1 and C2 the capacitors of the R-C bridge circuit\n",
+ "C1=250.0; #pF\n",
+ "C2=250.0; #pF\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, R1=R2 and C1=C2, R1=R2 is taken as R and C1=C2 is taken as C\n",
+ "#And, f=1/(2*pi*sqrt(R1*R2*C1*C2))is transformed to f=1/(2*pi*R*C).\n",
+ "R=R1*10**3; #kilo ohm\n",
+ "C=C1*10**-12; #pF\n",
+ "f=1/(2*pi*R*C); #Frequency of oscillation, Hz\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The frequency of oscillation=%dHz.\"%f);\n",
+ "\n",
+ "\n",
+ "#Note : The frequency of oscillation is calculated in the text as 2892Hz but here it gets approximated to 2893 Hz.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of oscillation=2893Hz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.11 : Page number 384\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "#a.c equivalent values of the crystal:\n",
+ "L=1.0; #Inductance , H\n",
+ "C=0.01; #Capacitance , pF\n",
+ "R=1000.0; #Resistance , ohm\n",
+ "Cm=20.0; #Mounting capacitance, pF\n",
+ "\n",
+ "#Calculation\n",
+ "fs=(1/(2*round(pi,2)*sqrt(L*C*10**-12)))/1000; #Series resonant frrequency, kHz\n",
+ "CT=(C*Cm/(C+Cm)); #Total capacitance, pF\n",
+ "fp=(1/(2*round(pi,2)*sqrt(L*CT*10**-12)))/1000; #Prallel resonant frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"fs=%.0fkHz and fp=%.0fkHz.\"%(fs,fp));\n",
+ "\n",
+ "#Note: fs and fp are calculated in the text as 1589kHz and 1590kHz, but here it gets approximated to 1592kHz and 1593kHz\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fs=1592kHz and fp=1593kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_3.ipynb
new file mode 100644
index 00000000..e649cc91
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_3.ipynb
@@ -0,0 +1,482 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:034eec32676d4e7abdedfb3bf68426d81a2d1483fc668bcbfdb5be18cec2e406"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 15: TRANSISTOR TUNED AMPLIFIERS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.1 : Page number 394"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=250.0*10**-12; #Capacitor of parallel resonant circuit, F\n",
+ "L=1.25*10**-3; #Inductor of the parallel resonant circuit, H\n",
+ "R=10.0; #Resistor of the parallel resonant circuit, ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) Resonant frequency\n",
+ "fr=((1/(2*pi))*sqrt((1/(L*C))-(R/L)**2))/1000; #Resonant frequecy, kHz\n",
+ "\n",
+ "#(ii) Impedance of the circuit at resonance\n",
+ "Zr=(L/(C*R))/1000; #Impedance of the circuit at resonance, kilo ohm\n",
+ "\n",
+ "#(iii) Quality factor of the circuit\n",
+ "Q=2*pi*(fr*10**3)*L/R; #Quality factor of the circuit\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The resonant frequency=%.1fkHz.\"%fr);\n",
+ "print(\"(ii) The impedance of the circuit at resonance=%d kilo ohm.\"%Zr);\n",
+ "print(\"(iii) The quality factor of the circuit=%.1f.\"%Q);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The resonant frequency=284.7kHz.\n",
+ "(ii) The impedance of the circuit at resonance=500 kilo ohm.\n",
+ "(iii) The quality factor of the circuit=223.6.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.2 : Page number 394-395\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=100.0*10**-12; #Capacitor of parallel resonant circuit, F\n",
+ "L=100.0*10**-6; #Inductor of the parallel resonant circuit, H\n",
+ "R=10.0; #Resistor of the parallel resonant circuit, ohm\n",
+ "V=10.0; #Supply voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) Resonant frequency\n",
+ "fr=((1/(2*pi))*sqrt((1/(L*C))-(R/L)**2))/1000; #Resonant frequecy, kHz\n",
+ "\n",
+ "#(ii) Impedance of the circuit at resonance\n",
+ "Zr=(L/(C*R))/10**6; #Impedance of the circuit at resonance, mega ohm\n",
+ "\n",
+ "I=V/Zr; #Line current at resonance, microampere\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The resonant frequency=%.2fkHz.\"%fr);\n",
+ "print(\"(ii) The impedance of the circuit at resonance=%.1f mega ohm.\"%Zr);\n",
+ "print(\"The line current at resonance=%d micro ampere.\"%I);\n",
+ "\n",
+ "#Note : The resonant frequency in the text has been calculated as 1592.28 kHz, but here it gets approximated to 1591.47 kHz.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The resonant frequency=1591.47kHz.\n",
+ "(ii) The impedance of the circuit at resonance=0.1 mega ohm.\n",
+ "The line current at resonance=100 micro ampere.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.3 : Page number 395\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=250.0*10**-12; #Capacitor of parallel resonant circuit, F\n",
+ "Zr=500.0*10**3; #Dynamic impedance, ohm\n",
+ "R=10.0; #Resistance of the coil, ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#Since,Zr=L/CR,\n",
+ "L=(Zr*C*R)*10**3; #Inductance of the coil, mH\n",
+ "\n",
+ "#(ii) Resonant frequency\n",
+ "fr=((1/(2*pi))*sqrt((1/(L*10**-3*C))-(R/(L*10**-3))**2))/1000; #Resonant frequecy, kHz\n",
+ "\n",
+ "#(iii) Quality factor of the circuit\n",
+ "Q=2*pi*(fr*10**3)*(L*10**-3)/R; #Quality factor of the circuit\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The inductance of the coil=%.2fmH.\"%L);\n",
+ "print(\"(ii) The resonant frequency=%.1fkHz.\"%fr);\n",
+ "print(\"(iii) The quality factor of the circuit=%.1f.\"%Q);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The inductance of the coil=1.25mH.\n",
+ "(ii) The resonant frequency=284.7kHz.\n",
+ "(iii) The quality factor of the circuit=223.6.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.4 : Page number 397\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Q=60.0; #Quality factor of the tuned amplifier\n",
+ "fr=1200.0; #Resonant frequency, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "BW=fr/Q; #Bandwidth, kHz\n",
+ "\n",
+ "#(ii)\n",
+ "f1=fr-(BW/2); #Lower cut-off frequency, kHz\n",
+ "f2=fr+(BW/2); #Upper cut-off frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The bandwidth=%dkHz\"%BW);\n",
+ "print(\"(ii) The lower and upper cut-off frequencies are=%dkHz and %dkHz.\"%(f1,f2));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The bandwidth=20kHz\n",
+ "(ii) The lower and upper cut-off frequencies are=1190kHz and 1210kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.5 : Page number 397\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fr=2.0; #Resonant frequency, MHz\n",
+ "BW=50.0; #Bandwidth, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, bandwidth=resonant_frequency/quality_factor\n",
+ "Q=(fr*10**6)/(BW*10**3); #Quality factor\n",
+ "\n",
+ "#Result\n",
+ "print(\"The quality factor=%d\"%Q);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The quality factor=40\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.7 : Page number 400\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=0.1*10**-6; #Capacitor of parallel resonant circuit, F\n",
+ "L=33.0*10**-3; #Inductor of the parallel resonant circuit, H\n",
+ "R=25.0; #Resistor of the parallel resonant circuit, ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "fr=(1/(2*pi*sqrt(L*C)))/1000; #Resonant frequency, kHz\n",
+ "\n",
+ "#(ii)\n",
+ "XL=2*pi*(fr*10**3)*L; #Inductive reactance, ohm\n",
+ "Q=round(XL/R,0); #Quality factor\n",
+ "\n",
+ "#(iii)\n",
+ "BW=(fr*10**3)/Q; #Bandwidth\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The resonant frequency=%.2fkHz\"%fr);\n",
+ "print(\"(ii) The quality factor= %d.\"%Q);\n",
+ "print(\"(iii) The bandwidth=%dHz.\"%BW);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The resonant frequency=2.77kHz\n",
+ "(ii) The quality factor= 23.\n",
+ "(iii) The bandwidth=120Hz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.8 : Page number 401-402\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "BW_dt=200.0; #Bandwidth, kHz\n",
+ "fr=10.0; #Operating frequency, MHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, BW_dt=k*fr (i.e.,co-efficient_of_coupling * operating_frequency)\n",
+ "k=BW_dt/(fr*10**3); #co-efficient of coupling\n",
+ "\n",
+ "#Result\n",
+ "print(\"The co-efficient of coupling=%.2f.\"%k);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The co-efficient of coupling=0.02.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.9 : Page number 405\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=500.0*10**-12; #Capacitor of parallel resonant circuit, F\n",
+ "L=50.7*10**-6; #Inductor of the parallel resonant circuit, H\n",
+ "R=10.0; #Resistor of the parallel resonant circuit, ohm\n",
+ "RL=1.0; #Load resistance, mega ohm\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "fr=round((1/(2*pi*sqrt(L*C)))/1000); #Resonant frequency, Hz\n",
+ "\n",
+ "#(ii)\n",
+ "R_dc=R; #d.c load, ohm\n",
+ "XL=2*pi*(fr*1000)*L; #Inductive reactance, ohm\n",
+ "Q_coil=round(XL/R,1); #Quality factor\n",
+ "R_P=(Q_coil*XL)/1000 ; #Equivalent parallel resistance, kilo ohm\n",
+ "R_AC=(R_P*RL*10**3)/(R_P+RL*10**3); #A.C load,kilo ohm\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The resonant frequency=%dkHz\"%fr);\n",
+ "print(\"(ii) d.c load=%d ohm and a.c load=%d kilo ohm.\"%(R_dc,R_AC));\n",
+ "\n",
+ "#Note: In the text resonant frequency has been wrongly calculated to 106kHz but its actual value is approximately 1000kHz\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The resonant frequency=1000kHz\n",
+ "(ii) d.c load=10 ohm and a.c load=10 kilo ohm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.10 : Page number 406-407\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RL=50.0; #Load resistance, ohm\n",
+ "n=5; #Turns ratio of the transformer\n",
+ "VCC=50.0; #Supply voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "R_ac=n**2*RL; #A.C load, ohm\n",
+ "\n",
+ "#(ii)\n",
+ "P_o_max=VCC**2/(2*R_ac); #Maximum load power, W\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The a.c load=%d ohm\"%R_ac);\n",
+ "print(\"(ii) Maximum load power=%dW\"%P_o_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The a.c load=1250 ohm\n",
+ "(ii) Maximum load power=1W\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.11 : Page number 407\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "P_D=4.0; #Maximum power dissipation, mW\n",
+ "P_o_max=1.0; #Maximum load power, W\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "max_collector_eff=(P_o_max/(P_o_max+(P_D/1000)))*100; #Maximum collector efficiency\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum collector efficiency=%.1f%%\"%max_collector_eff);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum collector efficiency=99.6%\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter16_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter16_3.ipynb
new file mode 100644
index 00000000..b2262b8f
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter16_3.ipynb
@@ -0,0 +1,936 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d4ffda068787fb0974622fa8de40f7d54b5df2a00735e870e01cb9df45be78f9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 16 : MODULATION AND DEMODULATION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.2 : Page number 416-417\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variabledeclaration\n",
+ "V_pp_max=16.0; #Maximum peak-to-peak voltage of an AM wave, mV\n",
+ "V_pp_min=4.0; #Minimum peak-to-peak voltage of an AM wave, mV\n",
+ "\n",
+ "#Calculation\n",
+ "Vmax=V_pp_max/2; #Maximum voltage of AM wave, mV\n",
+ "Vmin=V_pp_min/2; #Minimum voltage of AM wave, mV\n",
+ "m=(Vmax-Vmin)/(Vmax+Vmin); #Modulation factor.\n",
+ "\n",
+ "#Result\n",
+ "print(\"The modulation factor=%.1f.\"%m);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The modulation factor=0.6.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.3 : Page number 417\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Es=50.0; #signalvoltage amplitude, V\n",
+ "Ec=100.0; #Carrier voltage amplitude, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "m=Es/Ec; #Modulation factor\n",
+ "\n",
+ "#Result\n",
+ "print(\"Modulation factor=%.1f.\"%m);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Modulation factor=0.5.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.4 : Page number 419\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fc=2500.0; #Carrier frequency, kHz\n",
+ "f1=50.0; #Lower frequency of the audio signal, Hz\n",
+ "f2=15000.0; #Upper frequency of the audio signal, Hz\n",
+ "\n",
+ "#Calculation\n",
+ "fl_usb=fc+(f1/1000); #Lower frequency of upper sideband, kHz\n",
+ "fu_usb=fc+(f2/1000); #Upper frequency of upper sideband, kHz\n",
+ "\n",
+ "fu_lsb=fc-(f1/1000); #Lower frequency of upper sideband, kHz\n",
+ "fl_lsb=fc-(f2/1000); #Upper frequency of upper sideband, kHz\n",
+ "\n",
+ "#Since, f1=50Hz is negligible with respect to f2=15000Hz,\n",
+ "BW=(fc+(f2/1000))-(fc-(f2/1000)); #Bandwidth, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"The upper sideband=%.2fkHz to %dkHz.\"%(fl_usb,fu_usb));\n",
+ "print(\"The lower sideband=%dkHz to %.2fkHz.\"%(fl_lsb,fu_lsb));\n",
+ "print(\"The bandwidth=%dkHz\"%BW);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The upper sideband=2500.05kHz to 2515kHz.\n",
+ "The lower sideband=2485kHz to 2499.95kHz.\n",
+ "The bandwidth=30kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.5 : Page number 420\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "EC=5.0; #Carrier amplitude, V\n",
+ "m=0.6; #modulation factor\n",
+ "ws=6280.0; #angular frequency of signal, radians/s\n",
+ "wc=211*10**4; #angular frequency of carrier, radians/s\n",
+ "\n",
+ "#Calculation\n",
+ "fs=(ws/(2*pi))/1000; #Signal frequency, kHz\n",
+ "fc=(wc/(2*pi))/1000; #Carrier frequency, kHz\n",
+ "\n",
+ "#(i)\n",
+ "Max_amp=EC+m*EC; #Maximum amplitude of AM wave, V\n",
+ "Min_amp=EC-m*EC; #Minimum amplitude of AM wave, V\n",
+ "\n",
+ "#(ii)\n",
+ "frequency_components=[fc-fs,fc,fc+fs]; #frequency components, kHz\n",
+ "amplitudes=[m*EC/2,EC,m*EC/2]; #Corresponding amplitudes, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The maximum and minimum amplitudes of AM wave=%dV and %dV.\"%(Max_amp,Min_amp));\n",
+ "print(\"(ii) The frequency components of the AM wave=%.0f,%.0f,%.0f.\"%(frequency_components[0],frequency_components[1],frequency_components[2]));\n",
+ "print(\" The corresponding amplitudes are =%.1fV, %dV, %.1fV.\"%(amplitudes[0],amplitudes[1],amplitudes[2]));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The maximum and minimum amplitudes of AM wave=8V and 2V.\n",
+ "(ii) The frequency components of the AM wave=335,336,337.\n",
+ " The corresponding amplitudes are =1.5V, 5V, 1.5V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.6 : Page number 420-421\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fc=1000.0; #Carrier frequency, kHz\n",
+ "fs=5.0; #Signal frequency, kHz\n",
+ "m=0.5; #Modulation factor\n",
+ "EC=100.0; #Amplitude of the carrier, V\n",
+ "\n",
+ "#Calculation\n",
+ "f_lsb=fc-fs; #Lower sideband frequency,kHz\n",
+ "f_usb=fc+fs; #Upper sideband frequency, kHz\n",
+ "Amplitude=m*EC/2; #Amplitude of each sideband, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The lower and upper sideband frequencies are=%dkHz and %dkHz.\"%(f_lsb,f_usb));\n",
+ "print(\"The amplitude of each sideband =%dV\"%Amplitude);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The lower and upper sideband frequencies are=995kHz and 1005kHz.\n",
+ "The amplitude of each sideband =25V\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.7 : Page number 421\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "EC=10.0; #Carrier amplitude, V\n",
+ "ES=6.0; #Signal amplitude, V\n",
+ "fc=10.0; #Carrier frequency, MHz\n",
+ "fs=5/1000.0; #Signal frequency. MHz\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "m=ES/EC; #Modulation factor\n",
+ "\n",
+ "#(ii)\n",
+ "f_lsb=fc-fs; #Lower sideband frequency,MHz\n",
+ "f_usb=fc+fs; #Upper sideband frequency, MHz\n",
+ "\n",
+ "#(iii)\n",
+ "Amplitude=m*EC/2; #Amplitude of each sideband, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The modulation factor=%.1f.\"%m);\n",
+ "print(\"(ii) The lower and upper sideband frequencies are=%.3fMHz and %.3fMHz.\"%(f_lsb,f_usb));\n",
+ "print(\"(iii) The amplitude of each sideband =%dV\"%Amplitude);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The modulation factor=0.6.\n",
+ "(ii) The lower and upper sideband frequencies are=9.995MHz and 10.005MHz.\n",
+ "(iii) The amplitude of each sideband =3V\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.8 : Page number 423\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Pc=500.0; #Carrier power, W\n",
+ "m=1.0; #Modulation factor\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Ps=(1/2.0)*m**2*Pc; #Sideband power, W\n",
+ "\n",
+ "#(ii)\n",
+ "PT=Pc+Ps; #Power of AM wave, W\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The power in sidebands=%dW\"%Ps);\n",
+ "print(\"(ii) The power of AM wave=%dW\"%PT);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The power in sidebands=250W\n",
+ "(ii) The power of AM wave=750W\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exmaple 16.9 : Page number 423\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Pc=50.0; #Power of carrier, kW\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "m=80/100.0; #Modulation factor\n",
+ "Ps=(1/2.0)*m**2*Pc; #Sideband Power, kW\n",
+ "print(\"(i) The sideband power for 80%% modulation=%dkW.\"%Ps);\n",
+ "\n",
+ "#(ii)\n",
+ "m=10/100.0; #Modulation factor\n",
+ "Ps=(1/2.0)*m**2*Pc; #Sideband Power, kW\n",
+ "print(\"(ii) The sideband power for 10%% modulation=%.2fkW.\"%Ps);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The sideband power for 80% modulation=16kW.\n",
+ "(ii) The sideband power for 10% modulation=0.25kW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.10 : Page number 423-424\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Pc=40.0; #Carrier power, kW\n",
+ "m=100/100.0; #Modulation index\n",
+ "amplifier_eff=72/100.0; #Efficiency of modulated RF amplifier\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)Carrier power remains same after modulation\n",
+ "\n",
+ "#(ii)\n",
+ "Ps=(1/2.0)*(m**2)*Pc; #Sideband power\n",
+ "P_audio=Ps/amplifier_eff; #Required audio power, kW\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The carrier power=%dkW.\"%Pc);\n",
+ "print(\"(ii) The required audio power=%.1fkW.\"%P_audio);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The carrier power=40kW.\n",
+ "(ii) The required audio power=27.8kW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.11 : Page number 424\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fs=1.0; #Signal frequency, kHz\n",
+ "fc=500.0; #Carrier frequency, kHz\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "sideband_f=[fc-fs,fc+fs]; #Sideband frequencies, kHz\n",
+ "\n",
+ "#(ii)\n",
+ "BW=(fc+fs)-(fc-fs); #Bandwidth required, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The sideband frequencies=%dkHz and %dkHz.\"%(sideband_f[0],sideband_f[1]));\n",
+ "print(\"(ii) The bandwidth required=%dkHz\"%BW);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The sideband frequencies=499kHz and 501kHz.\n",
+ "(ii) The bandwidth required=2kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.12 : Page number 424\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "IC=8.0; #Antenna current due to carrier,A\n",
+ "m=40/100.0; #Modulation index\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Ps=(1/2)*m\u00b2*Pc and PT=Pc+Ps (Total_power=carrier_power+signal_power)\n",
+ "#that implies, (PT/Pc)=1+(m\u00b2/2),\n",
+ "#So, square_of(Total_current/Carrier_current)=(IT/IC)\u00b2=1+(m\u00b2/2).\n",
+ "IT=IC*sqrt(1+(m**2/2.0)); #Total current, A\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The total antenna current=%.2fA.\"%IT);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total antenna current=8.31A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.13 : Page number 424\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "IC=8.0; #Antenna current when only carrier is sent, A\n",
+ "IT=8.93; #Total antenna current, A\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Ps=(1/2)*m\u00b2*Pc and PT=Pc+Ps (Total_power=carrier_power+signal_power)\n",
+ "#that implies, (PT/Pc)=1+(m\u00b2/2),\n",
+ "#So, square_of(Total_current/Carrier_current)=(IT/IC)\u00b2=1+(m\u00b2/2).\n",
+ "m=sqrt((((IT/IC)**2)-1)*2)*100; #The %age of modulation\n",
+ "\n",
+ "#Result\n",
+ "print(\"The %%age of modulation=%.1f%%.\"%m);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The %age of modulation=70.1%.\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.14 : Page number 425\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vc=100.0; #Carrier voltage, V\n",
+ "V_T=110.0; #The total voltage after modulation, V\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Ps=(1/2)*m\u00b2*Pc and PT=Pc+Ps (Total_power=carrier_power+signal_power)\n",
+ "#that implies, (PT/Pc)=1+(m\u00b2/2),\n",
+ "#So, square_of(Total_voltage/Carrier_voltage)=(V_T/Vc)\u00b2=1+(m\u00b2/2).\n",
+ "m=sqrt((((V_T/Vc)**2)-1)*2); #The %age of modulation\n",
+ "\n",
+ "#Result\n",
+ "print(\"The modulation index =%.3f.\"%m);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The modulation index =0.648.\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.15 : Page number 425-426\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vc=5.0; #Carrier voltage, V\n",
+ "V_lsb=2.5; #Lower sideband component, V\n",
+ "V_usb=2.5; #Upper sideband component, V\n",
+ "R=2.0; #Resistor driven by AM wave, k\u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, power=(r.m.s_voltage)\u00b2/resistance\n",
+ "#(i)\n",
+ "Pc=round((0.707*Vc)**2/R,2); #Carrier power mW\n",
+ "\n",
+ "#(ii)\n",
+ "P_lower=round((0.707*V_lsb)**2/R,3); #Power delivered by lower sideband, mW\n",
+ "\n",
+ "#(iii)\n",
+ "P_upper=round((0.707*V_usb)**2/R,3); #Power delivered by upper sideband, mW\n",
+ "\n",
+ "P_T=round(Pc+P_lower+P_upper,3); #Total power delivered by the AM wave, mW\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The carrier power=%.2fmW\"%Pc);\n",
+ "print(\"(ii) The power delivered by lower sideband=%.3fmW\"%P_lower);\n",
+ "print(\"(iii) The power delivered by upper sideband=%.3fmW\"%P_upper);\n",
+ "print(\"The total power delivered by the AM wave=%.3fmW\"%P_T);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The carrier power=6.25mW\n",
+ "(ii) The power delivered by lower sideband=1.562mW\n",
+ "(iii) The power delivered by upper sideband=1.562mW\n",
+ "The total power delivered by the AM wave=9.374mW\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.16 : Page number 428\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "wc=6e08; #Carrier angular frequency, rad/s\n",
+ "ws=1250.0; #Signal angular frequency, rad/s\n",
+ "mf=5; #Modulation index\n",
+ "Ec=12.0; #Carrier amplitude, V\n",
+ "R=10.0; #Resistor, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "fc=wc/(2*pi); #Carrier frequency, Hz\n",
+ "\n",
+ "#(ii)\n",
+ "fs=ws/(2*pi); #Signal frequency, Hz\n",
+ "\n",
+ "#(iv)\n",
+ "delta_f=mf*fs; #Maximum frequency deviation, Hz\n",
+ "\n",
+ "#(v)\n",
+ "P=(Ec/sqrt(2))**2/R; #Power dissipated, W\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The carrier frequency=%.1fe06 Hz.\"%(fc/10**6));\n",
+ "print(\"(ii) The signal frequency=%.0f Hz.\"%fs);\n",
+ "print(\"(iii) The modulation index=%d.\"%mf);\n",
+ "print(\"(iv) The maximum frequency deviation=%.0fHz.\"%delta_f);\n",
+ "print(\"(v) The power dissipated=%.1fW.\"%P);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The carrier frequency=95.5e06 Hz.\n",
+ "(ii) The signal frequency=199 Hz.\n",
+ "(iii) The modulation index=5.\n",
+ "(iv) The maximum frequency deviation=995Hz.\n",
+ "(v) The power dissipated=7.2W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.17 : Page number 428-429\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "fc=25.0; #Carrier frequency, MHz\n",
+ "fs=400.0; #Signal frequency, Hz\n",
+ "Ec=4.0; #Carrier amplitude, V\n",
+ "delta_f=10.0; #Maximum frequency deviation, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "wc=2*pi*fc*10**6; #Carrier angular frequency, rad/s\n",
+ "ws=2*pi*fs; #Signal angular frequency, rad/s\n",
+ "mf=delta_f*1000/fs; #Modulation index\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"e=%dcos(%.2et + %dsin%dt)\"%(Ec,wc,mf,ws));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "e=4cos(1.57e+08t + 25sin2513t)\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.18 : Page number 429\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "delta_f=50.0; #Maximum frequency deviation, kHz\n",
+ "fs=5.0; #Modulating frequency, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "mf=delta_f/fs; #Modulation index\n",
+ "\n",
+ "#Result\n",
+ "print(\"The modulation index=%d\"%mf);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The modulation index=10\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.19 : Page number 429\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fc=1000.0; #Carrier frequency, kHz\n",
+ "fs=15.0; #Modulating frequency, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "first_3_usb_f=[fc+fs,fc+2*fs,fc+3*fs]; #First three upper sideband frequncies, kHz\n",
+ "first_3_lsb_f=[fc-fs,fc-2*fs,fc-3*fs]; #First three lowerr sideband frequncies, kHz\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The first three upper sideband frequencies=%dkHz ,%dkHz and %dkHz.\"%(first_3_usb_f[0],first_3_usb_f[1],first_3_usb_f[2]));\n",
+ "print(\"The first three lower sideband frequencies=%dkHz ,%dkHz and %dkHz.\"%(first_3_lsb_f[0],first_3_lsb_f[1],first_3_lsb_f[2]));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The first three upper sideband frequencies=1015kHz ,1030kHz and 1045kHz.\n",
+ "The first three lower sideband frequencies=985kHz ,970kHz and 955kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.20 : Page number 429\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fs=15.0; #Modulating frequency, kHz\n",
+ "delta_f=75.0; #Maximum frequency deviation, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "BW=2*(delta_f+fs); #Bandwidth, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"The bandwidth of the FM signal=%dkHz.\"%BW);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The bandwidth of the FM signal=180kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.21 : Page number 429\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "k=75.0; #Frequency deviation constant, kHz/V\n",
+ "Es=2.0; #Amplitude of signal, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "delta_f=k*Es; #Maximum frequency deviation, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum frequency deviation=%dkHz.\"%delta_f);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum frequency deviation=150kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.22 : Page number 429-430\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "fs1=500.0; #First audio frequency, Hz\n",
+ "fs2=200.0; #Second audio frequency (decreased), Hz\n",
+ "Es=2.4; #AF voltage, V\n",
+ "delta_f1=4.8; #Frequency deviation,kHz\n",
+ "\n",
+ "#Calculation\n",
+ "k=delta_f1/Es; #Frequency deviation constant, kHz/V\n",
+ "Es=7.2; #AF voltage, V (increased)\n",
+ "delta_f2=k*Es; #2nd frequency deviation, kHz\n",
+ "Es=10.0; #AF voltage, V (increased)\n",
+ "delta_f3=k*Es; #3rd frequency deviation, kHz\n",
+ "\n",
+ "mf1=delta_f1/(fs1/1000); #Modulation index in 1st case\n",
+ "mf2=delta_f2/(fs1/1000); #Modulation index in 2nd case\n",
+ "mf3=delta_f3/(fs2/1000); #Modulation index in 3rd case\n",
+ "\n",
+ "#Result\n",
+ "print(\"The frequency deviation in second case=%.1fkHz.\"%delta_f2);\n",
+ "print(\"The frequency deviation in third case=%dkHz.\"%delta_f3);\n",
+ "print(\"The modulation index in 1st case=%.1f\"%mf1);\n",
+ "print(\"The modulation index in 2nd case=%.1f\"%mf2);\n",
+ "print(\"The modulation index in 3rd case=%d\"%mf3);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency deviation in second case=14.4kHz.\n",
+ "The frequency deviation in third case=20kHz.\n",
+ "The modulation index in 1st case=9.6\n",
+ "The modulation index in 2nd case=28.8\n",
+ "The modulation index in 3rd case=100\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter17_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter17_3.ipynb
new file mode 100644
index 00000000..2c9a49a5
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter17_3.ipynb
@@ -0,0 +1,877 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:33d9a7285654630dd24f2d6229210244e78961e0605c11041ed1b2f130cb19a1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 17 : REGULATED D.C POWER SUPPLY"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.1 : Page number 444\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_NL=400.0; #Output voltage with no-load, V\n",
+ "V_FL=300.0; #Output voltage with full-load, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "percentage_voltage_regulation=((V_NL-V_FL)/V_FL)*100; #Percentage of voltage regulation\n",
+ "\n",
+ "#Result\n",
+ "print(\"The percentage of voltage regulation=%.2f%%.\"%percentage_voltage_regulation);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage of voltage regulation=33.33%.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.2 : Page number 444\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_regulation=1.0; #%age voltage regulation\n",
+ "V_NL=30.0; #Output voltage with no-load,V\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, %age_of_voltage_regulation=((V_NL-V_FL)/V_FL)*100\n",
+ "V_FL=V_NL/(1+(V_regulation/100)); #Output voltage with full-load, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The full-load voltage=%.1fV.\"%V_FL);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The full-load voltage=29.7V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.3 : Page number 445\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_NL_A=30.0; #Output voltage of supply A with no-load, V\n",
+ "V_FL_A=25.0; #Output voltage of supply A with full-load, V\n",
+ "V_NL_B=30.0; #Output voltage of supply B with no-load, V\n",
+ "V_FL_B=29.0; #Output voltage of supply B with full-load, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_regulation_A=((V_NL_A-V_FL_A)/V_FL_A)*100; #%age of voltage regulation in power supply A\n",
+ "V_regulation_B=((V_NL_B-V_FL_B)/V_FL_B)*100; #%age of voltage regulation in power supply B\n",
+ "\n",
+ "#Result\n",
+ "if(V_regulation_A<V_regulation_B):\n",
+ " print(\"Power supply A is better than B.\");\n",
+ "else :\n",
+ " print(\"Power supply B is better than A.\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power supply B is better than A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.4 : Page number 445\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_NL=500.0; #Output voltage with no-load, V\n",
+ "V_FL=300.0; #Output voltage with full-load, V\n",
+ "I_FL=120.0; #Output current with full-load, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Regulation=((V_NL-V_FL)/V_FL)*100; #Voltage regulation percentage\n",
+ "\n",
+ "#(ii)\n",
+ "RL_min=V_FL/I_FL; #Minimum load resistance, k\u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The voltage regulation=%.1f%%.\"%Regulation);\n",
+ "print(\"(ii)The minimum load resistance=%.1fk\u03a9.\"%RL_min);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The voltage regulation=66.7%.\n",
+ "(ii)The minimum load resistance=2.5k\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.5 : Page number 445\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VL_1=10.5; #Initial output voltage with load, V\n",
+ "VL_2=10.0; #Decreased output voltage with additional load, V\n",
+ "IL_1=1.0; #Initial load current, A\n",
+ "IL_added=1.0; #Added load current, A\n",
+ "\n",
+ "#Calculation\n",
+ "delta_VL=VL_1-VL_2; #Change in output voltage, V\n",
+ "delta_IL=IL_added; #Change in load current, A\n",
+ "\n",
+ "#(i)\n",
+ "Zo=delta_VL/delta_IL; #Output impedance of power supply, \u03a9 (OHM's LAW)\n",
+ "\n",
+ "#(ii)\n",
+ "#Since, Output_impedance=change_in_output_voltage/change_in_output_current\n",
+ "#Zo=(V_NL-VL_1)/delta_IL,\n",
+ "delta_IL=IL_1; #Change in load current, A\n",
+ "V_NL=VL_1+(delta_IL*Zo); #Output voltage with no load, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The output impedance=%.1f\u03a9.\"%Zo);\n",
+ "print(\"(ii) The output voltage with no-load=%dV.\"%V_NL);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The output impedance=0.5\u03a9.\n",
+ "(ii) The output voltage with no-load=11V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.6 : Page number 446\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Zo=0.01; #Output impedance, \u03a9\n",
+ "IL_max=1.0; #Maximum output current, A\n",
+ "IL_min=0.5 #Minimum output current, A\n",
+ "f=10.0; #Frequency, kHz\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Zo=delta_VL/delta_IL\n",
+ "delta_IL=IL_max-IL_min; #Maximum change in output current, A\n",
+ "delta_VL=(Zo*delta_IL)*1000; #Fluctuations in output voltage, mV\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output voltage will have %dmV peak-to-peak fluctuation at a rate of %dkHz.\"%(delta_VL,f));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output voltage will have 5mV peak-to-peak fluctuation at a rate of 10kHz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.7 : Page number 446\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "delta_Vout=10.0; #Change in output voltage, \u03bcV\n",
+ "delta_Vin=5.0; #Change in input voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "Line_regulation=delta_Vout/delta_Vin; #Line regulation, \u03bcV/V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The line regulation of the voltage regulator=%d\u03bcV/V.\"%Line_regulation);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The line regulation of the voltage regulator=2\u03bcV/V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.8 : Page number 449-450\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vin=24.0; #Input voltage, V\n",
+ "Vz=12.0; #Zener voltage, V\n",
+ "Rs=160.0; #Series resistance, \u03a9\n",
+ "RL_max=float('inf'); #Maximum load resistance, \u03a9\n",
+ "RL_min=200.0; #Minimum load resistance, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Vout=Vz; #Output voltage,(equal to zener regulated voltage), V\n",
+ "Is=((Vin-Vout)/Rs)*1000; #Current through series resistance, mA\n",
+ "\n",
+ "#(ii)\n",
+ "IL_min=Vout/RL_max; #Minimum load current, A\n",
+ "IL_max=(Vout/RL_min)*1000; #Maximum load current, mA\n",
+ "\n",
+ "#(iii)\n",
+ "IZ_min=Is-IL_max; #Minimum zener current, mA\n",
+ "IZ_max=Is-IL_min; #Maximum zener current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The current through the series resistance=%dmA\"%Is);\n",
+ "print(\"(ii) The minimum and maximum load currents are=%dA and %dmA\"%(IL_min,IL_max));\n",
+ "print(\"(iii) The minimum and maximum zener currents are=%dmA and %dmA\"%(IZ_min,IZ_max));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The current through the series resistance=75mA\n",
+ "(ii) The minimum and maximum load currents are=0A and 60mA\n",
+ "(iii) The minimum and maximum zener currents are=15mA and 75mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.9 : Page number 450\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VZ=15.0; #Zener voltage, V\n",
+ "Vin_min=22.0 #Minimum input voltage, V\n",
+ "Vin_max=40.0 #Maximum input voltage, V\n",
+ "Vout=VZ; #Regulated output voltage, V\n",
+ "IL_max=100.0; #Maximum load current, mA\n",
+ "IL_min=20.0; #Minimum load current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "RS_max=(Vin_min-Vout)/(IL_max/1000); #Maximum value of series resistance, \u03a9 (OHM'S lAW)\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum load resistance to hold the voltage constant=%d\u03a9.\"%RS_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum load resistance to hold the voltage constant=70\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.10 : Page number 450-451\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=3.3; #Zener voltage, V\n",
+ "Iz_min=3.0; #Minimum zener current, mA\n",
+ "Iz_max=100.0; #Maximum zener current, mA\n",
+ "RL_max=2.0; #Maximum load resistance, k\u03a9\n",
+ "RL_min=500.0; #Minimum load resistance, \u03a9\n",
+ "Vin=20.0; #Input voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "Rs_min=(Vin-Vz)/(Iz_max/1000); #Minimum series resistance required, \u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"The minimum series resistance required to limit the zener current=%.0f\u03a9.\"%Rs_min);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum series resistance required to limit the zener current=167\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.11 : Page number 451\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=3.3; #Zener voltage, V\n",
+ "Iz_min=3.0; #Minimum zener current, mA\n",
+ "Iz_max=100.0; #Maximum zener current, mA\n",
+ "RL_max=2.0; #Maximum load resistance, k\u03a9\n",
+ "RL_min=500.0; #Minimum load resistance, \u03a9\n",
+ "Vin=20.0; #Input voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "IL_max=(Vz/RL_min)*1000; #Maximum load current, mA\n",
+ "Rs_max=((Vin-Vz)/(IL_max+Iz_min))*1000; #Maximum series resistance, \u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum allowable value of series resistance=%d\u03a9.\"%Rs_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum allowable value of series resistance=1739\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.12 : Page number 452\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=10.0; #Zener voltage, V\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "RL=1000.0; #Load resistance, \u03a9\n",
+ "VBE=0.5; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "Vout=Vz-VBE; #Output voltage, V\n",
+ "IL=(Vout/RL)*1000; #Load current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output voltage=%.1fV.\"%Vout);\n",
+ "print(\"The load current=%.1fmA\"%IL);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output voltage=9.5V.\n",
+ "The load current=9.5mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.3 : Page number 452\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "IC=1.0; #Required current(collector current), A\n",
+ "Vout=6.0; #Constant output voltage, V\n",
+ "Vin=10.0; #Supply voltage, V\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "VBE=0.5; #Base-emitter voltage, V\n",
+ "Iz=10.0; #Minimum zener current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IB=(IC/beta)*1000; #Base current, mA\n",
+ "\n",
+ "#Since, Vout=Vz-VBE;\n",
+ "Vz=Vout+VBE; #Zener breakdown voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "V_Rs=Vin-Vz; #Voltage across series resistance Rs, V\n",
+ "Rs=(V_Rs/(IB+Iz))*1000; #Series resistance, \u03a9\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The zener breakdown voltage=%.1fV\"%Vz);\n",
+ "print(\"(ii)The series resistance=%.0f\u03a9.\"%Rs);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The zener breakdown voltage=6.5V\n",
+ "(ii)The series resistance=117\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.14: Page number 452-453\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=12.0; #Zener voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "Vin=20.0; #Input voltage, V\n",
+ "RS=220.0; #Series resistance, \u03a9\n",
+ "RL=1.0; #Load resistance, k\u03a9\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Vout=Vz-VBE; #Output voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "V_RS=Vin-Vz; #Voltage across series resistance, RS, V\n",
+ "IR=(V_RS/RS)*1000; #Current through series resistance, mA\n",
+ "IL=Vout/RL; #Load current, mA\n",
+ "\n",
+ "#Since, IL is emitter current and emitter current is approx. equal to collector current,\n",
+ "IC=IL; #Collector current, mA\n",
+ "IB=IC/beta; #Base current, mA\n",
+ "Iz=IR-IB; #Zener current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The output voltage=%.1fV.\"%Vout);\n",
+ "print(\"(ii) The zener current=%dmA\"%Iz);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The output voltage=11.3V.\n",
+ "(ii) The zener current=36mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.15 : Page number 453-454\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import ceil\n",
+ "from math import floor\n",
+ "\n",
+ "#Variable declaration\n",
+ "IL_min=0; #Minimum load current, A\n",
+ "IL_max=1.0; #Maximum load current, A\n",
+ "Vin_min=12.0; #Minimum input voltage, V\n",
+ "Vin_max=18.0; #Maximum input voltage, V\n",
+ "Iz_min=1.0; #Minimum zener current, mA\n",
+ "Vz=8.5; #Zener voltage, V\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "IB_max=(IL_max/beta)*1000; #Maximum base current, mA\n",
+ "I_RS=Iz_min+IB_max; #Current through the series resistance, mA\n",
+ "RS=((Vin_min-Vz)/I_RS)*1000; #Series resistance, \u03a9\n",
+ "\n",
+ "#(ii)\n",
+ "V_RS_max=Vin_max-Vz; #Maximum voltage across series resistance, V\n",
+ "P_max_RS=ceil((V_RS_max**2/RS)*1000)/1000; #Maximum power dissipation in series resistance RS, W\n",
+ "\n",
+ "#(iii)\n",
+ "I_RS_max=V_RS_max/floor(RS); #Maximum current through series resistance,mA\n",
+ "Iz_max=I_RS_max; #Maximum zener current, mA\n",
+ "P_z_max=Vz*Iz_max; #Maximum power dissipated in zener diode, W\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The series resistance=%d\u03a9.\"%RS);\n",
+ "print(\"(ii) The maximum power dissipated in series resistance=%.3fW.\"%P_max_RS);\n",
+ "print(\"(iii)The maximum power dissipated in zener diode=%.3fW.\"%P_z_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The series resistance=166\u03a9.\n",
+ "(ii) The maximum power dissipated in series resistance=0.542W.\n",
+ "(iii)The maximum power dissipated in zener diode=0.486W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.16 : Page number 456\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=2.0; #Resistor R1, k\u03a9\n",
+ "R2=1.0; #Resistor R2, k\u03a9\n",
+ "Vz=6.0; #Zener voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "m=R2/(R1+R2); #Feedback fraction\n",
+ "A_CL=1/m; #Closed-loop voltage gain\n",
+ "Vout=A_CL*(Vz+VBE); #Regulated output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The regulated output voltage=%.1fV\"%Vout);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The regulated output voltage=20.1V\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.17 : Page number 456\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=30.0; #Resistor R1, k\u03a9\n",
+ "R2=10.0; #Resistor R2, k\u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "m=R2/(R1+R2); #Feedback fraction\n",
+ "A_CL=1/m; #Closed-loop voltage gain\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The closed-loop voltage gain=%d.\"%A_CL);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The closed-loop voltage gain=4.\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.18 : Page number 457\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vin=22.0; #Input voltage, V\n",
+ "Rs=130.0; #Series resistance, \u03a9\n",
+ "Vz=8.3; #Zener voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "RL=100.0; #Load resistance, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Vout=Vz+VBE; #Output voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "IL=(Vout/RL)*1000; #Load current, mA (OHM's LAW)\n",
+ "IS=((Vin-Vout)/Rs)*1000; #Current through series resistance, mA (OHM's LAW)\n",
+ "IC=IS-IL; #Collector current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The regulated output voltage=%dV\"%Vout);\n",
+ "print(\"(ii) Various currents for the shunt regulator are: IL=%dmA , IS=%dmA and IC=%dmA\"%(IL,IS,IC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The regulated output voltage=9V\n",
+ "(ii) Various currents for the shunt regulator are: IL=90mA , IS=100mA and IC=10mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.20 : Page number 463\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=240.0; #Resistor R1 of the regulator, \u03a9\n",
+ "R2=2.4; #Variable resistance R2 of the regulator, k\u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "Vout=1.25*(R2*1000/R1 + 1); #Regulated output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The regulated output voltage=%.2fV.\"%Vout);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The regulated output voltage=13.75V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.21 : Page number 463\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vout_adj=8.0; #Output voltage (adjusted), V\n",
+ "Vd=40.0; #Input/output differential rating, V\n",
+ "\n",
+ "#Calculation\n",
+ "Vin_max=Vout_adj+Vd; #Maximum allowable input voltage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum allowable input voltage=%dV.\"%Vin_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum allowable input voltage=48V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter18_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter18_3.ipynb
new file mode 100644
index 00000000..9d2e921c
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter18_3.ipynb
@@ -0,0 +1,804 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 18 : SOLID-STATE SWITCHING CIRCUITS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1 : Page number 472"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Input voltage required to saturate the transistor switch=5.4V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10; #Supply voltage, V\n",
+ "RC=1.0; #Collector resistor, kΩ\n",
+ "RB=47.0; #Base resistor, kΩ\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "IC_sat=VCC/RC; #Collector saturation current, mA\n",
+ "IB=IC_sat/beta; #Base current, mA\n",
+ "V=IB*RB+VBE; #Input voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Input voltage required to saturate the transistor switch=%.1fV.\"%V);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2 : Page number 475"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The collector emitter voltage at cut-off=9.99V.\n",
+ "(ii) The collector emitter voltage at saturation=0.7V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10; #Supply voltage, V\n",
+ "RC=1.0; #Collector resistor, kΩ\n",
+ "ICBO=10.0; #Collector leakage current, μA\n",
+ "V_knee=0.7; #Knee voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IC=ICBO; #Collector current, μA\n",
+ "VCE=VCC-(ICBO/1000)*RC; #Collector-emitter voltage, V\n",
+ "\n",
+ "print(\"(i) The collector emitter voltage at cut-off=%.2fV.\"%VCE);\n",
+ "\n",
+ "#(ii)\n",
+ "#Since, saturation current=IC_sat=(VCC-V_knee)/RC; \n",
+ "VCE=V_knee; #Collector-emitter voltage, V\n",
+ "\n",
+ "print(\"(ii) The collector emitter voltage at saturation=%.1fV.\"%VCE);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.3 : Page number 475-476"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Minimum β=19.4.\n",
+ "(ii) The transistor will not be saturated.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=10; #Supply voltage, V\n",
+ "RC=1; #Collector resistor, kΩ\n",
+ "VBB=2; #Supply voltage to base, V\n",
+ "RB=2.7; #Base resistor, kΩ\n",
+ "V_knee=0.7; #Knee voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IB=round((VBB-VBE)/RB,2); #Base current, mA\n",
+ "Ic_sat=(VCC-V_knee)/RC; #Collector saturation current, mA\n",
+ "beta_min=Ic_sat/IB; #Minimum value of base current amplification factor\n",
+ "print(\"(i) Minimum β=%.1f.\"%beta_min);\n",
+ "\n",
+ "#(ii)\n",
+ "VBB=1; #Supply voltage to base(changed), V\n",
+ "beta=50; #Base current amplification factor\n",
+ "IB=(VBB-VBE)/RB; #Base current, mA\n",
+ "IC=beta*IB; #Collector current,mA\n",
+ "\n",
+ "if(IC<Ic_sat):\n",
+ " print(\"(ii) The transistor will not be saturated.\");\n",
+ "else:\n",
+ " print(\"(ii) The transistor will be saturated.\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.4 : Page number 480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time period of the square wave=0.14 m sec.\n",
+ "Time frequency of the square wave=7 kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "R2=10; #Resistor R2, kΩ\n",
+ "R3=10; #Resistor R3, kΩ\n",
+ "C1=0.01; #Capacitor of 1st transistor, μF\n",
+ "C2=0.01; #Capacitor of 2nd transistor, μF\n",
+ "\n",
+ "#Calculation\n",
+ "R=R2*1000; #Resistance, Ω\n",
+ "C=C1*10**-6; #Capacitance, F\n",
+ "T=round((1.4*R*C)*1000,2); #Time period,m sec\n",
+ "f=1/(T*10**-3); #Frequency, Hz\n",
+ "f=f/1000; #Frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"Time period of the square wave=%.2f m sec.\"%T);\n",
+ "print(\"Time frequency of the square wave=%d kHz.\"%f);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.6 : Page number 485"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output voltage=0.55V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "R=10; #Resistance in differentiating circuit, kΩ\n",
+ "C=2.2; #Capacitance in differentiating circuit, μF\n",
+ "d_ei=10; #Change in input voltage, V\n",
+ "dt=0.4; #Time in which change occurs, s\n",
+ "\n",
+ "#Calculation\n",
+ "eo=R*1000*C*10**-6*d_ei/dt\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output voltage=%.2fV.\"%eo);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.7 : Page number 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The peak output voltage=11.3V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Vin_peak=12; #Peak value of input voltage, V\n",
+ "V_D=0.7; #Forward bias voltage of diode, V\n",
+ "\n",
+ "#Calculation\n",
+ "Vout_peak=Vin_peak-V_D; #Peak value of output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The peak output voltage=%.1fV.\"%Vout_peak);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.8 : Page number 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The peak output voltage=8V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Vin_peak=10; #Peak value of input voltage, V\n",
+ "R=1; #Input resistor, kΩ\n",
+ "RL=4; #Load resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "Vout_peak=(Vin_peak*RL)/(R+RL); #Peak output voltage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The peak output voltage=%dV.\"%Vout_peak);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.9 : Page number 490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The diode will be forward biased for the negative half-cycle of input signal.\n",
+ "The output voltage=-0.7V.\n",
+ "The voltage across R=-9.3V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Vin=-10; #Input voltage, V\n",
+ "V_D=0.7; #Forward bias voltage of the diode, V\n",
+ "R=1; #Resistance, kΩ\n",
+ "\n",
+ "\n",
+ "print(\"The diode will be forward biased for the negative half-cycle of input signal.\");\n",
+ "Vout=-V_D; #Output voltage, V\n",
+ "V_R=Vin-(-V_D); #Voltage across resistor R, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output voltage=%.1fV.\"%Vout);\n",
+ "print(\"The voltage across R=%.1fV.\"%V_R);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.10 : Page number 490-491"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "During the positive half cycle, the diode is foward biased and can be replaced by battery of 0.7V.\n",
+ "Therefore, Vout=0.7V.\n",
+ "During the negative half cycle, the diode is reverse biased and hence behaves as an open circuit.\n",
+ "Therefore, Vout_peak=-8.33V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_F=0.7; #Forward bias voltage of diode, V\n",
+ "R=200.0; #Input resistor of the circuit, Ω\n",
+ "RL=1.0; #Load resistor, kΩ\n",
+ "Vin_peak=10.0; #Peak input voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Positive half-cycle:\n",
+ "print(\"During the positive half cycle, the diode is foward biased and can be replaced by battery of %.1fV.\"%V_F);\n",
+ "print(\"Therefore, Vout=%.1fV.\"%V_F);\n",
+ "\n",
+ "#Negative half-cycle:\n",
+ "print(\"During the negative half cycle, the diode is reverse biased and hence behaves as an open circuit.\");\n",
+ "Vout_peak=RL*(-Vin_peak)/(R/1000+RL);\n",
+ "print(\"Therefore, Vout_peak=%.2fV.\"%Vout_peak);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.12 : Page number 491"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XnclXP+x/HXu01lSdlCI1nKTph+CN2UVBRjlHUkY4Yx\nBmMZMUOZsWUZ+zJjZC9kq6xF3WGILCXSYqtIkUKqoeXz++N73Rx3d93bOed7rnN/no/Hedznus51\nrutzn/vc53O+u8wM55xzbk3qxQ7AOedc4fNk4ZxzrlKeLJxzzlXKk4VzzrlKebJwzjlXKU8Wzjnn\nKuXJwrmUkLSPpOmSvpXUK3Y8rm7xZOEKmqSPJR2Yh+sMkHRvrq9TS38HbjSz9cxsROxgXN3iycK5\n9GgNTKnJEyXVz3Isro7xZOFSQ1JfSS9JulrSAkkfSuqW8fhYSZdLek3SN5Iel7R+8lgnSbPLne9j\nSQdKOhi4EDhK0iJJb1dw7RMljcjYniHpoYztWZJ2Se5fn2x/I2mCpH2T/ZtKWlIWU7KvvaQvyz7M\nJZ0kaYqkryQ9I+kXyf4PgDbAk0k1VMPkfMOTY6dLOjnjvAMkDZN0n6Svgb7JvoeTfd9KmiRpW0n9\nJc2TNFNSl1r9kVzR8mTh0qYD8D6wAXA1cGe5x38DnAi0BFYAN2U8VuHcNmb2HHA58JCZrWtm7Ss4\nbBzw44c+0BDYO9neCljbzN5Jjn0d2AVoDgwBhklqZGafA68Av8447zHAMDNbIekwoD9wOLAR8BLw\nYBLjNsBs4JCkGmoZ8BAwK/ldewOXSyrJOHcv4GEzWx94INl3KHAPsD4wEXgOELAZ8A/g3xW9Rs55\nsnBpM9PMBluY1OweYFNJG2c8fp+ZvW9mS4GLgN6SVNuLmtnHwCJJuwH7Ez5k50hqm2y/lHHsEDP7\n2sxWmtl1wFpAu+ThocCxGac+mp8+yE8BrjCz6Wa2ErgS2K2sdJEQgKRWhGR1vpktM7NJwH+AEzKO\nfdXMRiYxfZ/se8nMnk/OPwzYELjSzFYQElNrSevV9HVyxcuThUubuWV3koQAsE7G45lVTTMJJYAN\ns3TtccABhORQmtxKgE7JYwBIOjepSlooaSGwXkYMjwJ7SdpEUidghZn9N3msNXBDUsW2APiKUBra\nvIJYNgMWmNmSjH0zyx07m1XNy7i/FJhvP80mupSQjNZZ5VmuzvNk4YpN5rfw1sAyYD6wGGha9kDS\nRrBRxrFVmX75RUJy2JeQHF4kJIr9k22S9onzgCPNrLmZNQe+JSkRmNnXwChCieIYkmqmxCzgFDNr\nkdyam9k6Zja+gljmAC0krZ2xbwvgs2r+Ts5ViScLV2yOl7SdpKbAJYT2AAOmA40ldZfUAPgb0Cjj\nefOALSupsiorWTQxszmEqqduhPaTskbxdQkJ6itJjSRdnOzLNJRQXfRrQptGmX8BF0raAUBSM0lH\nVhSImX1KaP+4QtJaSeP6b4H71hC/czXmycIVusq+HZd//D5CW8YcQjI4E8DMvgVOIzSIfwosSn6W\nGUb49v+VpDcqvJDZjOR5Lybbi4APgZczqnKeS27TgY+BJaxaHTQC2Bb43MwmZ5z/CUI7xYNJD6Z3\nCMlodb/rMYQeUnMI1VsXmdnYimKvBi+NuAop5uJHktYi/OM1AhoAj5jZJZKaE3p6tAY+AfqY2TfR\nAnWpIGksoYF7cOxYnCs2UUsWSQ+NA5KuirsB3SV1IHQffN7M2gFjgAsihumcc3Ve9GqojN4caxFK\nFwYcRqhKIPl5eITQXPp4FYpzORK1GgpAUj3gTWBr4BYzu0DSwqQXSdkxC8ysRbQgnXOujiuEksXK\npBqqFdBB0o6s+g3RvzE651xEDWIHUMbMvpVUSuj9MU/SJmY2T1JL4IuKniPJk4hzztWAmVVrZoOo\nJQtJG0pqltxvAhxEmPdnBGF+H4C+wPDVncPMUnsbMGBAlY+dO9e45RajpMRYbz2jSxdj4EBj9Gjj\n22+zE8+XXxrPP29cdpnRsaOx7rrGoYcat91mfPpp7eIvxJvH77HX1fhrInbJYlPgnqTdoh5hIren\nJY0HHpZ0EmEKgz4xg4xl8WIYMgSGDoW33oJDDoGzzoKDD4bGjbN/vQ03hM6dw+3CC2HBAnjuOXjq\nqbC9zz5w8skhjoYNs39951zhiposLAxI2r2C/QuAOjtV8syZcMstMHgwdOwIZ5wREkSTJvmNo0UL\nOOaYcFuyBIYNg2uugT/8AU48EZYurfQUzrkiEb2Buy4rKSn52fb48XDkkbD77rB8Obz+OgwfDocf\nnv9EUV7TptC3L7z8MowZA99/D4MHl3DSSfDBB3Fjq6nyr3/apDn+NMcO6Y+/JqJ3na0NSZbm+MtM\nngx//StMnAh/+Uv41r5OCub9XLAAbrwRbr4ZuncPv8N228WOyjlXGUlYmhq467qPPoLjj4cuXeCA\nA2D6dDj99HQkCgjVVAMHwocfwvbbQ6dO8Nvfwty5lT7VOZcyniwi+O47OPdc6NABtt02VOP8+c+5\nabTOh2bNQgP49Okhgey0U2jb+OGH2JE557LFk0UemcETT8AOO8CXX8KUKTBgAKxbfgLrlGrWDK6+\nGl55BUpLQ9J46qnYUTnnssHbLPJk5kz4059gxgy47TaoC+1jzzwDZ54Je+wBN90UuuY65+LzNosC\nZAa33ho+MPfaCyZNqhuJAkKj96RJsNlmsPPO8NhjsSNyztWUlyxyaO5cOOmkUOV0//3Qrl3siOJ5\n5RXo1w/atw+9p7yU4Vw8qStZSGolaYyk9yRNlnRGsr+5pFGSpkl6rmxKkDR5/HHYbTfYc8/wQVmX\nEwWE0d8TJ0KrVrDLLvDCC7Ejcs5VR+yV8loCLc1soqR1CFOVHwb0A74ys6sknQ80N7P+FTy/4EoW\nS5aEEdelpXDffbD33rEjKjzPPw8nnBCmDrn4YmgQe9IZ5+qY1JUszGyumU1M7n9HmESwFSld/OiD\nD0Jy+P778C3aE0XFunQJc1298kqYh+qzz2JH5JyrTME0cEvakrC06nhgEzObByGhABvHi6xqhg8P\nVS2nngr33puegXWxtGwZJins0iU0/j/3XOyInHNrUhAN3EkVVCnwDzMbXn5lPElfmdkGFTwvejXU\n8uVw0UVhdtiHH4b/+7+o4aTSuHFhssKzz4ZzzgFVq3DsnKuumlRDRa8tltQAeAS4z8zK1q2o0uJH\nAAMHDvzxfklJSV4n+Fq4EPokk6e/8QZstFHeLl1UOnUKkygefnjoanvHHekdze5cISotLaW0tLRW\n54hespB0LzDfzM7O2DcIWGBmgwq1gfuDD8K6Dj16hKkt6tePEkZRWbIkdDX+6KPQm2zzzWNH5Fxx\nSl0Dt6SOwHHAgZLelvSWpG7AIOAgSdOAzsCVMeMsb9w42HffMJ/Tddd5osiWpk3DQk+HHx6q815/\nPXZEzrky0UsWtRGjZHHXXXD++aGNokudXZ4p94YPD11rBw+Gnj1jR+NccalJycKTRRWZwd/+Bg89\nBE8+6es25MPrr8Nhh4WxGH/4Q+xonCseqWzgToPly+H3v4d334VXX/WG7Hzp0CGszNe9O8yaBZdd\nBvUKprO3c3WLlywqsWQJHHVUSBjDhvn4iRjmz4devaBNm1AN2KhR7IicS7fUNXAXuq++Cu0SzZvD\niBGeKGLZcMMwl9SSJSFpLF4cOyLn6h5PFqvx6aew336h19Pdd0PDhrEjqtuaNAklu5Yt4eCD4euv\nY0fkXN3iyaICH34YEsVJJ8FVV3k9eaFo0CD0jtpjj7Bm+bx5sSNyru7wj8Fy3n8/LE50/vlhnWxX\nWOrVg+uvD72k9tsvNHw753LPe0NlmDgx9LwZNChMoe0KkwQDB4a2pP32C1Oeb7tt7KicK27RSxaS\n7pQ0T9I7GfvyvvjR+PGhLvzmmz1RpMWZZ4ZJHA88EKZNix2Nc8UterIA7gIOLrevP/C8mbUDxgAX\n5DKAl18OvWzuugt+/etcXsll28knw6WXhoQxZUrsaJwrXtGroczsZUmty+0+DOiU3L+HMH35KhMJ\nZsNLL4UE4dN3pFffvqHxu0uXsC7GzjvHjsi54hM9WazGxpmLH0nKyeJHL74IRx7piaIYHHdcSBhd\nu8Izz4T1z51z2VOoyaK81Q7Trul6FmWJYujQsLSnS7+jjgoJo1u3UMLYddfYETlXGIpiPQuApBpq\npJntkmy/D5RkLH401sy2r+B5NZruY9w46N0bHnww1HW74jJsGPzpTzB6tFdJOVeRNE/3oeRWZgRw\nYnK/LzC8/BNq6uWXPVEUu969w1iMrl3hvfdiR+NccYheDSVpCFACbCBpFjCAsNjRMEknATOBPtm4\n1vjxcMQR8MADniiK3dFHw4oVcNBBYV6p7VcplzrnqqMgqqFqqjrVUG++GQbc3X13WArV1Q333gsX\nXghjxkDbtrGjca4w5GQ9C0l7A8cD+wGbAkuBd4GngPvN7JsaxJpXkyaF9bLvuMMTRV1zwglhevku\nXUJbVZs2sSNyLp3WmCwkPQPMIbQZXAZ8ATQG2gIHAMMl/dPMRuQ60JqaMiX0jrnppjCfkKt7TjoJ\n/ve/0OvtxRehVavYETmXPmushpK0oZnNX+MJqnBMrlRWDTVjRpiddNCg0A/f1W3XXgv//ncoYbRs\nGTsa5+LJRW+oSyR1XNMBsRJFZWbODI2bAwd6onDBOefA8ceH98X8gnzXOle4KksW04FrJH0i6SpJ\n7fMRVG19/nmoo/7zn8PcQc6V+dvf4NBDfQEl56qrSr2hkkFzRye3JsBQYKiZTc9teJXGtUo11Pz5\nYT2KY48NvWCcK88szFj75pswahSsvXbsiJzLr5pUQ1W762xSuhgM7GJm9av15Cwrnyy++SaMnzj4\nYLj88oiBuYK3cmUodc6aBU8+CY0bx47IufzJ2QhuSQ0k9ZT0APAMMA04ogYx5szixaF7bMeOcNll\nsaNxha5evdCVukWLMKfUsmWxI3KusFXWG+og4BigB/A68CAw3MwW5yU4qRtwPSGp3Wlmg8o9bmbG\n999Dz56w+eZw552+Zraruh9+CKP6mzULA/jqRy0rO5cfWa+GkjSG0D7xiJktrGV81SKpHqGBvTNh\nrMcE4Ggzm5pxjC1bZvTuHWYbHTo0/HSuOpYuDYM127aF228Py7Y6V8xyUQ11mJndsaZEIWmd6lyw\nGjoAM8xsppktI5RqVhlW169fGHD1wAOeKFzNNGkCI0aEkf7nnRcawJ1zP1dZsnhC0rWS9pf0Y58R\nSVtJ+q2k54BuOYptc2B2xvanyb6fmTkTHn0UGjXKURSuTlh3XXj66dA76tJLY0fjXOFZ43dxM+ss\nqQdwCtBRUgtgGaGB+ymgr5nNzX2Yq9ex40Cuuircr87iR86V16JFSBb77w/rrRe61zpXDIpm8aOK\nSNoLGGhm3ZLt/oBlNnLXdPEj59Zk5syQMAYMCPNKOVdscjLrbMbJNwdaZz7HzF6szsWqaQKwTTIg\n8HPCgMBjcng95wBo3TqssldSEqqneveOHZFz8VUpWUgaBBwFTAFWJLsNyFmyMLMVkk4HRvFT19n3\nc3U95zK1bQvPPBNW21t7bZ/a3rmqTvcxjTBi+/vch1R1Xg3lcm38eOjVCx5+OJQ0nCsGuVyD+yOg\nYfVDci7d9toLHnoI+vSB116LHY1z8VS1ZPEosCvwAvBj6cLMzshdaJXzkoXLl6eeCo3do0fDLrvE\njsa52snZRIKS+la038zuqc7Fss2Thcunhx+Gs86CsWOhXbvY0ThXcznrDRU7KThXCPr0CRNWHnSQ\nr+ftfs4srPXesIgr6ytbg/thM+sjaTKh99PPmJkXyF2d0q9fmEuqc+eQMH7xi9gRudjM4OyzYa21\n4MorY0eTO5WVLL6TtC/QkwqShXN10Wmn/TxhbLpp7IhcLGZhkbXSUhgzJnY0uVVZspgEXA1sCjxM\nWB3v7ZxH5VyBO+eckDC6dAkfFBttFDsiF8M//hEWzxo7Fpo3jx1NbhXdsqrO5dNf/xomIBwzpvg/\nLNzPDRoEd90VSpebbBI7murJ2TiLZJrwQWbWnjDlxuFArUZTSzpS0ruSVkjavdxjF0iaIel9SV1r\ncx3ncunSS8NSvl27wtdfx47G5csNN4SVFl94IX2JoqZiLqs6GfgVMK7ctbYH+gDbA92BWyVfjsYV\nJgmuuSYs59u1a1gH3hW3W2+F668PiWLzVRZNKF5rTBaSDpI0mLCWxO8I05JvbWZHm9nw2lzYzKaZ\n2QygfCI4DHjQzJab2SfADMJCSM4VJAmuuw7+7//g4IPh229jR+Ry5dZb4aqrQrVj69axo8mvykoW\nFwCvANubWS8zG5KH9bfLL3r0GRUseuRcIZHgxhth992hWzdYtCh2RC7bbrstJIqxY+vmGJvKFj86\nsDYnlzQayKzRE6EL7l/NbGRtzl1m4MCBP973xY9cTBLcfHPoWtutGzz7bJji3KXfbbeFBu20Joqi\nWPxI0ljgHDN7K9n+2SJHkp4FBpjZKtO4eW8oV4hWroQ//AEmTw7TnDdrFjsiVxu33x4G240ZA1tt\nFTua7MjlrLO5lhn0COBoSY0ktQG2AV6PE5Zz1VevXvgmusceYRzGggWxI3I1deONxZcoaipaspB0\nuKTZwF7Ak5KeATCzKYQBgFOAp4HTvPjg0qZevfBB06lTGOk9f37siFx1DRoU/objxnmigAKohqoN\nr4Zyhc4M/vY3GD68bvXJTzMzGDgwzDL8wguw2WaxI8q+nK7B7ZyrPikM3FtrrVDKeP55aNUqdlRu\ndczg/PPhuedCiWLjjWNHVDg8WTiXYxJcfHFYy3vffWHUqLDGtyssK1fCGWeEFRHHjoUWLWJHVFg8\nWTiXJ+ecE+aPKikJk8/tvnulT3F58sMP0LcvzJkTSn/eg21Vniycy6OTTgoJo1s3GDYsVE25uL77\nDo44IpT8nnsOGjeOHVFhKpSus87VGb/6FQwdCr17w4gRsaOp2778MkwEucUWIXl7olg9TxbORdC5\nMzz1FJxyShiT4fJv5kzYb7+wTO4dd0ADr2dZI+8661xEH34IPXrAYYeFwV/1/OtbXrzxRnjN//IX\nOPPM2NHkX026znqycC6yr74KH1ybbQb33utVIbn2+OPw+9+H0sThh8eOJo5UTfch6apkcaOJkh6V\ntF7GY774kaszNtgg9MCpV89He+eSWVh75E9/CpM81tVEUVMxC72jgB3NbDfCmhUXAEjaAV/8yNUx\njRvDkCGw//5hXYzJk2NHVFyWLYNTT4X77oNXXw3zdrnqiZYszOx5M1uZbI4Hysa19sIXP3J1UL16\ncMUV8Pe/hx46jzwSO6LiMG9eaMT+7DN4+WX4xS9iR5ROhdKcdhJh0kDwxY9cHXfccaG//znnwF//\nCitWxI4ovcaPh1/+MoxnGTHC1xepjZx2FqvK4keS/gosM7OhNbmGL37kitHuu8OECdCnT2j8vv9+\nWH/92FGlhxn8+99w0UVw553Qs2fsiOJK/eJHkk4krO19oJl9n+zzxY+cSyxbBueeG74VDx0Ke+0V\nO6LCt2RJaMR+7bXQ82nbbWNHVHjS1huqG3Ae0KssUSR88SPnEg0bwg03wHXX/TQWY+XKyp9XV02c\nCHvuCUuXhiooTxTZE61kIWkG0Aj4Ktk13sxOSx67APgtsAw408xGreYcXrJwdcbs2aE9Y621Qq+e\nli1jR1Q4Vq6E668PHQSuuy68Tt6HcvV8UJ5zRW75cvjHP0J9/C23hAnw6ro5c+DEE8OEgA88AG3a\nxI6o8KWqGso5V30NGsAll4RutRdcECYjnDcvdlRxmMHdd0P79tCxI7z4oieKXPJk4VwKdewY6ue3\n2QZ22SVUS9WlQvb06WG0+803wzPPwIABPhFgrnmycC6lmjQJdfRPPx2msejRA6ZNix1Vbv3wQ1im\ndp99QnfY8eN9Eal88WThXMrtsUeYRfXAA0OJ46yzYMGC2FFllxk88UQoRb36Krz5Jvz5z16ayCdP\nFs4VgYYN4bzz4P33w7fv7bYLXW6XLYsdWe298kpYu/zii0NPpyefhNatY0dV93iycK6IbLQR3Hor\njB0b6vK32w7+9S/43/9iR1Z9774bVhU8+ugwpfjbb0P37t4lNhZPFs4VoR13DNNw33NPGP291VZw\n9dWwaFHsyNbMDEaPDmuUd+0aqtWmT4e+faF+/djR1W0+zsK5OmDSpDD6e/ToMCahX7+QUArF0qXw\n8MPwz3+GAXZnnw3HHhsGILrsS9U4C0l/lzRJ0tuSnpXUMuOxOrH4UW0n9orN44+rOvHvumuYW+q1\n10L7Rteu0KFDqLJauDB3Ma5OaWkpy5fDqFEheW22WVjP46qr4J13QjIr5ESR9vdOTcSshrrKzHY1\ns/bAU8AAqFuLH6X9Defxx1WT+LfeOnS3nTUrjAQvG8jWrVv4Vv/uu7kdr7FwYagW+8tfSmnVKswK\n2749TJkSpmU/+OB0tEmk/b1TE9E6npnZdxmbawNl06P9uPgR8Ekyh1QHYJVZZ51zNVO/fvhgPvhg\n+OYbeOGF8C3/pptCb6ouXcL4hZ12CreNN67+h/jSpfDhhzB1Kvz3vzBuHMyYAXvvHdaVePnlMKjQ\npUPUXsqSLgVOAL4GDkh2bw68mnGYL37kXA41axbmmDriiFCq+OADGDMmVAc99lhY4rV+fWjXLqwX\n3rx5uK2/fqgqWrLkp9vixWFFuhkzwjQkW24JbduGBHHLLWFMSKNGMHCgJ4q0yWkDd1UWP0qOOx9o\nYmYDJd0EvGpmQ5LH/gM8bWaPVXB+b912zrkaqG4Dd05LFmZ2UBUPHUJotxhIKElkrpLbKtlX0flT\nULvpnHPpF7M3VGYh9HBganLfFz9yzrkCE7PN4kpJbQkN2zOBUwHMbIqkh4EphMWPTvPBFM45F1eq\nB+U555zLj9RO9yGpm6SpkqYnDeQFTdKdkuZJeidjX3NJoyRNk/ScpGYxY1wdSa0kjZH0nqTJks5I\n9qcl/rUkvZYMAJ0sqWxMTyriLyOpnqS3JI1ItlMTv6RPMgbhvp7sS1P8zSQNSwYKvyfp/9ISv6S2\nyev+VvLzG0lnVDf+VCYLSfWAm4GDgR2BYyRtFzeqSt1FiDdTf+B5M2sHjAEuyHtUVbMcONvMdgT2\nBv6YvN6piN/MvgcOSAaA7gZ0l9SBlMSf4UxC9WyZ/sDzwDCgI/BpjKCqaCVQYmbtzaxDsi9Nr/8N\nhF6Z2wO7EtpYUxG/mU1PXvfdgT2AxcDjVDd+M0vdDdgLeCZjuz9wfuy4qhB3a+CdjO2pwCbJ/ZbA\n1NgxVvH3eALokov4gROBd5I39BzgVqBZNZ7/MXDgGh5vCrwB/LIq8Vd2vjy+5q2A0UAJMCLj/dMe\nWEKY8aBg3z/J67hBuX2peP8D6wEfVrA/FfGXi7kr8FJN4k9lyYIwSG92xvanpHPg3sZmNg/AzOYC\nG0eOp1KStiR8Ox9PeKNlLX5J5wBXAOcQ/kH3IiTY0ZJq1RkjqcJ5G5gLjDazCdmOP8euA84jjFMq\nswlh9oP5ZvY+1YxfUj7ncTXC33GCpJOTfWl5/dsA8yXdlVTl/FtSU9ITf6ajCEMVoJrxpzVZFKuC\n7m0gaR3gEeBMC9O1lI+3xvFLWpcwzuZ0MxttZivMbBZhnrAtgeOT4+6S9PeM53WSNDu5fy+wBTBS\n0reSzpXUWtJK4LeEf4bvgCMl7QhYufNZZeerIO5SSb9K7neUtFJS92T7wCRBIWkrSS9Imi/pC0n3\nS1oveewvkoaVO+8Nkq5P7h8J7AA8TahyaidJhN6Mo4DNJH1LKDUhqZekdyUtSNqatss478fJ9SYB\n30mqn+w7N2lTWCTpDkkbS3o6+b1HZaE+vqOFapAehGrM/cji+yfHGgC7A7ckv8NiQm1GWuIHQFJD\nwnRKZe+1asWf1mTxGeGfuMxqB+4VuHmSNgFQmHX3i8jxrFbyzf4R4D4zG57szmb8+wBrEepSf2Rm\niwkfkmsa4GnJsScAs4BDzWw9M7sm45gSYGtCMXxT4HRgHtC4gvircr4y45JzA+wPfJj8BOgElCb3\nBVxOKO5vT3jPDkwee5DQjrJ2Eks9oDfwQPL4ZYT3+/eEuv9tgFcIJepjCdV1bYGPFbqjDwHOADYC\nniEku8yS2dGESTrXN7MVyb4jgM7JeXoRXvP+wIZA/eR8NWZmnyc/vyRUY3YgPe//T4HZZvZGsv0o\nIXmkJf4y3YE3zWx+sl2t+NOaLCYA2yTfGhsR3vwjIsdUFUpuZUYQ6ugB+gLDyz+hgAwGppjZDRn7\nshn/hoTqlJUVPPZ58nhVVTSy/xoz+x/hw3whoWphBLBt8via4l/TTAHjCEkBQpK4ImO7U/I4Zvah\nmb1gZsvN7CtCtVKn5LFZwFvAr5LndQYWm9mE5J+5NbChmbUhVCO8DSwFRgLdysXfB3jSzMYkieAa\noAkhGZe5wczmWGj4L3OTmc1PPtRfAl4zs3fM7AdCAm+/htdgjSQ1TUqlJAmxKzCZlLz/k6qa2Uki\nhvD3eY+UxJ/hGGBoxna14k/lcudmtkLS6YQieD3gzqTOtmBJGkL4BrqBpFmEKdmvBIZJOokwMLFP\nvAhXT1JH4DhgclKtYsCFwCDg4SzFPx/YUFK9ChLGpsnjNWXA4KTqph7hw7Y+If7fAKcRPqz7EHq6\nVMerQFtJGyfP7QlcImkDwrfnFwGSx28A9gPWSa6/IOM8Qwn/zPcnP8vqlbcAGgKfh/BpSCgNvU94\n/4wivD6dk/gvJ/wtwi9uZkm1WmabXkW9puZl3F9awfY6lb4Sq7cJ8LjCXG4NgAfMbJSkN8je+yfX\nzgAeSKpyPgL6Ef6GqYg/aWPpAvw+Y3e1/n9TmSwAzOxZoF3sOKrKzI5dzUNd8hpIDZjZfwn/GBXJ\nVvyvEqpZjiBUdwE/tpN0J1SJQKgvbprxvE3LnaeielcBR5nZ9OScVxJ65iyQ9BjwPzM7N3msKuf7\n6UGzpZLeJHRrfdfMlkt6FTgb+MDMyhLC5YQqpB3N7BtJhwE3ZZxqGHCNpM0JJYy9kv2zgf8l8a4S\nS9Ip4D7lahedAAAXQ0lEQVQz65pszwF2KnfYL/h5gshr3bqZfUzoFFF+/wJS8P4HMLNJhB505aUl\n/iWEasnMfdV6/dNaDeWKjJl9C/wduEnSwZIaKPS8eojQbnB/cuhEoIfCgKKWhA/pTHOBrSq4xEWS\nmiQN2/0I7QS1OV+mFwltIOOS7dJy2wDrEhrXFyUJ4bzMEyT1yOMI43E+MrNpyf65hNLDdZLWVbCV\npP2p2MPAIZIOSF7DcwnJ5tXVHO9clXiycAXDzK4mVG9dA3xD+ICbCXQxs2XJYfcRxmF8AjzLTx/6\nZa4kJIYFks7O2D8O+IAwVuEqM3uhlufLNI5QTfNiue3MZHEJYUDU14S2hkcrOM8QQnXSA+X2nwA0\nIgzIW0AohbSkAknp6XjCoNUvgUOAnhYWE4OKSxWp6tXj4og6N5SkVsC9hDrNlcAdZnajpOaEb5St\nCf/Efczsm2iButSS1JpQx9xwNY3nzrkqiF2ySPU0Ei41fN0T52oparIws7lmNjG5/x2hh0cr4DDg\nnuSwewjrXThXU16t4lwtFcwU5UljZimhJ8dsM2ue8dgCM2sRJzLnnHMF0XVW5aaR0Kpra1eY0So4\nzjnnXBVYNZeljt1mUetpJLI5I2O+bwMGDMjaub74wvjnP42ddjK23tq47DJjwgTjww+NBQuMFSvC\ncZ9/bjz4oHHKKUa7dsYGGxiXX24sXRo3/rS//h5/3Ym9GOKviejJgtxPI1HUli2Diy+Gtm1h0iS4\n5RaYMQMuvBD23BO22gqaN4d6yV+6ZUs46ii4/XaYOhVeeQUmTIDtt4eHHoIavo+cc0UuajVUnqaR\nKFrTpsHxx8NGG8GUKbBp+bHHVdC2LTz2GJSWwtlnw403wvXXwy8rGqvqnKuzYveG+q+Z1Tez3SxZ\nycnMnjWzBWbWxczamVlXM/s6Zpy5UlJSUqPnmYUSRMeOcNJJ8NRTNUsUP48llDBOPhl69oT//Kcq\nzymp3UUj8/jjSXPskP74a6JgekPVhCRLc/w1sWhRqEaaPx/uuw/a5WB2rBkzoHt3OOYY+PvfQT5K\nwbmiIglLWwO3q7pFi8KHeKtW8N//5iZRAGy7bWjLGD0a+vaFH37IzXWcc+nhySIlyhLFDjuExumG\nDXN7vY03hjFj4Ntvw3W/8clWnKvTPFmkwKJF0KNH6LF0++0/9WzKtaZN4dFHQ4Lq3BkWL87PdZ1z\nhcfbLArcd9+Fb/bbbQf/+lf+EkUmM+jXL5QuHn00TgzOuezxNosis3w59OoV2iZiJQoIDdz//jcs\nWAD9+1d+vHOu+HiyKGAXXgiNGsVNFGUaNQrjMR5/vGrdap1zxaUg5oZyq3riiTCi+s03of7qFjTN\nsw02gCefhP33hzZtQjuGc65u8DaLAvTBB7DPPuGDuUOH2NGsauzYMNbjxRdDW4pzLl1q0mbhyaLA\nLFkCe+8Nv/89/PGPsaNZvdtvD+0Y48eHKirnXHp4skg5szB9x/ffwwMPFPbIabMwLcjuu4dR3s65\n9KhJsvA2iwJy993w+uvw2muFnSggxHfHHbDbbiFp+MSDzhU3L1kUiDlzYNddw6jpnXeOHU3VPfgg\nXHIJvPUWNGkSOxrnXFV4NVSK9e4dxlNcemnsSKrvqKPCfFXXXhs7EudcVXiySKmRI8NaEu+8k85v\n5/Pnh1LRkCHQqVPsaJxzlfER3Cm0aFHo9fSvf6UzUQBsuGHoHdWvX/h9nHPFJ3qykHSnpHmS3snY\nN0DSp5LeSm7dYsaYSxddFAa3HXhg7Ehqp2dP2HdfuOyy2JE453IhejWUpH2B74B7zWyXZN8AYJGZ\n/bOS56a6GmrChPAh+957YXR02s2ZExrnX38dtt46djTOudVJZTWUmb0MLKzgoQLvPFo7y5bB734X\nGoWLIVEAbLYZnHMOnHtu7Eicc9kWPVmswemSJkr6j6RmsYPJtttuCwsMHXts7Eiy6+yzYeLE0AXY\nOVc8CjVZ3ApsZWa7AXOBNVZHpc0334S6/WuvLfzBd9XVuDFccw2cdVaYYt05VxwKcgS3mX2ZsXkH\nMHJ1xw4cOPDH+yUlJZSUlOQsrmy55pqwoFGaBt9VxxFHwE03hanMTz01djTOudLSUkpLS2t1jugN\n3ACStgRGmtnOyXZLM5ub3P8z8EszW6XCJo0N3J9/DjvtBG+/DVtsETua3Jk4Ebp1g6lTYf31Y0fj\nnMuUykF5koYAJcAGwDxgAHAAsBuwEvgEOMXM5lXw3NQli1NPhXXXhauvjh1J7v3+97DOOvDPoqpE\ndC79UpksaiNtyWLatDAWYdo0aNEidjS598UXsMMOoSvtVlvFjsY5VyaVXWfrkgsvhPPOqxuJAkJv\nr9NOg8svjx2Jc662vGSRJ+PHh8kCp09P77QeNbFgAbRt66UL5wqJlywKlBn85S9hKu+6lCgglKK8\ndOFc+nnJIg9Gj4Yzz4TJk6F+/djR5J+XLpwrLF6yKFCXXx7aK+piooCfShc+yaBz6eUlixx75RU4\n/vjQVtGgIIdA5sfChbDttl66cK4QRClZSNpb0i2S3pH0paRZkp6W9MdinNOpuq64IrRX1OVEAdC8\neVi3w0sXzqVTrUoWkp4B5gDDgTeAL4DGQFvCwLqewD/NbETtQ63w+gVdspg0KUzr8dFHYc6kus5L\nF84VhrwPypO0oZnNr+0xtbh+QSeLY46BPfbwKbszDRgAs2fD4MGxI3Gu7oqRLG4BhpjZf2t8kloo\n5GQxYwbss08oVay7buxoCsfChWFhpMmTYfPNY0fjXN0Uo81iOnCNpE8kXSWpfS3PVzSuuir0APJE\n8XPNm4cG/5tvjh2Jc646stIbSlJr4Ojk1gQYCgw1s+m1Pvmar1uQJYtPP4Vddgmli2JZBS+bPvoI\nOnSATz4JEw065/KrICYSTEoXg4FdzCynIwsKNVn8+c9Qr15Y3MhV7Ne/hgMOgNNPjx2Jc3VPtGQh\nqQHQnVCy6AyUEkoWw2t98jVft+CSxcKFoafPu+96nfyavPIK/OY3YfxJXR2s6FwseW+zkHSQpMHA\np8DvgKeArc3s6FwnikI1eDAccognisrss0+YlXZETjpVO+eyrba9ocYQ2iceMbOFWYuq6tcvqJLF\nihWwzTbw0EOhTt6t2bBhcMMN8PLLsSNxrm6J0RvqMDO7Y02JQlKdacJ88knYZBNPFFX1q1/BZ5/B\na6/FjsQ5V5naJosnJF0raX9Ja5ftlLSVpN9Keg7otqYTSLpT0jxJ72Tsay5plKRpkp5Ly7QhN94I\nZ5wRO4r0aNAgzMbry646V/hq3cAtqQdwHNARaA4sB6YBTwP/MbO5lTx/X+A74F4z2yXZNwj4ysyu\nknQ+0NzM+lfw3IKphnr3XejaNXQHbdQodjTpsWgRbLklvPlm+Omcy72C6DpbE8k4jZEZyWIq0MnM\n5klqCZSa2XYVPK9gksUpp4RG7Ysvjh1J+px3Xmjv8RKGc/kRs+vsC2bWubJ9a3h++WSxwMxaZDz+\ns+2M/QWRLBYsCFNYTJ0a2ixc9Xz8Mfzyl2HOqLq2kqBzMdQkWdRq4mxJjYGmwIaSmgNlF18PyGbn\n0dVmhIEDB/54v6SkhJKSkixetmruvBN69fJEUVNt2oROAQ89BCeeGDsa54pPaWkppaWltTpHbbvO\nngmcBWxGmKq8zLfAHWZWpRmAKihZvA+UZFRDjTWz7St4XvSSxfLlobvso4+GGWZdzYwcGda6GD8+\ndiTOFb+8d501sxvMrA1wrpm1ybjtWtVEkRA/lUoARgAnJvf7EtbLKEgjR4a2Ck8UtdOjB8yZA2+/\nHTsS51xFstVmcUJF+83s3io8dwhQAmwAzAMGAE8Aw4BfADOBPmb2dQXPjV6y6NwZfvc7OProqGEU\nhUsvDe0W//pX7EicK24xG7hvythsTJgf6i0zO7LWJ1/zdaMmiw8+CNNWzJ4Na60VLYyi8fnnsMMO\nMHMmrLde7GicK14F03VW0vrAg2a2xgF5WbhO1GTRv39os7jmmmghFJ3evcNstKedFjsS54pXISWL\nhsC7ZtYu6yf/+XWiJYtly+AXv4DSUthulREgrqZeeAHOOgveeQdUrbeyc66q8t51NuPCI/mpe2t9\nYHvg4Wycu1CNHAlt23qiyLYDD4QffghTmHfsGDsa51yZrCQLILMiZjkw08w+zdK5C9Idd4SGbZdd\nUhgNf9ttniycKyRZq4aStAnwy2TzdTP7IisnXvM1o1RDzZwJu+8elk/1EcfZt2BBWEDqgw9gww1j\nR+Nc8YkxRXnZhfsArwO9gT7Aa5Jy2hMqpsGD4bjjPFHkSosWcNhhcM89sSNxzpXJVtfZScBBZaUJ\nSRsBz5vZrrU++Zqvm/eSxfLlYXqKp5+GnXfO66XrlHHj4I9/hMmTvaHbuWyLVrIA6pWrdvoqi+cu\nKM8+G0Zse6LIrf33h6VL4Y03YkfinIPsfaA/myxSdKKkEwlrcT+dpXMXFG/Yzg8pTCp4112xI3HO\nQe0nErwFGGJm/5V0BLBv8tBLZvZ4NgKs5Pp5rYaaMwd22glmzYJ16sxisfHMmgXt24elVxs3jh2N\nc8UjRjXUdOAaSZ8AewH3mdnZ+UgUMdx9dxhh7IkiP7bYIvQ6e+KJ2JE457Ix6+zeQCdCO8VgSVMl\nDZDUNisRFggzuPde6NcvdiR1S79+XhXlXCHI+nQfktoDg4FdzKx+Vk++6rXyVg312mvwm9/AtGne\nOyefli4NHQomTQrTqzjnai/mOIsGknpKegB4BpgGHJGNcxeKe++FE07wRJFvTZpAnz7h9XfOxVPb\nBu6DgGOAHoRBeQ8Cw81scXbCq/T6eSlZfP99+Hb75pvQunXOL+fKee01OP54mD7dk7Vz2RCjZHEB\n8AqwvZn1MrMh+UoU+fTUU2FchSeKODp0gIYN4eWXY0fiXN1Vq4kEzezAbAVSkaSX1TfASmCZmXXI\n5fVWp6wKysUh/dTQvd9+saNxrm7KyXoW2SLpI2APM1u4msdzXg315Zew7bZhNbx1183ppdwazJ0L\n228f/g7eddm52ok53UeuiMgxPvggHHqoJ4rYWrYMU5b7mAvn4ij0ZGHAaEkTJEWZZOOee7wKqlAc\ndxw88EDsKJyrm7K1+FGudDSzz5NZbEdLet/MftbMOXDgwB/vl5SUUFJSkrWLv/cefP45dO6ctVO6\nWujVC/7wB5g3DzbZJHY0zqVHaWkppaWltTpHQbdZZJI0AFhkZv/M2JfTNov+/cPI7UGDcnYJV00n\nnAB77glnnBE7EufSq6jaLCQ1lbROcn9toCvwbr6uv2IF3H+/V0EVGq+Kci6Ogk0WwCbAy5LeBsYD\nI81sVL4uPnZsqOrYccd8XdFVRefOYVnbGTNiR+Jc3VKwycLMPjaz3cysvZntbGZX5vP6Q4aEb7Gu\nsDRoAEcd5aUL5/ItNW0WFclVm8X//gebbRaW9Nx886yf3tXShAlw7LE+/YdzNVVUbRYxPfMM7Lqr\nJ4pCteeeIUlMmBA7EufqDk8WFRg6FI45JnYUbnWkUEV4//2xI3Gu7vBqqHK+/Tasm/DRR7DBBlk9\ntcuiDz4II7o/+yy0Yzjnqs6robJg+HDYf39PFIVum22gTRt4/vnYkThXN3iyKGfIkNB46gqfV0U5\nlz9eDZWhbIbZzz6DtdfO2mldjnzxBbRtC3PmQNOmsaNxLj28GqqWHnkEunf3RJEWG28cFkZ66qnY\nkThX/DxZZPAqqPQ56ih46KHYUThX/LwaKjFrFrRvH2aZbdQoK6d0ebBgQWjo/vRTX3PEuaryaqha\neOgh+PWvPVGkTYsWsO++MGJE7EicK26eLBJDhvhAvLTyqijncs+TBWGG2W++CeMrXPocdhiMGwdf\nfx07EueKV51PFitXwjnnwJVXQv36saNxNdGsGRx4oK/P7Vwu1flkcd990Lgx9O4dOxJXG14V5Vxu\n1eneUIsXQ7t2YXzFXntlMTCXd999F2YJ9jm9nKtc0fWGktRN0lRJ0yWdn+3zX3tt6EnjiSL91lkH\nDj4YHnssdiTOFaeCTRaS6gE3AwcDOwLHSNouW+efMwduuCG0VcRSWloa7+JZUGjxV7cqqtDir640\nx5/m2CH98ddEwSYLoAMww8xmmtky4EHgsGyd/KKL4OSTYcsts3XG6kv7G67Q4u/RA954A+bNq9rx\nhRZ/daU5/jTHDumPvyYKOVlsDszO2P402VdrEyeG+YQuvDAbZ3OFokkTOPTQ0AblnMuu1C8b07Nn\n9Z8zZQpcfHHocumKS9++YdzFFVfAeuuFKUDWWw/WWmvV9bqnTYM334wTZzakOf40xw4Vx3/IIXDq\nqXHiyYeC7Q0laS9goJl1S7b7A2ZmgzKOKczgnXOuwFW3N1QhJ4v6wDSgM/A58DpwjJm9HzUw55yr\ngwq2GsrMVkg6HRhFaFu50xOFc87FUbAlC+ecc4WjkHtDrVGuB+xlm6Q7Jc2T9E7GvuaSRkmaJuk5\nSQXZ5C6plaQxkt6TNFnSGcn+tMS/lqTXJL2dxD8g2Z+K+MtIqifpLUkjku3UxC/pE0mTkr/B68m+\nNMXfTNIwSe8n/wf/l5b4JbVNXve3kp/fSDqjuvGnMlnkesBejtxFiDdTf+B5M2sHjAEuyHtUVbMc\nONvMdgT2Bv6YvN6piN/MvgcOMLP2wG5Ad0kdSEn8Gc4EpmRspyn+lUCJmbU3sw7JvjTFfwPwtJlt\nD+wKTCUl8ZvZ9OR13x3YA1gMPE514zez1N2AvYBnMrb7A+fHjqsKcbcG3snYngpsktxvCUyNHWMV\nf48ngC5pjB9oCrwB/DJN8QOtgNFACTAibe8f4GNgg3L7UhE/sB7wYQX7UxF/uZi7Ai/VJP5UlizI\n4YC9PNvYzOYBmNlcYOPI8VRK0paEb+fjCW+0VMSfVOG8DcwFRpvZBFIUP3AdcB6Q2ciYpvgNGC1p\ngqSTk31pib8NMF/SXUlVzr8lNSU98Wc6ChiS3K9W/GlNFsWqoHsbSFoHeAQ408y+Y9V4CzZ+M1tp\noRqqFdBB0o6kJH5JhwDzzGwisKa+8QUZf6KjhWqQHoRqzP1IyetP6DW6O3BL8jssJtRmpCV+ACQ1\nBHoBw5Jd1Yo/rcniM2CLjO1Wyb60mSdpEwBJLYEvIsezWpIaEBLFfWY2PNmdmvjLmNm3QCnQjfTE\n3xHoJekjYChwoKT7gLkpiR8z+zz5+SWhGrMD6Xn9PwVmm9kbyfajhOSRlvjLdAfeNLP5yXa14k9r\nspgAbCOptaRGwNHAiMgxVYX4+TfDEcCJyf2+wPDyTyggg4EpZnZDxr5UxC9pw7KeHpKaAAcB75OS\n+M3sQjPbwsy2IrzXx5jZb4CRpCB+SU2TUimS1ibUm08mPa//PGC2pLbJrs7Ae6Qk/gzHEL5slKle\n/LEbXGrRUNONMMJ7BtA/djxViHcIMAf4HpgF9AOaA88nv8coYP3Yca4m9o7ACmAi8DbwVvL6t0hJ\n/DsnMU8E3gH+muxPRfzlfpdO/NTAnYr4CXX+Ze+dyWX/r2mJP4l1V8KX1InAY0CzlMXfFPgSWDdj\nX7Xi90F5zjnnKpXWaijnnHN55MnCOedcpTxZOOecq5QnC+ecc5XyZOGcc65Sniycc85VypOFc9WU\nTFf9h9hxOJdPniycq77mwGlVOVDS+jmOxbm88GThXPVdAWyVzEA6qJJjn5D0hKSeybryzqWSj+B2\nrpoktQZGmtkuVTx+f+C3hHVYhgF3mdmHOQzRuazzkoVzOWZmL5pZX2DPZNdUSb+KGZNz1dUgdgDO\npZmkS4FDCGsB7Am8mdwfYWYDk2MaA78CTiJMQPcnwqp3zqWGV0M5V02SWhDWBWhThWMHAUcCTwF3\nmtmkXMfnXC54snCuBiTdD+xCWAv+/DUc142w/sQPeQvOuRzwZOGcc65S3sDtnHOuUp4snHPOVcqT\nhXPOuUp5snDOOVcpTxbOOecq5cnCOedcpTxZOOecq5QnC+ecc5X6f0ALRbyoguMHAAAAAElFTkSu\nQmCC\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f8a844e3828>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "from math import sin\n",
+ "from math import pi\n",
+ "\n",
+ "V_biasing=10.0; #Biasing voltage, V\n",
+ "vin=[30*sin(t/10.0) for t in range(0,(int)(2*pi*10))] #input voltage waveform, V\n",
+ "\n",
+ "plt.subplot(211)\n",
+ "plt.plot(vin);\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vin(V)');\n",
+ "plt.title('Input waveform');\n",
+ "\n",
+ "vout=[]; #Output voltage waveform, V\n",
+ "for v in vin[:]:\n",
+ " if(v-V_biasing)>0 : #Diode is forward biased.\n",
+ " vout.append(v-V_biasing);\n",
+ " else: #Diode is reverse biased.\n",
+ " vout.append(0);\n",
+ "\n",
+ "plt.subplot(212) \n",
+ "plt.plot(vout);\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vout(V)');\n",
+ "plt.title('Output waveform');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.13 : Page number 492"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XVV99/HPF0IAgYQEhACBADLbIliVUYgMJWAJqAhB\nKpP1sUXRhzoAahtAWwLiQxHb51UVqAwJY4WgMkUIKINgIWEKSZQpEAmGGdQQkl//WOuSzeVO+9x7\n7t778n2/XveVs4dzzjc3ufd31lp7r6WIwMzMrK9WqjqAmZk1iwuHmZmV4sJhZmaluHCYmVkpLhxm\nZlaKC4eZmZXiwmHWEJJ2lTRP0suSJladx965XDis1iQ9JmmvQXifyZIubPf79NNpwPciYkRETK86\njL1zuXCYNcc44OFWnihp5QHOYu9gLhzWGJKOkvRLSd+R9Lyk30maUDh+i6R/lfRrSS9J+omktfOx\nPSUt6PR6j0naS9J+wNeBwyS9Ium+Lt77aEnTC9vzJV1W2H5S0vb58b/l7Zck3SNp97x/A0l/7MiU\n9+0o6Q8dv9glHSvpYUnPSbpO0sZ5/2+BzYCf5q6qVfLrXZPPnSfp7wqvO1nSFZIukvQicFTed3ne\n97Kk2ZK2lHSSpEWSnpC0T7/+kewdwYXDmuZDwBxgHeA7wHmdjn8aOBoYAywDzi0c63J+nYi4AfhX\n4LKIWCsiduzitFuBNwsAsAqwS97eHFgjIu7P594NbA+MAqYCV0gaHhG/B+4APlF43cOBKyJimaSD\ngJOAg4F3A78ELs0ZtwAWAB/NXVVLgcuAJ/Pf9ZPAv0oaX3jticDlEbE2cEne9zfAj4G1gVnADYCA\nDYFvAT/o6ntkVuTCYU3zREScH2mStR8DG0har3D8ooiYExF/Av4J+KQk9fdNI+Ix4BVJOwB7kH7h\nLpS0Vd7+ZeHcqRHxYkQsj4izgVWBrfPhacCnCi89iRW/1D8HnB4R8yJiOTAF2KGj1ZEJQNJYUuE6\nMSKWRsRs4EfAkYVz74yIa3OmJXnfLyNiRn79K4B1gSkRsYxUpMZJGtHq98neGVw4rGme6XiQiwPA\nmoXjxe6oJ0gtg3UH6L1vBT5CKhQz89d4YM98DABJX8ndTS9IegEYUchwFbCzpPUl7Qksi4jb87Fx\nwDm5G+554DlSK2mjLrJsCDwfEX8s7Hui07kLeLtFhcd/AhbHiplO/0QqTGu+7VlmBS4cNtQUP52P\nA5YCi4HXgHd1HMhjCu8unNuXaaJvIxWK3UmF4jZS0dgjb5PHM74KHBIRoyJiFPAyuaUQES8CN5Ja\nGoeTu6KyJ4HPRcTo/DUqItaMiLu6yLIQGC1pjcK+TYCnS/6dzEpz4bCh5m8lbSPpXcCppPGDAOYB\nq0naX9Iw4JvA8MLzFgGb9tKt1dHiWD0iFpK6pyaQxls6BtTXIhWr5yQNl/TPeV/RNFKX0idIYyAd\n/hP4uqTtACSNlHRIV0Ei4inSeMnpklbNA/OfAS7qIb/ZgHDhsLrr7VNz5+MXkcY+FpIKw5cAIuJl\n4DjSYPpTwCv5zw5XkFoFz0n6TZdvFDE/P++2vP0K8DvgV4Xunhvy1zzgMeCPvL3LaDqwJfD7iHig\n8PpXk8Y1Ls1XQt1PKkzd/V0PJ11ptZDUBfZPEXFLV9lLcCvFeqUqF3LKA3wXAusDy4EfRsT3JI0i\nXTEyDngcODQiXqosqDWCpFtIg+PnV53FbCirusXxBvCPEfFe0hUin5e0DemSxBkRsTVwM3ByhRnN\nzKyg0sIREc9ExKz8+FXS9fljgYNI3Q3kPw+uJqE1jLtZzAZBpV1VRZI2JV3e+BfAgnw1Ssex5yNi\ndDXJzMysqOquKgAkrQlcCXwptzw6V7N6VDczM2NY1QHypZFXkgY1r8m7F0laPyIWSRoDPNvNc11Q\nzMxaEBEtz6hQhxbH+cDDEXFOYd900nxDAEcB13R+UoeIqP3X5MmTK8/gnM7Z5JxNyNiknP1VaYtD\n0m7AEcADeUbSIM1SegZwuaRjSdMoHFpdSjMzK6q0cESao6e7dQI8vbOZWQ3VoatqyBs/fnzVEfrE\nOQeWcw6cJmSE5uTsr9pcjtsKSdHk/GZmVZBENHxw3MzMGsSFw8zMSqn8Po7++sQnej/HqnPCCbD7\n7lWnsN6cdhrMnl11CuvKBz4AJ9dstr7GF45Pfar3c6waF18Mt9/uwtEEF18Mxx8PG25YdRLrbMyY\nqhO8XeMLh1sc9TVrFixZ0vt5Vr0lS+DAA2HTTatOYk3gMQ5rm+HD4fXXq05hffH66+nfy6wvXDis\nbVZd1S2OpliyJP17mfWFC4e1jVsczeEWh5VReeGQdJ6kRZLuL+wbJelGSXMl3SBpZJUZrTWrrurC\n0RSvv+4Wh/Vd5YUDuADYr9M+Lx07BAwf7q6qJli+HJYuhVVWqTqJNUXlhSMifgW80Gm3l44dAtzi\naIalS1ORV8sTUNg7TeWFoxvrRcQiSOuSA+tVnMda4BZHMyxZ4vENK6cp93F0O5PhKaec8ubj8ePH\nv2Nmp2wCtziaweMbQ9/MmTOZOXPmgL1eLWbHlTQOuDYits/bc4DxsWLp2FsiYtsunufZcWvsuuvg\nnHPg+uurTmI9efpp+OAHYeHCqpPYYBkqs+Mqf3Xo89KxVl++HLcZfCmulVV54ZA0FbgD2ErSk5KO\nAaYA+0qaC+ydt61hfANgM/jmPyur8jGOiOhumkIvHdtwbnE0g1scVlblLQ4butziaAa3OKwsFw5r\nG7c4msEtDivLhcPaxi2OZnCLw8py4bC2cYujGdzisLJcOKxtfANgM/gGQCvLhcPaxlOONIOnHLGy\nXDisbdziaAa3OKwsFw5rm44xDs8KU29ucVhZLhzWNiutBCuvDG+8UXUS64lbHFZWrQuHpAmSHpE0\nT9KJVeex8jzOUX9ucVhZtS0cklYCvk9aHfC9wOGStqk2lZXlS3Lrz5fjWlm1LRzAh4D5EfFERCwF\nLiWtDGgN4psA6883AFpZdS4cGwELCttP5X3WIG5x1J9bHFZW5bPj9pdXAKw3tzjqb8kSGDWq6hTW\nTgO9AmCdC8fTwCaF7bF531sUC4fVj1sc9ecWx9DX+UP1qaee2q/X67WrStIukv5d0v2S/pAXW/q5\npM9LGtmvd+/ZPcAWksZJGg5MIq0MaA3imwDrz5fjWlk9Fg5J1wF/B9wATAA2ALYDvgmsBlwjaWI7\ngkXEMuALwI3AQ8ClETGnHe9l7ePLcevPl+NaWb11VX06IhZ32vcqcG/++q6kdduSDIiI64Gt2/X6\n1n5ucdSfWxxWVm9dVadK2q2nE7ooLGZvcouj/tzisLJ6KxzzgLMkPS7pTEk7DkYoGzrc4qg/tzis\nrB4LR0ScExG7AHsCzwHn5ylAJkvaalASWqO5xVF/bnFYWX26ATDfvX1GROwIHA4cDHig2nrly3Hr\nz5fjWll9KhyShkk6UNIlwHXAXODjbU1mQ4JvAKw/TzliZfV4VZWkfUktjAOAu0nzRf2fiHhtELLZ\nEOAWR/25xWFl9XY57snANODLEfHCIOSxIcYtjvpzi8PK6q1wHBQRr/R0gqQ1I+LVAcxkQ4hbHPXn\nFoeV1dsYx9WSvitpD0lrdOyUtLmkz0jquKPcrEtucdSfWxxWVo8tjojYW9IBwOeA3SSNBpaSBsd/\nBhwVEc+0P6Y1lVsc9ecWh5XV61VVEfHziDgiIjaNiBERsU5E7BoR/9KfoiHpEEkPSlom6f2djp0s\nab6kOZL+utX3sOr5BsD68w2AVlafp1WXtBEwrviciLitH+/9APAx4D87vc+2wKHAtqSp1GdI2jIi\noh/vZRXxDYD15xsAraw+FQ5JZwCHAQ8Dy/LuAFouHBExN7+2Oh06iDQT7hvA45Lmk5aR/XWr72XV\ncYuj/tzisLL62uI4GNg6Igbjs+NGwJ2F7afxkrGN5RZH/bnFYWX1tXA8CqwClPoVIOkmYP3iLlJL\n5RsRcW2Z1+qOl46tN7c46m1Z7j8YVue1QK3fqlo69o/ALEm/oFA8IuKLPT0pIvZtIdPTwMaF7S6X\njO3gpWPrzS2OenNr451hoJeO7WvhmE57l20tjnNMBy6RdDapi2oL0nQn1kC+HLfefCmutaJPhSMi\nfjzQbyzpYOBcYF3gp5JmRcT+EfGwpMtJA/FLgeN8RVVz+QbAevPNf9aK3iY5vDwiDpX0AGls4i0i\nYvtW3zgirgau7ubY6cDprb621YdbHPXmFoe1orcWx6uSdgcOpIvCYdYbtzjqzS0Oa0VvhWM28B1g\nA+ByYFpE3Nf2VDZkuMVRb25xWCu8dKy1lVsc9eYWh7XCS8daW7nFUW9ucVgrvHSstZVvAKw3Tzdi\nrfDSsdZWvgGw3nwDoLWiL0vHTsVLx1qL3OKoN7c4rBW9LeS012AFsaHJLY56c4vDWtGnMQ6zVnlw\nvN48OG6tqKxwSDozr/A3S9JVkkYUjnkFwCHCl+PWmy/HtVZU2eK4EXhvROwAzCeNpyBpO1asALg/\n8B9dLPZkDbHKKvDGG7B8edVJrCtucVgrKiscETEjIjp+ndxFmj4dYCJ5BcCIeJxUVD5UQUQbAJK7\nq+rMLQ5rRV3GOI4Ffp4fbwQsKBzzCoAN58JRX25xWCvauu5XX1YAlPQNYGlETGvlPbwCYP15nKO+\n3OJ4ZxjoFQBV5VIXko4GPgvs1bGeuaSTgIiIM/L29cDkiPh1F8/3Uh0NsOGGcM89sJHbjbVz2mmw\ndCl861tVJ7HBJImIaHnsuMqrqiYAXwUmdhSNbDowSdJwSZvhFQAbzzcB1pdvALRWVLlE/bnAcOCm\nfNHUXRFxnFcAHHp8E2B9LVkCI0b0fp5ZUWWFIyK27OGYVwAcQtziqC+3OKwVdbmqyoYwtzjqy1OO\nWCtcOKzt3OKoL7c4rBUuHNZ2bnHUl1sc1goXDms73wBYX74B0FrhwmFt5xsA68s3AForXDis7dzi\nqC+3OKwVLhzWdm5x1JdbHNYKFw5rO7c46sstDmuFC4e1nVsc9eUWh7WiyrmqTpM0W9J9kq6XNKZw\nzCsADiFucdSXWxzWiipbHGdGxPsiYkfgZ8Bk8AqAQ5FvAKwv3wBorahyBcBXC5trAB2rAXoFwCHG\nNwDWl28AtFZUOTsukr4NHAm8CHwk794IuLNwmlcAbDi3OOrLLQ5rRaUrAEbEN4FvSjoROB44pZ15\nrBqrrgpTp8KcOVUnsc4WL3bhsPLaWjgiYt8+njqVNM5xCqmFsXHh2Ni8r0teOrb+jjkGNt+86hTW\nlaOPhnXWqTqFtduQWTpW0hYR8dv8+HjgwxFxaB4cvwTYidRFdROwZVeLOXnpWDOz8vq7dGyVYxxT\nJG1FGhR/Avh7AK8AaGZWb5W1OAaCWxxmZuX1t8XhO8fNzKwUF45BMJCDUu3knAPLOQdOEzJCc3L2\nlwvHIGjKfybnHFjOOXCakBGak7O/XDjMzKwUFw4zMyul8VdVVZ3BzKyJ+nNVVaMLh5mZDT53VZmZ\nWSkuHGZmVooLh5mZldLYwiFpgqRHJM3L07LXgqSxkm6W9JCkByR9Me8fJelGSXMl3SBpZA2yriTp\nXknTa5xxpKQr8jLCD0naqaY5T5D0oKT7JV0iaXgdcko6T9IiSfcX9nWbq6plm7vJeWbOMUvSVZJG\n1DFn4diXJS2XNLquOSUdn7M8IGlKyzkjonFfpIL3W2AcsAowC9im6lw52xhgh/x4TWAusA1wBvC1\nvP9EYEoNsp4AXAxMz9t1zPhfwDH58TBgZN1yAhsCjwLD8/ZlwFGDlRP4NvAHYGEXx3YHdgDuL+zr\nMhewHXBf/j5vmn/GNEjfw65y7gOslB9PAU6vY868fyxwPfAYMDrv27ZOOYHxwI3AsLy9bqs52/4X\naNM3ZWfgusL2ScCJVefqJuvV+QfgEWD9vG8M8EjFucaSpqwfXygclWcEjgbuB14Dfg+8BIzsdE63\nOfMP7l4DmKfX1yMVjieAUfmHb/pg/ZuT1q75I7BOD+eM6/QLpMtcnX+OgOuAnQbx3/4tOTsdOxi4\nqK45gSuAv+xUOGqVk/SB5m3/l1vJ2dSuqo2ABYXtp6jh8rKSNiVV/btIP6iLACLiGWC96pIBcDbw\nVdKKjB0qzSjpy8DpwJeBEaQishz4be5S+4Gkd1Wds7OIWAh8F3iStOjYSxExg8HJOQ5YHBHPlXjO\nehGxSNLKnXJ1/rmq07LNxwI/z49rlVPSRGBBRDzQ6VCtcgJbAXtIukvSLZL+Ku8vnbOphaP2JK0J\nXAl8KSJe5a2/oOlie9BI+iiwKCJmkZbz7c6gZZS0FmkFyC9ExE0RsQxYTOruWxn4HqkVcgewWuF5\ne5K6r5B0IbAJcK2klyV9RdK43O/8WUlP568vF55/gaTTiq8naUF3r9dF7pmSjgAOAj4JvBvYPO9b\nWdJ9+bzNgbUkLZb0rKSLO/rsJX1N0hWdXvccSf+WH4+Q9CNJCyUtkPQtJXuTuh42zPnOz+dPzOMt\nz0u6GXhP4XUfA1aTNBt4VdLKwMj8d5sEnCfph5LWA/YDLs7jIZWNI0n6BrA0IqZVlaE7klYHvg5M\nrjpLHwwDRkXEzsDXSK2kljS1cDxN+oHu0OPysoNN0jBS0bgoIq7JuxdJWj8fHwM8W1U+YDdgoqRH\ngWnAXpIuAp6pMOOuwKrATwr7niJ9EpoO7AtcBaxD+oXXsZb9aFKrhIg4kvSp/28iYkREnFV4rfGk\nX6D7ASdK2quHLNGH1+twK/Ap0hjHjsDvgOfy32cJcHc+793AQlLX0Lak/7On5GOXAvtLWgPSRQuk\nInRJPv5j4HVg8/we+wJ/FxG/APYnjW2MiIhjlRZHmwp8Mb/ndcB5nTIL+DSwdj5nGfBx4P+TWk4T\nSZ/un8jvtXJ+vUEn6WjgANL3uEOp5aXb7D2kcYHZuSiPBe7Nhbduv6cWAP8NEBH3AMskrUMLOZta\nOO4BtsifJoeTPilNrzhT0fnAwxFxTmHfdFLXC6SB02s6P2mwRMTXI2KTiNic9L27OSI+DVxLdRnX\nJXW5LC/kXET6z/7nfHxv4AVgXiHnfqQ+/qKuWlGnRMSfI+JB4ALg8BLZemqV3QpsSRp3G0/qatuZ\ntILln1jROhoPTIuIN3K30tnAngAR8SRwL/CxfO7ewGsRcU8ukPsDJ+T8i4F/6yH/ocBPI+Lm3Go7\nK2dYo3DOzcD+EbGE9O/8R+BcUgH7KPCrnH8MqYX3E1LBajdR+F5LmkDqTp2Ys3aYDkxSunJtM2AL\nVhTowfBmzoh4MCLGRMTmEbEZ6cPOjhHxbM55WB1yZlcDewHkDxjD8//F0jmrXDq2ZRGxTNIXSM30\nlYDzImJOxbEAkLQbcATwQO6mCFJT9gzgcknHkj7JHVpdym5NobqMi4F1Ja1ULB6kT7q/IP07v0Ya\nOF8I7Jtzvpy/ehKkH+gOTwB/MUC57yR9Qvs+6Sq1DUi/pK8EvgOMkzSXNNC/WNJTrOh+e77wOtNI\nxeDi/OfUvH8T0pWDv5cEK34ZPNlNno6B+g6XkFpp60p6Elgd+AFwfOHf+SVS12XHss0nk1pLR0RE\nSPpTztw2kqaSius6Oedk0s/NcOCm/He/KyKOiwqXl+4qZ0RcUDglWFFUapWT9IH2AkkPkP59j2w5\n52CN8PvLXz19kQbDXwEO6bR/TWARKy7J/T5wVuH4JODJwvajFK4cIQ0eLwe2KuybAvywldfrJvsv\ngX8Bbszbl+ft4hUtPyL9Eh+Ztw/q9D7rkgrjRqRW1dZ5/5i8v8vLI0mtluLrfBO4tNM5TwEfzo/f\ndpVY533ARcA/F7Y/0/F385e/Ipp7VZUNMRHxMnAacK6k/SQNy1elXUb6dH1xPnUWcIDSTWxjgC91\neqlnSGMBnf2TpNUlvRc4htQt05/XK7oN+AKp2wpgZqdtgLWAV4FXJG1E6oJ5U6QuqFtJ3WiPRsTc\nvP8ZUsv6bElr5UHxzSXt0U2Wy4GPSvpI/h5+hdTVd2cvfwezPnPhsNqIiO+QuifOInWf3EnqStkn\nIpbm0y4idVc9Trrh6tJOLzOFVCSel/SPhf23km5sugk4M9LAcn9er+hWUsvotk7bxcJxKvBXwIuk\nsaSrunidqaTxjUs67T+S1GXzMKl76wpSS+RtImIe8LekltQfSGMWB0bEGx2ndPW0XrbN3qLSadUl\njQUuBNYndSf8MCK+J2kU6ZPmONIP9KER8VJlQa2xJI0jdTetEm8dOzGzFlXd4ngD+MeIeC+wC/B5\nSduQ7mScERFbk64AObnCjNZ8LS9YY2ZvV2nhiIhnIt2ERqSb5OaQrlA5iHTtOvnPg6tJaEOEu17M\nBlBtVgDMA6EzSZdJLoiIUYVjz0fE6K6faWZmg6kW93Go0/Qcevta4l1Wty7OMzOzPoh+rDle9RhH\nv6fnqPp65r58TZ48ufIMzumcTc7ZhIxNytlflRcOaj49h5mZvVWlXVUNn57DzOwdqdLCERG3k+bs\n6co+g5mlncaPH191hD5xzoHlnAOnCRmhOTn7qzZXVbVCUjQ5v5lZFSQRTR4cNzOzZnHhMDOzUlw4\nzMysFBcOMzMrxYXDzMxKceEwM7NSXDjMzKwUFw4zMyul8sIh6TxJiyTdX9g3StKNkuZKukHSyCoz\nmpnZCpUXDuACYL9O+7wCoJlZTVVeOCLiV8ALnXZ7BUAzs5qqvHB0Y72IWARpeVlgvYrzmJlZVtfC\n0ZlnMjQzq4laLB3bhUWS1o+IRb2tAHjKKae8+Xj8+PHvmGmNzcz6aubMmcycOXPAXq8W06pL2hS4\nNiL+Mm+fATwfEWdIOhEYFREndfE8T6tuZlZSf6dVr7xwSJoKjAfWARYBk4GrgSuAjckrAEbEi108\n14XDzKykxheO/nDhMDMrzws5mZnZoHLhMDOzUlw4zMysFBcOMzMrpa73cfTZt79ddQLrySGHwDbb\nVJ3CenPZZTB/ftUprCtbbgmHHVZ1irdqfOH485+rTmDdue8+ePZZ+N73qk5iPVm2DD77Wfj852Hl\nlatOY529/nrVCd7Ol+Na29xxB3zxi/Cb31SdxHoyezZMmgRz5lSdxAaLL8e12nr/+9Mvo9deqzqJ\n9eSOO2DXXatOYU3iwmFts9pq8L73wT33VJ3EeuLCYWW5cFhb7bpr+sVk9eXCYWXVunBImiDpEUnz\n8mSH1jC77gq33151CuvOM8/ACy/A1ltXncSapLaFQ9JKwPdJy8q+Fzhcki/sbJhddoE774Tly6tO\nYl254470b7RSbX8TWB3V+b/Lh4D5EfFERCwFLiUtKWsNssEGsPbaMHdu1UmsK+6mslb0eh+HpF2A\nvwU+DGwA/Al4EPgZcHFEvNSmbBsBCwrbT5GKiTXMrrvChRfCPvtUncQ6mzEDzj676hTWND0WDknX\nAQuBa4B/Ia3EtxqwFfAR4BpJ/y8iprc7aHe8AmD9HXEEnHUW3H131Umss403hp12qjqFtdugrgAo\nad2IWNzjC/ThnJaCSTsDp0TEhLx9EhARcUbhHN8AaGZWUrtvADxV0m49ndCOopHdA2whaZyk4cAk\noLKWjZmZJb0VjnnAWZIel3SmpB0HIxRARCwDvgDcCDwEXBoRnhTBzKxifZqrStI40if+ScDqwDRg\nWkTMa2+8XnO5q8rMrKRBX3M8tzrOB7aPiErn0nThMDMrb1AmOZQ0TNKBki4BrgPmAh9v9U3NzKy5\neruqal/gcOAA4G7STXjXREQt5jt1i8PMrLy2dlVJupk0nnFlRLzQ6pu0iwuHmVl57S4ca0XEK70E\nWDMiXm01QH+4cJiZldfuMY6rJX1X0h6S1ii86eaSPiPpBmBCq29uZmbN0+tVVZIOAI4AdgNGAW+Q\nBsd/DvwoIp5pd8gesrnFYWZW0qBfjlsnLhxmZuUN1uW4v+jLPjMzG/p6LBySVpM0GlhX0ihJo/PX\npqRpz1sm6RBJD0paJun9nY6dLGm+pDmS/ro/72NmZgOrt/U4Pgf8X2BD4N7C/pdJq/P1xwPAx4D/\nLO6UtC1wKLAtMBaYIWlL90mZmdVDj4UjIs4BzpF0fEScO5BvHBFzASR17mc7iDSh4RvA45LmkxZw\n+vVAvr+ZmbWm1xUAs5ckHdl5Z0RcOMB5IHWB3VnYfpp+douZmdnA6Wvh+GDh8WrA3qSuqx4Lh6Sb\ngPWLu4AAvhER15bIaWZmNdGnwhERxxe3Ja1Nmreqt+ft20Kmp4GNC9tj874ueelYM7OeDerSsd0+\nSVoFeDAitu53AOkW4CsR8T95ezvgEmAnUhfVTUCXg+O+j8PMrLz+3sfRpxaHpGtJXUwAK5OueLq8\n1TfNr3kwcC6wLvBTSbMiYv+IeFjS5cDDwFLgOFcHM7P66OsKgHsWNt8AnoiIp9qWqo/c4jAzK29Q\n7hyPiFuBR4C1SPNVvd7qG5qZWbP1dcqRQ0kLOX2SdHPeryUd0s5gZmZWT33tqpoN7BsRz+btdwMz\nIuJ9bc7XWy53VZmZlTQoXVXASh1FI3uuxHPNzGwI6esNgNfnRZum5e3DSOtxmJnZO0xvS8f+OzA1\nIm6X9HFg93zolxHxk8EI2BN3VZmZldfu+zjmAWdJ2oB038ZFEXFfq29mZmbN19fB8XHApPy1OqnL\nalpEzGtvvF5zucVhZlbSoC8dK2lH4Hxg+4hYudU3HgguHGZm5Q3W0rHDJB0o6RLgOmAu8PFW39TM\nzJqrt6Vj95V0PvAU8FngZ8B7ImJSRFzTnzeWdGZeGnaWpKskjSgc89KxZmY11dtVVTcDU4GrIuKF\nAX1jaR/g5ohYLmkKEBFxcmF23A+Sl47Fs+OamQ2Ytl5VFRF7tfrCvYmIGYXNu4BP5McT8dKxZma1\nVZe7v49lxQ2FGwELCse8dKyZWY309c7xlvRl6VhJ3wCWRsS0Ll6iV14B0MysZ7VYAXDA3lw6mjTo\nvldELMn7TiKNd5yRt68HJkfE27qqPMZhZlbeYE1yOOAkTQC+CkzsKBrZdGCSpOGSNgO2IE3pbmZm\nNdDWrqpenAsMB26SBHBXRBznpWPNzOqt0q6q/nJXlZlZeY3tqjIzs2Zy4TAzs1JcOMzMrBQXDjMz\nK8WFw8z50feAAAAGnUlEQVTMSnHhMDOzUlw4zMysFBcOMzMrxYXDzMxKqXKuqtMkzZZ0n6TrJY0p\nHPMKgGZmNVXZlCOS1oyIV/Pj44HtIuIfvAKgmVl7NXbKkY6ika0BLM+P31wBMCIeBzpWADQzsxqo\ncnZcJH0bOBJ4EfhI3r0RcGfhNK8AaGZWI21tcUi6SdL9ha8H8p8HAkTENyNiE1LX1PHtzGJmZgOj\nrS2OiNi3j6dOBX4GnEJqYWxcODY27+uSl441M+vZkFk6VtIWEfHb/Ph44MMRcWhhcHwnUhfVTXhw\n3MxswPR3cLzKMY4pkrYiDYo/Afw9gFcANDOrN68AaGb2DtPYy3HNzKyZXDgGwUAOSrWTcw4s5xw4\nTcgIzcnZXy4cg6Ap/5mcc2A558BpQkZoTs7+cuEwM7NSXDjMzKyUxl9VVXUGM7Mm6s9VVY0uHGZm\nNvjcVWVmZqW4cJiZWSmNLRySJkh6RNI8SSdWnaeDpLGSbpb0UJ4N+It5/yhJN0qaK+kGSSNrkHUl\nSfdKml7jjCMlXZFXg3xI0k41zXmCpAfz7M+XSBpeh5ySzpO0SNL9hX3d5qpq9c1ucp6Zc8ySdJWk\nEXXMWTj2ZUnLJY2ua05Jx+csD0ia0nLOiGjcF6ng/RYYB6wCzAK2qTpXzjYG2CE/XhOYC2wDnAF8\nLe8/EZhSg6wnABcD0/N2HTP+F3BMfjwMGFm3nMCGwKPA8Lx9GXBUHXICuwM7APcX9nWZC9gOuC9/\nnzfNP2OqMOc+wEr58RTg9DrmzPvHAtcDjwGj875t65QTGA/cCAzL2+u2mrOpLY4PAfMj4omIWApc\nChxUcSYAIuKZiJiVH78KzCH9pzoI+HE+7cfAwdUkTCSNBQ4AflTYXbeMI0izJl8AEGlVyJeoWc5s\nZWANScOA1UlLAVSeMyJ+BbzQaXd3uSpbfbOrnBExIyI6Vga9i/RzVLuc2dnAVzvtO4h65fwH0oeE\nN/I5i1vN2dTCsRGwoLD9FDVcJVDSpqSqfxewfkQsglRcgPWqSwas+I9evKyubhk3AxZLuiB3qf1A\n0ruoWc6IWAh8F3iSVDBeiogZ1CxnwXrd5Or8c1Wn1TePBX6eH9cqp6SJwIKIeKDToVrlBLYC9pB0\nl6RbJP1V3l86Z1MLR+1JWhO4EvhSbnl0vu65suugJX0UWJRbRj1dy131tdrDgPcD/x4R7wdeA06i\nRt9LAElrkz61jSN1W60h6YguclX9/exOXXMBIOkbwNKImFZ1ls4krQ58HZhcdZY+GAaMioidga8B\nV7T6Qk0tHE8DmxS2e1wlcLDl7oorgYsi4pq8e5Gk9fPxMcCzVeUDdgMmSnoUmAbsJeki4JkaZYTU\nklwQEb/J21eRCkmdvpeQ+uIfjYjnI2IZ8BNgV+qXs0N3uUqtvjkYJB1N6lL9VGF3nXK+hzQuMFvS\nYznLvZLWo36/pxYA/w0QEfcAyyStQws5m1o47gG2kDRO0nBgEjC94kxF5wMPR8Q5hX3TgaPz46OA\nazo/abBExNcjYpOI2Jz0vbs5Ij4NXEtNMgLk7pQFSgt+AewNPESNvpfZk8DOklaTJFLOh6lPTvHW\nlmV3uaYDk/IVYZsBWwB3D1ZIOuWUNIHUnToxIpYUzqtNzoh4MCLGRMTmEbEZ6cPOjhHxbM55WB1y\nZlcDewHkn6nhEfFcSzkHY4S/TVcNTCBdsTQfOKnqPIVcuwHLSFd63Qfcm7OOBmbkzDcCa1edNefd\nkxVXVdUuI/A+0geFWaRPSyNrmnMy6UKI+0kDzqvUIScwFVgILCEVuGOAUd3lAk4mXVUzB/jrinPO\nJ60Oem/++o865ux0/FHyVVV1y0nqqroIeAD4DbBnqzk95YiZmZXS1K4qMzOriAuHmZmV4sJhZmal\nuHCYmVkpLhxmZlaKC4eZmZXiwmFWUp7q/R+qzmFWFRcOs/JGAcf15cQ8j5XZkOLCYVbe6cDmecbe\nM3o592pJV0s6UNLKgxHOrN1857hZSZLGAddGxPZ9PH8P4DPAzqQZSS+IiN+1MaJZW7nFYdZmEXFb\nRBwFfCDvekTSx6rMZNYfw6oOYNZkkr4NfJS0psUHgP/Jj6dHxCn5nNWAj5EWIxoJHA/cVEVes4Hg\nriqzkiSNBv4n0jTavZ17BnAI8DPgvIiY3e58Zu3mwmHWAkkXA9sD10XEiT2cN4G03snrgxbOrM1c\nOMzMrBQPjpuZWSkuHGZmVooLh5mZleLCYWZmpbhwmJlZKS4cZmZWiguHmZmV4sJhZmal/C+3Ngq+\n5CKPkAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f8a84f72fd0>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "Vin=[]; #Input voltage waveform, V\n",
+ "t1=50; #Assumed time interval, s\n",
+ "t2=100; #Assumed time interval, s\n",
+ "V_biasing=10; #Biasing voltage, V\n",
+ "for t in range(0,151): #time interval from 0s to 151s\n",
+ " if(t<=t1): \n",
+ " Vin.append(15); #Value of input voltage for time 0 to t1 seconds \n",
+ " elif(t<=t2 and t>t1):\n",
+ " Vin.append(-30); #Value of input voltage for time t1 to t2 seconds\n",
+ " else :\n",
+ " Vin.append(15); #Value of input voltage after t2 seconds\n",
+ "\n",
+ "plt.subplot(211)\n",
+ "plt.plot(Vin);\n",
+ "plt.xlim([0,160])\n",
+ "plt.ylim([-35,20])\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vin(V)');\n",
+ "plt.title('Input waveform');\n",
+ "\n",
+ "\n",
+ "vout=[]; #Output voltage waveform, V\n",
+ "for v in Vin[:]: #Loop iterating input voltage \n",
+ " if(v<=0):\n",
+ " vout.append(0); #Diode reverse biased\n",
+ " else:\n",
+ " vout.append(v-V_biasing); #Diode forward biased\n",
+ "\n",
+ "plt.subplot(212)\n",
+ "plt.plot(vout);\n",
+ "plt.xlim(0,160)\n",
+ "plt.ylim(-35,20)\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vout(V)');\n",
+ "plt.title('Output waveform');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.14 : Page number 492-493"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4neO9//H3JzTmIWhMIaSG4vwcnHOUUnYNbWgJTqt0\nou3pcf1U+bXaoj09CR2UqtbR47qOGi7zEA6iNZdNtbQqCBJJKhExhQRBKEl8f3/c906Wbe299lp7\nr/U8a+/P67rWlfXM93qy9/6ue/o+igjMzMx6M6zoApiZWfk5WJiZWU0OFmZmVpODhZmZ1eRgYWZm\nNTlYmJlZTQ4WZm1C0kclzZD0mqQDiy6PDS0OFlZqkmZL2qsF1xkv6eJmX6efTgH+KyLWjIhJRRfG\nhhYHC7P2MRqY2siBklYY4LLYEONgYW1D0hGS/iDp55JelvSkpLEV2++S9FNJf5a0UNJ1ktbO2/aU\nNLfb+WZL2kvSJ4HvA5+T9Lqkh6pc+0hJkyqWZ0q6qmL5aUnb5/e/yssLJT0gafe8fkNJb3aVKa/b\nUdJLXX/MJX1V0lRJCyTdLGmTvP5vwObAb3Mz1Afy+W7I+86Q9G8V5x0vaaKkSyS9ChyR112d170m\n6RFJW0o6UdI8SXMk7dOv/yQbtBwsrN3sDEwD1gV+DpzfbfuXgCOBDYClwNkV26rmtomIW4GfAldF\nxBoRsWOV3e4Glv3RBz4A7JqXxwCrRcSUvO9fgO2BEcDlwERJwyPieeBPwL9WnPdwYGJELJU0DjgR\nOAj4IPAH4Mpcxi2AucCncjPUYuAq4On8WT8L/FRSR8W5DwSujoi1gcvyuk8DFwFrAw8DtwICNgJ+\nBJxb7R6ZOVhYu5kTERdESmp2EbChpJEV2y+JiGkR8RbwQ+CzktTfi0bEbOB1STsAe5D+yD4naau8\n/IeKfS+PiFcj4t2I+CWwErB13nwF8PmKUx/G8j/kRwGnRsSMiHgX+BmwQ1ftIhOApFGkYHVCRCyO\niEeA84AvV+x7X0TcmMv0dl73h4i4I59/IrAe8LOIWEoKTKMlrdnofbLBy8HC2s0LXW9yQABYvWJ7\nZVPTHFINYL0BuvbdwMdJwaEzvzqAPfM2ACR9JzclvSLpFWDNijJcC+wiaX1JewJLI+KPedto4Kzc\nxPYysIBUG9q4Slk2Al6OiDcr1s3ptu9c3m9exfu3gPmxPJvoW6RgtPr7jrIhz8HCBpvKb+GjgcXA\nfGARsGrXhtxH8MGKffuSfvkeUnDYnRQc7iEFij3yMrl/4rvAZyJiRESMAF4j1wgi4lXgNlKN4nBy\nM1P2NHBURKyTXyMiYvWIuL9KWZ4D1pG0WsW6TYFn6/xMZn3iYGGDzRclfVjSqsDJpP6AAGYAK0va\nT9KKwH8AwyuOmwdsVqPJqqtmsUpEPEdqehpL6j/p6hRfgxSgFkgaLuk/87pKV5Cai/6V1KfR5X+A\n70vaFkDSWpI+U60gEfEMqf/jVEkr5c71rwGX9FJ+s4Y5WFjZ1fp23H37JaS+jOdIweA4gIh4DTia\n1CH+DPB6/rfLRNK3/wWS/lr1QhEz83H35OXXgSeBeyuacm7NrxnAbOBN3t8cNAnYEng+Ih6tOP/1\npH6KK/MIpimkYNTTZz2cNELqOVLz1g8j4q5qZa+DayNWlYp8+FHupLsYWB94F/hNRPyXpBGkkR6j\ngaeAQyNiYWEFtbYg6S5SB/cFRZfFbLApumaxBPh2RGxHGtnxDUkfJg0fvCMitgbuBE4qsIxmZkNe\nocEiIl6IiIfz+zdI4+dHAeNITQnkfw8qpoTWZtyEYtYkhTZDVZK0GWko4j8Ac/Mokq5tL0fEOsWU\nzMzMim6GAkDS6sA1wHG5htE9gpUjopmZDVErFl2APIzxGlLH5A159TxJ60fEPEkbAC/2cKyDiJlZ\nAyKirswGZahZXABMjYizKtZNIuX3ATgCuKH7QV0iwq8Ixo8fX3gZyvDyffB98L2ofR8aUWjNQtJu\nwBeAR3OmzyBl/zwNuFrSV0kpDA4trpRmZlZosIiUE6enPPtOlWxmVhJlaIayAdDR0VF0EUrB9yHx\nfVjO9yLp730ozdDZRkiKdi6/mVkRJBFt2MFtZmYl52BhZmY1FR4sJJ2fn/87pWLdeEnPSJqcX2N7\nO4eZmTVX4cECuBD4ZJX1Z0bETvl1S6sLZWZmyxUeLCLiXuCVKpv6/dxkMzMbGIUHi14cI+lhSedJ\nWqvowpiZDWWF54bqwTnAKRERkn4MnEl6ZOT7TJgwYdn7jo4Oj6k2M+ums7OTzs7Ofp2jFPMsJI0G\nboyI7evc5nkWZmZ1aud5FqKijyJnmu1yCPBYy0tkZmbLFN4MJelyoANYV9LTwHjg45J2ID2X+yng\nqMIKaGZm5WiGapSboczM6tfOzVBmZlZiDhZmZlaTg4WZmdXkYGFmZjUVHix6SCQ4QtJtkqZLutUz\nuM3MilV4sKB6IsETgTsiYmvgTuCklpfKzMyWKTxY9JBIcBxwUX5/EXBQSwtlZmbvUfikvB6MjIh5\nABHxgqSRPe14wgmtK5RZXxxwAOy+e9GlMBtYZQ0W3fU48+7BBycsez9mTAcf+lBH80tj1oMHHoCL\nL3awsHIZtIkEJU0DOiJiXs4TdVdEbFPlOM/gtlK56iq45hqYOLHokpj1rJ1ncL8nkSAwCTgyvz8C\nuKHVBTJrxIgR8Eq1R3mZtbnCg0VOJPgnYCtJT0v6CvAzYF9J04G987JZ6TlY2GBVeJ9FRHy+h037\ntLQgZgNgxAh49dWiS2E28AqvWZgNJmuv7ZqFDU6l6OBulDu4rWyWLIGVVoLFi2GYv4pZSbVzB7fZ\noLDiirDaavDaa0WXxGxgFd5n0RtJTwELSU/MWxwROxdbIrPauvot1l676JKYDZxSBwtSkOiICLcC\nW9vo6rfYbLOiS2I2cMreDCXKX0az9/DwWRuMyv6HOIDbJT0g6etFF8asLzx81gajsjdD7RYRz0v6\nICloTMtZas1KyzULG4xqBgtJuwJfBD4GbAi8BTwG/A64NCIWNqtwEfF8/vclSdcBOwPvCRYTJkxY\n9r6jo4OOjo5mFcesTzzXwsqm6YkEJd0MPEfKzfRX4EVgZWAr4OPAAcCZETGpX6Wofu1VgWER8Yak\n1YDbgJMj4raKfTzPwkrnRz+Cv/8dfvKToktiVl0j8yxq1Sy+FBHzu617A5icX7+QtF49F6zD+sB1\nkoJUzssqA4VZWY0YAdOmFV0Ks4FVK1icLOnyiPhjTztUCSYDIiJmAzs049xmzeRmKBuMao2GmgGc\nIekpSadL2rEVhTJrZ+7gtsGo12AREWdFxK7AnsAC4AJJT0gaL2mrlpTQrM04WNhg1Kd5FhExJyJO\ni4gdgcOBgwC3yppV4XkWNhj1KVhIWlHSAZIuA24GpgOHNLVkZm3KfRY2GPUaLCTtK+kC4Bng66S5\nFR+KiMMioumPOpU0Njd7zZB0QrOvZzYQupqhPKrbBpNa8yzuBK4Arml1Mj9Jw0gd7HuT5no8ABwW\nEU9U7ON5FlZKq6wC8+endOVmZdOMeRbjIuL1GhddPSLeqOeifbQzMDMi5uTrXAmMA57o9SizEujq\nt3CwsMGiVp/F9ZJ+IWmPPIsaAEljJH1N0q3A2CaVbWNgbsXyM3mdWem538LKavHixo7rtWYREXtL\n2h84CthN0jrAYlIH9++AIyLihcYuPTCcG8rKyMNnrUwqc0NNntzYOUr7DG5JuwATImJsXj4RiIg4\nrWIf91lYKX3603DUUXDAAUWXxOy9TjgBTj994PsslpG0MTC68piIuKeei9XpAWALSaOB54HDSHM8\nzErPNQsrq1mzGjuuT8FC0mnA54CpwNK8OoCmBYuIWCrpGFK22WHA+RHhiYDWFtxnYWU1e3Zjx/W1\nZnEQsHVEvN3YZRoTEbcAW7fymmYDwTULK6tGaxZ9fazqLOADjV3CbOhxyg8ro4UL4Z13Gju2rzWL\nN4GHJf0eWFa7iIhjG7us2eC29trw8MNFl8LsvWbPhjFj4NFH6z+2r8FiUn6ZWR+4GcrKaNYs2Hzz\nJgaLiLio/lObDV0OFlZGXTWLRtRKJHh1/vdRSVO6vxq7ZG35eRnPSJqcX82aJW7WFO6zsDLqqlk0\nolbN4g1JuwMHkIbKttKZEXFmi69pNiA8dNbKaPZs2G+/xo6tFSweAX4ObAhcDVwREQ81dqm61TW7\n0KxM3AxlZdSfmkWf0n3kWdSH5dcqpLTlV0TEjMYuW/N644EjgYXAX4HjI2Jhlf2c7sNKKQKGD4dF\ni9K/ZkV7992UBXnBAlhttSal+8hpwk8DTpO0I3AB8J/ACnWXOJN0O7B+5SpSU9cPgHOAUyIiJP0Y\nOBP4WrXzOJGglZGUmqJefRVGjiy6NDbUdXZ2MmlSJyusAKef3tg5+lqzWBHYj1Sz2BvoJNUsWvG0\nvNHAjRGxfZVtrllYaW25Jfz2t7C1cxBYCdx7L3zve/CnPzXh4UeS9iUl79sf+AtwJfDvEbGo4RL3\ngaQNKlKfHwI81szrmTWD+y2sTPrTXwG1m6FOAi4n9Rm08sf+dEk7AO8CT5Gep2HWVjx81spk9uwm\nBouI2KvxUzcuIr5cxHXNBpJrFlYms2fDHns0fnxfEwmaWZ0818LKpL/NUA4WZk3imoWVSX9SfYCD\nhVnTuM/CyuLtt+HFF2HUqMbPUViwkPQZSY9JWippp27bTpI0U9I0SZ8oqoxm/eFmKCuLOXNgk01g\nhYZnxtXxDO4meBQ4GPifypWStgEOBbYBRgF3SNrSEyqs3bgZysqiv/0VUGDNIiKmR8RM3p8Dahxw\nZUQsiYingJnAzq0un1l/OVhYWfS3vwLK2WexMTC3YvnZvM6srbjPwspiIGoWTW2G6i3/U0Tc2Mxr\nmxVtvfXg8cdhxx2LLokNdXPmwLnn9u8cTQ0WEbFvA4c9C2xSsTwqr6vKiQStrEaPhoceSiNRzIr0\n4IOdTJnSyWP9SJzUp0SCzSTpLuA7EfFgXt4WuAz4CKn56Xagage3EwmamdWvkUSCRQ6dPUjSXGAX\n4LeSbgaIiKmkBy1NBW4CjnZEMDMrVuE1i/5wzcLMrH5tVbMwM7P24WBhZmY1OViYmVlNDhZmZlZT\n6RIJShot6U1Jk/PrnKLKaGZmSekSCWZ/i4idqqw3M7MCFBYsImI6gKRqw7fqGtJlZmbNVdY+i81y\nE9RdknYvujBmZkNdGRMJPgdsGhGv5L6M6yVtGxFvVNvZuaHMzHrX2dlJZ2dnv85R+AzunBvq+IiY\nXO92z+A2M6tfO8/gXlZoSetJGpbfjwG2AGYVVTAzMythIkFgD2CKpMmkhIJHRYQfIWNmVqDCm6H6\nw81QZmb1a+dmKDMzKzEHCzMzq8nBwszManKwMDOzmoocDXW6pGmSHpZ0raQ1K7adJGlm3v6JosrY\nTvo74Waw8H1IfB+W871I+nsfiqxZ3AZsFxE7ADOBkwAkbQscCmwD7Aec00P+KKvgX4jE9yHxfVjO\n9yJp22AREXdExLt58X5gVH5/IHBlRCyJiKdIgWTnAopoZmZZWfosvgrclN9vDMyt2PZsXmdmZgVp\n6qS8viQSlPQDYKeI+Ne8fDZwX0RcnpfPA26KiP+tcn7PyDMza0C9k/KamnU2IvbtbbukI4H9gb0q\nVj8LbFKxPCqvq3Z+92WYmbVAkaOhxgLfBQ6MiLcrNk0CDpM0XNLmpESCfymijGZmlhT5WNWzgeHA\n7Xmw0/0RcXRETJV0NTAVWAwc7QRQZmbFautEgmZm1hplGQ1VN0ljJT0haYakE4ouT6tIGiXpTkmP\nS3pU0rF5/QhJt0maLulWSWsVXdZWkDQsP4J3Ul4eqvdhLUkT80TWxyV9ZCjeC0nfkvSYpCmSLsvN\n2YP+Pkg6X9I8SVMq1vX4uRuZ+NyWwSI/HOnXwCeB7YDDJX242FK1zBLg2xGxHbAr8I382U8E7oiI\nrYE7yZMch4DjSE2WXYbcfZD0Y2AesE9EbAP8I/AEQ+xeSNoI+CZpdOX2pGb2wxka9+FC0t/DSlU/\nd6MTn9syWJAm6c2MiDkRsRi4EhhXcJlaIiJeiIiH8/s3gGmkEWPjgIvybhcBBxVTwv6RdGT+VrhI\n0nOSzunpm6CkUaTRdOdVrP4W8GR+3+/7IGm2pL1q71kMSZsA3waej4gRAHlC60IGyc9EnVYAVpO0\nIrAKaSTloL8PEXEv8Eq31T197oYmPrdrsOg+ce8ZhuDEPUmbATuQZsCvHxHzIAUUYGRxJWuMpOOB\nU4HjgTVJT1EcTRoEUW0wxi9JI+oqO95WIP/StOt9qNNoYCHwoqQLc5PcuZJWpcbPhKQVWl/c5omI\n54BfAE+TgsTCiLiDQfC70aCRPXzuhiY+t2uwGPIkrQ5cAxyXaxjdRyq01cgFSWsAE4BjIuL2iFga\nEU+TqsubAV/M+10o6RRJnyI1vawFTMzbLib9TN8o6TVJ30mr9a6kr0t6Nr+Or7juhZJOqVjeMz/u\nt+t8m3Y7X/dyd0o6OL/fLV9rv7y8l6SH8vsxkn4vab6kFyVdqpw8U9L3JE3sdt6zJP0qv19T0nm5\npjVX0o+U7E3KsfZB0jfDdSJiJ9JE2KeAtXL/VlcTbeSa0vckPQK8IWmFvO47kh6R9Lqk30gaKemm\n/Llva4d2fklrk75NjwY2ItUwvkCb/24MoH597nYNFs+Sfom79DhxbzDK37KvAS6JiBvy6nmS1s/b\nNwBeLKp8DfoosBJwXeXKiFhESgXTfYLnbqTq9BXAuqSJnSINt/5SRKwJXArMz/t3AB8iteueUKNp\nKfK1v0z6lvrpiFgzIs6osu/d+dyQnh//ZP4XYE+gM78X8FNgA1Jb8ShScITUjLqfpNVgWZ/cZ4HL\n8vaLgHeAMcCO+V78W0T8ntTm/AIwOyLGSdoqb38SmA78gRTsNmb5z8Rh+bi1I2JpXncIsDewFem+\n3kRq816PVFs7tpf7VRb7ALMi4uX8ua4j/Vy1++9Go3r63H2e+FypXYPFA8AWkkZLGk764Z9UcJla\n6QJgakScVbFuEnBkfn8EcEP3g0puPWB+RXLJSs/n7ctExPcjYlNSB+Z84M6I+BLwJjA273YEcHt+\nPyEi/h4Rj5E6Aw+vo2y9df7dTQoKkILEqRXLe+btRMSTEfH73E68gNSEtmfe9jQwGTg4H7c3sCgi\nHsi/7PsB38rlnw/8qlv53wXm5kBxKClQ3EP6mXiT1Hb/Q5b/TJwVEc91mwx7dkTMj4jnSQHmzxEx\nJSLeIf3R3bFPd6pYTwO7SFo5d9juTRr80O6/G30l3vuz2tPnbmjic5GT8hoWEUslHUOqgg8Dzo+I\naQUXqyUk7QZ8AXg0N3EE8H3gNOBqSV8F5pD+aLST+cB6koZVCRgbsryGUMtC4J8kTSfdh+OBo0j9\nWl3mAP/Qz/J2uQ/YStJI0iikA4CTJa1Lahq6ByBvPwv4GLA66dv6yxXnuYIUAC7N/16e128KfAB4\nPg9Y6fqD8HS3chxLqolsDiwg1WJWAK4m1bw+Sgpmn+O996LLvIr3b1VZXr3WjShaRPxF0jXAQ6Qa\n5kPAucAatPfvRk2SLifVcNeV9DQwHvgZMLH752504nNbBguAiLgF2LrocrRaRPyR9Eegmn1aWZYB\ndh/wNqk55JqulblvZj9SkwjAImDViuM2BN6OiAPz8lLguxFxZz5+NOmP6ybAjLzPpsBzvZyvUq+/\nRBHxlqQHSUN4H4uIJZLuI41Q+ltEdAWEn5JqANtFxEJJ40hZDLpMBM7IzUUHkzr3IXVE/h1Yt7df\n6Ih4BPgXSf8B/EMeDQWwj6RngG9ExKs54AzaNvuIOBk4udvql2nv342aIuLzPWyq+rkj4lRSLbjP\n2rUZygaZiHgNOAU4W9InJa2YR3tdRfoWfWne9WFgf6UJRxuQ/khXeoHUtt/dDyWtImk74CukfoL+\nnK/SPcAx5CYnUj9F5TKkb7dvAK/ngPDdyhPk5qW7SU1ksyJiel7/AqkG/UtJa+SO7TGS9qC6q4FP\nSfp4voffIQWb+2p8BrNeOVhYaUTEz0lNameQmpPuI1Wf98nzaQAuAaaQRvvcwvI/+l1+RgoML0v6\ndsX6u4G/kfowTs+dw/05X6W7Sc0093RbrgwWJwP/BLwK3AhcW+U8l5Pa2S/rtv7LpDxqU0nfkieS\nOsrfJyJmkEaO/Rp4CfgUcEBELOnapdphNZbNis0NpTSp6mLSUL93gd9ExH9JGkH6Rjma9Et8aEW1\n2qzPcjPULOADPXSem1kfFF2zcOoKawU/98SsnwoNFoM9dYWVhptVzPqpNCnKc2dmJ2lI49yuPDd5\n28sRsU4xJTMzs1IMnVW31BV6/7O1q0a0KvuZmVkf1PtY6qL7LPqduiIi/Ipg/PjxhZehDC/fB98H\n34va96ERhQcLBmfqCjOzQaXQZqhBnLrCzGxQKTRYxOBNXdFyHR0dRRehFHwfEt+H5Xwvkv7eh9KM\nhmqEpGjn8puZFUES0W4d3GZmVn4OFmZmVpODhZmZ1VR4sJB0vqR5kqZUrBsv6Rmlh89PljS2t3OY\nmVlzFR4sSPn7P1ll/ZkRsVN+3dLqQpmZ2XKFB4uIuBd4pcomZwo1MyuJwoNFL46R9LCk8yStVXRh\nzMyGslIkEqziHOCUiAhJPwbOBL5WbccJEyYse9/R0eEJOGZm3XR2dtLZ2dmvc5RiUl5+mtmNEbF9\nnds8Kc/MrE7tPClPVPRR5EyzXQ4BHmt5iczMbJnCm6EkXQ50AOtKehoYD3xc0g6k53I/BRxVWAHN\nzKwczVCNcjOUmVn92rkZyszMSszBwszManKwMDOzmgoPFj3khhoh6TZJ0yXd6kl5ZmbFKjxYUD03\n1InAHRGxNXAncFLLS2VmZssUHix6yA01Drgov78IOKilhTIzs/coPFj0YGREzAOIiBeAkQWXx8xs\nSCtrsOjOkynMzApU+AzuHsyTtH5EzMupP17saUcnEjQz691gSiS4GSlZ4P/Jy6cBL0fEaZJOAEZE\nxIlVjvMMbjOzOjUyg7vwYFGZGwqYR8oNdT0wEdgEmAMcGhGvVjnWwcLMrE5tGSz6w8HCzKx+zg1l\nZmZN4WBhZmY1OViYmVlNDhZmZlZTWedZACDpKWAh6Yl5iyNi52JLZGY2NJU6WJCCREdEdM8dZWZm\nLVQzWEjaFfgi8DFgQ+At4DHgd8ClEbGwieUTbiozMytcr/MsJN0MPAfcAPyVlHZjZWAr4OPAAcCZ\nETGpKYWTZgGvAkuBcyPiN922x9y5nmdh5TJyJAwfXnQpzHrWyDyLWjWLL0XE/G7r3gAm59cvJK1X\nzwXrtFtEPC/pg8DtkqbllObLbLvthGXvV1qpg5VW6mhiccx6t2gRfOUrcOaZRZfEbLmm54aS9N/A\n5RHxx35dZQBIGg+8HhFnVqzzDG4rlauugmuvhauvLrokZj1rxgzuGcAZkp6SdLqkHRsvXn0krSpp\n9fx+NeATpL4Ss9IaORLmzSu6FGYDr9dgERFnRcSuwJ7AAuACSU9IGi9pqyaXbX3gXkkPAfeTstLe\n1uRrmvXL+uvDiz0m1DdrX3UnEsy1iwuA7SNihaaUqu9lcTOUlcr8+bD11rBgQdElMetZ0xIJSlpR\n0gGSLgNuBqYDhzRQRrNBbZ114LXXYPHioktiNrB6HQ0laV/gcGB/4C/AlcC/R8SiFpTNrO0MGwbr\nrgsvvQQbbVR0acwGTq2hsycBVwDHexa1Wd909Vs4WNhgUitYjIuI13vbQdLqEfHGAJbJrK2NHOlO\nbht8avVZXC/pF5L2yMNXAZA0RtLXJN0KjG1W4SSNzaOvZuRncZuVnofP2mDUa80iIvaWtD9wFLCb\npBHAElIH903AERHxQjMKJmkY8Gtgb1LKkQck3RARTzTjemYDxcNnbTCqmUgwIm4iBYZW2xmYGRFz\nACRdCYwDHCys1NwMZYNRX4fO/r4v6wbYxsDciuVn8jqzUnMzlJXZ8883dlytobMrA6sC6+UmqK5J\nHGtSkj/cEyZMWPa+o6ODjo6OwspiBq5ZWPlUJhK8//7GzlGrGeoo4P8BG5GyzHZ5jdSf0EzPAptW\nLI/K696jMliYlYH7LKxsKr9IH3ss3HrryXWfo1YH91nAWZK+GRFnN1LIfngA2ELSaOB54DDSBEGz\nUnPNwsps9uzGjuvrY1UXSvpy95URcXFjl60tIpZKOga4jdS3cn5ETGvW9cwGSlewiADVlX3HrPlm\nzWrsuD4lEpRUWatYmTScdXJEfKaxyw4MJxK0slpzTZg7F9Zaq+iSmC0XAautBm+9NfBPyssXiG9W\nLktam5Qnysyq6KpdOFhYmcyb1xUs6j+2T0Nnq1gEbN7gsWaDnofPWhnNng2bN/iXu081C0k3Al3t\nPSsA2wB+cKRZDzwiyspo9mwYMwYeeKD+Y/vawX1GxfslwJyIeKb+y/VNft7214GuX7fvR8Qtzbqe\n2UDziCgro1mzGq9Z9KkZKiLuJqXZWAMYAbzT2OXqcmZE7JRfDhTWVhwsrIy6ahaN6Gu6j0NJDz/6\nLHAo8GdJzR4J5UGH1rbcZ2Fl1PSaBfAD4F8i4oiI+DIpyd8PG7tknx0j6WFJ50nymBJrK+6zsDJq\nes0CGBYRlT/6C+o4tipJt0uaUvF6NP97AHAOMCYidgBeAM7sz7XMWs3NUFY2ixenJIKbbNLY8X3t\n4L4lP+joirz8OfqZtjwi9u3jrr8BbuxpoxMJWhm5GcrKpLOzk//9305WWQV+8pPGztHrDG5J/w1c\nHhF/lHQIsHve9IeIuK6xS/ahUNIGXQ9VkvQtUhPY56vs5xncVkoLFsCWW8LLLxddErPk9tvh1FPh\nzjtBGvgZ3DOAMyRtSJpXcUlEPNRoYetwuqQdgHeBp0jZb83axogR8Prr8M47MHx40aUx619/BfQ9\n6+xoUtbXCyStQmqOuiIiZjR+6V6v+76khWbtZNgwWG89eOkl2LgUT36xoa4/I6Gg7/Ms5kTEaRGx\nIylN+EGAM8Ca9cKd3FYm/Un1AX2fZ7GipAMkXQbcDEwHDmn8smaDn4fPWpk0tRlK0r6kmsT+pEl5\nVwL/HhE589MiAAAHmElEQVSLGr+k2dDgmoWVSX+boWp1cJ8EXA4cHxGvNH4Zs6HHw2etLF57LaUl\nHzmy8XP02gwVEXtFxHnNCBSSPiPpMUlLJe3UbdtJkmZKmibpEwN9bbNWcDOUlUVXf0V/ntzYr1nY\n/fQocDBwd+VKSduQ8k9tA+wHnCP54ZTWftwMZWXR3/4KKDBYRMT0iJjJ+xMGjgOujIglEfEUMJOU\ni8qsrbgZysqiv/0V0Pd0H620MXBfxfKzeZ1ZWxk5MuXiefXVoktiQ9306bDttv07R1ODhaTbgfUr\nV5GeuPeDiOgx31M9nBvKymqzzVKw2GyzoktiQ92SJZ189rOdVPy5rFuvuaFaQdJdpNFWk/PyiUBE\nxGl5+RZgfET8ucqxzg1lZlanRnJDFdnBXamy0JOAwyQNl7Q5sAVpjoeZmRWksGAh6SBJc4FdgN9K\nuhkgIqaSkhZOJaVBP9rVBzOzYhXeDNUfboYyM6tfOzdDmZlZiTlYmJlZTQ4WZmZWk4OFmZnVVORo\nqKqJBCWNlvSmpMn5dU5RZTQzs6TIdB9diQT/p8q2v0XETlXWm5lZAQoLFhExHaCHjLLOMmtmViJl\n7bPYLDdB3SVp96ILY2Y21JUxkeBzwKYR8Uruy7he0rYR8Ua1nZ1I0Mysd52dnXR2dvbrHIXP4O6e\nSLCe7Z7BbWZWv3aewb2s0JLWkzQsvx9DSiQ4q6iCmZlZCRMJAnsAUyRNJiUUPCoi/PgYM7MCFd4M\n1R9uhjIzq187N0OZmVmJOViYmVlNDhZmZlZTkR3cp0uaJulhSddKWrNi20mSZubtnyiqjGZmlhRZ\ns7gN2C4idgBmAicBSNoWOBTYBtgPOKeHlCBWob8TbgYL34fE92E534ukv/ehsGAREXdExLt58X5g\nVH5/IHBlRCyJiKdIgWTnAorYVvwLkfg+JL4Py/leJG0bLLr5KnBTfr8xMLdi27N5nZmZFaTw3FCS\nfgAsjogrmlkWMzNrXKGT8iQdCXwd2Csi3s7rTgQiIk7Ly7cA4yPiz1WO94w8M7MG1Dspr7BgIWks\n8Atgj4hYULF+W+Ay4COk5qfbgS09VdvMrDhFPinvbGA4cHse7HR/RBwdEVMlXQ1MBRYDRztQmJkV\nq61zQ5mZWWuUZTRU3SSNlfSEpBmSTii6PK0iaZSkOyU9LulRScfm9SMk3SZpuqRbJa1VdFlbQdKw\n/FTFSXl5qN6HtSRNzBNZH5f0kaF4LyR9S9JjkqZIukzS8KFwHySdL2mepCkV63r83I1MfG7LYJGf\nd/Fr4JPAdsDhkj5cbKlaZgnw7YjYDtgV+Eb+7CcCd0TE1sCd5EmOQ8BxpCbLLkP1PpwF3BQR2wD/\nCDzBELsXkjYCvgnsFBHbk5rZD2do3IcLSX8PK1X93I1OfG7LYEGapDczIuZExGLgSmBcwWVqiYh4\nISIezu/fAKaRJjSOAy7Ku10EHFRMCVtH0ihgf+C8itVD8T6sCXwsIi4EyBNaFzIE7wWwArCapBWB\nVUjztAb9fYiIe4FXuq3u6XM3NPG5XYNF94l7zzAEJ+5J2gzYgTQDfv2ImAcpoAAjiytZy/wS+C5p\n7k6XoXgfNgfmS7owN8mdK2lVhti9iIjnSCMsnyYFiYURcQdD7D5UGNnD525o4nO7BoshT9LqwDXA\ncbmG0X2kwqAeuSDpU8C8XMvqrQo9qO9DtiKwE/DfEbETsIjUBDHUfibWJn2bHg1sRKphfIEhdh96\n0a/P3a7B4llg04rlUXndkJCr2NcAl0TEDXn1PEnr5+0bAC8WVb4W2Q04UNIs4ApgL0mXAC8MsfsA\nqWY9NyL+mpevJQWPofYzsQ8wKyJejoilwHXARxl696FLT5/7WWCTiv369PezXYPFA8AWkkZLGg4c\nBkwquEytdAEwNSLOqlg3CTgyvz8CuKH7QYNJRHw/IjaNiDGk//87I+JLwI0MofsAkJsa5kraKq/a\nG3icIfYzQWp+2kXSyrnDdm/S4Iehch/Ee2vZPX3uScBheaTY5sAWwF9qnrxd51nkGeBnkQLe+RHx\ns4KL1BKSdgPuAR4lVSsD+D7pP/tq0jeGOcChEfFqUeVsJUl7AsdHxIGS1mEI3gdJ/0jq6P8AMAv4\nCqmzd0jdC0njSV8eFgMPAf8GrMEgvw+SLgc6gHWBecB44HpgIlU+t6STgK+R7tNxEXFbzWu0a7Aw\nM7PWaddmKDMzayEHCzMzq8nBwszManKwMDOzmhwszMysJgcLMzOrycHCrE45Hfj/LbocZq3kYGFW\nvxHA0X3ZMecrMmt7DhZm9TsVGJMzvJ5WY9/rJV0v6QBJK7SicGbN4BncZnWSNBq4MT9gpy/770FK\nrbALKf3ChRHxZBOLaDbgXLMwa7KIuCcijgD+Oa96QtLBRZbJrF4rFl0As3Ym6cfAp0gJHf8ZeDC/\nnxQRE/I+KwMHA18F1iI9+vP2Ispr1ig3Q5nVKWe2fTAiNu/DvqcBnwF+R8qO/Eizy2fWDA4WZg2Q\ndCmwPXBzRJzQy35jSc/aeKdlhTNrAgcLMzOryR3cZmZWk4OFmZnV5GBhZmY1OViYmVlNDhZmZlaT\ng4WZmdXkYGFmZjU5WJiZWU3/Hz1pk1JFdhIyAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f8a8455d630>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "Vin=[]; #Input voltage waveform, V\n",
+ "t1=50; #Assumed time interval, s\n",
+ "t2=100; #Assumed time interval, s\n",
+ "V_biasing=5; #Biasing voltage, V\n",
+ "for t in range(0,151): #time interval from 0s to 151s\n",
+ " if(t<=t1): \n",
+ " Vin.append(10); #Value of input voltage for time 0 to t1 seconds \n",
+ " elif(t<=t2 and t>t1):\n",
+ " Vin.append(-10); #Value of input voltage for time t1 to t2 seconds\n",
+ " else :\n",
+ " Vin.append(0);\n",
+ "\n",
+ "plt.subplot(211) \n",
+ "plt.plot(Vin);\n",
+ "plt.xlim(0,101)\n",
+ "plt.ylim(-20,20)\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vin(V)');\n",
+ "plt.title('Input waveform');\n",
+ "\n",
+ "\n",
+ "vout=[]; #Output voltage waveform, V\n",
+ "for v in Vin[:]: #Loop iterating input voltage \n",
+ " if(v<=0):\n",
+ " vout.append(v); #Diode reverse biased\n",
+ " else:\n",
+ " vout.append(v-V_biasing); #Diode forward biased\n",
+ "\n",
+ "plt.subplot(212)\n",
+ "plt.plot(vout);\n",
+ "plt.xlim(0,101)\n",
+ "plt.ylim(-20,20)\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vout(V)');\n",
+ "plt.title('Output waveform');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.15 : Page number 493"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmUXHWd9/H3JwRkSUhYwxII+zqDwDODIIy0LBpAEkRE\n4gKIOpxRRh4BH0CdSVCPEkUURY6igIhABBwhIEhA0qAjIsMiINkUyE6ULUBAJwnf54/f7VA0t7ur\nl6p7q+7ndU6frrvUre8vXalv/dariMDMzKy7YUUHYGZm5eQEYWZmuZwgzMwslxOEmZnlcoIwM7Nc\nThBmZpbLCcKsBUl6u6S5kl6UNKHoeKw9OUFYy5D0pKRDmvA6kyX9uNGvM0hfBL4dERtGxPSig7H2\n5ARh1prGAY8P5ImS1hriWKxNOUFYS5J0kqRfS/q6pOck/VnS+JrjMyV9RdJ9kpZL+rmk0dmxgyUt\n7Ha9JyUdIundwOeAD0h6SdJDOa99sqTpNdvzJP20ZnuBpL2yx9/KtpdLul/SQdn+LSW90hVTtm8f\nSX/t+gCXdIqkxyU9K+k2Sdtk+/8EbA/ckjUxrZ1d76bs3LmSPl5z3cmSrpd0laQXgJOyfddl+16U\n9AdJO0s6R9IySfMlHTaoP5K1PCcIa2X7AbOATYCvA5d1O/4R4GRgC2A18J2aY7lrzETE7cBXgJ9G\nxMiI2CfntLuBNR/0wNrAAdn2DsAGEfFIdu7vgb2AjYBrgOslrRMRS4HfAu+rue4k4PqIWC1pInAO\ncAywGfBrYFoW407AQuCorIlpJfBTYEFW1vcDX5HUUXPtCcB1ETEauDrb9x7gSmA08DBwOyBgK+BL\nwKV5/0ZWHU4Q1srmR8TlkRYUuxLYUtLmNceviohZEfEq8B/A+yVpsC8aEU8CL0naG3gH6YN1iaRd\nsu1f15x7TUS8EBGvRcQ3gbcAu2aHrwU+WHPpE3j9w/tU4KsRMTciXgPOB/buqkVkBCBpLClBnR0R\nKyPiD8APgRNrzr03Im7OYvp7tu/XEXFndv3rgU2B8yNiNSkZjZO04UD/naz1OUFYK3u660GWBABG\n1ByvbUaaT/qmv+kQvfbdwDtJCaEz++kADs6OASDprKyZ6HlJzwMb1sTwM2B/SWMkHQysjoj/zo6N\nAy7Kms+eA54l1Xq2zollK+C5iHilZt/8bucu5M2W1Tx+FXgmXl+981VSAhrxpmdZZThBWDur/bY9\nDlgJPAOsANbvOpC1+W9Wc249SxzfQ0oIB5ESwj2k5PCObJusv+GzwHERsVFEbAS8SPbNPyJeAGaQ\nag6TyJqQMguAUyNi4+xno4gYERG/y4llCbCxpA1q9m0LLO5nmczewAnC2tmHJe0maX3gPFL7fgBz\ngXUlHSFpOPAFYJ2a5y0DtuujOaqrBrFeRCwhNSuNJ/WHdHVsjyQlpWclrSPpP7N9ta4lNQW9j9RH\n0eX7wOck7QEgaZSk4/ICiYhFpP6Mr0p6S9ZB/jHgql7iN+uTE4S1kr6+BXc/fhWpb2IJKQGcDhAR\nLwKfJHVqLwJeyn53uZ70Lf9ZSf+T+0IR87Ln3ZNtvwT8GfhNTTPN7dnPXOBJ4BXe3NQzHdgZWBoR\nj9Zc/0ZSv8O0bOTRI6QE1FNZJ5FGNi0hNV39R0TMzIu9H1zrqDiV6YZBWWfbj4ExwGvADyLi25I2\nIo3SGAc8BRwfEcsLC9RKT9JMUif15UXHYtaqylaDWAWcERF7kkZlfErSbqThfndGxK7AXcC5BcZo\nZlYJpUoQEfF0RDycPX6ZNMZ9LDCR1FRA9vuYYiK0FlKeqrFZiypVE1MtSduRhg7+A7AwGwHSdey5\niNi4mMjMzKqhVDWILpJGADcAp2c1ie5ZrJxZzcysjQwvOoDusmGHN5A6GG/Kdi+TNCYilknaAvhL\nD8914jAz66eIyB3SXcYaxOXA4xFxUc2+6aQ1dQBOAm7q/qQuEVGZn8mTJxceg8vsMrvMrV3m3pSq\nBiHpQOBDwKPZKppBWllzKnCdpFNISwgcX1yUZmbVUKoEEWkdmp7WqvfSw2ZmTVTGJiarU0dHR9Eh\nNJ3LXA0uczmUdpjrQEiKdiqPmVmjSSJaqJPazMxKwAnCzMxylSpBSLosux/uIzX7JktaJOnB7Gd8\nb9cwM7OhUaoEAVwBvDtn/4URsW/288tmB2VmVkWlShAR8Rvg+ZxDg76PsJmZ9U+pEkQvTpP0sKQf\nShpVdDBmZlVQqolyPbgE+GJEhKQvAxeSbqeYa8qUKWsed3R0lHJssZlZUTo7O+ns7Kzr3NLNg5A0\nDrg5Ivbqz7HsuOdBmJn1Q6vNgxA1fQ7Z6q1djgUea3pEZmYVVKomJknXAB3AJpIWAJOBd0ram3SP\n6qeAUwsL0MysQkrXxDQYbmIyM+ufVmtiMjOzEnCCMDOzXE4QZmaWywnCzMxylSpB9LBY30aSZkia\nI+l2z6Q2M2uOUiUI8hfrOwe4MyJ2Be4Czm16VGZmFVSqBNHDYn0TgSuzx1cCxzQ1KDOziirVRLke\nbB4RywAi4mlJm/d28tlnNycoq5Zhw+CMM2CzzYqOxKx5WiFBdNfrTLgHHpiy5vEOO3Sw444djY3G\nKuFHP4KDDoKjjio6ErPBaavF+iTNAjoiYlm2LtPMiNi9h+d6JrU1xAknwIQJ8MEPFh2J2dBqtZnU\nb1isD5gOnJw9Pgm4qdkBmY0aBcuXFx2FWXOVKkFki/X9FthF0gJJHwXOBw6XNAc4NNs2a6rRo+GF\nF4qOwqy5StUHERE9VeAPa2ogZt24BmFVVKoahFlZjR7tBGHV4wRhVodRo9zEZNXjBGFWBzcxWRWV\nqg+iN5KeApaT7iy3MiL2KzYiqxI3MVkVtUyCICWGjojovhSHWcO5icmqqJWamERrxWttxE1MVkWt\n9IEbwB2S7pf0iaKDsWpxE5NVUSs1MR0YEUslbUZKFLOy1V/NGm7ECHjlFVi1Coa30v8as0Ho11td\n0gHAh4F/AbYEXgUeA34B/CQiGvYdKyKWZr//KunnwH7AmxLElClT1jzu6Oigo6OjUSFZhQwbBiNH\nwosvwsYbFx2N2cA1ZLE+SbcBS0hrIf0P8BdgXWAX4J3A0cCFETG9/yH3+drrA8Mi4mVJGwAzgPMi\nYka387xYnzXMdtvBzJmw/fZFR2I2dHpbrK8/NYiPRMQz3fa9DDyY/XxD0qYDjLEvY4CfSwpSzFd3\nTw5mjeaRTFY1/UkQ50m6JiL+u6cTchLIkIiIJ4G9G3Fts3p5JJNVTX9GMc0FLpD0lKSvSdqnUUGZ\nlZFHMlnV1J0gIuKiiDgAOBh4Frhc0mxJkyXt0rAIzUrCTUxWNf2eBxER8yNiakTsA0wCjgFmDXlk\nZiXjGoRVTb8ThKThko6WdDVwGzAHOHbIIzMrGfdBWNXUnSAkHS7pcmAR8AnS3IcdI+KEiGj4bUAl\njc+atOZKOrvRr2fWnZuYrGr6U4M4F7gX2D0iJkTENRGxokFxvYGkYcDFwLuBPYFJknZrxmubdXET\nk1VNf4a5ToyIl3o7QdKIiHh5kDHl2Q+YFxHzs9eZBkwEZjfgtcxyuYnJqqY/CeJGSQ+TZlI/0FV7\nkLQDaSb18cAPgBuGPErYGlhYs72IlDTMmsZNTNYMK1bAk08WHUVSd4KIiEMlHQmcChwoaWNgJamT\n+hfASRHxdGPCrJ/XYrJGcROTNcOXvgRXXgmbbNKY669Y0cmKFZ11nVv3WkxFkrQ/MCUixmfb5wAR\nEVO7nee1mKxhZs+GiRNhzpyiI7F29v73w/veByec0JzXG6q1mGovuDUwrvb5EXHPwMKry/3ATpLG\nAUuBE0hzMMyaxk1M1gwLFsC4cUVHkfQ7QUiaCnwAeBxYne0OoGEJIiJWSzqNtIrrMOCyiPDkPGsq\nNzFZM8yfD9tuW3QUSb+bmCTNAfaKiL83JqSBcxOTNVIEvOUt6Z4Q665bdDTWjv72t1RTffXVdA+S\nZuitiWkgITwBrD24kMxaj+RahDXWwoUwdmzzkkNfBtIH8QrwsKRfAWtqERHx6SGLyqykuuZCjBlT\ndCTWjsrUvAQDSxDTsx+zyvFkOWuk+fPL00ENA0gQEXFlIwIxawWjR3skkzVOmUYwQf8W67su+/2o\npEe6/zQqwOx+E4skPZj9jG/Ua5n1xTUIa6RWrkG8LOkg4GjSsNZmujAiLmzya5q9iROENVIr90H8\nAfg6sCVwHXBtRDzUkKjeLHcIllmzuYnJGqlsNYhWueXoaZIelvRDSaMa/FpmPXINwhpl9WpYvBi2\n2aboSF43kE7q+cBUYKqkfYDLgf8E1hpoEJLuAGoHDorUjPV54BLgixERkr4MXAh8rKdrebE+a6RR\no8qz0qa1l6efho03bvwkzM7OTjo7O+s6dyAzqYcDR5DWQzoU6CQ1NzXjrnLjgJsjYq8ejnsmtTXU\nj34EM2em1TbNhtJvfwuf+Qzcd19zX3dIFuuTdDhpgbwjgd8D04B/bfRd5SRtUbOM+LHAY418PbPe\nuInJGqVsQ1yhf01M5wLXAGdGxPMNiifP1yTtDbwGPEW6H4VZIbzUhjVK2TqooX83DDqkkYH08ron\nFvG6Znm85Lc1yvz5sMceRUfxRiVZEsqsNbiJyRplwYJyzYEAJwizfvE8CGuUMjYxtcQtR+vlUUzW\naCtXwnrrpd/y9E0bIhGpdrpgQfoS0kxDfT+IhpB0nKTHJK2WtG+3Y+dKmidplqR3FRWj2dprp5sG\nrWjo2D2rmhdeeP1+I2VSmgQBPAq8F7i7dqek3YHjgd1J8y8ukfzdzYrjZiYbamXsf4ASJYiImBMR\n83jzuksTgWkRsSoingLmAfs1Oz6zLu6otqFWxv4HKFGC6MXWwMKa7cXZPrNCOEHYUCtrghjIHeUG\nrLc1lyLi5mbGYjZQm24KJ54II0cWHYm1i6VL4ayzio7izZqaICLi8AE8bTFQu77h2GxfLi/WZ412\n+eWwaFHRUVi72W235rxOQxfrazRJM4GzIuKBbHsP4GrgbaSmpTuAnfPGs3qYq5lZ/7TKMNdjJC0E\n9gdukXQbQEQ8TrpB0ePArcAnnQXMzBqvdDWIwXANwsysf1qiBmFmZuXiBGFmZrmcIMzMLJcThJmZ\n5SpNguhpsT5J4yS9IunB7OeSIuM0M6uKpk6U60PXYn3fzzn2p4jYN2e/mZk1SGkSRETMAehhpVav\n3mpm1mSlaWLqw3ZZ89JMSQcVHYyZWRW0wmJ9S4BtI+L5rG/iRkl7RMTLeSd7LSYzs561w1pMZ0bE\ng/097pnUZmb904ozqdcEK2lTScOyxzsAOwFPFBWYmVlVlCZB9LRYH/AO4BFJD5IW7Ts1InzDRzOz\nBitdE9NguInJzKx/WrGJyczMCuYEYWZmuZwgzMwslxOEmZnlKk2CkPQ1SbMkPSzpZ5I2rDl2rqR5\n2fF3FRlnmdQ72aWduMzV4DKXQ2kSBDAD2DMi9gbmAecCSNoDOB7YHTgCuKSH9Zoqp4xvqEZzmavB\nZS6H0iSIiLgzIl7LNn8HjM0eTwCmRcSqiHiKlDz2KyBEM7NKKU2C6OYU4Nbs8dbAwppji7N9ZmbW\nQE2dKFfPYn2SPg/sGxHvy7a/A9wbEddk2z8Ebo2I/8q5vmfJmZn1U08T5Zq6mmtEHN7bcUknA0cC\nh9TsXgxsU7M9NtuXd333TZiZDZHSNDFJGg98FpgQEX+vOTQdOEHSOpK2Jy3W9/siYjQzq5LS3FEO\n+A6wDnBHNkjpdxHxyYh4XNJ1wOPASuCTXnDJzKzx2mqxPjMzGzqlaWIaDEnjJc2WNFfS2UXH0wiS\nxkq6S9IfJT0q6dPZ/o0kzZA0R9LtkkYVHetQkjQsu93s9Gy7rcsLIGmUpOuziaF/lPS2di63pM9I\nekzSI5KuzpqT2668ki6TtEzSIzX7eixnGSYIt3yCyG4mdDHwbmBPYJKk3YqNqiFWAWdExJ7AAcCn\nsnKeA9wZEbsCd5FNMGwjp5OaF7u0e3kBLiKN1NsdeCswmzrLLenLkv4qaUnToh0ESVsB/04aubgX\nqdl7Eu35d76C9DlVK7ecpZkgHBEt/UO6wdBtNdvnAGcXHVcTyn0jcBjpw2NMtm8LYHbRsQ1hGT8D\nvAS8CvwNuASYW295gSeBQ4YwniG9Xg+vsSHw55z9ff6dSaP9XgE2Kfpv14/ybgXMBzYiJYfp7fy+\nBsYBj/T1d+3+OQbcBryt2fG2fA2CN0+kW0SbT6STtB2wN2nG+ZiIWAYQEU8DmxcX2dCRdCbwFdLI\ntiOBX5P+c+0APAvtVd4a2wPPSLoia1q7VNL61Pd3Hgc8ExHP9vdFJa01qKgHKCKWAN8AFpCGry+P\niDtp0/d1js17KGcpJgi3Q4KoFEkjgBuA0yPiZdJEw1otP+pA0kjgS0BnRHyPVKZXSVXuYcCHs/Ou\nANated7B2W1rkfRjYFvgZkkvSjpL0jhJr0n6hKTF2c+ZNc+/QtIX671eTtydkt6bPT4we60jsu1D\nJD2UPd5B0q8kPSPpL5J+UrM45SnAPwPfjYh9gRXATGC97LkbZpNFR0taKOlLSg4lrWe2VRbf5dn5\nE7L2/eeyPqzdauJ9UtL/k/QH4GVJa2X7zpL0B0kvSfqBpM0l3Zpdd8ZQ9gdIGg1MJCW3rYANJH2I\nNnxf16lU5WyHBLGY9B+3S48T6VqdpOGk5HBVRNyU7V4maUx2fAvgL0XFN4TeDrwF2FPSE8C1pMmT\n3wNeBI7OzluP9AFaKwAi4kTSt9L3RMSGEXFBzTkdwI6k9uCzJR1Cz+q5Xpe7s2tDupf6n7PfAAcD\nndljkWpHW5DamMcCU7JjV2a/Z2W//4vUD7E0+ztfCaxFamrbBzgc+HhE/IrUVr0ki+8USbsA1wCf\nBjYjNVPcnL2PupyQPW90RKzO9h0LHArsQloL7VZSk8em2Wt/upd/r/46DHgiIp7LXv/npL9/O76v\n8/RUzronCDdSOySI+4Gdsm+H65De8NMLjqlRLgcej4iLavZNB07OHp8E3NT9SS1oU2BZRGwbETuQ\n/qZ3RcRHSG22/5idtxMwp49r5XXsTYmIv0XEY6SOw0n9iK23jsK7SYkAUmL4as32wdlxIuLPEfGr\nSAtQPgt8s+u8iHiQlAT/LXvex0n9CtcBp5E+zOcBN0bEM8C3eon/eOCWiLgr+/C9gJRU315zzkUR\nsSTeODn1OxHxTEQsJTXt3RcRj0TE/5I+wPfp5d+gvxYA+0taN+uEPZQ0KKEd39eQ3j+176GeylmK\nCcJlmig3IBGxWtJppOr1MOCyiJjVx9NajqQDgQ8Bj2ZNFQF8DpgKXCfpFFJn3/HFRTlkngE2lTQs\nXl/ht8sTwDhJc4ARwE/6ee0g9VN1mQ/8w4AjfaN7gV0kbU761n80cJ6kTUgrEN8DkB2/CPgXUhnW\nAp6ruc7FwBckfRgYDVwKfA34JalmdR6pSehU0ofNgh7i6eoABiAiImsyq23LXvSmZ8Gymsev5myP\n6OH1+i0ifi/pBuAh0kTYh0jlHUmbva8lXUOqYW4iaQEwGTgfuL57OaMkE4RbPkEARMQvgV2LjqOR\nIuK/SR8keQ5rZixNcC/wd1JTxw0RcTdwd9b/cihwTkRcIeli3vhvsmW36+T9hxKp6j43294W6BoS\nugJYv5/Xe/1gxKuSHiANzX0sIlZJuhc4A/hTRHQlga8Ar5Huf7Jc0kTSSgJdvkUawXUU8BhwRUQ8\nJ2kCqdlqRJ0fFkt4c/LbhjcmhcLbvCPiPFLSq/Ucbfa+jogP9nAot5wR8VVSLbQw7dDEZG0mIl4E\nvgh8R9K7JQ3PRm79lPRtuavW8DBwpNJkoy1IH8y1niaNeuruPyStJ2lP4KPAtEFer9Y9pKagu7Pt\nzm7bkL4dvwy8JGlr0kitNbKmo7tJzV9PRMScbP/TpJryNyWNzDqnd5D0DvJdBxwl6Z3Zv+FZpOHC\n9/ZRBjPACcJKKiK+TmpCuwBYTvpQmw8cFhErs9OuAh4BniI1v0zrdpnzScngOUln1Oy/G/gTcAfw\ntayDdzDXq3U3qQnmnm7btQniPOD/AC8ANwM/y7nONaTa0tXd9p9IWrPscdK37OtJnd1vEhFzSSO+\nLgb+SqqRHB0Rq7pOyXtaH9tWIYWvxSTpMuA9pE7JvXo459ukzrkVwMkR8XATQ7Q2IWkcqQ9j7Zy+\nDTPrpgw1iLzp52tk48h3jIidgVNJQx3NBsr3DDGrU+EJIiJ+AzzfyykTgR9n594HjOoaN2w2AG4y\nMatT4QmiDqWYcm6tLyLmR8Rabl4yq09bDHPtIt+T2sys36KH2zW3Qg2iX1POm73aYZE/kydPLjwG\nl9lldplbu8y9KUuC6D79vNZ00tA+JO0PvBDZ6odmZtY4hTcx9TD9fB3SygCXRsStko6U9CfSMNeP\nFhetmVl1FJ4goufp57XnnNaMWFpNR0dH0SE0nctcDS5zORQ+UW4oSYp2Ko+ZWaNJIlq4k9rMzArg\nBGFmZrmcIMzMLJcThJmZ5XKCMDOzXE4QZmaWywnCzMxyOUGYmVkuJwgzM8vlBGFmZrmcIMzMLJcT\nhJmZ5XKCMDOzXE4QZmaWq/D7QQy1HXcsOgJrR8OGwY03wp57Fh2JWfMUniAkjQe+RarNXBYRU7sd\nPxi4CXgi2/VfEfHlnq43Y0ajIrUq+8Qn4IknnCCsWgpNEJKGARcDhwJLgPsl3RQRs7udek9ETKjn\nmq5BWCOMGQMvvVR0FGbNVXQfxH7AvIiYHxErgWnAxJzzcu92ZNYsI0Y4QVj1FJ0gtgYW1mwvyvZ1\nd4CkhyX9QtIezQnN7HUjRzpBWPUU3gdRhweAbSPiFUlHADcCuxQck1XMyJHw8stFR2HWXEUniMXA\ntjXbY7N9a0TEyzWPb5N0iaSNI+K5vAtOmTJlzeOOjg46OjqGMl6rqJEjYenSoqMwG7zOzk46Ozvr\nOlcR0dhoentxaS1gDqmTeinwe2BSRMyqOWdMRCzLHu8HXBcR2/VwvSiyPNa+vv99eOABuPTSoiMx\nG1qSiIjcft5CaxARsVrSacAMXh/mOkvSqelwXAocJ+nfgJXAq8AHiovYqsqd1FZFRTcxERG/BHbt\ntu/7NY+/C3y32XGZ1XIntVVR0aOYzFqCO6mtipwgzOrgGoRVkROEWR2cIKyKnCDM6uBOaqsiJwiz\nOrgGYVVU6DyIoeZ5ENYor70Gw4fDqlVp6W+zdtHbPIg+3+qSDpD0XUmPSPqrpAWSbpX0KUmjhj5c\ns/IZNgzWXx9WrCg6ErPm6TVBSLoN+DhwOzAe2BLYA/gCsC5wk6S6luE2a3VuZrKq6bWJSdKmEfFM\nrxeo45xmcROTNdLOO8Mtt8Cuu/Z9rlmrGEwT03mSDuzthLIkB7NGcw3CqqavBDEXuEDSU5K+Jmmf\nZgRlVkaeTW1V02uCiIiLIuIA4GDgWeBySbMlTZbkezJYpbgGYVVT14C97JagUyNiH2AScAwwq4+n\nmbUVJwirmroShKThko6WdDVwG+keDsc2NDKzkvFsaquaXpf7lnQ4qcZwJOlmPtOAf40Ijwa3ynEN\nwqqmr/tBnAtcC5wZEc83IR6z0nIntVVNXwliYkT0+p1J0oja+0abtSvfl9qqpq8+iBslfUPSOyRt\n0LVT0g6SPiapa4b1gEkan42Mmivp7B7O+bakeZIelrT3YF7PbKDcxGRV02sNIiIOlXQkcCpwoKSN\ngFWkTupbgZMi4umBvrikYcDFwKHAEuB+STdFxOyac44AdoyInSW9DfgesP9AX9NsoNxJbVXT5z2p\nI+JWUjJohP2AeRExH0DSNGAiMLvmnInAj7NY7pM0StKYiFjWoJjMcrkGYVVT7zDXX9WzbwC2BhbW\nbC/K9vV2zuKcc8wazp3UVjV9DXNdF1gf2DRrXupa0GlDSvohPWXKlDWPOzo66OjoKCwWay+uQVg7\n6OzspLOzs65z+1rN9XTg/wJbkfoIurwI/CAiLh54mCBpf2BKRIzPts8BIiKm1pzzPWBmRPw0254N\nHJzXxOTVXK2RZs+GCRNg7tyiIzEbOgNezTVbi2l74KyI2L7m562DTQ6Z+4GdJI2TtA5wAjC92znT\ngRNhTUJ5wf0PVgTXIKxq+uykziyXdGL3nRHx48G8eESslnQaMIOUrC6LiFmSTk2H49KIuFXSkZL+\nBKwAPjqY1zQbKCcIq5q67kkt6Ts1m+uShqU+GBHHNSqwgXATkzWS70tt7ai3Jqa6ahAR8e/dLjia\ntC6TWWXU3pd65MiiozFrvIF+D1oBbD+UgZi1Ak+WsyqpqwYh6Wagq+1mLWB34LpGBWVWVu6HsCqp\nt5P6gprHq4D5EbGoAfGYlZoThFVJvXeUu5u0/MVIYCPgfxsZlFlZeTa1VUm9S20cT7ph0PuB44H7\nJJVqBJNZM7gGYVVSbxPT54F/joi/AEjaDLgTuKFRgZmVkTuprUrqHcU0rCs5ZJ7tx3PN2oZrEFYl\n9dYgfpndHOjabPsDNG4JcLPScoKwKulrNdfvAtdExGclHQsclB26NCJ+3vDozErGndRWJX3VIOYC\nF0jakjTv4aqIeKjxYZmVk+9LbVVSz2quBwAHk/odLs/uHz1Z0i5NidCsRNxJbVVS7zyI+RExNSL2\nASYBxwCzGhqZWQm5D8KqpN55EMMlHS3pauA2YA5wbEMjMyshJwirkr46qQ8n1RiOJE2Umwb8a0Ss\naEJsZqXjTmqrkr46qc8FrgHOjIjnmxCPWam5BmFV0muCiIhDGvXCkjYCfgqMA54Cjo+I5TnnPQUs\nB14DVkbEfo2Kyawv7qS2KilyNvQ5wJ0RsStwF6m2kuc1oCMi9nFysKK5BmFVUmSCmAhcmT2+kjQy\nKo/wsh5WEk4QViVFfvBuHhHLACLiaWDzHs4L4A5J90v6RNOiM8sxYgS88kq6P7VZu6t3LaYBkXQH\nMKZ2F+kD/ws5p0fOPoADI2JptoLsHZJmRcRvenrNKVOmrHnc0dFBR0dHf8M265HvS22trrOzk87O\nzrrOVURPn8uNJWkWqW9hmaQtgJkRsXsfz5kMvBQRF/ZwPIoqj1XHFlvAgw/CVlsVHYnZ4EkiIpR3\nrMgmpuk018J7AAAGG0lEQVTAydnjk4Cbup8gaX1JI7LHGwDvAh5rVoBmedwPYVVRZIKYChwuaQ5w\nKHA+gKQtJd2SnTMG+I2kh4DfATdHxIxCojXLOEFYVTS0D6I3EfEccFjO/qXAe7LHTwJ7Nzk0s155\nNrVVRWEJwqxVbbMNvPOdoNxWW7P2UVgndSO4k9qaISL9mLWDtdbquZPaNQizfpJce7Bq8AxlMzPL\n5QRhZma5nCDMzCyXE4SZmeVygjAzs1xOEGZmlssJwszMcjlBmJlZLicIMzPL5QRhZma5nCDMzCyX\nE4SZmeVygjAzs1yFJQhJx0l6TNJqSfv2ct54SbMlzZV0djNjNDOrsiJrEI8C7wXu7ukEScOAi4F3\nA3sCkyTt1pzwyq+zs7PoEJrOZa4Gl7kcCksQETEnIuYBva2svx8wLyLmR8RKYBowsSkBtoAyvqEa\nzWWuBpe5HMreB7E1sLBme1G2z8zMGqyhd5STdAcwpnYXEMDnI+LmRr62mZkNTuH3pJY0EzgzIh7M\nObY/MCUixmfb5wAREVN7uJbvFGxm1k9lvyd1T/0Q9wM7SRoHLAVOACb1dJGeCmlmZv1X5DDXYyQt\nBPYHbpF0W7Z/S0m3AETEauA0YAbwR2BaRMwqKmYzsyopvInJzMzKqeyjmOpShcl0ksZKukvSHyU9\nKunT2f6NJM2QNEfS7ZJGFR3rUJI0TNKDkqZn221dXgBJoyRdL2lW9vd+WzuXW9Jnskmzj0i6WtI6\n7VheSZdJWibpkZp9PZZT0rmS5mXvg3cVEXPLJ4gKTaZbBZwREXsCBwCfysp5DnBnROwK3AWcW2CM\njXA68HjNdruXF+Ai4NaI2B14KzCbNi23pK2Afwf2jYi9SP2ik2jP8l5B+pyqlVtOSXsAxwO7A0cA\nl0hqeh9ryycIKjKZLiKejoiHs8cvA7OAsaSyXpmddiVwTDERDj1JY4EjgR/W7G7b8gJI2hD4l4i4\nAiAiVkXEctq73GsBG0gaDqwHLKYNyxsRvwGe77a7p3JOIPW5roqIp4B5pM+6pmqHBFG5yXSStgP2\nBn4HjImIZZCSCLB5cZENuW8CnyXNnenSzuUF2B54RtIVWdPapZLWp03LHRFLgG8AC0iJYXlE3Emb\nljfH5j2Us/vn2mIK+FxrhwRRKZJGADcAp2c1ie6jDNpi1IGko4BlWa2pt6p1W5S3xnBgX+C7EbEv\nsILUDNGuf+fRpG/R44CtSDWJD9Gm5a1DqcrZDgliMbBtzfbYbF/byargNwBXRcRN2e5lksZkx7cA\n/lJUfEPsQGCCpCeAa4FDJF0FPN2m5e2yCFgYEf+Tbf+MlDDa9e98GPBERDyXDWv/OfB22re83fVU\nzsXANjXnFfK51g4JYs1kOknrkCbTTS84pka5HHg8Ii6q2TcdODl7fBJwU/cntaKI+FxEbBsRO5D+\npndFxEeAm2nD8nbJmhsWStol23UoaQ5QW/6dSU1L+0taN+uEPZQ0KKFdyyveWCPuqZzTgROyEV3b\nAzsBv29WkF3aYh6EpPGkkR/DgMsi4vyCQxpykg4E7iEtkx7Zz+dIb5rrSN825gPHR8QLRcXZCJIO\nJi3HMkHSxrR/ed9K6phfG3gC+CipI7ctyy1pMulLwErgIeDjwEjarLySrgE6gE2AZcBk4EbgenLK\nKelc4GOkf5fTI2JG02NuhwRhZmZDrx2amMzMrAGcIMzMLJcThJmZ5XKCMDOzXE4QZmaWywnCzMxy\nOUGYDVK2PPe/FR2H2VBzgjAbvI2AT9ZzYrb2kFlLcIIwG7yvAjtkq69O7ePcGyXdKOloSWs1Iziz\ngfJMarNBkjQOuDm74U0957+DtITC/qRlFq6IiD83MESzAXENwqzJIuKeiDgJ+Kds12xJ7y0yJrM8\nw4sOwKydSPoycBRpMcV/Ah7IHk+PiCnZOesC7wVOAUaRbrl5RxHxmvXGTUxmg5StMPtARGxfx7lT\ngeOAX5BWHv5Do+MzGygnCLMhIOknwF7AbRFxdi/njSfd2+J/mxac2QA5QZiZWS53UpuZWS4nCDMz\ny+UEYWZmuZwgzMwslxOEmZnlcoIwM7NcThBmZpbLCcLMzHL9f91ybafzZ7MxAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f8a845679e8>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "Vin=[]; #Input voltage waveform, V\n",
+ "t1=50; #Assumed time interval, s\n",
+ "t2=100; #Assumed time interval, s\n",
+ "V_D1=0.6; #Forward Biasing voltage of the 1st diode, V\n",
+ "V_D2=0.6; #Forward Biasing voltage of the 2nd diode, V\n",
+ "for t in range(0,151): #time interval from 0s to 151s\n",
+ " if(t<=t1): \n",
+ " Vin.append(10); #Value of input voltage for time 0 to t1 seconds \n",
+ " elif(t<=t2 and t>t1):\n",
+ " Vin.append(-10); #Value of input voltage for time t1 to t2 seconds\n",
+ " else :\n",
+ " Vin.append(0);\n",
+ "\n",
+ "plt.subplot(211);\n",
+ "plt.plot(Vin);\n",
+ "plt.xlim(0,110)\n",
+ "plt.ylim(-20,20)\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vin(V)');\n",
+ "plt.title('Input waveform');\n",
+ "\n",
+ "vout=[]; #Output voltage waveform, V\n",
+ "for v in Vin[:]: #Loop iterating input voltage \n",
+ " if(v<=0):\n",
+ " vout.append(-V_D1); #Diode D1 forward biased, \n",
+ " else:\n",
+ " vout.append(V_D2); #Diode D2 forward biased\n",
+ "\n",
+ "plt.subplot(212) \n",
+ "plt.plot(vout);\n",
+ "plt.xlim(0,110)\n",
+ "plt.ylim(-1,1)\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vout(V)');\n",
+ "plt.title('Output waveform');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.16 : Page number 493-494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lnP+x/HXu1VZUqIQYaxjRIwmQlFa7AxZfyJ+Y8Yg\nhOydxpox9uU3Q0yikK0saZEThmRpo5S1ZVJURAtaPr8/vtfhdrrPcp9z7nNd1zmf5+NxHt33dd/X\ndX+6O92f+7t9vjIznHPOudLUiTsA55xzyefJwjnnXJk8WTjnnCuTJwvnnHNl8mThnHOuTJ4snHPO\nlcmThXMpIWl/SbMlfSfpqLjjcbWLJwuXaJI+l3RINbxOf0mP5Pt1KulvwF1mtomZjYw7GFe7eLJw\nLj1aAzMqcqKkulUci6tlPFm41JDUS9Lrkv4uaamkTyV1z3j8VUk3Snpb0jJJz0raNHqso6R5xa73\nuaRDJHUDrgROlPS9pMlZXvsMSSMz7n8s6YmM+3MltYlu3xHdXybpHUkHRMe3lLSyKKboWFtJXxd9\nmEvqLWmGpCWSRknaJjr+CbA98ELUDVU/ut6I6LmzJZ2dcd3+koZLGiLpW6BXdOzJ6Nh3kqZK2knS\n5ZIWSZojqUul/pFcjeXJwqVNO2AmsBnwd2BQscf/BzgDaAmsBe7OeCxrbRszGw3cCDxhZhubWdss\nT5sA/PyhD9QH9ovu7wBsaGbToudOAtoATYGhwHBJDczsS+BN4I8Z1z0ZGG5mayUdDVwOHANsDrwO\nPB7FuCMwDzg86oZaDTwBzI3+ricAN0rqlHHto4AnzWxT4LHo2BHAYGBTYAowGhCwFXAd8K9s75Fz\nnixc2swxs4csFDUbDGwpaYuMx4eY2UwzWwVcA5wgSZV9UTP7HPhe0l7AQYQP2QWSdo7uv57x3KFm\n9q2ZrTOz24GGwC7Rw8OAUzIufRK/fJCfA9xkZrPNbB1wM7BXUesiIgBJrQjJqp+ZrTazqcCDwOkZ\nz33LzJ6PYvoxOva6mY2Lrj8caA7cbGZrCYmptaRNKvo+uZrLk4VLm4VFN6KEALBRxuOZXU1zCC2A\n5lX02hOAgwnJoTD66QR0jB4DQNIlUVfSN5K+ATbJiOFpoL2kFpI6AmvN7D/RY62BO6MutqXAEkJr\naOsssWwFLDWzlRnH5hR77jzWtyjj9ipgsf1STXQVIRlttN5ZrtbzZOFqmsxv4a2B1cBiYAXQuOiB\naIxg84znlqf88muE5HAAITm8RkgUB0X3icYnLgWON7OmZtYU+I6oRWBm3wJjCC2Kk4m6mSJzgXPM\nrFn009TMNjKziVliWQA0k7RhxrFtgf/m+Hdyrlw8Wbia5jRJu0pqDAwgjAcYMBvYQFIPSfWAq4EG\nGectArYro8uqqGXRyMwWELqeuhPGT4oGxTcmJKglkhpIujY6lmkYobvoj4QxjSL/BK6U9FsASU0k\nHZ8tEDObTxj/uElSw2hw/SxgSCnxO1dhnixc0pX17bj440MIYxkLCMmgD4CZfQecSxgQnw98H/1Z\nZDjh2/8SSe9mfSGzj6PzXovufw98CryR0ZUzOvqZDXwOrGT97qCRwE7Al2Y2PeP6zxHGKR6PZjBN\nIySjkv6uJxNmSC0gdG9dY2avZos9B94acVkpzs2PJDUk/MdrANQDnjKzAZKaEmZ6tAa+AHqa2bLY\nAnWpIOlVwgD3Q3HH4lxNE2vLIpqhcXA0VXEvoIekdoTpg+PMbBdgPHBFjGE651ytF3s3VMZsjoaE\n1oUBRxO6Eoj+PCaG0Fz6eBeKc3kSazcUgKQ6wHvAb4B7zewKSd9Es0iKnrPUzJrFFqRzztVySWhZ\nrIu6oVoB7STtzvrfEP0bo3POxahe3AEUMbPvJBUSZn8sktTCzBZJagl8le0cSZ5EnHOuAswsp8oG\nsbYsJDWX1CS63Qg4lFD3ZyShvg9AL2BESdcws9T+9O/fv9zPXbjQuPdeo1MnY5NNjC5djIICY+xY\n47vvqiaer782xo0zbrjB6NDB2Hhj44gjjPvvN+bPr1z8Sfzx+D322hp/RcTdstgSGByNW9QhFHJ7\nSdJE4ElJvQklDHrGGWRcVqyAoUNh2DB4/304/HC48ELo1g022KDqX695c+jcOfxceSUsXQqjR8OL\nL4b7++8PZ58d4qhfv+pf3zmXXLEmCwsLkvbOcnwpUGtLJc+ZA/feCw89BB06wAUXhATRqFH1xtGs\nGZx8cvhZuRKGD4dbb4W//AXOOANWrSrzEs65GiL2Ae7arFOnTr+6P3EiHH887L03rFkDkybBiBFw\nzDHVnyiKa9wYevWCN96A8ePhxx/hoYc60bs3fPJJvLFVVPH3P23SHH+aY4f0x18RsU+drQxJlub4\ni0yfDlddBVOmwGWXhW/tG6Wg7ufSpXDXXXDPPdCjR/g77Lpr3FE558oiCUvTAHdt99lncNpp0KUL\nHHwwzJ4N552XjkQBoZuqoAA+/RR22w06doSzzoKFC8s81TmXMp4sYrB8OVxyCbRrBzvtFLpxLroo\nP4PW1aFJkzAAPnt2SCC/+10Y2/jpp7gjc85VFU8W1cgMnnsOfvtb+PprmDED+veHjYsXsE6pJk3g\n73+HN9+EwsKQNF58Me6onHNVwccsqsmcOXD++fDxx3D//VAbxsdGjYI+fWCffeDuu8PUXOdc/HzM\nIoHM4L77wgdm+/YwdWrtSBQQBr2nToWttoI99oBnnok7IudcRXnLIo8WLoTevUOX06OPwi67xB1R\nfN58E848E9q2DbOnvJXhXHxS17KQ1ErSeEkfSpou6YLoeFNJYyTNkjS6qCRImjz7LOy1F/z+9+GD\nsjYnCgirv6dMgVatoE0beOWVuCNyzuUi7p3yWgItzWyKpI0IpcqPBs4ElpjZLZL6AU3N7PIs5yeu\nZbFyZVhxXVgIQ4bAfvvFHVHyjBsHp58eSodcey3Ui7vojHO1TOpaFma20MymRLeXE4oItiKlmx99\n8klIDj/+GL5Fe6LIrkuXUOvqzTdDHar//jfuiJxzZUnMALek7Qhbq04EWpjZIggJBdgivsjKZ8SI\n0NXy5z/DI4+kZ2FdXFq2DEUKu3QJg/+jR8cdkXOuNIkY4I66oAqB68xsRPGd8SQtMbPNspwXezfU\nmjVwzTWhOuyTT8If/hBrOKk0YUIoVnjxxdC3LyinxrFzLlcV6YaKvbdYUj3gKWCImRXtW1GuzY8A\nCgoKfr7dqVOnai3w9c030DMqnv7uu7D55tX20jVKx46hiOIxx4Sptg88kN7V7M4lUWFhIYWFhZW6\nRuwtC0mPAIvN7OKMYwOBpWY2MKkD3J98EvZ1OOywUNqibt1YwqhRVq4MU40/+yzMJtt667gjcq5m\nSt0At6QOwKnAIZImS3pfUndgIHCopFlAZ+DmOOMsbsIEOOCAUM/p9ts9UVSVxo3DRk/HHBO68yZN\nijsi51yR2FsWlRFHy+Lhh6FfvzBG0aXWbs+UfyNGhKm1Dz0ERx4ZdzTO1SwVaVl4signM7j6anji\nCXjhBd+3oTpMmgRHHx3WYvzlL3FH41zNkcoB7jRYswb+9Cf44AN46y0fyK4u7dqFnfl69IC5c+GG\nG6BOYiZ7O1e7eMuiDCtXwoknhoQxfLivn4jD4sVw1FGw/fahG7BBg7gjci7dUjfAnXRLloRxiaZN\nYeRITxRxad481JJauTIkjRUr4o7IudrHk0UJ5s+HAw8Ms57+/W+oXz/uiGq3Ro1Cy65lS+jWDb79\nNu6InKtdPFlk8emnIVH07g233OL95ElRr16YHbXPPmHP8kWL4o7IudrDPwaLmTkzbE7Ur1/YJ9sl\nS506cMcdYZbUgQeGgW/nXP75bKgMU6aEmTcDB4YS2i6ZJCgoCGNJBx4YSp7vtFPcUTlXs8XespA0\nSNIiSdMyjlX75kcTJ4a+8Hvu8USRFn36hCKOhxwCs2bFHY1zNVvsyQJ4GOhW7NjlwDgz2wUYD1yR\nzwDeeCPMsnn4YfjjH/P5Sq6qnX02XH99SBgzZsQdjXM1V+zdUGb2hqTWxQ4fDXSMbg8mlC9fr5Bg\nVXj99ZAgvHxHevXqFQa/u3QJ+2LssUfcETlX88SeLEqwRebmR5LysvnRa6/B8cd7oqgJTj01JIyu\nXWHUqLD/uXOu6iQ1WRRX4jLtiu5nUZQohg0LW3u69DvxxJAwuncPLYw994w7IueSoUbsZwEQdUM9\nb2ZtovszgU4Zmx+9ama7ZTmvQuU+JkyAE06Axx8Pfd2uZhk+HM4/H8aO9S4p57JJc7kPRT9FRgJn\nRLd7ASOKn1BRb7zhiaKmO+GEsBaja1f48MO4o3GuZoi9G0rSUKATsJmkuUB/wmZHwyX1BuYAPavi\ntSZOhOOOg8ce80RR0510EqxdC4ceGupK7bZeu9Q5l4tEdENVVC7dUO+9Fxbc/fvfYStUVzs88ghc\neSWMHw877xx3NM4lQ172s5C0H3AacCCwJbAK+AB4EXjUzJZVINZqNXVq2C/7gQc8UdQ2p58eyst3\n6RLGqrbfPu6InEunUpOFpFHAAsKYwQ3AV8AGwM7AwcAISbeZ2ch8B1pRM2aE2TF33x3qCbnap3dv\n+OGHMOvttdegVau4I3IufUrthpLU3MwWl3qBcjwnX8rqhvr441CddODAMA/f1W7/+Af861+hhdGy\nZdzROBeffMyGGiCpQ2lPiCtRlGXOnDC4WVDgicIFffvCaaeF34vFifytdS65ykoWs4FbJX0h6RZJ\nbasjqMr68svQR33RRaF2kHNFrr4ajjjCN1ByLlflmg0VLZo7KfppBAwDhpnZ7PyGV2Zc63VDLV4c\n9qM45ZQwC8a54sxCxdr33oMxY2DDDeOOyLnqVZFuqJynzkati4eANmZWN6eTq1jxZLFsWVg/0a0b\n3HhjjIG5xFu3LrQ6586FF16ADTaIOyLnqk/eVnBLqifpSEmPAaOAWcBxFYgxb1asCNNjO3SAG26I\nOxqXdHXqhKnUzZqFmlKrV8cdkXPJVtZsqEOBk4HDgEnA48AIM1tRLcFJ3YE7CEltkJkNLPa4mRk/\n/ghHHglbbw2DBvme2a78fvoprOpv0iQs4Ksba1vZuepR5d1QksYTxieeMrNvKhlfTiTVIQywdyas\n9XgHOMnMPsp4jq1ebZxwQqg2OmxY+NO5XKxaFRZr7rwz/N//hW1bnavJ8tENdbSZPVBaopC0US4v\nmIN2wMdmNsfMVhNaNestqzvzzLDg6rHHPFG4imnUCEaODCv9L700DIA7536trGTxnKR/SDpI0s9z\nRiTtIOksSaOB7nmKbWtgXsb9+dGxX5kzB55+Gho0yFMUrlbYeGN46aUwO+r66+OOxrnkKfW7uJl1\nlnQYcA7QQVIzYDVhgPtFoJeZLcx/mCXr0KGAW24Jt3PZ/Mi54po1C8nioINgk03C9FrnaoIas/lR\nNpLaAwVm1j26fzlgmYPcFd38yLnSzJkTEkb//qGulHM1TV6qzmZcfGugdeY5ZvZaLi+Wo3eAHaMF\ngV8SFgSenMfXcw6A1q3DLnudOoXuqRNOiDsi5+JXrmQhaSBwIjADWBsdNiBvycLM1ko6DxjDL1Nn\nZ+br9ZzLtPPOMGpU2G1vww29tL1z5S33MYuwYvvH/IdUft4N5fJt4kQ46ih48snQ0nCuJsjnHtyf\nAfVzD8m5dGvfHp54Anr2hLffjjsa5+JT3pbF08CewCvAz60LM7sgf6GVzVsWrrq8+GIY7B47Ftq0\niTsa5yonb4UEJfXKdtzMBufyYlXNk4WrTk8+CRdeCK++CrvsEnc0zlVc3mZDxZ0UnEuCnj1DwcpD\nD/X9vN2vmYW93uvX4M76svbgftLMekqaTpj99Ctm5g1yV6uceWaoJdW5c0gY22wTd0QubmZw8cXQ\nsCHcfHPc0eRPWS2L5ZIOAI4kS7JwrjY699xfJ4wtt4w7IhcXs7DJWmEhjB8fdzT5VVaymAr8HdgS\neJKwO97kvEflXML17RsSRpcu4YNi883jjsjF4brrwuZZr74KTZvGHU1+1bhtVZ2rTlddFQoQjh9f\n8z8s3K8NHAgPPxxaly1axB1NbvK2ziIqEz7QzNoSSm4cA1RqNbWk4yV9IGmtpL2LPXaFpI8lzZTU\ntTKv41w+XX992Mq3a1f49tu4o3HV5c47w06Lr7ySvkRRUXFuqzodOBaYUOy1dgN6ArsBPYD7JN+O\nxiWTBLfeGrbz7do17APvarb77oM77giJYuv1Nk2ouUpNFpIOlfQQYS+J/yWUJf+NmZ1kZiMq88Jm\nNsvMPgaKJ4KjgcfNbI2ZfQF8TNgIyblEkuD22+EPf4Bu3eC77+KOyOXLfffBLbeEbsfWreOOpnqV\n1bK4AngT2M3MjjKzodWw/3bxTY/+S5ZNj5xLEgnuugv23hu6d4fvv487IlfV7r8/JIpXX62da2zK\n2vzokMpcXNJYILNHT4QpuFeZ2fOVuXaRgoKCn2/75kcuThLcc0+YWtu9O7z8cihx7tLv/vvDgHZa\nE0WN2PxI0qtAXzN7P7r/q02OJL0M9Dez9cq4+Wwol0Tr1sFf/gLTp4cy502axB2Rq4z/+7+w2G78\neNhhh7ijqRr5rDqbb5lBjwROktRA0vbAjsCkeMJyLnd16oRvovvsE9ZhLF0ad0Suou66q+YlioqK\nLVlIOkbSPKA98IKkUQBmNoOwAHAG8BJwrjcfXNrUqRM+aDp2DCu9Fy+OOyKXq4EDw7/hhAmeKCAB\n3VCV4d1QLunM4OqrYcSI2jUnP83MoKAgVBl+5RXYaqu4I6p6ed2D2zmXOyks3GvYMLQyxo2DVq3i\njsqVxAz69YPRo0OLYost4o4oOTxZOJdnElx7bdjL+4ADYMyYsMe3S5Z16+CCC8KOiK++Cs2axR1R\nsniycK6a9O0b6kd16hSKz+29d5mnuGry00/QqxcsWBBafz6DbX2eLJyrRr17h4TRvTsMHx66ply8\nli+H444LLb/Ro2GDDeKOKJmSMnXWuVrj2GNh2DA44QQYOTLuaGq3r78OhSC33TYkb08UJfNk4VwM\nOneGF1+Ec84JazJc9ZszBw48MGyT+8ADUM/7WUrlU2edi9Gnn8Jhh8HRR4fFX3X861u1ePfd8J5f\ndhn06RN3NNWvIlNnPVk4F7MlS8IH11ZbwSOPeFdIvj37LPzpT6E1ccwxcUcTj1SV+5B0S7S50RRJ\nT0vaJOMx3/zI1RqbbRZm4NSp46u988ks7D1y/vmhyGNtTRQVFWejdwywu5ntRdiz4goASb/FNz9y\ntcwGG8DQoXDQQWFfjOnT446oZlm9Gv78ZxgyBN56K9TtcrmJLVmY2TgzWxfdnQgUrWs9Ct/8yNVC\nderATTfB3/4WZug89VTcEdUMixaFQez//hfeeAO22SbuiNIpKcNpvQlFA8E3P3K13Kmnhvn+ffvC\nVVfB2rVxR5ReEyfCvvuG9SwjR/r+IpWR18li5dn8SNJVwGozG1aR1/DNj1xNtPfe8M470LNnGPx+\n9FHYdNO4o0oPM/jXv+Caa2DQIDjyyLgjilfqNz+SdAZhb+9DzOzH6JhvfuRcZPVquOSS8K142DBo\n3z7uiJJv5cowiP3222Hm0047xR1R8qRtNlR34FLgqKJEEfHNj5yL1K8Pd94Jt9/+y1qMdevKPq+2\nmjIFfv97WLUqdEF5oqg6sbUsJH0MNACWRIcmmtm50WNXAGcBq4E+ZjamhGt4y8LVGvPmhfGMhg3D\nrJ6WLeOOKDnWrYM77ggTBG6/PbxPPoeyZL4oz7kabs0auO660B9/772hAF5tt2ABnHFGKAj42GOw\n/fZxR5R8qeqGcs7lrl49GDAgTKu94opQjHDRorijiocZ/Pvf0LYtdOgAr73miSKfPFk4l0IdOoT+\n+R13hDZtQrdUbWpkz54dVrvfcw+MGgX9+3shwHzzZOFcSjVqFProX3oplLE47DCYNSvuqPLrp5/C\nNrX77x+mw06c6JtIVRdPFs6l3D77hCqqhxwSWhwXXghLl8YdVdUyg+eeC62ot96C996Diy7y1kR1\n8mThXA1Qvz5ceinMnBm+fe+6a5hyu3p13JFV3ptvhr3Lr702zHR64QVo3TruqGofTxbO1SCbbw73\n3Qevvhr68nfdFf75T/jhh7gjy90HH4RdBU86KZQUnzwZevTwKbFx8WThXA20++6hDPfgwWH19w47\nwN//Dt9/H3dkpTODsWPDHuVdu4ZutdmzoVcvqFs37uhqN19n4VwtMHVqWP09dmxYk3DmmSGhJMWq\nVfDkk3DbbWGB3cUXwymnhAWIruqlap2FpL9JmippsqSXJbXMeKxWbH5U2cJecfP445VL/HvuGWpL\nvf12GN/o2hXatQtdVt98k78YS1JYWMiaNTBmTEheW20V9vO45RaYNi0ksyQnirT/7lREnN1Qt5jZ\nnmbWFngR6A+1a/OjtP/Cefzxqkj8v/lNmG47d25YCV60kK179/Ct/oMP8rte45tvQrfYZZcV0qpV\nqArbti3MmBHKsnfrlo4xibT/7lREbBPPzGx5xt0NgaLyaD9vfgR8EdWQagesV3XWOVcxdeuGD+Zu\n3WDZMnjllfAt/+67w2yqLl3C+oXf/S78bLFF7h/iq1bBp5/CRx/Bf/4DEybAxx/DfvuFfSXeeCMs\nKnTpEOssZUnXA6cD3wIHR4e3Bt7KeJpvfuRcHjVpEmpMHXdcaFV88gmMHx+6g555JmzxWrcu7LJL\n2C+8adPws+mmoato5cpfflasCDvSffxxKEOy3Xaw884hQdx7b1gT0qABFBR4okibvA5wl2fzo+h5\n/YBGZlYg6W7gLTMbGj32IPCSmT2T5fo+uu2ccxWQ6wB3XlsWZnZoOZ86lDBuUUBoSWTuktsqOpbt\n+ino3XTOufSLczZUZiP0GOCj6LZvfuSccwkT55jFzZJ2JgxszwH+DGBmMyQ9CcwgbH50ri+mcM65\neKV6UZ5zzrnqkdpyH5K6S/pI0uxogDzRJA2StEjStIxjTSWNkTRL0mhJTeKMsSSSWkkaL+lDSdMl\nXRAdT0v8DSW9HS0AnS6paE1PKuIvIqmOpPcljYzupyZ+SV9kLMKdFB1LU/xNJA2PFgp/KOkPaYlf\n0s7R+/5+9OcySRfkGn8qk4WkOsA9QDdgd+BkSbvGG1WZHibEm+lyYJyZ7QKMB66o9qjKZw1wsZnt\nDuwH/DV6v1MRv5n9CBwcLQDdC+ghqR0piT9DH0L3bJHLgXHAcKADMD+OoMppHdDJzNqaWbvoWJre\n/zsJszJ3A/YkjLGmIn4zmx2973sD+wArgGfJNX4zS90P0B4YlXH/cqBf3HGVI+7WwLSM+x8BLaLb\nLYGP4o6xnH+P54Au+YgfOAOYFv1CLwDuA5rkcP7nwCGlPN4YeBfYtzzxl3W9anzPWwFjgU7AyIzf\nn7bASkLFg8T+/kTv42bFjqXi9x/YBPg0y/FUxF8s5q7A6xWJP5UtC8IivXkZ9+eTzoV7W5jZIgAz\nWwhsEXM8ZZK0HeHb+UTCL1qVxS+pL3AT0JfwH7Q9IcGOlVSpyRhRF85kYCEw1szeqer48+x24FLC\nOqUiLQjVDxab2UxyjF9SddZxNcK/4zuSzo6OpeX93x5YLOnhqCvnX5Iak574M51IWKoAOcaf1mRR\nUyV6toGkjYCngD4WyrUUj7fC8UvamLDO5jwzG2tma81sLqFO2HbAadHzHpb0t4zzOkqaF91+BNgW\neF7Sd5IukdRa0jrgLMJ/huXA8ZJ2B6zY9ays62WJu1DSsdHtDpLWSeoR3T8kSlBI2kHSK5IWS/pK\n0qOSNokeu0zS8GLXvVPSHdHt44HfAi8Rupx2kSTCbMYxwFaSviO0mpB0lKQPJC2Nxpp2zbju59Hr\nTQWWS6obHbskGlP4XtIDkraQ9FL09x5TBf3xHSx0gxxG6MY8kCr8/cmzesDewL3R32EFoTcjLfED\nIKk+oZxS0e9aTvGnNVn8l/CfuEiJC/cSbpGkFgAKVXe/ijmeEkXf7J8ChpjZiOhwVca/P9CQ0Jf6\nMzNbQfiQLG2Bp0XPPR2YCxxhZpuY2a0Zz+kE/IbQDN8SOA9YBGyQJf7yXK/IhOjaAAcBn0Z/AnQE\nCqPbAm4kNPd3I/zOFkSPPU4YR9kwiqUOcALwWPT4DYTf9x8Jff87Am8SWtSnELrrdgY+V5iOPhS4\nANgcGEVIdpkts5MIRTo3NbO10bHjgM7RdY4ivOeXA82ButH1KszMvoz+/JrQjdmO9Pz+zwfmmdm7\n0f2nCckjLfEX6QG8Z2aLo/s5xZ/WZPEOsGP0rbEB4Zd/ZMwxlYeinyIjCX30AL2AEcVPSJCHgBlm\ndmfGsaqMvzmhO2Vdlse+jB4vr2wr+281sx8IH+bfELoWRgI7RY+XFn9plQImEJIChCRxU8b9jtHj\nmNmnZvaKma0xsyWEbqWO0WNzgfeBY6PzOgMrzOyd6D9za6C5mW1P6EaYDKwCnge6F4u/J/CCmY2P\nEsGtQCNCMi5yp5ktsDDwX+RuM1scfai/DrxtZtPM7CdCAm9byntQKkmNo1YpUULsCkwnJb//UVfN\nvCgRQ/j3+ZCUxJ/hZGBYxv2c4k/ldudmtlbSeYQmeB1gUNRnm1iShhK+gW4maS6hJPvNwHBJvQkL\nE3vGF2HJJHUATgWmR90qBlwJDASerKL4FwPNJdXJkjC2jB6vKAMeirpu6hA+bOsS4v8f4FzCh3VP\nwkyXXLwF7Cxpi+jcI4EBkjYjfHt+DSB6/E7gQGCj6PWXZlxnGOE/86PRn0X9ytsC9YEvQ/jUJ7SG\nZhJ+f8YQ3p/OUfw3Ev4twl/czKJutcwxvWyzphZl3F6V5f5GZb4TJWsBPKtQy60e8JiZjZH0LlX3\n+5NvFwCPRV05nwFnEv4NUxF/NMbSBfhTxuGc/v+mMlkAmNnLwC5xx1FeZnZKCQ91qdZAKsDM/kP4\nj5FNVcX/FqGb5ThCdxfw8zhJD0KXCIT+4sYZ521Z7DrZ+l0FnGhms6Nr3kyYmbNU0jPAD2Z2SfRY\nea73y4NmqyS9R5jW+oGZrZH0FnAx8ImZFSWEGwldSLub2TJJRwN3Z1xqOHCrpK0JLYz20fF5wA9R\nvOvFEk2FkzyIAAAWMElEQVQKGGJmXaP7C4DfFXvaNvw6QVRr37qZfU6YFFH8+FJS8PsPYGZTCTPo\niktL/CsJ3ZKZx3J6/9PaDeVqGDP7DvgbcLekbpLqKcy8eoIwbvBo9NQpwGEKC4paEj6kMy0Edsjy\nEtdIahQNbJ9JGCeozPUyvUYYA5kQ3S8sdh9gY8Lg+vdRQrg08wJRP/IEwnqcz8xsVnR8IaH1cLuk\njRXsIOkgsnsSOFzSwdF7eAkh2bxVwvOdKxdPFi4xzOzvhO6tW4FlhA+4OUAXM1sdPW0IYR3GF8DL\n/PKhX+RmQmJYKunijOMTgE8IaxVuMbNXKnm9TBMI3TSvFbufmSwGEBZEfUsYa3g6y3WGErqTHit2\n/HSgAWFB3lJCK6QlWUStp9MIi1a/Bg4HjrSwmRhkb1WkalaPi0ciakNFsz/eBeab2VGSmhK+UbYm\n/CfuaWbLYgzRpZSk1oQ+5volDJ4758ohKS2LrGUMLOHL6F1q+L4nzlVS7MlCUivCQp0HMw4fDQyO\nbg8m7HfhXEXF33x2LuViTxaUUMYghcvoXQKZ2Rwzq+tdUM5VTqxTZyUdDiwysymSOpXy1KzfDOV7\ncDvnXIVYjttSx92y6AAcJekzwqKkQyQNARaWdxl6vqozVuVP//79Y4/B4/Q40xxnGmJMU5wVEWuy\nMLMrzWxbM9uBULJjvJn9D2Fq4RnR09KwjN4552q0uFsWJbkZOFTSLMK885tjjsc552q1xJT7MLMJ\n/FJ0LTVlAMqjU6dOcYdQLh5n1fI4q04aYoT0xFkRiViUV1GSLM3xO+dcHCRhKRvgds45lwKeLJxz\nzpUp1mQhqaGktyVNljRdUv/oeH9J8xX2u31fUveyruWccy5/Yh+zkNTYzFYqbB7/H8ImIz2A783s\ntjLO9TEL55zLUSrHLCxsygFh/+V6/LJa24u/OedcQsSeLCTVibbqXAiMNbN3oofOkzRF0oOSmsQY\nonPO1XqxJwszW2dmbYFWQDtJvwXuA3Yws70ISaTU7ijnnHP5laRFed9JKgS6FxureIBQ/iOrgoKC\nn2936tSpRi+Kcc65iigsLKSwsLBS14h1gFtSc2C1hQ3sGwGjCaU93rdQmhxJFwH7mtkpWc73AW7n\nnMtRRQa4425ZbAkMjrZVrQM8YWYvSXpE0l7AOsK2qufEGKNzztV6sU+drQxvWTjnXO5SOXXWOedc\n8nmycM45VyZPFs4558rkycI551yZklpIsKmkMZJmSRrtK7idcy5esc+GKqGQ4B+BJWZ2i6R+QFMz\nuzzLuT4byjnncpTK2VAlFBI8GhgcHR8MHBNDaM455yKxJ4sSCgm2MLNFANFK7i3ijNE552q7uFdw\nY2brgLaSNgGelbQ7v5Qp//lpJZ3vtaGcc650qa8NVZyka4CVwNlAJzNbJKkl8KqZ7Zbl+T5m4Zxz\nOUrdmIWk5kUznaJCgocCM4GRwBnR03oBI2IJ0DnnHBB/1dk9CAPYmYUEb5DUDHgS2AaYA/Q0s2+z\nnO8tC+ecy1FFWhaJ6obKlScL55zLXeq6oZxzzqWDJwvnnHNl8mThnHOuTHHPhmolabykD6PaUOdH\nx/tLmi/p/eine5xxOudcbRf3bKiWQEszmyJpI+A9QqmPE4Hvzey2Ms73AW7nnMtR6vbgjkp5LIxu\nL5c0E9g6ejinv4hzzrn8qXQ3lKT9JN0raZqkryXNlfSSpL/mUlpc0nbAXsDb0aHzJE2R9KCXKHfO\nuXhVqmUhaRSwgLDC+gbgK2ADYGfgYGCEpNvMbGQZ19kIeAroE7Uw7gP+ZmYm6XrgNuCsbOd6bSjn\nnCtd7LWhJDU3s8WVeY6kesALwCgzuzPL462B582sTZbHfMzCOedyFMeivAGSOpT2hLKSCfAQMCMz\nUUQD30WOAz6oeIjOOecqq7ID3LOBWyVtSajlNMzMJpf35CjRnApMj/a0MOBK4BRJewHrgC+AcyoZ\np3POuUqokqmzUVfRSdFPI2AYIXHMrvTFS39d74ZyzrkcJaKQoKS2hK6lNmZWt0ovvv5rebJwzrkc\nxVZIUFI9SUdKegwYBcwijDU455yrASo7G+pQ4GTgMGAS8DgwwsxWVE14Zb6+tyyccy5H1d4NJWk8\nYXziKTP7pgLntwIeAVoQBrMfMLO7JDUFngBaEwa4e5rZsizne7JwzrkcxZEsNjaz78t4zkZmtryE\nx0qqDXUmsMTMbpHUD2hqZpdnOd+ThXPO5SiOMYvnJP1D0kGSNswIZAdJZ0kaDZRYMdbMFprZlOj2\ncsL+260ICWNw9LTBwDGVjNM551wlVHo2lKTDCGslOgBNgTWEAe6XgAejYoHluc52QCHwO2CemTXN\neGypmTXLco63LJxzLkexVJ01s5cIiaHCstSGKp4BEpkRpkyBhx+GL7+MO5JkqFsXrrwS9tgj7kic\nc1WtSkqUS3rFzDqXdayEc+sREsUQMxsRHV4kqYWZLYrGNb4q6fzqLiS4fDk88QT885+wcCH07g0d\nSi14Unt89hkceSRMmgRbbBF3NM65IkkoJLgB0Bh4FejEL3tQbAK8bGa7luMajwCLzezijGMDgaVm\nNjBJA9xffQX77BN+/vQn6NYtfJt2v7j2Whg/Hl55BRo2jDsa51w2ccyG6gNcCGxFKFVe5DvCNNh7\nyji/A/AaMJ3Q1VRUG2oSodbUNsAcwtTZb7OcX23Jwix8a27TBm68sVpeMpXWrYPjj4dNN4VBg0C+\nhZVziRNbuQ9J55vZ3ZW+UO6vW23J4v77w4ffm29CgwbV8pKptXw5HHAA9OoFF10UdzTOueLiTBan\nZztuZo9U+uKlv261JIuZM+Ggg+CNN2CXXfL+cjXCnDnQvj0MHgxdu8YdjXMuU5zJIrNVsQHQGXjf\nzI6v9MVLf928J4uffgofen/+cxincOU3fjycfjpMmwbN1pv47JyLSyKqzkaBbAo8bmYlLsirotfJ\ne7Lo1w9mzYJnn/X+94ro0weWLIFHH407EudckSQli/rAB2aW106bfCeL11+HE0+EqVNh883z9jI1\n2sqVsNdecNNN8Mc/xh2Ncw7iLVH+vKSR0c+LhBXcz5bz3EGSFkmalnGsv6T5kt6PfvLaQslm5cqw\nhuK++zxRVEbjxmHc4rzzwtRj51w6VdWYRceMu2uAOWY2v5znHgAsBx4xszbRsf7A92Z2Wxnn5q1l\n0bcvLFgAw4bl5fK1zhVXwEcfwTPPeHeec3GLrWVhZhOAj4CNCfWhfsrh3DeAbOXNY/tIefNNGDoU\n7q72ycA1V0EBfPIJPPZY3JE45yqiqrqhehIW0p0A9ATellTZmVDnSZoi6UFJTSodZDmtWhW6n+6+\nG5o3r65XrfkaNgzdUX37eneUc2lUVd1QU4FDzeyr6P7mwDgz27Oc57cGns/ohtqcUALEJF0PbGlm\nZ2U5z/r37//z/aqoDdWvX6hxNHx4pS7jStCvH8ybF1puzrnqUbw21IABA2JbZzHdzPbIuF8HmJp5\nrIzzf5UscnisSscs3nkHjjgCpk/3Qnj5snJlKJly551w+OFxR+Nc7RTbmAXwsqTRks6QdAbwIrmV\nLRcZYxRRpdkixwEfVEmUpVizJiy6u/VWTxT51LhxqNh77rnwfal7LDrnkqSyhQTvBYaa2X8kHQcc\nED30upmVd+rsUELF2s2ARUB/4GBgL8K+3F8A55jZoiznVlnL4h//gFGjYOxYn61THXr3ho02grvu\nijsS52qfuKrOngRsSagSO8zMJlf4grm/fpUkizlzQtnxt96CnXaqgsBcmZYuhd13Dyvj27ePOxrn\napc4a0O1JiSNk4BGwDBC4phd6YuX/rqVThZFpcfbt4err66iwFy5PPEEXHcdTJ4M9evHHY1ztUci\nyn1Iags8BLQxs7xuDVQVyeLpp+Gaa8IWqV56vHqZQY8e0KULXHJJ3NE4V3vE2bKoB/QgtCw6A4WE\nlsWI0s6rgtetVLJYtix0hQwbBgceWIWBuXL75JPQqps8GbbZJu5onKsd4hizOBQ4GTiMsCjvcWCE\nma3I4RqDgCOARRnrLJoCTwCtCQPcPc1sWZZzK5Us+vSBFSvgwQcrfAlXBQoKwnTlp5+OOxLnaoc4\nksV4YCjwtJllK9lRnmtkqw01EFhiZrfkaw/uqVPDpjwzZsBmm1XoEq6K/PAD/O53YWbUYYfFHY1z\nNV8ixiwqIssK7o+Ajma2KFpzUWhmu2Y5r0LJYt26sPPd6af7hkZJ8fLL8Ne/wgcfQKNGcUfjXM0W\n56K8qrZF0boKM1sIVOkyuSFDwg54Z61XQMTFpXt32HtvuPnmuCNxzmWT1JbFUjNrlvH4EjNbr7Oo\nIi2Lb7+F3XaDkSNh330rG7mrSvPnh42SJk6EHXeMOxrnaq6KtCzq5SuYSlokqUVGN1SJdUoLCgp+\nvl2eQoLXXgtHH+2JIolatYJLL4WLLoLnn487GudqjuKFBCsiKS2L7Qgtiz2i+wOBpWY2sCoHuKdM\ngW7dfFA7yX78EfbYA+64wwe7ncuXVA5wl1Ab6jlgOLANMIcwdfbbLOeWO1mYhbUUvXrB//5vFQXv\n8uKll+DCC8N02oYN447GuZonlcmiMnJJFkOHhmKBkyZB3byuK3dV4cgj4YADwv4Xzrmq5cmiBCtW\nwK67wuOPQ4cO1RCYq7Sild1Tp8LWW8cdjXM1S02aOlulbroprKvwRJEeO+4I55zjLQvnkqLGtyw+\n+yzMfJo6Ncy2celR1CIcNix0STnnqoa3LLK45JIwFdMTRfpsuCEMHBgGu9etizsa52q3RCcLSV9I\nmippsqRJuZ7/yiuhmmnfvvmIzlWHk08OpeMHD447Eudqt0R3Q0n6DNinpCKFpXVDrVkDbdvCgAFw\n3HH5jNLl2zvvhIWUs2bBxhvHHY1z6VcTu6FEBWN84AHYfHM49tgqjshVu333hUMPhRtvjDsS52qv\nNLQsvgXWAv8ysweKPZ61ZfHtt7DLLjBmDOy5Z/XE6vJrwQJo0yask9lhh7ijcS7dalJtqCIdzOxL\nSZsDYyXNNLM3Mp+QrTbUddeFbgtPFDXHVluFiQqXXuqbJDmXqxpTG6o8JPUHvjez2zKOrdeymD0b\n9t8fPvwQWrSo7ihdPq1aBb/9LTz8MJRRL9I5V4oaNWYhqbGkjaLbGwJdgQ/KOu/SS+GyyzxR1ESN\nGoWptBddBGvXxh2Nc7VLYpMF0AJ4Q9JkYCKhKu2Y0k4YNy7stNanT7XE52Jwwglh/YVPpXWueqWm\nGyqbzG6otWvDVNmCAp8qW9P5VFrnKqdGdUPlatAgaNrUp8rWBvvuC507hy4p51z1qBEti+++C1Nl\nX3wx7OPsar7588Nst8mTYdtt447GuXSptS2Lm24KO+B5oqg9WrWC886Dy9fbP9E5lw+JbllI6g7c\nQUhqg8xsYLHH7fPPjX32gWnTfN+D2mbFitCiHD4c9tsv7micS48a1bKQVAe4B+gG7A6cLGnX4s+7\n/HK44AJPFLXRhhvCbbfBaafBV1/FHY1zNVtikwXQDvjYzOaY2WrgceDo4k/6z39CGXJXO/XsCaee\nCkcdBStXxh2NczVXkpPF1sC8jPvzo2O/csMN4RtmklV2mX11SWucAwbATjuFFkaSFuul9f1MojTE\nCOmJsyKSnCzK5dNPCygoCD9J/YdKalzFpTVOCR58EJYuDav3kyKt72cSpSFGSG6chYWFP39OZtbT\ny0WSCwn+F8icFNkqOvYrAwYUVFc8LsEaNoRnnw11wVavhu23jzsieOstuP32uKMoWxrizBbj2Wf7\noszyKiqyWmTAgAE5XyPJyeIdYEdJrYEvgZOAk+MNySVZ06bw8stw990wd27c0cCyZcmIoyxpiDNb\njEnqcqwN0jB19k5+mTp7c7HHkxu8c84lWK5TZxOdLJxzziVD6ge4nXPO5Z8nC+ecc2VKbbKQ1F3S\nR5JmS+oXdzxFJA2StEjStIxjTSWNkTRL0mhJTWKOsZWk8ZI+lDRd0gUJjbOhpLclTY7i7J/EOItI\nqiPpfUkjo/uJi1PSF5KmRu/ppATH2UTScEkzo9/TPyQtTkk7R+/j+9GfyyRdkMA4L5L0gaRpkh6T\n1KAiMaYyWZS3FEhMHibElelyYJyZ7QKMB66o9qh+bQ1wsZntDuwH/DV6/xIVp5n9CBxsZm2BvYAe\nktqRsDgz9AFmZNxPYpzrgE5m1tbM2kXHkhjnncBLZrYbsCfwEQmL08xmR+/j3sA+wArgWRIUp6St\ngPOBvc2sDWEG7MkVitHMUvcDtAdGZdy/HOgXd1wZ8bQGpmXc/whoEd1uCXwUd4zF4n0O6JLkOIHG\nwLvAvkmMk7AOaCzQCRiZ1H934HNgs2LHEhUnsAnwaZbjiYqzWGxdgdeTFiewFTAHaBolipEV/b+e\nypYF5SwFkiBbmNkiADNbCGwRczw/k7Qd4Vv7RMIvT6LijLp2JgMLgbFm9g4JjBO4HbgUyJxemMQ4\nDRgr6R1JZ0fHkhbn9sBiSQ9HXTz/ktSY5MWZ6URgaHQ7MXGa2QLgH8BcwqLmZWY2riIxpjVZpF0i\n5itL2gh4CuhjZstZP67Y4zSzdRa6oVoB7STtTsLilHQ4sMjMpgClzV2P/f0EOljoNjmM0P14IAl7\nPwnfgPcG7o1iXUHoPUhanABIqg8cBQyPDiUmTkmbEgqwtia0MjaUdGqWmMqMMa3JolylQBJkkaQW\nAJJaArEX1JZUj5AohpjZiOhw4uIsYmbfAYVAd5IXZwfgKEmfAcOAQyQNARYmLE7M7Mvoz68J3Y/t\nSN77OR+YZ2bvRvefJiSPpMVZpAfwnpktju4nKc4uwGdmttTM1hLGVPavSIxpTRY/lwKR1IBQCmRk\nzDFlEr/+hjkSOCO63QsYUfyEGDwEzDCzOzOOJSpOSc2LZmlIagQcCswkYXGa2ZVmtq2Z7UD4XRxv\nZv8DPE+C4pTUOGpNImlDQj/7dJL3fi4C5knaOTrUGfiQhMWZ4WTCl4QiSYpzLtBe0gaSRHgvZ1CR\nGOMeGKrEwE13YBbwMXB53PFkxDUUWAD8GP1DnUkYXBoXxTsG2DTmGDsAa4EpwGTg/ej9bJawOPeI\nYpsCTAOuio4nKs5iMXfklwHuRMVJGAso+jefXvT/JmlxRjHtSfhSOAV4BmiS0DgbA18DG2ccS1Sc\nQH/Cl6xpwGCgfkVi9HIfzjnnypTWbijnnHPVyJOFc865MnmycM45VyZPFs4558rkycI551yZPFk4\n55wrkycL53IUlc/+S9xxOFedPFk4l7umwLnleWJUm8e51PNk4VzubgJ2iCqiDizjuc9Jek7SkZLq\nVkdwzuWDr+B2LkeSWgPPW9hMpjzPPwg4i7APy3DgYTP7NI8hOlflvGXhXJ6Z2Wtm1gv4fXToI0nH\nxhmTc7mqF3cAzqWZpOuBwwn7AfweeC+6PdLMCqLnbAAcC/QmFMQ7n7CrnnOp4d1QzuVIUjPC/gXb\nl+O5A4HjgReBQWY2Nd/xOZcPniycqwBJjwJtCHvB9yvled0J+1v8VG3BOZcHniycc86VyQe4nXPO\nlcmThXPOuTJ5snDOOVcmTxbOOefK5MnCOedcmTxZOOecK5MnC+ecc2XyZOGcc65M/w+srHpey0WF\nTQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f8a940a7780>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "from math import sin\n",
+ "from math import pi\n",
+ "\n",
+ "VZ=20; #Assumed zener voltage, V\n",
+ "VF=0.7; #Assumed forward biasing voltage of the zener diode, V\n",
+ "Vin=[]; #Input voltage waveform, V\n",
+ "for t in range(0,(int)(2*pi*10)): #time interval from 0s to 151s\n",
+ " Vin.append(30*sin(t/10.0));\n",
+ "\n",
+ "plt.subplot(211)\n",
+ "plt.plot(Vin);\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vin(V)');\n",
+ "plt.title('Input waveform');\n",
+ "\n",
+ "\n",
+ "vout=[]; #Output voltage waveform, V\n",
+ "for v in Vin[:]: #Loop iterating input voltage \n",
+ " if(v<=-VF):\n",
+ " vout.append(-VF); #Zener diode forward biased, \n",
+ " elif(v>=VZ):\n",
+ " vout.append(VZ); #Input voltage exceeds zener voltage\n",
+ " else:\n",
+ " vout.append(v); #Zener diode reverse biased\n",
+ "\n",
+ "plt.subplot(212)\n",
+ "plt.plot(vout);\n",
+ "plt.xlim([0,80])\n",
+ "plt.ylim([-1,40])\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vout(V)');\n",
+ "plt.title('Output waveform');\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.17 : Page number 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPX1//HXmypYsSKixC6aoGKCJlhQkaaCGkFMjCDx\nl29iosYWu2CiiVhijC3RWBGIoFGwIEWKDewoCgKigogSESsQpZzfH+eujuvC1tl77+55Ph7zYO6d\ndpjdnTOfdj4yM0IIIYR1aZB2ACGEELIvkkUIIYRyRbIIIYRQrkgWIYQQyhXJIoQQQrkiWYQQQihX\nJIsQckLSTyTNkfSZpJ5pxxPql0gWIdMkvS3pkFp4nYGS7i7261TTH4G/m9lGZjY67WBC/RLJIoT8\naAPMrMoDJTWs4VhCPRPJIuSGpH6SnpR0laSlkuZJ6lZw+yRJf5b0rKRPJT0gaZPktoMkvVvq+d6W\ndIikrsAFwHGSPpf0chmv3V/S6ILjuZLuLTheIKldcv1vyfGnkp6XtH9yfmtJy0tiSs7tLenDkg9z\nSQMkzZT0kaQxkrZNzr8JbA88nHRDNU6eb1Ry3zmSTi543oGSRkoaIukToF9ybkRy7jNJr0jaWdJ5\nkhZLmi+pc7V+SKHOimQR8qYDMAvYDLgKuK3U7b8A+gMtgdXA9QW3lVnbxszGAn8G7jWzDc1s7zLu\nNgX4+kMfaAz8ODneAVjfzF5N7vsc0A5oAQwDRkpqYmbvA88APy143uOBkWa2WlIv4DzgKGAL4Eng\n30mMOwHvAocn3VArgXuBBcn/tTfwZ0mdCp67JzDCzDYBhibnjgDuAjYBpgNjAQGtgD8Bt5T1HoUQ\nySLkzXwzu928qNldwNaStiy4fYiZzTKzFcDFQG9Jqu6LmtnbwOeS9gIOxD9kF0naJTl+suC+w8zs\nEzNbY2bXAk2BXZObhwM/K3jqvnzzQf5/wF/MbI6ZrQGuAPYqaV0kBCCpNZ6szjWzlWb2CvAv4MSC\n+041s4eSmL5Mzj1pZhOS5x8JbA5cYWar8cTURtJGVX2fQt0VySLkzQclV5KEALBBwe2FXU3z8RbA\n5jX02lOAg/HkMDm5dAIOSm4DQNLZSVfSx5I+BjYqiOF+YD9JW0k6CFhtZk8nt7UBrku62JYCH+Gt\noW3KiKUVsNTMlhecm1/qvu/yXYsLrq8Altg31URX4Mlog+88KtR7kSxCXVP4LbwNsBJYAiwDmpfc\nkIwRbFFw34qUX34CTw7748nhCTxRHJgck4xPnAMca2YtzKwF8BlJi8DMPgHG4S2K40m6mRILgP8z\ns02TSwsz28DMppURyyJgU0nrF5zbDnivkv+nECokkkWoa06QtJuk5sCl+HiAAXOA9SR1l9QIuAho\nUvC4xcD3yumyKmlZNDOzRXjXUzd8/KRkUHxDPEF9JKmJpEuSc4WG491FP8XHNEr8E7hA0u4AkjaW\ndGxZgZjZQnz84y+SmiaD678Ehqwj/hCqLJJFyLryvh2Xvn0IPpaxCE8GpwOY2WfAKfiA+ELg8+Tf\nEiPxb/8fSXqhzBcym5s87onk+HNgHvBUQVfO2OQyB3gbWM53u4NGAzsD75vZjILnfxAfp/h3MoPp\nVTwZre3/ejw+Q2oR3r11sZlNKiv2SojWSCiT0tz8SFJT/A+vCdAIuM/MLpXUAp/p0QZ4B+hjZp+m\nFmjIBUmT8AHu29OOJYS6JtWWRTJD4+BkquJeQHdJHfDpgxPMbFdgInB+imGGEEK9l3o3VMFsjqZ4\n68KAXnhXAsm/R6UQWsif6EIJoUhS7YYCkNQAeBHYEbjRzM6X9HEyi6TkPkvNbNPUggwhhHouCy2L\nNUk3VGugg6Q9+O43xPjGGEIIKWqUdgAlzOwzSZPx2R+LJW1lZosltQT+W9ZjJEUSCSGEKjCzSlU2\nSLVlIWlzSRsn15sBh+F1f0bj9X0A+gGj1vYcZpbby8CBAyt83w8+MG680ejUydhoI6NzZ2PQIGP8\neOOzz2omng8/NCZMMC6/3OjY0dhwQ+OII4ybbzYWLqxe/Fm8RPwRe32NvyrSbllsDdyVjFs0wAu5\nPSppGjBC0gC8hEGfNINMy7JlMGwYDB8OL70Ehx8Ov/89dO0K661X86+3+eZw6KF+ueACWLoUxo6F\nRx7x45/8BE4+2eNo3LjmXz+EkF2pJgvzBUntyzi/FKi3pZLnz4cbb4Tbb4eOHeG00zxBNGtWu3Fs\nuikcf7xfli+HkSPh6qvhN7+B/v1hxYpynyKEUEekPsBdn3Xq1Olbx9OmwbHHQvv2sGoVPPccjBoF\nRx1V+4mitObNoV8/eOopmDgRvvwSbr+9EwMGwJtvphtbVZV+//Mmz/HnOXbIf/xVkfrU2eqQZHmO\nv8SMGXDhhTB9OvzhD/6tfYMc1P1cuhT+/ne44Qbo3t3/D7vtlnZUIYTySMLyNMBd3731FpxwAnTu\nDAcfDHPmwO9+l49EAd5NNWgQzJsHbdvCQQfBL38JH3xQ7kNDCDkTySIFX3wBZ58NHTrAzjt7N84Z\nZxRn0Lo2bLyxD4DPmeMJ5Pvf97GNr75KO7IQQk2JZFGLzODBB2H33eHDD2HmTBg4EDYsXcA6pzbe\nGK66Cp55BiZP9qTxyCNpRxVCqAkxZlFL5s+HU0+FuXPh5puhPoyPjRkDp58O++wD11/vU3NDCOmL\nMYsMMoObbvIPzP32g1deqR+JAnzQ+5VXoFUr+MEP4D//STuiEEJVRcuiiD74AAYM8C6ne+6BXXdN\nO6L0PPMMnHQS7L23z56KVkYI6cldy0JSa0kTJb0uaYak05LzLSSNkzRb0tiSkiB58sADsNde8MMf\n+gdlfU4U4Ku/p0+H1q2hXTt4/PG0IwohVEbaO+W1BFqa2XRJG+ClynsBJwEfmdmVks4FWpjZeWU8\nPnMti+XLfcX15MkwZAj8+MdpR5Q9EybAiSd66ZBLLoFGaRedCaGeyV3Lwsw+MLPpyfUv8CKCrcnp\n5kdvvunJ4csv/Vt0JIqyde7sta6eecbrUL33XtoRhRDKk5kBbknfw7dWnQZsZWaLwRMKsGV6kVXM\nqFHe1fLrX8Pdd+dnYV1aWrb0IoWdO/vg/9ixaUcUQliXTAxwJ11Qk4E/mdmo0jvjSfrIzDYr43Gp\nd0OtWgUXX+zVYUeMgH33TTWcXJoyxYsVnnkmnHUWqFKN4xBCZVWlGyr13mJJjYD7gCFmVrJvRYU2\nPwIYNGjQ19c7depUqwW+Pv4Y+iTF0194AbbYotZeuk456CAvonjUUT7V9tZb87uaPYQsmjx5MpMn\nT67Wc6TespB0N7DEzM4sODcYWGpmg7M6wP3mm76vQ48eXtqiYcNUwqhTli/3qcZvveWzybbZJu2I\nQqibcjfALakj8HPgEEkvS3pJUjdgMHCYpNnAocAVacZZ2pQpsP/+Xs/p2msjUdSU5s19o6ejjvLu\nvOeeSzuiEEKJ1FsW1ZFGy+KOO+Dcc32MonO93Z6p+EaN8qm1t98ORx6ZdjQh1C1VaVlEsqggM7jo\nIrj3Xnj44di3oTY89xz06uVrMX7zm7SjCaHuyOUAdx6sWgW/+hW89hpMnRoD2bWlQwffma97d1iw\nAC6/HBpkZrJ3CPVLtCzKsXw5HHecJ4yRI2P9RBqWLIGePWH77b0bsEmTtCMKId9yN8CddR995OMS\nLVrA6NGRKNKy+eZeS2r5ck8ay5alHVEI9U8ki7VYuBAOOMBnPd15JzRunHZE9VuzZt6ya9kSunaF\nTz5JO6IQ6pdIFmWYN88TxYABcOWV0U+eFY0a+eyoffbxPcsXL047ohDqj/gYLGXWLN+c6NxzfZ/s\nkC0NGsDf/uazpA44wAe+QwjFF7OhCkyf7jNvBg/2EtohmyQYNMjHkg44wEue77xz2lGFULel3rKQ\ndJukxZJeLThX65sfTZvmfeE33BCJIi9OP92LOB5yCMyenXY0IdRtqScL4A6ga6lz5wETzGxXYCJw\nfjEDeOopn2Vzxx3w058W85VCTTv5ZLjsMk8YM2emHU0IdVfq3VBm9pSkNqVO9wIOSq7fhZcv/04h\nwZrw5JOeIKJ8R3716+eD3507+74YP/hB2hGFUPeknizWYsvCzY8kFWXzoyeegGOPjURRF/z8554w\nunSBMWN8//MQQs3JarIoba3LtKu6n0VJohg+3Lf2DPl33HGeMLp18xbGnnumHVEI2VAn9rMASLqh\nHjKzdsnxLKBTweZHk8ysbRmPq1K5jylToHdv+Pe/va871C0jR8Kpp8L48dElFUJZ8lzuQ8mlxGig\nf3K9HzCq9AOq6qmnIlHUdb17+1qMLl3g9dfTjiaEuiH1bihJw4BOwGaSFgAD8c2ORkoaAMwH+tTE\na02bBsccA0OHRqKo6/r2hdWr4bDDvK5U2++0S0MIlZGJbqiqqkw31Isv+oK7O+/0rVBD/XD33XDB\nBTBxIuyyS9rRhJANRdnPQtKPgROAA4CtgRXAa8AjwD1m9mkVYq1Vr7zi+2XfemskivrmxBO9vHzn\nzj5Wtf32aUcUQj6tM1lIGgMswscMLgf+C6wH7AIcDIyS9FczG13sQKtq5kyfHXP99V5PKNQ/AwbA\n//7ns96eeAJat047ohDyZ53dUJI2N7Ml63yCCtynWMrrhpo716uTDh7s8/BD/XbNNXDLLd7CaNky\n7WhCSE8xZkNdKqnjuu6QVqIoz/z5Prg5aFAkiuDOOgtOOMF/L5Zk8rc2hOwqL1nMAa6W9I6kKyXt\nXRtBVdf773sf9RlneO2gEEpcdBEccURsoBRCZVVoNlSyaK5vcmkGDAeGm9mc4oZXblzf6YZassT3\no/jZz3wWTAilmXnF2hdfhHHjYP31044ohNpVlW6oSk+dTVoXtwPtzKxhpR5cw0oni08/9fUTXbvC\nn/+cYmAh89as8VbnggXw8MOw3nppRxRC7SnaCm5JjSQdKWkoMAaYDRxThRiLZtkynx7bsSNcfnna\n0YSsa9DAp1JvuqnXlFq5Mu2IQsi28mZDHQYcD/QAngP+DYwys2W1EpzUDfgbntRuM7PBpW43M+PL\nL+HII2GbbeC222LP7FBxX33lq/o33tgX8DVMta0cQu2o8W4oSRPx8Yn7zOzjasZXKZIa4APsh+Jr\nPZ4H+prZGwX3sZUrjd69vdro8OH+bwiVsWKFL9bcZRf4xz9829YQ6rJidEP1MrNb15UoJG1QmRes\nhA7AXDObb2Yr8VbNd5bVnXSSL7gaOjQSRaiaZs1g9Ghf6X/OOT4AHkL4tvKSxYOSrpF0oKSv54xI\n2kHSLyWNBboVKbZtgHcLjhcm575l/ny4/35o0qRIUYR6YcMN4dFHfXbUZZelHU0I2bPO7+Jmdqik\nHsD/AR0lbQqsxAe4HwH6mdkHxQ9z7Tp2HMSVV/r1ymx+FEJpm27qyeLAA2GjjXx6bQh1QZ3Z/Kgs\nkvYDBplZt+T4PMAKB7mruvlRCOsyf74njIEDva5UCHVNUarOFjz5NkCbwseY2ROVebFKeh7YKVkQ\n+D6+IPD4Ir5eCAC0aeO77HXq5N1TvXunHVEI6atQspA0GDgOmAmsTk4bULRkYWarJf0OGMc3U2dn\nFev1Qii0yy4wZozvtrf++lHaPoSKlvuYja/Y/rL4IVVcdEOFYps2DXr2hBEjvKURQl1QzD243wIa\nVz6kEPJtv/3g3nuhTx949tm0owkhPRVtWdwP7Ak8DnzdujCz04oXWvmiZRFqyyOP+GD3+PHQrl3a\n0YRQPUUrJCipX1nnzeyuyrxYTYtkEWrTiBHw+9/DpEmw665pRxNC1RVtNlTaSSGELOjTxwtWHnZY\n7Ocdvs3M93pvXIc768vbg3uEmfWRNAOf/fQtZhYN8lCvnHSS15I69FBPGNtum3ZEIW1mcOaZ0LQp\nXHFF2tEUT3ktiy8k7Q8cSRnJIoT66JRTvp0wtt467YhCWsx8k7XJk2HixLSjKa7yksUrwFXA1sAI\nfHe8l4seVQgZd9ZZnjA6d/YPii22SDuikIY//ck3z5o0CVq0SDua4qpz26qGUJsuvNALEE6cWPc/\nLMK3DR4Md9zhrcuttko7msop2jqLpEz4YDPbGy+5cRRQrdXUko6V9Jqk1ZLal7rtfElzJc2S1KU6\nrxNCMV12mW/l26ULfPJJ2tGE2nLddb7T4uOP5y9RVFWa26rOAI4GppR6rbZAH6At0B24SYrtaEI2\nSXD11b6db5cuvg98qNtuugn+9jdPFNt8Z9OEumudyULSYZJux/eS+H94WfIdzayvmY2qzgub2Wwz\nmwuUTgS9gH+b2SozeweYi2+EFEImSXDttbDvvtC1K3z2WdoRhWK56Sa48krvdmzTJu1oald5LYvz\ngWeAtmbW08yG1cL+26U3PXqPMjY9CiFLJPj736F9e+jWDT7/PO2IQk27+WZPFJMm1c81NuVtfnRI\ndZ5c0nigsEdP+BTcC83soeo8d4lBgwZ9fT02PwppkuCGG3xqbbdu8NhjXuI85N/NN/uAdl4TRZ3Y\n/EjSJOAsM3spOf7WJkeSHgMGmtl3yrjFbKiQRWvWwG9+AzNmeJnzjTdOO6JQHf/4hy+2mzgRdtgh\n7WhqRjGrzhZbYdCjgb6SmkjaHtgJeC6dsEKovAYN/JvoPvv4OoylS9OOKFTV3/9e9xJFVaWWLCQd\nJeldYD/gYUljAMxsJr4AcCbwKHBKNB9C3jRo4B80Bx3kK72XLEk7olBZgwf7z3DKlEgUkIFuqOqI\nbqiQdWZw0UUwalT9mpOfZ2YwaJBXGX78cWjVKu2Ial5R9+AOIVSe5Av3mjb1VsaECdC6ddpRhbUx\ng3PPhbFjvUWx5ZZpR5QdkSxCKDIJLrnE9/Lef38YN873+A7ZsmYNnHaa74g4aRJsumnaEWVLJIsQ\naslZZ3n9qE6dvPhc+/blPiTUkq++gn79YNEib/3FDLbvimQRQi0aMMATRrduMHKkd02FdH3xBRxz\njLf8xo6F9dZLO6JsysrU2RDqjaOPhuHDoXdvGD067Wjqtw8/9EKQ223nyTsSxdpFsgghBYceCo88\nAv/3f74mI9S++fPhgAN8m9xbb4VG0c+yTjF1NoQUzZsHPXpAr16++KtBfH2rFS+84O/5H/4Ap5+e\ndjS1rypTZyNZhJCyjz7yD65WreDuu6MrpNgeeAB+9StvTRx1VNrRpCNX5T4kXZlsbjRd0v2SNiq4\nLTY/CvXGZpv5DJwGDWK1dzGZ+d4jp57qRR7ra6KoqjQbveOAPcxsL3zPivMBJO1ObH4U6pn11oNh\nw+DAA31fjBkz0o6oblm5En79axgyBKZO9bpdoXJSSxZmNsHM1iSH04CSda09ic2PQj3UoAH85S/w\nxz/6DJ377ks7orph8WIfxH7vPXjqKdh227QjyqesDKcNwIsGQmx+FOq5n//c5/ufdRZceCGsXp12\nRPk1bRr86Ee+nmX06NhfpDqKOlmsIpsfSboQWGlmw6vyGrH5UaiL2reH55+HPn188Puee2CTTdKO\nKj/M4JZb4OKL4bbb4Mgj044oXbnf/EhSf3xv70PM7MvkXGx+FEJi5Uo4+2z/Vjx8OOy3X9oRZd/y\n5T6I/eyzPvNp553Tjih78jYbqhtwDtCzJFEkYvOjEBKNG8N118G1136zFmPNmvIfV19Nnw4//CGs\nWOFdUJEoak5qLQtJc4EmwEfJqWlmdkpy2/nAL4GVwOlmNm4tzxEti1BvvPuuj2c0beqzelq2TDui\n7FizBv72N58gcO21/j7FHMq1i0V5IdRxq1bBn/7k/fE33ugF8Oq7RYugf38vCDh0KGy/fdoRZV+u\nuqFCCJXXqBFceqlPqz3/fC9GuHhx2lGlwwzuvBP23hs6doQnnohEUUyRLELIoY4dvX9+p52gXTvv\nlqpPjew5c3y1+w03wJgxMHBgFAIstkgWIeRUs2beR//oo17GokcPmD077aiK66uvfJvan/zEp8NO\nmxabSNWWSBYh5Nw++3gV1UMO8RbH738PS5emHVXNMoMHH/RW1NSp8OKLcMYZ0ZqoTZEsQqgDGjeG\nc86BWbP82/duu/mU25Ur046s+p55xvcuv+QSn+n08MPQpk3aUdU/kSxCqEO22AJuugkmTfK+/N12\ng3/+E/73v7Qjq7zXXvNdBfv29ZLiL78M3bvHlNi0RLIIoQ7aYw8vw33XXb76e4cd4Kqr4PPP045s\n3cxg/Hjfo7xLF+9WmzMH+vWDhg3Tjq5+i3UWIdQDr7ziq7/Hj/c1CSed5AklK1asgBEj4K9/9QV2\nZ54JP/uZL0AMNS9X6ywk/VHSK5JelvSYpJYFt9WLzY+qW9grbRF/uioT/557em2pZ5/18Y0uXaBD\nB++y+vjj4sW4NpMnT2bVKhg3zpNXq1a+n8eVV8Krr3oyy3KiyPvvTlWk2Q11pZntaWZ7A48AA6F+\nbX6U91+4iD9dVYl/xx19uu2CBb4SvGQhW7du/q3+tdeKu17j44+9W+wPf5hM69ZeFXbvvWHmTC/L\n3rVrPsYk8v67UxWpTTwzsy8KDtcHSsqjfb35EfBOUkOqA/CdqrMhhKpp2NA/mLt2hU8/hccf92/5\n11/vs6k6d/b1C9//vl+23LLyH+IrVsC8efDGG/D00zBlCsydCz/+se8r8dRTvqgw5EOqs5QlXQac\nCHwCHJyc3gaYWnC32PwohCLaeGOvMXXMMd6qePNNmDjRu4P+8x/f4rVhQ9h1V98vvEULv2yyiXcV\nLV/+zWXZMt+Rbu5cL0Pyve/BLrt4grjxRl8T0qQJDBoUiSJvijrAXZHNj5L7nQs0M7NBkq4HpprZ\nsOS2fwGPmtl/ynj+GN0OIYQqqOwAd1FbFmZ2WAXvOgwftxiEtyQKd8ltnZwr6/lz0LsZQgj5l+Zs\nqMJG6FHAG8n12PwohBAyJs0xiysk7YIPbM8Hfg1gZjMljQBm4psfnRKLKUIIIV25XpQXQgihduS2\n3IekbpLekDQnGSDPNEm3SVos6dWCcy0kjZM0W9JYSRunGePaSGotaaKk1yXNkHRacj4v8TeV9Gyy\nAHSGpJI1PbmIv4SkBpJekjQ6Oc5N/JLeKViE+1xyLk/xbyxpZLJQ+HVJ++Ylfkm7JO/7S8m/n0o6\nrbLx5zJZSGoA3AB0BfYAjpe0W7pRlesOPN5C5wETzGxXYCJwfq1HVTGrgDPNbA/gx8Bvk/c7F/Gb\n2ZfAwckC0L2A7pI6kJP4C5yOd8+WOA+YAIwEOgIL0wiqgtYAncxsbzPrkJzL0/t/HT4rsy2wJz7G\nmov4zWxO8r63B/YBlgEPUNn4zSx3F2A/YEzB8XnAuWnHVYG42wCvFhy/AWyVXG8JvJF2jBX8fzwI\ndC5G/EB/4NXkF3oRcBOwcSUe/zZwyDpubw68APyoIvGX93y1+J63BsYDnYDRBb8/ewPL8YoHmf39\nSd7HzUqdy8XvP7ARMK+M87mIv1TMXYAnqxJ/LlsW+CK9dwuOF5LPhXtbmtliADP7ANgy5XjKJel7\n+LfzafgvWo3FL+ks4C/AWfgf6H54gh0vqVqTMZIunJeBD4DxZvZ8TcdfZNcC5+DrlEpshVc/WGJm\ns6hk/JJqs46r4T/H5yWdnJzLy/u/PbBE0h1JV84tkpqTn/gLHYcvVYBKxp/XZFFXZXq2gaQNgPuA\n083LtZSOt8rxS9oQX2fzOzMbb2arzWwBXifse8AJyf3ukPTHgscdJOnd5PrdwHbAQ5I+k3S2pDaS\n1gC/xP8YvgCOlbQHYKWez8p7vjLinizp6OR6R0lrJHVPjg9JEhSSdpD0uKQlkv4r6R5JGyW3/UHS\nyFLPe52kvyXXjwV2Bx7Fu5x2lSR8NuM4oJWkz/BWE5J6SnpN0tJkrGm3gud9O3m9V4AvJDVMzp2d\njCl8LulWSVtKejT5f4+rgf74jubdID3wbswDqMHfnyJrBLQHbkz+D8vw3oy8xA+ApMZ4OaWS37VK\nxZ/XZPEe/kdcYq0L9zJusaStAORVd/+bcjxrlXyzvw8YYmajktM1Gf9PgKZ4X+rXzGwZ/iG5rgWe\nltz3RGABcISZbWRmVxfcpxOwI94M3xr4HbAYWK+M+CvyfCWmJM8NcCAwL/kX4CBgcnJdwJ/x5n5b\n/Hd2UHLbv/FxlPWTWBoAvYGhye2X47/vX+J9/zsBz+At6p/h3XW7AG/Lp6MPA04DtgDG4MmusGXW\nFy/SuYmZrU7OHQMcmjxPT/w9Pw/YHGiYPF+Vmdn7yb8f4t2YHcjP7/9C4F0zeyE5vh9PHnmJv0R3\n4EUzW5IcVyr+vCaL54Gdkm+NTfBf/tEpx1QRSi4lRuN99AD9gFGlH5AhtwMzzey6gnM1Gf/meHfK\nmjJuez+5vaLKWtl/tZn9D/8w/xjvWhgN7Jzcvq7411UpYAqeFMCTxF8Kjg9KbsfM5pnZ42a2ysw+\nwruVDkpuWwC8BBydPO5QYJmZPZ/8MbcBNjez7fFuhJeBFcBDQLdS8fcBHjaziUkiuBpohifjEteZ\n2SLzgf8S15vZkuRD/UngWTN71cy+whP43ut4D9ZJUvOkVUqSELsAM8jJ73/SVfNukojBfz6vk5P4\nCxwPDC84rlT8udzu3MxWS/od3gRvANyW9NlmlqRh+DfQzSQtwEuyXwGMlDQAX5jYJ70I105SR+Dn\nwIykW8WAC4DBwIgain8JsLmkBmUkjK2T26vKgNuTrpsG+IdtQzz+XwCn4B/WffCZLpUxFdhF0pbJ\nY48ELpW0Gf7t+QmA5PbrgAOADZLXX1rwPMPxP+Z7kn9L+pW3AxoD73v4NMZbQ7Pw359x+PtzaBL/\nn/Gfhf/HzSzpVisc0ytr1tTigusryjjeoNx3Yu22Ah6Q13JrBAw1s3GSXqDmfn+K7TRgaNKV8xZw\nEv4zzEX8yRhLZ+BXBacr9feby2QBYGaPAbumHUdFmdnP1nJT51oNpArM7Gn8D6MsNRX/VLyb5Ri8\nuwv4epykO94lAt5f3LzgcVuXep6y+l0FHGdmc5LnvAKfmbNU0n+A/5nZ2cltFXm+b240WyHpRXxa\n62tmtkrSVOBM4E0zK0kIf8a7kPYws08l9QKuL3iqkcDVkrbBWxj7JeffBf6XxPudWJJJAUPMrEty\nvAj4fqnyGrvRAAAW6klEQVS7bcu3E0St9q2b2dv4pIjS55eSg99/ADN7BZ9BV1pe4l+Od0sWnqvU\n+5/XbqhQx5jZZ8AfgesldZXUSD7z6l583OCe5K7TgR7yBUUt8Q/pQh8AO5TxEhdLapYMbJ+EjxNU\n5/kKPYGPgUxJjieXOgbYEB9c/zxJCOcUPkHSjzwFX4/zlpnNTs5/gLcerpW0odwOkg6kbCOAwyUd\nnLyHZ+PJZupa7h9ChUSyCJlhZlfh3VtXA5/iH3Dzgc5mtjK52xB8HcY7wGN886Ff4go8MSyVdGbB\n+SnAm/hahSvN7PFqPl+hKXg3zROljguTxaX4gqhP8LGG+8t4nmF4d9LQUudPBJrgC/KW4q2QlpQh\naT2dgC9a/RA4HDjSfDMxKLtVkatZPSEdmagNlcz+eAFYaGY9JbXAv1G2wf+I+5jZpymGGHJKUhu8\nj7nxWgbPQwgVkJWWRZllDCzjy+hDbsS+JyFUU+rJQlJrfKHOvwpO9wLuSq7fhe93EUJVpd98DiHn\nUk8WrKWMQQ6X0YcMMrP5ZtYwuqBCqJ5Up85KOhxYbGbTJXVax13L/Gao2IM7hBCqxCq5LXXaLYuO\nQE9Jb+GLkg6RNAT4oKLL0ItVnbEmLwMHDkw9hogz4sxznHmIMU9xVkWqycLMLjCz7cxsB7xkx0Qz\n+wU+tbB/crc8LKMPIYQ6Le2WxdpcARwmaTY+7/yKlOMJIYR6LTPlPsxsCt8UXctNGYCK6NSpU9oh\nVEjEWbMizpqThxghP3FWRSYW5VWVJMtz/CGEkAZJWM4GuEMIIeRAJIsQQgjlimQRQgihXKkmC0lN\nJT0r6WVJMyQNTM63SPb9nS1pbA3s/xtCCKEaUh/gltTczJZLagg8je9I9VPgIzO7UtK5QAszO6+M\nx8YAdwghVFIuB7jNd3ACaIpP5TWikGAIIWRK6slCUoNkX+cPgPFm9jxRSDCEEDIl9UV55tVA95a0\nEb6p+x5UYueuQYMGfX29U6dOdXpRTAghVMXkyZOZPHlytZ4j9TGLQpIuBpYDJwOdzGxxUkhwkpm1\nLeP+MWYRQgiVlLsxC0mbl8x0ktQMOAyYBYwmCgmGEEJmpNqykPQDfAC7QXK518wul7QpMALYFpiP\n78H9SRmPj5ZFCCFUUlVaFpnqhqqsSBYhhFB5ueuGCiGEkA+RLEIIIZQrkkUIIYRypT0bqrWkiZJe\nT2pDnZacj9pQIYSQIWnPhmoJtDSz6ZI2AF7ES32cRNSGCiGEosjdALeZfWBm05PrX+BrLFoTtaFC\nCCFTUi/3UULS94C9gGmUqg0lKZO1oV59FW69Fd57L+1I0tGgAWyzDeywg1923BHatgVV6vtKCCEP\nMpEski6o+4DTzewLSRWuDVXbvvoK7r8fbrwR3nkHfvUrOPjgtKNKx6pVsHAhzJ0LY8fCa6/B7rvD\n7bdDq1ZpRxdCqEmpJwtJjfBEMcTMSsp6LJa0VUFtqP+u7fG1WUhw4kTo3x923hnOPBN69oRGqb+D\n2bFyJVx+ObRv78n0pz9NO6IQAtSRQoKS7gaWmNmZBecGA0vNbHAWBrhXroSBA+HOO+GOO6Br16K/\nZK49+yyccAJ07Ah//ztstFHaEYUQCuVugFtSR+DnwCHJ1qovSeoGDAYOkzQbOBS4Iq0Y33oLDjgA\npk/3SySK8u27L7z8MjRpAvvs4+9bCCHfUm9ZVEexWxb/+Q/8+tdwwQVw2mk+oBsqZ/hwf+8uu8zH\nd2LwO4T0RSHBGrJyJZx/Ptx3n19++MMaf4l6ZfZs6N0bfvAD+Oc/YYMN0o4ohPotd91QWfT++3Do\nofD66/Dii5EoasKuu8K0adCsGXToAHPmpB1RCKGyIlkUePppTw6dO8Mjj8Bmm6UdUd3RvDn8619w\nxhmw//7w8MNpRxRCqIzohkrcdpt3Pd15J/ToUSNPGdZi6lTvlioZD4qxoBBqVy7HLCTdBhwBLDaz\ndsm5FsC9QBvgHXynvE/LeGy1k8WqVXDWWfDYYzB6tHeZhOJbtAiOPRZatoQhQ2D99dOOKIT6I69j\nFncApSekngdMMLNdgYnA+cV44aVLoXt3H4B99tlIFLWpVSuYNAk22cS7pRYuTDuiEMK6lJssJP1Y\n0o2SXpX0oaQFkh6V9NuaKB1uZk8BH5c6XfRCgnPnwn77Qbt2Pj6xySY1/QqhPE2bevffz37mP4vn\nn087ohDC2qwzWUgaA5wMjAW6AVsDuwMXAesBoyT1LEJcWxYWEgRqtJDgk0/6Qruzz4ZrroGGDWvy\n2UNlSHDOOV4e5PDDYeTItCMKIZSlvMpGvzCzJaXOfQG8lFyukbR5USL7trUOTFS2NtSQIT5GMXQo\nHHZYTYUXqqtXL2jTxv996y34wx9iAV8INaXotaEk3QgMM7Onq/Uq5QUhtQEeKhjgngV0KigkOMnM\n2pbxuAoPcJvBoEGeLB5+2KujhuxZtMhbGB06eGsjCjWGUPOKMcA9B7ha0juSrpS0d9XDWycllxKj\ngf7J9X7AqNIPqIyVK2HAABgzxqdtRqLIrlat4IknYMECOPJI+PzztCMKIUAFp84m3/z7JpdmwHBg\nuJlVey2upGFAJ2AzYDEwEHgQGAlsC8zHp85+UsZjy21ZfPaZT9Fcbz2vUxRTNPNh1Sr47W99ltqj\nj8b+GCHUpFpZZ5G0Lm4H2plZqkPD5SWL997zLo2f/MRLZUeXRr6YwRVXeD2pMWN8F74QQvUVbZ2F\npEaSjpQ0FBgDzAaOqUKMtWbWLN9P4bjjou87ryRfVf/HP/puhE8XdeQshLAu5Q1wHwYcD/QAngP+\nDYwys2W1E966ra1l8cwzcMwxcNVV8ItfpBBYqHFjx/rP8pZb4KgaX3UTQv1S491Qkibi4xP3mVnp\nhXOpKytZjB4NJ5/ss55io6K65cUXfdD7kku8rlQIoWqKkSw2NLN1zkeRtIGZfVGZF60ppZPFrbf6\n9qejR0dp8bpq3jz/EnDCCf6zjrUYIVReMcYsHpR0jaQDJX09j0jSDpJ+KalkZXdRSOom6Q1Jc5K9\nuMtkBn/6kw+GPvFEJIq6bMcdfezioYe8dbF6ddoRhVA/lDsbSlIPfJ/sjkALYBU+wP0o8K+kHEfN\nByY1wNd5HAosAp4H+prZGwX3sVWrjNNP9w+QMWO8immo+z7/HI4+GjbaCIYN86nRIYSKyWWJ8rWR\ntB8w0My6J8fnAWZmgwvuY717G0uWwIMP+gdHqD++/BL69/dV36NGRTHIECqqmFNnH6/IuRq2DfBu\nwfHC5Ny3mPmirUgU9U/Tpl7ja8894aCDfEvcEEJxrHP1gaT1gObA5smGRCWZaCPK+OBOQ9u2g7ji\nCr9ekUKCoW5p0ACuu87Hqzp29Cm2O++cdlQhZEttFBI8Hfg90AofNyjxGXCrmd1QrVdfV2DeDTXI\nzLolx2V2Q2W1Gy3Uvn/9Cy6+2Ae/Y5JDCGtXtDELSaea2fVVjqwKJDXEB9IPBd7HFwUeb2azCu4T\nySJ8y6hRvs5m6FDo0iXtaELIpqoki4oWwfhU0omlT5rZ3ZV5scows9WSfgeMw8dWbitMFCGUpVcv\n2Gwz+OlP4dprfRe+EEL1VbRlUdiqWA//tv+SmR1brMAqIloWYW1eew169IAzzvBLCOEbtTZ1VtIm\nwL9LxhPSEskirMuCBdCtGxxxhA+AN6jQ3L8Q6r6iTZ0twzJg+yo+NoRasd12vt/600/DiSfCV1+l\nHVGoCatXwzXXwLJMlDOtPyq6zuIhSaOTyyP4wPMDxQ0thOrbbDOYMME/WHr08M2wQn6tWAG9e/vW\nyKtWpR1N/VLRMYuDCg5XAfPNbGG1Xlg6FhgEtAV+ZGYvFdx2PjAgea3TzWzcWp4juqFChaxeDaee\n6uXrY+e9fProI+jZE9q0gTvu8EWZoWqK1g1lZlOAN4AN8fpQNdGgnwEcDUwpPCmpLdAHTyLdgZuk\nqC0aqqdhQ98Eq08f3znx9dfTjihUxttv+6LL/feHe+6JRJGGinZD9cHXOfTGP8ifTVoGVWZms81s\nLt+sCi/RCx88X2Vm7wBzgQ7Vea0QwMuZX3CBVyg++GCYODHtiEJFvPCCJ4nf/Q4GD46JCmmp6DqL\nC/Guov8CSNoCmADcV4SYtgGmFhy/R0ZKi4S64Re/gG239S13r7wS+vVLO6KwNg88AL/6la/O79Ur\n7Wjqt4omiwYliSLxERVolUgaD2xVeAow4EIze6jCUYZQwzp1gsmT4fDD4a23YNCg2EgpS8zgr3/1\nhZWPPQb77JN2RKGiyeKxZKOj4cnxcfh+FutkZodVIab3gG0Ljlsn58o0aNCgr69HIcFQGW3bwtSp\nPmg6dy7cdhs0a5Z2VGHVKp+M8PTTPiFhu+3Sjij/aqOQ4I3AMDN7WtIxwP7JTU+aWY1MnZU0CTjb\nzF5MjncHhgL74t1P44Gdy5r2FLOhQk1YsQIGDPAWxoMPwtZbpx1R/fXxxz4JoVEjuPfe2HqgWIox\nG2oOcLWkd4D9gCFmdmZNJApJR0l6N3nehyWNATCzmcAIYCbeejklMkIopmbNfLe9I46AffeFl19O\nO6L66Y03/P1v184rB0eiyJaKrrNoA/RNLs3w7qjhZjanuOGVG1fkkVCjRo6EU06Bm2+GY1OtfFa/\njBnjEw0GD4aTTko7mrqvVmpDSdobuB1oZ2YNK/XgGhbJIhTDiy961dq+feHyy32NRigOM7j6ah/I\nHjnS11KE4ivmfhaN8AVyffGKs5PxlsWoKsRZYyJZhGL58ENPFo0aeRfVZpulHVHd8/nn3opYsADu\nuy8GsmtTjY9ZSDpM0u34/tf/D3gE2NHM+qadKEIopi228C1a27WDH/0Ipk9PO6K6ZdYs6NABNt/c\niz1Gosi+8mZDTQSGAfeb2ce1FlUFRcsi1IZ77/XVw5dd5gvEYj1G9YwYAb/9rS+IjPGJdNTafhY1\nQdKVwJHAl8A84CQz+yy5LQoJhkyZPdundLZtC7fcEjN1qmL5ct+I6vHHPQHHQrv01OZ+FjVhHLCH\nme2F1386H75eZxGFBEOm7LorTJsGm2wC7dvDSy+V/5jwjddf926nL77w9y4SRf6klizMbIKZrUkO\np+ErtQF6EoUEQwY1awb/+Id3R3Xt6rvvrV6ddlTZtmqVV/vt1AnOPtsrxkarLJ+yUr9xAN+UD9kG\neLfgtigkGDKlb1+vhDp2LBx4IMybl3ZE2WPmRQDbtfMupyefhP79Y7wnzypaG6pKKlJIUNKFwEoz\nG17GU5QrakOFNLRp433v113nq44vuQT23BMaN4YmTfzf+lpK+7334NJLfYzi6quhe/dIEmkrem2o\nYpPUH5+Se4iZfZmcOw8wMxucHD8GDDSzZ8t4fAxwh9TNnAkXXug7ua1c6ZevvvJv1/VR8+Zw2mlw\n/PH1N2FmXd5mQ3UDrgEONLOPCs5HIcEQQiiiqiSLonZDleN6oAkwPpnsNM3MTjGzmZJKCgmuJAoJ\nhhBC6lLthqquaFmEEELl5W2dRQghhJyIZBFCCKFckSxCCCGUK5JFCCGEcqWWLCT9UdIrkl6W9Jik\nlgW3nS9prqRZkrqkFWMIIQSX5jqLDczsi+T6qcDuZvabgnUWP8LrRU0g1lmEEEKNydVsqJJEkVgf\nKCkqGIUEQwghY9JclIeky4ATgU+Ag5PT2wBTC+4WhQRDCCFlqRYSNLOLgIsknQucCgyq7GtEIcEQ\nQli33BcS/DoIaVvgETNrF4UEQwihuHI1ZiFpp4LDo4A3kuujgb6SmkjaHtgJeK624wshhPCNNMcs\nrpC0Cz6wPR/4NUAUEgwhhOzJRDdUVUU3VAghVF6uuqFCCCHkRySLEEII5YpkEUIIoVypJwtJZ0la\nI2nTgnNRGyqEEDIk1WQhqTVwGD4bquRcW6AP0BboDtykZN/VvKruYpjaEnHWrIiz5uQhRshPnFWR\ndsviWuCcUud6UcdqQ+XlFyjirFkRZ83JQ4yQnzirIs1FeT2Bd81sRqmbtgHeLTiO2lAhhJCytGpD\nXQRcgHdBhRBCyLhUFuVJ+j6+T8VyPIG0xlsQHYABAGZ2RXLfddaGqq2YQwihLqnsorxMrOCW9DbQ\n3sw+Ltj8aF+8+2k8a9n8KIQQQu1IdT+LAoa3MKI2VAghZFAmWhYhhBCyLe2ps1UmqZukNyTNSTZP\nygRJt0laLOnVgnMtJI2TNFvSWEkbpxxja0kTJb0uaYak0zIaZ1NJz0p6OYlzYBbjLCGpgaSXJI1O\njjMXp6R3JL2SvKfPZTjOjSWNTBbmvi5p36zFKWmX5H18Kfn3U0mnZTDOMyS9JulVSUOT7R8qHWMu\nk4WkBsANQFdgD+B4SbulG9XX7sDjKnQeMMHMdgUmAufXelTftgo408z2AH4M/DZ5/zIVp5l9CRxs\nZnsDewHdJXUgY3EWOB3vPi2RxTjXAJ3MbG8zK1m/lMU4rwMeNbO2wJ74fjeZitPM5iTvY3tgH2AZ\n8AAZilNSK3wX0vZm1g4feji+SjGaWe4uwH7AmILj84Bz046rIJ42wKsFx28AWyXXWwJvpB1jqXgf\nBDpnOU6gOfAC8KMsxonP6BsPdAJGZ/XnDrwNbFbqXKbiBDYC5pVxPlNxloqtC/Bk1uIEWuEVMlok\niWJ0Vf/Wc9my4LsL9xaS7YV7W5rZYgAz+wDYMuV4vibpe/i39mn4L0+m4ky6dl4GPgDGm9nzZDBO\nvqlGUDgImMU4DRgv6XlJJyfnshbn9sASSXckXTy3SGpO9uIsdBwwLLmemTjNbBFwDbAAX57wqZlN\nqEqMeU0WeZeJWQWSNgDuA043sy/4blypx2lma8y7oVoDHSTtQcbilHQ4sNjMppPM6luL1N9PoKN5\nt0kPvPvxADL2fuLfgNsDNyaxLsN7D7IWJwCSGgM9gZHJqczEKWkTvIRSG7yVsb6kn5cRU7kx5jVZ\nvAdsV3BcsqgvqxZL2gpAUkvgvynHg6RGeKIYYmajktOZi7OEmX0GTAa6kb04OwI9Jb0FDAcOkTQE\n+CBjcWJm7yf/foh3P3Yge+/nQrwU0AvJ8f148shanCW6Ay+a2ZLkOEtxdgbeMrOlZrYaH1P5SVVi\nzGuyeB7YSVIbSU2AvnhfXFaIb3/DHA30T673A0aVfkAKbgdmmtl1BecyFaekzUtmaUhqhpeHmUXG\n4jSzC8xsOzPbAf9dnGhmvwAeIkNxSmqetCaRtD7ezz6D7L2fi4F3Je2SnDoUeJ2MxVngePxLQoks\nxbkA2E/SepKEv5czqUqMaQ8MVWPgphswG69Ke17a8RTENQxYBHyZ/KBOwgeXJiTxjgM2STnGjsBq\nYDrwMvBS8n5umrE4f5DENh14FbgwOZ+pOEvFfBDfDHBnKk58LKDkZz6j5O8ma3EmMe2JfymcDvwH\n2DijcTYHPgQ2LDiXqTiBgfiXrFeBu4DGVYkxFuWFEEIoV167oUIIIdSiSBYhhBDKFckihBBCuSJZ\nhBBCKFckixBCCOWKZBFCCKFckSxCqKSkfPZv0o4jhNoUySKEymsBnFKROya1eULIvUgWIVTeX4Ad\nkoqog8u574OSHpR0pKSGtRFcCMUQK7hDqCRJbYCHzDeTqcj9DwR+ie/DMhK4w8zmFTHEEGpctCxC\nKDIze8LM+gE/TE69IenoNGMKobIapR1ACHkm6TLgcHw/gB8CLybXR5vZoOQ+6wFHAwPwgnin4rvq\nhZAb0Q0VQiVJ2hTfv2D7Ctx3MHAs8Ahwm5m9Uuz4QiiGSBYhVIGke4B2+F7w567jft3w/S2+qrXg\nQiiCSBYhhBDKFQPcIYQQyhXJIoQQQrkiWYQQQihXJIsQQgjlimQRQgihXJEsQgghlCuSRQghhHJF\nsgghhFCu/w+ip4Q9s46W/wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f8a73eeb3c8>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "from math import sin\n",
+ "from math import pi\n",
+ "\n",
+ "VZ1=20; #Assumed zener voltage, V\n",
+ "VF1=0.7; #Assumed forward biasing voltage of the zener diode, V\n",
+ "VZ2=20; #Assumed zener voltage, V\n",
+ "VF2=0.7; #Assumed forward biasing voltage of the zener diode, V\n",
+ "Vin=[]; #Input voltage waveform, V\n",
+ "for t in range(0,(int)(2*pi*10)): #time interval from 0s to 151s\n",
+ " Vin.append(30*sin(t/10.0));\n",
+ " \n",
+ "plt.subplot(211)\n",
+ "plt.plot(Vin);\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vin(V)');\n",
+ "plt.title('Input waveform');\n",
+ "\n",
+ "\n",
+ "vout=[]; #Output voltage waveform, V\n",
+ "for v in Vin[:]: #Loop iterating input voltage \n",
+ " if(v<=-(VZ1+VF2)):\n",
+ " vout.append(-(VZ1+VF2)); #Zener diode forward biased, \n",
+ " elif(v>=VZ2+VF1):\n",
+ " vout.append(VZ2+VF1); #Input voltage exceeds zener voltage\n",
+ " else:\n",
+ " vout.append(v); #Zener diode reverse biased\n",
+ "plt.subplot(212)\n",
+ "plt.plot(vout); \n",
+ "plt.xlim([0,80])\n",
+ "plt.ylim([-40,40])\n",
+ "plt.xlabel('t-->');\n",
+ "plt.ylabel('Vout(V)');\n",
+ "plt.title('Output waveform');\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter19_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter19_3.ipynb
new file mode 100644
index 00000000..2da379bc
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter19_3.ipynb
@@ -0,0 +1,1671 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 19 : FIELD EFFECT TRANSISTORS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.1 : Page number 515"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ID=12[1 + VGS/5]²mA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_DSS=12.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=-5.0; #Gate-source cut-off voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"ID=%d[1 + VGS/%d]²mA.\"%(I_DSS,abs(V_GS_off)));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.2 : Page number 515"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drain current=6.12mA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_DSS=32.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=-8.0; #Gate-source cut-off voltage, V\n",
+ "V_GS=-4.5; #Gate-source voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_D=I_DSS*(1-(V_GS/V_GS_off))**2; #Drain current mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The drain current=%.2fmA.\"%I_D);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.3 : Page number 515"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) VGS=-1.76V.\n",
+ "(ii) VP=6V\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_DSS=10.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=-6.0; #Gate-source cut-off voltage, V\n",
+ "I_D=5.0; #Drain current mA\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#Since, I_D=I_DSS*[1 - (V_GS/V_GS_off)]²\n",
+ "V_GS=V_GS_off*(1-sqrt(I_D/I_DSS)); #Gate-source voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "V_P=-V_GS_off; #Pinch-off voltage, V \n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) VGS=%.2fV.\"%V_GS);\n",
+ "print(\"(ii) VP=%dV\"%V_P);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.4 : Page number 515-516"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The minimum value of VDD required =10.72V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_GS_off=-4.0; #Gate-source cut-off voltage, V\n",
+ "I_DSS=12.0; #Shorted gate drain current, mA\n",
+ "R_D=560.0; #Drain resistor, Ω\n",
+ "\n",
+ "#Calculation\n",
+ "V_P=-V_GS_off; #Pinch-off voltage, V\n",
+ "V_DS=V_P; #Minimum drain-source voltage for JFET to be in constant current region, V\n",
+ "I_D=I_DSS; #Maximum drain current, mA (V_GS=0)\n",
+ "V_RD=(I_D/1000)*R_D; #Voltage across drain resistor, V (OHM's LAW)\n",
+ "V_DD=V_DS+V_RD; #Minimum value of supply voltage to drain, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The minimum value of VDD required =%.2fV.\"%V_DD);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.5 : Page number 516"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drain current=1.33mA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_DSS=3.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=-6.0; #Gate-source cut-off voltage, V\n",
+ "V_GS=-2.0; #Gate-source voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_D=I_DSS*(1-(V_GS/V_GS_off))**2; #Drain current mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The drain current=%.2fmA.\"%I_D);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.6 : Page number 516"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "p-channel JFET requires a positive gate-to-source voltage to pass drain current.\n",
+ "More positive voltage, the less the drain current. \n",
+ "Any further increase in VGS keeps the JFET cut-off. Therefore, ID=0A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VGS_off=4; #Gate-source cut-off voltage, V\n",
+ "VGS=6; #Gate source voltage, V\n",
+ "\n",
+ "print(\"p-channel JFET requires a positive gate-to-source voltage to pass drain current.\");\n",
+ "print(\"More positive voltage, the less the drain current. \");\n",
+ "print(\"Any further increase in VGS keeps the JFET cut-off. Therefore, ID=0A.\");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.7 : Page number 517-518"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The gate to source resistance=15000MΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_GS=15.0; #Gate-source voltage, V\n",
+ "I_G=1e-03; #Gate current, μA\n",
+ "\n",
+ "#Calculation\n",
+ "R_GS=(V_GS/(I_G*10**-6))/10**6; #Gate to source resistance, MΩ (OHM's LAW)\n",
+ "\n",
+ "#Result\n",
+ "print(\"The gate to source resistance=%dMΩ.\"%R_GS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.8 : Page number 518"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Transconductance=3000 μ mho\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "#Variable declaration\n",
+ "V_GS_max=-3.1; #Maximum gate to source voltage, V\n",
+ "V_GS_min=-3.0; #Minimum gate to source voltage, V\n",
+ "I_D_max=1.3; #Maximum drain current, mA\n",
+ "I_D_min=1.0; #Minimum drain current, mA\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "delta_V_GS=abs(V_GS_max-V_GS_min); #Change in gate to source voltage, V\n",
+ "delta_I_D=I_D_max-I_D_min; #Change in drain current, mA\n",
+ "g_fs=(delta_I_D/delta_V_GS)*1000; #Transconductance, μ mho\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Transconductance=%.0f μ mho\"%g_fs);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.9 : Page number 518"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VGS= 0V 0V -0.2V\n",
+ "VDS= 7V 15V 15V\n",
+ "ID = 10V 10.25V 9.65V\n",
+ "(i) The a.c drain resistance=32kΩ.\n",
+ "(ii) The transconductance=3000 μ mho.\n",
+ "(iii) The amplification factor=96.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_GS=[0,0,-0.2]; #Readings of Gate-source voltage, V\n",
+ "V_DS=[7,15,15]; #Readings of Drain-source voltage, V\n",
+ "ID=[10,10.25,9.65]; #Readings of drain current, mA\n",
+ "\n",
+ "\n",
+ "#Displaying the readings:\n",
+ "print(\"VGS= %dV %dV %.1fV\"%(V_GS[0],V_GS[1],V_GS[2]));\n",
+ "print(\"VDS= %dV %dV %dV\"%(V_DS[0],V_DS[1],V_DS[2]));\n",
+ "print(\"ID = %dV %.2fV %.2fV\"%(ID[0],ID[1],ID[2]));\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "#V_GS constant at 0V,\n",
+ "delta_VDS=V_DS[1]-V_DS[0]; #Change in drain-source voltage, V\n",
+ "delta_ID=ID[1]-ID[0]; #Change in drain current, mA\n",
+ "rd=delta_VDS/delta_ID; #a.c drain resistance, kΩ\n",
+ "\n",
+ "#(ii)\n",
+ "#V_DS constant at 15V,\n",
+ "delta_VGS=V_GS[2]-V_GS[1]; #Change in gate-source voltage, V\n",
+ "delta_ID=ID[2]-ID[1]; #Change in drain current, mA\n",
+ "g_fs=round((delta_ID/delta_VGS)*1000,); #Transconductance, μ mho\n",
+ "\n",
+ "#(iii)\n",
+ "amplification_factor=rd*1000*g_fs*10**-6; #Amplification factor\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The a.c drain resistance=%dkΩ.\"%rd);\n",
+ "print(\"(ii) The transconductance=%d μ mho.\"%g_fs);\n",
+ "print(\"(iii) The amplification factor=%d.\"%amplification_factor );\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.10 : Page number 519"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The transconductance=2500 μS.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "g_mo=4000.0; #Maximum transconductance, μS\n",
+ "V_GS=-3.0; #Gate to source voltage, V\n",
+ "V_GS_off=-8.0; #Gate-source cut-off voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "g_m=g_mo*(1-(V_GS/V_GS_off)); #Transconductance, μS\n",
+ "\n",
+ "#Result\n",
+ "print(\"The transconductance=%d μS.\"%g_m);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.11 : Page number 519"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The transconductance=1667 μS.\n",
+ "The drain current=333 μA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "g_mo=5000.0; #Maximum transconductance, μS\n",
+ "V_GS=-4.0; #Gate to source voltage, V\n",
+ "V_GS_off=-6.0; #Gate-source cut-off voltage, V\n",
+ "I_DSS=3.0; #Shorted-gate drain current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "g_m=g_mo*(1-(V_GS/V_GS_off)); #Transconductance, μS\n",
+ "I_D=(I_DSS*(1-(V_GS/V_GS_off))**2)*1000; #Drain current μA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The transconductance=%.0f μS.\"%g_m);\n",
+ "print(\"The drain current=%d μA.\"%I_D);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.12 : Page number 520"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The gate-source voltage=-5V.\n",
+ "The drain current=2.25mA.\n",
+ "The drain-source voltage=5.05V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_GS_off=-8.0; #Gate-source cut-off voltage, V\n",
+ "I_DSS=16.0; #Shorted-gate drain current, mA\n",
+ "R_D=2.2; #Drain resistor, kΩ\n",
+ "R_G=1.0; #Gate resistor, MΩ\n",
+ "V_DD=10.0; #Drain supply voltage, V\n",
+ "V_GG=-5.0; #Gate supply voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_GS=V_GG; #Gate-source voltage, V\n",
+ "I_D=I_DSS*(1-(V_GS/V_GS_off))**2; #Drain current μA\n",
+ "V_DS=V_DD-I_D*R_D; #Drain-source voltage, V (Kirchhoff's voltage law)\n",
+ "\n",
+ "#Result\n",
+ "print(\"The gate-source voltage=%dV.\"%V_GS);\n",
+ "print(\"The drain current=%.2fmA.\"%I_D);\n",
+ "print(\"The drain-source voltage=%.2fV.\"%V_DS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.13 : Page number 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drain-source voltage=7.65V.\n",
+ "The gate-source voltage=-2.35V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_D=5.0; #Drain current mA\n",
+ "V_DD=15.0; #Drain supply voltage, V\n",
+ "V_G=0; #Gate voltage, V\n",
+ "R_D=1.0; #Drain resistor, kΩ\n",
+ "R_S=470.0; #Source resistor, Ω\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_S=(I_D/1000)*R_S; #Source voltage, V (OHM's LAW)\n",
+ "V_D=V_DD-I_D*R_D; #Drain voltage, V (Kirchhoff's voltage law)\n",
+ "V_DS=V_D-V_S; #Drain-source voltage, V\n",
+ "V_GS=V_G-V_S; #Gate-source voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The drain-source voltage=%.2fV.\"%V_DS);\n",
+ "print(\"The gate-source voltage=%.2fV.\"%V_GS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.14 : Page number 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The required source resistor=800 Ω.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_GS=-5.0; #Gate-source voltage, V\n",
+ "I_D=6.25; #Drain current mA\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "R_S=abs(V_GS/(I_D/1000)); #Required source resistor, Ω (OHM's LAW)\n",
+ "\n",
+ "#Result\n",
+ "print(\"The required source resistor=%d Ω.\"%R_S);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.15 : Page number : 521"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The source resistance=450Ω.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_DSS=25.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=15.0; #Gate-source cut-off voltage, V\n",
+ "V_GS=5.0; #Gate-source voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_D=I_DSS*(1-(V_GS/V_GS_off))**2; #Drain current mA\n",
+ "R_S=V_GS/(I_D/1000); #Required source resistor, Ω (OHM's LAW)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The source resistance=%.0fΩ.\"%R_S);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.16 : Page number 522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " RS=313 Ω and RD=800 Ω.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_DSS=15.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=-8.0; #Gate-source cut-off voltage, V\n",
+ "V_DD=12.0; #Drain supply voltage,V\n",
+ "V_D=V_DD/2; #Drain voltage(half of V_DD), V\n",
+ "\n",
+ "#Calculation\n",
+ "I_D=I_DSS/2; #Drain current(approximately half of I_DSS), mA\n",
+ "V_GS=V_GS_off/3.4; #Gate-source voltage, V\n",
+ "R_S=abs(V_GS/(I_D/1000)); #Source resistor, Ω (OHM's LAW)\n",
+ "#Since,V_D=V_DD-I_D*R_D; \n",
+ "R_D=(V_DD-V_D)/(I_D/1000); #Drain resistor, Ω (OHM's LAW)\n",
+ "\n",
+ "#Result\n",
+ "print(\" RS=%d Ω and RD=%d Ω.\"%(R_S,R_D));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.17 : Page number 522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The source resistance=0.6 kΩ\n",
+ "The drain resistance=6 kΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_DSS=5.0; #Shorted gate drain current, mA\n",
+ "V_GS_off=-2.0; #Gate-source cut-off voltage, V\n",
+ "V_DS=10.0; #Drain-source voltage,V\n",
+ "I_D=1.5; #Drain current, mA\n",
+ "V_DD=20.0; #Drain supply voltage,V\n",
+ "V_G=0; #Gate voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Drain current, I_D=I_DSS*(1-(V_GS/V_GS_off))**2; \n",
+ "V_GS=V_GS_off*(1-sqrt(I_D/I_DSS)); #Gate-source voltage, V\n",
+ "\n",
+ "#Since, V_GS=V_G-V_S,\n",
+ "V_S=V_G-V_GS; #Source voltage, V\n",
+ "\n",
+ "R_S=V_S/I_D; #Source resistor, kΩ\n",
+ "\n",
+ "#Since, V_DD=I_D*R_D +V_DS+ I_D*R_S,\n",
+ "R_D=(V_DD-I_D*R_S-V_DS)/I_D; #Drain resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "print(\"The source resistance=%.1f kΩ\"%R_S);\n",
+ "print(\"The drain resistance=%d kΩ.\"%R_D);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.18 : Page number 522-523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drain-source voltage=17V.\n",
+ "The gate-source voltage=-0.5V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_DD=30.0; #Drain supply voltage, V\n",
+ "R_D=5.0; #Drain resistor, kΩ\n",
+ "I_D=2.5; #Drain current, mA\n",
+ "R_S=200.0; #Source resistor, Ω\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "V_DS=V_DD-I_D*(R_D+(R_S/1000)); #Drain-source voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "V_GS=-(I_D/1000)*R_S; #Gate-source voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The drain-source voltage=%dV.\"%V_DS);\n",
+ "print(\"The gate-source voltage=%.1fV.\"%V_GS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.19 : Page number 523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "drain voltage of 1st stage=12.37V.\n",
+ "Source voltage of 1st stage=1.46V.\n",
+ "drain voltage of 2nd stage=11.7V.\n",
+ "Source voltage of 2nd stage=2.01V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "ID_1=2.15; #First stage drain current, mA\n",
+ "ID_2=9.15; #Second stage drain current, mA\n",
+ "VDD=30; #Drain supply voltage, V\n",
+ "RS_1=0.68; #Source resistance of 1st stage, kΩ\n",
+ "RS_2=0.22; #Source resistance of 2nd stage, kΩ\n",
+ "RD_1=8.2; #Drain resistor of 1st stage, kΩ\n",
+ "RD_2=2; #Drain resistor of 2nd stage, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "V_RD1=ID_1*RD_1; #Voltage drop across 8.2kΩ\n",
+ "VD_1=VDD-V_RD1; #Drain voltage of 1st stage, V\n",
+ "VS_1=ID_1*RS_1; #D.C potential of source of first stage, V\n",
+ "V_RD2=ID_2*RD_2; #Voltage drop across 2kΩ\n",
+ "VD_2=VDD-V_RD2; #Drain voltage of 2nd stage, V\n",
+ "VS_2=ID_2*RS_2; #D.C potential of source of 2nd stage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"drain voltage of 1st stage=%.2fV.\"%VD_1);\n",
+ "print(\"Source voltage of 1st stage=%.2fV.\"%VS_1);\n",
+ "print(\"drain voltage of 2nd stage=%.1fV.\"%VD_2);\n",
+ "print(\"Source voltage of 2nd stage=%.2fV.\"%VS_2);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.20 : Page number 524"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drain current=1.52mA.\n",
+ "Gate-source voltage=-1.2V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=12; #Drain supply voltage, V\n",
+ "VD=7; #Drain voltage, V\n",
+ "R1=6.8; #Resistor R1, MΩ\n",
+ "R2=1; #Resistor R2, MΩ\n",
+ "RS=1.8; #Source resistance, kΩ\n",
+ "RD=3.3; #Drain resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "ID=(VDD-VD)/RD; #Second stage drain current, mA\n",
+ "VS=ID*RS; #Source voltage, V\n",
+ "VG=VDD*R2/(R1+R2); #Drain voltage, V\n",
+ "VGS=VG-VS; #Drain-source voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "print(\"Drain current=%.2fmA.\"%ID);\n",
+ "print(\"Gate-source voltage=%.1fV.\"%VGS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.21 : Page number 524-525"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Source resistor, RS=5kΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VDD=30; #Drain supply voltage, V\n",
+ "ID=2.5; #Drain current, mA\n",
+ "VDS=8; #Drain-source voltage, V\n",
+ "VGS_off=-5; #Gate-source cutoff voltage, V\n",
+ "R1=1; #Resistor R1, MΩ\n",
+ "R2=500; #Resistor R2, kΩ\n",
+ "IDSS=10; #Shorted gate drain current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#ID=IDSS*square_of(1-(VGS/VGS_off))\n",
+ "VGS=VGS_off*(1-sqrt(ID/IDSS)); #Gate-source voltage, V\n",
+ "V2=VDD*R2/(R1*1000+R2); #Voltage across R2, V\n",
+ "\n",
+ "\n",
+ "#V2=VGS+ID*RS\n",
+ "RS=(V2-VGS)/ID; #Source resistor, kΩ\n",
+ "\n",
+ "#Result\n",
+ "print(\"Source resistor, RS=%dkΩ.\"%RS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.22 : Page number 528-529"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGL9JREFUeJzt3X2wZHV95/H3B0flQcDBWUAE8YmAWksQNy5msnqVBY1R\nweFhZ3QVH9bdWgFxB3cFs7tMhNIxqXVjTNxdV51CE4eoDAHFCCFwY4la6KCCghiSBRSGEXxMHGP5\n8N0/ui/23Jm+cx+67+nT/X5VdU33Oaf7fLurb//m8/v9zjmpKiRJ2p29mi5AkjS6bCQkSX3ZSEiS\n+rKRkCT1ZSMhSerLRkKS1JeNhMZOkk1J3rbE1zgyyS+TDPxvJMkNSV7bZ91FST7cvX9Ekh8lyaBr\nkOZrRdMFSCOsqYOICqCqvgUc0FANEmCSkCTNwUZCrZfkGUm2JvlhksuAvefYdq8kb01yZ3f7LyZ5\n3Dz28dgkVyb5bpJvJvl3Pet+I8nnknw/yb1J3pNkRc/6k5Lc3l3/HmBe3Uezu7y63VRvS/LZbjfU\np5Mc1LP9CUlu7O7ny0meO5/9SHOxkVCrJXk4cAVwKXAQ8DHgtDmecj7wb4AXVtWBwGuBHfPY1Z8D\n9wCHAmcAb08y1V33C+BN3f0/G3g+8IZufY8BLgfeCqwC/g5YPe83uGuX1zrgLOCfAY8E3tzdz+OA\nTwJvq6qV3eWXd/cvLZqNhNruBGBFVf1RVf2iqi4HvjjH9q8Dfreq7gSoqlur6vtz7SDJEXR+/N9S\nVT+rqq8C7wde1X2Nm6vqpuq4B3gfMPO/+BcBX6uqK7r1/SFw/xLe76aq+ruq+inwUeC47vJXAFdX\n1TXdmv4a+FJ3/9KiOXCttjsMuHfWsrvn2P4I4O8XuI/HAt+rqt7EcTfwTIAkRwHvAv4FsA+dv6ut\nPfV9a9brzX68EL0NzA7gUd37RwJnJnlJ93G6dVy/hH1JJgm13jZg9pjC4+fY/h7gyQvcx33AQUn2\nm7WPmcbpfwG3A0+uqkcDv8uvxh227aaeIxa4//n4FvChqjqoe1tZVftX1e8PYV+aIDYSarvPAz9P\ncm6SFUnWAM+aY/sPABcneQpAkn+eZGWfbQNQVd8GPge8I8kjkxxLp9vqw93t9gd+VFU7khwD/Mee\n17gaeFqSU5M8LMl5wCELeH/zPUbiT4GXJDm5Ozi/d5LnJjlsAfuSdmEjoVarqp8Ba4DXAN+lM6h8\n+cz6ngPSDu8uehedvvxrk/yQztjCPv1evuf+OuCJdFLF5cB/q6obuuveDLwiyY+A/wNc1lPfTE3v\nBB6kk2JuXMhb7HN/5406DdkpdAbIH6DTHfZm/BvXEmWYFx1K8gHgxcD2qjq2u2wlnZkiRwJ3AWdW\n1Q+76y6kM9vk58B5VXXt0IqTJO3RsP+XsQl4waxlFwDXVdXRdAbVLgRI8jTgTOCpwG8D7/V0BJLU\nrKE2ElX1WWD29MJT6Mxpp/vvqd37LwUuq6qfV9VdwN8yd9+yJGnImuivPLiqtgNU1f3Awd3lj2Pn\nqYH3suusFUnSMhqFQa2mTqImSdqDJg6m257kkKranuRQ4Dvd5fey8/zxw9n1ICkAktiwSNIiVNWC\nxnqXI0mEned6XwW8unv/LODKnuVrkzwiyROBpwA39XvRBx4o1q4tjjqq+Oxniypvi71ddNFFjdcw\nTjc/Tz/LUb0txlAbiSQfoXMQ0q8luSfJa4CNwElJ7gBO7D6mqm6jM3/9NuBTwBtqjne1ahVs3gwb\nN8IZZ8D69bBjPqdpkyTN27BnN728qg6rqkdW1eOralNVfb+q/nVVHV1VJ1fVD3q2f0dVPaWqnlrz\nPEZizRq45RbYtg2OOw5uXMhhSpKkOY3CwPWSmSqWZmpqqukSxoqf5+D4WTZvqEdcD0uSvj1RDz4I\n554LW7fCpk2weiFn7pekMZaEWuDA9dg1EjO2bIFzzoG1a+GSS2DffZepOEkaUYtpJMaiu2l3HKuQ\npKUb2yTRy1QhSSaJvkwVkrQ4E5EkepkqJE0qk8Q8zKSK++83VUjSnkxckug1kyrWrYOLLzZVSBpv\nJokFmkkV991nqpCk3ZnoJNHLVCFp3JkklsBUIUm7MknshqlC0jgySQyIqUKSOkwSe2CqkDQuTBJD\nYKqQNMlMEgtgqpDUZiaJITNVSJo0JolFMlVIahuTxDIyVUiaBCaJATBVSGoDk0RDTBWSxpVJYsBM\nFZJGlUliBJgqJI0Tk8QQmSokjRKTxIgxVUhqO5PEMjFVSGqaSWKEmSoktZFJogEzqWLtWrjkElOF\npOVhkmiJmVSxbZupQtJoM0k0zLEKScvFJNFCjlVIGmUmiRFiqpA0TCaJljNVSBo1JokRZaqQNGgm\niTFiqpA0ChprJJL8pyRfS3JLkj9L8ogkK5Ncm+SOJNckObCp+kbBqlWweTNs3AhnnAHnnw87djRd\nlaRJ0kgjkeQw4Fzg+Ko6FlgBrAMuAK6rqqOB64ELm6hv1JgqJDWlye6mhwH7JVkB7APcC5wCXNpd\nfylwakO1jRxThaQmNNJIVNV9wP8A7qHTOPywqq4DDqmq7d1t7gcObqK+UWaqkLScVjSx0ySPppMa\njgR+CHwsySuA2VOW+k5h2rBhw0P3p6ammJqaGnido2omVWzZAqefDi9/uTOgJO1qenqa6enpJb1G\nI1Ngk5wOvKCqXt99/ErgBOD5wFRVbU9yKHBDVT11N88f+ymw8/Xgg3DuubB1K2zaBKtXN12RpFHV\npimw9wAnJNk7SYATgduAq4BXd7c5C7iymfLao3es4vTTHauQNFhNjUncBHwc+DLwVSDA+4B3Aicl\nuYNOw7GxifraaM0auPVWxyokDZZHXI+hLVvg7LMdq5C0szZ1N2mITBWSBsUkMeZMFZJmmCS0C1OF\npKUwSUwQU4U02UwSmpOpQtJCmSQmlKlCmjwmCc2bqULSfJgkZKqQJoRJQotiqpDUj0lCOzFVSOPL\nJKElM1VI6mWSUF+mCmm8mCQ0UKYKSSYJzYupQmo/k4SGxlQhTSaThBbMVCG1k0lCy8JUIU0Ok4SW\nZMsWOOccWLsWLrnEVCGNMpOElt2aNXDLLbBtm6lCGkcmCQ2MYxXSaDNJqFGOVUjjxyShoTBVSKPH\nJKGRYaqQxoNJQkNnqpBGg0lCI8lUIbWXSULLylQhNcckoZFnqpDaxSShxpgqpOVlklCrmCqk0WeS\n0EgwVUjDZ5JQa5kqpNFkktDIMVVIw2GS0FgwVUijwyShkWaqkAbHJKGxY6qQmtVYI5HkwCQfS3J7\nkq8n+ZdJVia5NskdSa5JcmBT9Wl0rFoFmzfDxo1w+ulw/vmwY0fTVUmTockk8W7gU1X1VODXgW8A\nFwDXVdXRwPXAhQ3WpxFjqpCWXyNjEkkOAL5cVU+etfwbwHOranuSQ4HpqjpmN893TGLCOVYhLVyb\nxiSeCDyYZFOSm5O8L8m+wCFVtR2gqu4HDm6oPo04U4W0PJpqJFYAxwN/UlXHAz+m09U0Ox4YF9TX\n7LGK9esdq5AGbUVD+/028K2q+lL38eV0GontSQ7p6W76Tr8X2LBhw0P3p6ammJqaGl61Gmlr1sBz\nngPnnttJFZs2werVTVclNW96eprp6eklvUZjx0kk+Rvg9VX1zSQXATO9yt+rqncmeQuwsqou2M1z\nHZPQbjlWIfW3mDGJJhuJXwfeDzwc+HvgNcDDgI8CRwB3A2dW1Q9281wbCfX14IOdVLF1q6lC6tWq\nRmIpbCQ0H6YKaWdtmt0kDZ0zoKSlM0loIpgqJJOE1JepQlqcBSeJJPsB/1RVvxhOSfOqwSShRTNV\naFINJUkk2SvJy5NcneQ7dM6xtC3JbUn+IMlTFluw1ARThTR/e0wS3eMZrgOuBL5WVb/sLj8IeB7w\ncuCKqvrTIdfaW5NJQgNhqtAkGcoU2CQPr6qfLXWbQbKR0CB5XIUmxVC6m3b3459kvySvTHJ1v22k\ntvB6FVJ/857dlOQRSV6W5GPANuD5wP8eWmXSMnOsQtrVfLqbTgbWAScDNwB/Drynqp4w9Or612R3\nk4bKsQqNo2EdJ/Fp4EnAb1XVv62qTwC/XEyBUluYKqSO+TQSxwOfB65L8ldJXkfnRHzSWHOsQprf\nwPVXquqC7qVGLwKOAx6e5C+T/PuhVyg1zFShSbaoczcl2Qs4EVhbVa8beFV73r9jEmqEYxVqs6Gf\nuynJsUleCpwK7A9cvZDnS21nqtCkmXeSSPJB4Fjg6/xq4Lqq6rVDqm2uWkwSapypQm0z1IsOJbmt\nqp62qMoGzEZCo8KjtdUmw+5u+nySkWgkpFExewbU+vXOgNJ4WUgj8SE6DcUdSW5JcmuSW4ZVmNQm\nM2MV27Y5VqHxspDupjuB9cCt9BxMV1V3D6e0OWuxu0kjy7EKjaphdzc9UFVXVdX/q6q7Z24LrFEa\ne86A0jhZSJJ4L/Bo4BPAT2eWV9WW4ZQ2Zy0mCbWCqUKjZNhJYh86jcPJwEu6txcvZGfSpDFVqO0W\ndcR100wSaiNThZo2rGtc/9fupUr7rX9+EhOFtAemCrXRfK4ncQrwX4B/Am4GHgD2Bo6ic7K/64C3\nV9UDwy11p5pMEmo1U4WaMOwjro8CVgOPBX4C3A58pqp+stBCl8pGQuPAo7W13IbaSIwSGwmNE1OF\nlsvQZjclOSvJzUl+3L19KcmrFlempF6OVWiUzWfg+izgTcD5wGHA4+iMUZyX5JXDLU+aDLu7Ct5P\nlr0jV9rVfAauv0Dn4kJ3zVr+BOCyqjphWMXNUZPdTRpbM2MVN9/cGav4zd9suiKNi2F1Nx0wu4EA\n6C47YCE7k7RnM6niHe+A004zVahZ82kk5vp6+tWVhmT2WMXnPtd0RZpE8+lu2gHcubtVwJOqar9h\nFDYXu5s0aXpnQF1yCeyzT9MVqY2GMgU2yZFzrfdU4dLycKxCS+VxEtIEMFVosYZ17qZ/SPKj3dz+\nIcmPFl8uJNmre/zFVd3HK5Nc27363TVJDlzK60vjyLEKLac9NhJVtX9VHbCb2/5VtdTZTecBt/U8\nvgC4rqqOBq4HLlzi60tjyRlQWi4LuZ7EQCU5HHgR8P6exacAl3bvXwqcutx1SW1iqtCwNdZIAP8T\n+M9A7+DCIVW1HaCq7gcObqIwqU1MFRqmRhqJJL8DbK+qr9CZStuPo9PSPM2kinvvNVVocFY0tN/V\nwEuTvIjOZVH3T/Jh4P4kh1TV9iSHAt/p9wIbNmx46P7U1BRTU1PDrVhqgVWr4LLLOjOgTjvNGVCT\nbnp6munp6SW9RuNTYJM8Fzi/ql6a5PeB71bVO5O8BVhZVRfs5jlOgZX2wOMqNNvQThW+jDYCJyW5\nAzix+1jSIjhWoUFoPEkshklCWhhThcAjriXtgUdrT7Zx6G6SNEQeV6GFMklIE8pUMXlMEpLmzVSh\n+TBJSDJVTAiThKRFMVWoH5OEpJ2YKsaXSULSkpkq1MskIakvU8V4MUlIGihThUwSkubFVNF+JglJ\nQ2OqmEwmCUkLZqpoJ5OEpGVhqpgcJglJS2KqaA+ThKRlZ6oYbyYJSQNjqhhtJglJjTJVjB+ThKSh\nMFWMHpOEpJFhqhgPJglJQ9ebKi6+GPbdt+mKJpNJQtJImp0qbryx6Yo0XyYJScvKVNEck4SkkWeq\naBeThKTGmCqWl0lCUquYKkafSULSSJhJFevWdY6rMFUMnklCUmvNpIpt20wVo8QkIWnkmCqGwyQh\naSyYKkaHSULSSDNVDI5JQtLYMVU0yyQhqTVMFUtjkpA01kwVy88kIamVtmyBc86BtWtNFfNlkpA0\nMdasgVtuMVUMWyONRJLDk1yf5OtJbk3yxu7ylUmuTXJHkmuSHNhEfZLaYdUq2LwZNm6EM86A9eth\nx46mqxovTSWJnwPrq+rpwLOBs5McA1wAXFdVRwPXAxc2VJ+kFjFVDM9IjEkk+Qvgj7u351bV9iSH\nAtNVdcxutndMQtJuOVbRXyvHJJI8ATgO+AJwSFVtB6iq+4GDm6tMUhuZKgZrRZM7T/Io4OPAeVX1\nj0lmx4O+cWHDhg0P3Z+ammJqamoYJUpqoZmxii1bOmMVk5oqpqenmZ6eXtJrNNbdlGQF8EngL6vq\n3d1ltwNTPd1NN1TVU3fzXLubJM3Lgw/CuefC1q2waROsXt10Rc1pW3fTB4HbZhqIrquAV3fvnwVc\nudxFSRovzoBamkaSRJLVwGeAW+l0KRXwVuAm4KPAEcDdwJlV9YPdPN8kIWnBJj1VLCZJjMTspoWy\nkZC0FJM6A6pt3U2S1AhnQM2fSULSRJukVGGSkKQFMlXMzSQhSV3jnipMEpK0BKaKXZkkJGk3xjFV\nmCQkaUBMFR0mCUnag3FJFSYJSRqCSU4VJglJWoA2pwqThCQN2aSlCpOEJC1S21KFSUKSltEkpAqT\nhCQNQBtShUlCkhoyrqnCJCFJAzaqqcIkIUkjYJxShUlCkoZolFKFSUKSRkzbU4VJQpKWSdOpwiQh\nSSOsjanCJCFJDWgiVZgkJKkl2pIqTBKS1LDlShUmCUlqoVFOFSYJSRohw0wVJglJarlRSxUmCUka\nUYNOFSYJSRojo5AqTBKS1AJXXAFnn720VGGSkKQx9bKXNZMqTBKS1DKLHaswSUjSBFjOsQqThCS1\n2EyqWLcOLr547lRhkpCkCTOTKu67bzipYiQbiSQvTPKNJN9M8pam65GkUbZqFWzeDBs3whlnwPnn\nw44dg3ntkWskkuwF/DHwAuDpwLokxzRb1Xibnp5uuoSx4uc5OH6WCzOMVDFyjQTwLOBvq+ruqvoZ\ncBlwSsM1jTX/EAfLz3Nw/CwXbtCpYhQbiccB3+p5/O3uMknSPA0qVawYbFmSpFExkyq2bOmkisUY\nuSmwSU4ANlTVC7uPLwCqqt7Zs81oFS1JLbHQKbCj2Eg8DLgDOBHYBtwErKuq2xstTJIm0Mh1N1XV\nL5KcA1xLZ8zkAzYQktSMkUsSkqTRMYqzm+bkgXaDleSuJF9N8uUkNzVdT5sk+UCS7Ulu6Vm2Msm1\nSe5Ick2SA5ussU36fJ4XJfl2kpu7txc2WWObJDk8yfVJvp7k1iRv7C5f0He0VY2EB9oNxS+Bqap6\nRlU9q+liWmYTne9irwuA66rqaOB64MJlr6q9dvd5Aryrqo7v3j693EW12M+B9VX1dODZwNnd38sF\nfUdb1UjggXbDENr3PRgJVfVZ4PuzFp8CXNq9fylw6rIW1WJ9Pk/ofEe1QFV1f1V9pXv/H4HbgcNZ\n4He0bT8OHmg3eAX8VZIvJnl908WMgYOrajt0/kiBgxuuZxyck+QrSd5v993iJHkCcBzwBeCQhXxH\n29ZIaPBWV9XxwIvoxNHfarqgMePMkKV5L/CkqjoOuB94V8P1tE6SRwEfB87rJorZ38k5v6NtayTu\nBR7f8/jw7jItUlVt6/77AHAFnS49Ld72JIcAJDkU+E7D9bRaVT3Qc/GY/wv8RpP1tE2SFXQaiA9X\n1ZXdxQv6jratkfgi8JQkRyZ5BLAWuKrhmloryb7d/2WQZD/gZOBrzVbVOmHnPvOrgFd3758FXDn7\nCZrTTp9n90dsxhr8fi7UB4HbqurdPcsW9B1t3XES3Slw7+ZXB9ptbLik1kryRDrpoegcWPlnfp7z\nl+QjwBTwGGA7cBHwF8DHgCOAu4Ezq+oHTdXYJn0+z+fR6Uv/JXAX8B9m+tM1tySrgc8At9L5Gy/g\nrXTOYvFR5vkdbV0jIUlaPm3rbpIkLSMbCUlSXzYSkqS+bCQkSX3ZSEiS+rKRkCT1ZSMhSerLRkLq\n6p57/6RZy85L8qkkO5JsTXJbki8kOatnm4OTfKJ7ErqvJ/lkz7pDk1yVZJ8kD84c4d6z/ookZyT5\nnSS/N/x3KS2MjYT0Kx8B1s1athZ4O3BnVT2zqp7WXfamnobibcC1VXVc99z9F/Q8fz3wvqr6CfBp\n4GUzK5IcAKwGrqqqq4GXJNl7GG9MWiwbCelXLgde1D0pGkmOBB5L55T0D51PqKruovPj/8buoplt\nZtb3nl/oNOCa7v3L2LkRehlwTVX9tPv4BuDFA3ov0kDYSEhdVfV9Oue1+e3uorV0znEzc96bXjcD\nM1dF/BPgg0n+OslbkzwWHjqH//e6F8iCTmPxjCQre15/c89rbgX+1cDekDQANhLSzi6j8+MNu/6I\n9+pNFtcCT6RzKutjgJuTPIZOwnigZ7uf0TkD5+nd9cfxq5QBnVM2HzaYtyENho2EtLMrgROTPAPY\np6q+3Ge74+lcDhKAqvpBVV1WVa8CvgQ8B/gJMHuMYabL6XTgyqr6Rc+6vbvPkUaGjYTUo6p+DEzT\nOQ9/b4rovcbBE4A/AP6o+/h5Sfbp3t8feDJwD/BNOgmj1zRwFPAGdk0pv4bXS9CIsZGQdrUZOJad\nf8SfNDMFlk4a+MOq+lB33TOBLyX5CnAjndlMW6tqB3BnkifNvEj3KmsfBw6qqr+Ztd/nAVcP5y1J\ni+P1JKQhSnIK8Myq+u972O5gOhd9Ommu7aTltqLpAqRxVlVXdgep9+TxwPnDrkdaKJOEJKkvxyQk\nSX3ZSEiS+rKRkCT1ZSMhSerLRkKS1Nf/Bz7AopOp9unzAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7fb05356ef60>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline \n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VDD=20.0; #Drain supply voltage, V\n",
+ "RS=50.0; #Source resistor, Ω\n",
+ "RD=150.0; #Drain resistor, Ω\n",
+ "\n",
+ "#Calculation\n",
+ "VDS_max=VDD; #Maximum drain source voltage, V\n",
+ "ID_max=(VDD/(RD+RS))*1000; #Maximum drain current, mA\n",
+ "\n",
+ "\n",
+ "#plot\n",
+ "x=[i for i in range(0,(int)(VDS_max+1))]; #Plot variable for V_DS\n",
+ "y=[(i/(RD+RS))*1000 for i in reversed(x[:])]; #Plot variable for ID\n",
+ "\n",
+ "\n",
+ "plt.plot(x,y);\n",
+ "plt.xlabel(\"VDS(V)\");\n",
+ "plt.ylabel(\"ID(mA)\");\n",
+ "plt.title(\"d.c load line\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.23 : Page number 529"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEZCAYAAAB1mUk3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGlxJREFUeJzt3X20XHV97/H3B1MRj4AnaEgEDEIVlMIKcOESYpNBLopo\nwJqWgnp4bNddrViS6K0kfUhiXS3YtXIhbYUqyBLa8JimOQELiGRIFZXHBNQUL9WAeEkED2ANLhbC\nt3/sPclkMufkzJzZs/ee+bzWmpU9+2H2dyZz5jef32/vPYoIzMysv+2RdwFmZpY/NwZmZubGwMzM\n3BiYmRluDMzMDDcGZmaGGwMrMUnXSvrcBB9juqTXJHX8b0HSOkkXjLJsiaTr0+mDJP1Ckjpdg9l4\nTcq7ALMCyOtkmwCIiJ8A++RUgxngZGBmZrgxsBKRdLSkhyS9KOlG4A1jrLuHpMWSnkjXf0DSAePY\nxzRJayT9XNIPJf1B3bLjJN0n6XlJP5X0d5Im1S0/RdKmdPnfAePq9mnsqkq7lz4n6Ztp99EdkibX\nrX+CpG+l+3lE0pzx7MdsLG4MrBQk/QawGvgqMBm4BZg3xiafBn4fODUi9gUuAF4ax65uAp4CpgK/\nB/y1pEq67FVgfrr/mcD7gD9O69sPWAUsBt4C/Ccwa9xPcNeuqrOBc4G3AnsCn0n3cwBwG/C5iBhM\n569K92/WNjcGVhYnAJMiYkVEvBoRq4AHxlj/QuDPIuIJgIh4LCKeH2sHkg4i+ZD/bES8EhEbgauB\nc9LHeDgi7o/EU8CXgNq38tOA70XE6rS+y4EtE3i+10bEf0bEy8DNwIx0/seB2yPizrSmbwAPpvs3\na5sHkK0s3gb8tGHek2OsfxDwoxb3MQ0YiYj6BPEkcCyApHcCy4H/AexF8vfzUF19P2l4vMb7rahv\nSF4C3pROTwfOlDQ3va+0jnsmsC8zJwMrjWeAxj7/t4+x/lPAoS3u4/8DkyUNNOyj1ghdCWwCDo2I\nNwN/xo5xgWea1HNQi/sfj58A10XE5PQ2GBF7R8QXMtiX9RE3BlYW3wZ+LelTkiZJ+ihw/BjrXwP8\nlaTfBJB0pKTBUdYVQEQ8DdwH/I2kPSUdRdLddH263t7ALyLiJUmHA39U9xi3A++R9BFJr5N0MbB/\nC89vvOcY/BMwV9L700HyN0iaI+ltLezLbBduDKwUIuIV4KPA+cDPSQZ3V9WW1524dWA6azlJX/td\nkl4k6fvfa7SHr5s+G3gHSUpYBfxFRKxLl30G+LikXwD/CNxYV1+tpsuA50hSybdaeYqjTO+8UtJg\nnUEyUP0sSTfWZ/Dfsk2QuvHjNukhcw8CT0fE6ek3tJtI+j83A2dGxIuZF2JmZk1169vExcAP6u5f\nAtwdEYeRDHwt6lIdZmbWROaNQRrbTyOJ6TVnkBwvTvrvR7Kuw8zMRteNZPB/gf/Dzv2g+0fEVoCI\n2AJM6UIdZmY2ikwbA0kfArZGxAbGPloirwuFmZkZ2Z90Ngs4XdJpJEdy7J1etneLpP0jYqukqcDP\nmm0syY2EmVkbIqKlS6JnmgwiYnFEvD0iDgHOAu6JiCFgLXBeutq5wJrRHuPee4NDDw0+8Yng5z8P\nInxr97ZkyZLca+iVm19Lv55FvrUjr2OTLwVOkfQ4cHJ6v6nZs2HjRpg8GY48EoaHu1ajmVnf6Fpj\nEBH3RsTp6fRIRPyviDgsIt4fES+Mte3AAFxxBdxwAyxcCENDMDLSnbrNzPpBqc5adEqYmEqlkncJ\nPcOvZWf59cxfV85AbpekGK2+9evhggtg5swkNUye3HQ1M7O+I4ko0gBylpwSzMw6p7TJoJ5TgpnZ\nDn2VDOo5JZiZTUxPJIN6Tglm1u/6NhnUc0owM2tdzyWDek4JZtaPnAwaNKaEtWvzrsjMrJh6OhnU\nc0ows37hZDAGpwQzs9H1TTKo55RgZr3MyWCcnBLMzHbWl8mgnlOCmfUaJ4M2OCWYmTkZ7MQpwcx6\ngZPBBDklmFm/cjIYhVOCmZWVk0EH1VLC4KBTgpn1vkyTgaQ9gfXA64FJwK0RsUzSEuAPgZ+lqy6O\niDuabJ9bMqjnlGBmZVK4ZBARLwMnRcTRwAzgg5KOTxcvj4hj0tsuDUGReCzBzHpd5t1EEfFSOrkn\nSTqofdVvqdXK28BAkgpuuAEWLIChIRgZybsqM7POyLwxkLSHpEeALcDXI+KBdNFFkjZIulrSvlnX\n0SlOCWbWi7p2NJGkfYDVwKeAZ4HnIiIkfR6YFhEXNtmmEGMGo/FYgpkVUTtjBpOyKqZRRPxCUhU4\nNSKW1y36MjDq9+ulS5dun65UKlQqlYwqbF0tJSxenKSEq66CuXPzrsrM+k21WqVarU7oMbI+mugt\nwCsR8aKkvYA7gUuBhyNiS7rOAuC4iPhYk+0LnQzqOSWYWVEU7mgiYBqwTtIG4LvAnRHxNeALkh5N\n588BFmRcR+Y8lmBmZeYzkDPglGBmeSpiMuhLjSlheDjviszMxuZkkDGnBDPrNieDAvJYgpmVgZNB\nFzklmFk3OBkUnFOCmRWVk0FOnBLMLCtOBiXilGBmReJkUABOCWbWSU4GJeWUYGZ5czIoGKcEM5so\nJ4Me4JRgZnlwMigwpwQza4eTQY+ppYTBQacEM8uWk0FJ3HtvkhJOPNEpwczG5mTQw+bMgUcfdUow\ns2w4GZSQU4KZjcXJoE84JZhZpzkZlJxTgpk1cjLoQ04JZtYJmSYDSXsC64HXA5OAWyNimaRB4CZg\nOrAZODMiXmyyvZNBC5wSzAwKmAwi4mXgpIg4GpgBfFDS8cAlwN0RcRhwD7Aoyzr6hVOCmbWra2MG\nkt5IkhL+CLgemBMRWyVNBaoRcXiTbZwM2uSUYNa/CpcMACTtIekRYAvw9Yh4ANg/IrYCRMQWYErW\ndfQbpwQza8WkrHcQEa8BR0vaB1gt6Qig8ev+qF//ly5dun26UqlQqVQyqLI3DQzAihUwb16SEm6+\n2SnBrBdVq1Wq1eqEHqOrh5ZK+gvgJeAPgEpdN9G6iHh3k/XdTdQh27bBokWwahVcdRXMnZt3RWaW\nlcJ1E0l6i6R90+m9gFOATcAwcF662rnAmizrsB0pYeVKmD8fhoZgZCTvqsysKLIeM5gGrJO0Afgu\ncGdEfA24DDhF0uPAycClGddhKY8lmFkzPgO5j/mII7PeVLhuIis2pwQzq3EyMMApwayXOBlY25wS\nzPqbk4HtwinBrNycDKwjnBLM+o+TgY3JKcGsfJwMrONqKWHy5CQlDA/nXZGZZcHJwMbNKcGsHJwM\nLFMeSzDrXU4G1hanBLPicjKwrnFKMOstTgY2YU4JZsXiZGC5cEowKz8nA+sopwSz/DkZWO6cEszK\nycnAMuOUYJYPJwMrFKcEs/JwMrCucEow6x4nAysspwSzYsu0MZB0oKR7JH1f0mOSPpXOXyLpaUkP\np7dTs6zDimFgAFasgJUrYf58GBqCkZG8qzIzyD4Z/BpYGBFHADOBiyQdni5bHhHHpLc7Mq7DCsQp\nwax4Mm0MImJLRGxIp38JbAIOSBe31J9lvcUpwaxYujZmIOlgYAbw3XTWRZI2SLpa0r7dqsOKxSnB\nrBi6cjSRpDcBVeCvImKNpLcCz0VESPo8MC0iLmyyXSxZsmT7/UqlQqVSybxey4ePODJrT7VapVqt\nbr+/bNmylo8myrwxkDQJuA34t4i4osny6cDaiDiqyTIfWtpntm2DRYtg1Sq46iqYOzfviszKp51D\nS7vRGFxHkgIW1s2bGhFb0ukFwHER8bEm27ox6FNOCWbtK9x5BpJmAR8H3ifpkbrDSL8g6VFJG4A5\nwIIs67Dy8ViCWXf5DGQrPKcEs9YULhmYdUJjShgezrsis97jZGClsn49nH++U4LZWJwMrOfNnu2x\nBLMsOBlYaXkswaw5JwPrKz7iyKxznAysJzglmO3gZGB9yynBbGKcDKznOCVYv+tKMpA0IOl1rW5n\n1i1OCWat220ykLQHcBbJZSWOA14G9gSeA24H/jEinsikOCcDmyCnBOtHWSWDdcChwCJgakQcFBFT\ngPcC3wEuk/SJlqs16wKnBLPxGU8y+I2IeGWi67TDycA6ySnB+kUmyaDZh3w6bjAk6fbR1jErGqcE\ns9GN+2giSa8HPgR8DPgAsAr4l4jI7E/KycCy4pRgvSyTZCDp/ZKuBX4MzAOuA0Yi4vwsGwKzLDkl\nmO1sPGMGrwH/DpwXET9O5/0oIg7JvDgnA+sCpwTrNVkdTXQM8G3gbklfl3Qh4PMMrGc4JZi1eAay\npBOBs0m6izYCqyPiSxnV5mRgXeeUYL0g8zOQI+K+iPgUcCCwHPifrWxvVnROCdavWk0GRwEHA5Nq\n8yLiX8ZY/0CSAef9gdeAL0fECkmDwE3AdGAzcGZEvNhkeycDy41TgpVVpslA0leAr5B0Ec1Nbx/e\nzWa/BhZGxBHATOCTkg4HLgHujojDgHtIzm42KxSnBOsnrZxn8IOIeM+Edib9K/D36W1ORGyVNBWo\nRsThTdZ3MrBCcEqwMsl6zODbktpuDCQdDMwguZ7R/hGxFSAitgBT2n1cs25oTAnDw3lXZNZZk3a/\nynbXkTQIW0iuXCogIuKo3W0o6U3ArcDFEfFLSY1f90f9+r906dLt05VKhUql0kLJZp0zMAArVsC8\neUlKuOUWpwQrhmq1SrVandBjtNJN9ASwEHiMZDAYgIh4cjfbTQJuA/4tIq5I520CKnXdROsi4t1N\ntnU3kRXStm2waBGsWgVXXQVz5+ZdkdkO7XQTtdIYfDsiZrZR1HXAcxGxsG7eZSSXtLhM0meBwYi4\npMm2bgys0DyWYEWUdWPwReDNwFqSbiJgt4eWzgLWk6SJSG+LgfuBm4GDgCdJDi19ocn2bgys8JwS\nrGiybgyubTI7IuKCVnbYCjcGViZOCVYUmTYGeXBjYGXjlGBFkEljIOnPgS9GxMgoy98HvDEibmtl\nx+Mqzo2BlZRTguUpq/MMHgPWSvqGpL+V9KeS/lLS9ZIeIzkT+bvtFGzWq3z2spVNK2MG7wRmAdOA\nXwGbgPUR8avMinMysB7glGDd5jEDs4LyWIJ1U2aXo5B0rqSHJW1Lbw9KOqe9Ms36T+3s5ZUrYf58\nGBqCkaajcGb5GM9vIJ8LzAc+DbwNOAD4U+BiSUPZlmfWWzyWYEU1nqOJvgOcFRGbG+YfDNwYESdk\nVpy7iayH1cYSZs1KxhIGB/OuyHpFVt1E+zQ2BADpvH1a2ZmZ7VBLCW9+M/zWbzklWL7G0xiMdbRQ\nZkcSmfWDxrGEc86B55/PuyrrR+NpDN4t6dEmt8eAXX6Qxsxa55RgeRvPmMH0sZbv7hLWE+ExA+tH\nHkuwicpkzCAinhzr1n65ZtaMU4LlYTzJ4L9o/ktktV86y2wQ2cnA+p1TgrUjq2Swd0Ts0+S2d5YN\ngZk5JVj3+HIUZiXhlGDjldnlKMwsf04JliUnA7MSqk8Jl1/uK6HazpwMzPpEfUrwNY6sEzJtDCRd\nI2mrpEfr5i2R9HR6FdSHJZ2aZQ1mvcpnL1snZZ0MrgU+0GT+8og4Jr3dkXENZj3NYwnWCZk2BhHx\nTaDZd5WW+rLMbGxOCTZReY0ZXCRpg6SrJe2bUw1mPccpwdqV+dFE6bWN1kbEUen9twLPRURI+jww\nLSIuHGXbWLJkyfb7lUqFSqWSab1mvcLnJfSParVKtVrdfn/ZsmXF+w3kxsZgvMvS5T601GwC/NvL\n/amoh5aKujECSVPrln0U+F4XajDrSx5LsPHK+tDSlcB9wLskPSXpfOAL6e8hbADmAAuyrMHMPJZg\nu+czkM36jMcSel9Ru4nMrECcEqwZJwOzPrZ+fZISTjzRKaGXOBmYWUtmz4aNG50SzMnAzFIeS+gd\nTgZm1jaPJfQ3JwMz24VTQrk5GZhZRzgl9B8nAzMbk1NC+TgZmFnHOSX0BycDMxs3p4RycDIws0w5\nJfQuJwMza0t9Srj8cpg8Oe+KrMbJwMy6pj4lHHmkU0LZORmY2YR5LKFYnAzMLBceSyg/JwMz66ha\nSqhdCdVjCd3nZGBmuaulhMFBjyWUiZOBmWXGKSEfTgZmVihOCeWRaTKQdA3wYWBrRByVzhsEbgKm\nA5uBMyPixVG2dzIw6xFOCd1TxGRwLfCBhnmXAHdHxGHAPcCijGswswJoTAnDw3lXZPUyHzOQNB1Y\nW5cM/gOYExFbJU0FqhFx+CjbOhmY9SCnhGwVMRk0MyUitgJExBZgSg41mFmOnBKKZ1LeBQBjfvVf\nunTp9ulKpUKlUsm4HDPrhoEBWLEC5s1LUsIttzgltKtarVKtVif0GHl0E20CKnXdROsi4t2jbOtu\nIrM+sG0bLFoEq1bBlVfC6afnXVG5FbWbSOmtZhg4L50+F1jThRrMrMBqKWHlSliwAIaGYGQk76r6\nS6aNgaSVwH3AuyQ9Jel84FLgFEmPAyen983MPJaQI5+BbGaF5COO2lfUbiIzs5bVUsLkyU4J3eBk\nYGaFt359khJmznRKGA8nAzPrSbNnw8aNTglZcjIws1JxStg9JwMz63lOCdlwMjCz0nJKaM7JwMz6\nilNC5zgZmFlPcErYwcnAzPqWU8LEOBmYWc/p95TgZGBmhlNCO5wMzKyn9WNKcDIwM2vglDA+TgZm\n1jf6JSU4GZiZjcEpYXROBmbWl3o5JTgZmJmNk1PCzpwMzKzv9VpKKFUykLRZ0kZJj0i6P686zMyc\nEnJMBpJ+BBwbEc+PsY6TgZl1VS+khFIlA0A579/MbBf9mhLyTgYvAK8CX4qILzdZx8nAzHJT1pRQ\ntmQwKyKOAU4DPinpvTnWYma2i35KCZPy2nFEPJP++6yk1cDxwDcb11u6dOn26UqlQqVS6VKFZmYw\nMJCkgnnzkpRwyy3FSwnVapVqtTqhx8ilm0jSG4E9IuKXkgaAu4BlEXFXw3ruJjKzwti2DRYvhltv\nhSuvhNNPz7ui5trpJsqrMXgHsBoIknTyzxFxaZP13BiYWeEUfSyhNGMGEfHjiJgREUdHxJHNGgIz\ns6LqxbEEn4FsZjYBRUwJpUkGZma9oldSgpOBmVmHFCUlOBmYmeWozCnBycDMLAN5pgQnAzOzgihb\nSnAyMDPLWLdTgpOBmVkBlSElOBmYmXVRN1KCk4GZWcEVNSU4GZiZ5SSrlOBkYGZWIkVKCU4GZmYF\nUEsJJ5wAK1ZMLCU4GZiZlVQtJey3Xz4pwcnAzKxgJjqW4GRgZtYD8hhLcDIwMyuwdlKCk4GZWY9p\nTAlr12azHycDM7OSGG9KKFUykHSqpP+Q9ENJn82rDjOzssgyJeTSGEjaA/h74APAEcDZkg7Po5Z+\nUq1W8y6hZ/i17Cy/nuM3MJCkghtugAULYGgIRkYm/rh5JYPjgf8XEU9GxCvAjcAZOdXSN/wH1zl+\nLTvLr2frOp0S8moMDgB+Unf/6XSemZmNUydTgo8mMjMrucaU0I5cjiaSdAKwNCJOTe9fAkREXNaw\nng8lMjNrQ6tHE+XVGLwOeBw4GXgGuB84OyI2db0YMzNjUh47jYhXJV0E3EXSVXWNGwIzs/wU+qQz\nMzPrjkIOIPuEtM6StFnSRkmPSLo/73rKRtI1krZKerRu3qCkuyQ9LulOSfvmWWOZjPJ6LpH0tKSH\n09upedZYFpIOlHSPpO9LekzSn6TzW35/Fq4x8AlpmXgNqETE0RFxfN7FlNC1JO/HepcAd0fEYcA9\nwKKuV1VezV5PgOURcUx6u6PbRZXUr4GFEXEEMBP4ZPp52fL7s3CNAT4hLQuimP/XpRAR3wSeb5h9\nBvDVdPqrwEe6WlSJjfJ6QvI+tRZExJaI2JBO/xLYBBxIG+/PIn5A+IS0zgvg65IekPSHeRfTI6ZE\nxFZI/iCBKTnX0wsukrRB0tXudmudpIOBGcB3gP1bfX8WsTGwzpsVEccAp5HEyPfmXVAP8pEYE/NF\n4JCImAFsAZbnXE+pSHoTcCtwcZoQGt+Pu31/FrEx+Cnw9rr7B6bzrE0R8Uz677PAapKuOJuYrZL2\nB5A0FfhZzvWUWkQ8W3e9+i8Dx+VZT5lImkTSEFwfEWvS2S2/P4vYGDwA/Kak6ZJeD5wFdPmnoXuH\npDem3xqQNAC8H/hevlWVkti5T3sYOC+dPhdY07iBjWmn1zP9wKr5KH6PtuIrwA8i4oq6eS2/Pwt5\nnkF6WNkV7Dgh7dKcSyotSe8gSQNBcpLhP/v1bI2klUAF2A/YCiwB/hW4BTgIeBI4MyJeyKvGMhnl\n9TyJpL/7NWAz8L9rfd42OkmzgPXAYyR/4wEsJrmqw8208P4sZGNgZmbdVcRuIjMz6zI3BmZm5sbA\nzMzcGJiZGW4MzMwMNwZmZoYbAzMzw42B9aH0+u+nNMy7WNLXJL0k6SFJP5D0HUnn1q0zRdLa9GJq\n35d0W92yqZKGJe0l6bnaWd91y1dL+j1JH5K0LPtnadYaNwbWj1YCZzfMOwv4a+CJiDg2It6Tzptf\n1yB8DrgrImak14+/pG77hcCXIuJXwB3A79QWSNoHmAUMR8TtwFxJb8jiiZm1y42B9aNVwGnpBb6Q\nNB2YRnK59O3Xy4mIzSQf8n+SzqqtU1tef/2cecCd6fSN7NzY/A5wZ0S8nN5fB3y4Q8/FrCPcGFjf\niYjnSa7d8sF01lkk13GpXdul3sNA7Zf2/gH4iqRvSFosaRpsv478SPpjTJA0CkdLGqx7/BvqHvMh\n4Lc79oTMOsCNgfWrG0k+pGHXD+t69UnhLuAdJJdYPhx4WNJ+JInh2br1XiG5auTvpstnsCM1QHI5\n4bd15mmYdYYbA+tXa4CTJR0N7BURj4yy3jEkPyUIQES8EBE3RsQ5wIPAbOBXQOMYQK2r6HeBNRHx\nat2yN6TbmBWGGwPrSxGxDaiSXAu+PhXUX2P/YOBvgRXp/ZMk7ZVO7w0cCjwF/JAkMdSrAu8E/phd\nU8e78PX6rWDcGFg/uwE4ip0/rA+pHVpK8u3+8oi4Ll12LPCgpA3At0iOHnooIl4CnpB0SO1B0l/t\nuhWYHBH3Nuz3JOD2bJ6SWXv8ewZmHSDpDODYiPjL3aw3heQHhk4Zaz2zbpuUdwFmvSAi1qSDxbvz\nduDTWddj1ionAzMz85iBmZm5MTAzM9wYmJkZbgzMzAw3BmZmBvw3WQTOWIXQWhcAAAAASUVORK5C\nYII=\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7fb05356db70>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline \n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VDD=20; #Drain supply voltage, V\n",
+ "RD=500.0; #Drain resistor, Ω\n",
+ "\n",
+ "#Calculation\n",
+ "VDS_max=VDD; #Maximum drain source voltage, v \n",
+ "ID_max=(VDD/RD)*1000; #Maximum drain current, mA\n",
+ "\n",
+ "#Plot\n",
+ "x=[i for i in range(0,(int)(VDS_max+1))]; #Plot variable for V_DS\n",
+ "y=[(i/RD)*1000 for i in reversed(x[:])]; #Plot variable for ID\n",
+ "\n",
+ "plt.plot(x,y);\n",
+ "plt.xlabel(\"VDS(V)\");\n",
+ "plt.ylabel(\"ID(mA)\");\n",
+ "plt.title(\"d.c load line\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.24 : Page number 530-531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage gain=4.8.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=20; #Drain supply voltage, V\n",
+ "RD=12.0; #Drain resistor, kΩ\n",
+ "RL=8.0; #Load resistor, kΩ\n",
+ "RG=1.0; #Gate resistor, MΩ\n",
+ "gm=1.0; #transconductance, mA/V\n",
+ "\n",
+ "#Calculation\n",
+ "gm=gm*10**-3; #transconductance, mho\n",
+ "RAC=(RD*RL)/(RD+RL); #Total a.c load, kΩ\n",
+ "Av=gm*RAC*1000; #Voltage gain\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Voltage gain=%.1f.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.25 : Page number 531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage gain=30.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "gm=3000; #transconductance, μmho\n",
+ "RD=10; #Drain resistance, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "Av=gm*10**-6*RD*1000; #Voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"Voltage gain=%d.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.26 : Page number 531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=257mV(r.m.s).\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "IDSS=8; #Shorted gate drain current, mA\n",
+ "VGS_off=-10; #Gate-source cut-off voltage, V\n",
+ "ID=1.9; #Drain current, mA\n",
+ "RD=3.3; #Drain resistance, kΩ\n",
+ "RS=2.7; #Source resistor, kΩ\n",
+ "vin=100; #Input voltage, mV\n",
+ "\n",
+ "#Calculation\n",
+ "VGS=-ID*RS; #Gate-source voltage, V\n",
+ "gmo=2*IDSS*10**-3/abs(VGS_off); #Maximum transconductance, S\n",
+ "gm=gmo*(1-(VGS/VGS_off)); #Transconductance, S\n",
+ "Av=gm*RD*1000; #Voltage gain\n",
+ "vout=Av*vin; #Output voltage, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%dmV(r.m.s).\"%vout);\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.27 : Page number 531-532"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=151mV(r.m.s).\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "RL=4.7; #Load resistor, Ω\n",
+ "RD=3.3; #Drain resistance, kΩ\n",
+ "gm=779*10**-6; #Transconductance, S\n",
+ "vin=100; #Input voltage, mV\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "RAC=RD*RL/(RD+RL); #Total a.c drain resistance, kΩ\n",
+ "Av=gm*RAC*1000; #Voltage gain\n",
+ "vout=Av*vin; #Output voltage, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%dmV(r.m.s).\"%vout);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.28 : Page number 532-533"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage gain=1.85.\n",
+ "Voltage gain, if RS resistor is bypassed=6.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "RD=1.5; #Drain resistance, kΩ\n",
+ "gm=4; #Transconductance, mS\n",
+ "RS=560; #Source resistance, Ω\n",
+ "\n",
+ "#Calculation\n",
+ "Av=gm*10**-3*RD*1000/(1+gm*10**-3*RS);\n",
+ "print(\"Voltage gain=%.2f.\"%Av);\n",
+ "\n",
+ "#If RS is bypassed by a capacitor\n",
+ "Av=gm*10**-3*RD*1000;\n",
+ "print(\"Voltage gain, if RS resistor is bypassed=%d.\"%Av);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.29 : Page number 533"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Voltage gain with RS bypassed=4.155.\n",
+ "(ii) Voltage gain with RS unbypassed=1.35.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "from math import sqrt\n",
+ "\n",
+ "IDSS=10; #Shorted gate drain current, mA\n",
+ "VGS_off=-3.5; #Gate-source cut-off voltage, V\n",
+ "RD=1.5; #Drain resistance, kΩ\n",
+ "RS=750; #Source resistance, Ω\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#From d.c biasing\n",
+ "ID=2.3; #Drain current, mA\n",
+ "VGS=round(VGS_off*(1-sqrt(ID/IDSS)),1); #Gate-source voltage, V\n",
+ "gm=round(round((2*IDSS/abs(VGS_off)),1)*round((1-(VGS/VGS_off)),3),2); #Transconductance, mS\n",
+ "\n",
+ "\n",
+ "#(i)\n",
+ "Av=gm*RD; #Voltage gain with RS resistor bypassed\n",
+ "print(\"(i) Voltage gain with RS bypassed=%.3f.\"%Av);\n",
+ "\n",
+ "#(ii)\n",
+ "Av=Av/(1+gm*(RS/1000.0));\n",
+ "print(\"(ii) Voltage gain with RS unbypassed=%.2f.\"%Av);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.30 : Page number 539-540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) n-channel D-MOSFET\n",
+ "(ii) Drain current=3.91mA\n",
+ "(iii) Drain current=18.9mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "IDSS=10.0; #Shorted gate drain current, mA\n",
+ "VGS_off=-8.0; #Gate-source cut-off voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "if(VGS_off<0):\n",
+ " print(\"(i) n-channel D-MOSFET\");\n",
+ "else:\n",
+ " print(\"(i) p-channel D-MOSFET\");\n",
+ " \n",
+ "\n",
+ "#(ii)\n",
+ "VGS=-3.0; #Gate-source voltage, V\n",
+ "ID=IDSS*(1-(VGS/VGS_off))**2; #Drain current mA\n",
+ "print(\"(ii) Drain current=%.2fmA\"%ID);\n",
+ "\n",
+ "#(iii)\n",
+ "VGS=3.0; #Gate-source voltage, V\n",
+ "ID=IDSS*(1-(VGS/VGS_off))**2; #Drain current mA\n",
+ "print(\"(iii) Drain current=%.1fmA\"%ID);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.31 : Page number 540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Point 1: VGS=0V and ID=1mA.\n",
+ "Point 2: VGS=-6V and ID=0mA.\n",
+ "Point 3: VGS=-3V and ID=0.25mA.\n",
+ "Point 4: VGS=-1V and ID=0.694mA.\n",
+ "Point 5: VGS=1V and ID=1.36mA.\n",
+ "Point 6: VGS=3V and ID=2.25mA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "IDSS=1.0; #Shorted gate drain current, mA\n",
+ "VGS_off=-6.0; #Gate-source cut-off voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Point 1\n",
+ "VGS=0; #Gate source voltage, V \n",
+ "ID=IDSS; #Drain current, mA\n",
+ "print(\"Point 1: VGS=%dV and ID=%dmA.\"%(VGS,ID));\n",
+ "\n",
+ "#Point 2\n",
+ "VGS=VGS_off; #Gate source voltage, V \n",
+ "ID=0; #Drain current, mA\n",
+ "print(\"Point 2: VGS=%dV and ID=%dmA.\"%(VGS,ID));\n",
+ "\n",
+ "#locating more points by changing VG values\n",
+ "VGS=-3; #Gate source voltage, V \n",
+ "ID=IDSS*(1-(VGS/VGS_off))**2; #Drain current mA\n",
+ "print(\"Point 3: VGS=%dV and ID=%.2fmA.\"%(VGS,ID));\n",
+ "\n",
+ "VGS=-1; #Gate source voltage, V \n",
+ "ID=IDSS*(1-(VGS/VGS_off))**2; #Drain current mA\n",
+ "print(\"Point 4: VGS=%dV and ID=%.3fmA.\"%(VGS,ID));\n",
+ "\n",
+ "VGS=1; #Gate source voltage, V \n",
+ "ID=IDSS*(1-(VGS/VGS_off))**2; #Drain current mA\n",
+ "print(\"Point 5: VGS=%dV and ID=%.2fmA.\"%(VGS,ID));\n",
+ "\n",
+ "VGS=3; #Gate source voltage, V \n",
+ "ID=IDSS*(1-(VGS/VGS_off))**2; #Drain current mA\n",
+ "print(\"Point 6: VGS=%dV and ID=%.2fmA.\"%(VGS,ID));"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.32 : Page number 541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drain source voltage=10.6V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=18; #Drain supply voltage, V\n",
+ "RD=620.0; #Drain resistor, Ω\n",
+ "IDSS=12.0; #Shorted gate drain current, mA\n",
+ "VGS_off=-8.0; #Gate-source cut-off voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "ID=IDSS; #Drain current, mA\n",
+ "VDS=VDD-IDSS*(RD/1000); #Drain source voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Drain source voltage=%.1fV.\"%VDS);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.33 : Page number 542"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Drain source voltage=7.56V.\n",
+ "(ii) Output voltage=922mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=15; #Drain supply voltage\n",
+ "RD=620.0; #Drain resistor, Ω\n",
+ "RL=8.2; #Load resistor, kΩ\n",
+ "vin=500.0; #Input voltage, V\n",
+ "IDSS=12.0; #Shorted gate drain current, mA\n",
+ "gm=3.2; #Transconductance, mS\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "VDS=VDD-IDSS*(RD/1000.0); #Drain source voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "RAC=RD*RL*1000/(RD+RL*1000); #Total a.c drain resistace, Ω\n",
+ "vout=(gm/1000.0)*RAC*vin; #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Drain source voltage=%.2fV.\"%VDS);\n",
+ "print(\"(ii) Output voltage=%dmV\"%vout);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.34 : Page number 545"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drain current=98.7mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "ID_on=500.0; #Drain current for MOSFET ON, mA\n",
+ "VGS_on=10.0; #Gate-source voltage for MOSFET ON, V\n",
+ "VGS_th=1.0; #Threshold value of gate-source voltage, V\n",
+ "VGS=5; #Gate-source voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "K=round(ID_on/(VGS_on-VGS_th)**2,2); #Constant for a E-MOSFET, mA/V²\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Drain current=%.1fmA\"%ID);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.35 : Page number 545"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "K=0.061e-03A/V².\n",
+ "For VGS=5V, Drain current=0.244mA\n",
+ "For VGS=8V, Drain current=1.525mA\n",
+ "For VGS=10V, Drain current=2mA\n",
+ "For VGS=12V, Drain current=4.94mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "ID_on=3.0; #Drain current for MOSFET ON, mA\n",
+ "VGS_on=10.0; #Gate-source voltage for MOSFET ON, V\n",
+ "VGS_th=3.0; #Threshold value of gate-source voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "K=round((ID_on/(VGS_on-VGS_th)**2),3); #Constant for a E-MOSFET, mA/V²\n",
+ "print(\"K=%.3fe-03A/V².\"%K);\n",
+ "\n",
+ "#Determining different points for plotting\n",
+ "VGS=5; #Gate-source voltage, V\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "print(\"For VGS=5V, Drain current=%.3fmA\"%ID);\n",
+ "VGS=8; #Gate-source voltage, V\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "print(\"For VGS=8V, Drain current=%.3fmA\"%ID);\n",
+ "VGS=10; #Gate-source voltage, V\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "print(\"For VGS=10V, Drain current=%.dmA\"%ID);\n",
+ "VGS=12; #Gate-source voltage, V\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "print(\"For VGS=12V, Drain current=%.2fmA\"%ID);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.36 : Page number 546-547"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drain-source voltage=10.8V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=24.0; #Drain supply voltage, V\n",
+ "RD=470.0; #Drain resistor, Ω\n",
+ "R1=100.0; #Resistor R1, kΩ\n",
+ "R2=15.0; #Resistor R2, kΩ\n",
+ "ID_on=500.0; #Drain current for MOSFET ON, mA\n",
+ "VGS_on=10.0; #Gate-source voltage for MOSFET ON, V\n",
+ "VGS_th=1.0; #Threshold value of gate-source voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "VGS=VDD*R2/(R1+R2); #Gate-source voltage, V (Voltage divider rule)\n",
+ "K=round((ID_on/(VGS_on-VGS_th)**2),2); #Constant for a E-MOSFET, mA/V²\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "VDS=VDD-(ID/1000)*RD; #Drain-source voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Drain-source voltage=%.1fV.\"%VDS);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.37 : Page number 547"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drain current=10mA.\n",
+ "Drain-source voltage=10V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=20.0; #Drain supply voltage, V\n",
+ "RD=1.0; #Drain resistor, kΩ\n",
+ "RG=5.0; #Gate resistor , MΩ\n",
+ "ID_on=10.0; #Drain current for MOSFET ON, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#since, VGS=VDS\n",
+ "ID=ID_on; #Drain current, mA\n",
+ "VDS=VDD-ID*RD; #Drain-source voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Drain current=%dmA.\"%ID);\n",
+ "print(\"Drain-source voltage=%dV.\"%VDS);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.38 : Page number 547-548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drain current=1.69mA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VDD=10.0; #Drain supply voltage, V\n",
+ "RD=3.0; #Drain resistor, kΩ\n",
+ "R1=1.0; #Resistor R1, MΩ\n",
+ "R2=1.0; #Resistor R2, MΩ\n",
+ "ID_on=10.0; #Drain current for MOSFET ON, mA\n",
+ "VGS_on=10.0; #Gate-source voltage for MOSFET ON, V\n",
+ "VGS_th=1.5; #Threshold value of gate-source voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "K=round((ID_on/(VGS_on-VGS_th)**2),3); #Constant for a E-MOSFET, mA/V²\n",
+ "VGS=VDD*R2/(R1+R2); #Gate-source voltage, V (Voltage divider rule)\n",
+ "ID=K*(VGS-VGS_th)**2; #Drain current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Drain current=%.2fmA.\"%ID);\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_3.ipynb
new file mode 100644
index 00000000..49519941
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_3.ipynb
@@ -0,0 +1,646 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0ac98582dd0b2497034e459e869a2a3bd28001d0d4c4b37a61a8ed5d05f228e3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 1: INTRODUCTION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "EXAMPLE 1.1: Page Number 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "Eg=24.0; #Generated voltage in V\n",
+ "Ri=0.01; #Internal Resistance in \u03a9\n",
+ "P=100; #Power supplied in watts\n",
+ "\n",
+ "#Calculations\n",
+ "# (i)\n",
+ "I=P/Eg; #Load current in A\n",
+ "V_Ri=I*Ri; #Voltage drop in internal resistance\n",
+ "\n",
+ "# (ii)\n",
+ "V=Eg-(I*Ri); #Terminal Voltage\n",
+ "\n",
+ "#Results\n",
+ "print (\"The voltage drop in internal resistance is %.4f V\"%V_Ri);\n",
+ "print (\"The terminal voltage is %.2f V\"%V);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage drop in internal resistance is 0.0417 V\n",
+ "The terminal voltage is 23.96 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "EXAMPLE 1.2: Page number 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Eg=500.0; #Generated voltage in V\n",
+ "Ri=1000.0; #Internal Resistance in \u03a9\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "# (i)\n",
+ "RL=10; #Load resistance of case 1 in \u03a9 \n",
+ "I= Eg/(RL+Ri); #Load current in A\n",
+ "\n",
+ "print(\"The load current for RL=10\u03a9 is %.3f A\"%I);\n",
+ "\n",
+ "# (ii)\n",
+ "RL=50; #Load resistance of case 2 in \u03a9 \n",
+ "I= Eg/(RL+Ri); #Load current in A\n",
+ "\n",
+ "print(\"The load current for RL=50\u03a9 is %.3f A\"%I);\n",
+ "\n",
+ "# (iii)\n",
+ "RL=100; #Load resistance of case 3 in \u03a9 \n",
+ "I= Eg/(RL+Ri); #Load current in A\n",
+ "I=round(I,3);\n",
+ "\n",
+ "print(\"The load current for RL=100\u03a9 is %.3f A\"%I);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The load current for RL=10\u03a9 is 0.495 A\n",
+ "The load current for RL=50\u03a9 is 0.476 A\n",
+ "The load current for RL=100\u03a9 is 0.455 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3: Page Number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "E=10.0; #voltage of voltage source in V\n",
+ "Ri=10.0; #Internal Resistance of the voltage source in \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "Isc=E/Ri; #short circuit current in A\n",
+ "I=Isc; #Current value of current source in A\n",
+ "R=Ri; #Internal Resistence of the current source in \u03a9\n",
+ "\n",
+ "#Results\n",
+ "print(\"The current value of the current source= %d A\"%Isc);\n",
+ "print(\"The internal resistance of the current source =%d \u03a9 \"%R);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current value of the current source= 1 A\n",
+ "The internal resistance of the current source =10 \u03a9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "EXAMPLE 1.4: Page number 11-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I=6.0; # current value of current source in mA\n",
+ "Ri=2000.0; #Internal Resistance of the current source in \u03a9\n",
+ "\n",
+ "#Calcultion\n",
+ "V=(I/1000)*Ri; #Voltage of voltage source in V\n",
+ "R=Ri; #Internal resistance of voltage source in \u03a9\n",
+ "\n",
+ "#Results\n",
+ "print(\"The voltage of voltage source is %d V\"%V);\n",
+ "print(\"The internal resistance of the voltage source is %d \u03a9\"%R);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage of voltage source is 12 V\n",
+ "The internal resistance of the voltage source is 2000 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.5: Page number 13\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#variable declaration\n",
+ "E=200.0; #Generated voltage in V\n",
+ "Ri=100.0; #Internal Resistance of generator in \u03a9\n",
+ "\n",
+ "#Calculations\n",
+ "#(i)\n",
+ "RL=100; #Load resistance for 1st case in \u03a9\n",
+ "I=E/(RL+Ri); #Load current in 1st case A\n",
+ "P=(I*I)*RL; #Power delivered to load of 2nd case in watts\n",
+ "Pt=(I*I)*(Ri+RL); #Total power generated in watts\n",
+ "\n",
+ "print(\"Power delivered for RL=100\u03a9 is %d watts\"%P);\n",
+ "print(\"Total power generated for RL=100\u03a9 is %d watts\"%Pt);\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "RL=300; #Load resistance for 2nd case in \u03a9\n",
+ "I=E/(RL+Ri); #Load current in 2nd case in A\n",
+ "P=(I*I)*RL; #Power delivered to load of 2nd case in watts\n",
+ "Pt=(I*I)*(Ri+RL); #Total power generated in watts\n",
+ "\n",
+ "print(\"Power delivered for RL=300\u03a9 is %d watts\"%P);\n",
+ "print(\"Total power generated for RL=300\u03a9 is %d watts\"%Pt);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power delivered for RL=100\u03a9 is 100 watts\n",
+ "Total power generated for RL=100\u03a9 is 200 watts\n",
+ "Power delivered for RL=300\u03a9 is 75 watts\n",
+ "Total power generated for RL=300\u03a9 is 100 watts\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.6: Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V=12.0; #Output from amplifier in V\n",
+ "R_out_eq=15; #Equivalent resistance in \u03a9\n",
+ "\n",
+ "#Calculations\n",
+ "RL=R_out_eq; #Load resistance in \u03a9\n",
+ "Rt=RL+R_out_eq; #Total resistance in \u03a9\n",
+ "I=V/Rt; #Circuit current in A\n",
+ "PL=pow(I,2)*RL; #Power delivered to load in W\n",
+ "\n",
+ "#Results\n",
+ "print(\"Load resistance required is = %d \u03a9\"%RL);\n",
+ "print(\"Power delivered to load = %.1f W\"%PL);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Load resistance required is = 15 \u03a9\n",
+ "Power delivered to load = 2.4 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7, Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V=50.0; #voltage from ac generator in V\n",
+ "R=100.0; #Resistance of internal impedance in \u03a9\n",
+ "XL=50.0; #inductive reactance of internal impedance in \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "Zi=100+(50j); #Internal impedance in complex form (\u03a9)\n",
+ "ZL=conjugate(Zi); #Load impedance (conjugate of internal impedance ) in \u03a9\n",
+ "Zt=Zi+ZL; #Total impedance in \u03a9\n",
+ "I=real(V/Zt); #Circuit current in A\n",
+ "\n",
+ "Max_Power=pow(I,2)*R; #Maximum power transferred to the load in watts\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print (\"Load impedance %d %dj \u03a9\"%(real(ZL),imag(ZL)));\n",
+ "print(\"Maximum power transferred to the load =%.2f W\"%Max_Power);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Load impedance 100 -50j \u03a9\n",
+ "Maximum power transferred to the load =6.25 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.8: Page number 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Function for calculating parallel resistance\n",
+ "def pR(R1,R2):\n",
+ " return((R1*R2)/(R1+R2));\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=100.0; #Source voltage in V\n",
+ "R1=10.0; #Resistance of resistor 1 in \u03a9\n",
+ "R2=20.0; #Resistance of resistor 2 in \u03a9\n",
+ "R3=12.0; #Resistance of resistor 3 in \u03a9\n",
+ "R4=8.0; #Resistance of resistor 4 in \u03a9\n",
+ "RL=100.0; #Resistance of load in \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "Req=R1+pR(R3+R4,R2); #Equivalent resistance after removing RL ,in \u03a9\n",
+ "I=E/Req; #Total circuit current in A\n",
+ "I8=I*R2/(R2+R3+R4);\n",
+ "\n",
+ "#Thevenin's equivalent circuit's parameters\n",
+ "E0=I8*R4; #Thevenin voltage V\n",
+ "R0=pR(pR(R1,R2)+R3,R4); #Thevenin resistance \n",
+ "I_RL=E0/(R0+RL); #Load current in A \n",
+ "\n",
+ "#Result \n",
+ "print (\"Current through load = %.2f A.\"%I_RL);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current through load = 0.19 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.9: Page number 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Function for calculating parallel resistance\n",
+ "def pR(R1,R2):\n",
+ " return((R1*R2)/(R1+R2));\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=20.0; #Voltage source in V\n",
+ "R1=1000.0; #resistance of resistor 1 in \u03a9\n",
+ "R2=1000.0; #resistance of resistor 2 in \u03a9\n",
+ "R3=1000.0; #resistance of resistor 3 in \u03a9\n",
+ "\n",
+ "#calculation\n",
+ "#parameter for Thevenin's equivalent circuit\n",
+ "E0=(V*R3)/(R1+R3); #thevenin voltage in V\n",
+ "R0=pR(R1,R3)+R2; #Thevenins resistance in \u03a9\n",
+ "\n",
+ "#result\n",
+ "print(\"The thevenin voltage = %d V\"%E0);\n",
+ "print(\"The thevenin resistance = %d \u03a9\"%R0);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thevenin voltage = 10 V\n",
+ "The thevenin resistance = 1500 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.10: Page number 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V=120.0; #Supply voltage in V\n",
+ "R1=40.0; #Resistor 1's resistance in \u03a9\n",
+ "R2=20.0; #Resistor 2's resistance in \u03a9\n",
+ "R3=60.0; #Resistor 3's resistance in \u03a9\n",
+ "\n",
+ "#Calculations\n",
+ "#Using Thevenin's theorem, Thevenin's voltage and resistance are calculated\n",
+ "E0=(V*R2)/(R1+R2); #Thevenin voltage (voltage across the load resistance RL, after removing RL)in V\n",
+ "R0=(R1*R2)/(R1+R2) + R3; #Thevenin's resistance (Resistance between the terminals of load RL, with RL removed and source voltage shorted)in \u03a9 \n",
+ "RL=R0; #Value of load resistance to be connected for maximum power transfer in \u03a9\n",
+ "Pmax=pow(E0,2)/(4*RL); #Maximum power transferred to load in watts\n",
+ "\n",
+ "#Results\n",
+ "print(\"The value of load resistance RL to which maximum power will be transferred = %.2f \u03a9.\"%RL);\n",
+ "print(\"The maximum power transferred to load =%.2f W.\"%Pmax);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of load resistance RL to which maximum power will be transferred = 73.33 \u03a9.\n",
+ "The maximum power transferred to load =5.45 W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.11: Page number 18-19-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V=80.0; #Supply voltage in V\n",
+ "R1=100.0; #Resistor 1's resistance in \u03a9\n",
+ "R2=100.0; #Resistor 2's resistance in \u03a9\n",
+ "R3=30.0; #Resistor 3's resistance in \u03a9\n",
+ "R4=80.0; #Resistor 4's resistance in \u03a9\n",
+ "R5=20.0; #Resistor 5's resistance in \u03a9\n",
+ "R6=60.0; #Resistor 6's resistance in \u03a9\n",
+ "R7=20.0; #Resistor 7's resistance in \u03a9\n",
+ "R8=50.0; #Resistor 8's resistance in \u03a9\n",
+ "\n",
+ "#Calculations\n",
+ "#Using Thevenin's theorem,\n",
+ "E0=(V*R2)/(R1+R2); #Thevenin's voltage for the circuit containing V, R1, R2 in V.\n",
+ "R0=(R1*R2)/(R1+R2); #Thevenin's resistance for R1, R2 in \u03a9.\n",
+ "\n",
+ "#Using Thevenin's theorem again on E0, R0 and rest of the circuit resistors.\n",
+ "E0_1=(E0*R4)/(R0+R3+R4); #Thevenin's voltage for the cicruit containing E0, R0, R3, R4 in V\n",
+ "R0_1=((R0+R3)*R4)/(R0+R3+R4); #Thevenin's resistance of R0,R3,R4 (R0 and R3 in series and both in parallel with R4), in \u03a9 \n",
+ "\n",
+ "#Using Thevenin's theorem again on E0_1, R0_1, and rest of the circuit resistors.\n",
+ "E0_2=(E0_1*R6)/(R0_1+R5+R6); #Thevenin's voltage for the circuit containing E0_1, R0_1, R5, R6 in V\n",
+ "R0_2=((R0_1+R5)*R6)/(R0_1+R5+R6); #Thevenin's resistance of R0_1,R5,R6 (R0 and R3 in series and both in parallel with R4), in \u03a9\n",
+ "\n",
+ "\n",
+ "I_50=E0_2/(R0_2+R7+R8); #Current through the 50 \u03a9 resistor in A\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The current through the 50 \u03a9 resistor =%.1f A.\"%I_50);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current through the 50 \u03a9 resistor =0.1 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.12: Page number 22\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import floor\n",
+ "#Variable declaration\n",
+ "V=40.0; #Voltage supply in V\n",
+ "R1=4.0; #Resistor 1's resistance in \u03a9\n",
+ "R2=6.0; #Resistor 2's resistance in \u03a9\n",
+ "R3=5.0; #Resistor 3's resistance in \u03a9\n",
+ "R4=8.0; #Resistor 4's resistance in \u03a9\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Using Norton's theorem,\n",
+ "#calculating Norton current by removing the load resistance R4 and short circuiting those two terminals of the circuit\n",
+ "R=R1 + (R2*R3)/(R2+R3); #Load on source after removing R4 resistor, in \u03a9\n",
+ "I=V/R; #Source current in A\n",
+ "\n",
+ "#Using current dividing rule ,calculating the short circuit current.\n",
+ "I_N=(I*R2)/(R2+R3); #Norton's equivalent current or the short circuit current in A\n",
+ "\n",
+ "R_N=R3 + (R1*R2)/(R1+R2); #Norton's equivalent resistance in \u03a9\n",
+ "\n",
+ "I_8=(I_N*R_N)/(R_N+R4); #Current through the 8 \u03a9 resistance in A\n",
+ "\n",
+ " \n",
+ "\n",
+ "#Results\n",
+ "print(\"The current through the 8\u03a9 resistance =%.2f A.\"%I_8);\n",
+ "\n",
+ "#Note: The answer in the book is 1.55 A, but in the above code the approximate value is obtained, i.e not 1.55A but 1.56A\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current through the 8\u03a9 resistance =1.56 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.13 :Page number 23\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V1=30.0; #Voltage source 1, V\n",
+ "V2=18.0; #Voltage source 2, V\n",
+ "R1=20.0; #1st resistor, \u03a9\n",
+ "R2=10.0; #2nd resistor, \u03a9\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Finding Thevenin's Equivalent circuit\n",
+ "I=(V1-V2)/(R1+R2); #Current in the circuit, A\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law to 1st loop of the circuit,\n",
+ "#V1-I*R1-E0=0, where E0 is the voltage across the points X-Y.\n",
+ "E0=V1-I*R1; #Thevenin's voltage source, V\n",
+ "\n",
+ "R0=R1*R2/(R1+R2); #Thevenin's resistance, \u03a9\n",
+ "\n",
+ "#Finding Norton's equivalent circuit\n",
+ "IN=E0/R0; #Norton's equivalent current source, A\n",
+ "RN=R0; #Norton's equivanlent resistance, \u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"IN=%.1fA and RN=%.2f \u03a9\"%(IN,RN));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "IN=3.3A and RN=6.67 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter20_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter20_3.ipynb
new file mode 100644
index 00000000..cad31534
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter20_3.ipynb
@@ -0,0 +1,677 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:369e36634d005b832372dcae6796c76b979f32b499d8baadce951517f2201533"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 20 : SILICON CONTROLLED RECTIFIERS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.2 : Page number 559\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I=50.0; #Surge current, A\n",
+ "t=12.0; #Time for which surge current lasts, ms\n",
+ "circuit_fusing_rating_max=90; #Maximum circuit fusing rating, A\u00b2s\n",
+ "\n",
+ "#Calculation\n",
+ "circuit_fusing_rating=I**2*(t*10**-3); #Circuit fusing rating, A\u00b2s\n",
+ "\n",
+ "#Result\n",
+ "if(circuit_fusing_rating<circuit_fusing_rating_max):\n",
+ " print(\"The device will not be destroyed.\");\n",
+ "else:\n",
+ " print(\"The device will be destroyed.\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The device will not be destroyed.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.3 : Page number 559\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I2_t_rating=50.0; #circuit fuse rating, A\u00b2s\n",
+ "Is=100.0; #Surge current, A\n",
+ "\n",
+ "#Calculation\n",
+ "t_max=(I2_t_rating/Is**2)*1000; #Maximum allowable duration, ms\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum allowable duration =%dms\"%t_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum allowable duration =5ms\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.4 : Page number 559\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "R=220.0; #Gate resistor, \u03a9\n",
+ "I_G=7.0; #Gate current, mA\n",
+ "V_GK=0.7; #Junction voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "V_in=V_GK+(I_G/1000)*R; #Input voltage, V (Kirchhoff's voltage law)\n",
+ "\n",
+ "#Result\n",
+ "print(\"The required input voltage=%.2fV.\"%V_in);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required input voltage=2.24V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.5 : Page number 564\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import asin\n",
+ "from math import cos\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_G=1.0; #Gate current, mA\n",
+ "V_m=200.0; #Peak value of input sinusoidal voltage, V\n",
+ "v=100.0; #Forward breakdown voltage of SCR, V\n",
+ "R_L=100.0; #Load resistance, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#v=Vm*sin(theta)\n",
+ "#Finding angle theta, for input voltage (v)= (V_f)forward_breakdown_voltage\n",
+ "theta=asin(v/V_m); #angle for input voltage = forward breakdown voltage, rad\n",
+ "theta=theta*180/pi; #angle for input voltage = forward breakdown voltage, degrees\n",
+ "\n",
+ "alpha=round(theta,0); #Firing angle, degrees\n",
+ "\n",
+ "#(ii)\n",
+ "phi=180-alpha; #Conduction angle, degrees\n",
+ "\n",
+ "#(iii)\n",
+ "V_avg=(V_m/(2*pi))*(1+cos(alpha*pi/180)); #Average voltage, V\n",
+ "I_avg=V_avg/R_L; #Average current, A\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The firing agle=%d\u00b0\"%alpha);\n",
+ "print(\"(ii) The conduction angle=%.0f\u00b0\"%phi);\n",
+ "print(\"(iii) The average current=%.4fA \"%I_avg);\n",
+ "\n",
+ "#Note: In the text book has approximated the average current to 0.5925A but in the code it gets approximated to 0.5940A.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The firing agle=30\u00b0\n",
+ "(ii) The conduction angle=150\u00b0\n",
+ "(iii) The average current=0.5940A \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.6 : Page number 564\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import asin\n",
+ "from math import cos\n",
+ "from math import pi\n",
+ "from math import floor\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_G=1.0; #Gate current, mA\n",
+ "V_m=400.0; #Peak value of input sinusoidal voltage, V\n",
+ "v=150.0; #Forward breakdown voltage of SCR, V\n",
+ "R_L=200.0; #Load resistance, \u03a9\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#v=Vm*sin(theta)\n",
+ "#Finding angle theta, for input voltage (v)= (V_f)forward_breakdown_voltage\n",
+ "theta=asin(v/V_m); #angle for input voltage = forward breakdown voltage, rad\n",
+ "theta=theta*180/pi; #angle for input voltage = forward breakdown voltage, degrees\n",
+ "\n",
+ "alpha=theta; #Firing angle, degrees\n",
+ "\n",
+ "#(ii)\n",
+ "V_av=floor((V_m/(2*pi))*(1+cos(alpha*pi/180))*10)/10; #Average voltage, V\n",
+ "\n",
+ "#(iii)\n",
+ "I_av=V_av/R_L; #Average current, A\n",
+ "\n",
+ "#(iv)\n",
+ "P_out=V_av*I_av; #Output power, W\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The firing agle=%d\u00b0\"%alpha);\n",
+ "print(\"(ii) The average output voltage=%.1f V\"%V_av);\n",
+ "print(\"(iii) The average current=%.3fA \"%I_av);\n",
+ "print(\"(iv) The output power=%.2f W\"%P_out);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The firing agle=22\u00b0\n",
+ "(ii) The average output voltage=122.6 V\n",
+ "(iii) The average current=0.613A \n",
+ "(iv) The output power=75.15 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.7 : Page number 564-565\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import asin\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=180.0; #Forward breakdown voltage, V\n",
+ "V_m=240.0; #Peak value of input voltage, V\n",
+ "w=314.0; #Angular frequency of input ,rad/s\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#v=Vm*sin(w*t)\n",
+ "#So, t=asin(v/Vm)/w\n",
+ "t=(asin(v/V_m)/w)*1000; #Time for which SCR remains off, ms\n",
+ "\n",
+ "#Result\n",
+ "print(\"The SCR remains off for %.1f ms.\"%t);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The SCR remains off for 2.7 ms.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.8 : Page number 565\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import cos\n",
+ "from math import floor\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_dc=1.0; #d.c load current, A\n",
+ "alpha=30.0; #Firing angle, \u00b0\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_av=I_dc; #Average current(= d.c current), A\n",
+ "\n",
+ "#Since, Iav=(Vm/(2*pi*RL))*(1+cos(alpha)) and Im=Vm/RL\n",
+ "I_m=floor((2*pi*I_av/(1+cos(alpha*pi/180)))*100)/100; #Peak-load current, A\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Peak-load current=%.2f A.\"%I_m);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Peak-load current=3.36 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.9: Page number 565\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "from math import sin\n",
+ "\n",
+ "#Variable declaration\n",
+ "alpha=60.0; #Firing angle, \u00b0\n",
+ "P=100.0; #Power rating of tungsten lamp, W\n",
+ "V=110.0; #Voltage rating of tungsten lamp, V\n",
+ "V_ac=110.0; #a.c supply voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_m=V_ac*sqrt(2); #Peak value of input voltage, V\n",
+ "\n",
+ "alpha=alpha*pi/180; #firing angle, rad\n",
+ "\n",
+ "#Since, E_rms\u00b2=(1/2*pi) \u222b V_m\u00b2sin\u00b2(theta) d(theta), limits: alpha to pi\n",
+ "# E_rms\u00b2=Vm\u00b2*((2*(pi-alpha) + sin(2*alpha))/(8*pi)),\n",
+ "# E_rms=Vm*sqrt((2*(pi-alpha) + sin(2*alpha))/(8*pi)),\n",
+ "E_rms=round(V_m*sqrt((2*(pi-alpha) + sin(2*alpha))/(8*pi))); #r.m.s voltage developed in the lamp, V\n",
+ "\n",
+ "\n",
+ "RL=V**2/P; #Load resistance, \u03a9\n",
+ "\n",
+ "I_rms=E_rms/RL; #r.m.s current developed in the lamp, A\n",
+ "\n",
+ "#Result\n",
+ "print(\"The r.m.s voltage developed in the lamp=%d V.\"%E_rms);\n",
+ "print(\"The r.m.s current developed in the lamp=%.2f A.\"%I_rms);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The r.m.s voltage developed in the lamp=70 V.\n",
+ "The r.m.s current developed in the lamp=0.58 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.10 : Page number 567\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos\n",
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "RL=100.0; #Load resistance, \u03a9\n",
+ "V_m=200.0; #Peak a.c voltage, V\n",
+ "alpha=60; #firing angle, \u00b0\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "V_av=(V_m/pi)*(1+cos(alpha*pi/180)); #D.C output voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "I_av=V_av/RL; #Load current, A\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) d.c output voltage=%.1f V.\"%V_av);\n",
+ "print(\"(ii) Load current=%.3f A\"%I_av);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) d.c output voltage=95.5 V.\n",
+ "(ii) Load current=0.955 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.11: Page number 567\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import pi\n",
+ "from math import sin\n",
+ "\n",
+ "#Variable declaration\n",
+ "alpha=60.0; #Firing angle, \u00b0\n",
+ "P=100.0; #Power rating of tungsten lamp, W\n",
+ "V=110.0; #Voltage rating of tungsten lamp, V\n",
+ "V_ac=110.0; #a.c supply voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_m=round(V_ac*sqrt(2)); #Peak value of input voltage, V\n",
+ "\n",
+ "alpha=alpha*pi/180; #firing angle, rad\n",
+ "\n",
+ "#Since, E_rms\u00b2=(1/2*pi) \u222b V_m\u00b2sin\u00b2(theta) d(theta), limits: alpha to pi\n",
+ "# E_rms\u00b2=Vm\u00b2*((2*(pi-alpha) + sin(2*alpha))/(8*pi)),\n",
+ "# E_rms=Vm*sqrt((2*(pi-alpha) + sin(2*alpha))/(8*pi)),\n",
+ "E_rms=V_m*sqrt((2*(pi-alpha) + sin(2*alpha))/(4*pi)); #r.m.s voltage developed in the lamp, V\n",
+ "\n",
+ "RL=V**2/P; #Load resistance, \u03a9\n",
+ "\n",
+ "I_rms=E_rms/RL; #r.m.s current developed in the lamp, A\n",
+ "\n",
+ "#Result\n",
+ "print(\"The r.m.s voltage developed in the lamp=%.1f V.\"%E_rms);\n",
+ "print(\"The r.m.s current developed in the lamp=%.2f A.\"%I_rms);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The r.m.s voltage developed in the lamp=98.9 V.\n",
+ "The r.m.s current developed in the lamp=0.82 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.12 : Page number 572\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=15; #Suuply voltage, V\n",
+ "V_T=0.7; #Gate trigger voltage, V\n",
+ "I_T=7.0; #Gate trigger current, mA\n",
+ "I_H=6.0; #Holding current. mA\n",
+ "R_Vin=1; #Resistance at Vin, k\u03a9\n",
+ "R_VCC=100; #Resistance at Vcc, \u03a9\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) when SCR is off, there is no current, therefore no voltage drop across the resistor\n",
+ "V_out=VCC; #Output voltage, when SCR is off, V\n",
+ "\n",
+ "#(ii)\n",
+ "V_in=V_T+I_T*R_Vin; #Input voltage required to trigger the SCR, V\n",
+ "\n",
+ "#(iii)\n",
+ "#Since, I_H=(Vcc-VT)/R_Vin;\n",
+ "VCC_SCR_open=(I_H/1000)*R_VCC+V_T; #Decreased value of supply voltage at which SCR opens, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The output voltage when SCR is off=%dV.\"%V_out);\n",
+ "print(\"(ii) The input voltage required to trigger the SCR=%.1f V.\"%V_in);\n",
+ "print(\"(iii) The decreased supply voltage at which SCR opens=%.1f V.\"%VCC_SCR_open);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The output voltage when SCR is off=15V.\n",
+ "(ii) The input voltage required to trigger the SCR=7.7 V.\n",
+ "(iii) The decreased supply voltage at which SCR opens=1.3 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.13 : Page number 572-573\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=5.6; #zener voltage, V\n",
+ "V_T=0.7; #Trigger voltage of SCR, V\n",
+ "\n",
+ "#Calculation\n",
+ "VCC=Vz+V_T; #Required supply voltage to turn on the crowbar, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The required supply voltage to turn on the crowbar=%.1fV.\"%VCC);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required supply voltage to turn on the crowbar=6.3V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.14 : Page number 573\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=12; #Zener breakdown voltage, V\n",
+ "V_T=1.5; #Trigger voltage, V\n",
+ "tolerance_z=10.0; #Tolerance of zener diode, %\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Vz_max=Vz*(1+tolerance_z/100); #Maximum value of zener breakdown, V\n",
+ "Vz_min=Vz*(1-tolerance_z/100); #Minimum value of zener breakdown, V\n",
+ "V_crowbar=Vz_max+V_T; #Maximum value of supply voltage for crowbarring, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum value of supply voltage for crowbarring=%.1fV\"%V_crowbar);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum value of supply voltage for crowbarring=14.7V\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20.15 : Page number 573\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=25.0; #Supply voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#When brights light is on, LASCR conducts and thus gets short circuited to ground, hence,\n",
+ "V_out=0; #Output voltage, V\n",
+ "\n",
+ "print(\"Output voltage when bright light is on=%dV\"%V_out);\n",
+ "\n",
+ "\n",
+ "#When brights light is off, LASCR stops conducting and thus no current through resistor, hence,\n",
+ "V_out=VCC; #Output voltage, V\n",
+ "print(\"Output voltage when bright light is off=%dV\"%V_out);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output voltage when bright light is on=0V\n",
+ "Output voltage when bright light is off=25V\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter21_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter21_3.ipynb
new file mode 100644
index 00000000..acca0cfa
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter21_3.ipynb
@@ -0,0 +1,467 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:412bf04e25192c77f9fa9664d995cc0ae6446a81f631fb5e0e755ebfa36436bf"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 21 : POWER ELECTRONICS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.3: Page number 585\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_GT=2; #Gate triggering voltage, V\n",
+ "V_F=0.7; #Forward voltage for diode D1\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)Triggering only by a positive gate voltage,\n",
+ "#A diode is connected at the gatewith the n-side connected to thegate of the device,\n",
+ "V_A=V_F+V_GT; #Required voltage to trigger the device, V\n",
+ "\n",
+ "print(\"The required voltage to trigger the device only by positive voltage=%.1fV.\"%V_A);\n",
+ "\n",
+ "#(ii)\n",
+ "print(\"In order to trigger the triac only by negative voltage, the direction of diode D1 is reversed.\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required voltage to trigger the device only by positive voltage=2.7V.\n",
+ "In order to trigger the triac only by negative voltage, the direction of diode D1 is reversed.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.4 : Page number 585-586\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R=50.0; #Resitor, \u03a9\n",
+ "V=50.0; #Supply voltage, V\n",
+ "V_drop=1.0; #Drop across the triac in conduction, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) Ideal triac\n",
+ "#Since the triac is ideal, voltage drop across it is zero,\n",
+ "I=V/R; #Current through the 50 \u03a9 resistor, A\n",
+ "\n",
+ "print(\"(i) The cuurent through the 50 \u03a9 resistor when the triac is ideal=%dA.\"%I);\n",
+ "\n",
+ "#(ii) Triac has a drop of 1V\n",
+ "I=(V-V_drop)/R; #Current through the 50 \u03a9 resistor, A\n",
+ "\n",
+ "print(\"(ii) The current through the 50 \u03a9 resistor when the triac has a drop of 1V=%.2fA.\"%I);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The cuurent through the 50 \u03a9 resistor when the triac is ideal=1A.\n",
+ "(ii) The current through the 50 \u03a9 resistor when the triac has a drop of 1V=0.98A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.5 : Page number 588-589\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_GT=2; #Gate triggering voltage, V\n",
+ "V_BO=20; #Breakover voltage,V\n",
+ "\n",
+ "#Calculation\n",
+ "print(\"The triggering level is raised by using a diac.\");\n",
+ "V_A=V_BO+V_GT; #Gate trigger signal, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"In order to turn on the triac, the gate trigger signal=%dV.\"%V_A);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The triggering level is raised by using a diac.\n",
+ "In order to turn on the triac, the gate trigger signal=22V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.6 : Page number 589\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_BO=30; #Breakover voltage of diac, V\n",
+ "V_GT=1; #Trigger voltage of the triac, V\n",
+ "I_T=10; #Trigger current, mA\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_A=V_BO+V_GT; #Voltage required for triggering the triac, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The minimum capacitor voltage that will trigger the triac=%d V.\"%V_A);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum capacitor voltage that will trigger the triac=31 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.7 : Page number 593\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "eta=0.6; #Intrinsic stand-off ratio for UJT\n",
+ "R_BB=10; #Inter-base resistance, k\u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, RBB=RB1+RB2 and eta=RB1/(RB1+RB2),\n",
+ "#eta=RB1/RBB.\n",
+ "R_B1=eta*R_BB; #Resistance of the bar between B1 and emitter junction, k\u03a9\n",
+ "R_B2=R_BB-R_B1; #Resistance of the bar between B2 and emitter junction, k\u03a9 \n",
+ "\n",
+ "#Result\n",
+ "print(\"Resistance of the bar between B1 and emitter junction=%d k\u03a9.\"%R_B1);\n",
+ "print(\"Resistance of the bar between B2 and emitter junction=%d k\u03a9.\"%R_B2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistance of the bar between B1 and emitter junction=6 k\u03a9.\n",
+ "Resistance of the bar between B2 and emitter junction=4 k\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.8 : Page number 593\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_BB=10; #Interbase voltage, V\n",
+ "eta=0.65; #Intrinsic stand-off ratio for UJT\n",
+ "V_D=0.7; #Voltage drop in the pn junction, V\n",
+ "\n",
+ "#Calculation\n",
+ "V_stand_off=eta*V_BB; #Stand off voltage, V\n",
+ "V_P=V_stand_off+V_D; #Peak-point voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Stand off voltage=%.1f V.\"%V_stand_off);\n",
+ "print(\"Peak-point voltage=%.1f V.\"%V_P);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stand off voltage=6.5 V.\n",
+ "Peak-point voltage=7.2 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.9 : Page number 593\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_BB=25; #Interbase voltage, V\n",
+ "eta_max=0.86; #Maximum intrinsic stand-off ratio for UJT\n",
+ "eta_min=0.74; #Minimum intrinsic stand-off ratio for UJT\n",
+ "V_D=0.7; #Voltage drop in the pn junction, V\n",
+ "\n",
+ "#Calculation\n",
+ "V_P_max=eta_max*V_BB+V_D; #Maximum peak-point, V\n",
+ "V_P_min=eta_min*V_BB+V_D; #Minimum peak-point, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Maximum peak-point voltage=%.1fV\"%V_P_max);\n",
+ "print(\"Minimum peak-point voltage=%.1fV\"%V_P_min);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum peak-point voltage=22.2V\n",
+ "Minimum peak-point voltage=19.2V\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.10 : Page number 593-594\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "eta=0.65; #Intrinsic stand-off ratio for UJT\n",
+ "R_BB=7.0; #Inter-base resistance, k\u03a9\n",
+ "R1=100.0; #Resistor R1, \u03a9\n",
+ "R2=400.0; #Resistor R2, \u03a9\n",
+ "V_S=12.0; #Source voltage, V\n",
+ "V_D=0.7; #Voltage drop in the pn junction, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#Since, eta=RB1/RBB,\n",
+ "R_B1=eta*R_BB; #Resistance of the bar between B1 and emitter junction, k\u03a9\n",
+ "R_B2=R_BB-R_B1; #Resistance of the bar between B2 and emitter junction, k\u03a9 \n",
+ "\n",
+ "print(\"(i) Resistance of the bar between B1 and emitter junction=%.2f k\u03a9.\"%R_B1);\n",
+ "print(\" Resistance of the bar between B2 and emitter junction=%.2f k\u03a9.\"%R_B2);\n",
+ "\n",
+ "#(ii)\n",
+ "V_B2_B1=V_S*R_BB/(R_BB + (R1/1000) + (R2/1000)); #Voltage across B2-B1, V (voltage divider rule)\n",
+ "V_P=eta*V_B2_B1+V_D; #Peak-point voltage, V\n",
+ "\n",
+ "print(\"(ii) The voltage across the base B2-B1=%.1fV.\"%V_B2_B1);\n",
+ "print(\" Peak-point voltage=%.2fV\"%V_P);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Resistance of the bar between B1 and emitter junction=4.55 k\u03a9.\n",
+ " Resistance of the bar between B2 and emitter junction=2.45 k\u03a9.\n",
+ "(ii) The voltage across the base B2-B1=11.2V.\n",
+ " Peak-point voltage=7.98V\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.11 : Page number 596\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable declaration\n",
+ "RE_initial=5; #Initial value of emitter resistor, k\u03a9\n",
+ "RE_adjusted=10; #Adjusted value of emitter resistor, k\u03a9\n",
+ "C=0.2; #Capacitance, \u03bcF\n",
+ "eta=0.54; #intrinsic stand-off ratio\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "t=round((RE_initial*1000*C*10**-6*log(1/(1-eta)))*1000,2); #Time period, ms\n",
+ "f=(1/t)*1000; #frequency, Hz\n",
+ "\n",
+ "print(\"Frequency for 5k\u03a9 setting=%dHz.\"%f);\n",
+ "\n",
+ "#(i)\n",
+ "t=round((RE_adjusted*1000*C*10**-6*log(1/(1-eta)))*1000,2); #Time period, ms\n",
+ "f=(1/t)*1000; #frequency, Hz\n",
+ "\n",
+ "print(\"Frequency for 10k\u03a9 setting=%dHz.\"%f);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency for 5k\u03a9 setting=1282Hz.\n",
+ "Frequency for 10k\u03a9 setting=645Hz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.12 : Page number 596-597\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable declaration\n",
+ "V_S=12; #Supply voltage, V\n",
+ "R_BB=5; #Interbase resistance, k\u03a9\n",
+ "R_1=50; #Resistor R1, k\u03a9\n",
+ "R_2=0.1; #Resistor R2, k\u03a9\n",
+ "C=0.1; #Capacitance, \u03bcF\n",
+ "eta=0.6; #intrinsic stand-off ratio\n",
+ "V_D=0.7; #Voltage drop across pn junction, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "#Since, \u03b7=R_B1/R_BB,\n",
+ "R_B1=eta*R_BB; #Resitance between base B1 and emitter junction, k\u03a9\n",
+ "\n",
+ "#Since, R_BB=R_B1+R_B2\n",
+ "R_B2=R_BB-R_B1; #Resitance between base B2 and emitter junction, k\u03a9\n",
+ "\n",
+ "#(ii)\n",
+ "V_RB1_R2=V_S*(R_B1+R_2)/(R_BB+R_2); #Voltage drop across R_B1 and R_2 resistors, V\n",
+ "V_P=V_D+V_RB1_R2; #Peak-point voltage, V\n",
+ "\n",
+ "#(iii)\n",
+ "t=round((R_1*1000*C*10**-6*log(1/(1-eta)))*1000,2); #Time period, ms\n",
+ "f=(1/t)*1000; #frequency, Hz\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) R_B1=%dk\u03a9 and R_B2=%dk\u03a9\"%(R_B1,R_B2));\n",
+ "print(\"(ii) The peak-point voltage to turn on the UJT=%.0fV.\"%V_P);\n",
+ "print(\"(iii) Frequency of oscillations=%dHz.\"%f);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) R_B1=3k\u03a9 and R_B2=2k\u03a9\n",
+ "(ii) The peak-point voltage to turn on the UJT=8V.\n",
+ "(iii) Frequency of oscillations=218Hz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter22_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter22_3.ipynb
new file mode 100644
index 00000000..5f13ea0e
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter22_3.ipynb
@@ -0,0 +1,668 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a688629536ad6915939234eacc1ed3eaaf36e0aaa88de5df5b6a309da4d2c64d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 22: ELECTRONIC INSTRUMENTS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.1 : Page number 606\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_g=1; #Full scale deflection current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "MS=1/(I_g/1000.0); #Multimeter sensitivity, \u03a9 per volt\n",
+ "\n",
+ "#Result\n",
+ "print(\"The multimeter sensitivity=%d \u03a9 per volt.\"%MS);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The multimeter sensitivity=1000 \u03a9 per volt.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.2 : Page number 606-607\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "meter_sensitivity=1000.0; #Meter sensitivity, \u03a9 per volt\n",
+ "V_full_scale=50.0; #Full scale volts\n",
+ "R=50000.0; #Resistance to be measured, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "meter_resistance=V_full_scale*meter_sensitivity; #Meter resistance, \u03a9\n",
+ "R_p=R*meter_resistance/(R+meter_resistance); #Parallel resistance, \u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"When the meter is used to measure the voltage across the resistance %d\u03a9, total resistance =%d\u03a9.\"%(R,R_p));\n",
+ "print(\"\u2234 Meter will give highly incorrect reading.\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "When the meter is used to measure the voltage across the resistance 50000\u03a9, total resistance =25000\u03a9.\n",
+ "\u2234 Meter will give highly incorrect reading.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.3 : Page number 607\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "meter_sensitivity=4.0; #Meter sensitivity, k\u03a9/V\n",
+ "R_1=10.0; #Resistance across which voltage is to be measured, k\u03a9\n",
+ "R_2=10.0; #Resistance, k\u03a9\n",
+ "range_max=10.0; #Maximum range of the meter, V\n",
+ "range_min=0; #Minimum range of the meter, V\n",
+ "V=20.0; #Battery voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "R_meter=meter_sensitivity*range_max; #Resistance of the meter, k\u03a9\n",
+ "R_T=(R_meter*R_1)/(R_1+R_meter) + R_2; #Total circuit resistance, k\u03a9\n",
+ "I_circuit=round(V/R_T,2); #Circuit current, mA\n",
+ "V_multimeter=I_circuit*((R_meter*R_1)/(R_1+R_meter)); #Voltage read by multimeter, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Voltage read by multimeter=%.2fV.\"%V_multimeter);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage read by multimeter=8.88V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.4 : Page number 607-608\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "meter_sensitivity=20.0; #Meter sensitivity, k\u03a9/V\n",
+ "R_1=10.0; #Resistance across which voltage is to be measured, k\u03a9\n",
+ "R_2=10.0; #Resistance, k\u03a9\n",
+ "range_max=10.0; #Maximum range of the meter, V\n",
+ "range_min=0; #Minimum range of the meter, V\n",
+ "V=20.0; #Battery voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "R_meter=meter_sensitivity*range_max; #Resistance of the meter, k\u03a9\n",
+ "R_T=round((R_meter*R_1)/(R_1+R_meter) + R_2,1); #Total circuit resistance, k\u03a9\n",
+ "I_circuit=round(V/R_T,2); #Circuit current, mA\n",
+ "V_multimeter=I_circuit*((R_meter*R_1)/(R_1+R_meter)); #Voltage read by multimeter, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Voltage read by multimeter=%.2fV.\"%V_multimeter);\n",
+ "\n",
+ "\n",
+ "#Note: The circuit current=1.0256mA, has been approximated in the text as 1.04mA. But, in the code 1.03 mA has been used. Therefore, the final answer is obtained as 9.81V and not 9.88V.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage read by multimeter=9.81V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.5 : Page number 608-609\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import floor\n",
+ "\n",
+ "#Variable declaration\n",
+ "R_A=20.0; #Resistance after point A, k\u03a9\n",
+ "R_B=20.0; #Resistance after point B, k\u03a9\n",
+ "R_C=30.0; #Resistance after point C, k\u03a9\n",
+ "R_D=30.0; #Resistance after point D, k\u03a9\n",
+ "R_meter=60.0; #Resistance of the meter, k\u03a9\n",
+ "V=100.0; #Battery voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) When meter is not connected:\n",
+ "R_T=R_A+R_B+R_C+R_D; #Total circuit resistance, k\u03a9\n",
+ "I_circuit=V/R_T; #Circuit current, mA\n",
+ "V_A=V; #Voltage at point A, V\n",
+ "V_B=V-(I_circuit*R_A); #Voltage at point B, V\n",
+ "V_C=V-(I_circuit*(R_A+R_B)); #Voltage at point C, V\n",
+ "V_D=V-(I_circuit*(R_T-R_D)); #Voltage at point D, V\n",
+ "\n",
+ "print(\"(i) When meter is not connected:\");\n",
+ "print(\" Voltage at point A=%dV.\"%V_A);\n",
+ "print(\" Voltage at point B=%dV.\"%V_B);\n",
+ "print(\" Voltage at point C=%dV.\"%V_C);\n",
+ "print(\" Voltage at point D=%dV.\"%V_D);\n",
+ "\n",
+ "\n",
+ "#(ii) When meter is connected:\n",
+ "#(a) Since, point A is directly connected to the source, voltage at point A is equal to source voltage.\n",
+ "V_A=V; #Voltage at point A, V\n",
+ "\n",
+ "#(b)\n",
+ "R_T_B=R_A + round((R_T-R_A)*R_meter/(R_meter + (R_T-R_A)),2); #Total circuit resistance, k\u03a9\n",
+ "I_circuit=round(V/R_T_B,2); #Circuit current, mA\n",
+ "V_B=I_circuit*(R_T-R_A)*R_meter/(R_meter + (R_T-R_A)); #Voltage at point B, V\n",
+ "\n",
+ "\n",
+ "#(c)\n",
+ "R_T_C=(R_A+R_B) + (R_T-R_A-R_B)*R_meter/(R_meter + (R_T-R_A-R_B)); #Total circuit resistance, k\u03a9\n",
+ "I_circuit=V/R_T_C; #Circuit current, mA\n",
+ "V_C=floor((I_circuit*(R_T-R_A-R_B)*R_meter/(R_meter + (R_T-R_A-R_B)))*10)/10; #Voltage at point C, V\n",
+ "\n",
+ "\n",
+ "\n",
+ "#(c)\n",
+ "R_T_D=(R_T-R_D) + R_D*R_meter/(R_meter + R_D); #Total circuit resistance, k\u03a9\n",
+ "I_circuit=round(V/R_T_D,2); #Circuit current, mA\n",
+ "V_D=I_circuit*(R_D*R_meter)/(R_meter + R_D); #Voltage at point D, V\n",
+ "\n",
+ "\n",
+ "print(\"(ii) When meter is connected:\");\n",
+ "print(\" Voltage at point A=%dV.\"%V_A);\n",
+ "print(\" Voltage at point B=%dV.\"%V_B);\n",
+ "print(\" Voltage at point C=%.1fV.\"%V_C);\n",
+ "print(\" Voltage at point D=%.1fV.\"%V_D);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) When meter is not connected:\n",
+ " Voltage at point A=100V.\n",
+ " Voltage at point B=80V.\n",
+ " Voltage at point C=60V.\n",
+ " Voltage at point D=30V.\n",
+ "(ii) When meter is connected:\n",
+ " Voltage at point A=100V.\n",
+ " Voltage at point B=63V.\n",
+ " Voltage at point C=42.8V.\n",
+ " Voltage at point D=22.2V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.6 : Page number 614\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Supply voltage, V\n",
+ "R_m=1.0; #Meter resistance, k\u03a9\n",
+ "I_m_fsd=2.0; #Full scale deflection of meter current, mA\n",
+ "beta=80.0; #Base current amplification factor\n",
+ "E=5.0; #Voltage to be measured, V\n",
+ "V_BE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_E=E-V_BE; #Emitter voltage, V\n",
+ "\n",
+ "#(i)\n",
+ "#I_m_fsd=V_E/(R_s+R_m), (OHM's LAW)\n",
+ "R_s=((V_E/I_m_fsd)-R_m)*1000; #Multiplier resistor, \u03a9\n",
+ "\n",
+ "#(ii)\n",
+ "IB=I_m_fsd/beta; \t\t\t\t#Base current, mA\n",
+ "R_i=E/IB; \t\t\t#Input resistance of voltmeter, k\u03a9\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The multiplier resistor=%d\u03a9.\"%R_s);\n",
+ "print(\"(ii) The voltmeter input resistance=%dk\u03a9\"%R_i);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The multiplier resistor=1150\u03a9.\n",
+ "(ii) The voltmeter input resistance=200k\u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.7 : Page number 614\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20; #Supply voltage, V\n",
+ "Rs_Rm=9.3; #Sum of multipier resistance and meter resistance, k\u03a9\n",
+ "I_m=1; #Meter current, mA\n",
+ "beta=100; #Base current amplification factor\n",
+ "E=10; #Voltage to be measured, V\n",
+ "V_BE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "V_E=E-V_BE; #Emitter voltage, V\n",
+ "I_m=V_E/Rs_Rm; #Meter current, mA\n",
+ "\n",
+ "#(ii)\n",
+ "I_B=I_m/beta; #Base current, mA\n",
+ "R_i_T=(E/I_B)/1000; #Input resistance of voltmeter, with transistor, M\u03a9\n",
+ "R_i_WT=Rs_Rm; #Input resistance of voltmeter, without transistor, k\u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The meter current=%dmA\"%I_m);\n",
+ "print(\"(ii) The input resistance of voltmeter with transistor=%dM\u03a9.\"%R_i_T);\n",
+ "print(\" The input resistance of voltmeter without transistor=%.1fk\u03a9.\"%R_i_WT);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The meter current=1mA\n",
+ "(ii) The input resistance of voltmeter with transistor=1M\u03a9.\n",
+ " The input resistance of voltmeter without transistor=9.3k\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.8 : Page number 614-615\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20; #Supply voltage, V\n",
+ "Rs_Rm=9.3; #Sum of multipier resistance and meter resistance, k\u03a9\n",
+ "I_m=1; #Meter current, mA\n",
+ "beta=100; #Base current amplification factor\n",
+ "E=5; #Voltage to be measured, V\n",
+ "V_BE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_m=(E-V_BE)/Rs_Rm; #Meter current, mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The meter current=%.2fmA\"%I_m);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The meter current=0.46mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.9 : Page number 616\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "from math import floor\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_m_fsd=100.0; #Full scale deflection of meter current, \u03bcA\n",
+ "R_m=1.0; #Meter resistance, k\u03a9\n",
+ "V_rms=100.0; #r.m.s voltage to be measured, V\n",
+ "V_F=0.7; #Forward voltage drop of rectifier diode, V \n",
+ "\n",
+ "#Calculation\n",
+ "V_m=round(sqrt(2)*V_rms,1); #Peak value of applied voltage, V\n",
+ "V_rectifier_drop=2*V_F; #Total rectifier drop, V\n",
+ "I_peak=round(I_m_fsd/0.637,2); #Peak f.s.d current, \u03bcA\n",
+ "R_s=floor(((((V_m-V_rectifier_drop)/(I_peak*10**-6))-(R_m*1000))/1000)*10)/10; #Multiplier resistance, k\u03a9 (OHM's LAW)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The multiplier resistance=%.1fk\u03a9.\"%R_s);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The multiplier resistance=890.7k\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.10 : Page number 616\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "I_av=75; #Full scale deflection of meter current, \u03bcA\n",
+ "R_s=708; #Multiplier resistor, k\u03a9\n",
+ "R_m=900; #Meter coil resistor, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "I_peak=I_av*10**-6/0.637; #Peak f.s.d meter current, A\n",
+ "R_T=R_s*1000+R_m; #Total circuit resistance, \u03a9\n",
+ "\n",
+ "#I_peak=(Vm-V_drop)/R_T; (OHM's LAW)\n",
+ "#And, Vm=sqrt(2)*Vrms\n",
+ "V_rms=(I_peak*R_T+(2*0.7))/sqrt(2) ; #applied r.m.s voltage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The applied r.m.s voltage=%dV\"%V_rms);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The applied r.m.s voltage=60V\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.11 : Page number 618\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "deflection_sensitivity=0.01; #Deflection sensitivity, mm/V\n",
+ "V=400; #Applied voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "spot_shift=V*deflection_sensitivity; #Spot shift produced, mm\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The shift produced in the spot=%dmm.\"%spot_shift);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The shift produced in the spot=4mm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.12 : Page number 618-619\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "deflection_sensitivity=0.03; #Deflection sensitivity, mm/V\n",
+ "spot_shift=3; #Spot shift produced, mm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, spot_shift=Applied_Voltage*deflection_sensitivity,\n",
+ "V=spot_shift/deflection_sensitivity; #Applied voltage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Applied voltage=%dV.\"%V);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Applied voltage=100V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.13 : Page number 622\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "deflection=2; #Deflection produced by applied voltage, cm\n",
+ "V=200; #Applied voltage, V\n",
+ "deflection_by_another_voltage=3; #Deflection by another voltage, cm\n",
+ "\n",
+ "#Calculation\n",
+ "deflection_sensitivity=V/deflection; #deflection sensitivity, V/cm\n",
+ "V_unknown=deflection_sensitivity*deflection_by_another_voltage; #Unknown voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The unknown voltage=%dV.\"%V_unknown);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The unknown voltage=300V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22.14 : Page number 622\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "f_H=1000; #Frequency applied to horizontal plates, Hz\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Loops_H=1; #Number of loops cut by horizontal line\n",
+ "Loops_V=1; #Number of loops cut by vertical line\n",
+ "f_V=f_H*(Loops_H/Loops_V); #Unknown frequency, Hz\n",
+ "\n",
+ "print(\"(i) Unknown frequency=%dHz.\"%f_V);\n",
+ "\n",
+ "#(ii)\n",
+ "Loops_H=2; #Number of loops cut by horizontal line\n",
+ "Loops_V=1; #Number of loops cut by vertical line\n",
+ "f_V=f_H*(Loops_H/Loops_V); #Unknown frequency, Hz\n",
+ "\n",
+ "print(\"(ii) Unknown frequency=%dHz.\"%f_V);\n",
+ "\n",
+ "#(iii)\n",
+ "Loops_H=6; #Number of loops cut by horizontal line\n",
+ "Loops_V=1; #Number of loops cut by vertical line\n",
+ "f_V=f_H*(Loops_H/Loops_V); #Unknown frequency, Hz\n",
+ "\n",
+ "print(\"(iii) Unknown frequency=%dHz.\"%f_V);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Unknown frequency=1000Hz.\n",
+ "(ii) Unknown frequency=2000Hz.\n",
+ "(iii) Unknown frequency=6000Hz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter23_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter23_3.ipynb
new file mode 100644
index 00000000..19741354
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter23_3.ipynb
@@ -0,0 +1,133 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:87bd5c8d9448f5bb2e75909f89934a6fb2b64e65e6ea37b085ce080a58026071"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 23 : INTEGRATED CIRCUITS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 23.1: Page number 637"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=240; #Adjusted resistance of R2 resistor of LM317 voltage regulator, in kilo ohm\n",
+ "R2=2.4; #Fixed value of R1 resistor of LM317 voltage regulator, in ohm\n",
+ "\n",
+ "#Calculations\n",
+ "#Output voltage of LM317 voltage regulator IC = 1.25(R2/R1 +1)\n",
+ "Vout=1.25*((R2*1000)/R1 + 1); #Regulated d.c output voltage for the circuit in V\n",
+ "\n",
+ "#Results\n",
+ "print(\"The regulated d.c output voltage = %.2fV\"%Vout);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The regulated d.c output voltage = 13.75V\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 23.2 : Page number 638"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R=1.2; #Value of resistance of monostable multivibrator in kilo ohm\n",
+ "C=0.1; #Value of capacitance of monostable multivibrator in microfarad\n",
+ "\n",
+ "#Calculations\n",
+ "T=1.1*(R*1000)*C; #Time for which the circuit is ON, in microseconds\n",
+ "\n",
+ "#Results\n",
+ "print(\"Time for which the circuit is ON = %d microseconds.\"%T); \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time for which the circuit is ON = 132 microseconds.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 23.3 : Page number 639\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=3.0; #Resistance of R1 resistor of 555 timer circuit in kilo ohm\n",
+ "R2=2.7; #Resistance of R2 resistor of 555 timer circuit in kilo ohm\n",
+ "C=0.033; #Capacitance of the capacitor of 555 timer circuit in microfarad\n",
+ "\n",
+ "#Calculations\n",
+ "f=1.44/(((R1*1000) + 2*(R2*1000))*(C*pow(10,-6))); #Frequency of the circuit in Hz\n",
+ "f=f/1000; #Frequency of the circuit in kHz\n",
+ "\n",
+ "#Results\n",
+ "print(\"The frequency of the circuit = %.2fkHz\"%f);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of the circuit = 5.19kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter24_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter24_3.ipynb
new file mode 100644
index 00000000..e63c17a6
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter24_3.ipynb
@@ -0,0 +1,604 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:947f358cf49d029c94d008f72a340051744678cf2e36ecc199100b78d31fcba5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 24 : HYBRID PARAMETERS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.1 : Page number 644-645\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=10.0; #1st resistor, \u03a9\n",
+ "R2=5.0; #2nd resistor, \u03a9\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "print(\"To find h11 and h21, output terminals are shorted.\");\n",
+ "h11=R1; #Input impedance with output shorted, \u03a9\n",
+ "\n",
+ "print(\"h11=%d\u03a9.\"%h11);\n",
+ "\n",
+ "print(\"Output current flowing into the box= input current flowing out of the box.\");\n",
+ "print(\"i2=-i1\"); #Output current flowing into the box= input current flowing out of the box.\n",
+ "print(\"h21=i2/i1 = -i1/i1= -1.\"); #Current gain with output shorted.\n",
+ "\n",
+ "\n",
+ "print(\"For finding h22 and h12, voltage source is connected at the output\");\n",
+ "#As, there will be no current through 10k\u03a9 resistor due to open circuited input,\n",
+ "print(\"v1=v2\"); #Output voltage is equal to input voltage(equal to voltage drop across 5k\u03a9 resistor)\n",
+ "print(\"h12=v1/v2 = v2/v2 = 1\"); #Voltage feedback ratio with input terminals open\n",
+ "\n",
+ "h22=1/R2; #Output admittance, mho\n",
+ "print(\"h22=%.1f mho\"%h22);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "To find h11 and h21, output terminals are shorted.\n",
+ "h11=10\u03a9.\n",
+ "Output current flowing into the box= input current flowing out of the box.\n",
+ "i2=-i1\n",
+ "h21=i2/i1 = -i1/i1= -1.\n",
+ "For finding h22 and h12, voltage source is connected at the output\n",
+ "v1=v2\n",
+ "h12=v1/v2 = v2/v2 = 1\n",
+ "h22=0.2 mho\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.2 : Page number 645-646\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=4.0; #1st resistor(at the input side), \u03a9\n",
+ "R2=4.0; #2nd resistor(at the middle), \u03a9\n",
+ "R3=4.0; #3rd resistor(at the output side), \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "print(\"To find h11 and h21, output terminals are shorted.\");\n",
+ "h11=R1 + (R2*R3/(R2+R3)); #Input impedance with output shorted, \u03a9\n",
+ "print(\"h11=%d\u03a9.\"%h11);\n",
+ "\n",
+ "#As the input current gets divided in half due to R2=R3.\n",
+ "print(\"Output current flowing into the box=negative of half of input current flowing out of the box.\");\n",
+ "print(\"i2=-i1/2 = -0.5i1\"); \n",
+ "print(\"h21=i2/i1 = -0.5i1/i1= -0.5.\"); #Current gain with output shorted.\n",
+ "\n",
+ "print(\"For finding h22 and h12, voltage source is connected at the output\");\n",
+ "#As, there will be no current through the 1st 4k\u03a9 resistor due to open circuited input,\n",
+ "#Voltage gets equally divided across R2 and R3 resistor\n",
+ "print(\"v1=v2/2 = 0.5v2\"); #Input voltage is equal to half of input voltage\n",
+ "print(\"h12=v1/v2 = 0.5v2/v2 = 0.5\"); #Voltage feedback ratio with input terminals open\n",
+ "\n",
+ "h22=1/(R2+R3); #Output admittance, mho\n",
+ "print(\"h22=%.3f mho\"%h22);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "To find h11 and h21, output terminals are shorted.\n",
+ "h11=6\u03a9.\n",
+ "Output current flowing into the box=negative of half of input current flowing out of the box.\n",
+ "i2=-i1/2 = -0.5i1\n",
+ "h21=i2/i1 = -0.5i1/i1= -0.5.\n",
+ "For finding h22 and h12, voltage source is connected at the output\n",
+ "v1=v2/2 = 0.5v2\n",
+ "h12=v1/v2 = 0.5v2/v2 = 0.5\n",
+ "h22=0.125 mho\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.3 ; Page number 649-650\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R1=10.0; #Resistor at the input side, \u03a9\n",
+ "R2=5.0; #Resistor at the middle, \u03a9\n",
+ "rL=5.0; #Load resistor, \u03a9\n",
+ "\n",
+ "#h-parameter values from 24.1\n",
+ "h11=10.0; #Input impedance with output shorted, \u03a9\n",
+ "h21=-1.0; #Current gain with output shorted\n",
+ "h12=1.0; #Voltage feedback ratio with input terminal open\n",
+ "h22=0.2; #Output admittance, mho\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Zin=h11-(h12*h21/(h22+(1/rL))); #Input impedance, \u03a9\n",
+ "\n",
+ "#(ii)\n",
+ "Av=-h21/(Zin*(h22+(1/rL))); #voltage gain,\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The input impedance=%.1f\u03a9.\"%Zin );\n",
+ "print(\"(ii) The voltage gain=1/%d.\"%(1/Av));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The input impedance=12.5\u03a9.\n",
+ "(ii) The voltage gain=1/5.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.4 : Page number 652-653\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCE=10.0; #Collector-emitter voltage, V\n",
+ "IC=1.0; #Collector current, mA\n",
+ "rL=600.0; #a.c load seen by the transistor,\u03a9\n",
+ "\n",
+ "#h-parameters\n",
+ "hie=2000.0; #Input impedance with output shorted, \u03a9\n",
+ "hoe=10**-4; #Output impedance, mho\n",
+ "hre=10**-3; #Voltage feedback ratio with input terminal open\n",
+ "hfe=50.0; #Current gain with output shorted\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Zin=hie - (hre*hfe/(hoe+(1/rL))); #Input impedance, \u03a9\n",
+ "print(\"Input impedance=%.0f \u03a9. \\n As second term in the expression of Zin is small compared to first, Zin~hie=%d\u03a9.\"%(Zin,hie));\n",
+ "\n",
+ "#(ii)\n",
+ "Ai=hfe/(1+hoe*rL); #Current gain\n",
+ "print(\"Current gain=%d\"%Ai);\n",
+ "print(\"if hoe*rL<<1, then Ai~hfe=%d.\"%hfe);\n",
+ "\n",
+ "#(iii)\n",
+ "Av=-hfe/(Zin*(hoe+(1/rL))); #Voltage gain\n",
+ "print(\"Voltage gain=%.1f\"%Av);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Input impedance=1972 \u03a9. \n",
+ " As second term in the expression of Zin is small compared to first, Zin~hie=2000\u03a9.\n",
+ "Current gain=47\n",
+ "if hoe*rL<<1, then Ai~hfe=50.\n",
+ "Voltage gain=-14.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.5 : Page number 653\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import ceil\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCE=5.0; #Collector-emitter voltage, V\n",
+ "IC=1.0; #Collector current, mA\n",
+ "rL=2.0; #a.c load seen by the transistor,\u03a9\n",
+ "\n",
+ "\n",
+ "#h-parameters\n",
+ "hie=1700.0; #Input impedance with output shorted, \u03a9\n",
+ "hoe=6*10**-6; #Output impedance, mho\n",
+ "hre=1.3*10**-4; #Voltage feedback ratio with input terminal open\n",
+ "hfe=38.0; #Current gain with output shorted\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Zin=hie - (hre*hfe/(hoe+(1/(rL*1000)))); #Input impedance, \u03a9\n",
+ "print(\"Input impedance=%.0f \u03a9.\"%Zin);\n",
+ "\n",
+ "#(ii)\n",
+ "Ai=ceil((hfe/round((1+hoe*rL*1000),3))*10)/10; #Current gain\n",
+ "print(\"Current gain=%.1f\"%Ai);\n",
+ "\n",
+ "#(iii)\n",
+ "Av=-hfe/(Zin*(hoe+(1/(rL*1000)))); #Voltage gain\n",
+ "print(\"Voltage gain=%.1f\"%abs(Av));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Input impedance=1690 \u03a9.\n",
+ "Current gain=37.6\n",
+ "Voltage gain=44.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.6 : Page number 653-654\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Function for calculating parallel resistance\n",
+ "def pr(r1,r2):\n",
+ " return r1*r2/(r1+r2);\n",
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "RC=10.0; #Collector resistance, k\u03a9\n",
+ "RL=30.0; #Load resistance, k\u03a9\n",
+ "R1=80.0; #Resistor R1, k\u03a9\n",
+ "R2=40.0; #Resistor R2, k\u03a9\n",
+ "\n",
+ "#h-parameters\n",
+ "hie=1500.0; #Input impedance with output shorted, \u03a9\n",
+ "hoe=5*10**-5; #Output impedance, mho\n",
+ "hre=4*10**-4; #Voltage feedback ratio with input terminal open\n",
+ "hfe=50.0; #Current gain with output shorted\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "rL=((RC*RL)/(RC+RL))*1000; #a.c load as seen by resistance, \u03a9\n",
+ "\n",
+ "#(i)\n",
+ "Zin=round(hie - (hre*hfe/(hoe+(1/rL))),-1); #Input impedance, \u03a9\n",
+ "print(\"Input impedance=%.0f \u03a9.\"%Zin);\n",
+ "\n",
+ "#Input impedance of stage=input impedance || bias resistors\n",
+ "Zin_stage=round(pr(pr(R1,R2)*1000,Zin),-1); #\u03a9\n",
+ "print(\"Input impedance of the stage=%.0f \u03a9.\"%Zin_stage);\n",
+ "\n",
+ "#(ii)\n",
+ "Av=-hfe/(Zin*(hoe+(1/rL))); #Voltage gain\n",
+ "print(\"Voltage gain=%d\"%Av);\n",
+ "print(\"The negative sign represents phase reversal.\");\n",
+ "\n",
+ "\n",
+ "#(iii)\n",
+ "Zout=(1/(hoe-(hfe*hre/hie)))/1000; #Output impedance of transistor, k\u03a9\n",
+ "Zout_stage=pr(Zout,pr(RL,RC)); #Output impedance of the stage, k\u03a9\n",
+ "print(\"Output impedance=%.2f k\u03a9.\"%Zout);\n",
+ "print(\"Output impedance of the stage=%.2f k\u03a9.\"%Zout_stage);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Input impedance=1390 \u03a9.\n",
+ "Input impedance of the stage=1320 \u03a9.\n",
+ "Voltage gain=-196\n",
+ "The negative sign represents phase reversal.\n",
+ "Output impedance=27.27 k\u03a9.\n",
+ "Output impedance of the stage=5.88 k\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.7 : Page number 654\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Function for calculating parallel resistance\n",
+ "def pr(r1,r2):\n",
+ " return r1*r2/(r1+r2);\n",
+ "\n",
+ "#Variable declaration\n",
+ "RC=4.7; #Collector resistance, k\u03a9\n",
+ "RL=10.0; #Load resistance, k\u03a9\n",
+ "R1=33.0; #Resistor R1, k\u03a9\n",
+ "R2=10.0; #Resistor R2, k\u03a9\n",
+ "\n",
+ "#h-parameters\n",
+ "hie=1; #Input impedance with output shorted, k\u03a9\n",
+ "hoe=25; #Output impedance, \u03bcS\n",
+ "hre=2.5*10**-4; #Voltage feedback ratio with input terminal open\n",
+ "hfe=50; #Current gain with output shorted\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "rL=(RC*RL)/(RC+RL); #a.c load as seen by resistance, k\u03a9\n",
+ "\n",
+ "Ai=hfe/(1+hoe*10**-6*rL*1000); #Current gain\n",
+ "print(\"Current gain=%.1f\"%Ai);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current gain=46.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.8 : Page number 654-655\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R_S=100.0; #Series resistance, \u03a9 \n",
+ "\n",
+ "#h-parameters\n",
+ "hie=1.0; #Input impedance with output shorted, k\u03a9\n",
+ "hoe=25.0; #Output impedance, \u03bcS\n",
+ "hre=2.5*10**-4; #Voltage feedback ratio with input terminal open\n",
+ "hfe=50.0; #Current gain with output shorted\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Zout=(1/(hoe*10**-6-(hfe*hre/(hie*1000+R_S))))/1000; #Output impedance of transistor, k\u03a9\n",
+ "print(\"Output impedance=%.1f k\u03a9.\"%Zout);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output impedance=73.3 k\u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.9 : Page number 656\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import floor\n",
+ "\n",
+ "#Function for calculating parallel resistance\n",
+ "def pr(r1,r2):\n",
+ " return r1*r2/(r1+r2);\n",
+ "\n",
+ "#Variable declaration\n",
+ "RC=12.0; #Collector resistance, k\u03a9\n",
+ "RL=15.0; #Load resistance, k\u03a9\n",
+ "R1=50.0; #Resistor R1, k\u03a9\n",
+ "R2=5.0; #Resistor R2, k\u03a9\n",
+ "hie=1.94; #Input impedance with output shorted, k\u03a9\n",
+ "hfe=71.0; #Current gain with output shorted\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "rL=(RC*RL)/(RC+RL); #a.c load as seen by resistance, \u03a9\n",
+ "\n",
+ "#(i)\n",
+ "Zin_base=hie; #Transistor input impedance, k\u03a9\n",
+ "Zin_circuit=floor(pr(Zin_base,pr(R1,R2))*100)/100; #Circuit input impedance, k\u03a9\n",
+ "print(\"Circuit input impedance=%.2fk\u03a9\"%Zin_circuit);\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "Av=hfe*rL/hie; #Voltage gain\n",
+ "print(\"Voltage gain=%.0f\"%Av);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Circuit input impedance=1.35k\u03a9\n",
+ "Voltage gain=244\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.10 : Page number 656\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "hie_min=600; #Minimum input impedance with output shorted, \u03a9\n",
+ "hfe_min=110; #Minimum current gain with output shorted\n",
+ "hie_max=800; #Maximum input impedance with output shorted, \u03a9\n",
+ "hfe_max=140; #Maximum current gain with output shorted\n",
+ "rL=460; #a.c collector load, \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "hie=round(sqrt(hie_min*hie_max)); #Input impedance with output shorted, \u03a9\n",
+ "hfe=round(sqrt(hfe_min*hfe_max)); #Current gain with output shorted\n",
+ "Av=hfe*rL/hie; #Voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"Voltage gain=%.1f\"%Av);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage gain=82.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24.11 : Page number 658-659\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#(a)Variable declaration\n",
+ "Ib=10; #Base current, \u03bcA\n",
+ "Ic=1; #Collector current, mA\n",
+ "Vbe=10; #Base-emitter voltage, mV\n",
+ "\n",
+ "#Calculation\n",
+ "hie=Vbe*10**-3/(Ib*10**-6); #Input impedance with output shorted, \u03a9\n",
+ "hfe=Ic*10**-3/(Ib*10**-6); #Current gain with output shorted\n",
+ "\n",
+ "#(b) Variable declaration\n",
+ "Vbe=0.65; #Base-emitter voltage, mV\n",
+ "Ic=60; #Collector current, \u03bcA\n",
+ "Vce=1; #Collector-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "hre=Vbe*10**-3/Vce; #Voltage feedback ratio with input terminal open\n",
+ "hoe=Ic/Vce; #Output impedance, \u03bcmho\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"hie=%d\u03a9\"%hie);\n",
+ "print(\"hfe=%d\"%hfe);\n",
+ "print(\"hre=%.2fe\u201303\"%(hre*1000));\n",
+ "print(\"hoe=%d\u03bcmho\"%hoe);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hie=1000\u03a9\n",
+ "hfe=100\n",
+ "hre=0.65e\u201303\n",
+ "hoe=60\u03bcmho\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter25_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter25_3.ipynb
new file mode 100644
index 00000000..8b1cb626
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter25_3.ipynb
@@ -0,0 +1,2522 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER 25 : OPERATIONAL AMPLIFIERS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.1: Page number 664"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output voltage of the differential amplifier = 10V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A=100.0; #Open-circuit voltage gain of differential amplifier\n",
+ "V1=3.25; #Input voltage to terminal 1 in V\n",
+ "V2=3.15; #Input voltage to terminal 2 in V\n",
+ "\n",
+ "#Calculations\n",
+ "V0=A*(V1-V2); #Output voltage in V\n",
+ "\n",
+ "#Results\n",
+ "print(\"The output voltage of the differential amplifier = %dV\"%V0);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.2: Page number 672"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The common mode rejection ratio = 10000.\n",
+ "The common mode rejection ratio in decibels= 80dB.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "A_DM=2000.0; #Differential mode voltage gain\n",
+ "A_CM=0.2; #Common mode voltage gain\n",
+ "\n",
+ "#Calculations\n",
+ "CMRR=A_DM/A_CM; #Common mode rejection ratio\n",
+ "CMRR_dB=20*log10(CMRR); #Common mode rejection ratio in dB\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The common mode rejection ratio = %d.\"%CMRR);\n",
+ "print(\"The common mode rejection ratio in decibels= %ddB.\"%CMRR_dB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.3: Page number 672"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The common mode rejection ratio in decibels= 46dB.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "VD_in=10.0; #Differential mode input in mV\n",
+ "VD_out=1.0; #Output for differential mode input in V\n",
+ "VC_in=10.0; #Common mode input in mV\n",
+ "VC_out=5.0; #Output for common mode input in mV\\\n",
+ "\n",
+ "#Calculations\n",
+ "A_DM=(VD_out*1000)/VD_in; #Differntial mode voltage gain\n",
+ "A_CM=VC_out/VC_in; #Common mode voltage gain\n",
+ "CMRR=A_DM/A_CM; #Common mode rejection ratio\n",
+ "CMRR_dB=20*log10(CMRR); #Common mode rejection ratio in dB\n",
+ "\n",
+ "#Results\n",
+ "print(\"The common mode rejection ratio in decibels= %ddB.\"%CMRR_dB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.4: Page number 672"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage =7.5V\n",
+ "Noise on output = 4.7x10^-6V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_DM=150.0; #Differential mode voltage gain\n",
+ "CMRR_dB=90.0; #Common mode rejection ratio\n",
+ "V1=100.0; #Input voltage for terminal 1 in mV\n",
+ "V2=50.0; #Input voltage for terminal 2 in mV\n",
+ "V_noise=1.0; #Voltage of noise signal in mV\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "#Case(i)\n",
+ "V_out=A_DM*(V1-V2)/1000.0; #Output voltage for differntial mode input, in V\n",
+ "\n",
+ "#Since CMRR_dB=20*log10(differential mode gain/common mode gain),\n",
+ "A_CM=A_DM/pow(10,(CMRR_dB/20)); #Common mode gain\n",
+ "V_OUT_noise=A_CM*(V_noise/1000); #Noise on output in V\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Output voltage =%.1fV\"%V_out);\n",
+ "print(\"Noise on output = %.1fx10^-6V\"%(V_OUT_noise*pow(10,6)));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.5 : Page number 672-673"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Common mode gain =0.083\n",
+ "Common mode rejection ratio in decibels=89.5dB\n",
+ "r.m.s output signal =1.25V\n",
+ "r.m.s interfernce output voltage = 83mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "A_DM=2500.0; #Differential mode voltage gain\n",
+ "CMRR=30000.0; #Common mode rejection ratio\n",
+ "Input_signal=500.0; #Single ended input r.m.s signal in microvolts\n",
+ "Interference=1.0; #Interference signal, in V\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#(i)\n",
+ "A_CM=A_DM/CMRR; #Common mode gain\n",
+ "\n",
+ "#(ii)\n",
+ "CMRR_dB=20*log10(CMRR); #Common mode rejection ratio in decibels\n",
+ "\n",
+ "#(iii)\n",
+ "V_out=A_DM*(Input_signal/pow(10,6)-0); #r.m.s output signal in V\n",
+ "\n",
+ "#(iv)\n",
+ "Interference_out=A_CM*Interference; #r.m.s interference output in V\n",
+ "Interference_out=Interference_out*1000; #r.m.s interference output in mV\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Common mode gain =%.3f\"%A_CM);\n",
+ "print(\"Common mode rejection ratio in decibels=%.1fdB\"%CMRR_dB);\n",
+ "print(\"r.m.s output signal =%.2fV\"%V_out);\n",
+ "print(\"r.m.s interfernce output voltage = %dmV\"%Interference_out);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.6 : Page number 674-675"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VE=-0.7V\n",
+ "IE=0.452mA\n",
+ "IE1=0.226mA\n",
+ "IE2=0.226mA\n",
+ "IC1=0.226mA\n",
+ "IC2=0.226mA\n",
+ "IB1=2.26μA\n",
+ "IB2=2.26μA\n",
+ "VC1=12V\n",
+ "VC2=9.7V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=12; #Collector supply voltage, V\n",
+ "VEE=12; #Emitter supply voltage, V\n",
+ "RB=10; #Base resistor, kΩ\n",
+ "RC2=10; #Collector resistor, kΩ\n",
+ "RE=25; #Emitter resistor, kΩ\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=100; #Base amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "VE=-VBE; #Emitter voltage, V (Ignoring the base current)\n",
+ "IE=(VEE-VBE)/RE; #Tail current, mA\n",
+ "IE1=IE/2; #Emitter current of 1st transistor, mA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, mA\n",
+ "IC1=IE1; #Collector current(= emitter current) of 1st transistor, mA\n",
+ "IC2=IC1; #Collector current of 2nd transistor, mA\n",
+ "IB1=(IC1/beta)*1000; #Base current of 1st transistor, μA\n",
+ "IB2=IB1; #Base current of 2nd transistor, μA\n",
+ "VC1=VCC; #Collector voltage of 1st transistor, V\n",
+ "VC2=VCC-IC2*RC2; #Collector voltage of 2nd transistor, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"VE=%.1fV\"%VE);\n",
+ "print(\"IE=%.3fmA\"%IE);\n",
+ "print(\"IE1=%.3fmA\"%IE1);\n",
+ "print(\"IE2=%.3fmA\"%IE2);\n",
+ "print(\"IC1=%.3fmA\"%IC1);\n",
+ "print(\"IC2=%.3fmA\"%IC2);\n",
+ "print(\"IB1=%.2fμA\"%IB1);\n",
+ "print(\"IB2=%.2fμA\"%IB2);\n",
+ "print(\"VC1=%dV\"%VC1);\n",
+ "print(\"VC2=%.1fV\"%VC2);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.7 : Page number 675"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output voltage=7.85V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=15; #Collector supply voltage, V\n",
+ "VEE=15; #Emitter supply voltage, V\n",
+ "RB=33; #Base resistor, kΩ\n",
+ "RC=15; #Collector resistor, kΩ\n",
+ "RE=15; #Emitter resistor, kΩ\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "IE_tail=(VEE-VBE)/RE; #Tail current, mA\n",
+ "IE=round(IE_tail/2,3); #Emitter current in each transistor, mA\n",
+ "IC=IE; #Collector current(=emitter current), mA\n",
+ "Vout=VCC-IC*RC; #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output voltage=%.2fV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.8 : Page number 675"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) IB1=5.56μA\n",
+ " IB2=4.55μA\n",
+ "(ii) VB1=-0.183V\n",
+ " VB2=-0.15V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage, V\n",
+ "VEE=15.0; #Emitter supply voltage, V\n",
+ "RB=33.0; #Base resistor, kΩ\n",
+ "RC=15.0; #Collector resistor, kΩ\n",
+ "RE=15.0; #Emitter resistor, kΩ\n",
+ "VBE=0; #Base-emitter voltage, V\n",
+ "beta_dc_l=90.0; #base current amplification factor for left transistor\n",
+ "beta_dc_r=110.0; #base current amplification factor for right transistor\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IE_tail=(VEE-VBE)/RE; #Tail current, mA\n",
+ "IE=IE_tail/2; #Emitter current in each transistor, mA\n",
+ "IB1=(IE/beta_dc_l)*1000; #Base current of 1st transistor, μA\n",
+ "IB2=(IE/beta_dc_r)*1000; #Base current of 2nd transistor, μA\n",
+ "\n",
+ "#(ii)\n",
+ "VB1=-IB1/1000*RB; #Base voltage of 1st transistor, V\n",
+ "VB2=-IB2/1000*RB; #Base voltage of 1st transistor, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) IB1=%.2fμA\"%IB1);\n",
+ "print(\" IB2=%.2fμA\"%IB2);\n",
+ "print(\"(ii) VB1=%.3fV\"%VB1);\n",
+ "print(\" VB2=%.2fV\"%VB2);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.9 : Page number 675-676"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VE=-0.7V\n",
+ "Emitter current in each transistor=0.5mA.\n",
+ "IC1~IE1=0.5mA and IC2~IE2=0.5mA\n",
+ "VC1=VC2=10V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage, V\n",
+ "VEE=15.0; #Emitter supply voltage, V\n",
+ "RB=10.0; #Base resistor, kΩ\n",
+ "RC1=10.0; #Collector resistor of 1st transistor, kΩ\n",
+ "RC2=10.0; #Collector resistor of 2nd transistor, kΩ\n",
+ "IE=1.0; #Tail current, mA\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "VE=-VBE; #Emitter voltage, V (Ignoring the base current)\n",
+ "IE1=IE/2.0; #Emitter current of 1st transistor, mA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, mA\n",
+ "IC1=IE1; #Collector current(= emitter current) of 1st transistor, mA\n",
+ "IC2=IE2; #Collector current of 2nd transistor, mA\n",
+ "VC1=VCC-IC1*RC1; #Collector voltage of 1st transistor, V\n",
+ "VC2=VCC-IC2*RC2; #Collector voltage of 2nd transistor, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"VE=%.1fV\"%VE);\n",
+ "print(\"Emitter current in each transistor=%.1fmA.\"%(IE/2.0));\n",
+ "print(\"IC1~IE1=%.1fmA and IC2~IE2=%.1fmA\"%(IE1,IE2));\n",
+ "print(\"VC1=VC2=%dV.\"%VC2);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.10 : Page number 676-677"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VE=0.7V\n",
+ "Tail current=0.452mA.\n",
+ "Emitter current in each transistor=0.226mA.\n",
+ "IC1~IE1=0.226mA and IC2~IE2=0.226mA\n",
+ "VC1=-12V\n",
+ "VC2=-9.74V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage, V\n",
+ "VEE=12.0; #Emitter supply voltage, V\n",
+ "RC2=10.0; #Collector resistor of 2nd transistor, kΩ\n",
+ "RE=25.0; #Emitter current, kΩ\n",
+ "VBE=-0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "VE=-VBE; #Emitter voltage, V (Ignoring the base current)\n",
+ "IE=(VCC-VE)/RE; #Tail current, mA\n",
+ "IE1=IE/2.0; #Emitter current of 1st transistor, mA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, mA\n",
+ "IC1=IE1; #Collector current(= emitter current) of 1st transistor, mA\n",
+ "IC2=IE2; #Collector current of 2nd transistor, mA\n",
+ "VC1=-VEE; #Collector voltage of 1st transistor, V\n",
+ "VC2=-VEE+IC2*RC2; #Collector voltage of 2nd transistor, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"VE=%.1fV\"%VE);\n",
+ "print(\"Tail current=%.3fmA.\"%IE);\n",
+ "print(\"Emitter current in each transistor=%.3fmA.\"%(IE/2.0));\n",
+ "print(\"IC1~IE1=%.3fmA and IC2~IE2=%.3fmA\"%(IC1,IC2));\n",
+ "print(\"VC1=%dV\"%VC1);\n",
+ "print(\"VC2=%.2fV\"%VC2);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.11 : Page number 679"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The input offset current=15.1nA\n",
+ "(ii) The input bias current=75.8nA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=15; #Collector supply voltage, V\n",
+ "VEE=15; #Emitter supply voltage, V\n",
+ "RB=1; #Base resistor, MΩ\n",
+ "RC2=1; #Collector resistor, MΩ\n",
+ "RE=1; #Emitter resistor, MΩ\n",
+ "VBE=0; #Base-emitter voltage, V (Neglected)\n",
+ "beta_dc_l=90.0; #base current amplification factor for left transistor\n",
+ "beta_dc_r=110.0; #base current amplification factor for right transistor\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "IE=(VEE-VBE)/RE; #Tail current, μA\n",
+ "IE1=IE/2.0; #Emitter current of 1st transistor, μA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, μA\n",
+ "IB1=round((IE1/beta_dc_l)*1000,1); #Base current of 1st transistor, nA\n",
+ "IB2=round((IE2/beta_dc_r)*1000,1); #Base current of 2nd transistor, nA\n",
+ "I_in_offset=IB1-IB2; #Input offset current, nA\n",
+ "\n",
+ "#(ii)\n",
+ "I_in_bias=(IB1+IB2)/2; #Input bias current, nA\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The input offset current=%.1fnA\"%I_in_offset);\n",
+ "print(\"(ii) The input bias current=%.1fnA\"%I_in_bias);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.12 : Page number 679"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The two base currents are: IB1=90nA and IB2=70nA.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "I_in_offset=20; #Input offset current, nA\n",
+ "I_in_bias=80; #Input bias current, nA\n",
+ "\n",
+ "#Calculation\n",
+ "IB1=I_in_bias+I_in_offset/2; #Base current in 1st transistor, nA\n",
+ "IB2=I_in_bias-I_in_offset/2; #Base current in 2nd transistor, nA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The two base currents are: IB1=%dnA and IB2=%dnA.\"%(IB1,IB2));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.13 : Page number 679-680"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The input offset voltage=2mV.\n",
+ "The output offset voltage=0.3V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declration\n",
+ "I_in_offset=20; #Input offset current, nA\n",
+ "I_in_bias=80; #Input bias current, nA\n",
+ "A=150; #Voltage gain\n",
+ "RB=100; #Base resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_io=(I_in_offset*10**-9*RB*1000)*1000; #Input offset voltage, mV\n",
+ "V_out_offset=(A*V_io)/1000; #Output offset voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The input offset voltage=%dmV.\"%V_io);\n",
+ "print(\"The output offset voltage=%.1fV.\"%V_out_offset);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.14 : Page number 682"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Output voltage=0.15V.\n",
+ "(ii) Output voltage=-0.15V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=15; #Collector supply voltage, V\n",
+ "VEE=15; #Emitter supply voltage, V\n",
+ "RE=1; #Emitter resistor, MΩ\n",
+ "RC=1; #Collector resistor, MΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "IE=VEE/RE; #Tail current, μA\n",
+ "IE1=IE/2.0; #Emitter current of 1st transistor, μA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, μA\n",
+ "re=25/IE1; #a.c emitter resistance, kΩ\n",
+ "A_DM=RC/(2.0*re); #Differential voltage gain,\n",
+ "\n",
+ "#(i)\n",
+ "vin=1; #Input voltage, V\n",
+ "Vout=A_DM*vin; #Output voltage, V\n",
+ "\n",
+ "print(\"(i) Output voltage=%.2fV.\"%Vout);\n",
+ "\n",
+ "#(ii)\n",
+ "vin=-1; #Input voltage, V\n",
+ "Vout=A_DM*vin; #Output voltage, V;\n",
+ "print(\"(ii) Output voltage=%.2fV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.15 : Page number 682-683"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The input impedance=194kΩ.\n",
+ "(ii) The differential voltage gain=136.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=12; #Collector supply voltage, V\n",
+ "VEE=12; #Emitter supply voltage, V\n",
+ "RE=100; #Emitter resistor, kΩ\n",
+ "RC1=120; #Collector resistor of 1st transistor, kΩ\n",
+ "RC2=120; #Collector resistor of 2nd transistor, kΩ\n",
+ "beta=220; #Base amplification factor\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calcualtion\n",
+ "IE=((VEE-VBE)/RE)*1000; #Tail current, μA\n",
+ "IE1=IE/2.0; #Emitter current of 1st transistor, μA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, μA\n",
+ "re=(25/IE1)*1000; #a.c emitter resistance, Ω\n",
+ "Zin=2*beta*re/1000; #Input impedance, kΩ\n",
+ "A_DM=RC1*1000/(2.0*re); #Differential voltage gain,\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The input impedance=%dkΩ.\"%Zin);\n",
+ "print(\"(ii) The differential voltage gain=%.0f.\"%A_DM);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.16: Page number 683-684"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Differential voltage gain=56.6.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "VCC=12; #Collector supply voltage, V\n",
+ "VEE=12; #Emitter supply voltage, V\n",
+ "RE=200; #Emitter resistor, kΩ\n",
+ "RC=100; #Collector resistor, kΩ\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "IE=round((VEE-VBE)/RE,4); #Tail current, mA\n",
+ "IE1=round(IE/2,4); #Emitter current of 1st transistor, mA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, mA\n",
+ "re=round(25/IE1,1); #a.c emitter resistance, Ω\n",
+ "A_DM=RC*1000/(2*re); #Differential voltage gain,\n",
+ "\n",
+ "#Result\n",
+ "print(\"Differential voltage gain=%.1f.\"%A_DM);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.17 : Page number 685-686"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Common mode rejection ratio=666.7.\n",
+ "Common mode rejection ratio in decibel=56.48dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "v1=0.5; #Voltage in terminal 1, mV\n",
+ "v2=-0.5; #Voltage in terminal 2, mV\n",
+ "vo=8.0; #Output voltage, V\n",
+ "vo_cm=12.0; #Common mode output, mV\n",
+ "\n",
+ "#Calculation\n",
+ "vin=v1-v2; #Differential input, mV\n",
+ "A_DM=vo/(vin/1000.0); #Differential mode gain,\n",
+ "vin_cm=1; #Common mode input, mV\n",
+ "A_CM=vo_cm/vin_cm; #Common mode gain\n",
+ "CMRR=A_DM/A_CM; #Common mode rejection ratio\n",
+ "CMRR_dB=20*log10(CMRR); #Common mode rejection ratio in dB\n",
+ "\n",
+ "#Result\n",
+ "print(\"Common mode rejection ratio=%.1f.\"%CMRR)\n",
+ "print(\"Common mode rejection ratio in decibel=%.2fdB\"%CMRR_dB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.18 : Page number 686"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Common mode voltage gain=6.32.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_DM=200000; #Differential mode gain\n",
+ "CMRR_dB=90; #Common mode rejection ratio, dB\n",
+ "\n",
+ "#Calculation\n",
+ "CMRR=10**(CMRR_dB/20.0); #Common mode rejection ratio\n",
+ "A_CM=A_DM/CMRR; #Common mode gain\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Common mode voltage gain=%.2f.\"%A_CM);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.19 : Page number 686"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The Common mode gain=0.0081\n",
+ "(ii) The common mode rejection ratio=81.8dB.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "vin_cm=3.2; #Common input voltage, V\n",
+ "vout=26; #Output voltage, V\n",
+ "A_DM=100; #Open-circuit voltage gain\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "A_CM=vout*10**-3/vin_cm; #Common mode gain\n",
+ "\n",
+ "#(ii)\n",
+ "CMRR_dB=20*log10(A_DM/A_CM); #Common mode rejection ratio, dB\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The Common mode gain=%.4f\"%A_CM);\n",
+ "print(\"(ii) The common mode rejection ratio=%.1fdB.\"%CMRR_dB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.20 : Page number 686-687"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Common mode gain=0.25\n",
+ "(ii)Common mode rejection ratio=47.09dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "from math import floor\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12; #Collector supply voltage, V\n",
+ "VEE=12; #Emitter supply voltage, V\n",
+ "RE=200.0; #Emitter resistor, kΩ\n",
+ "RC=100.0; #Collector resistor, kΩ\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "A_CM=round(RC/(2*RE),2); #Common mode voltage gain\n",
+ "\n",
+ "#(ii)\n",
+ "IE=round((VEE-VBE)/RE,4); #Tail current, mA\n",
+ "IE1=round(IE/2,4); #Emitter current of 1st transistor, mA\n",
+ "IE2=IE1; #Emitter current of 2nd transistor, mA\n",
+ "re=round(25/IE1,1); #a.c emitter resistance, Ω\n",
+ "A_DM=RC*1000/(2*re); #Differential voltage gain,\n",
+ "CMRR_dB=floor(20*log10(A_DM/A_CM)*100)/100; #Common mode rejection ratio, dB\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Common mode gain=%.2f\"%A_CM);\n",
+ "print(\"(ii)Common mode rejection ratio=%.2fdB\"%CMRR_dB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.21 : Page number 691"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "f2=30kHz\n",
+ "ACL=75 or 37.5dB.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "ACL=500; #closed loop gain\n",
+ "f_unity=15; #frequency with cloased-loop unity gain, MHz\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "f2=f_unity*1000/500 #Upper frequency of bandwidth,kHz\n",
+ "BW=f2-0; #Bandwidth, kHz\n",
+ "A_CL=f_unity*1000/200; #Maximum value of A_CL when f2=200kHz\n",
+ "A_CL_dB=20*log10(A_CL); #Maximum value of A_CL in decibel\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"f2=%dkHz\"%f2);\n",
+ "print(\"ACL=%d or %.1fdB.\"%(A_CL,A_CL_dB));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.22 : Page number 691-692"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Operating Bandwidth=1.5MHz.\n",
+ "(ii) Operating Bandwidth=150kHz.\n",
+ "(iii) Operating Bandwidth=15kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "#Variable declaration\n",
+ "GBW=1.5; #Gain-bandwidth, MHz\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) For A_CL=1;\n",
+ "A_CL=1; #Closed loop gain\n",
+ "BW=GBW/A_CL; #Bandwidth, MHz\n",
+ "\n",
+ "print(\"(i) Operating Bandwidth=%.1fMHz.\"%BW);\n",
+ "\n",
+ "#(ii) For A_CL=10;\n",
+ "A_CL=10; #Closed loop gain\n",
+ "BW=(GBW/A_CL)*1000; #Bandwidth, kHz\n",
+ "\n",
+ "print(\"(ii) Operating Bandwidth=%dkHz.\"%BW);\n",
+ "\n",
+ "#(iii) For A_CL=100;\n",
+ "A_CL=100; #Closed loop gain\n",
+ "BW=(GBW/A_CL)*1000; #Bandwidth, kHz\n",
+ "\n",
+ "print(\"(iii) Operating Bandwidth=%dkHz.\"%BW);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.23 : Page number 692"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum operating frequency=9.95kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "slew_rate=0.5; #Slew rate, V/μs\n",
+ "V_supply=10; #Supply voltage, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_sat=V_supply-2; #Saturation voltage, V\n",
+ "V_pk=V_sat; #Maximum peak-output voltage, V\n",
+ "f_max=((slew_rate*10**6)/(2*pi*V_pk))/1000; #Maximum operating frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"Maximum operating frequency=%.2fkHz.\"%f_max);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.24 : Page number 692"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum operating frequency=796kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "slew_rate=0.5; #Slew rate, V/μs\n",
+ "V_pk=100.0; #Peak-output voltage, mV\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "V_pk=V_pk/1000.0; #Peak-output voltage, V\n",
+ "f_max=(slew_rate*10**6/(2*pi*V_pk))/1000.0; #Maximum operating frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"Maximum operating frequency=%.0fkHz\"%f_max);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.25 : Page number 695-696"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Feedback resistor=220kΩ\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_CL=-100; #Closed-loop voltage gain\n",
+ "Ri=2.2; #Input resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, A_CL=-(Rf/Ri)\n",
+ "Rf=-A_CL*Ri; #Feedback resistor, kΩ\n",
+ "\n",
+ "#Result\n",
+ "print(\"Feedback resistor=%dkΩ\"%Rf);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.26 : Page number 696"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=-0.25V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "vin=2.5; #Input voltage, mV\n",
+ "Rf=200; #Feedback resistor, kΩ\n",
+ "Ri=2; #Input resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "A_CL=-(Rf/Ri); #Closed-loop voltage gain\n",
+ "vout=A_CL*vin/1000; #Output voltage,V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%.2fV\"%vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.27 : Page number 696"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closed-loop voltage gain=-1\n",
+ "Therefore, output will have same amplitude but 180° phase inversion.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Varaiable declaration\n",
+ "Rf=1.0; #Feedback resistor, kΩ\n",
+ "Ri=1.0; #Input resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "A_CL=-(Rf/Ri); #Closed-loop voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"Closed-loop voltage gain=%d\"%A_CL);\n",
+ "print(\"Therefore, output will have same amplitude but 180° phase inversion.\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.28 : Page number 696-697"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closed-loop voltage gain=-40\n",
+ "Supply voltage=±15V, saturation voltage=±13V. Since gain=-40, op-Amp will be driven to saturation.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=40; #Feedback resistor, kΩ\n",
+ "Ri=1; #Input resistor, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "A_CL=-(Rf/Ri); #Closed-loop voltage gain\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Closed-loop voltage gain=%d\"%A_CL);\n",
+ "print(\"Supply voltage=±15V, saturation voltage=±13V. Since gain=-40, op-Amp will be driven to saturation.\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.29 : Page number 697"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) A_CL=-10.\n",
+ "(ii) Zi=10kΩ\n",
+ "(iii) Maximum operating frequency=15.9kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "Rf=100; #Feedback resistor, kΩ\n",
+ "Ri=10; #Input resistor, kΩ\n",
+ "Vpp=1; #Input peak-peak voltage, V\n",
+ "slew_rate=0.5; #Slew rate, V//μs\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "A_CL=-(Rf/Ri); #Closed-loop voltage gain\n",
+ "\n",
+ "#(ii)\n",
+ "Zi=Ri; #Input impedance(~ Input resistor), kΩ\n",
+ "\n",
+ "#(iii)\n",
+ "Vout=A_CL*Vpp; #Peak-to-peak voltage, V\n",
+ "Vpk=Vout/2; #Peak output voltage, V\n",
+ "f_max=(slew_rate*10**6/(2*pi*abs(Vpk)))/1000; #Maximum operating frequency, kHz\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) A_CL=%d.\"%A_CL);\n",
+ "print(\"(ii) Zi=%dkΩ\"%Zi);\n",
+ "print(\"(iii) Maximum operating frequency=%.1fkHz.\"%f_max);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.30 : Page number 697"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rf=20kΩ and Ri=5kΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A_CL=-4; #Closed loop voltage gain\n",
+ "R=[1.0,5.0,10.0,20.0]; #List of available resistors, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "for i in R[:]:\n",
+ " for j in R[:]:\n",
+ " if -(i/j)==A_CL :\n",
+ " print(\"Rf=%dkΩ and Ri=%dkΩ.\"%(i,j));\n",
+ " break;\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.31 : Page number 697-698"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Closed loop voltage gain=-100.\n",
+ "(ii) Closed loop voltage gain=-50.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=100; #Feedback resistor, kΩ\n",
+ "Ri=1; #Input resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "R_source=0; #Source resistor, kΩ\n",
+ "A_CL=-Rf/(R_source+Ri); #Closed-loop voltage gain\n",
+ "\n",
+ "print(\"(i) Closed loop voltage gain=%d.\"%A_CL);\n",
+ "\n",
+ "#(ii)\n",
+ "R_source=1; #Source resistor, kΩ\n",
+ "A_CL=-Rf/(R_source+Ri); #Closed-loop voltage gain\n",
+ "\n",
+ "print(\"(ii) Closed loop voltage gain=%d.\"%A_CL);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.32 : Page number 699-700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=12.12mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=240; #Feedback resistor, kΩ\n",
+ "Ri=2.4; #Input resistor, kΩ\n",
+ "Vin=120; #Input voltage, μV\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "A_CL=1+(Rf/Ri); #Closed loop voltage gain\n",
+ "Vout=(A_CL*Vin)/1000; #Output voltage, mV\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%.2fmV\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.33 : Page number 700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Output voltage=11V\n",
+ "(ii) Output voltage=-11V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=10; #Feedback resistor, kΩ\n",
+ "Ri=1; #Input resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "A_CL=1+(Rf/Ri); #Closed loop voltage gain\n",
+ "#(i)\n",
+ "Vin=1; #Input voltage, V\n",
+ "Vout=A_CL*Vin; #Output voltage, V\n",
+ "\n",
+ "print(\"(i) Output voltage=%dV\"%Vout);\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "Vin=-1; #Input voltage, V\n",
+ "Vout=A_CL*Vin; #Output voltage, V\n",
+ "\n",
+ "print(\"(ii) Output voltage=%dV\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.34 : Page number 700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Peak to peak output voltage=12V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=5; #Feedback resistor, kΩ\n",
+ "Ri=1; #Input resistor, kΩ\n",
+ "Vin_max=1; #Maximum input voltage, V\n",
+ "Vin_min=-1; #Minimum input voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "V_inpp=Vin_max-Vin_min; #Peak-peak input voltage, V\n",
+ "A_CL=1+(Rf/Ri); #Closed loop voltage gain\n",
+ "Vout_pp=A_CL*V_inpp; #Peak-peak output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Peak to peak output voltage=%dV\"%Vout_pp);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.35 : Page number 700-701"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Closed-loop voltage gain=11\n",
+ "(ii) Maximum operating frequency=14.47kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "Rf=100; #Feedback resistor, kΩ\n",
+ "Ri=10; #Input resistor, kΩ\n",
+ "Vpp=1; #Input peak-peak voltage, V\n",
+ "slew_rate=0.5; #Slew rate, V/μs\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "A_CL=1+(Rf/Ri); #Closed loop voltage gain\n",
+ "\n",
+ "#(ii)\n",
+ "Vout_pp=A_CL*Vpp; #Peak-peak output voltage, V\n",
+ "Vpk=Vout_pp/2.0; #Peak output voltage, V\n",
+ "f_max=((slew_rate*10**6)/(2*pi*Vpk))/1000.0; #Maximum operating frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Closed-loop voltage gain=%d\"%A_CL);\n",
+ "\n",
+ "print(\"(ii) Maximum operating frequency=%.2fkHz\"%f_max);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.36 : Page number 701"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Bandwidth=44.3kHz.\n",
+ "(ii) Bandwidth=63.8kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=220; #Feedback resistor, kΩ\n",
+ "Ri=3.3; #Input resistor, kΩ\n",
+ "unity_gain_BW=3; #Unity gain bandwidth, MHz\n",
+ "\n",
+ "#Calculation\n",
+ "#(i) For non-inverting amplifier\n",
+ "A_CL=1+(Rf/Ri); #Closed loop voltage gain\n",
+ "BW=unity_gain_BW*1000.0/A_CL; #Bandwidth, kHz\n",
+ "\n",
+ "print(\"(i) Bandwidth=%.1fkHz.\"%BW);\n",
+ "\n",
+ "#(ii) For inverting amplifier\n",
+ "Rf=47; #Feedback resistor, kΩ\n",
+ "Ri=1; #Input resistor, kΩ\n",
+ "A_CL=-(Rf/Ri); #Closed loop voltage gain\n",
+ "BW=unity_gain_BW*1000.0/abs(A_CL); #Bandwidth, kHz\n",
+ "\n",
+ "print(\"(ii) Bandwidth=%.1fkHz.\"%BW);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.37 : Page number 701-702"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) For voltage follower A_CL=1.\n",
+ "(ii) The maximum output frequency=26.53kHz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#(i)\n",
+ "A_CL=1; #Closed loop voltage gain for voltage follower\n",
+ "print(\"(i) For voltage follower A_CL=1.\");\n",
+ "\n",
+ "\n",
+ "#(ii)\n",
+ "slew_rate=0.5; #Slew rate, V/μs\n",
+ "V_inpp=6; #peak-peak input voltage, V\n",
+ "Vout=A_CL*V_inpp; #Peak-peak output voltage, V\n",
+ "Vpk=Vout/2; #Peak output voltage, V\n",
+ "\n",
+ "f_max=(slew_rate*10**6/(2*pi*Vpk))/1000; #Maximum operating frequency, kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"(ii) The maximum output frequency=%.2fkHz.\"%f_max);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.38 : Page number 702"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=1.78V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=470.0; #Feedback resistor, kΩ\n",
+ "R1=4.3; #Input resistor of 1st op-Amp, kΩ\n",
+ "R2=33.0; #Input resistor of 2nd op-Amp, kΩ\n",
+ "R3=33.0; #Input resistor of 3rd op-Amp, kΩ\n",
+ "Vin=80.0; #Input voltage, μV.\n",
+ "\n",
+ "#Calculation\n",
+ "A1=1+Rf/R1; #Gain of first op-Amp\n",
+ "A2=-round(Rf/R2,1); #Gain of second op-Amp\n",
+ "A3=-round(Rf/R3,1); #Gain of third op-Amp\n",
+ "A=A1*A2*A3; #Overall gain\n",
+ "Vout=A*Vin*10**-6; #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%.2fV\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.39 : Page number 702-703"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1=30kΩ, R2=15kΩ and R3=10kΩ.\n",
+ "Output voltage=0.729V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "A1=10; #Voltage gain of 1st op-Amp\n",
+ "A2=-18; #Voltage gain of 2nd op-Amp\n",
+ "A3=-27; #Voltage gain of 3rd op-Amp\n",
+ "Rf=270; #Feedback resistor, kΩ\n",
+ "Vin=150; #Input voltage, μV \n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "R1=Rf/(A1-1); #Input resistor of 1st op-Amp, kΩ\n",
+ "R2=-Rf/A2; #Input resistr of 2nd op-Amp, kΩ\n",
+ "R3=-Rf/A3; #Input resistor of 3rd op-Amp, kΩ\n",
+ "\n",
+ "A=A1*A2*A3; #overall gain,\n",
+ "Vout=Vin*10**-6*A; #Output voltage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"R1=%dkΩ, R2=%dkΩ and R3=%dkΩ.\"%(R1,R2,R3));\n",
+ "print(\"Output voltage=%.3fV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.40 : Page number 703-704"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R1=50kΩ, R2=25kΩ and R3=10kΩ.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=500; #Feedback resistor, kΩ\n",
+ "A1=-10; #Gain of 1st op-Amp\n",
+ "A2=-20; #Gain of 2nd op-Amp\n",
+ "A3=-50; #Gain of 3rd op-Amp\n",
+ "\n",
+ "#Calculation\n",
+ "R1=-Rf/A1; #Input resistor of 1st op-Amp, kΩ\n",
+ "R2=-Rf/A2; #Input resistor of 2nd op-Amp, kΩ\n",
+ "R3=-Rf/A3; #Input resistor of 3rd op-Amp, kΩ\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"R1=%dkΩ, R2=%dkΩ and R3=%dkΩ.\"%(R1,R2,R3));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.41 : Page number 705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The input impedance=17202MΩ and output impedance=8.7e-03Ω.\n",
+ "(ii) The closed loop voltage gain=23.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Zin=2.0; #Input impedance of op-Amp, MΩ\n",
+ "Zout=75.0; #Output impedance of op-Amp, Ω\n",
+ "A_OL=200000.0; #Open-loop voltage gain\n",
+ "Rf=220.0; #Feedback resistor, kΩ\n",
+ "Ri=10.0; #Input resistor, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "mv=round(Ri/(Ri+Rf),3); #Feedback fraction\n",
+ "Zin_NI=Zin*(1+(A_OL*mv)); #Input impedance, MΩ\n",
+ "Zout_NI=Zout/(1+A_OL*mv); #Output impedance, Ω\n",
+ "\n",
+ "#(ii)\n",
+ "A_CL=1+Rf/Ri; #Closed loop voltage gain\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The input impedance=%dMΩ and output impedance=%.1eΩ.\"%(Zin_NI,Zout_NI));\n",
+ "print(\"(ii) The closed loop voltage gain=%d.\"%A_CL);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.42 : Page number 705-706"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The input impedance=400002MΩ and output impedance=0.38e-03Ω.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "#For voltage follower,\n",
+ "mv=1.0; #Feedback fraction\n",
+ "A_OL=200000.0; #Open-loop voltage gain\n",
+ "Zin=2.0; #Input impedance of op-Amp, MΩ\n",
+ "Zout=75.0; #Output impedance of op-Amp, Ω\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Zin_VF=Zin*(1+(A_OL*mv)); #Input impedance, MΩ\n",
+ "Zout_VF=round(round(Zout/(1+A_OL*mv),6),5); #Output impedance, Ω\n",
+ "\n",
+ "#Result\n",
+ "print(\"The input impedance=%dMΩ and output impedance=%.2fe-03Ω.\"%(Zin_VF,Zout_VF*1000));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.43 : Page number 706"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The input impedance=1kΩ and output impedance=50Ω.\n",
+ "Closed-loop voltage gain=-100\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=100; #Feedback resistor, kΩ\n",
+ "Ri=1.0; #Input resistor, kΩ\n",
+ "Zin=4; #Input impedance of op-Amp, MΩ\n",
+ "Zout=50; #Output impedance of op-Amp, Ω\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Zin_I=Ri; #Input impedance, kΩ\n",
+ "Zout_I=Zout; #Output impedance, Ω\n",
+ "A_CL=-(Rf/Ri); #Closed loop voltage gain\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The input impedance=%dkΩ and output impedance=%dΩ.\"%(Zin_I,Zout_I));\n",
+ "print(\"Closed-loop voltage gain=%d\"%A_CL);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.44 : Page number 709"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=-12V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=10; #Feedback resistor, kΩ\n",
+ "Ri=10; #Input resistor, kΩ\n",
+ "V1=3; #Input voltage 1st, V\n",
+ "V2=1; #Input voltage 2nd, V\n",
+ "V3=8; #Input voltage 3rd, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Rf=Ri, Vout=-(Rf/Ri)*(V1+V2+V3)= -(V1+V2+V3);\n",
+ "Vout=-(V1+V2+V3); #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%dV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.45 : Page number 709"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=-7V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=10; #Feedback resistor, kΩ\n",
+ "R1=1; #Input resistor for input 1, kΩ\n",
+ "R2=1; #Input resistor for input 2, kΩ\n",
+ "V1=0.2; #Input voltage 1st, V\n",
+ "V2=0.5; #Input voltage 2nd, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "R=R1; #Input resistor(=R1 or R2), kΩ\n",
+ "Vout=-(Rf/R)*(V1+V2); #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%dV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.46 : Page number 709-710"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=-2.5V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=1; #Feedback resistor, kΩ\n",
+ "Ri=10.0; #Input resistor, kΩ\n",
+ "V1=10; #Input voltage 1st, V\n",
+ "V2=8.0; #Input voltage 2nd, V\n",
+ "V3=7.0; #Input voltage 3rd, V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Vout=-(Rf/Ri)*(V1+V2+V3);\n",
+ "Vout=-(Rf/Ri)*(V1+V2+V3); #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%.1fV.\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.47 : Page number 710"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=2.5V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V1=0.6; #Input voltage to 1st input resistor, V\n",
+ "V2=-1.4; #Input voltage to 2nd input resistor, V\n",
+ "Rf=200; #Feedback resistor, kΩ\n",
+ "R1=400; #Input resistor 1, kΩ\n",
+ "R2=100.0; #Input resistor 2, kΩ\n",
+ "\n",
+ "#Calculation\n",
+ "Vout=-Rf*(V1/R1 +V2/R2); #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Output voltage=%.1fV\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.48 : Page number 710-711"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The output voltage=-12.5V\n",
+ "(ii) The output voltage=-7.5V\n",
+ "(iii) The output voltage=-17.5V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=1.0; #Feedback resistor, kΩ\n",
+ "R1=1.0; #Input resistor 1, kΩ\n",
+ "R2=2.0; #Input resistor 2, kΩ\n",
+ "R3=4.0; #Input resistor 3, kΩ\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Rf_R1=Rf/R1; #Ratio of feedback resistor and 1st input resistor\n",
+ "Rf_R2=Rf/R2; #Ratio of feedback resistor and 2nd input resistor\n",
+ "Rf_R3=Rf/R3; #Ratio of feedback resistor and 3rd input resistor\n",
+ "\n",
+ "#(i) First input combination\n",
+ "V1=10; #Input voltage to 1st input resistor, V\n",
+ "V2=0; #Input voltage to 2nd input resistor, V\n",
+ "V3=10; #Input voltage to 3rd input resistor, V\n",
+ "Vout=-(V1*Rf_R1 +V2*Rf_R2 +V3*Rf_R3); #Output voltage, V\n",
+ "print(\"(i) The output voltage=%.1fV\"%Vout);\n",
+ "\n",
+ "#(i) First input combination\n",
+ "V1=0; #Input voltage to 1st input resistor, V\n",
+ "V2=10; #Input voltage to 2nd input resistor, V\n",
+ "V3=10; #Input voltage to 3rd input resistor, V\n",
+ "Vout=-(V1*Rf_R1 +V2*Rf_R2 +V3*Rf_R3); #Output voltage, V\n",
+ "print(\"(ii) The output voltage=%.1fV\"%Vout);\n",
+ "\n",
+ "\n",
+ "#(i) First input combination\n",
+ "V1=10; #Input voltage to 1st input resistor, V\n",
+ "V2=10; #Input voltage to 2nd input resistor, V\n",
+ "V3=10; #Input voltage to 3rd input resistor, V\n",
+ "Vout=-(V1*Rf_R1 +V2*Rf_R2 +V3*Rf_R3); #Output voltage, V\n",
+ "print(\"(iii) The output voltage=%.1fV\"%Vout);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.49 : Page number 711"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Vout=-[0.5sin(1000t)+0.33sin(3000t)]V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "Rf=330; #Feedback resistor, kΩ\n",
+ "R1=33.0; #Input resistor 1, kΩ\n",
+ "R2=10.0; #Input resistor 2, kΩ\n",
+ "V1_m=50; #Peak voltage of 1st input, mV\n",
+ "V2_m=10; #Peak voltage of 2nd input, mV\n",
+ "\n",
+ "#Calculation\n",
+ "#Since, Vout=-((Rf/R1)*V1 + (Rf/R2)*V2)\n",
+ "print(\"Vout=-[%.1fsin(1000t)+%.2fsin(3000t)]V\"%((V1_m/1000.0)*(Rf/R1),(V2_m/1000.0)*(Rf/R2)));\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.50 : Page number 715"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Vo=-1*(1/RC)∫vi dt.\n",
+ "=>Vo=-1*(1/1)∫vi dt\n",
+ "=>Vo=∫vi dt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "R=100; #Input resistor, kΩ\n",
+ "C=10; #Feedback capacitor, μF\n",
+ "\n",
+ "#Calculation\n",
+ "RC=R*10**3*C*10**-6; #product of input resistance and feedback capacitance, s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Vo=-1*(1/RC)∫vi dt.\");\n",
+ "print(\"=>Vo=-1*(1/%d)∫vi dt\"%RC);\n",
+ "print(\"=>Vo=∫vi dt\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.51 : Page number 715-716"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical frequency=159Hz.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "Rf=100; #Feedback resistor, kΩ\n",
+ "C=0.01; #Feedback capacitor, μF\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "fc=1/(2*pi*Rf*1000*C*10**-6); #Crictical frequency, Hz\n",
+ "\n",
+ "#Result\n",
+ "print(\"The critical frequency=%dHz.\"%fc);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.52 : Page number 716"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Vout=-1*(1/RC)∫vi dt.\n",
+ " ΔVout/dt = -vin/RC = -50mV/μs.\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XFWZ7/HvjwQICQJBIAxppkZIOyDQ3TQ0AU4LaC62\nRBEQUCaHtsWBFkUG9SbQz0UB0Uu3SDsQG2gGAYVgtzKJh0kDCASihCQKCZMJUxgTuJC894+1KhQn\ndYY6NezadX6f56nn1N61z97vOrtOvbXW2nstRQRmZmZ9rVF0AGZm1pmcIMzMrCYnCDMzq8kJwszM\nanKCMDOzmpwgzMysJicIsw4j6e8lzZf0gqQDio7HRi4nCOsIkh6W9J42HGeapAtbfZwGnQb8W0Ss\nFxHXFB2MjVxOEGadZyvggeH8oqRRTY7FRjAnCOs4ko6SdKuksyQ9K+lPkqZUvf5rSadLukPS85Ku\nkrRBfm1vSY/22d/Dkt4j6X3AKcBHJL0o6d4axz5a0jVVywsk/aRq+RFJO+bn/zcvPy/pLkmT8/rN\nJC2rxJTX7SzpqcoHuKSPS3pA0jOSfinpL/L6PwLbAP+dm5jWzPubmbedL+mTVfudJukKSRdJeg44\nKq+7PK97QdJ9kt4m6SRJSyQtkrRvQyfJRgQnCOtUuwJzgbcCZwHn93n9COBoYFNgBfDvVa/VHD8m\nIq4DTgd+EhFviYida2x2M7Dqgx5YE9g9L28LjIuI+/O2dwI7AuOBS4ArJK0VEX8GfgN8uGq/hwFX\nRMQKSVOBk4APAhsDtwKX5Ri3Ax4F3p+bmF4DfgI8kst6MHC6pJ6qfR8AXB4RGwAX53X/CFwAbADM\nBq4DBGwO/Cvwg1p/I7NqThDWqRZFxIxIg4VdAGwmaZOq1y+KiLkRsRz4OnCwJDV60Ih4GHhR0k7A\nXqQP1ickbZ+Xb63a9pKIeC4iVkbEd4C1gR3yy5cCh1ft+lDe+PD+NPCNiJgfESuBbwI7VWoRmQAk\nTSQlqBMj4rWIuA/4EXBk1ba/jYif55hezetujYgb8/6vADYCvhkRK0jJaCtJ6w3372QjgxOEdarF\nlSc5CQCsW/V6dTPSItI3/Y2adOybgX8gJYTe/OgB9s6vASDpy7mZaKmkpcB6VTH8FNhN0gRJewMr\nIuL2/NpWwDm5+exZ4BlSrWeLGrFsDjwbEcuq1i3qs+2jrG5J1fPlwNPxxsicy0kJaN3VfsusihOE\nlVX1t+2tgNeAp4GXgbGVF3Kb/8ZV2w5l+OJbSAlhMikh3EJKDnvlZXJ/wwnAQRExPiLGAy+Qv/lH\nxHPA9aSaw2HkJqTsEeDTEbFhfoyPiHUjYlaNWJ4ANpQ0rmrdlsDjdZbJrG5OEFZWH5M0SdJY4FRS\n+34A84Exkv6XpNHA14C1qn5vCbD1IM1RlRrEOhHxBKlZaQqpP6TSsf0WUlJ6RtJakv53XlftUlJT\n0IdJfRQV3wdOkfR2AEnrSzqoViAR8RipP+MbktbOHeSfAC4aIH6zpnCCsE4x2Lfgvq9fROqbeIKU\nAI4DiIgXgGNJndqPAS/mnxVXkL7lPyPpdzUPFLEg/94teflF4E/AbVXNNNflx3zgYWAZqzf1XAO8\nDfhzRMyp2v/VpH6Hy/KVR/eTElB/ZT2MdGXTE6Smq69HxK9rxV4H1zpsUGrHhEGSziddVbEkIiqX\nCI4nXZ2xFbAQOCQinm95MFZ6kn5N6qSeUXQsZt2sXTWIHwPv67PuJODGiNgBuAk4uU2xmJnZELQl\nQUTEbcDSPqunkpoIyD8/2I5YrCu4ecSsDUYXeOxNImIJQEQs7nONu1m/IqLlYzaZWWd1UvtboZlZ\nBymyBrFE0oSIWCJpU+DJ/jaU5ORhZjYMETHsEQbaWYNQflRcQxpLB+AoYOZAvxwRXfuYNm1a4TG4\nfC6by9d9j0a1JUFIuoR0s8/2efTLY0jXge8naR6wT142M7MO0ZYmpog4vJ+XPOSwmVmH6qRO6hGr\np6en6BBaqpvL181lA5dvpGvLndSNkhRliNPMrJNIIkrSSW1mZiXiBGFmZjU5QZiZWU2FJwhJX5T0\ne0n3S7pY0lqD/5aZmbVaoQlC0ubA54FdIg0DPpo0A5eZmRWsyKE2KkYB4yStJE0V+UTB8ZiZGQXX\nICJN53g2aY7ex4HnIuLGImMyM7Ok0BqEpA1I80JsBTwPXCnp8Ii4pO+206dPX/W8p6fHN7iYmfXR\n29tLb29v0/ZX6I1yeaL290XEp/LyEcDfRcTn+mznG+XMzOpU9hvlHgF2kzRGkkiD9s0tOCYzM6P4\nPog7gSuBe4H7SMOB/6DImMzMLPFYTGZmXarsTUxmZtahnCDMzKwmJwgzM6vJCcLMzGoqPEFIWl/S\nFZLmSvqDpL8rOiYzM+uMsZjOAX4REQdLGk0aj8nMzApW9J3U6wH3RsRfDrKdL3M1M6tT2S9z3QZ4\nWtKPJd0j6QeS1ik4JjMzo/gEMRrYBTg3InYBlgEnFRuSmZlB8X0QjwGPRsTv8vKVwIm1NvRormZm\nA+uq0VwBJN0MfCoi5kuaBoyNiBP7bOM+CDOzOjXaB9EJCeLdwI+ANYGHgGMi4vk+2zhBmJnVqfQJ\nYiicIMzM6lf2q5jMzKxDFd1JbV3upZdg+fKio7DhWn99WGutoqOworiJyVpq440hAjTsSq4V5dVX\n4aCDYMaMoiOx4Wq0ick1CGuZCHj22fRBM9rvtNK56iq48MKio7AiuQ/CWub112GNNZwcymqddeCV\nV4qOworUEQlC0hp5qI1rio7Fmmf5chgzpugobLjGjHH/0UjXEQkCOA54oOggrLleeSV9C7VyGjPG\nNYiRbtAEIWl3SedKul/SU5IekfQLSZ+VtH6jAUiaCOxPulnOuohrEOW2zjquQYx0AyYISb8EPglc\nB0wBNgPeDnwNGAPMlHRAgzF8BzgB8GVKXeaVV5wgysw1CBus+/CIiHi6z7qXgHvy42xJGw334JLe\nDyyJiNmSeoB+L8fyYH3ls3y5m5jKzDWI8mnrYH2SzgUuiYjbm3bEN+//dOBjwOvAOsBbgJ9FxJF9\ntvN9ECU0axYcdxzccUfRkdhwPPkkvPOd6aeVU6uH2pgPfEvSQklnStp5uAeqJSJOiYgtI2Jb4FDg\npr7JwcrLNYhycw3CBkwQEXFOROwO7A08A8yQ9KCkaZK2b0uEVlrugyg390HYkC5zjYhFEXFGROwM\nHAZ8EJjbzEAi4uaIaLTD2zqIaxDlNno0rFyZbni0kWlICULSaEkfkHQx8EtgHnBgSyOz0nMNotwk\n30090g14FZOk/Ug1hv2BO4HLgH+KiJfbEJuVnGsQ5Ve5m3rddYuOxIow2GWuJwOXAl+KiKVtiMe6\niGsQ5ecaxMg2WIKYGhEvDrSBpHUj4qUmxmRdwkNtlJ87qke2wfogrpZ0tqS9JI2rrJS0raRPSKrc\nYT0skiZKuknSHyTNkfSF4e7LOo+H2ig/X+o6sg1Yg4iIfSTtD3wa2EPShsBrpE7q/wGOiojFDRz/\ndeD4fCf1usDdkq6PiAcb2Kd1CNcgys81iJFt0JH6I+IXwC9acfCcXBbn5y9JmgtsAThBdIHly2GD\nDYqOwhrhIb9HtiFP5SJpC2Cr6t+JiFuaFYikrYGdAA/M0CXcSV1+7qQe2YaUICSdAXyENGfDirw6\ngKYkiNy8dCVwnDu8u4cvcy0/1yBGtqHWID4I7BARrzY7AEmjScnhooiY2d92Hs21fFyDKD/XIMql\nraO5rtoozQtxcCu+3Uu6EHg6Io4fYBuP5lpCH/oQHHEEHOh77kvr6KNh773hmGOKjsSGo9HRXIda\ng1gGzJb0K2BVLSIiGrosVdIewEeBOZLuJTVbnRIR1zayX+sMrkGUn2sQI9tQE8Q1+dFUeZ6JUc3e\nr3UG90GUn/sgRrYhJYiIuKDVgVj3cQ2i/HwfxMg22GB9l0fEIZLmUGPO6IjYsWWRWen5RrnycxPT\nyDZYDeIlSZOBD1AjQZgNxENtlN+YMfDUU0VHYUUZLEHcB5wFbAZcDlwaEfe2PCrrCq5BlJ9rECOb\npxy1lnENovzcST2yFT7lqKQpOenMl3RiM/ZpncE1iPJzDWJkK3TKUUlrAN8F3ge8AzhM0qRG92ud\nwTWI8nMNYmQresrRXYEFEbEoH+8yYCoezbX0Xn8dVqyANdcsOhJrhGsQI9tQphy9hNZNOboF8GjV\n8mOkpLGaX/2qBUe3lqk0L2nYN/lbJxgzBp54wv9/I9VgEwa9p12BDOaTn5y+6vn48T2MH99TVCg2\nRIccUnQE1qi3vQ023hhOP73oSGwoli7tZenS3qbtb0iD9bWKpN2A6RExJS+fBEREnNFnOw/WZ2ZW\np0YH6xtSJ3UL3QVsJ2krSWsBh9KCMZ/MzKx+Q55RrhUiYoWkzwHXk5LV+RHRlMtnzcysMYU2MQ2V\nm5jMzOpX9iYmMzPrUE4QZmZWkxOEmZnV5ARhZmY1FZYgJJ0paa6k2ZJ+Kmm9omIxM7PVFVmDuB54\nR0TsBCwgDethZmYdorAEERE3RsTKvDgLmFhULGZmtrpO6YP4OGkYcTMz6xAtvZNa0g3AhOpVpLmt\nvxoRP8/bfBV4LSIuaWUsZmZWn5YmiIjYb6DXJR1Nmmti0FFjp0+fvup5T08PPT09jQVnZtZlent7\n6e3tbdr+ChtqQ9IU4Gxgr4h4ZpBtPdSGmVmdGh1qo8gEsQBYC6gkh1kRcWw/2zpBmJnVqbQJoh5O\nEGZm9fNgfWZm1hJOEGZmVpMThJmZ1eQEYWZmNTlBmJlZTYUnCElfkrRS0oZFx2JmZm8oNEFImgjs\nBywqMg4zM1td0TWI7wAnFByDmZnVUOSEQQcAj0bEnKJiMDOz/hU1muvXgFNIzUvVr/XLg/WZmQ2s\nKwbrk/RO4EZgGSkxTAQeB3aNiCdrbO+hNszM6tQVYzFJehjYJSKW9vO6E4SZWZ26ZSymYJAmpm7W\nzCphJ+rm8nVz2cDlG+k6IkFExLYR8WzRcRSl29+k3Vy+bi4buHwjXUckCDMz6zxOEGZmVlNHdFIP\nRlLnB2lm1oFKfxWTmZl1HjcxmZlZTU4QZmZWkxOEmZnV1NEJQtIUSQ9Kmi/pxKLjaQZJCyXdJ+le\nSXfmdeMlXS9pnqTrJK1fdJxDJel8SUsk3V+1rt/ySDpZ0gJJcyW9t5ioh66f8k2T9Jike/JjStVr\npSmfpImSbpL0B0lzJH0hr++K81ejfJ/P67vl/K0t6Y78WTJH0rS8vnnnLyI68kFKXn8EtgLWBGYD\nk4qOqwnleggY32fdGcBX8vMTgW8WHWcd5ZkM7ATcP1h5gLcD95IGidw6n18VXYZhlG8acHyNbf+q\nVeUDfgw8C8xqYtk2BXbKz9cF5gGTuuX8DVC+tp+/FpZxbP45CpgF7NrM89fJNYhdgQURsSgiXgMu\nA6YWHFMziNVrblOBC/LzC4APtjWiBkTEbUDfMbT6K88BwGUR8XpELAQWkM5zXfIMhNsOL+L69tdP\n+aD20DBTaUL5asQ3GdgH2Dwidmt0fxURsTgiZufnLwFzSQNntvT8tUs/5dsiv9y289dKEbEsP12b\n9MEfNPH8dXKC2AJ4tGr5Md44uWUWwA2S7pL0ybxuQkQsgfSmBjYpLLrm2KSf8vQ9p48zvHPa7Guz\nh7O/z0maLelHVVX4ZpWvr62BhRHxSr2/KGnUELfbmlRTmkX/78dWla/lqsp3R17VzvPXMpLWkHQv\nsBi4ISLuoonnr5MTRLfaIyJ2AfYHPitpT1b/gOq2m1NWK4+kSaS/wYW5/fQDVa/9WtLHq5aPknRr\nfn4z6dvf/ZJekHSwpL0lPZrbV5+S9JCkw4e7vxrx3waMydt/lNREsX9E7ESa72R23m4TYLqkpZIe\nB3Yn/49J+p6ks/r8Da6W9C/5+WaSrpT0pKQ/VbWXfxz4IbB7jq/Szvyp3Jb8dN7PZlX7XSnpWEnz\ngflV6z6j1J/3vKTTJG0r6XZJzwH3AF/M37S76v0oaV3gSuC4XL7vAdvm87cYOLvI+BoRESsjYmdS\nzW9XSe+gieevkxPE48CWVcuVOSNKLSL+nH8+BVxNquItkTQBQNKmwGpzYpRMf+V5HPgLSaOBnwMv\nAu8FvgBcLOltA+wzACJi77z8rohYLyKuyMubAhsCmwNHAz9ocH/VZpHasAH2Av6UfwK8CqxVKTdw\nXY5jd9L7d/f82qXAIZUdStqAVPZLJYn097gX2IzUnHScpP0iYgbwz8Bvc3ynSnoPcDpwUN7+EVIT\nbLWppPfW26vWvRfYGdgN+ArwfeAI4K5cjkoZBzx/Vfvr+P/J/F67ErgoImZC+t+L3ChPSr6VZpbS\nla8iIl4AeoEpNPH8dXKCuAvYTtJWktYCDgWuKTimhkgam7/NIGkc6R92DqlcR+fNjgJmFhLg8Ik3\nt+n2V55rSOdxMrAeqWPttxHxa+C/gcPqPGa1AL4eEa9FxC3A/1D1gTyM/VW7ExiXn+8JnAtUEst7\ngPvy8/8glW1NUtleITUPERG3ApH7EyB9uP8mNwXsCmwUEf8nIlbk9uEfkf5WtRwOnB8R9+X+uZNJ\nNYzqL1SnR8RzEfFq1bozIuLliJgL/B64HphOeg9eTEoeMMj5k7SWpG2A7fLfppPNAB6IiHMqK/KH\nZsWBpL8FlKx8kjaqNI9JWoc0Q+dcmnj+WjrlaCMiYoWkz5HexGuQ/iHmFhxWoyYAVymNLTUauDgi\nrpf0O+Dy3JywiPo+2Aol6RKgB3irpEdIzS/fBK7oW56IeEDS5aRvu+sBR1R9k1tEY+29S/u00S8i\n1SYaksu3D7CepMdIH/y7AgdJejfpW/cxefPXSE1RlZkS/x+wUdXufkJKgreRPuQvyuu3BLaQVBny\nvnIhwy39hLU5cHdlISJelvQM6e/3SF79WI3fq66ZLiedg4+SEsSmwGhJ15Ouglnt/Vh1/h7IZT22\n6vx1HEl7kMuX2+mDNNXx4ZJ2AlYCC4FPQ/nKR6o9XiBpDdL75ScR8QtJs2jS+evYBAEQEdcCOxQd\nR7NExMOkjrK+658F9m1/RI2LiMP7ealmeSLiG7n9//KIuL7qpS1JlyECvAyMrXqt+htff8ZLWici\nllftb04D+6vEezhATg4XABtHxD9J2g64gdQ0tSRvfh6pqWh6RCyTdBzw4ardXQpcJ+kM4O944+qS\nR4GHImKo7/UnSJd/k2MbB7yVNyeFoXywLYiIUXkf/0rq3Lw2v9bv+QO+McQ4CxURt5MSel/X1lhX\n+Z0ylW8OsEuN9f1+ntRbvk5uYrLudQewTNJXJI2W1AP8I+kDFFKn74GS1skfxJ/o8/uLgb6XpQo4\nVdKaSh3/7wcub2B/fd0MfC7/hNTeW70M8BbghZwcJgGfqd5BvuTyGVLz0bW53RhSNf/F/PcYI2mU\npHdI+pt+YrkUOEbSjpLWJvVHzIqIR/vZ3mxYnCCs7XK7+QdIVzE9DXyX1Ny0IG/yHVIVeDHpBrH/\n6rOL6aSrn56VdFBet5h0v8ITpKabTze4v75uJjUn3dLPMsCXgY9KeoHUAdy34xig0mR1cWVFRKwk\nJcidgIdJTUE/JDUBrSYifgV8HfgZqZNxG97cX1Gr9tBVVyZZe3i4bys9SXuTrlLZctCNzWzIXIMw\nM7OanCDMzKwmNzGZmVlNHX2Za4U8J7WZ2bBEA3NSl6aJaaAhacv+mDZtWuExuHwum8vXfY9GlSZB\nmJlZezlBmJlZTU4QHaCnp6foEFqqm8vXzWUDl2+kK8VVTJKiDHGamXUSSUTZO6mVZkW6R1Kph/M2\nM+smHZEggONIQ9CamVmHKDxBSJpIGrTtR0XHYmZmbyg8QZBG2jwBjy5pZtZRCr2TWtL7gSURMTvP\nCdBvZ8r06dNXPe/p6fHVB2ZmffT29tLb29u0/RV6FZOk04GPAa8D65AmXPlZRBzZZztfxWRmVqdG\nr2LqmMtc85j+X4qIA2q85gRhZlanrrjM1czMOk/H1CAG4hqEmVn9XIMwM7OWcIIwM7OanCDMzKwm\nJwgzM6vJCcLMzGpygjAzs5qcIMzMrCYnCDMzq8kJwszManKCMDOzmpwgzMyspkIThKSJkm6S9AdJ\ncyR9och4zMzsDUXPB7EpsGmeMGhd4G5gakQ82Gc7D9ZnZlanUg/WFxGLI2J2fv4SMBfYosiYzMws\n6Zg+CElbAzsBdxQbiZmZQYckiNy8dCVwXK5JmJlZwUYXHYCk0aTkcFFEzOxvu+nTp6963tPTQ09P\nT8tjMzMrk97eXnp7e5u2v8JnlJN0IfB0RBw/wDbupDYzq1OjndRFX8W0B3ALMAeI/DglIq7ts50T\nhJlZnUqdIIbKCcLMrH6lvszVzMw616Cd1JJ2Bz4G7AlsBiwHfg/8D/BfEfF8SyM0M7NCDNjEJOmX\nwBPATOB3wJPAGGB74B+ADwDfjohrWhqkm5jMzOrW0j4ISRtFxNODBDDoNo1ygjAzq1+r+yBOzVca\n9avVycHMzIoxWIKYD3xL0kJJZ0rauR1BmZlZ8YZ0maukrYBD82Md4FLg0oiY39rwVh3fTUxmZnVq\n+30QuRYxA9gxIkYN98B1HtMJwsysTm25D0LSaEkfkHQx8EtgHnDgcA9qZmadb7CrmPYDDgP2B+4E\nLgNmRsTL7QlvVRyuQZiZ1anVl7neROpvuDIilg73II1ygjAzq1+rE8RbIuLFQQJYt9VzODhBmJnV\nr9V9EFdLOlvSXpLGVR10W0mfkHQdMGW4B8/7miLpQUnzJZ3YyL7MzKx5Br2KSdL+wEeBPYDxwOuk\nTupfAD+KiMXDPri0Bulei31IQ3rcBRwaEQ/22c41CDOzOjVagxh0sL6I+AUpGbTCrsCCiFgEIOky\nYCrw4IC/ZWZmLTekKUcl/Soi9hls3TBsATxatfwYKWms5t//vcEjWSHWXhs+9CHYeOOiIzGzeg2Y\nICSNAcYCG0kaD1SqKuuRPtzb5qKLpq96vsUWPUyc2NPOw9swPfMMnHgifOQjcPzxsP32RUdk1r3a\nOie1pOOAfwE2J/URVLwA/DAivtvQwaXdgOkRMSUvnwRERJzRZzv3QZTYkiVw7rlw3nkweTKccAL8\n/d8XHZVZ92vLUBuSPh8RTW/kkTSK1OG9D/Bn0s14h0XE3D7bOUF0gZdfhv/8T/j2t2HCBPjyl2Hq\nVBjVlgFbzEaediWII2utj4gLh3vgqn1PAc4hXXJ7fkR8s8Y2ThBdZMUKuOoqOOssePbZ1PR01FEw\ndmzRkZl1l3YliOrawxjSN/57IuKg4R64Hk4Q3SkCbrsNvvUt+O1v4dhj4bOfdYe2WbO0fTTXfNAN\ngMsqfQet5gTR/R58MDU9XXGFO7TNmqUto7nW8DKwzXAPatbXpEnwgx+kRLHJJrDHHuny2N/8pujI\nzEauoTYx/RyobDgK+Cvg8og4qYWxVR/fNYgRxh3aZo1rVx/E3lWLrwOLIuKx4R60Xk4QI5c7tM2G\nr219EJImAH+bF++MiCeHe9B6OUGYO7TN6teuGeUOId2jcDBwCHCHpLZcwWQGIMGee8LMmXDLLfDn\nP6dO7H/+Z5jflpnRzUaeoTYx3QfsV6k1SNoYuDEi3t3i+CrHdw3CVuM7tM0G1q6rmNbo06T0TB2/\na9YSEybAaafBwoWw775wxBEpQfzsZ6nvwswaM9QaxFnAjqTpRwE+AtwfEW2Z4Mc1CBsKd2ibvVmr\npxw9F7gkIm6XdCAwOb90a0RcNdyD1ssJwurhDm2zpNVNTPOBb0laCOwGXBQRx7czOZjVyx3aZs0x\nYIKIiHMiYndgb1K/w4w8f/Q0SQ0NhCDpTElzJc2W9FNJ6zWyP7NaJk2C73/fd2ibDUfdYzFJ2hmY\nAewYEcO+r1XSvsBNEbFS0jdJ80Cc3M+2bmKypvAd2jaStOs+iNGSPiDpYuCXpDkcDhzuQQEi4saI\nWJkXZwETG9mf2VCMG5f6I+bPT53YZ5yRahnnnQfLlhUdnVlnGayTej/gMGB/0o1ylwEzI+LlpgYh\nXUMaHfaSfl53DcJaIgJuvz1d+eQObes2jdYgBpyTGjgZuAT4UkQsrXfnkm4AJlSvIg3699WI+Hne\n5qvAa/0lh4rp06evet7T00NPT0+94ZitRko32U2eDPPmpaan7bf3kONWTm2dk7rVJB0NfAp4T0S8\nOsB2rkFY2/gObesWhUwY1Ax5qtGzgb0i4plBtnWCsLZzh7aVXZkTxAJgLdLlswCzIuLYfrZ1grDC\n+A5tK6vSJoh6OEFYJ6ju0J41Cz7zGXdoW2craspRsxGn0qHtO7RtpHCCMBuGHXbwHdrW/dzEZNYE\n7tC2TuQ+CLMO4g5t6yROEGYdyB3a1gncSW3Wgdyhbd3ACcKsxdyhbWXlJiazNnOHtrWL+yDMSsod\n2tZqThBmJecObWsVd1KblVytDu0ddkiJwh3aVqTCE4SkL0laKWnDomMxK1qlQ3vu3FSDcIe2FanQ\nBCFpIrAfsKjIOMw6zYQJcNppsHAh7LsvHHFEmpPiZz9LfRdm7VD0hEFXAKcB1wB/HRHP9rOd+yBs\nRFuxAq6+OvVTPPOMO7RtaErbByHpAODRiJhTVAxmZTFqFHz4w2ne7B//GK69FrbZBqZPh6eeKjo6\n61YtTRCSbpB0f9VjTv55AHAKMK1681bGYtYNBurQXrCg6Ois2xTSxCTpncCNwDJSYpgIPA7sGhFP\n1tg+pk17I5f09PTQ09PTnmDNOlxlDu3/+I+UPL78Zc+hPVL19vbS29u7avnUU08t/30Qkh4GdomI\npf287j4Is0H4Dm3rqytulJP0EPA37qQ2a5w7tK2iKxLEYJwgzOrnO7SttFcxmVlruUPbGuUEYTYC\n1LpD+8ADfYe2DcwJogNUX3XQjbq5fGUrW+UO7Ycfhn32GfwO7bKVr17dXr5GOUF0gG5/k3Zz+cpa\ntnHjUn/E/PnwpS/BmWfCpElw3nmwbNkb25W1fEPV7eVrlBOE2QjmO7RtIKOLDsDMilfp0J48GebN\nS/dS7LADbLgh3H130dG1zrx53V2+RpXmMteiYzAzK6Ouvw/CzMzaz30QZmZWkxOEmZnV1NEJQtIU\nSQ9Kmi82XjrZAAAGu0lEQVTpxKLjaQZJCyXdJ+leSXfmdeMlXS9pnqTrJK1fdJxDJel8SUsk3V+1\nrt/ySDpZ0gJJcyW9t5ioh66f8k2T9Jike/JjStVrpSmfpImSbpL0hzwU/xfy+q44fzXK9/m8vlvO\n39qS7sifJXMkTcvrm3f+IqIjH6Tk9UdgK2BNYDYwqei4mlCuh4DxfdadAXwlPz8R+GbRcdZRnsnA\nTsD9g5UHeDtwL+nqua3z+VXRZRhG+aYBx9fY9q/KVD5gU2Cn/HxdYB4wqVvO3wDl64rzl2Mem3+O\nAmYBuzbz/HVyDWJXYEFELIqI14DLgKkFx9QMYvWa21Tggvz8AuCDbY2oARFxG9B3mPb+ynMAcFlE\nvB4RC4EFpPPcsfopH9Se4GoqJSpfRCyOiNn5+UvAXNLcLF1x/vop3xb55dKfP4CIqNzWuDbpgz9o\n4vnr5ASxBfBo1fJjvHFyyyyAGyTdJemTed2EiFgC6U0NbFJYdM2xST/l6XtOH6e85/RzkmZL+lFV\nFb605ZO0NammNIv+34/dUL478qquOH+S1pB0L7AYuCEi7qKJ56+TE0S32iMidgH2Bz4raU9S0qjW\nbdced1t5vgdsGxE7kf4xzy44noZIWhe4Ejguf9PuqvdjjfJ1zfmLiJURsTOp5rerpHfQxPPXyQni\ncWDLquXKtKSlFhF/zj+fAq4mVfGWSJoAIGlTYLVpV0umv/I8DvxF1XalPKcR8VTkRl3gh7xRTS9d\n+SSNJn14XhQRM/Pqrjl/tcrXTeevIiJeAHqBKTTx/HVygrgL2E7SVpLWAg4Frik4poZIGpu/zSBp\nHPBeYA6pXEfnzY4CZtbcQecSb27T7a881wCHSlpL0jbAdsCd7QqyAW8qX/6nqzgQ+H1+XsbyzQAe\niIhzqtZ10/lbrXzdcv4kbVRpHpO0DrAfqZ+leeev6F74QXrop5CuPFgAnFR0PE0ozzakq7HuJSWG\nk/L6DYEbc1mvBzYoOtY6ynQJ8ATwKvAIcAwwvr/yACeTrp6YC7y36PiHWb4Lgfvzubya1OZbuvIB\newArqt6T9+T/uX7fj11Svm45f+/KZZqdy/PVvL5p589DbZiZWU2d3MRkZmYFcoIwM7OanCDMzKwm\nJwgzM6vJCcLMzGpygjAzs5qcIMzMrCYnCCsNSetL+kzV8qaSfl7nPk6V9J7mR9d+ko6S9G/5+Wcl\nHVN0TNZdnCCsTMYDx1YtHw/8oJ4dRMS0iLhpKNtKGlXPvgs2A/h80UFYd3GCsDL5BvCXeRawM0nj\n6FwLq75NX5Vn0noof6P+Yt72N5I2yNv9WNKB+fnfSro9D/s8S9K4vJ+Zkn5FGq4ASWflGbvuk3RI\nXreppJvz/u+XtEdev18+3u8k/UTS2AGOtbakGfn375bUU1WWn0r6ZZ4V7IzKH0DSMXndLNJQEgBE\nxHLgYUl/0+JzYCPI6KIDMKvDScA7ImKXPL7/P0SaTKriHaQx/8eSxps5IW/7beBI4N8qG0pakzQJ\n1cERcU8eRPGV/PLOwLsi4vmcTHaMiHdJ2gS4S9LNwOHAtRHxDUkCxkp6K/A1YJ+IWC7pK8Dx+QO+\n1rGOA1ZGxI6SdgCul/S2HMO7c1leA+blpqQVwPQcX2X0znuqyn83sCfwu2H+fc3exAnCymoz4Kk+\n634daYatZZKeA/47r59DGtis2g7AExFxD6yacYz0Wc8NEfF83m4ycGne5klJvcDfkkYbnpETzcyI\nuC/XAN4O3J6TxprAbwc41mRy0oqIeZIWAtvn4/6qars/kKbe3TiX8dm8/idAJaFAGtZ5h6H88cyG\nwgnCymo5MKbPulernkfV8kpqv9drTTsJ8PIAxxVARNyqNNnT+4Ef51rKc8D1EfHRN/2C9M4BjtVf\nPNVlqY5/oP2MIf1dzJrCfRBWJi8Cb8nPF5CGTx+uecCmkv4a0qxj/XRK3wp8RGlqx41JTTh3StoS\neDIizgfOB3YhTde5h6S/zPscm5uM+jvWrcBH87rtSZO5zBsg5juAvSSNzzWXg/u8vj1vzG1g1jDX\nIKw0IuLZ3AF8P6lz+o+Sto2Ih2pt3t9u8r5ek/QR4Lt5spVlwL41jnmVpN2A+0jf5E/ITU1HAidI\neo2UuI6MiKclHQ1cKmntfKyvRcSCfo71PeC8XJ7XgKNyXP3FvFjSdFIiWkqaB6DaHsC0fsptVjfP\nB2GlJWkq8NcR8b+LjqVoknYCvhgRRxUdi3UP1yCstCJiZr5yyOCtwNeLDsK6i2sQZmZWkzupzcys\nJicIMzOryQnCzMxqcoIwM7OanCDMzKym/w8k8vXiwodbzwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7ff1b9cb68d0>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#Variable declaration\n",
+ "R=10.0; #Input resistor, kΩ\n",
+ "C=0.01; #Feedback capacitor, μF\n",
+ "vin=5; #Input voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "Vout_change_rate=-vin/(R*C); #Rate of change of output voltage, V/μs \n",
+ "print(\"(i) Vout=-1*(1/RC)∫vi dt.\");\n",
+ "print(\" ΔVout/dt = -vin/RC = %dmV/μs.\"%Vout_change_rate);\n",
+ "\n",
+ "#(ii) Plotting the output waveform\n",
+ "vin_plot=[]; #Plotting variable for input waveform, V\n",
+ "dt=100; #time between edges, μs\n",
+ "for i in range(0,3*dt+1):\n",
+ " if i<dt or i>2*dt :\n",
+ " vin_plot.append(0);\n",
+ " else:\n",
+ " vin_plot.append(5); \n",
+ "\n",
+ "plt.subplot(211);\n",
+ "plt.plot(vin_plot);\n",
+ "plt.xlim([0,300])\n",
+ "plt.ylim([-5,10])\n",
+ "plt.xlabel(\"t(microsecond)\");\n",
+ "plt.ylabel(\"Vin(V)\");\n",
+ "plt.title(\"Input waveform\");\n",
+ "\n",
+ " \n",
+ "vout_plot=[]; #Plotting variable for output waveform, V\n",
+ "t=[i for i in range(0,301)]; #Time scale, μs\n",
+ "for i in t[:] :\n",
+ " if i<dt:\n",
+ " vout_plot.append(0);\n",
+ " elif i>2*dt:\n",
+ " vout_plot.append((Vout_change_rate/1000.0)*dt);\n",
+ " else :\n",
+ " vout_plot.append((-vin_plot[i]/(R*C))/1000*(i-dt));\n",
+ "\n",
+ "plt.subplot(212)\n",
+ "plt.plot(vout_plot);\n",
+ "plt.xlim([0,300])\n",
+ "plt.ylim([-5,5]);\n",
+ "plt.xlabel('t(microsecond)');\n",
+ "plt.ylabel(\"Vout(V)\");\n",
+ "plt.title(\"output waveform\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.53 : Page number 716-717"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Vout=-1*(1/RC)∫vi dt.\n",
+ "Vout=-5*t volts\n",
+ "Time required=2.6seconds.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "V_supply=15; #Supply voltage, V\n",
+ "R=10; #Input resistor, kΩ\n",
+ "C=0.2; #Feedback capacitor, μF\n",
+ "vin=10; #Input voltage, mV\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Vs=-V_supply+2; #Saturation voltage, V\n",
+ "print(\"Vout=-1*(1/RC)∫vi dt.\");\n",
+ "print(\"Vout=%d*t volts\"%(-vin/(R*C)));\n",
+ "t=Vs/(-vin/(R*C)); #Time required, seconds\n",
+ "print(\"Time required=%.1fseconds.\"%t);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.54 : Page number 717-718"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Vo=-5V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "R=1; #Feedback resistor, kΩ\n",
+ "C=0.1; #Input capacitor, μF\n",
+ "Vin_change=5; #Change in input voltage, V\n",
+ "t=0.1; #Time taken for change in input voltage, ms\n",
+ "\n",
+ "#Calcualtion\n",
+ "dvi_dt=Vin_change/(t/1000); #Rate of change of input voltage, V/s\n",
+ "RC=R*1000*C*10**-6; #Product of feedback resistance and input capacitance, s\n",
+ "#Since, Vo=-R*C*(dvi/dt);\n",
+ "Vo=-RC*dvi_dt; #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Vo=%dV.\"%Vo);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.55 : Page number 718"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Vo=-0.55V.\n",
+ "The output voltage stays constant at -0.55V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "R=10; #Feedback resistor, kΩ\n",
+ "C=2.2; #Input capacitor, μF\n",
+ "Vin_change=10; #Change in input voltage, V\n",
+ "t=0.4; #Time taken for change in input voltage, s\n",
+ "\n",
+ "#Calcualtin\n",
+ "dvi_dt=Vin_change/t; #Rate of change of input voltage, V/s\n",
+ "RC=R*1000*C*10**-6; #Product of feedback resistance and input capacitance, s\n",
+ "#Since, Vo=-R*C*(dvi/dt);\n",
+ "Vo=-RC*dvi_dt; #Output voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Vo=%.2fV.\"%Vo);\n",
+ "print(\"The output voltage stays constant at %.2fV.\"%Vo);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.56 : Page number 718-719"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "vo=-1*(dvi/dt).\n",
+ "vo=-5V.\n",
+ "Therefore, between 0 to 0.2s, the output voltage is constant at -5V.\n",
+ "For t>0.2s, the input is constant so that output voltage is zero.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Variable declaration\n",
+ "R=100; #Feedback resistor, kΩ\n",
+ "C=10; #Input capacitor, μF\n",
+ "Vin_change=1; #Change in input voltage, V\n",
+ "t=0.2; #Time taken for change in input voltage, s\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "RC=R*1000*C*10**-6; #Product of feedback resistor and input capacitance, s\n",
+ "#(i)\n",
+ "print(\"vo=-%d*(dvi/dt).\"%RC);\n",
+ "\n",
+ "#(ii)\n",
+ "dvi_dt=Vin_change/t; #Rate of change of input voltage, V\n",
+ "vo=-dvi_dt; #Output voltage, V\n",
+ "print(\"vo=%dV.\"%vo);\n",
+ "\n",
+ "print(\"Therefore, between 0 to 0.2s, the output voltage is constant at %dV.\"%vo);\n",
+ "print(\"For t>0.2s, the input is constant so that output voltage is zero.\");\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter26_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter26_3.ipynb
new file mode 100644
index 00000000..670a61b0
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter26_3.ipynb
@@ -0,0 +1,472 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a1845801144904256bc26f3ca2e0294eb55dcabb139a523d403624121bc6876a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#CHAPTER 26 : DIGITAL ELECTRONICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.1 : Page 732"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "d=37; #Given decimal number\n",
+ "\n",
+ "#Calculation\n",
+ "b=int(bin(d)[2:]); #Equivalent Octal number \n",
+ "\n",
+ "#Result\n",
+ "print(\"The equivalent binary number=%s.\"%b);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The equivalent binary number=100101.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.2 : Page number 733"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "d=23; #Given decimal number\n",
+ "\n",
+ "#Calculation\n",
+ "b=int(bin(d)[2:]); #Equivalent Octal number\n",
+ "\n",
+ "#Result\n",
+ "print(\"The equivalent binary number=%d.\"%b);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The equivalent binary number=10111.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.3 : Page number 733"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "b=0b110001; #Given binary number\n",
+ "\n",
+ "#Calculation\n",
+ "d=int(b); #Equivalent decimal number\n",
+ "\n",
+ "#Result\n",
+ "print(\"Equivalent decimal number=%d.\"%d);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent decimal number=49.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.4 : Page number 735"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "d1=76; #Given decimal number\n",
+ "d2=255; #Given decimal number\n",
+ "d3=372; #Given decimal number\n",
+ "\n",
+ "#Calculation\n",
+ "o1=int(oct(d1)[1:]); #Equivalent octal number\n",
+ "o2=int(oct(d2)[1:]); #Equivalent octal number\n",
+ "o3=int(oct(d3)[1:]); #Equivalent octal number\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Equivalent octal number=%d.\"%o1);\n",
+ "print(\"(ii) Equivalent octal number=%d.\"%o2);\n",
+ "print(\"(iii) Equivalent octal number=%d.\"%o3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Equivalent octal number=114.\n",
+ "(ii) Equivalent octal number=377.\n",
+ "(iii) Equivalent octal number=564.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.5 : Page number 735"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "o=24.6; #Given octal number\n",
+ "\n",
+ "#Calculation\n",
+ "o_f=o%1; #Floating part of octal number\n",
+ "o_i=(int)(o-(o%1)); #Integer part of octal number\n",
+ "d=int(str(o_i),8); #Equivalent decimal number\n",
+ "\n",
+ "s=str(o_f); #String value of floating part \n",
+ "i=2\n",
+ "while(i<len(s)):\n",
+ " d=d+int(s[i])*8**-(i-1);\n",
+ " i+=1;\n",
+ "#Result\n",
+ "print(\"Equivalent decimal number=%.2f.\"%d);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent decimal number=20.75.\n"
+ ]
+ }
+ ],
+ "prompt_number": 64
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.6 : Page number 735"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "d=177; #Given decimal number\n",
+ "\n",
+ "#Calculation\n",
+ "o=oct(d)[1:]; #Equivalent octal number\n",
+ "\n",
+ "b=\"\";\n",
+ "for i in o:\n",
+ " bo=bin(int(i))[2:]; #Binary of individual octal digit\n",
+ " b=b+((\"0\" if len(bo)==2 else (\"00\" if len(bo)==1 else\"\")) +bo); #Equivalent binary number\n",
+ " \n",
+ "#Result\n",
+ "print(\"Equivalent octal number=%s.\"%o);\n",
+ "print(\"Equivalent binary number=%s.\"%b);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent octal number=261.\n",
+ "Equivalent binary number=010110001.\n"
+ ]
+ }
+ ],
+ "prompt_number": 63
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.7 : Page number 737"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "d=541; #Given decimal number\n",
+ "\n",
+ "#Calculation\n",
+ "h=hex(d)[2:]; #Equivalent hexadecimal number\n",
+ "\n",
+ "#Result\n",
+ "print(\"Equivalent hexadecimal number=%s.\"%h);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent hexadecimal number=21d.\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.8 : Page number 737"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "hex_to_dec={'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,'a':10,'b':11,'c':12,'d':13,'e':14,'f':15};\n",
+ " \n",
+ "#Given \n",
+ "d=378; #Given decimal number\n",
+ "\n",
+ "#Calculation\n",
+ "h=hex(d)[2:]; #Equivalent Hexadecimal number\n",
+ "\n",
+ "\n",
+ "b=\"\";\n",
+ "for i in h:\n",
+ " bh=bin(hex_to_dec[i])[2:]; #Binary of individual hexadecimaldigit\n",
+ " b=b+((\"0\" if len(bh)==3 else (\"00\" if len(bh)==2 else (\"000\" if len(bh)==1 else \"\")))+bh); #Equivalent binary number\n",
+ "\n",
+ "#Result\n",
+ "print(\"Equivalent hexadeciaml number=%s.\"%h);\n",
+ "print(\"Equivalent binary number=%s.\"%b);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent hexadeciaml number=17a.\n",
+ "Equivalent binary number=000101111010.\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26.9 : Page number 737"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "h=0xB2F; #Given hexadecimal number\n",
+ "\n",
+ "#Calculation\n",
+ "o=oct(h)[1:]; #Equivalent octal number\n",
+ "\n",
+ "#Result\n",
+ "print(\"Equivalent octal number=%s.\"%o);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equivalent octal number=5457.\n"
+ ]
+ }
+ ],
+ "prompt_number": 58
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.10 : Page number 738"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "BCD=\"0100 0000 0010\" #Given BCD string\n",
+ "BCD_split=BCD.split(\" \"); #Splitting th binary string into individual BCD \n",
+ "d=0;\n",
+ "for i in range(len(BCD_split),0,-1):\n",
+ " d+=int(BCD_split[len(BCD_split)-i],2)*10**(i-1);\n",
+ "\n",
+ "#Result\n",
+ "print(\"The equivalent decimal =%d.\"%d);\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The equivalent decimal =402.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.11 : Page number 745"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(\"Boolean Expression obtained from the circuit: \\n Y'=A+B \\n Y=((A+B).A)\");\n",
+ "print(\"Truth Table:\");\n",
+ "print(\"a\\tb\\tY'=A+B\\t Y=Y'.A\");\n",
+ "for b in range(0,2):\n",
+ " for a in range(0,2):\n",
+ " Y_dash=1 if a or b else 0;\n",
+ " Y=1 if Y_dash and a else 0;\n",
+ " print(\"%d\\t%d\\t%d\\t %d\"%(a,b,Y_dash,Y));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Boolean Expression obtained from the circuit: \n",
+ " Y'=A+B \n",
+ " Y=((A+B).A)\n",
+ "Truth Table:\n",
+ "a\tb\tY'=A+B\t Y=Y'.A\n",
+ "0\t0\t0\t 0\n",
+ "1\t0\t1\t 1\n",
+ "0\t1\t1\t 0\n",
+ "1\t1\t1\t 1\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 26.12 : Page number 745-746"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(\"Boolean Expression obtained from the circuit: \\n Y'=A'.B \\n Y=Y'+B'\");\n",
+ "print(\"Truth Table:\");\n",
+ "print(\"A\\tB\\tA'\\tY'=A'.B\\t B'\\tY=Y'+B'\");\n",
+ "for b in range(0,2):\n",
+ " for a in range(0,2):\n",
+ " a_dash=1 if not a else 0;\n",
+ " b_dash=1 if not b else 0;\n",
+ " Y_dash=1 if a_dash and b else 0;\n",
+ " Y=1 if Y_dash or b_dash else 0;\n",
+ " print(\"%d\\t%d\\t%d\\t%d\\t %d\\t%d\"%(a,b,a_dash,Y_dash,b_dash,Y));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Boolean Expression obtained from the circuit: \n",
+ " Y'=A'.B \n",
+ " Y=Y'+B'\n",
+ "Truth Table:\n",
+ "A\tB\tA'\tY'=A'.B\t B'\tY=Y'+B'\n",
+ "0\t0\t1\t0\t 1\t1\n",
+ "1\t0\t0\t0\t 1\t1\n",
+ "0\t1\t1\t1\t 0\t1\n",
+ "1\t1\t0\t0\t 0\t0\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter2_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter2_3.ipynb
new file mode 100644
index 00000000..06a555a6
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter2_3.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c0ff4f67576afe73a11c06eedd0a50709b7f5831737f83db1cd640098e3e9740"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 2 : ELECTRONIC EMISSION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1: Page number 31\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#variable declaration\n",
+ "\n",
+ "from math import exp\n",
+ "from math import pi\n",
+ "\n",
+ "l=5.0; #length of tungsten filament in cm\n",
+ "d=0.01; #diameter of the filament in cm\n",
+ "T=2500.0; #operating temperature in K\n",
+ "A=60.2*pow(10,4); #constant, depending upon the type of thermionic emitter, in amp/m\u00b2/K\u00b2\n",
+ "phi=4.517; #work function of emitter in eV\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "b=round(11600*phi,-1); #constant for a metal, in K\n",
+ "Js=round(A*T*T*exp(-b/T),-2); #Emission current density in amp/m\u00b2\n",
+ "a=pi*(d/100)*(l/100); #Surface area of the cathode in m\u00b2\n",
+ "E_I=Js*a; #Emission current in A\n",
+ "\n",
+ "#Result\n",
+ "print(\"emission current =%.3f A\"%E_I);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "emission current =0.047 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2:Page number 31\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable declaration\n",
+ "Js=0.1; #Emission current density in amp/cm\u00b2\n",
+ "A=60.2; #Constant depending upon the type of thermionic emitter, in amp/cm\u00b2/K\u00b2\n",
+ "T=1900.0; #Absolute temperature in K\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "#Calculating b according to the formula Js=A*T\u00b2*exp(-b/T) for emission current density\n",
+ "b=-T*(log(Js/(A*T*T))); #constant for emitter, in K\n",
+ "phi= round(b/11600,2); # work function in eV\n",
+ "\n",
+ "print (\"Work function of the tungsten wire = %.2f eV\"%phi);\n",
+ "\n",
+ "if(phi==4.52):\n",
+ "\tprint(\"Given sample is pure Tungsten\");\n",
+ "elif(phi!=4.52 and phi>=2.63 and phi<=4.52):\n",
+ "\tprint (\"The sample is not pure Tungsten\");\n",
+ " \n",
+ "#Note : In the text book, the work function has been approximated to 3.56eV, but in the code it calculates as 3.52eV\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Work function of the tungsten wire = 3.52 eV\n",
+ "The sample is not pure Tungsten\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter6_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter6_3.ipynb
new file mode 100644
index 00000000..a6008ee1
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter6_3.ipynb
@@ -0,0 +1,1624 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3452607f2168b562d941493f83083042eaa5a2d316715f9d9f089ff03d73fdb8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 6: SEMICONDUCTOR DIODE"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2, Page number 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration \n",
+ "Vf =20; #Peak Input Voltage in V\n",
+ "rf=10; #Forward Resistance in ohms\n",
+ "RL=500.0; #Load Resistance in ohms\n",
+ "V0=0.7; #Potential Barrier Voltage of the diodes in V\n",
+ "\n",
+ "#Calculation\n",
+ "#(1)\n",
+ "If_peak=(Vf-V0)/(rf+RL); #Peak current through the diode in A\n",
+ "If_peak=If_peak*1000; #Peak current through the diode in mA\n",
+ "#(2)\n",
+ "V_out_peak =If_peak * RL/1000 ; #Peak output voltage in V\n",
+ "\n",
+ "#For an Ideal diode\n",
+ "If_peak_ideal=Vf/RL; #Peak current through the ideal diode in A\n",
+ "If_peak_ideal=If_peak_ideal*1000; #Peak current through the ideal diode in mA\n",
+ "\n",
+ "V_out_peak_ideal=If_peak_ideal * RL/1000; # Peak output voltage in case of the ideal diode in V\n",
+ "\n",
+ "#Result\n",
+ "print '(i) Peak current through the diode = %.1f mA '%If_peak;\n",
+ "print '(ii) Peak output voltage = %.1f V'%V_out_peak;\n",
+ "print '(iii) Peak current through the ideal diode = %d mA '%If_peak_ideal;\n",
+ "print '(iv) Peak output voltage in case of the ideal diode = %d V'%V_out_peak_ideal;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Peak current through the diode = 37.8 mA \n",
+ "(ii) Peak output voltage = 18.9 V\n",
+ "(iii) Peak current through the ideal diode = 40 mA \n",
+ "(iv) Peak output voltage in case of the ideal diode = 20 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3, Page number 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "V =10.0; #Battery voltage in V\n",
+ "R1=50.0; #Resistor 1's resistance in ohms\n",
+ "R2=5.0; #Resistor 2's resistance in ohms\n",
+ "\n",
+ "#Calculation\n",
+ "#Using Thevenin's Theorem to find current in the diode\n",
+ "E0=(R2/(R1+R2))*V; #Thevenin's Voltage in V\n",
+ "R0=(R1*R2)/(R1+R2); #Thevenin's Resistance in ohms\n",
+ "\n",
+ "I0=E0/R0; #Current through the diode in A\n",
+ "I0=I0*1000; #Current through the diode in mA\n",
+ "\n",
+ "#Result\n",
+ "print 'Current through the diode = %d mA '%Io;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current through the diode = 200 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4, Page number 82-83 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "V =10.0; #Battery voltage in V\n",
+ "R0=48.0; #Resistance of the resistor in ohms\n",
+ "Rd=1.0; #Forward resistance of the diodes in ohms\n",
+ "Vd=0.7; #Potential barrier of the diodes in V\n",
+ "#Calculation\n",
+ "V_net=V-Vd-Vd; #Net voltage in the circuit in V\n",
+ "R_net=R0+Rd+Rd #Net resistance of the circuit in ohms\n",
+ "I_net=V_net/R_net; #Net current in the circuit in A\n",
+ "I_net=I_net*1000; #Net current in mA\n",
+ "\n",
+ "#Result\n",
+ "print 'Net current in the circuit = %d mA '%I_net;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Net current in the circuit = 172 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.5, Page number 83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "E1=24; #Voltage of first source in V\n",
+ "E2=4; #Voltage of second source in V\n",
+ "V0=0.7; #Potential barrier of diodes in V\n",
+ "R=2000; #Resistance of the given resistor in ohms\n",
+ "Rd=0; #Forward resistance of the diodes in ohms\n",
+ "\n",
+ "#Calculation\n",
+ "I=(E1-E2-V0)/(R+Rd); #Current in the circuit in A\n",
+ "I=I*1000; #Current in the circuit in mA \n",
+ "\n",
+ "#Result\n",
+ "print 'Current in the circuit = %.2f mA '%I;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current in the circuit = 9.65 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.6, Page number 83-84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "V=20; #Voltage of source in V\n",
+ "V0=0.3; #Potential barrier of Germanium diode in V\n",
+ "V0_Si=0.7; #Potetial barrier of Silicon diode in V \n",
+ "\n",
+ "#Calculation\n",
+ "#As only Ge diode is turned on due to less potential barrier,\n",
+ "VA=V-V0; #Voltage VA acroos resistor of 3k ohms\n",
+ "\n",
+ "#Result\n",
+ "print 'Voltage VA = %.1f mA '%VA;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage VA = 19.7 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.7, Page number 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "V=10; #Voltage of source in V\n",
+ "V0=0.7; #Potetial barrier of Silicon diode in V \n",
+ "# Resistance of all resistors in ohms\n",
+ "R1=2000;\n",
+ "R2=2000;\n",
+ "R3=2000;\n",
+ "\n",
+ "#Calculation\n",
+ "Id=(V-V0)/(R2+2*R3); #Current through the diodes in A\n",
+ "VQ=2*Id*R3; #Voltage VQ across the grounded 2k ohm resistor in V\n",
+ "Id=Id*1000; #Current through the diodes in mA\n",
+ "\n",
+ "#Result\n",
+ "print 'Voltage VQ = %.1f V '%VQ;\n",
+ "print 'Current through the diodes, Id = %.2f mA '%Id;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage VQ = 6.2 V \n",
+ "Current through the diodes, Id = 1.55 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8, Page number 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "V=15; #Voltage of source in V\n",
+ "V0=0.7; #Potetial barrier of Silicon diode in V \n",
+ "R=500 # Resistance of all resistors in ohms\n",
+ "\n",
+ "#Calculation\n",
+ "I1=(V-V0)/R; #total current in the circuit in A\n",
+ "Id1=I1/2; #current in first diode in A\n",
+ "Id1=Id1*1000; #current in first diode in mA\n",
+ "Id2=Id1 #current in second diode in mA\n",
+ "\n",
+ "#Result\n",
+ "print ('Current in first diode = %.1f mA'%Id1);\n",
+ "print ('Current in second diode = %.1f mA'%Id2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current in first diode = 14.3 mA\n",
+ "Current in second diode = 14.3 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.9, Page number 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "E=20; #Voltage of source in V\n",
+ "V0_d1=0.7; #Potetial barrier of first Silicon diode in V\n",
+ "V0_d2=0.7; #Potetial barrier of second Silicon diode in V\n",
+ "R1=5600; # Resistance of first resistor in ohms\n",
+ "R2=3300; # Resistance of second resistor in ohms\n",
+ "\n",
+ "#Calculation\n",
+ "I2=V0_d2/R2; #Current I2 through resistor R2 in A\n",
+ "I2=round((I2*1000),3); #Current I2 through resistor R2 in mA\n",
+ "I1=(E-V0_d1-V0_d2)/R1; #Current I1 through resistor R1 in A\n",
+ "I1=round((I1*1000),2); #Current I1 through resistor R1 in mA\n",
+ "I3=I1-I2; #Current I3 through diode D2 in mA\n",
+ "\n",
+ "#Result\n",
+ "print 'Current I1= %.2f mA'%I1;\n",
+ "print 'Current I1= %.3f mA'%I2;\n",
+ "print 'Current I1= %.3f mA'%I3;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current I1= 3.32 mA\n",
+ "Current I1= 0.212 mA\n",
+ "Current I1= 3.108 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.10, Page number 85-86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "E=10.0; #Voltage of source in V\n",
+ "V0=0.7; #Potetial barrier of Silicon diode in V\n",
+ "R1=2000; # Resistance of first resistor in ohms\n",
+ "R2=8000; # Resistance of second resistor in ohms\n",
+ "R3=4000; #Resistance of third resistor in ohms\n",
+ "R4=6000; #Resistance of fourth resistor in ohms\n",
+ "\n",
+ "#Calculation\n",
+ "#Assuming the given diode to be reverse bised and calculating voltage across it's terminals\n",
+ "V1=(E/(R1+R2))*R2; #voltage at the P side of the diode, i.e, voltage across R2 resistor,according to voltage divider rule, in V\n",
+ "V2=(E/(R3+R4))*R4; #voltage at the N side of the diode, i.e, voltage across R4 resistor,according to voltage divider rule, in V\n",
+ "\n",
+ "#Result\n",
+ "if((V1-V2)>=V0):\n",
+ " print 'Our assumption was wrong and, the diode is forward biased';\n",
+ "else:\n",
+ " print 'The diode is reverse biased';\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Our assumption was wrong and, the diode is forward biased\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.11, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V=2; #Supply voltage in V\n",
+ "V0=0.7; #Potential barrier voltage of the diode in V \n",
+ "R1=4000.0; #Resistance of first resistor in \u03a9\n",
+ "R2=1000.0; ##Resistance of second resistor in \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#Assuming the diode to be in ON state\n",
+ "I1=((V-V0)/R1)*1000; #Current through resistor R1, in mA\n",
+ "I2=(V0/R2)*1000; #Current through resistor R2, in mA\n",
+ "ID=I1-I2; #Diode current, in mA\n",
+ "\n",
+ "if(ID<0):\n",
+ " #Since the diode current is negative, the diode must be OFF \n",
+ " ID=0; #True value of diode current, mA\n",
+ " \n",
+ "#As the diode is in OFF state it can be replaced by an open ciruit equivalent \n",
+ "VD=V*R2/(R1 +R2); #Voltage across the diode, in V\n",
+ "\n",
+ "#Result\n",
+ "print 'ID =%d mA'%ID;\n",
+ "print 'VD =%.1f V'%VD;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ID =0 mA\n",
+ "VD =0.4 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.12, Page number 89-90"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "AC_Input_Power=100.0; #Input AC Power in watts\n",
+ "AC_Output_Power=40.0; #Output AC Power in watts\n",
+ "Accepted_Power=50.0; #Power accepted by the half-wave rectifier in watt\n",
+ "\n",
+ "#Calculation\n",
+ "R_eff=(AC_Output_Power/AC_Input_Power)*100; #Rectification efficiency of the half-wave rectifier\n",
+ "Unused_power=AC_Input_Power-Accepted_Power; #Power not used by the half_wave rectifier due to open circuited condition of the diode in watt\n",
+ "Power_dissipated=Accepted_Power-AC_Output_Power; #Power dissipated by the diode watt\n",
+ "\n",
+ "#Result\n",
+ "print 'The rectification efficiency of the half-wave rectifier= %d%% '%R_eff;\n",
+ "\n",
+ "print 'Rest 60%% of the power is the unused power and power dissipated by the diode = %d watts and %d watts' %(Unused_power ,Power_dissipated);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rectification efficiency of the half-wave rectifier= 40% \n",
+ "Rest 60% of the power is the unused power and power dissipated by the diode = 50 watts and 10 watts\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.13, Page number 90"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import sqrt\n",
+ "#Variable declaration\n",
+ "Vrms=230.0; #AC supply RMS voltage in V\n",
+ "Turns_Ratio=10/1; #turn ratio of the transformer \n",
+ "\n",
+ "#Calculation\n",
+ "Vpm=sqrt(2)*Vrms; #Maximum primary voltage in V\n",
+ "Vsm=Vpm/Turns_Ratio; #Maximum secondary voltage in V\n",
+ "#Case 1\n",
+ "Vdc=Vsm/(round(pi,2)); #Output D.C voltage, which is the average voltage in V\n",
+ "Vdc=round(Vdc,2);\n",
+ "#Case 2\n",
+ "PIV=Vsm; #Peak Inverse Voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print 'The output d.c voltage= %.2f V'%Vdc;\n",
+ "print 'The peak inverse voltage= %.2f V'%PIV;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output d.c voltage= 10.36 V\n",
+ "The peak inverse voltage= 32.53 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.14, Page number 90-91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "#Variable declaration\n",
+ "rf=20.0; #Internal resistance of the crystal diode in ohms\n",
+ "Vm=50.0; #Maximum applied voltage in V\n",
+ "RL=800.0; #Load Resistance in ohms\n",
+ "\n",
+ "#Calculation\n",
+ "# 1\n",
+ "Im=Vm/(rf+RL); #Maximum current in A\n",
+ "Im=Im*1000; #Maximum current in \n",
+ "Im=round(Im,0);\n",
+ "Idc=Im/pi; #Average voltage in mA\n",
+ "Idc=round(Idc,1);\n",
+ "Irms=Im/2; #RMS value of the current in mA\n",
+ "Irms=round(Irms,1)\n",
+ "\n",
+ "# 2\n",
+ "AC_Input_Power=pow(Irms/1000,2)*(rf+RL); #Input a.c power in watt\n",
+ "\n",
+ "DC_Output_Power=pow(Idc/1000,2)*RL; #Output d.c power in watt\n",
+ "\n",
+ "# 3\n",
+ "DC_Output_Voltage=(Idc/1000)*RL; #Output d.c voltage in V\n",
+ "\n",
+ "# 4\n",
+ "Rectifier_efficiency=(DC_Output_Power/AC_Input_Power)*100; # Efficiency of rectification of the half-wave rectifier\n",
+ "\n",
+ "#Result\n",
+ "print ' i:';\n",
+ "print ' Im = %d mA'%Im;\n",
+ "print ' Idc = %.1f mA'%Idc;\n",
+ "print ' Irms = %.1f mA'%Irms;\n",
+ "print ' ii: ';\n",
+ "print ' a.c input power= %.3f watt'%AC_Input_Power;\n",
+ "print ' d.c output power= %.3f watt'%DC_Output_Power;\n",
+ "print ' iii: ';\n",
+ "print ' d.c output voltage = %.2f volts'%DC_Output_Voltage;\n",
+ "print ' iv: '\n",
+ "print ' Efficiency of rectification = %.1f%%'%Rectifier_efficiency;\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " i:\n",
+ " Im = 61 mA\n",
+ " Idc = 19.4 mA\n",
+ " Irms = 30.5 mA\n",
+ " ii: \n",
+ " a.c input power= 0.763 watt\n",
+ " d.c output power= 0.301 watt\n",
+ " iii: \n",
+ " d.c output voltage = 15.52 volts\n",
+ " iv: \n",
+ " Efficiency of rectification = 39.5%\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.15, Page number 91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "#Variable declaration\n",
+ "Vdc=50.0; #Output d.c voltage in V\n",
+ "rf=25; #Diode resistance in ohm\n",
+ "RL=800; #Load resistance in ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "Vm=(pi*(rf+RL)*Vdc)/RL; #[ Vdc=Vm*RL/(pi*(rf+RL)) ]Maximum value of a.c voltage required to get a volatge of Vdc from the half-wave rectifier, in V\n",
+ "Vm=round(Vm,0); \n",
+ "#Result\n",
+ "print 'The a.c voltage required should have maximum value of = %d V' %Vm;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The a.c voltage required should have maximum value of = 162 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.16, Page number 95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt \n",
+ "from math import pi\n",
+ "#Variable declaration\n",
+ "rf=20; #Internal resistance of the diodes in ohm\n",
+ "Vrms=50; #RMS value of transformer's secondary voltage from centre tap to each end of secondary\n",
+ "RL=980; #Load resistance in ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Vm=Vrms*sqrt(2); #Maximum a.c voltage in V\n",
+ "Im=Vm/(rf+RL); #Maximum load current in A\n",
+ "Im=Im*1000; #Maximum load current in mA\n",
+ " \n",
+ "# 1:\n",
+ "Idc=2*Im/pi; #Mean load current\n",
+ "\n",
+ "# 2:\n",
+ "Irms=Im/sqrt(2); #RMS value of load current in A\n",
+ "\n",
+ "#Result\n",
+ "print 'i:';\n",
+ "print' The mean load current= %d mA'%Idc;\n",
+ "print 'ii:';\n",
+ "print ' The r.m.s value of the load current = %d mA'%Irms; "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i:\n",
+ " The mean load current= 45 mA\n",
+ "ii:\n",
+ " The r.m.s value of the load current = 50 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.17, Page number 95-96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt \n",
+ "#Variable declaration\n",
+ "RL=100; #Load resistance in ohm \n",
+ "rf=0; #Internal resistance of the diodes in ohm\n",
+ "Turns_ratio=5/1; #Primary to secondary turns ratio of transformer \n",
+ "P_Vrms=230; #R.M.S value of voltage in primary winding in V\n",
+ "S_Vrms=P_Vrms/Turns_ratio; #R.M.S value of voltage in secondary winding in V\n",
+ "S_Vm=S_Vrms*sqrt(2); #Maximum voltage across secondary winding in V\n",
+ "Vm=S_Vm/2; #Maximum voltage across half seconfdary winding in V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "# 1:\n",
+ "Idc=2*Vm/(pi*RL); #Average current in A\n",
+ "Vdc=Idc*RL; #d.c output voltage in V\n",
+ "\n",
+ "# 2:\n",
+ "PIV=S_Vm; #Peak Invers Voltage(= Maximum secondary voltage) in V\n",
+ "\n",
+ "# 3:\n",
+ "Pac=pow(Vm/(RL*sqrt(2)),2)*(rf+RL); #a.c input power in watt\n",
+ "Pdc=(pow(Idc,2)*RL); #d.c output power in watt\n",
+ "R_eff=(Pdc/Pac)*100; #Rectification efficiency\n",
+ "R_eff=round(R_eff,1);\n",
+ "\n",
+ "#Result\n",
+ "print 'i:';\n",
+ "print ' The d.c output voltage= %.1f V'%Vdc;\n",
+ "print 'ii:';\n",
+ "print ' The peak inverse voltage= %d V'%PIV;\n",
+ "print 'iii:';\n",
+ "print ' Rectification efficiency= %.1f%%'%R_eff;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i:\n",
+ " The d.c output voltage= 20.7 V\n",
+ "ii:\n",
+ " The peak inverse voltage= 65 V\n",
+ "iii:\n",
+ " Rectification efficiency= 81.1%\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "NOTE: The value of rectification efficiency is calculated as 81.2% in the textbook using the formula 0.812/(1 + (rf/RL)), but by calculating using the correct values in the formula we get 81.1%."
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.18, Page number 96-97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt \n",
+ "#Variable declaration\n",
+ "fin=50; #frequency of input ac source in Hz\n",
+ "RL=200; #Load resistance in ohm\n",
+ "Turns_ratio=4/1; #Transformers turns ratio, primary to secondary.\n",
+ "P_Vrms=230.0; #R.M.S value of voltage in primary winding in V\n",
+ "S_Vrms=P_Vrms/Turns_ratio #R.M.S value of voltage in secondary winding in V\n",
+ "Vm=S_Vrms*sqrt(2); #Maximum voltage across secondary winding in V\n",
+ "\n",
+ "#Calculation\n",
+ "# 1:\n",
+ "Idc=2*Vm/(pi*RL); # Average current in A\n",
+ "Vdc=Idc*RL; #Output d.c voltage in V\n",
+ "Vdc=round(Vdc,0);\n",
+ "# 2:\n",
+ "PIV= Vm; #Peak Inverse Voltage(= Maximum volutage across secondary winding) in V\n",
+ "\n",
+ "# 3:\n",
+ "fout=2*fin; #Output frequency in Hz\n",
+ "\n",
+ "#Result\n",
+ "print 'i:';\n",
+ "print ' The d.c output voltage = %d V' %Vdc;\n",
+ "print 'ii:';\n",
+ "print ' The peak inverse voltage = %.1f V'%PIV;\n",
+ "print 'iii:';\n",
+ "print ' The output frequency = %d Hz'%fout;\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i:\n",
+ " The d.c output voltage = 52 V\n",
+ "ii:\n",
+ " The peak inverse voltage = 81.3 V\n",
+ "iii:\n",
+ " The output frequency = 100 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.19, Page number 97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "RL=100.0; #Load Resistance in ohm\n",
+ "Turns_ratio=5/1; #Primary to secondary turns ratio of the transformer\n",
+ "Vin=230.0; #R.M.S value of input voltage in V\n",
+ "fin=50; #Input frequency in Hz\n",
+ "\n",
+ "#Calculation\n",
+ "Vs_rms=Vin/Turns_ratio; #R.M.S value of the voltage in secondary winding, in v\n",
+ "Vs_max=Vs_rms*sqrt(2); #Maximum voltage across secondary, in V\n",
+ "\n",
+ "# (i)\n",
+ "#Case i: Centre-tap circuit\n",
+ "Vm=Vs_max/2; #Maximum voltage across half secondary winding, in V \n",
+ "Vdc=2*Vm*RL/(pi*RL); #DC output voltage, in V \n",
+ "print 'The d.c output voltage for the centre-tap circuit = %.1f V'%Vdc;\n",
+ "\n",
+ "#Case ii:\n",
+ "Vm=Vs_max; #Maximum voltage across secondary, in V\n",
+ "Vdc=2*Vm*RL/(pi*RL); #DC output voltage, in V \n",
+ "print 'The d.c output voltage for the bridge circuit = %.1f V'%Vdc; \n",
+ "\n",
+ "# ii:\n",
+ "#Case i: Centre-tap circuit\n",
+ "Turns_ratio=5/1; #Turns ratio of the transformer\n",
+ "Vs_rms=Vin/Turns_ratio; #R.M.S value of the secondary voltage in V\n",
+ "Vs_max=Vs_rms*sqrt(2); #Maximum voltage across the secondary in V\n",
+ "Vm=Vs_max/2; #Maximum voltage across half of the secondary in V\n",
+ "PIV=2*Vm; #Peak Inverse Voltage in V\n",
+ "print 'PIV in case of centre-tap circuit = %d V'%PIV;\n",
+ "\n",
+ "#Case ii: Bridge circuit\n",
+ "Turns_ratio=10/1; #Turns ratio of the transformer\n",
+ "Vs_rms=Vin/Turns_ratio; #R.M.S value of the secondary voltage in V\n",
+ "Vs_max=Vs_rms*sqrt(2); #Maximum voltage across the secondary in V\n",
+ "PIV=Vm; #Peak Inverse Voltage in V\n",
+ "print 'PIV in case of bridge circuit = %.1f V'%PIV;\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The d.c output voltage for the centre-tap circuit = 20.7 V\n",
+ "The d.c output voltage for the bridge circuit = 41.4 V\n",
+ "PIV in case of centre-tap circuit = 65 V\n",
+ "PIV in case of bridge circuit = 32.5 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 46
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.20, Page number 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import sqrt\n",
+ "#Variable declaration\n",
+ "rf=1; #forward resistance of diodes of the rectifier in ohm\n",
+ "RL=480; #Load resistance in ohm\n",
+ "Vrms=240.0; #a.c supply voltage in V\n",
+ "Vm=Vrms*sqrt(2); #Maximum a.c voltage in V \n",
+ "\n",
+ "#Calculation\n",
+ "# 1:\n",
+ "Rt=2*rf+RL; #Total circuit resistance at any instance in ohm\n",
+ "Im=Vm/Rt; #Maximum load current in A\n",
+ "Idc=2*Im/pi; #Mean load current in A\n",
+ "\n",
+ "# 2:\n",
+ "Irms=Im/2; #R.M.S value of current in A\n",
+ "P=pow(Irms,2)*rf; #Power dissipated in each diode in watt\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print 'i:';\n",
+ "print ' Mean load current = %.2f A'%Idc;\n",
+ "print 'ii:';\n",
+ "print ' Power dissipated in each diode= %.3f W'%P;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i:\n",
+ " Mean load current = 0.45 A\n",
+ "ii:\n",
+ " Power dissipated in each diode= 0.124 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "NOTE: The value of power dissipated is approximately 0.124 W , but in the textbook it is approximated as 0.123W."
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.21, Page number 98-99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt,pi\n",
+ "#Variable declaration\n",
+ "RL=12000; #Load resistance in ohm\n",
+ "V0=0.7; #Potential barrier voltage of diodes in V\n",
+ "Vrms=12; #R.M.S value of input a.c voltage in V\n",
+ "Vs_pk=Vrms*sqrt(2); #Peak secondary voltage in V\n",
+ "\n",
+ "#Calculation\n",
+ "# 1:\n",
+ "Vout_pk=Vs_pk-(2*V0); #Peak output voltage in V\n",
+ "Vav=2*Vout_pk/pi; #Average output voltage in V\n",
+ "Vav=round(Vav,2);\n",
+ "\n",
+ "# 2:\n",
+ "Iav=Vav/RL; #Average output current in A\n",
+ "Iav=Iav*pow(10,6); #Average output current in \u03bcA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print 'i:';\n",
+ "print ' Average output voltage=%.2f V'%Vav;\n",
+ "print 'ii:';\n",
+ "print ' Average output current=%.1f \u03bcA'%Iav;\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i:\n",
+ " Average output voltage=9.91 V\n",
+ "ii:\n",
+ " Average output current=825.8 \u03bcA\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.22, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vdc_A=10; #Supply voltage of A in V\n",
+ "Vdc_B=25; #Supply voltage of B in V\n",
+ "Vac_rms_a=0.5; #Ripples in power supply A in V\n",
+ "Vac_rms_b=0.001; #Ripples in power supply B in V\n",
+ "\n",
+ "#Calculation\n",
+ "#For power supply A\n",
+ "ripple_factor_A=Vac_rms_a/Vdc_A; #Ripple factor of power supply A\n",
+ "\n",
+ "#For power supply B\n",
+ "ripple_factor_B=Vac_rms_b/Vdc_B; #Ripple factor of power supply B\n",
+ "\n",
+ "#Result\n",
+ "if(ripple_factor_A<ripple_factor_B):\n",
+ " print 'Power supply A is better';\n",
+ "else :\n",
+ " print 'Power supply B is better';"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power supply B is better\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.23, Page number 105-106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "#Variable declaration\n",
+ "RL=2200; #Load resistance in ohm\n",
+ "C=50*pow(10,-6); #Capacitance of the capacitor used in filter circuit in F\n",
+ "V0=0.7; #Potential barrier voltage of the diodes of the rectifier in V\n",
+ "Vrms=115.0; #R.M.S value of input a.c voltage in V \n",
+ "fin=60; #Frequency of input a.c voltage in Hz\n",
+ "Turns_ratio=10/1; #Primary to secondary, turns ratio of the transformer \n",
+ "\n",
+ "#Calculation\n",
+ "Vp_prim=Vrms*sqrt(2); #Peak primary voltage in V\n",
+ "Vp_sec=Vp_prim/Turns_ratio; #Peak secondary voltage in V\n",
+ "Vp_in= Vp_sec - 2*V0; #Peak full wave rectified voltage at the filter input in V\n",
+ "f=2*fin; #Output frequency in Hz\n",
+ "Vdc=Vp_in*(1-(1/(2*f*RL*C))); #Output d.c voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print 'The output d.c voltage is = %.1f V'%Vdc;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output d.c voltage is = 14.3 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.24, Page number 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "#Variable declaration\n",
+ "R=25; #d.c resistance of the choke in ohm\n",
+ "RL=750; #Load resistance in ohm\n",
+ "Vm=25.7; #Maximum value of the pulsating output from the rectifier in V\n",
+ "\n",
+ "#Calculation\n",
+ "V_dc=2*Vm/pi; #d.c component of the pulsating output in V\n",
+ "V_dc=round(V_dc,1);\n",
+ "V_dc_out=(V_dc*RL)/(R+RL); #Output d.c voltage in V\n",
+ "V_dc_out=round(V_dc_out,1);\n",
+ "\n",
+ "#Result\n",
+ "print ' The output d.c voltage accross the load resistance is = %.1f V'%V_dc_out;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The output d.c voltage accross the load resistance is = 15.9 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.25, Page number 113-114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ei=120.0; #Input Voltage in V\n",
+ "Vz=50.0; #Zener Voltage in V\n",
+ "R=5000.0; #Resistance of the series resistor in ohm\n",
+ "RL=10000.0; #Load resistance in ohm\n",
+ "\n",
+ "#Calculation\n",
+ "V=Ei*RL/(R+RL); #Voltage across the open circuit if the zener diode is removed\n",
+ "if(V>Vz):\n",
+ " #Zener diode is in ON state\n",
+ " # i:\n",
+ " Output_voltage=Vz; #Voltage across load resistance, in V\n",
+ " #ii:\n",
+ " Voltage_R=Ei-Vz; #Voltage across the series resistance R, in V\n",
+ " #iii:\n",
+ " IL=Vz/RL; #Load current through RL in A\n",
+ " IL=IL*1000; #Load current through RL in mA\n",
+ " I=Voltage_R/R; #Current through the series resistance in A\n",
+ " I=I*1000; #Current through the series resistance in mA\n",
+ " Iz=I-IL; #Applying Kirchhoff's first law, Zener current in mA\n",
+ " \n",
+ " #Result\n",
+ " print 'i) The output voltage across the load resistance RL = %d V'%Output_voltage;\n",
+ " print 'ii) The voltage drop across the series resistance R = %d V'%Voltage_R;\n",
+ " print 'iii) The current through the zener diode = %d mA'%Iz;\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i) The output voltage across the load resistance RL = 50 V\n",
+ "ii) The voltage drop across the series resistance R = 70 V\n",
+ "iii) The current through the zener diode = 9 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.26, Page number 114-115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Max_V=120.0; #Maximum input voltage in V\n",
+ "Min_V=80.0; #Minimum input voltage in V\n",
+ "R=5000.0; #Series resistance in ohm\n",
+ "RL=10000.0; #Load resistance in ohm\n",
+ "Vz=50.0; #Zener voltage in V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#Case i: Maximum zener current\n",
+ "#Zener current will be maximum when the input voltage is maximum\n",
+ "V_R_max=Max_V-Vz; #Voltage across series resistance R, in V\n",
+ "I_max=V_R_max/R; #Current through series resistance R, in A\n",
+ "I_max=I_max*1000; #Current through series resistance R, in mA\n",
+ "IL_max=Vz/RL; #Load current in A\n",
+ "IL_max=IL_max*1000; #Load current in mA\n",
+ "Iz_max=I_max-IL_max; #Applying Kirchhoff's first law, Zener current in mA;\n",
+ "\n",
+ "#Case ii: Minimum zener current\n",
+ "#The zener will conduct minimum current when the input voltage is minimum\n",
+ "V_R_min=Min_V-Vz; #Voltage across series resistance R, in V\n",
+ "I_min=V_R_min/R; #Current through series resistance R, in A\n",
+ "I_min=I_min*1000; #Current through series resistance R, in mA\n",
+ "IL_min=Vz/RL; #Load current in A\n",
+ "IL_min=IL_min*1000; #Load current in mA\n",
+ "Iz_min=I_min-IL_min; #Applying Kirchhoff's first law, Zener current in mA\n",
+ "\n",
+ "#Result\n",
+ "print 'Case i: ';\n",
+ "print 'Maximum zener current = %d mA'%Iz_max;\n",
+ "print 'Case ii: ';\n",
+ "print 'Minimum zener current = %d mA'%Iz_min;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Case i: \n",
+ "Maximum zener current = 9 mA\n",
+ "Case ii: \n",
+ "Minimum zener current = 1 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.27, Page number 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ei=12; #Input voltage in V\n",
+ "Vz=7.2; #Zener voltage in V\n",
+ "E0=Vz; #Voltage to be maintained across the load in V\n",
+ "IL_max=0.1; #Maximum load current in A\n",
+ "IL_min=0.012; #Minimum load current in A\n",
+ "Iz_min=0.01; #Minimum zener current in A\n",
+ "\n",
+ "#Calculation\n",
+ "#When the load current is maximum at minimum value of RL, the zener current is minimum and, as the load current decreases due to increase in value of RL\n",
+ "R=(Ei-E0)/(Iz_min+IL_max); #The value of series resistance R to maintain a voltage=E0 across load, in ohm\n",
+ "\n",
+ "#Result\n",
+ "print 'The minimum value of series resistance R to maintain a constant value of 7.2 V is = %.1f \u03a9'%R;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum value of series resistance R to maintain a constant value of 7.2 V is = 43.6 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "NOTE: The actual value of R is 43.636363 (recurring) but, in the textbook the value of R is wrongly approximated 43.5 \u03a9"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.28, Page number 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ei_min=22; #Minimum input voltage in V\n",
+ "Ei_max=28; #Maximum input voltage in V\n",
+ "Vz=18; #Zener voltage in V\n",
+ "E0=Vz; #Constant voltage maintained across the load resistance in V\n",
+ "Iz_min=0.2; #Minimum zener current in A\n",
+ "Iz_max=2; #Maximum zener current in A\n",
+ "RL=18; #Load resistance in \u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "IL=Vz/RL; #Constant value of load current in A\n",
+ "#When the input voltage is minimum, the zener current will be minimum\n",
+ "R=(Ei_min-E0)/(Iz_min+IL) #The value of series resistance so that the voltage E0 across RL remains constant\n",
+ "\n",
+ "print 'The value of series resistance R, to maintain constant voltage E0 across RL = %.2f \u03a9.'%R;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of series resistance R, to maintain constant voltage E0 across RL = 3.33 \u03a9.\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.29, Page number 116 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=10 #Zener voltage in V\n",
+ "Ei_min=13; #Minimum input voltage in V\n",
+ "Ei_max=16; #Maximum input voltage in V\n",
+ "Iz_min=0.015; #Minimum zener current in A\n",
+ "IL_min=0.01; #Minimum load current in A \n",
+ "IL_max=0.085; #Maximum load curremt in A\n",
+ "E0=Vz; #Constant voltage to be maintained in V \n",
+ "\n",
+ "#Calculation\n",
+ "#The zener current will be minimum when the input voltage will be minimum and at that time the load current will be maximum\n",
+ "R=(Ei_min-E0)/(Iz_min+IL_max); #The value of series resistance R to maintain a constant voltage across load\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print 'The value of series resistance to maintain a constant voltage across the load resistance is = %d \u03a9'%R;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of series resistance to maintain a constant voltage across the load resistance is = 30 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.30, Page number 116"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Iz=0.2; #Current rating of each zener in A\n",
+ "Vz=15; #Voltage rating of each zener in V\n",
+ "Ei=45; #Input voltage in V\n",
+ "\n",
+ "#Calculation\n",
+ "# i: Regulated output voltage across the two zener diodes \n",
+ "E0=2*Vz; # V\n",
+ "\n",
+ "# ii: Value of series resistance \n",
+ "R=(Ei-E0)/Iz; # \u03a9\n",
+ "\n",
+ "#Result\n",
+ "print 'i) The regulated output voltage = %d V'%E0;\n",
+ "print 'ii) The value of the series resistance = %d \u03a9'%R;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i) The regulated output voltage = 30 V\n",
+ "ii) The value of the series resistance = 75 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.31, Page number 116-117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Vz=10; #Voltage rating of each zener in V\n",
+ "Iz=1; #Current rating of each zener in A\n",
+ "Ei=45; #Input unregulated voltage in V\n",
+ "\n",
+ "#Calculation\n",
+ "#Regulated output voltage across the three zener diodes\n",
+ "E0=3*Vz; # V\n",
+ "\n",
+ "#Value of series resistance to obtain a 30V regulated output voltage\n",
+ "R=(Ei-E0)/Iz; # \u03a9\n",
+ "\n",
+ "#Result\n",
+ "print 'Value of series resistance to obtain a 30V regulated output voltage = %d \u03a9'%R;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of series resistance to obtain a 30V regulated output voltage = 15 \u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.32, Page number 117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#variable declaration\n",
+ "RL=2000.0; #Load resistance in \u03a9\n",
+ "R=200.0; #Series resistance in \u03a9\n",
+ "Iz=0.025; #Zener current rating in A\n",
+ "E0=30.0; #Output regulated voltage in V \n",
+ "\n",
+ "#Calculation\n",
+ "#Minimum input voltage will be required when Iz=0 A, and at this condition\n",
+ "IL=E0/RL; #Load current during Iz=0, in A\n",
+ "I=IL; #According to Kirchhoff's law, total current, in A\n",
+ "Ei_min=E0+(I*R); #Minimum input voltage in V\n",
+ "\n",
+ "#The maximum input voltage required will be when Iz=0.025 A, and at that condition \n",
+ "I=IL+Iz; #According to Kirchhoff's law, total current, in A\n",
+ "Ei_max=E0+(I*R); #maximum input voltage in V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print 'The required range of input voltage is from %d V to %d V'%(Ei_min,Ei_max); \n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required range of input voltage is from 33 V to 38 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.33, Page number 117-118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ei=16; #Unregulated input voltage in V\n",
+ "E0=12; #Output regulated voltage in V\n",
+ "IL_min=0; #Minimum load current in A\n",
+ "IL_max=0.2; #Maximum load current in A\n",
+ "Iz_min=0; #Minimum zener current in A\n",
+ "Iz_max=0.2; #Maximum zener current in A\n",
+ "\n",
+ "#Calculation\n",
+ "#As the regulated voltage required across the load is 12V\n",
+ "Vz=E0; #Voltage rating of zener diode in V\n",
+ "V_R=Ei-E0; #Constant Voltage that should remain across series resistance \n",
+ "#The minimum zener current will occur when the curent in the load in maximum\n",
+ "R=V_R/(Iz_min+IL_max); #Series resistance in \u03a9\n",
+ "\n",
+ "Max_power_rating=Vz*Iz_max; #Maximum power rating of zener diode in W\n",
+ "\n",
+ "#Result\n",
+ "print 'The regulator is designed using a Seris resistance of %d \u03a9 and a zener diode of zener voltage %d V'%(R,Vz);\n",
+ "print 'The maximum power rating of the zener diode is = %.1f W '%Max_power_rating;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The regulator is designed using a Seris resistance of 20 \u03a9 and a zener diode of zener voltage 12 V\n",
+ "The maximum power rating of the zener diode is = 2.4 W \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.34, Page number 118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V=12; #Source voltage in V\n",
+ "R=1000; #Series resistance in \u03a9\n",
+ "RL=5000; #Load resistance in \u03a9\n",
+ "Vz=6; #Voltage rating of zener in V\n",
+ "\n",
+ "#Calculation\n",
+ "#Case i: zener is working properly\n",
+ "#The output voltage across the load will be equal to the zener voltage.\n",
+ "V0=Vz; # V\n",
+ "\n",
+ "#Result\n",
+ "print 'Case i: Output voltage when zener is working properly is %d V'%V0;\n",
+ "\n",
+ "#Case ii: zener is shorted\n",
+ "#As the zener is shorted, the potential difference across the load will be zero\n",
+ "V0=0; #V\n",
+ "\n",
+ "#Result\n",
+ "print 'Case ii: Output voltage when zener is short circuited is %d V'%V0;\n",
+ " \n",
+ "#Case iii: zener is open circuited\n",
+ "#If the zener is open circuited, the total voltage will drop across R and RL according to the voltage divider rule\n",
+ "V0=V*RL/(R+RL); #V\n",
+ "\n",
+ "#Result\n",
+ "print 'Case iii: Output voltage when zener is open circuited is %d V'%V0;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Case i: Output voltage when zener is working properly is 6 V\n",
+ "Case ii: Output voltage when zener is short circuited is 0 V\n",
+ "Case iii: Output voltage when zener is open circuited is 10 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter7_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter7_3.ipynb
new file mode 100644
index 00000000..537a179e
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter7_3.ipynb
@@ -0,0 +1,212 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e210474f5c4fc6668f4c7b5af2adf833a1c7f62577017a980ab8d11cd8ce2886"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 7 : SPECIAL-PURPOSE DIODES"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1 : Page number 127-128\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_S=10.0; #Supply voltage in V\n",
+ "V_D=1.6; #Forward voltage drop of LED, in V\n",
+ "I_F=20.0; #Required limited current through LED, in mA\n",
+ "\n",
+ "#Calculations\n",
+ "R_S=(V_S-V_D)/(I_F/1000); #Series resistor required to limit the current through the LED, in \u2126\n",
+ "\n",
+ "#Result \n",
+ "print(\"The value of series resistor required to limit the current through the LED = %d \u2126.\"%R_S);\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of series resistor required to limit the current through the LED = 420 \u2126.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2: Page number 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_S=15.0; #Supply voltage in V\n",
+ "V_D=2.0; #Forward voltage drop of LED, in V\n",
+ "R_S=2200.0; #Series resistor required to limit the current through the LED, in \u2126\n",
+ "\n",
+ "#Calculations\n",
+ "I_F=((V_S-V_D)/R_S)*1000; #Required limited current through LED, in mA\n",
+ "\n",
+ "#Result \n",
+ "print(\"The current through the LED in the circuit = %.2f mA\"%I_F);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current through the LED in the circuit = 5.91 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3: Page number 132-133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ir=50.0; #Dark current as observed from the current Illumination curve, in mA \n",
+ "V_R=10.0; #Reverse voltage in V\n",
+ "\n",
+ "#Calculation\n",
+ "R_R=V_R/(Ir/pow(10,6)); #Dark Resistance in \u2126\n",
+ "\n",
+ "#Result\n",
+ "print(\"The dark resistance is=%d k\u2126\"%(R_R/1000));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The dark resistance is=200 k\u2126\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4: Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "E=2.5; #Illumination in mW/cm\u00b2\n",
+ "m=37.4; #sensitivity of the photodiode in \ud835\udf07A/mW/cm\u00b2\n",
+ "\n",
+ "#Calculations\n",
+ "I_R=m*E; #Reverse current in \ud835\udf07A\n",
+ "\n",
+ "#Result\n",
+ "print(\"The reverese current in the photodiode = %.1f \ud835\udf07A\"%I_R);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The reverese current in the photodiode = 93.5 \ud835\udf07A\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5: Page number 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "from math import sqrt\t\n",
+ "#Variable declaration\n",
+ "L=1.0; #Inductance of the inductor in mH\n",
+ "C=100.0; #Capacitance of the varactor in pF\n",
+ "\n",
+ "#Result\n",
+ "f_r=1/(2*pi*sqrt(L*pow(10,-3)*C*pow(10,-12))); #Resonant frequency of the circuit in Hz\n",
+ "f_r=f_r/1000; #Resonant frequency of the circuit in kHz\n",
+ "\n",
+ "#Result\n",
+ "print(\"The resonant frequency of the circuit = %.1f kHz\"%f_r);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The resonant frequency of the circuit = 503.3 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter8_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter8_3.ipynb
new file mode 100644
index 00000000..4afe0858
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter8_3.ipynb
@@ -0,0 +1,1851 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9c13bdd66a3dbb3eae04903205b69bc52bf35e6dadf8b1b3ade1bab68394ae3b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.1: Page number 147-148\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Signal=500.0; #Signal voltage in V\n",
+ "Rin=20.0; #Input resistance in \u03a9 \n",
+ "Rout=100.0; #Output resistance in \u03a9\n",
+ "R_C=1000.0; #Collector load in \u03a9\n",
+ "alpha_ac=1.0; #current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "I_E=(Signal/1000)/Rin; \t#Input current in mA\n",
+ "I_C=I_E*alpha_ac; #Output current in mA\n",
+ "Vout=I_C*R_C; #Output voltage in V \n",
+ "Av=Vout/(Signal/1000); #Voltage amplification \n",
+ "\n",
+ "#Result\n",
+ "print(\"The voltage amplification = %d. \"%Av);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage amplification = 50. \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.2: Page number 150\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_E=1; #Emitter curent in mA\n",
+ "I_C=0.95; #Collector current in mA\n",
+ "\n",
+ "#Calculation\n",
+ "I_B=I_E-I_C; #Base current in mA\n",
+ "\n",
+ "#Result \n",
+ "print(\"The base current = %.2f mA \"%I_B);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The base current = 0.05 mA \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 8.3: Page number 150\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#variable declaration\n",
+ "alpha=0.9; #Current amplification factor\n",
+ "I_E=1; #Emitter current in mA\n",
+ "\n",
+ "#Calculation\n",
+ "I_C=alpha*I_E; #Collector current in mA\n",
+ "I_B=I_E-I_C; #Base current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The base current =%.1f mA\"%I_B);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The base current =0.1 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.4: Page number 150\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_C=0.95;\t\t\t#Collector current in mA\n",
+ "I_B=0.05;\t\t\t#Base current in mA\n",
+ "\n",
+ "#Calculation\n",
+ "I_E=I_B+I_C; #Emitter current in mA\n",
+ "alpha=I_C/I_E; #Current amplification factor \n",
+ "\n",
+ "#Result\n",
+ "print(\"The current amplification factor = %.2f .\"%alpha);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current amplification factor = 0.95 .\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.5: Page number 150\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_E=1; #Emitter current in mA\n",
+ "I_CBO=50.0; #Collector current with emitter circuit open, in microAmp\n",
+ "alpha=0.92; #Current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "I_C=alpha*I_E + (I_CBO/1000); #Total collector current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The total collector current = %.2f mA.\"%I_C);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total collector current = 0.97 mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.6: Page number 150-151\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "alpha=0.95; #Current amplification factor\n",
+ "Rc=2.0; #Resistor connected to the collector, in kilo ohm\n",
+ "V_Rc=2.0; #Voltage drop across the resistor connected to the collector in V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_C=V_Rc/Rc; #Collector current in mA\n",
+ "I_E=I_C/alpha; #Emitter current in mA\n",
+ "I_B=I_E-I_C; #Base current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The base current = %.2f mA\"%I_B); \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The base current = 0.05 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.7: Page number 151\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_EE=8.0; #Supply voltage at the emitter in V\n",
+ "V_CC=18.0; #Supply voltage at the collector in V\n",
+ "V_BE=0.7; #Base to emitter voltage in V\n",
+ "R_E=1.5; #Emitter resistance in \u03a9\n",
+ "R_C=1.2; #Collector resistance in \u03a9\n",
+ "\n",
+ "#Calculations\n",
+ "I_E=(V_EE-V_BE)/R_E; #Emitter current in mA\n",
+ "I_C=I_E; #Collector current in mA (approximately equal to emitter current)\n",
+ "V_CB=V_CC-(I_C*R_C); #Collector to base voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print(\"The collector current =%.2f mA\"%I_C);\n",
+ "print(\"The collector to base voltage = %.2f V\"%V_CB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The collector current =4.87 mA\n",
+ "The collector to base voltage = 12.16 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.8:Page number 155\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Function for calculating beta from alpha\n",
+ "def calc_beta(a): #a is the value of alpha\n",
+ "\treturn(a/(1-a));\n",
+ "\n",
+ "#Case (i)\n",
+ "alpha=0.9; #current amplification factor\n",
+ "beta=calc_beta(alpha);\t\t#Base current amplification factor \n",
+ "print(\"(i) Value of beta =%d\"%beta );\t\t\t\t\t\t\t\t\t\n",
+ "\n",
+ "#Case (ii)\n",
+ "alpha=0.98; #current amplification factor\n",
+ "beta=calc_beta(alpha); #Base current amplification factor\n",
+ "print(\"(ii) Value of beta =%.0f\"%beta );\n",
+ "\n",
+ "\n",
+ "#Case (iii)\n",
+ "alpha=0.99; #current amplification factor\n",
+ "beta=calc_beta(alpha); #Base current amplification factor \n",
+ "print(\"(iii) Value of beta =%.0f\"%beta );\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Value of beta =9\n",
+ "(ii) Value of beta =49\n",
+ "(iii) Value of beta =99\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.9: Page number 155\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "I_B=20.0; #Base current in microAmp\n",
+ "\n",
+ "#Calculation\n",
+ "I_B=I_B/1000; #Base current in mA\n",
+ "I_C=beta*I_B; #Collector current in mA\n",
+ "I_E=I_B+I_C; #Emitter current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The emitter curent = %.2f mA\"%I_E);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The emitter curent = 1.02 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.10: Page number 155\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_B=240.0; #Base current in microAmp\n",
+ "I_E=12; #Emitter current in mA\n",
+ "beta=49.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "alpha=beta/(1+beta); #current amplification factor \n",
+ "I_C_alpha=alpha*I_E; #Collector current in mA calculated using alpha\n",
+ "I_C_beta=beta*(I_B/1000); #Collector current in mA calculated using beta\n",
+ "\n",
+ "#Results\n",
+ "print(\"alpha=%.2f.\"%alpha);\n",
+ "print(\"Collector current determined using alpha =%.2f mA\"%I_C_alpha);\n",
+ "print(\"Collector current determined using beta =%.2f mA\"%I_C_beta);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "alpha=0.98.\n",
+ "Collector current determined using alpha =11.76 mA\n",
+ "Collector current determined using beta =11.76 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.11: Page number 156\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "beta=45.0; #Base current amplification factor\n",
+ "R_C=1.0; #Resistance of the collector resistance in k\u03a9\n",
+ "V_R_C=1.0; #Voltage drop across the collector resistance in V\n",
+ "\n",
+ "#Calculation\n",
+ "I_C=V_R_C/R_C; #Collector current in mA\n",
+ "I_B=I_C/beta; #Base current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"The base current =%.3f mA\"%I_B);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The base current =0.022 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.12: Page number 156\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=8.0; #Collector supply voltage in V\n",
+ "R_C=800.0; #Resistance of the collector resistance in \u03a9\n",
+ "V_R_C=0.5; #Voltage drop across collector resistance in V\n",
+ "alpha=0.96; #current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "V_CE=V_CC-V_R_C; #Collector to emitter voltage in V\n",
+ "I_C=V_R_C/R_C; #Collector current in A\n",
+ "I_C=I_C*1000; #Collector current in mA\n",
+ "beta=alpha/(1-alpha); #Base current amplification factor\n",
+ "I_B=I_C/beta; #Base current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Collector to emitter voltage = %.1f V\"%V_CE);\n",
+ "print(\"Base current= %.3f mA\"%I_B);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector to emitter voltage = 7.5 V\n",
+ "Base current= 0.026 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.13: Page number 156-157\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=5; \t#Collector supply voltage in V\n",
+ "I_CBO=0.2; \t#Leakage current at collector base junction with emitter open, in \u03bcA\n",
+ "I_CEO=20.0; \t#Leakage current with base open, in \u03bcA\n",
+ "I_C=1.0; #Collector current in mA\n",
+ "I_C=I_C*1000; \t#Collector current in \u03bcA\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "alpha=1-(I_CBO/I_CEO);\t\t#current amplification factor\n",
+ "I_E=(I_C-I_CBO)/alpha; #Emitter current in \u03bcA\n",
+ "I_E=round(I_E,-1);\n",
+ "I_B=I_E-I_C; #Base current in \u03bcA\n",
+ "I_B=round(I_B,-1);\n",
+ "\n",
+ "#Result\n",
+ "print(\"Current amplification factor = %.2f \"%alpha);\n",
+ "print(\"The emitter curent =%d \u03bcA \"%I_E);\n",
+ "print(\"The base curent =%d \u03bcA \"%I_B);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current amplification factor = 0.99 \n",
+ "The emitter curent =1010 \u03bcA \n",
+ "The base curent =10 \u03bcA \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.14: Page number 157\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_CEO=300.0; #Leakage current in common emitter configuration, in \u03bcA\n",
+ "beta=120.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "alpha=beta/(1+beta); #Current amplification factor\n",
+ "alpha=round(alpha,3);\n",
+ "I_CBO=(1-alpha)*I_CEO; #Leakage current in common base configuration, in \u03bcA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Vale of I_CBO= %.1f \u03bcA\"%I_CBO);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Vale of I_CBO= 2.4 \u03bcA\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.15: Page number 157\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_B=20.0; #Base current in \u03bcA\n",
+ "I_C=2.0; #Collector current in mA\n",
+ "beta=80.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "I_CEO=I_C-(beta*I_B/1000); #Leakage current with base open, in mA \n",
+ "alpha=beta/(beta+1); #Current amplification factor\n",
+ "alpha=round(alpha,3);\n",
+ "I_CBO=(1-alpha)*I_CEO; #Leakage current with emitter open, in mA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Value of I_CBO=%.4f mA\"%I_CBO);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of I_CBO=0.0048 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.17: Page number 158\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "beta=150.0; \t#Base current amplification factor\n",
+ "R_B=10.0; \t#Base resistance in kilo ohm\n",
+ "R_C=100.0; \t#Collector resistance in kilo ohm\n",
+ "V_CC=10.0; #Collector supply voltage in V\n",
+ "V_BB=5.0; #Base supply voltage in V\n",
+ "V_BE=0.7; #Base to emitter voltage in V\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "I_B=(V_BB-V_BE)/R_B; #Base current in mA\n",
+ "I_C=beta*I_B; #Collector current in mA\n",
+ "V_CE=V_CC - (I_C/1000)*R_C; #Collector to emitter voltage in V\n",
+ "V_CB=V_CE-V_BE; #Collector to base voltage in V\n",
+ "\n",
+ "\n",
+ "#Result \n",
+ "print(\"Collector to base voltage, V_CB= %.2f V\"%V_CB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector to base voltage, V_CB= 2.85 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.18: Page number158-159\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_B=68.0; #Base current in \u03bcA\n",
+ "I_E=30.0; #Emitter current in mA\n",
+ "beta=440.0;\t #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "alpha=beta/(beta + 1); #current amplification factor\n",
+ "I_C_alpha=alpha*I_E;\t\t#Collector current using alpha rating, in mA\n",
+ "I_C_beta=beta*(I_B/1000.0); #Collector current using beta rating, in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Collector current determined using alpha rating =%.2f mA\"%I_C_alpha);\n",
+ "print(\"Collector current determined using beta rating =%.2f mA\"%I_C_beta);\n",
+ "\n",
+ "#Note: In the textbook, the collector current obtained from beta rating is approximated to 29.93 mA\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector current determined using alpha rating =29.93 mA\n",
+ "Collector current determined using beta rating =29.92 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.19: Page number 159\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "I_C_max=500.0; #Maximum collector current in mA\n",
+ "beta_max=300.0; #Maximum base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "I_B_max=I_C_max/beta_max; #Maximum base current in mA\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The maximum allowable value of base current = %.2f mA\"%I_B_max);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum allowable value of base current = 1.67 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.22 : Page number 167-168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12.5; #Collector supply voltage, V\n",
+ "RC=2.5; #Collector resistor, k\u03a9\n",
+ "\n",
+ "#Calculation\n",
+ "#VCE=VCC-IC*RC\n",
+ "#For calculating VCE, IC=0\n",
+ "IC=0; #Collector current for maximum Collector-emitter voltage, mA\n",
+ "VCE_max=VCC-IC*RC; #Maximum collector-emitter voltage, V\n",
+ "\n",
+ "#For calculating VCE, IC=0\n",
+ "VCE=0; #Collector emitter voltage for maximum collector current, V\n",
+ "IC_max=(VCC-VCE)/RC; #Maximum collector current, mA\n",
+ "\n",
+ "\n",
+ "#Plotting of d.c load line\n",
+ "VCE_plot=[0,VCE_max]; #Plotting variable for VCE\n",
+ "IC_plot=[IC_max,0]; #Plotting variable for IC\n",
+ "p=plot(VCE_plot,IC_plot);\n",
+ "limit = plt.gca()\n",
+ "limit.set_xlim([0,15])\n",
+ "limit.set_ylim([0,6])\n",
+ "xlabel('VCE(V)');\n",
+ "ylabel('IC(mA)');\n",
+ "title('d.c load line');\n",
+ "plt.grid();\n",
+ "show(p);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEZCAYAAABoy7XpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlHX+B/D3EHYUTdEEvAwIeeWmg6KuHMlRE4vQTUGT\ntgso1VFzpWy3e7nu8VJpiu62bZs2dVzFLDfNyFJjXFeXYwmES+2SG7hcvOKVvHB7fn/wYxRlhhlm\nnsv3mffrHE7nmYH5vnlOfPj65pkZgyRJEoiISBd81A5ARESew6FORKQjHOpERDrCoU5EpCMc6kRE\nOsKhTkSkIxzqpGlpaWl45ZVX3HqMsrIy+Pj4oLGx0UOprjObzVi/fn2r9y1evBiPPPIIAOB///sf\n7rjjDvAKYpKbr9oBiBwxGAwwGAxqx7DLUb4bbw8JCcGlS5eUikVejDt10jxRd7ei5iaxcaiTphQU\nFGD48OHo2rUrZs2ahatXr9r93MbGRixbtgwDBgxA165dERsbi4qKijbXqKqqwtSpU3HnnXdi4MCB\neO+992z3HTp0CGPGjEH37t3Rp08fLFiwAHV1dbb7d+/ejSFDhsDf3x8LFiyAJElODe+bKyCz2YxX\nX30VY8eORdeuXTF58mRUV1fbPj8vLw9xcXHo3r07TCYT9u3b1+YaRACHOmlIbW0tHnjgATz22GM4\nd+4cZsyYgU8++cRuvbFq1SpkZ2fjiy++wMWLF/H+++/Dz8+vzXVmzZqFkJAQHD9+HB9//DFefPFF\n5ObmAgB8fX2RlZWF6upq/POf/8TevXvx9ttvAwDOnDmD5ORkLFu2DNXV1ejfvz8OHDjQ7npo8+bN\nsFgsOHXqFGpra7Fy5UoAQGVlJZKSkvDqq6/i3LlzWLlyJZKTk3HmzJl2rUPehUOdNCMvLw/19fVY\nuHAhbrvtNiQnJ2PkyJF2P3/9+vVYunQpBg4cCACIjo5Gjx49HK5RXl6OgwcP4vXXX8ftt9+OYcOG\nISMjAx9++CEAYPjw4Rg1ahR8fHzQr18/PPHEE7Zdck5ODqKiojB9+nTcdtttyMzMRK9evdr1vRoM\nBqSnp2PAgAHo2LEjZs6cicLCQgDAxo0bkZiYiHvvvRcAcM899yA2NhY5OTntWou8C4c6aUZVVRX6\n9u3b4rZ+/frZrTfKy8vRv39/l9fo0aMHOnfubLstJCQElZWVAICSkhIkJSWhd+/e6NatG1566SVb\nLVJVVQWj0dji8YKDg11a/0Y3/kLo1KkTampqAADHjh3D1q1b0b17d9vHgQMHcOLEiXavRd6DQ500\no3fv3rbh2uzYsWN2643g4GAcPXrUpTX69OmDs2fP2gYo0HS5YfOwnjt3LiIiInD06FFcuHABS5cu\ntfXgffr0QXl5ue3rJElqcXyz9tYyISEheOSRR3Du3Dnbx6VLl/Db3/62XY9H3oVDnTQjLi4Ovr6+\nWLt2Lerq6rBt2zZ88803dj8/IyMDr7zyCo4ePQpJklBUVISzZ886XCM4OBhxcXF44YUXcO3aNRQV\nFWHDhg14+OGHAQA1NTW444474Ofnh3//+9/405/+ZPvaxMREFBcX429/+xvq6+uxdu1ah7vntv6A\nau/+hx9+GJ999hm++uorNDQ04OrVq7Barbf8wiNqDYc6aUaHDh2wbds2WCwW3Hnnnfjoo4+QnJxs\nu7/5CTzNV7g888wzmDlzJhISEtCtWzc8/vjjdq+WuXHXvHnzZpSVlaFPnz6YPn06lixZggkTJgAA\nVq5ciU2bNqFr16544oknMGvWLNvX9uzZE1u3bsXzzz+Pnj174ujRoxg7dqzd7+fma9hv3rnffF/z\nsdFoxPbt27Fs2TIEBgYiJCQEq1atkuXJU6Q/BjnfJOP8+fPIyMhAcXExDAYDNmzYgF/84hdyLUdE\n5PVkfUbpwoULkZiYiI8//hj19fX4+eef5VyOiMjrybZTv3DhAmJiYvDTTz/J8fBERNQK2Tr10tJS\nBAQEID09HcOHD8fjjz+Oy5cvy7UcERFBxqFeX1+P/Px8zJs3D/n5+ejcuTNWrFgh13JERAQZO3Wj\n0Qij0Wh7RmBKSsotQ13Lr75HRKRl9ppz2XbqvXr1QnBwMEpKSgAAe/bsQWRkZKvBRPp47bXXVM+g\n98yi5WVm5lU6syOyXv2ybt06/OpXv0JtbS369++P999/X87lFFFWVqZ2BJeJllm0vAAzK0G0vIA6\nmWUd6sOGDXP4jEAiIvIsPqPURWlpaWpHcJlomUXLCzCzEkTLC6iTWdZnlLa5uMHQZj9EREQtOZqd\n3Km7yGq1qh3BZaJlFi0vwMxKEC0voE5mDnUiIh1h/UJEJBjWL0REXoJD3UXs9eQnWl6AmZUgWl6A\nnToREbmJnToRkWDYqRMReQkOdRex15OfaHkBZlaCaHkBdupEROQmdupERIJhp05E5CU41F3EXk9+\nouUFmFkJouUF2KkTEZGb2KkTEQmGnToRkZfgUHcRez35iZYXYGYliJYXYKdORERuYqdORCQYdupE\nRF6CQ91F7PXkJ1pegJmVIFpegJ06ERG5iZ06EZFg2KkTEXkJDnUXsdeTn2h5AWZWgmh5AXbqRETk\nJtk79dDQUHTt2hW33XYbOnTogEOHDl1fnJ06EZHLHM1OXyUWt1qt6NGjh9xLERF5PUXqFz3txtnr\nyU+0vAAzK0G0vIBOO3WDwYB77rkHsbGx+Mtf/iL3ckREXk32Tv348ePo3bs3Tp8+jUmTJmHdunWI\nj49vWtxgQHGxhIgIORMQEemLqp167969AQABAQGYNm0aDh06ZBvqABATk4b4+FDExQE9evjDZDLB\nbDYDuP5PFx7zmMc89uZjq9UKi8UCoOniE4ckGf3888/SxYsXJUmSpJqaGikuLk768ssvbfcDkEpL\nJWniREkaOVKSiovlTOMZubm5akdwmWiZRcsrScysBNHySpJ8mR2Nblk79ZMnTyI+Ph4mkwmjR49G\nUlISEhISWnxOaCiwezcwZw4wbhywYgVQXy9nKiIi/dLUa7+UlQEZGcDFi4DFAnbtREStEOa1X7hr\nJyJyj6aGOgAYDMCTTwLffAPs2QPExQHff692quua/3ghEtEyi5YXYGYliJYX0Ol16u3FXTsRkes0\n1anbw66diOg6YTp1e7hrJyJyjhBDHdBO185eT36i5QWYWQmi5QXYqTuFu3YiIvuE6NTtYddORN5I\n+E7dHu7aiYhaEnqoA8p37ez15CdaXoCZlSBaXoCdulu4ayciErxTt4ddOxHpmW47dXu4aycib6XL\noQ7I17Wz15OfaHkBZlaCaHkBduqy4K6diLyJLjt1e9i1E5EeeF2nbg937USkd1411AH3u3b2evIT\nLS/AzEoQLS/ATl1R3LUTkR55VaduD7t2IhIJO/U2cNdORHrBof7/nO3a2evJT7S8ADMrQbS8ADt1\nTeCunYhExk7dAXbtRKRF7NTbibt2IhINh3obbu7ao6Ksqrw3qjtE6yJFywswsxJEywuwU9e05l17\nYiJ37USkXezU24FdOxGpiZ26h7FrJyKtkn2oNzQ0ICYmBlOmTJF7KUU0d2RKvzeqO0TrIkXLCzCz\nEkTLC+i0U8/KykJERAQMBoPcS6mCu3Yi0hJZO/WKigqkpaXhpZdewltvvYXPPvus5eKCdur2sGsn\nIiWo1qk//fTTePPNN+Hj4x3VPXftRKQ2X7keeOfOnQgMDERMTIzDXiktLQ2hoaEAAH9/f5hMJpjN\nZgDX+ygtHRcWFiIzM9Ph5z/5pBmTJwPJyVZYLMC2bWZERKiXv/k2LZw/Pea9MatW8jhzvGbNGs3/\nvImc19l54ez/XxaLBQBs89IuSSYvvPCCZDQapdDQUKlXr16Sn5+f9Mgjj7T4HBmXl01ubq7Tn9vY\nKEnvvCNJPXtK0vLlklRXJ18uR1zJrAWi5ZUkZlaCaHklSb7MjmanItep79u3DytXrtR9p24Pu3Yi\n8iRNXKeu16tfnMGunYiUoshQHzduHHbs2KHEUrK7sTt1hZrXtbc3s1pEywswsxJEywvo9Dp1aom7\ndiKSE1/7RUXs2omoPTTRqdOtuGsnIk/jUHeRpzsyJbp20bpI0fICzKwE0fIC7NS9GnftROQJ7NQ1\niF07ETnCTl0w3LUTUXtxqLtIqY7Mk127aF2kaHkBZlaCaHkBdurUCu7aicgV7NQFwq6diAB26rrB\nXTsRtYVD3UVq93rt6drVzuwq0fICzKwE0fIC7NTJBdy1E1Fr2KnrALt2Iu/CTl3nuGsnomYc6i7S\naq/nqGvXamZ7RMsLMLMSRMsLsFMnD2ht197QoHYqIlKK0536uXPnUFVVhU6dOiE0NBQ+Pu7/PmCn\nLi927UT65Gh2Ohzq58+fx9tvv43Nmzfj2rVrCAwMxNWrV3HixAmMGTMG8+bNw/jx42UJRp4hScC7\n7wIvvwwsWgQ8+yzg66t2KiJyR7v/UDpjxgwYjUbs378fJSUl+Mc//oFvv/0W5eXleO6557B9+3a8\n9957soTWKtF6PYMBGDzYqsp7o7aXaOcYYGYliJYXUCezwz3b7t27W73dYDAgNjYWsbGxsoQiz2vu\n2t99t6lr566dSJ9cvk796NGj2Lx5M7Kzs1FcXOze4qxfVMGunUhsbl+nXllZibfeegsjR45EVFQU\nGhoakJ2d7dGQpBxe106kXw6H+p///GeYzWaYzWZUV1dj/fr16N27NxYvXozo6GilMmqKXno9Jd4b\ntb30co61TrTMouUFNHid+lNPPYXGxkZs2rQJS5cuxdChQ5XKRQrhrp1IXxx26mfOnMHWrVuRnZ2N\n48ePY+bMmbBYLKioqPDM4uzUNYVdO5EY2t2p9+zZE3PnzsW+ffuwd+9e+Pv7IygoCEOGDMGLL74o\nS1hSD3ftROJz+mmhwcHBePbZZ3H48GHs2LEDHTt2lDOXZum919NC1673c6wVomUWLS+gwevUm9XX\n1+Pzzz9HWVkZGhoaIEkSOnfu3ObXXb16FePGjcO1a9dQX1+PlJQULF682N3MpABe104kJqeuU7/v\nvvvQqVMnREdHt3jNl9dee63NBS5fvgw/Pz/U19dj7NixyMrKwujRo5sWZ6cuBHbtRNriaHY6te+q\nrKxEUVFRuxb38/MDANTW1qKurs4jLwRGyuKunUgcTk3Ye++9F19++WW7FmhsbITJZEJQUBASEhIw\ncuTIdj2OVnhrr6dk1+6t51hpomUWLS+g4U59zJgxmD59OhoaGtChQwcATdv/ixcvtvm1Pj4+KCws\nxIULFzBt2jQUFxcjMjLSdn9aWhpCQ0MBAP7+/jCZTDCbzQCunxAtHRcWFmoqjzPHzTz1eLt3m/Hu\nu8CYMVY8+CDw9ttm+PpqNy+PWz8uLCzUVB695fXkvLBarbBYLABgm5f2ONWph4aGYseOHYiKinKr\nPvn9738PPz8/LFq0qGlxdupCY9dOpA63X/slJCQEkZGRLg/0M2fO4Pz58wCAK1euYPfu3QgPD3fp\nMUi7eF07kfY4NaXDwsIwfvx4LF++HKtWrcKqVavw1ltvtfl1x48fx4QJEzBs2DCMGjUKCQkJSExM\ndDu0mm6uCEQgZ2Y5unaeY2WIllm0vICGO/WwsDCEhYWhtrYWtbW1Tj94dHQ08vPz2x2OxMErZIi0\nweXXU/fo4uzUdYldO5G82t2pZ2Rk4MiRI63eV1NTg/Xr12Pjxo3uJyRdYddOpB6HQ33+/PlYsmQJ\nhgwZgpSUFMydOxfp6emIj49HXFwcLl26hBkzZiiVVRPY6znHna6d51gZomUWLS+gwU49JiYGW7du\nxaVLl/Dtt9/i+PHj8PPzQ3h4OAYPHqxURhIYu3YiZTns1E+dOoXTp0+3eLIQABQXFyMwMBABAQHu\nLc5O3auwayfyjHZ36gsWLMCZM2duub26uhoLFy70TDryGuzaieTncKgfPXoU48aNu+X2u+++G999\n951sobSMvZ57nOnatZTXWcwsP9HyAhp8j9JLly7Zva+urs7jYch7cNdOJA+HnXpiYiLmz5+P+++/\nv8XtOTk5WLduHb744gv3FmenTmDXTuQqR7PT4VAvKSlBUlIS4uLiMGLECEiShMOHD+PgwYPYuXOn\n21fAcKhTM0lqukLm5Zd5hQxRW9r9h9JBgwahqKgId999N0pLS3Hs2DGMGzcORUVFXntJI3s9edzY\ntW/dalXlvVHdIcI5vplomUXLC2jwOnUA6NixI2bPnq1EFiKEhgIrVwIlJbyunag9HNYvXbp0gcFg\naP0LnXyTDIeLs34hB9i1E7Wu3Z263DjUqS3s2olu5fabZNB17PXkd2NeJd8b1R2inWNAvMyi5QU0\neJ06kVbwunYi57B+IeGwaydvx/qFdIW7diL7ONRdxF5Pfs7k1VrXLto5BsTLLFpegJ06kcu4aydq\niZ066Qa7dvIW7NTJK3DXTsSh7jL2evJzJ69aXbto5xgQL7NoeQF26kQew107eSt26qR77NpJb9ip\nk1fjrp28CYe6i9jryU+OvHJ37aKdY0C8zKLlBdipE8mOu3bSO1k79fLycjz66KM4deoUDAYDnnji\nCfz617++vjg7dVIRu3YSlWqvp37ixAmcOHECJpMJNTU1GDFiBD799FOEh4e3GYxICXy9dhKRan8o\n7dWrF0wmE4Cmd1EKDw9HVVWVnEvKjr2e/JTM66muXbRzDIiXWbS8gM479bKyMhQUFGD06NFKLUnk\nNHbtpBeK/EOzpqYGKSkpyMrKQpcuXVrcl5aWhtDQUACAv78/TCYTzGYzgOu/5bR23EwreXjsmeN9\n+6wYPBj45hszMjIAi8WK558H0tLa/nqz2ax6flePm2/TSh695W0+vjF7ex/ParXCYrEAgG1e2iP7\nk4/q6uqQlJSE++67D5mZmS0XZ6dOGsWunbRMtU5dkiTMmTMHERERtwx0Ud3821cEomXWQl5Xu3Yt\nZHaVaJlFywvosFM/cOAANm7ciNzcXMTExCAmJga7du2Sc0kij2LXTqLha78QOYnXtZNW8LVfiDyA\nu3YSAYe6i9jryU/Lee117VrObI9omUXLC+iwUyfSq5t37Zs2cddO2sBOnchN7NpJaezUiWTErp20\nhEPdRez15CdaXqDp2ahqvDeqO0Q7z6LlBdipEwmPu3ZSGzt1Ipmwaye5sFMnUgF37aQGDnUXsdeT\nn2h5AfuZ5X5vVHeIdp5FywuwUyfSLe7aSSns1IkUxq6d3MVOnUhDuGsnOXGou4i9nvxEywu4nlkL\nXbto51m0vAA7dSKvw107eRo7dSKNYNdOzmKnTiQA7trJEzjUXcReT36i5QU8l1nJrl208yxaXoCd\nOhH9P+7aqb3YqRNpHLt2uhk7dSKBcddOruBQdxF7PfmJlheQP7McXbto51m0vAA7dSJqA3ft1BZ2\n6kSCYtfuvdipE+kQd+3UGg51F7HXk59oeQH1MrvTtYt2nkXLC7BTJ6J24q6dmrFTJ9IZdu36p1qn\nPnv2bAQFBSE6OlrOZYjoBty1ezdZh3p6ejp27dol5xKKY68nP9HyAtrL7EzXrrXMbREtL6DDTj0+\nPh7du3eXcwkicoC7du8je6deVlaGKVOm4MiRI7cuzk6dSDHs2vWD16kTEXftXsJX7QBpaWkIDQ0F\nAPj7+8NkMsFsNgO43kdp6biwsBCZmZmayePMcfNtWsmjt7w3ZtVKHkfHTz5pxuTJQELCGlgsJmzb\nZkZEhHby2Ttes2aN5ufDzceemhdWqxUWiwUAbPPSLklmpaWlUlRUVKv3KbC8x+Xm5qodwWWiZRYt\nrySJmfnrr3Old96RpJ49JWn5ckmqq1M7kWMinmO5MjuanbJ26qmpqdi3bx+qq6sRGBiIJUuWID09\n3XY/O3Ui9bFrF4+j2cknHxERJAl4913g5ZeBRYuAZ58FfFUvZ8ke/qHUg27sTkUhWmbR8gLiZ1by\nvVHbS/RzrBQOdSKy4RUy4mP9QkStYteuXaxfiMhl3LWLiUPdRez15CdaXkC/mbXUtev1HHsahzoR\ntYm7dnGwUycil7BrVx87dSLyGO7atY1D3UXs9eQnWl7A+zKr0bV72zluLw51Imo37tq1h506EXkE\nu3blsFMnItlx164NHOouYq8nP9HyAszcTM6unefYORzqRORx3LWrh506EcmKXbvnsVMnItVw164s\nDnUXsdeTn2h5AWZuiye6dp5j53CoE5FiuGuXHzt1IlIFu/b2Y6dORJrDXbs8ONRdxF5PfqLlBZi5\nvVzp2rWQ11Xs1InIK3HX7jns1IlIU9i1t42dOhEJg7t293Cou4i9nvxEywsws6e11rVbLFa1Y7mM\nnToR0Q1u3LUvXMhduzPYqRORENi1X8dOnYiEx67dObIO9V27dmHIkCEYOHAgXn/9dTmXUoyWe0h7\nRMssWl6AmZVgtVpVeW9Ud+iqU29oaMBTTz2FXbt24fvvv8fmzZvxww8/yLWcYgoLC9WO4DLRMouW\nF2BmJdyYV5RduxrnWLahfujQIQwYMAChoaHo0KEDZs2ahe3bt8u1nGLOnz+vdgSXiZZZtLwAMyvh\n5rwi7NrVOMeyDfXKykoEBwfbjo1GIyorK+Vajoi8lCi7dqXINtQNBoNcD62qsrIytSO4TLTMouUF\nmFkJjvK2tmv/+WflstmjxjmW7ZLGvLw8LF68GLt27QIALF++HD4+PnjuueeuL67TwU9EJDd7o1u2\noV5fX4/Bgwdj79696NOnD0aNGoXNmzcjPDxcjuWIiAiAr2wP7OuLP/zhD5g8eTIaGhowZ84cDnQi\nIpmp+oxSIiLyLNWeUSraE5PKy8sxfvx4REZGIioqCmvXrlU7klMaGhoQExODKVOmqB3FKefPn0dK\nSgrCw8MRERGBvLw8tSO1afXq1YiKikJ0dDQeeughXLt2Te1ILcyePRtBQUGIjo623Xb27FlMmjQJ\ngwYNQkJCguYub2wt829+8xuEh4dj2LBhmD59Oi5cuKBiwpZay9ts1apV8PHxwdmzZxXJospQF/GJ\nSR06dMDq1atRXFyMvLw8/PGPf9R8ZgDIyspCRESEMH+UXrhwIRITE/HDDz+gqKhI85VdZWUl1q1b\nh8OHD+PIkSNoaGhAdna22rFaSE9Pt12w0GzFihWYNGkSSkpKMHHiRKxYsUKldK1rLXNCQgKKi4vx\n3XffYdCgQVi+fLlK6W7VWl6gaTO4e/du9OvXT7Esqgx1EZ+Y1KtXL5hMJgBAly5dEB4ejqqqKpVT\nOVZRUYGcnBxkZGQI8cJpFy5cwP79+zF79mwATX+X6datm8qp2lZfX4/Lly/b/tu3b1+1I7UQHx+P\n7t27t7htx44deOyxxwAAjz32GD799FM1otnVWuZJkybBx6dpZI0ePRoVFRVqRGtVa3kB4JlnnsEb\nb7yhaBZVhrroT0wqKytDQUEBRo8erXYUh55++mm8+eabth8ErSstLUVAQADS09MxfPhwPP7447h8\n+bLasRzq27cvFi1ahJCQEPTp0wf+/v6455571I7VppMnTyIoKAgAEBQUhJMnT6qcyDUbNmxAYmKi\n2jEc2r59O4xGI4YOHarouqr8tItSBbSmpqYGKSkpyMrKQpcuXdSOY9fOnTsRGBiImJgYIXbpQNOO\nNz8/H/PmzUN+fj46d+6suVrgZufOncOOHTtQVlaGqqoq1NTU4K9//avasVxiMBiE+plcunQpbr/9\ndjz00ENqR7Hr8uXLWLZsGX73u9/ZblPq51CVod63b1+Ul5fbjsvLy2E0GtWI4pK6ujokJyfj4Ycf\nxgMPPKB2HIcOHjyIHTt2ICwsDKmpqfj666/x6KOPqh3LIaPRCKPRiJEjRwIAUlJSkJ+fr3Iqx/bs\n2YOwsDDceeed8PX1xfTp03Hw4EG1Y7UpKCgIJ06cAAAcP34cgYGBKidyjsViQU5OjuZ/cf73v/9F\nWVkZhg0bhrCwMFRUVGDEiBE4deqU7GurMtRjY2Px448/oqysDLW1tdiyZQumTp2qRhSnSZKEOXPm\nICIiApmZmWrHadOyZctQXl6O0tJSZGdnY8KECfjwww/VjuVQr169EBwcjJKSEgBNAzMyMlLlVI71\n69cPeXl5uHLlCiRJwp49exAhwLs3TJ06FR988AEA4IMPPtD8JgVoumLuzTffxPbt29GxY0e14zgU\nHR2NkydPorS0FKWlpTAajcjPz1fml6ekkpycHGnQoEFS//79pWXLlqkVw2n79++XDAaDNGzYMMlk\nMkkmk0n64osv1I7lFKvVKk2ZMkXtGE4pLCyUYmNjpaFDh0rTpk2Tzp8/r3akNr322mvSkCFDpKio\nKOnRRx+Vamtr1Y7UwqxZs6TevXtLHTp0kIxGo7RhwwapurpamjhxojRw4EBp0qRJ0rlz59SO2cLN\nmdevXy8NGDBACgkJsf38zZ07V+2YNs15b7/9dts5vlFYWJhUXV2tSBY++YiISEfEuCyCiIicwqFO\nRKQjHOpERDrCoU5EpCMc6kREOsKhTkSkIxzqREQ6wqFOujRhwgR89dVXLW5bs2YN5s2bh5KSEiQm\nJmLQoEEYMWIEHnzwQZw6dQpWqxXdunVDTEyM7WPv3r0AgCtXrsBsNqOxsRF33XWX7VmvzTIzM/HG\nG2/gX//6F9LT0xX7PoluxqFOupSamnrL65pv2bIFqampSEpKwvz581FSUoLDhw9j3rx5OH36NAwG\nA+6++24UFBTYPiZOnAig6VUBk5OT4ePjc8tjNzY24pNPPkFqaiqioqJQUVHR4rWNiJTEoU66lJyc\njM8//xz19fUAYHsVxR9//BFxcXG4//77bZ87btw4REZGOnwVvU2bNuGXv/wlgKZfGFu2bLHd9/e/\n/x39+vWzvZz0lClTNPdGGeQ9ONRJl3r06IFRo0YhJycHAJCdnY2ZM2eiuLgYw4cPt/t1+/fvb1G/\nlJaWora2Fj/99BNCQkIAAFFRUfDx8UFRUZHtsW98GdjY2Fjs379fxu+OyD4OddKtG2uSLVu2OPX6\n2/Hx8S3ql7CwMJw5cwb+/v6tPnZDQwO2b9+OGTNm2O4LCAjQ/LtikX5xqJNuTZ06FXv37kVBQQEu\nX76MmJihLsulAAABOUlEQVQYREZG4vDhwy49TqdOnXD16tUWt82aNQsfffQR9uzZg6FDhyIgIMB2\n39WrV9GpUyePfA9EruJQJ93q0qULxo8fj/T0dNsu/aGHHsLBgwdttQzQ1IkXFxfbfZzu3bujoaEB\ntbW1ttvuuusu9OzZE88///wt/wIoKSlBVFSUh78bIudwqJOupaam4siRI0hNTQUAdOzYETt37sS6\ndeswaNAgREZG4p133kFAQAAMBsMtnfq2bdsANL2T/c09eWpqKv7zn/9g+vTpLW7Pzc1FUlKSMt8g\n0U34eupETigoKMDq1avbfPeoa9euwWw248CBA8K84TfpC/+vI3JCTEwMxo8fj8bGRoefV15ejtdf\nf50DnVTDnToRkY5wO0FEpCMc6kREOsKhTkSkIxzqREQ6wqFORKQj/wfxISNkMYU3cgAAAABJRU5E\nrkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f2eadbe6710>"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.23 : Page number 168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage, V\n",
+ "RC=6.0; #Collector resistor, k\u03a9\n",
+ "IB=20.0; #Zero signal base current, \u03bcA\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "#VCE=VCC-IC*RC\n",
+ "#For calculating VCE, IC=0\n",
+ "IC=0; #Collector current for maximum Collector-emitter voltage, mA\n",
+ "VCE_max=VCC-IC*RC; #Maximum collector-emitter voltage, V\n",
+ "\n",
+ "#For calculating VCE, IC=0\n",
+ "VCE=0; #Collector emitter voltage for maximum collector current, V\n",
+ "IC_max=(VCC-VCE)/RC; #Maximum collector current, mA\n",
+ "\n",
+ "\n",
+ "#Plotting of d.c load line\n",
+ "VCE_plot=[0,VCE_max]; #Plotting variable for VCE\n",
+ "IC_plot=[IC_max,0]; #Plotting variable for IC\n",
+ "p=plot(VCE_plot,IC_plot);\n",
+ "limit = plt.gca()\n",
+ "limit.set_xlim([0,15])\n",
+ "limit.set_ylim([0,5])\n",
+ "xlabel('VCE(V)');\n",
+ "ylabel('IC(mA)');\n",
+ "title('d.c load line');\n",
+ "plt.grid();\n",
+ "show(p);\n",
+ "\n",
+ "#Calculating Q-point\n",
+ "IC=beta*(IB/1000); #Collector current, mA\n",
+ "VCE=VCC-IC*RC; #Collector emitter voltage, V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Operating point: IC=%dmA and VCE=%dV.\"%(IC,VCE));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEZCAYAAABoy7XpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHmdJREFUeJzt3XlQlPcdBvBnERyvIB6AICBEJXIpKOrIeCwajSVqFdCA\n9YIYZ9RYSdomaTKJNjPBGDWKNmk7DYbYRDA2NhhF6xFojZax8QiW2hJasAt4IiqEcC1v/3DYiMKy\ny+57/Hafz4zTed+F/T28U768efbdd3WSJEkgIiKH4KJ2ACIish8OdSIiB8KhTkTkQDjUiYgcCIc6\nEZED4VAnInIgHOqkaStWrMDrr79u03OUl5fDxcUFra2tdkr1A71ej8zMzA4f27hxI5YuXQoA+N//\n/ofHHnsMvIKY5OaqdgAic3Q6HXQ6ndoxOmUu34P7AwICUFtbq1QscmI8UyfNE/XsVtTcJDYOddKU\nCxcuYOzYsXB3d0dSUhIaGho6/drW1lakp6djxIgRcHd3R3R0NCoqKrpco6qqCvPmzcOgQYMwcuRI\nfPDBB6bHzp49i0mTJmHAgAHw9fXFunXr0NzcbHr8+PHjGDVqFDw8PLBu3TpIkmTR8H64AtLr9Xjj\njTcwefJkuLu746mnnkJ1dbXp6wsLCxETE4MBAwYgMjISf/nLX7pcgwjgUCcNaWpqwvz587F8+XLU\n1NRg4cKF+OyzzzqtN7Zt24acnBwcOXIE9+7dw4cffog+ffp0uU5SUhICAgJw9epV/PGPf8Srr76K\n/Px8AICrqysyMjJQXV2Nv/3tbzh58iTef/99AMCtW7eQkJCA9PR0VFdXY/jw4Th9+nS366Hs7Gxk\nZWXhxo0baGpqwtatWwEAlZWVmDNnDt544w3U1NRg69atSEhIwK1bt7q1DjkXDnXSjMLCQrS0tGD9\n+vXo0aMHEhISMH78+E6/PjMzE2+99RZGjhwJAIiIiMDAgQPNrmEwGHDmzBls3rwZPXv2xJgxY7By\n5Urs2bMHADB27FhMmDABLi4uGDZsGFatWmU6S87Ly0N4eDji4+PRo0cPpKWlYciQId36WXU6HVJS\nUjBixAj06tULixYtwsWLFwEAH3/8MeLi4jB79mwAwJNPPono6Gjk5eV1ay1yLhzqpBlVVVUYOnRo\nu33Dhg3rtN4wGAwYPny41WsMHDgQffv2Ne0LCAhAZWUlAKCkpARz5syBj48P+vfvj9dee81Ui1RV\nVcHPz6/d8/n7+1u1/oMe/IPQu3dv1NXVAQCuXLmC/fv3Y8CAAaZ/p0+fxrVr17q9FjkPDnXSDB8f\nH9NwbXPlypVO6w1/f3+UlpZatYavry9u375tGqDA/csN24b16tWrERoaitLSUty9exdvvfWWqQf3\n9fWFwWAwfZ8kSe22H9bdWiYgIABLly5FTU2N6V9tbS1eeumlbj0fORcOddKMmJgYuLq6YufOnWhu\nbsaBAwfw97//vdOvX7lyJV5//XWUlpZCkiQUFRXh9u3bZtfw9/dHTEwMfvnLX6KxsRFFRUXYvXs3\nlixZAgCoq6vDY489hj59+uBf//oXfvOb35i+Ny4uDsXFxfjTn/6ElpYW7Ny50+zZc1cvoHb2+JIl\nS/DFF1/g2LFjMBqNaGhoQEFBwSN/8Ig6wqFOmuHm5oYDBw4gKysLgwYNwqeffoqEhATT421v4Gm7\nwuXFF1/EokWLMGvWLPTv3x/PPfdcp1fLPHjWnJ2djfLycvj6+iI+Ph5vvvkmpk+fDgDYunUr9u7d\nC3d3d6xatQpJSUmm7x08eDD279+PV155BYMHD0ZpaSkmT57c6c/z8DXsD5+5P/xY27afnx9yc3OR\nnp4OLy8vBAQEYNu2bbK8eYocj07uD8kIDAyEu7s7evToATc3N5w9e1bO5YiInJrs7yjV6XQoKCjo\n8qoEIiKynSL1C99ZR0SkDNmHuk6nM11n+/vf/17u5YiInJrs9cvp06fh4+ODmzdvYubMmRg1ahSm\nTJki97JERE5J9qHu4+MDAPD09MSCBQtw9uxZ01DX8t33iIi0rLNaW9b6pb6+3nS70e+++w7Hjh1D\nRETEI8FE+rdhwwbVMzh6ZtHyMjPzKp3ZHFnP1K9fv44FCxYAAFpaWvCTn/wEs2bNknNJ2ZWXl6sd\nwWqiZRYtL8DMShAtL6BOZlmHelBQkOkmRUREJD++o9RKK1asUDuC1UTLLFpegJmVIFpeQJ3Msr+j\n1OziOl2X/RAREbVnbnbyTN1KBQUFakewmmiZRcsLMLMSRMsLqJOZQ52IyIGwfiEiEgzrFyIiJ8Gh\nbiX2evITLS/AzEoQLS/ATp2IiGzETp2ISDDs1ImInASHupXY68lPtLwAMytBtLwAO3UiIrIRO3Ui\nIsGwUycichIc6lZiryc/0fICzKwE0fIC7NSJiMhG7NSJiATDTp2IyElwqFuJvZ78RMsLMLMSRMsL\nsFMnIiIbsVMnIhIMO3UiIifBoW4l9nryEy0vwMxKEC0vwE6diIhsxE6diEgw7NSJiJwEh7qV2OvJ\nT7S8ADMrQbS8ADt1IiKyETt1IiLBsFMnInISHOpWYq8nP9HyAsysBNHyAuzUiYjIRuzUiYgEw06d\niMhJcKhbib2e/ETLCzCzEkTLC7BTJyIiG8neqRuNRkRHR8PPzw9ffPFF+8XZqRMRWU3VTj0jIwOh\noaHQ6XRyL0VE5PRkHeoVFRXIy8vDypUrHeaMnL2e/ETLCzCzEkTLCzhgp/7CCy9gy5YtcHFhdU9E\npARXuZ740KFD8PLyQlRUlNm/VitWrEBgYCAAwMPDA5GRkdDr9QB++Cunte02WsnDbfW39Xq9pvJY\nst22Tyt5HC1v2/aD2bv7fAUFBcjKygIA07zsjGwvlL766qv4wx/+AFdXVzQ0NODevXtISEjAnj17\nflicL5QSEVlNlRdK09PTYTAYUFZWhpycHEyfPr3dQBfVw399RSBaZtHyAsysBNHyAg7YqT+IV78Q\nEcmP934hIhIM7/1CROQkONStxF5PfqLlBZhZCaLlBRy8UyciIvmxUyciEgw7dSIiJ8GhbiX2evIT\nLS/AzEoQLS/ATp2IiGzETp2ISDDs1ImInASHupXY68lPtLwAMytBtLwAO3UiIrIRO3UiIsGwUyci\nchIc6lZiryc/0fICzKwE0fIC7NSJiMhG7NSJiATDTp2IyElwqFuJvZ78RMsLMLMSRMsLsFMnIiIb\nsVMnIhIMO3UiIifBoW4l9nryEy0vwMxKEC0vwE6diIhsxE6diEgw7NSJiJwEh7qV2OvJT7S8ADMr\nQbS8ADt1IiKyETt1IiLBsFMnInISHOpWYq8nP9HyAsysBNHyAuzUiYjIRuzUiYgEw06diMhJcKhb\nib2e/ETLCzCzEkTLC7BTJyIiG8naqTc0NGDatGlobGxES0sLEhMTsXHjxh8WZ6dORGQ1c7NT9hdK\n6+vr0adPH7S0tGDy5MnIyMjAxIkTuwxGREQdU/WF0j59+gAAmpqa0NzcDBcXsRsf9nryEy0vwMxK\nEC0v4KCdemtrKyIjI+Ht7Y1Zs2Zh/Pjxci9JROS0FLtO/e7du1iwYAF27dqFsLCw+4uzfiEispq5\n2emqVIj+/fsjNjYWR48eNQ11AFixYgUCAwMBAB4eHoiMjIRerwfww3+6cJvb3Oa2M28XFBQgKysL\nAEzzslOSjG7evCnV1NRIkiRJ9fX10pQpU6TDhw+bHpd5eVnk5+erHcFqomUWLa8kMbMSRMsrSfJl\nNjc7ZT1Tv3r1KpYvXw6j0YjW1lY888wziIuLk3NJIiKnxnu/EBEJhvd+ISJyEhzqVmp78UIkomUW\nLS/AzEoQLS/goNepExGRcizu1GtqalBVVYXevXsjMDDQLu8MZadORGS9bl+nfufOHbz//vvIzs5G\nY2MjvLy80NDQgGvXrmHSpElYs2YNYmNjZQlNRETWM3u6vXDhQvj5+eHUqVMoKSnBV199ha+//hoG\ngwEvv/wycnNz8cEHHyiVVRPY68lPtLwAMytBtLyAOpnNnqkfP368w/06nQ7R0dGIjo6WJRQREXWP\n1depl5aWIjs7Gzk5OSguLrZtcXbqRERWs/k69crKSrz77rsYP348wsPDYTQakZOTY9eQRERkO7ND\n/Xe/+x30ej30ej2qq6uRmZkJHx8fbNy4EREREUpl1BT2evITLS/AzEoQLS+gwU79+eefx6RJk7B3\n717eB52ISABmO/Vbt25h//79yMnJwdWrV7Fo0SJkZWWhoqLCPouzUycisppdPqPUYDBg3759yM7O\nxnfffYf4+Hikp6fLFoyIiDpmlxt6+fv74+c//znOnTuHgwcPolevXnYLKBL2evITLS/AzEoQLS+g\nwU69TUtLCw4fPozy8nIYjUZIkoS+ffvKnY2IiKxkUf3yox/9CL1790ZERES7e75s2LDBtsVZvxAR\nWc3mzyitrKxEUVGRXUMREZH9WdSpz549G3/+85/lziIE9nryEy0vwMxKEC0voOFOfdKkSYiPj4fR\naISbmxuA+6f/9+7dkzUcERFZx6JOPTAwEAcPHkR4eLhd7qNuWpydOhGR1Wy+pDEgIABhYWF2HehE\nRGR/Fk3poKAgxMbGYtOmTdi2bRu2bduGd999V+5smsReT36i5QWYWQmi5QU03KkHBQUhKCgITU1N\naGpqkjsTERF1k9X3U7fr4uzUiYis1u1OfeXKlbh06VKHj9XV1SEzMxMff/yx7QmJiMguzA71tWvX\n4s0338SoUaOQmJiI1atXIyUlBVOmTEFMTAxqa2uxcOFCpbJqAns9+YmWF2BmJYiWF9Bgpx4VFYX9\n+/ejtrYWX3/9Na5evYo+ffogJCQETzzxhFIZiYjIQmY79Rs3buDmzZsICwtrt7+4uBheXl7w9PS0\nbXF26kREVut2p75u3TrcunXrkf3V1dVYv369fdIREZHdmB3qpaWlmDZt2iP7p06dim+++Ua2UFrG\nXk9+ouUFmFkJouUF1MlsdqjX1tZ2+lhzc7PdwxARkW3MdupxcXFYu3Ytnn766Xb78/LysGvXLhw5\ncsS2xdmpExFZrdufUVpSUoI5c+YgJiYG48aNgyRJOHfuHM6cOYNDhw7ZfAUMhzoRkfW6/UJpcHAw\nioqKMHXqVJSVleHKlSuYNm0aioqKnPaSRvZ68hMtL8DMShAtL6DB69QBoFevXkhNTVUiCxER2chs\n/dKvXz/odLqOv9EOH5LB+oWIyHrd7tRtZTAYsGzZMty4cQM6nQ6rVq3CT3/6U4uCERFRx2z+kIzu\ncnNzw/bt21FcXIzCwkK89957uHz5spxLyo69nvxEywswsxJEywto8Dp1Ww0ZMgSRkZEA7lc5ISEh\nqKqqknNJIiKnptj91MvLyzFt2jQUFxejX79+9xdn/UJEZDXV6pc2dXV1SExMREZGhmmgt0lIAPbt\nA+rqlEhCROTYLPo4O1s0NzcjISEBS5Yswfz58x95/Nq1FXjttUAsWwY88YQH5s+PxEsv6dGv3w99\nlF6vB6CN7YsXLyItLU0zeSzZbtunlTyOlvfBrFrJY8n2jh07EBkZqZk8jpa3wI7zoqCgAFlZWQCA\nwMBAmCXJqLW1VVq6dKmUlpbW4eMPLl9dLUmZmZI0e7YkubtLUny8JOXkSFJtrZwJrZefn692BKuJ\nllm0vJLEzEoQLa8kyZfZ3OiWtVP/6quvMHXqVIwePdp0vfumTZswe/ZsAJ33QrdvA59/DuzfD5w5\nAzz5JLBoEfD008BD7Q0RkdNR7Tr1rljyQikHPBFRe6q/UGqLgQOB1FTgyBGgrOz+MM/KAoYOVedF\n1ge7U1GIllm0vAAzK0G0vIADXqdub1ob8EREWqP5+sUSrGiIyJkI3albiwOeiByd0J26teSuaNjr\nyU+0vAAzK0G0vAA7dbtjB09Ezsbh6hdLsKIhIpE5VaduLQ54IhKNU3Xq1rK2omGvJz/R8gLMrATR\n8gLs1FVnyYD//nu1UxIRdc7p6xdLsKIhIi1hp25HHPBEpDZ26nZUVFQg3GWSonWRouUFmFkJouUF\n2KkLh9fBE5HWsH6RASsaIpITO3UVccATkb2xU7cjazsyLVQ0onWRouUFmFkJouUF2Kk7PC0MeCJy\nbKxfNIAVDRFZg526QDjgiagr7NTtSO6OTI6KRrQuUrS8ADMrQbS8ADt1egg7eCKyFusXAbGiIXJu\n7NQdGAc8kfNhp25HWuv1LKlojhwpUDumVbR2jC3BzPITLS/ATp1s1NmAT0xkB0/kLFi/OAFWNESO\nhZ06mXDAE4mPnbodid7riXCZpOjHWBSiZRYtL8BOnRQmwoAnIuuwfqFHsKIh0jZ26tRtHPBE2sNO\n3Y6crddTo6JxtmOsFtEyi5YXYKdOGscOnkj7WL+QzVjRECmLnTophgOeSH6qdeqpqanw9vZGRESE\nnMsoir2eefaoaHiMlSFaZtHyAg7YqaekpODo0aNyLkEaxg6eSHmy1y/l5eWYO3cuLl269OjirF+c\nEisaItvwkkbSFJ7BE8nHVe0AK1asQGBgIADAw8MDkZGR0Ov1AH7oo7S0ffHiRaSlpWkmjyXbbfu0\nkufh7dRUPVJTgYMHC/DVV8C2bcCqVXqMGVMAvR546SU9+vXTTt6Oth8+1mrnsWR7x44dmv99Ezmv\nPedFQUEBsrKyAMA0LzslyaysrEwKDw/v8DEFlre7/Px8tSNYTbTM+fn5UnW1JGVmStLs2ZLk7i5J\n8fGSlJMjSbW1aqfrmGjHWJLEyyxaXkmSL7O52clOnTSPHTxRe6p16snJyYiJiUFJSQn8/f3x4Ycf\nyrkcOSh28ESWk3WoZ2dno6qqCo2NjTAYDEhJSZFzOUU82J2KQrTM5vJqdcCLdowB8TKLlhdwwOvU\nieSk1QFPpCbeJoAcDjt4cnS89ws5LQ54ckR885EdsdeTnz3zKlXRiHaMAfEyi5YXYKdOJCt28OQM\nWL+Q02NFQ6Jhp05kIQ54EgE7dTtiryc/NfN2t6IR7RgD4mUWLS/ATp1IU9jBk4hYvxBZiRUNqY2d\nOpFMOOBJDezU7Yi9nvxEyttW0bz8coFwFY1IxxkQLy/ATp1IaOzgSQtYvxDJjBUN2Rs7dSKN4IAn\ne2Cnbkfs9eQnWl7A8sxaqmhEO86i5QXYqRM5FS0NeHIcrF+INIYVDXWFnTqRoDjgqSPs1O2IvZ78\nRMsLyJdZzopGtOMsWl6AnToRmcEOnizB+oVIcKxonA87dSInwQHvHNip2xF7PfmJlhfQTmZrKhqt\nZLaUaHkBdupEZEddDfgvv2QH74hYvxA5GVY04mOnTkQd4oAXEzt1O2KvJz/R8gLiZhbpMklRj7HS\nONSJCACvg3cUrF+IyCxWNNrDTp2I7IIDXhvYqdsRez35iZYXcJ7MalY0znKMbcWhTkTdwg5em1i/\nEJFdsaKRHzt1IlIFB7w8VOvUjx49ilGjRmHkyJHYvHmznEsphr2e/ETLCzBzZ+xZ0fAYW0a2oW40\nGvH888/j6NGj+Oc//4ns7GxcvnxZruUUc/HiRbUjWE20zKLlBZjZErYOeB5jy8g21M+ePYsRI0Yg\nMDAQbm5uSEpKQm5urlzLKebOnTtqR7CaaJlFywsws7W6M+B5jC0j21CvrKyEv7+/advPzw+VlZVy\nLUdEguJVNPYl21DX6XRyPbWqysvL1Y5gNdEyi5YXYGZ7MTfgP/mkXO14VlPjGMt29UthYSE2btyI\no0ePAgA2bdoEFxcXvPzyyz8s7qCDn4hIbopf0tjS0oInnngCJ0+ehK+vLyZMmIDs7GyEhITIsRwR\nEQFwle2JXV3x61//Gk899RSMRiOeffZZDnQiIpmp+uYjIiKyL9Xu/SLaG5MMBgNiY2MRFhaG8PBw\n7Ny5U+1IFjEajYiKisLcuXPVjmKRO3fuIDExESEhIQgNDUVhYaHakbq0fft2hIeHIyIiAosXL0Zj\nY6PakdpJTU2Ft7c3IiIiTPtu376NmTNnIjg4GLNmzdLc5YIdZf7FL36BkJAQjBkzBvHx8bh7966K\nCdvrKG+bbdu2wcXFBbdv31YkiypDXcQ3Jrm5uWH79u0oLi5GYWEh3nvvPc1nBoCMjAyEhoYK86L0\n+vXrERcXh8uXL6OoqEjzlV1lZSV27dqFc+fO4dKlSzAajcjJyVE7VjspKSmmCxbavP3225g5cyZK\nSkowY8YMvP322yql61hHmWfNmoXi4mJ88803CA4OxqZNm1RK96iO8gL3TwaPHz+OYcOGKZZFlaEu\n4huThgwZgsjISABAv379EBISgqqqKpVTmVdRUYG8vDysXLlSiHvs3L17F6dOnUJqaiqA+6/L9O/f\nX+VUXWtpaUF9fb3pf4cOHap2pHamTJmCAQMGtNt38OBBLF++HACwfPlyfP7552pE61RHmWfOnAkX\nl/sja+LEiaioqFAjWoc6ygsAL774It555x1Fs6gy1EV/Y1J5eTkuXLiAiRMnqh3FrBdeeAFbtmwx\n/SJoXVlZGTw9PZGSkoKxY8fiueeeQ319vdqxzBo6dCh+9rOfISAgAL6+vvDw8MCTTz6pdqwuXb9+\nHd7e3gAAb29vXL9+XeVE1tm9ezfi4uLUjmFWbm4u/Pz8MHr0aEXXVeW3XZQqoCN1dXVITExERkYG\n+mn4NnOHDh2Cl5cXoqKihDhLB+6f8Z4/fx5r1qzB+fPn0bdvX83VAg+rqanBwYMHUV5ejqqqKtTV\n1eGTTz5RO5ZVdDqdUL+Tb731Fnr27InFixerHaVT9fX1SE9Px69+9SvTPqV+D1UZ6kOHDoXBYDBt\nGwwG+Pn5qRHFKs3NzUhISMCSJUswf/58teOYdebMGRw8eBBBQUFITk7Gl19+iWXLlqkdyyw/Pz/4\n+flh/PjxAIDExEScP39e5VTmnThxAkFBQRg0aBBcXV0RHx+PM2fOqB2rS97e3rh27RoA4OrVq/Dy\n8lI5kWWysrKQl5en+T+c//nPf1BeXo4xY8YgKCgIFRUVGDduHG7cuCH72qoM9ejoaHz77bcoLy9H\nU1MT9u3bh3nz5qkRxWKSJOHZZ59FaGgo0tLS1I7TpfT0dBgMBpSVlSEnJwfTp0/Hnj171I5l1pAh\nQ+Dv74+SkhIA9wdmWFiYyqnMGzZsGAoLC/H9999DkiScOHECoaGhasfq0rx58/DRRx8BAD766CPN\nn6QA96+Y27JlC3Jzc9GrVy+145gVERGB69evo6ysDGVlZfDz88P58+eV+eMpqSQvL08KDg6Whg8f\nLqWnp6sVw2KnTp2SdDqdNGbMGCkyMlKKjIyUjhw5onYsixQUFEhz585VO4ZFLl68KEVHR0ujR4+W\nFixYIN25c0ftSF3asGGDNGrUKCk8PFxatmyZ1NTUpHakdpKSkiQfHx/Jzc1N8vPzk3bv3i1VV1dL\nM2bMkEaOHCnNnDlTqqmpUTtmOw9nzszMlEaMGCEFBASYfv9Wr16tdkyTtrw9e/Y0HeMHBQUFSdXV\n1Ypk4ZuPiIgciBiXRRARkUU41ImIHAiHOhGRA+FQJyJyIBzqREQOhEOdiMiBcKgTETkQDnVySNOn\nT8exY8fa7duxYwfWrFmDkpISxMXFITg4GOPGjcMzzzyDGzduoKCgAP3790dUVJTp38mTJwEA33//\nPfR6PVpbW/H444+b3vXaJi0tDe+88w7+8Y9/ICUlRbGfk+hhHOrkkJKTkx+5r/m+ffuQnJyMOXPm\nYO3atSgpKcG5c+ewZs0a3Lx5EzqdDlOnTsWFCxdM/2bMmAHg/l0BExIS4OLi8shzt7a24rPPPkNy\ncjLCw8NRUVHR7t5GREriUCeHlJCQgMOHD6OlpQUATHdR/PbbbxETE4Onn37a9LXTpk1DWFiY2bvo\n7d27Fz/+8Y8B3P+DsW/fPtNjf/3rXzFs2DDT7aTnzp2ruQ/KIOfBoU4OaeDAgZgwYQLy8vIAADk5\nOVi0aBGKi4sxduzYTr/v1KlT7eqXsrIyNDU14b///S8CAgIAAOHh4XBxcUFRUZHpuR+8DWx0dDRO\nnTol409H1DkOdXJYD9Yk+/bts+j+21OmTGlXvwQFBeHWrVvw8PDo8LmNRiNyc3OxcOFC02Oenp6a\n/1Qsclwc6uSw5s2bh5MnT+LChQuor69HVFQUwsLCcO7cOauep3fv3mhoaGi3LykpCZ9++ilOnDiB\n0aNHw9PT0/RYQ0MDevfubZefgchaHOrksPr164fY2FikpKSYztIXL16MM2fOmGoZ4H4nXlxc3Onz\nDBgwAEajEU1NTaZ9jz/+OAYPHoxXXnnlkf8CKCkpQXh4uJ1/GiLLcKiTQ0tOTsalS5eQnJwMAOjV\nqxcOHTqEXbt2ITg4GGFhYfjtb38LT09P6HS6Rzr1AwcOALj/SfYP9+TJycn497//jfj4+Hb78/Pz\nMWfOHGV+QKKH8H7qRBa4cOECtm/f3uWnRzU2NkKv1+P06dPCfOA3ORb+v47IAlFRUYiNjUVra6vZ\nrzMYDNi8eTMHOqmGZ+pERA6EpxNERA6EQ52IyIFwqBMRORAOdSIiB8KhTkTkQP4PTEiMVfQcO/gA\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f8947e0f0d0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point: IC=1mA and VCE=6V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.24 : Page number 168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "RC=4.0; #Collector load, k\u03a9\n",
+ "IC_Q=1.0; #Quiescent current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "VCC=10; #Collector supply voltage, V\n",
+ "VCE=VCC-IC*RC; #Collector emitter voltage, V\n",
+ "\n",
+ "print(\"(i) Operating point: VCE=%dV and IC=%dmA.\"%(VCE,IC) );\n",
+ "\n",
+ "#(ii)\n",
+ "RC=5.0; #Collector load, k\u03a9\n",
+ "VCE=VCC-IC*RC; #Collector emitter voltage, V\n",
+ "print(\"(ii) Operating point: VCE=%dV and IC=%dmA.\"%(VCE,IC) );\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Operating point: VCE=6V and IC=1mA.\n",
+ "(ii) Operating point: VCE=5V and IC=1mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 8.25 : Page number 168-169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage, V\n",
+ "VBB=10.0; #Base supply voltage, V\n",
+ "RC=330.0; #Collector resistor, \u03a9\n",
+ "RB=47.0; #Base resistoe, k\u03a9\n",
+ "beta=200.0; #Base current amplification factor\n",
+ "VBE=0.7; #Base -emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#VBB-IB*RB-VBE=0\n",
+ "IB=round(((VBB-VBE)/RB)*1000,0); #Base current, \u03bcA\n",
+ "IC=beta*IB/1000; #Collector current, mA\n",
+ "VCE=VCC-IC*(RC/1000); #Collector-emitter voltage, V\n",
+ "\n",
+ "print(\"Operating point: IC=%.1fmA and VCE=%.2fV.\"%(IC,VCE));\n",
+ "\n",
+ "#For d.c load line\n",
+ "#VCE=VCC-IC*RC\n",
+ "#For calculating VCE, IC=0\n",
+ "IC=0; #Collector current for maximum Collector-emitter voltage, mA\n",
+ "VCE_max=VCC-IC*RC; #Maximum collector-emitter voltage, V\n",
+ "\n",
+ "#For calculating VCE, IC=0\n",
+ "VCE=0; #Collector emitter voltage for maximum collector current, V\n",
+ "IC_max=(VCC-VCE)/(RC/1000.0); #Maximum collector current, mA\n",
+ "\n",
+ "\n",
+ "#Plotting of d.c load line\n",
+ "VCE_plot=[0,VCE_max]; #Plotting variable for VCE\n",
+ "IC_plot=[IC_max,0]; #Plotting variable for IC\n",
+ "p=plot(VCE_plot,IC_plot);\n",
+ "limit = plt.gca()\n",
+ "limit.set_xlim([0,25])\n",
+ "limit.set_ylim([0,65])\n",
+ "xlabel('VCE(V)');\n",
+ "ylabel('IC(mA)');\n",
+ "title('d.c load line');\n",
+ "plt.grid();\n",
+ "show(p);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point: IC=39.6mA and VCE=6.93V.\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVPW6x/HPIJaaF8QLaKiYShqoYHjNC6hQmZmKolRu\nNK19Mit3e2+lm1l7Z1haafddJnbxujWlvJTanjLNNNNjmUaexFCRVKC8ZCjM+WNtmVAhGBnWzKzv\n+/Xydc6aYWYentaeh/X8fuv3szkcDgciImJJfmYHICIi5lEREBGxMBUBERELUxEQEbEwFQEREQtT\nERARsTAVAfFKo0eP5tFHH72k98jMzMTPz4+ioqJKisopJiaGOXPmXPS5qVOnMmrUKAB+/PFH6tSp\ng2Zqi1n8zQ5AxBU2mw2bzWZ2GKUqK77fP968eXOOHz9eVWGJXEBXAuK1vPWvZ2+NW3yTioB4he3b\nt9OpUyfq1q3LyJEjOX36dKk/W1RUxLRp02jdujV169YlOjqaAwcO/OFnHDp0iEGDBtGgQQPatGnD\nG2+8Ufzcli1b6N69O/Xr16dp06bce++9nDlzpvj5tWvX0rZtWwICArj33ntxOBzl+rI/vyUVExPD\nlClT6NmzJ3Xr1uX666/n2LFjxT+/efNmevToQf369YmMjOSTTz75w88QKYuKgHi8goICBg8eTHJy\nMnl5eQwfPpylS5eW2m6ZOXMmCxcuZPXq1fzyyy/MnTuXWrVq/eHnjBw5kubNm5Odnc2///1vHnro\nIf7zn/8A4O/vz6xZszh27Biff/4569ev5+WXXwbg6NGjJCQkMG3aNI4dO0arVq3YuHGjy+2qBQsW\nkJaWxk8//URBQQEzZswA4ODBgwwcOJApU6aQl5fHjBkzSEhI4OjRoy59jgioCIgX2Lx5M2fPnuX+\n+++nWrVqJCQk0Llz51J/fs6cOTz55JO0adMGgPbt2xMYGFjmZ2RlZbFp0yamT5/OZZddRseOHRk3\nbhxvvfUWAJ06daJLly74+fnRokUL7rrrruK/wletWkVERARDhw6lWrVqTJw4keDgYJd+V5vNxpgx\nY2jdujU1atQgMTGRHTt2APDOO+8wYMAAbrjhBgD69+9PdHQ0q1atcumzREBFQLzAoUOHuPLKK0s8\n1qJFi1LbLVlZWbRq1arCnxEYGMgVV1xR/Fjz5s05ePAgABkZGQwcOJAmTZpQr149Hn744eI2zaFD\nhwgJCSnxfs2aNavQ5//e7wtIzZo1OXHiBAD79+9nyZIl1K9fv/jfxo0bOXz4sMufJaIiIB6vSZMm\nxV/G5+zfv7/UdkuzZs3Yu3dvhT6jadOm5ObmFn/hgjF989yX+913380111zD3r17+fnnn3nyySeL\n+/hNmzYlKyur+HUOh6PE8flcbRM1b96cUaNGkZeXV/zv+PHjTJo0yaX3EwEVAfECPXr0wN/fn9mz\nZ3PmzBmWLVvG1q1bS/35cePG8eijj7J3714cDgc7d+4kNze3zM9o1qwZPXr04MEHH+S3335j586d\nvPnmm9x+++0AnDhxgjp16lCrVi327NnDK6+8UvzaAQMGsGvXLt577z3Onj3L7Nmzy/zr/I8GjEt7\n/vbbb+f999/no48+orCwkNOnT2O32y8okCIVoSIgHq969eosW7aMtLQ0GjRowOLFi0lISCh+/twN\nV+dmAD3wwAMkJiYSHx9PvXr1uPPOO0udTfT7v8oXLFhAZmYmTZs2ZejQoTzxxBP07dsXgBkzZjB/\n/nzq1q3LXXfdxciRI4tf27BhQ5YsWUJKSgoNGzZk79699OzZs9Tf5/x7CM6/Mjj/uXPHISEhrFix\ngmnTptG4cWOaN2/OzJkz3XKzm1iHTZvKiIhYl64EREQsTEVARMTCVARERCxMRUBExMI8dhVRT14h\nUkTEk1Vkvo9HXwmcW4TL6v8ee+wx02PwlH/KhXKhXJT9r6I8ugiIITMz0+wQPIZy4aRcOCkXrlMR\nEBGxMBUBLzB69GizQ/AYyoWTcuGkXLjOY+8YttlsLvW3RESsrKLfnboS8AJ2u93sEDyGcuGkXDgp\nF65TERARsTC1g0REfIjaQSIiUm4qAl5A/U4n5cJJuXBSLlynIiAiYmFuHxPIz89n3Lhx7Nq1C5vN\nxty5c2nTpg0jRoxg//79hIaGsnjxYgICAkoGpjEBEZEK87gxgfvvv58BAwawe/dudu7cSdu2bUlN\nTSUuLo6MjAz69etHamqqu8MQEZGLcGsR+Pnnn9mwYQN33HEHAP7+/tSrV4/09HSSk5MBSE5OZvny\n5e4Mw+up3+mkXDgpF07KhevcWgT27dtHo0aNGDNmDJ06deLOO+/k5MmT5OTkEBQUBEBQUBA5OTkX\nff2f/wyl7A8uIiKVwK1jAl9++SXdu3dn06ZNdO7cmYkTJ1KnTh1efPFF8vLyin8uMDCQ3NzckoHZ\nbCQkONi/H/79b2jRwl1Rioj4joqOCbh1U5mQkBBCQkLo3LkzAMOGDeOpp54iODiYw4cPExwcTHZ2\nNo0bN77o66+4YjT164cSHg633RZAUlIkMTExgPPyT8c61rGOrXxst9tJS0sDIDQ0lIpy++yg3r17\n88YbbxAWFsbUqVM5deoUAA0aNGDy5MmkpqaSn59/weDw76vZp59CUhL8z//Aww+Dn8Umttrt9uL/\n+FanXDgpF07KhZNHXQkAvPDCC9x2220UFBTQqlUr5s6dS2FhIYmJicyZM6d4imhZeveGrVthxAjY\nvBnefhsCA90duYiI7/OqtYPOnIHJk2H5cli6FKKiTApORMRDedx9ApWpenV49llITYX4eHjzTbMj\nEhHxbl5VBM5JTDTGCZ55Bu680/enkZ4bBBLl4veUCyflwnVeWQQA2rWDLVvg55+hZ0/QPtMiIhXn\nVWMCF+NwwPPPGy2iefPghhuqIDgREQ9V0TEBry8C52zYACNHwl13waOPWm8aqYgI+PjAcFl69YIv\nv4T16+Gmm+C8G5C9mvqdTsqFk3LhpFy4zmeKAECTJkYRCA+Ha6+FbdvMjkhExLP5TDvofP/+N9x9\nNzz1FIwbV4mBiYh4MMuOCVzMnj0wdCh07w4vvgg1a1ZScCIiHsqyYwIX07atMY305Em47jrYt8/s\niFyjfqeTcuGkXDgpF67z6SIAULs2LFgAycnQrRusWmV2RCIinsOn20Hn++wzYxrp2LEwZQpUq1ap\nby8iYjqNCfyBw4eNQlCjBrz7LjRoUOkfISJiGo0J/IHgYFi3Dtq3h+ho494CT6d+p5Ny4aRcOCkX\nrrNcEQDw9zcWn5sxA268EV5/3Vh+QkTEaizXDjrfd98Z00i7doWXXtI0UhHxbmoHVdDVV8MXXxjL\nUffoAT/8YHZEIiJVx/JFAIxppO++C3fcYdxY9sEHZkdUkvqdTsqFk3LhpFy4TkXgv2w2uPdeeO89\nY7mJRx+FwkKzoxIRcS/LjwlcTE6OMY30ssuMK4SGDU0JQ0SkwjQmUAmCgmDtWoiMNFYj3brV7IhE\nRNxDRaAU/v4wfbqxa9lNN8Frr5k3jVT9Tiflwkm5cFIuXKci8AeGDDGWm3jxRRgzBk6dMjsiEZHK\nozGBcjp50ti6ctcuWLoUWrUyOyIRkQtpTMBNrrgC3nkH7rzTmEb6/vtmRyQiculUBCrAZoN77oEV\nK4z/+/DDVTONVP1OJ+XCSblwUi5c5/YiEBoaSocOHYiKiqJLly4A5ObmEhcXR1hYGPHx8eTn57s7\njErVvbux8NzmzXDDDXDkiNkRiYi4xu1jAi1btmTbtm0EBgYWPzZp0iQaNmzIpEmTmD59Onl5eaSm\nppYMzMPGBC7m7FnjprL582HxYmP9IRERM3nkmMD5AaWnp5OcnAxAcnIyy5cvr4owKp2/v7GR/ezZ\ncPPN8MorWo1URLyL24uAzWajf//+REdH8/rrrwOQk5NDUFAQAEFBQeTk5Lg7DLe65RbYuNEoAsnJ\nlT+NVP1OJ+XCSblwUi5c5+/uD9i4cSNNmjThyJEjxMXF0bZt2xLP22w2bDbbRV87evRoQkNDAQgI\nCCAyMpKYmBjA+R/dU44PHrQzfTrMnx9D9+4waZKdK6/0nPh85fgcT4nHzOMdO3Z4VDxmHu/YscOj\n4qnKY7vdTlpaGkDx92VFVOl9Ao8//ji1a9fm9ddfx263ExwcTHZ2NrGxsezZs6dkYF4wJnAxDodx\nRTB1KrzxBgwaZHZEImIlHjUmcOrUKY4fPw7AyZMn+eijj2jfvj2DBg1i3rx5AMybN4/Bgwe7M4wq\nZbPB+PGQng4TJsBDDxkDyCIinsitRSAnJ4devXoRGRlJ165dGThwIPHx8aSkpLB27VrCwsL4+OOP\nSUlJcWcYpujWDbZtgy1b4Prr4aefXH+v81shVqZcOCkXTsqF69w6JtCyZcviXt3vBQYGsm7dOnd+\ntEdo1Ag+/BCmTDE2tV+82CgOIiKeQmsHVZH0dBg3Dh57zGgXlTIWLiJySSr63akiUIX27oWEBOjQ\nAV591ViPSESkMnnUwLCU1Lo1fP45+PkZbaHvvy/f69TvdFIunJQLJ+XCdSoCVaxWLUhLMxagu+46\n8NKbpUXER6gdZKItW2D4cEhKgn/+01iGQkTkUmhMwMscPQq33mrcS7BggbG/sYiIqzQm4GUaNoTV\nq43WUHS0MWZwPvU7nZQLJ+XCSblwnYqAB6hWDf7xD2O5icGD4YUXtBqpiFQNtYM8zA8/wNChcM01\n8PrrmkYqIhWjdpCXu+oqoyV0+eXGJjUZGWZHJCK+TEXAA9WsCW++CffdBz17whNP2M0OyWOo9+uk\nXDgpF67TpEQPZbPBXXdBVJSxa9mJEzBtmqaRikjl0piAFzh6FG67DQoKYOFCTSMVkdJpTMAHNWwI\nq1ZBr17GNNJNm8yOSER8hYqAF7Db7VSrBk88YSw8N2SIsbm9FS+U1Pt1Ui6clAvXqQh4mZtuMmYP\nzZ1r3Gl84oTZEYmIN9OYgJf69VdjEbovvoClS6FtW7MjEhFPoDEBizg3jfQvfzHGCpYuNTsiEfFG\nKgJeoKx+57hxxtpDf/ub8c/XN7VX79dJuXBSLlynIuADoqPhyy9h1y7o1w8OHzY7IhHxFhoT8CGF\nhcZCdG+8YdxP0LOn2RGJSFXTfgLC6tUwejQ8+CDcf782tRexEg0M+6CK9jtvvBE2b4a334aRI+H4\ncffEZQb1fp2UCyflwnUqAj6qZUvYuBHq1DFWI9292+yIRMQTqR1kAXPmQEoKvPyysaexiPguj2sH\nFRYWEhUVxc033wxAbm4ucXFxhIWFER8fT35+vrtDsLyxY+HDD2HyZHjgAThzxuyIRMRTuL0IzJo1\ni2uuuQbbf0cnU1NTiYuLIyMjg379+pGamuruELxeZfQ7O3UyppF+950xjTQ7+9LjMoN6v07KhZNy\n4Tq3FoEDBw6watUqxo0bV3x5kp6eTnJyMgDJycksX77cnSHI7wQGwvvvQ//+xr0FGzaYHZGImM2t\nYwLDhw/noYce4pdffmHGjBm8//771K9fn7y8PAAcDgeBgYHFxyUC05iAW61ZA8nJRovoL3/RNFIR\nX1HR70637VP1wQcf0LhxY6Kiokq9VLPZbMVtoosZPXo0oaGhAAQEBBAZGUlMTAzgvPzTsWvHNWrY\nmTULZsyI4fPPYcwYO7VqeU58Otaxjst3bLfbSUtLAyj+vqwIt10JPPTQQ7z99tv4+/tz+vRpfvnl\nF4YOHcrWrVux2+0EBweTnZ1NbGwse/bsuTAwXQkUs9vtxf/xK9vp08Zexhs2wLJl0K6dWz6m0rgz\nF95GuXBSLpw8ZnbQtGnTyMrKYt++fSxcuJC+ffvy9ttvM2jQIObNmwfAvHnzGDx4sLtCkHKoUQP+\n9S+YNAl694bFi82OSESqUpXcJ/DJJ58wc+ZM0tPTyc3NJTExkR9//JHQ0FAWL15MQEDAhYHpSqDK\nbd8OCQlwyy3w9NNQvbrZEYlIRWntILkkeXkwahTk5xtXBU2bmh2RiFSEx7SDpPKcGwSqCvXrQ3o6\n3HCDMY30k0+q7KPLpSpz4emUCyflwnUqAnIBPz945BFIS4MRI2DGDGtuai9iBWoHSZn274dhw6BF\nC2M7y7p1zY5IRMqidpBUqhYt4LPPoGFD6NLF2L1MRHyHioAXMLvfefnl8OqrxiY1MTHGrmVmMTsX\nnkS5cFIuXKciIOWWnAxr18LDDxs7lhUUmB2RiFyqco8J5OXlcejQIWrWrEloaCh+fu6tHxoT8Fx5\nefCnP0FurjGN9MorzY5IRM6p1PsE8vPzefnll1mwYAG//fYbjRs35vTp0xw+fJju3bszfvx4YmNj\nKyXwCwJTEfBoRUWQmgovvgjvvgtuOg1EpIIqdWB4+PDhhISEsGHDBjIyMvjss8/48ssvycrKYvLk\nyaxYsYI33njjkoOWsnliv9PPDx56CN56C5KSjDuMq6Jme2IuzKJcOCkXritzFdG1a9de9HGbzUZ0\ndDTR0dFuCUq8R//+sGWLsW3l5s0wdy7Uq2d2VCJSXhW+T2Dv3r0sWLCAhQsXssuN8wXVDvIuv/1m\n7Euwbp2xGmlEhNkRiViTW+4TOHjwIM8++yydO3cmIiKCwsJCFpo5T1A8zuWXGxvZP/qoMT4wf77Z\nEYlIeZRZBF577TViYmKIiYnh2LFjzJkzhyZNmjB16lTat29fVTFanjf1O0eNMq4GpkyBe++t/Gmk\n3pQLd1MunJQL15VZBCZMmEBRURHz58/nySefpEOHDlUVl3ixjh2NTe1//NG4uezAAbMjEpHSlDkm\ncPToUZYsWcLChQvJzs4mMTGRtLQ0DlTB/6o1JuD9iopg+nSYPduYRtq3r9kRifg+t+0nkJWVxaJF\ni1iwYAEnT55k6NChTJs2zeVA/zAwFQGfsX493H47TJxo7GCmTe1F3MdtC8g1a9aMv/3tb2zbto30\n9HRq1KjhUoBScd7e7+zXz5hG+t57MHQo/Pyz6+/l7bmoTMqFk3LhujLvEzjn7NmzrFy5kszMTAoL\nC3E4HFxxxRXujk18SLNmxgY1DzxgbFazbBloboGI+crVDrrxxhupWbMm7du3L7Fm0GOPPea+wNQO\n8lnvvGPcU/Dcc0abSEQqj1vGBDp06MDOnTsvKbCKUhHwbV9/bbSG4uONYnDZZWZHJOIb3DImcMMN\nN/Dhhx+6HJRcGl/sd7Zvb0wjPXQIeveGrKzyvc4Xc+Eq5cJJuXBduYpA9+7dGTp0KDVq1KBOnTrU\nqVOHutpnUC5RvXrG2MCQIcauZevXmx2RiPWUqx0UGhpKeno6ERERbt9H4By1g6zl44/httvgvvtg\n8mRjlVIRqTi3tIOaN29OeHh4lRUAsZ6+fWHrVkhPN64M8vPNjkjEGsr1rd6yZUtiY2N56qmnmDlz\nJjNnzuTZZ591d2zyX1bpd4aEGNNIW7SAzp3hYnMRrJKL8lAunJQL15W7CPTt25eCggJOnDjBiRMn\nOH78eJmvOX36NF27diUyMpKIiAimTp0KQG5uLnFxcYSFhREfH0++/uST37nsMmOZiccfN24ye+st\nsyMS8W0V3k+gIk6dOkWtWrU4e/YsPXv2ZNasWSxdupSGDRsyadIkpk+fTl5eHqmpqRcGpjEBy/vm\nG0hIMFpFzz9vLFctImWr1DGBcePG8fXXX1/0uRMnTjBnzhzeeeedUl9fq1YtAAoKCjhz5gw2m430\n9HSSk5MBSE5OZvny5eUOVqwlIsIYJ8jJMaaR/vij2RGJ+J4yi8A999zDE088Qdu2bRk2bBh33303\nY8aMoVevXvTo0YPjx48zfPjwUl9fVFREZGQkQUFBxMfH06VLF3JycggKCgIgKCiInJycyv2NfJCV\n+51168LSpTBsmDGNdMYMu9kheQwrnxfnUy5cV+baQVFRUSxZsoTjx4/z5Zdfkp2dTa1atWjXrh1X\nX331H765n58fO3bs4Oeff2bIkCF88803JZ632WzYtKSk/AGbDf7+d2OwOCHB2MrywQc1jVSkMpRZ\nBH766SeOHDlCeHg4sbGxxY/v2rWLI0eO0KhRo3J9SL169YiNjeXDDz8kKCiIw4cPExwcTHZ2No0b\nNy71daNHjyY0NBSAgIAAIiMjiYmJAZyV3wrHMTExHhWPmcc7d8aQmAgrV9p58EG4+WbPiq+qj8/x\nlHjMOj73mKfEU5XHdrudtLQ0gOLvy4ooc2B4xIgRjB8/nj59+pR4/NNPP+XVV19lfhkbyR49ehR/\nf38CAgL49ddfuf7660lJScFut9OgQQMmT55Mamoq+fn5GhiWCikoMK4MPvjAaBVFRpodkYjnqNSB\n4b17915QAAB69+7N//7v/5b5xtnZ2fTt25eOHTvSpUsX4uPjGTBgACkpKaxdu5awsDA+/vhjUlJS\nyh2sVZ3/V5+V2e12LrsMZs2Cf/4T4uJg3jyzozKHzgsn5cJ1ZbaDyroX4MyZM2W+cfv27fnqq68u\neDwwMJB169aVMzyR0iUlQYcOxmqkn39uFAZNIxWpmDKvBFq3bs3KlSsveHzVqlW0atXKbUFJSb/v\ne1rd+bkIDzemkR45Ar16WWsaqc4LJ+XCdWWOCWRkZDBw4EB69OjBtddei8PhYNu2bWzatIkPPvig\nXDOEXA5MYwJSAQ4HPPssPPOMcZdxfLzZEYmYo1LHBMLCwti5cye9e/dm37597N+/nz59+rBz5063\nFgApSf1Op9JyYbPBX/8KixbB6NHwj39AUVGVhlbldF44KReu+8M9hmvUqMEdd9xRFbGIXLI+fYzN\nahIT4Ysv4O23oX59s6MS8VxltoNq165d6s1cNpuNX375xX2BqR0kl+DMGZg0CVasMKaRRkWZHZFI\n1XDLHsNmUBGQyrBoEUyYAE8/DWPGmB2NiPu5ZVMZMZf6nU4VzcWIEcYeBU8/DXfdBadPuycuM+i8\ncFIuXKciID7vmmtgyxbIy4OePSEz0+yIRDyH2kFiGQ4HPPccTJ9u3GV8ww1mRyRS+TQmIPIHNmyA\nkSPhz3+GRx7RaqTiWzQm4IPU73SqjFz06mVMI123DgYOhNzcS4/LDDovnJQL16kIiCU1aQLr10O7\ndhAdDRdZ5krEEtQOEstbsgTGj4fUVBg71uxoRC6NxgREXLB7t7FrWY8e8OKLUKOG2RGJuEZjAj5I\n/U4nd+WiXTtjmYnjx+G662DfPrd8TKXSeeGkXLhORUDkv+rUgYULYdQo6NYNVq82OyIR91M7SOQi\nPvvMmEY6dixMmQLVqpkdkUj5aExApJIcPmwsO1GrFrzzDjRoYHZEIn9MYwI+SP1Op6rMRXCwcS9B\nRIQxjXTbtir76HLReeGkXLhORUCkDNWrG7uVPfOMsczEG2+YHZFI5VI7SKScvvvO2NS+WzdjGmnN\nmmZHJHIhtYNE3OTqq41ppKdOGdNIf/jB7IhELp2KgBdQv9PJ7FzUrg3z5xv7GHfvDitXmheL2bnw\nJMqF61QERCrIZoP77oNly4yVSKdMgcJCs6MScY3GBEQuQU6OcT/BZZfBu+9Cw4ZmRyRWpzEBkSoU\nFARr10LHjsY00q1bzY5IpGLcWgSysrKIjY0lPDyciIgIZs+eDUBubi5xcXGEhYURHx9Pfn6+O8Pw\neup3OnliLvz9jT2Mn30WbroJ/vUvYxczd/PEXJhFuXCdW4tA9erVee6559i1axebN2/mpZdeYvfu\n3aSmphIXF0dGRgb9+vUjNTXVnWGIVImhQ43lJmbPhjFj4NdfzY5I5I9V6ZjA4MGDmTBhAhMmTOCT\nTz4hKCiIw4cPExMTw549e0oGpjEB8VInT8Jdd8GuXbB0KbRqZXZEYiUeOyaQmZnJ9u3b6dq1Kzk5\nOQQFBQEQFBRETk5OVYUh4nZXXGGsNTRunDGN9IMPzI5IpHT+VfEhJ06cICEhgVmzZlGnTp0Sz9ls\nNmw220VfN3r0aEJDQwEICAggMjKSmJgYwNkDtMLx7/udnhCPmcfnHvOUeEo7/uQTOxERsGJFDImJ\nsGiRndGjoV+/yvu8HTt2MHHiRI/4fc0+fv755y39/ZCWlgZQ/H1ZEW5vB505c4aBAwdy4403Fp+w\nbdu2xW63ExwcTHZ2NrGxsWoHlcFutxf/x7c6b8zFTz8Z00j9/Y0bzSprGqk35sJdlAsnj1pK2uFw\nkJycTIMGDXjuueeKH580aRINGjRg8uTJpKamkp+ff8HgsIqA+JKzZ+GRR2DBAmNP4y5dzI5IfJVH\nFYHPPvuM3r1706FDh+KWz1NPPUWXLl1ITEzkxx9/JDQ0lMWLFxMQEFAyMBUB8UHLlxuDxk88Ydxt\nXEonVMRlHlUELoWKgJMudZ18IRfff29MJ+3UCV55xdi0xhW+kIvKolw4eezsIBExtGkDmzcb6w11\n7w5795odkViZrgRETOJwwMsvw+OPG5vVDBpkdkTiC9QOEvEymzdDYiKMGmWMFWhTe7kUagf5oN/P\nkbc6X8xFt27G/sWbN8P118ORI+V7nS/mwlXKhetUBEQ8QKNG8NFHxtTRa681djATqQpqB4l4mBUr\n4M47YepUuPtuTSOVitGYgIgP2LsXEhKgQwd47TXXp5GK9WhMwAep3+lklVy0bg2ff25cBXTrZtxb\ncD6r5KI8lAvXqQiIeKhatWDePKMldN11RptIpLKpHSTiBb74AoYPh1tvhX/+01iMTuRiNCYg4qOO\nHDGKQFGRsRBd48ZmRySeSGMCPkj9Ticr56JRI1izxlhq4tpr4aWX7GaH5DGsfF5cKl1UiniRatWM\ndlDXrsYdxg4H3HOPppGK69QOEvFS//d/xjTS8HD417+MbS1F1A4SsYhWrWDTJqhe3ZhGmpFhdkTi\njVQEvID6nU7KhZPdbqdWLZg7FyZMgJ494b33zI7KHDovXKciIOLlbDZjl7KVK2HiRJg82djOUqQ8\nNCYg4kOOHjWmkZ45AwsXQlCQ2RFJVdOYgIiFNWwIq1cbraHoaGPMQKQsKgJeQP1OJ+XCqbRcVKsG\n//gHvPoqDBkCL7xgTCX1ZTovXKciIOKjbrrJWITuzTfhttvgxAmzIxJPpDEBER/366/GDWVbtsDS\npXD11WaDyftlAAAMZ0lEQVRHJO6kMQERKaFmTZgzB+6/3xgrWLrU7IjEk6gIeAH1O52UC6eK5MJm\nM3YrW70a/vpX+PvffWsaqc4L16kIiFhIdLSxqf3XX0P//nD4sNkRidncOiZwxx13sHLlSho3bszX\nX38NQG5uLiNGjGD//v2EhoayePFiAgICLgxMYwIiblNYCE88YbSJFi0yNq0R3+BRYwJjxoxhzZo1\nJR5LTU0lLi6OjIwM+vXrR2pqqjtDEJGLqFYNHn/cWHhu6FCYNcv3p5HKxbm1CPTq1Yv69euXeCw9\nPZ3k5GQAkpOTWb58uTtD8AnqdzopF06VkYsBA2DzZmMby6Qk751GqvPCdVU+JpCTk0PQf+9lDwoK\nIicnp6pDEJHfadnSuLO4dm3o0gX27DE7IqlKpm4qY7PZsJWxG8bo0aMJDQ0FICAggMjISGJiYgBn\n5bfCcUxMjEfFo2PPOT7nUt9v82Y7t98O3brF0KsXTJhgp08f83+/8h6fe8xT4qnKY7vdTlpaGkDx\n92VFuP1msczMTG6++ebigeG2bdtit9sJDg4mOzub2NhY9lzkTw8NDIuYY9s2GDbMGCtITTX2KxDv\n4VEDwxczaNAg5s2bB8C8efMYPHhwVYfgdc7/q8/KlAsnd+Xi2muNQvDtt9CvH2Rnu+VjKpXOC9e5\ntQgkJSXRo0cPvvvuO5o1a8bcuXNJSUlh7dq1hIWF8fHHH5OSkuLOEETEBYGBxv4E/foZ9xZs2GB2\nROIuWjtIRMq0Zg0kJ0NKirFpjTa192wV/e5UERCRP5SZaYwTXHWVcYNZnTpmRySl8fgxAak49Tud\nlAunqsxFaCh89hnUq2dMI929u8o+ulx0XrhORUBEyqVGDXj9dWPxud69YfFisyOSyqB2kIhU2Fdf\nGe2hW26Bp5/WNFJPonaQiLhdp07w5ZeQkQF9+3rHNFK5OBUBL6B+p5Ny4WR2LgID4f33IT7emEb6\n6afmxWJ2LryZioCIuMzPDx591NjHODERZs7UaqTeRmMCIlIp9u83xglCQ42ioGmk5tCYgIiYokUL\n487iwEDo3NlYdkI8n4qAF1C/00m5cPLEXNSoAa+9Ztxd3KePsWtZVfDEXHgLFQERqXSjR8PatfDQ\nQ8ZSEwUFZkckpdGYgIi4TV4e/OlPkJsLS5ZA06ZmR+T7NCYgIh6jfn1YsQJuvNGYRqqujedREfAC\n6nc6KRdO3pILPz945BFIS4ORI+GZZyp/Gqm35MITqQiISJWIj4ctW4y20LBh8MsvZkckoDEBEali\nv/1mDBZ//DEsWwbh4WZH5Fs0JiAiHu3yy+GVV+DhhyEmBhYsMDsia1MR8ALqdzopF07enos//QnW\nrTOWnbjvvkubRurtuTCTioCImKZjR2M10sxM46rgwAGzI7IejQmIiOmKiiA1FV54AebPh9hYsyPy\nXtpjWES81rp1cPvt8MADxg5m2tS+4jQw7IPU73RSLpx8MRf9+8PWrbB0KQwdCj//XL7X+WIuqoqK\ngIh4lGbNjA1qmjY1ViP9+muzI/JtageJiMd6+22jNfT883DbbWZH4x00JiAiPmXnTkhIgOuvh2ef\nhcsuMzsiz+Y1YwJr1qyhbdu2tGnThunTp5sVhldQv9NJuXCySi46dDDGCQ4cMPYouNg0Uqvkwh1M\nKQKFhYVMmDCBNWvW8O2337JgwQJ2795tRiheYceOHWaH4DGUCycr5SIgwFhi4pZbjHGCjz8u+byV\nclHZTCkCW7ZsoXXr1oSGhlK9enVGjhzJihUrzAjFK+Tn55sdgsdQLpyslgs/P2PHsnfeMcYHUlON\n+wvAermoTKYUgYMHD9KsWbPi45CQEA4ePGhGKCLiZfr1M9pDK1bAkCGg7/9LY0oRsOkOkArJzMw0\nOwSPoVw4WTkXISHwySfQvLnRHtq9O9PskLyWKbODNm/ezNSpU1mzZg0ATz31FH5+fkyePNkZmAqF\niIhLPH6K6NmzZ7n66qtZv349TZs2pUuXLixYsIB27dpVdSgiIpbmb8qH+vvz4osvcv3111NYWMjY\nsWNVAERETOCxN4uJiIj7edzaQbqJzCk0NJQOHToQFRVFly5dzA6nSt1xxx0EBQXRvn374sdyc3OJ\ni4sjLCyM+Ph4y0wLvFgupk6dSkhICFFRUURFRRWPr/m6rKwsYmNjCQ8PJyIigtmzZwPWPDdKy0WF\nzw2HBzl79qyjVatWjn379jkKCgocHTt2dHz77bdmh2Wa0NBQx7Fjx8wOwxSffvqp46uvvnJEREQU\nP/b3v//dMX36dIfD4XCkpqY6Jk+ebFZ4VepiuZg6dapj5syZJkZljuzsbMf27dsdDofDcfz4cUdY\nWJjj22+/teS5UVouKnpueNSVgG4iu5DDot26Xr16Ub9+/RKPpaenk5ycDEBycjLLly83I7Qqd7Fc\ngDXPjeDgYCIjIwGoXbs27dq14+DBg5Y8N0rLBVTs3PCoIqCbyEqy2Wz079+f6OhoXn/9dbPDMV1O\nTg5BQUEABAUFkZOTY3JE5nrhhRfo2LEjY8eOtUT743yZmZls376drl27Wv7cOJeLbt26ARU7Nzyq\nCOjegJI2btzI9u3bWb16NS+99BIbNmwwOySPYbPZLH2+3H333ezbt48dO3bQpEkT/vrXv5odUpU6\nceIECQkJzJo1izp16pR4zmrnxokTJxg2bBizZs2idu3aFT43PKoIXHnllWRlZRUfZ2VlERISYmJE\n5mrSpAkAjRo1YsiQIWzZssXkiMwVFBTE4cOHAcjOzqZx48YmR2Sexo0bF3/ZjRs3zlLnxpkzZ0hI\nSGDUqFEMHjwYsO65cS4Xt99+e3EuKnpueFQRiI6O5vvvvyczM5OCggIWLVrEoEGDzA7LFKdOneL4\n8eMAnDx5ko8++qjE7BArGjRoEPPmzQNg3rx5xSe9FWVnZxf//++9955lzg2Hw8HYsWO55pprmDhx\nYvHjVjw3SstFhc8NNwxaX5JVq1Y5wsLCHK1atXJMmzbN7HBM88MPPzg6duzo6NixoyM8PNxyuRg5\ncqSjSZMmjurVqztCQkIcb775puPYsWOOfv36Odq0aeOIi4tz5OXlmR1mlTg/F3PmzHGMGjXK0b59\ne0eHDh0ct9xyi+Pw4cNmh1klNmzY4LDZbI6OHTs6IiMjHZGRkY7Vq1db8ty4WC5WrVpV4XNDN4uJ\niFiYR7WDRESkaqkIiIhYmIqAiIiFqQiIiFiYioCIiIWpCIiIWJiKgIiIhakIiKX07duXjz76qMRj\nzz//POPHjycjI4MBAwYQFhbGtddey4gRI/jpp5+w2+3Uq1eveH32qKgo1q9fD8Cvv/5KTEwMRUVF\nXHXVVWRkZJR474kTJ/L000/zzTffMGbMmCr7PUXKS0VALCUpKYmFCxeWeGzRokUkJSUxcOBA7rnn\nHjIyMti2bRvjx4/nyJEj2Gw2evfuzfbt24v/9evXD4A333yThIQE/Pz8LnjvoqIili5dSlJSEhER\nERw4cKDE2lginkBFQCwlISGBlStXcvbsWcBYgvfQoUN8//339OjRg5tuuqn4Z/v06UN4eHiZa7PP\nnz+fW265BTAKzKJFi4qf+/TTT2nRokXx8ug333zzBQVIxGwqAmIpgYGBdOnShVWrVgGwcOFCEhMT\n2bVrF506dSr1dRs2bCjRDtq3bx8FBQX88MMPNG/eHICIiAj8/PzYuXNn8Xvfeuutxe8RHR2t5cDF\n46gIiOX8vm2zaNGiEl/UpenVq1eJdlDLli05evQoAQEBF33vwsJCVqxYwfDhw4ufa9SoEYcOHarc\nX0bkEqkIiOUMGjSI9evXs337dk6dOkVUVBTh4eFs27atQu9Ts2ZNTp8+XeKxkSNHsnjxYtatW0eH\nDh1o1KhR8XOnT5+mZs2alfI7iFQWFQGxnNq1axMbG8uYMWOKrwJuvfVWNm3aVNwmAqOnv2vXrlLf\np379+hQWFlJQUFD82FVXXUXDhg1JSUm54AojIyODiIiISv5tRC6NioBYUlJSEl9//TVJSUkA1KhR\ngw8++IAXXniBsLAwwsPDefXVV2nUqBE2m+2CMYFly5YBEB8ff0GfPykpie+++46hQ4eWePw///kP\nAwcOrJpfUKSctJ+AyCXYvn07zz33HG+99VaZP/fbb78RExPDxo0b8fPT317iOXQ2ilyCqKgoYmNj\nKSoqKvPnsrKymD59ugqAeBxdCYiIWJj+LBERsTAVARERC1MREBGxMBUBERELUxEQEbGw/weli/D6\nIRiBRQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f8947baebd0>"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.26 : Page number 169-170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "VEE=10.0; #Emitter supply voltage, V\n",
+ "RC=1.0; #Collector resistor, k\u03a9\n",
+ "RE=4.7; #Collector resistor, k\u03a9\n",
+ "RB=47.0; #Base resistoe, k\u03a9\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "VBE=0.7; #Base -emitter voltage, V\n",
+ "\n",
+ "#Calculation\n",
+ "#-IB*RB-VBE-IE*RE+VEE=0\n",
+ "#AS, IC=beta*IB and IC~IE\n",
+ "IE=round((VEE-VBE)/(RE+(RB/beta)),1); #Emitter current, mA\n",
+ "IC=IE; #Collector current, mA\n",
+ "\n",
+ "#VCC-IC*RC-VCE-IE*RE+VEE=0\n",
+ "#IC~IE\n",
+ "VCE=VCC+VEE-IC*(RC+RE); #Collector-emitter voltage, V\n",
+ "\n",
+ "print(\"Operating point: IC=%.1fmA and VCE=%.2fV.\"%(IC,VCE));\n",
+ "\n",
+ "\n",
+ "#For d.c load line\n",
+ "#VCE=VCC-IC*RC\n",
+ "#For calculating VCE, IC=0\n",
+ "IC=0; #Collector current for maximum Collector-emitter voltage, mA\n",
+ "VCE_max=VCC+VEE-IC*(RC+RE); #Maximum collector-emitter voltage, V\n",
+ "\n",
+ "#For calculating VCE, IC=0\n",
+ "VCE=0; #Collector emitter voltage for maximum collector current, V\n",
+ "IC_max=(VCC+VEE-VCE)/(RC+RE); #Maximum collector current, mA\n",
+ "\n",
+ "\n",
+ "#Plotting of d.c load line\n",
+ "VCE_plot=[0,VCE_max]; #Plotting variable for VCE\n",
+ "IC_plot=[IC_max,0]; #Plotting variable for IC\n",
+ "p=plot(VCE_plot,IC_plot);\n",
+ "limit = plt.gca()\n",
+ "limit.set_xlim([0,25])\n",
+ "limit.set_ylim([0,5])\n",
+ "xlabel('VCE(V)');\n",
+ "ylabel('IC(mA)');\n",
+ "title('d.c load line');\n",
+ "plt.grid();\n",
+ "show(p);\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point: IC=1.8mA and VCE=9.74V.\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEZCAYAAAB2AoVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX9x/H3hKAJsqqAwQChLAJJSEBERZaAApZNIYpg\nQRaRn2vFHbUKtRJE2RFtVQSxhSBuKAKF8hhBXCiYGAxSpBKMBAQCIgFDSDK/P06ZKxACyWTm3pn5\nvJ4nj8zCnG++3uc7l+899xyX2+12IyIiQS3M7gBERMT3VOxFREKAir2ISAhQsRcRCQEq9iIiIUDF\nXkQkBKjYi6ONGDGCp556yqvPyM7OJiwsjJKSkkqKypKUlMTcuXNLfW3ChAkMGzYMgB9++IEaNWqg\nmc5il3C7AxApi8vlwuVy2R3GGZUV32+fb9SoEYcPH/ZXWCKn0Zm9OF6gng0HatwSnFTsxVHS09Np\n164dNWvWZPDgwRQUFJzxvSUlJaSkpNCsWTNq1qxJ+/bt+fHHH886Rm5uLv379+eiiy6iefPmvPba\na57XNmzYwNVXX02dOnVo0KAB9913H8ePH/e8vnr1alq2bEnt2rW57777cLvd51TUT20lJSUl8fTT\nT9OpUydq1qxJr169yMvL87z/iy++oGPHjtSpU4fExEQ++eSTs44hUhYVe3GMwsJCbrzxRoYPH87B\ngwe5+eabeeedd87YJpk6dSqpqamsWLGCX375hXnz5lGtWrWzjjN48GAaNWrE7t27efvtt3niiSf4\n+OOPAQgPD2fmzJnk5eXx+eefs2bNGl566SUA9u/fT3JyMikpKeTl5dG0aVPWr19f4TbTokWLmD9/\nPnv37qWwsJApU6YAsGvXLvr27cvTTz/NwYMHmTJlCsnJyezfv79C44iAir04yBdffEFRURH3338/\nVapUITk5mSuuuOKM7587dy4TJ06kefPmAMTHx3PhhReWOUZOTg6fffYZkydP5rzzziMhIYHRo0ez\nYMECANq1a0eHDh0ICwujcePGjBkzxnNWvXz5cuLi4hg4cCBVqlRh7NixXHLJJRX6XV0uFyNHjqRZ\ns2ZEREQwaNAgMjIyAPj73/9O7969uf766wG47rrraN++PcuXL6/QWCKgYi8Okpuby6WXXnrSc40b\nNz5jmyQnJ4emTZuWe4wLL7yQCy64wPNco0aN2LVrFwDbtm2jb9++REVFUatWLZ588klPeyU3N5fo\n6OiTPq9hw4blGv+3fvtFERkZSX5+PgA7d+5kyZIl1KlTx/Ozfv169uzZU+GxRFTsxTGioqI8RfeE\nnTt3nrFN0rBhQ7Zv316uMRo0aMCBAwc8hRXMtMgTRfyuu+6idevWbN++nUOHDjFx4kRPn71Bgwbk\n5OR4/p7b7T7p8akq2t5p1KgRw4YN4+DBg56fw4cP8+ijj1bo80RAxV4cpGPHjoSHhzNr1iyOHz/O\nu+++y7///e8zvn/06NE89dRTbN++HbfbTWZmJgcOHChzjIYNG9KxY0cef/xxjh07RmZmJq+//jpD\nhw4FID8/nxo1alCtWjW2bt3Kyy+/7Pm7vXv3Jisri/fee4+ioiJmzZpV5tn22S7cnun1oUOH8uGH\nH7Jq1SqKi4spKCggLS3ttC9CkfJQsRfHqFq1Ku+++y7z58/noosu4q233iI5Odnz+okbk07MuHnw\nwQcZNGgQPXv2pFatWtxxxx1nnL3z27PsRYsWkZ2dTYMGDRg4cCDPPPMM3bt3B2DKlCksXLiQmjVr\nMmbMGAYPHuz5uxdffDFLlixh3LhxXHzxxWzfvp1OnTqd8fc5dQ7+qWf6p7524nF0dDRLly4lJSWF\nevXq0ahRI6ZOneqTm8IkdLh8vXlJTEwMNWvWpEqVKlStWpUNGzb4cjgRESmFz++gdblcpKWlnXWW\nhIiI+I5f2ji6k1BExF4+L/Yul8szT/jVV1/19XAiIlIKn7dx1q9fT1RUFPv27aNHjx60bNmSzp07\n+3pYERH5DZ8X+6ioKADq1q3LgAED2LBhg6fYO3k1QxERJytve9ynbZyjR496lnU9cuQIq1atIj4+\n/qT3nFhIKtR/xo8fb3sMTvlRLpQL5aLsn4rw6Zn9Tz/9xIABAwAoKiriD3/4Az179vTlkAErOzvb\n7hAcQ7mwKBcW5cI7Pi32TZo08SzuJCIi9tEdtA4xYsQIu0NwDOXColxYlAvv+PwO2jIHd7kq3H8S\nEQlVFamdOrN3iLS0NLtDcAzlwqJcWJQL76jYi4iEALVxREQCjNo4IiJSKhV7h1A/0qJcWJQLi3Lh\nHRV7EZEQoJ69iEiAUc9eRERKpWLvEOpHWpQLi3JhUS68o2IvIhIC1LMXEQkw6tmLiEipVOwdQv1I\ni3JhUS4syoV3VOxFREKAevYiIgFGPXsRESmVir1DqB9pUS4syoVFufCOir2ISAhQz15EJMCoZy8i\nIqVSsXcI9SMtyoVFubAoF95RsRcRCQHq2YuIBBj17EVEpFQq9g6hfqRFubAoFxblwjsq9iIiIUA9\nexGRAKOevYiIlErF3iHUj7QoFxblwqJceEfFXkQkBKhnLyISYNSzFxGRUqnYO4T6kRblwqJcWJQL\n76jYi4iEAJ/37IuLi2nfvj3R0dF8+OGHJw+unr2ISLk5smc/c+ZMWrdujcvl8vVQIiJyBj4t9j/+\n+CPLly9n9OjROoM/C/UjLcqFRbmwKBfe8Wmxf+CBB3jhhRcIC9OlARERO4X76oOXLVtGvXr1aNu2\nbZnfyCNGjCAmJgaA2rVrk5iYSFJSEmB9k4fC46SkJEfFo8fOeXyCU+Kx6/GJ55wSjz8fp6WlMX/+\nfABPvSwvn12gfeKJJ3jzzTcJDw+noKCAX375heTkZBYsWGANrgu0IiLl5qgLtCkpKeTk5LBjxw5S\nU1Pp3r37SYVeTnbqWVwoUy4syoVFufCO35rpmo0jImIfrY0jIhJgHNXGERER51Cxdwj1Iy3KhUW5\nsCgX3lGxFxEJAerZi4gEGPXsRUSkVCr2DqF+pEW5sCgXFuXCOyr2IiIhQD17EZEAo569iIiUSsXe\nIdSPtCgXFuXColx4R8VeRCQEqGcvIhJg1LMXEZFSqdg7hPqRFuXColxYlAvvqNiLiIQA9exFRAJM\nQPbsi4vtjkBEJPjZXuwvvxzWrrU7CvupH2lRLizKhUW58I7txf6JJ2DYMBg8GHJy7I5GRCQ4OaJn\nf/QoTJ4Mc+bA2LHw8MMQEWFXVCIizhaQPXuAatXgz3+GjRshIwNat4b33gNduxURqRyOKPYnxMTA\n22/Dq6/CU09Bz56wZYvdUfmH+pEW5cKiXFiUC+84qtifcO21kJ4O/fpB166mtfPzz3ZHJSISuBzR\nsy/Lvn3wpz/B0qXwl7/AqFFQpYqfAhQRcaCK9OwdX+xP+Oor+OMf4ddfYfZs6NjRx8GJiDhUwF6g\nPRft2sG6dfDQQzBokJmumZtrd1SVR/1Ii3JhUS4syoV3AqbYA7hccOutsHUrNGwIbdrAc8/BsWN2\nRyYi4mwB08YpzX//Cw8+CFlZMH069O1rvhBERIJZUPfsy/LPf8L990OTJjBjBlx2WSUEJyLiUEHd\nsy9Lr16QmQk9esA118Ajj8Avv9gdVfmoH2lRLizKhUW58E5QFHuA886zWjoHDkDLljB/PpSU2B2Z\niIj9gqKNU5oNG8xUTbfbTNXs0MEnw4iI+F3ItnFK06EDfPYZ3HMP3HgjjBwJe/bYHZWIiD2CttgD\nhIXBbbeZqZp160JcHEydCoWFdkd2OvUjLcqFRbmwKBfeCepif0LNmvD88+ZMf80aMz9/5Uq7oxIR\n8R+f9uwLCgro2rUrx44do6ioiJtuuokJEyZYg9u0B+1HH5nF1Vq1gmnToFkzv4cgIlJhjuvZR0RE\n8PHHH5ORkUFGRgYrV67kyy+/9OWQ56RPH/jmG+jUCa66Ch5/HPLz7Y5KRMR3fN7GqVatGgCFhYUc\nP36csDBndI7OPx8efdTMz9+1y0zV/Mc/7NswRf1Ii3JhUS4syoV3fF55S0pKSExMpH79+vTs2ZMr\nrrjC10OWS4MGsGABLFlillzo1Ak2bbI7KhGRyuW3efaHDh1iwIABzJ49m9jYWDO4TT37MykpgXnz\n4MknoX9/mDjRzOIREXGSitTOcB/FcppatWrRrVs3Vq5c6Sn2ACNGjCAmJgaA2rVrk5iYSFJSEmD9\ns81fj9euTaNpU9i6NYlnnoFmzdIYNgymT0+ialX/x6PHeqzHepyUlERaWhrz588H8NTL8vLpmf3+\n/fsJDw+ndu3a/Prrr/Tq1Ytx48bRu3dvM7jDzuxPtWWLWWAtNxdmzoTrrvPdWGlpaZ7/yaFOubAo\nFxblwuK4M/vdu3czfPhwiouLKSkp4ZZbbvEU+kDQujWsWmW2RBwzBhITzU1ZTZrYHZmISPkE7do4\nla2gwBT6adPMEgyPPQYXXGB3VCISihw3zz6YRESYC7dffw3bt5sbshYvtm+qpohIeajYl1N0NCxc\naObkT5oESUnmC8BbJy7GiHLxW8qFRbnwjop9BXXubObjDxkCPXvC3XdDXp7dUYmIlO6ce/YHDx4k\nNzeXyMhIYmJiKuVO2EDq2ZflwAEYP960dSZMMBdzw/02qVVEQk2l70H7888/89JLL7Fo0SKOHTtG\nvXr1KCgoYM+ePVx99dXcfffddOvWza8BO9nmzWaq5v79MGuWafGIiFS2Sr9Ae/PNNxMdHc26devY\ntm0bn376KRs3biQnJ4fHHnuMpUuX8tprr3kVdDCJjzdLKD/9NAwfDrfcAj/8cG5/V/1Ii3JhUS4s\nyoV3ymw2rF69utTnXS4X7du3p3379j4JKpC5XHDTTdC7t1lDv107sz3iI49AZKTd0YlIqCr3PPvt\n27ezaNEiUlNTycrK8m7wIGvjlGbnTnj4Ydi4EaZMgYEDzReCiEhF+Wye/a5du5g2bRpXXHEFcXFx\nFBcXk5qaWqEgQ03jxmZFzddfNxdvr7vOrKUvIuJPZRb7v/3tbyQlJZGUlEReXh5z584lKiqKCRMm\nEB8f768Yg0K3bpCeDgMGQPfu5kLuwYPW6+pHWpQLi3JhUS68U2axv/feeykpKWHhwoVMnDiRNm3a\n+CuuoBQeDvfeaxZYO3bM3IX7yitQXGx3ZCIS7Mrs2e/fv58lS5aQmprK7t27GTRoEPPnz+fHH3+s\nnMFDoGdflvR0c/H2yBGYPRuuucbuiEQkEFT6PPvfysnJYfHixSxatIgjR44wcOBAUlJSKhSoZ/AQ\nL/Zg1tZJTTVbJHbpYmbwXHqp3VGJiJP5dCG0hg0b8vDDD7Np0yY++OADIiIiyh2gnM7lMksuvPJK\nGk2aQEKCWXOnoMDuyOyj3qxFubAoF945p5v6i4qK+Oijj8jOzqa4uBi3280FWt+3UkVGwrPPwqhR\n8NBDEBdnllPu109TNUXEe+fUxvn9739PZGQk8fHxJ62JM378eO8GVxvnjFatMjN2GjeGGTOgZUu7\nIxIRp/BZz75NmzZkZmZWOLAzDq5iX6bjx2HOHLPx+W23mWUYatWyOyoRsZvPevbXX389//znPysU\nlJyb0vqRVavC2LGQlQWHDpmz+3nzoKTE//H5k3qzFuXColx455yK/dVXX83AgQOJiIigRo0a1KhR\ng5o1a/o6NvmfevXgtdfgww/NvPyrroIvv7Q7KhEJJOfUxomJieGDDz4gLi6uUtax9wyuNk65lZSY\nXbLGjYMePczMnagou6MSEX/yWRunUaNGxMbGVmqhl4oJC4Nhw2DrVrjkErOs8gsvQGGh3ZGJiJOd\nU/Vu0qQJ3bp1Y9KkSUydOpWpU6cybdo0X8cWUsrbj6xRA557Dj7/HD75xBT9FSt8E5u/qTdrUS4s\nyoV3zrnYd+/encLCQvLz88nPz+fw4cO+jk3OQfPmsGwZTJ9upmr27QvffWd3VCLiNOVez75SB1fP\nvlIVFsLMmTB5MoweDU8+af4FICLBpdJ79qNHj2bz5s2lvpafn8/cuXP5+9//Xq4BxXfOO8/siLV5\nM+zZY6Zqvvlm8E/VFJGzK/PMPj09nZSUFDZv3kxcXBx169aloKCA7du3c+jQIUaNGsVdd93F+eef\nX7HBdWbvkZaWRlIl71D+xRdw331mvv6sWRAou0j6IheBSrmwKBeWitTOMtfGadu2LUuWLOHw4cNs\n3LiR3bt3U61aNVq1asVll13mVbDieyfm47/xhlljp08fSEkx8/ZFJLSUeWa/d+9e9u3bR2xs7EnP\nZ2VlUa9ePerWrevd4Dqz95tDh+CZZ2DBAtPLv+cec8YvIoGn0nv29913H/v37z/t+by8PO6///7y\nRSe2qlULpk6FtWvNFM2EBFi92u6oRMRfyiz227dvp2vXrqc936VLF77++mufBRWK/DWHuFUrWLnS\nzNG/806zJ+733/tl6HOm+dQW5cKiXHinzGJf1lz648ePV3ow4h8uF/TvbxZY69DB/PzpT2Z7RBEJ\nTmUW+2bNmvHRRx+d9vzy5ctp2rSpz4IKRXbMMoiIgMcfh4wM2LHDTNVMTTVbJdpJMy4syoVFufBO\nmRdot23bRt++fenYsSOXX345brebTZs28dlnn7Fs2TKvZ+ToAq2zfPqp2QC9enUzVTMx0e6IRKQ0\nlX6BtkWLFmRmZtKlSxd27NjBzp076dq1K5mZmZp6Wcmc0I/s1An+/W8YOhR69YK77oJSrs/7nBNy\n4RTKhUW58M5Z96CNiIhg1KhR/ohFHKBKFRgzBm6+GSZMgNatzQ5Zd94J4ee0Y7GIOFGZbZzq1avj\nOsNu1y6Xi19++cW7wdXGcbxvvjELrO3da1o73brZHZGI+GwP2orKycnhtttuY+/evbhcLsaMGcMf\n//hHa3AV+4DgdsO778JDD8EVV8CUKWYjdBGxh882L6moqlWrMn36dLKysvjiiy+YM2cO3377rS+H\nDFhO7ke6XJCcDN9+a9bNb9fOtHiOHvXNeE7Ohb8pFxblwjs+LfaXXHIJif+b0lG9enVatWpFbm6u\nL4cUH4qMNP379HRT+Fu3hrfftn+qpoicnd/Ws8/OzqZr165kZWVRvXp1M7jaOAEtLc1M1bz4YrOO\nfny83RGJhAbHtXFOyM/P56abbmLmzJmeQi+BLykJvvrKtHiuvdYsp3zggN1RiUhpfD6Z7vjx4yQn\nJzN06FBuvPHG014fMWIEMTExANSuXZvExETPnXInenSh8Pi3/UgnxFOex/fck8TgwTBqVBpNm8Kk\nSUnccQesW1exzzs1J3b/fnY+zsjIYOzYsY6Jx87HM2bMCOn6MH/+fABPvSwvn7Zx3G43w4cP56KL\nLmL69OmnD642jkdakGzM8PXXprXzyy9mqmbnzuX/jGDJRWVQLizKhcVxUy8//fRTunTpQps2bTzz\n9SdNmsT1119vBlexD0puN7z1ltkisVMneP55iI62OyqR4OG4Yn/WwVXsg9qRI2Yp5ZdfhgceMPP0\nIyLsjkok8Dn2Aq2c3W/71cHiggvgL38x6+1s2gSxsfD++2efqhmMuago5cKiXHhHxV58rkkTcwfu\n3/5mtkTs1cvM0xcR/1EbR/zq+HF46SV49lkYNgzGjzdbJorIuVMbRxyvalWzsFpWFhw+bDZMmTsX\nSkrsjkwkuKnYO0So9SPr1YNXX4Vly0yxv/JK+Pxz81qo5aIsyoVFufCOir3Y6vLLYf16GDvWrKF/\n222Ql2d3VCLBRz17cYzDhyElxZzxP/qoafecf77dUYk4j3r2EtBq1IBJk0w7Z906iIuDUva7F5EK\nULF3CPUjLbt2pfHhh2a5hQcfhD59YNs2u6Oyh44Li3LhHRV7cazf/x42b4bu3aFjR9Pa8XInTJGQ\npZ69BIQ9e+Dxx2HVKtPqGToUwnSqIiFKa+NI0PvyS7NuflgYzJ5t9sQVCTW6QBvA1I+0lJWLK6+E\nL76AO++EG26A22+Hn37yX2z+puPColx4R8VeAk5YGIwYAVu3woUXmlk706aZpRhEpHRq40jA27rV\n3JS1c6fZC7dnT7sjEvEt9ewlZLndZumFBx4wSylPmwZNm9odlYhvqGcfwNSPtFQkFy4X9OtnFli7\n+mrT23/yScjPr/z4/EnHhUW58I6KvQSV88+HcePMXrg//GBW1Vy48OwbpogEO7VxJKitX282QI+M\nNFM127a1OyIR76mNI3KKa66BDRtg+HBzR+7//R/s22d3VCL+p2LvEOpHWio7F1WqwB13mK0QIyOh\ndWtzll9UVKnD+ISOC4ty4R0VewkZderAjBmQlgZLl0JiIqxZY3dUIv6hnr2EJLcb3n/frKp5+eUw\nZQrExNgdlci5Uc9e5By5XDBgAGzZAgkJ0L692fz86FG7IxPxDRV7h1A/0uLPXERGwlNPwVdfwX/+\nA61awZIlzpmqqePColx4R8VeBGjUCFJTYcECePZZ6NYNMjPtjkqk8qhnL3KKoiKzD+748TBoEDzz\njFlwTcQp1LMXqQTh4XDXXWaBNTCtnZdfhuJie+MS8YaKvUOoH2lxSi4uvBBefBFWr4bFi82snbVr\n/RuDU3LhBMqFd1TsRc6iTRv4+GN44gkYNgwGD4acHLujEikf9exFyuHoUZg8GebMMWvoP/wwRETY\nHZWEGvXsRXysWjX4859h40bIyDBLL7z3nnOmaoqciYq9Q6gfaQmEXMTEwNtvm1k7Tz1ldsfasqXy\nxwmEXPiLcuEdFXsRL1x7LaSnm41TunY1rZ2ff7Y7KpHTqWcvUkn27YM//ckssvbsszBypFlxU6Sy\naQ9aEQf46iuzYUpBAcyaBR072h2RBBvHXaAdNWoU9evXJz4+3pfDBAX1Iy2Bnot27WDdOrOi5qBB\nZrpmbm7FPivQc1GZlAvv+LTYjxw5kpUrV/pyCBFHcrng1lvNXbgNG5q5+s89B8eO2R2ZhCqft3Gy\ns7Pp168fmzdvPn1wtXEkRPz3v+ZMPyvLbKDSp4/5QhCpCMe1cUTEaNrUXLidM8fciNWnj1lSWcRf\nwu0OYMSIEcT8b4ug2rVrk5iYSFJSEmD16ELh8W/7kU6Ix87HJ55zSjyV+fj88yEzM4kXX4QOHdK4\n/np49dUkatYs/f0ZGRmMHTvWMfHb+XjGjBkhXR/mz58P4KmX5aU2jkOkpaV5/ieHulDJxU8/mfV2\nVqyAlBS47TYIO+Xf2qGSi3OhXFgcOfVSxV6kbBs2mKmabjfMng0dOtgdkTid43r2Q4YMoWPHjmzb\nto2GDRsyb948Xw4nEpA6dIDPPoN77oEbb4RRo2DPHrujkmDj02K/aNEicnNzOXbsGDk5OYwcOdKX\nwwW03/arQ10o5iIszLRxtm6Fiy+GuDiYOhVWr06zOzTHCMXjojJpNo6Ig9SsCc8/b87016yB228H\n3aoilUHLJYg42EcfmcXVWrWCadOgWTO7IxIncFzPXkS806cPfPMNdOoEV10Fjz8O+fl2RyWBSMXe\nIdSPtCgXlhNz8x99FDIzYdcuaNkS/vGP0NswRceFd1TsRQJEgwawYAEsWQLTp5uz/U2b7I5KAoV6\n9iIBqKQE5s2DJ5+E/v1h4kSoW9fuqMRf1LMXCRFhYWamztatUL262Qt35kw4ftzuyMSpVOwdQv1I\ni3JhOVsuatc2s3Q++QSWLYPERPjXv/wTm7/puPCOir1IEGjdGlatMu2cMWNg4EDYscPuqMRJ1LMX\nCTIFBebu22nTzBIMjz0GF1xgd1RSmdSzFxEiIsyF26+/hu3bzQ1ZixeH3lRNOZmKvUOoH2lRLize\n5CI6GhYuNHPyJ02CpCTzBRCodFx4R8VeJMh17mzm4w8ZAj17wt13Q16e3VGJv6lnLxJCDhyA8eNN\nW2fCBHMxN9z2/eqkvBy5eUmZg6vYi9hi82a4/37Yvx9mzTItHgkcukAbwNSPtCgXFl/lIj7eLKH8\n9NMwfDjccgv88INPhqo0Oi68o2IvEqJcLrjpJvj2WzNjp107eOYZ+PVXuyMTX1AbR0QA2LkTHn4Y\nNm6EKVPMjVkul91RSWnUsxcRr338sdkAvV4908+PjbU7IjmVevYBTP1Ii3JhsSMX3bpBejoMGGD+\nfP/9cPCg38M4jY4L76jYi8hpwsPh3nthyxY4dsz09F95BYqL7Y5MKkptHBE5q/R009o5cgRmz4Zr\nrrE7otCmnr2I+IzbDampZovELl3g+efh0kvtjio0qWcfwNSPtCgXFiflwuUySy5s3QpNmkBCgllz\np6DAP+M7KReBSMVeRMrlggvg2Wfhyy/NT1wcfPCBVtV0OrVxRMQrq1aZGTuNG8OMGdCypd0RBT+1\ncUTE73r2hMxMuP56s8LmQw/BoUN2RyWnUrF3CPUjLcqFJVByUbUqjB0LWVmm0LdsCfPmQUlJ5Y0R\nKLlwKhV7Eak09erBa6+ZHv4rr8BVV5m+vthPPXsR8YmSErNL1rhx0KOHmbkTFWV3VMFBPXsRcYyw\nMBg2zEzVvOQSs6zyCy9AYaHdkYUmFXuHUD/SolxYgiEXNWrAc8/B55/DJ5+Yor9iRfk/JxhyYScV\nexHxi+bNYdkymDbNTNXs2xe++87uqEKHevYi4neFhTBzJkyeDKNHw5NPmn8ByLlRz15EAsJ558Ej\nj5i9cPfsMVM133yzcqdqysl8WuxXrlxJy5Ytad68OZMnT/blUAFP/UiLcmEJ9lxERcH8+fDOO2aj\nlE6dzE5ZpQn2XPiaz4p9cXEx9957LytXrmTLli0sWrSIb7/91lfDBbyMjAy7Q3AM5cISKrk4MR9/\n9Gjo18/8d+/ek98TKrnwFZ8V+w0bNtCsWTNiYmKoWrUqgwcPZunSpb4aLuD9/PPPdofgGMqFJZRy\nERYGo0aZqZq1apntEGfMgOPHzeuhlAtf8Fmx37VrFw0bNvQ8jo6OZteuXb4aTkSCRK1aMHUqrF1r\npmgmJMDq1XZHFfjCffXBLm1LXy7Z2dl2h+AYyoUllHPRqhWsXAkffgh33gklJdmMH2/W1Zfy81mx\nv/TSS8nJyfE8zsnJITo6+rT36UvB8sYbb9gdgmMoFxblwhIWplxUlM/m2RcVFXHZZZexZs0aGjRo\nQIcOHVgghTjXAAAGkElEQVS0aBGtWrXyxXAiIlIGn53Zh4eH8+KLL9KrVy+Ki4u5/fbbVehFRGxi\n6x20IiLiH7bdQasbriwxMTG0adOGtm3b0qFDB7vD8atRo0ZRv3594uPjPc8dOHCAHj160KJFC3r2\n7BkyU+5Ky8WECROIjo6mbdu2tG3blpUrV9oYof/k5OTQrVs3YmNjiYuLY9asWUBoHhtnykW5jw23\nDYqKitxNmzZ179ixw11YWOhOSEhwb9myxY5QHCEmJsadl5dndxi2WLt2rfurr75yx8XFeZ575JFH\n3JMnT3a73W73c889537sscfsCs+vSsvFhAkT3FOnTrUxKnvs3r3bnZ6e7na73e7Dhw+7W7Ro4d6y\nZUtIHhtnykV5jw1bzux1w9Xp3CHaTevcuTN16tQ56bkPPviA4cOHAzB8+HDef/99O0Lzu9JyAaF5\nbFxyySUkJiYCUL16dVq1asWuXbtC8tg4Uy6gfMeGLcVeN1ydzOVycd1119G+fXteffVVu8Ox3U8/\n/UT9+vUBqF+/Pj/99JPNEdlr9uzZJCQkcPvtt4dE2+JU2dnZpKenc+WVV4b8sXEiF1dddRVQvmPD\nlmKvufUnW79+Penp6axYsYI5c+awbt06u0NyDJfLFdLHy1133cWOHTvIyMggKiqKhx56yO6Q/Co/\nP5/k5GRmzpxJjVPWQA61YyM/P5+bbrqJmTNnUr169XIfG7YU+3O94SpURP1vY866desyYMAANmzY\nYHNE9qpfvz579uwBYPfu3dSrV8/miOxTr149T1EbPXp0SB0bx48fJzk5mWHDhnHjjTcCoXtsnMjF\n0KFDPbko77FhS7Fv37493333HdnZ2RQWFrJ48WL69+9vRyi2O3r0KIcPHwbgyJEjrFq16qTZGKGo\nf//+nrtG33jjDc/BHYp2797t+fN7770XMseG2+3m9ttvp3Xr1owdO9bzfCgeG2fKRbmPDR9cPD4n\ny5cvd7do0cLdtGlTd0pKil1h2O777793JyQkuBMSEtyxsbEhl4vBgwe7o6Ki3FWrVnVHR0e7X3/9\ndXdeXp772muvdTdv3tzdo0cP98GDB+0O0y9OzcXcuXPdw4YNc8fHx7vbtGnjvuGGG9x79uyxO0y/\nWLdundvlcrkTEhLciYmJ7sTERPeKFStC8tgoLRfLly8v97Ghm6pEREKAtiUUEQkBKvYiIiFAxV5E\nJASo2IuIhAAVexGREKBiLyISAlTsRURCgIq9BKXu3buzatWqk56bMWMGd999N9u2baN37960aNGC\nyy+/nFtuuYW9e/eSlpZGrVq1POuDt23bljVr1gDw66+/kpSURElJCb/73e/Ytm3bSZ89duxYnn/+\neb755htGjhzpt99T5Fyp2EtQGjJkCKmpqSc9t3jxYoYMGULfvn2555572LZtG5s2beLuu+9m3759\nuFwuunTpQnp6uufn2muvBeD1118nOTmZsLCw0z67pKSEd955hyFDhhAXF8ePP/540tpPIk6gYi9B\nKTk5mY8++oiioiLALA2bm5vLd999R8eOHenTp4/nvV27diU2NrbMtcEXLlzIDTfcAJgvksWLF3te\nW7t2LY0bN/Ys292vX7/TvmhE7KZiL0HpwgsvpEOHDixfvhyA1NRUBg0aRFZWFu3atTvj31u3bt1J\nbZwdO3ZQWFjI999/T6NGjQCIi4sjLCyMzMxMz2ffeuutns9o3769lqkWx1Gxl6D123bL4sWLTyrI\nZ9K5c+eT2jhNmjRh//791K5du9TPLi4uZunSpdx8882e1+rWrUtubm7l/jIiXlKxl6DVv39/1qxZ\nQ3p6OkePHqVt27bExsayadOmcn1OZGQkBQUFJz03ePBg3nrrLf71r3/Rpk0b6tat63mtoKCAyMjI\nSvkdRCqLir0ErerVq9OtWzdGjhzpOau/9dZb+eyzzzztHTA996ysrDN+Tp06dSguLqawsNDz3O9+\n9zsuvvhixo0bd9q/GLZt20ZcXFwl/zYi3lGxl6A2ZMgQNm/ezJAhQwCIiIhg2bJlzJ49mxYtWhAb\nG8tf//pX6tati8vlOq1n/+677wLQs2fP0/rwQ4YM4T//+Q8DBw486fmPP/6Yvn37+ucXFDlHWs9e\n5Bykp6czffp0FixYUOb7jh07RlJSEuvXrycsTOdS4hw6GkXOQdu2benWrRslJSVlvi8nJ4fJkyer\n0Ivj6MxeRCQE6PRDRCQEqNiLiIQAFXsRkRCgYi8iEgJU7EVEQsD/A5rk1yWn9KUgAAAAAElFTkSu\nQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f8947c78950>"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.27 : Page number 170-171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VEE=10.0; #Emitter supply voltage, V\n",
+ "IE=1.8; #Emitter current, mA\n",
+ "RE=4.7; #Emitter resistor, k\u03a9\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "IC=1.8; #Collector current, mA\n",
+ "RC=1.0; #Collector resistor, k\u03a9\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(i)\n",
+ "VE=-VEE+IE*RE; #Emitter voltage, V\n",
+ "\n",
+ "#(ii)\n",
+ "VB=VEE+VBE; #Base voltage, V\n",
+ "\n",
+ "#(iii)\n",
+ "VC=VCC-IC*RC; #Collector voltage, V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Emitter voltage=%.2fV.\"%VE);\n",
+ "print(\"(i) Base voltage=%.1fV.\"%VB);\n",
+ "print(\"(i) Collector voltage=%.1fV.\"%VC);\n",
+ "\n",
+ "#Note: In the textbook, VB=VE+VBE has been written, which is worng. It should be VB=VEE+VBE. "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Emitter voltage=-1.54V.\n",
+ "(i) Base voltage=10.7V.\n",
+ "(i) Collector voltage=8.2V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "\n",
+ "Example 8.28: Page number 173-174\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_BE_change=200.0; #Change in base-emitter voltage in mV\n",
+ "I_B_change=100.0; #Change in base current in \u03bcA\n",
+ "\n",
+ "#Calculations\n",
+ "Ri=V_BE_change/I_B_change; #Input resistance in k\u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"Input resistance =%d k\u03a9\"%Ri);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Input resistance =2 k\u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.29; Page number 174\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CE_final=10.0;\t\t\t#Final value of collector-emitter voltage in V\n",
+ "V_CE_initial=2.0; #Initial value of collector-emitter voltage in V\n",
+ "I_C_final=3.0; #Final value of collector current in mA\n",
+ "I_C_initial=2.0; #Initial value of collector current in mA\n",
+ "\n",
+ "#Calculations\n",
+ "V_CE_change=V_CE_final-V_CE_initial;\t\t#Change in collector to emitter voltage in V\n",
+ "I_C_change=I_C_final-I_C_initial; #Change in collector current in mA\n",
+ "R0=V_CE_change/I_C_change; #Output resistance in k\u03a9\n",
+ "\n",
+ "#Result\n",
+ "print(\"The output resistance =%dk\u03a9\"%R0);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output resistance =8k\u03a9\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.30: Page number 174\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "R_C=2.0;\t\t#Collector load in kilo ohm\n",
+ "R_i=1.0;\t\t#Input resistance in kilo ohm\n",
+ "R_AC=R_C; #Effective collector load for single stage in kilo ohm(appoximately equal to collector load for single stage)\n",
+ "beta=50.0; #Current gain\n",
+ "\n",
+ "#Calculations\n",
+ "A_v=beta*(R_AC/R_i);\t\t#Voltage gain of the amplifier\n",
+ "\n",
+ "#Result \n",
+ "print(\"The voltage gain of the amplifier =%d \"%A_v);\t\t\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage gain of the amplifier =100 \n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.31: Page number 175-176\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=20;\t\t#Collector supply voltage in V\n",
+ "R_C=1; #Collector resistance in kilo ohm\n",
+ "V_knee_Si=1;\t\t#Knee voltage of V_CE for Si in V \n",
+ "V_knee_Ge=0.5;\t\t#Knee voltage of V_CE for Ge in V\n",
+ "\n",
+ "#Calculations\n",
+ "I_C_sat_Si=(V_CC-V_knee_Si)/R_C;\t\t#Saturation (maximum) value of collector current in mA (for Si transistor)\n",
+ "I_C_sat_Ge=(V_CC-V_knee_Ge)/R_C;\t\t#Saturation (maximum) value of collector current in mA (for Ge transistor)\n",
+ "I_C_sat=(V_CC)/R_C;\t\t\t\t#Saturation (maximum) value of collector current in mA (neglecting knee voltage)\n",
+ "V_CE_cut_off=V_CC; #Collector to emitter voltage in cutoff when base current=0, in V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Collector current during saturation = %d mA\"%I_C_sat);\n",
+ "print(\"Collector emitter voltage during cutoff = %d V.\"%V_CE_cut_off);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector current during saturation = 20 mA\n",
+ "Collector emitter voltage during cutoff = 20 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.32: Page number 176-177\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=12.0;\t\t#Collector supply voltage in V\n",
+ "V_EE=12.0;\t\t#Emitter supply voltage in V\n",
+ "R_C=750.0;\t\t#Collector resistance in ohm\n",
+ "R_E=1.5;\t\t#Emitter resistance in kilo ohm\n",
+ "R_B=100.0;\t\t#Base resistance in ohm\n",
+ "beta=200;\t\t#base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law to the collector side of the circuit\n",
+ "#using the equation: Vcc -IcRc-Vce -IeRe+Vee=0\n",
+ "#we get Vce=Vcc+Vee-Ic(Rc+Re), [Ie=Ic, approximately]\n",
+ "#We get Vce(off), when Ic=0;\n",
+ "\n",
+ "I_C_Vce_off=0;\t\t\t\t\t#Collector current for Vce(off) in mA\n",
+ "V_CE_off=V_CC+V_EE -(I_C_Vce_off * (R_C +R_E));\t#Collector to emitter voltage in V, during transistor in off state\n",
+ "\n",
+ "#We get Ic(sat), when Vce=0\n",
+ "V_CE_Ic_sat=0;\t\t\t\t\t\t#Collector to emitter voltage for saturation current of collector in V\n",
+ "I_C_sat=(V_CC+V_EE-V_CE_Ic_sat)/(R_C+(R_E*1000));\t#Saturated collector current in A \n",
+ "I_C_sat=I_C_sat*1000;\t\t\t\t\t#Saturated collector current in mA\n",
+ "#Result\n",
+ "print(\"Vce(off)= %dV\"%V_CE_off);\n",
+ "print(\"Ic(sat) = %.2f mA\"%I_C_sat);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Vce(off)= 24V\n",
+ "Ic(sat) = 10.67 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.33 : Page number 177\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_knee=0.2;\t\t\t\t#Knee voltage of collector-emitter voltage in V\n",
+ "V_CC=10.0;\t\t\t\t#Collector supply voltage in V\n",
+ "V_BB=3.0;\t\t\t\t#Base supply voltage in V\n",
+ "V_BE=0.7;\t\t\t\t#Base-emitter voltage in V \t\n",
+ "R_B=10.0;\t\t\t\t#Base resistor's resistance in kilo ohm\n",
+ "R_C=1.0;\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "beta=50.0;\t\t\t\t#base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#applying Kirchhoff's voltage law along the collector side of the circuit,\n",
+ "#We get Vcc-Ic(sat)*Rc-V_knee=0\n",
+ "#From the above equation, we get:\n",
+ "I_C_sat=(V_CC-V_knee)/R_C;\t\t#Saturated collector current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along base emitter side,\n",
+ "#We get VBB-IB*RB-VBE=0;\n",
+ "#From the above equation, we get:\n",
+ "I_B=(V_BB-V_BE)/R_B;\t\t\t#Base current in mA\n",
+ "\n",
+ "\n",
+ "I_C=beta*I_B\t\t\t\t#Collector current in mA\n",
+ "\n",
+ "#Result\n",
+ "if(I_C>I_C_sat):\n",
+ "\tprint(\"The base current is large enough to produce Ic greater than Ic(sat), therefore the transistor is saturated.\");\n",
+ "else:\n",
+ "\tprint(\"The base current is not large enough to produce Ic greater than Ic(sat), therefore the transistor isn't saturated. \");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The base current is large enough to produce Ic greater than Ic(sat), therefore the transistor is saturated.\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.34: Page number 177-178\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "V_CC=10.0;\t\t\t\t#Collector supply voltage in V\n",
+ "V_BE=0.95;\t\t\t\t#Base-emitter voltage in V \t\n",
+ "I_B=100.0;\t\t\t\t#Base current in microAmp\n",
+ "R_C=970.0;\t\t\t\t#Collector resistor's resistance in ohm\n",
+ "beta=100.0;\t\t\t\t#base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "I_C=(I_B/1000)*beta;\t\t\t\t#Collector current in mA \n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along collector side\n",
+ "#We get Vcc-IcRc-Vce=0\n",
+ "#From the above equation, we get:\n",
+ "\n",
+ "V_CE=V_CC-((I_C/1000)*R_C);\t\t\t\t#Collector-emitter voltage in V\n",
+ "\n",
+ "#From the equation, V_CE=V_CB+V_BE,\n",
+ "V_CB=V_CE-V_BE;\t\t\t\t\t\t#Collector-base voltage in V\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "if(V_CB<0 and V_BE >0):\n",
+ "\tprint(\"As both collector-base and emitter-base junction are forward biased, the transistor is operating in the saturation region. \");\n",
+ "else:\n",
+ "\tprint(\"No. The transistor isn't operating in the saturation region.\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "As both collector-base and emitter-base junction are forward biased, the transistor is operating in the saturation region. \n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.35: Page number 178\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=10.0;\t\t\t\t#Collector supplu voltage in V\n",
+ "V_BE=0.7;\t\t\t\t#Base-emitter voltage in V\n",
+ "R_B=50.0;\t\t\t\t#Base resistor's resistance in kilo ohm\n",
+ "R_C=2.0;\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "beta=200.0;\t\t\t\t#Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along the collector side,\n",
+ "#We get, Vcc-Ic(sat)*Rc-Vce=0;\n",
+ "#From the above equation, we get:\n",
+ "#I_C_sat=(V_CC-V_CE)/R_C, but as transistor goes into saturation, Vce=0;\n",
+ "\n",
+ "V_CE=0;\t\t\t\t\t\t#Collector-emiter voltage in V, for transistor in saturation \n",
+ "I_C_sat=(V_CC-V_CE)/R_C;\t\t\t#Saturated collector current in mA\n",
+ "\n",
+ "I_B=I_C_sat/beta;\t\t\t\t#Base current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law to the base circuit,\n",
+ "#We get, VBB - IB*RB - VBE=0\n",
+ "#From the above equation. we get:\n",
+ "V_BB=V_BE+ I_B*R_B;\t\t\t\t#Base supply voltage to put transistor in saturation, in V\n",
+ "\n",
+ "#Result\n",
+ "print(\"Therefore, for putting transistor in saturation, VBB >= %.2f V\"%V_BB);\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Therefore, for putting transistor in saturation, VBB >= 1.95 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.36: Page number 178-179\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=10.0;\t\t\t#Collector supply voltage in V\n",
+ "V_BB=2.7;\t\t\t#Base supply voltage in V\n",
+ "V_BE=0.7;\t\t\t#Base-emitter voltage in V\n",
+ "beta=100.0;\t\t\t#Base current amplification factor\n",
+ "R_E=1.0;\t\t\t#Emitter resistor's resistance in kilo ohm\n",
+ "\n",
+ "\n",
+ "#Calcultaion\t\n",
+ "V_B=V_BB;\t\t\t#Base voltage in V\n",
+ "V_E=V_B-V_BE;\t\t\t#Emitter voltage in V\n",
+ "I_E=V_E/R_E;\t\t\t#Emitter current in mA\n",
+ "I_C=I_E;\t\t\t#Collector current (approximately equal to emitter current) in mA\n",
+ "I_B=I_C/beta;\t\t\t#Base current in mA\n",
+ "\n",
+ "#Case (i):\n",
+ "R_C=2;\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "\n",
+ "#Assuming transistor to be in active state\n",
+ "#Applying Kirchhoff's voltage law along collector side,\n",
+ "#We get,Vcc-IcRc=Vc,\n",
+ "\n",
+ "V_C=V_CC-I_C*R_C;\t\t#Collector voltage in V\n",
+ "\n",
+ "if(V_C>V_E):\n",
+ "\tprint(\"(i)Our assumption was correct, the transistor is in active state for Rc=2 kilo ohm.\");\n",
+ "elif(V_C<V_E):\n",
+ "\tprint(\"(i)Our assumption was wrong, the transistor is in saturation for Rc=2 kilo ohm.\");\n",
+ "elif(V_C==V_E):\n",
+ "\tprint(\"(i)The transistor is at the edge of saturation for Rc=2 kilo ohm, therefore relation between transistor currents are same for both saturation and active state.\");\n",
+ "\n",
+ "#Case (ii):\n",
+ "R_C=4;\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "\n",
+ "#Assuming transistor to be in active state\n",
+ "#Applying Kirchhoff's voltage law along collector side,\n",
+ "#We get,Vcc-IcRc=Vc,\n",
+ "\n",
+ "V_C=V_CC-I_C*R_C;\t\t#Collector voltage in V\n",
+ "if(V_C>V_E):\n",
+ "\tprint(\"(ii)Our assumption was correct, the transistor is in active state for Rc=4 kilo ohm.\");\n",
+ "elif(V_C==V_E):\n",
+ "\tprint(\"(ii)The transistor is at the edge of saturation for Rc=4 kilo ohm, therefore relation between transistor currents are same for both saturation and active state.\");\n",
+ "elif(V_C<V_E):\n",
+ "\tprint(\"(ii)Our assumption was wrong, the transistor is in saturation for Rc=4 kilo ohm.\");\n",
+ "\n",
+ "\n",
+ "#Case (iii):\n",
+ "R_C=8;\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "\n",
+ "#Assuming transistor to be in active state\n",
+ "#Applying Kirchhoff's voltage law along collector side,\n",
+ "#We get,Vcc-IcRc=Vc,\n",
+ "\n",
+ "V_C=V_CC-I_C*R_C;\t\t#Collector voltage in V\n",
+ "if(V_C>V_E):\n",
+ "\tprint(\"(iii)Our assumption was correct, the transistor is in active state for Rc=8 kilo ohm.\");\n",
+ "elif(V_C<V_E):\n",
+ "\tprint(\"(iii)Our assumption was wrong, the transistor is in saturation for Rc=8 kilo ohm.\");\n",
+ "elif(V_C==V_E):\n",
+ "\tprint(\"(iii)The transistor is at the edge of saturation for Rc=8 kilo ohm, therefore relation between transistor currents are same for both saturation and active state.\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)Our assumption was correct, the transistor is in active state for Rc=2 kilo ohm.\n",
+ "(ii)The transistor is at the edge of saturation for Rc=4 kilo ohm, therefore relation between transistor currents are same for both saturation and active state.\n",
+ "(iii)Our assumption was wrong, the transistor is in saturation for Rc=8 kilo ohm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.37 : Page number 179-180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=15.0;\t\t\t#Collector supply voltage in V\n",
+ "R_C=10.0;\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "V_BE=0.7;\t\t\t#Base-emitter voltage in V\n",
+ "beta=100.0;\t\t\t#Base current amplification factor\n",
+ "R_E=1.0;\t\t\t#Emitter resistor's resistance in kilo ohm\n",
+ "\n",
+ "\n",
+ "#Calculation\t\n",
+ "\n",
+ "#Case (i):\n",
+ "V_BB=0.5;\t\t\t#Base supply voltage in V\n",
+ "VB=V_BB; #Base voltage, V\n",
+ "print(\"(i) Base voltage =%.1fV is less than VBE=%.1fV, therefore, transistor is cut-off.\"%(VB,V_BE));\n",
+ "\n",
+ "\n",
+ "#Case (ii):\n",
+ "V_BB=1.5;\t\t\t#Base supply voltage in V\n",
+ "VB=V_BB; #Base voltage, V\n",
+ "VE=VB-V_BE; #Emitter voltage, V\n",
+ "IE=round(VE/R_E,1); #Emitter current, mA\n",
+ "#Assuming transistor to be in active state\n",
+ "#Applying Kirchhoff's voltage law along collector side,\n",
+ "IC=IE; #Collector current, mA\n",
+ "IB=IC/beta; #Base current, mA\n",
+ "VC=V_CC-IC*R_C; #Collector voltage, V\n",
+ "print(VE,IE,VC);\n",
+ "print(\"(ii) VC=%dV > VE=%.1fV, therefore the transistor is active. Our assumption was correct.\"%(VC,VE));\n",
+ "\n",
+ "#Case (iii):\n",
+ "V_BB=3; \t\t\t#Base supply voltage in V\n",
+ "VB=V_BB; #Base voltage, V\n",
+ "VE=VB-V_BE; #Emitter voltage, V\n",
+ "IE=round(VE/R_E,1); #Emitter current, mA\n",
+ "#Assuming transistor to be in active state\n",
+ "#Applying Kirchhoff's voltage law along collector side,\n",
+ "IC=IE; #Collector current, mA\n",
+ "IB=IC/beta; #Base current, mA\n",
+ "VC=V_CC-IC*R_C; #Collector voltage, V\n",
+ "\n",
+ "print(\"(iii) VC=%dV < VE=%.1fV, therefore the transistor is saturated. Our assumption was wrong.\"%(VC,VE));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Base voltage =0.5V is less than VBE=0.7V, therefore, transistor is cut-off.\n",
+ "(0.8, 0.8, 7.0)\n",
+ "(ii) VC=7V > VE=0.8V, therefore the transistor is active. Our assumption was correct.\n",
+ "(iii) VC=-8V < VE=2.3V, therefore the transistor is saturated. Our assumption was wrong.\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.38: Page number 181\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "P_D_max=100.0;\t\t\t#Maximum power dissipation of a transistor in mW\n",
+ "V_CE=20.0;\t\t\t#Collector emitter voltage in V\n",
+ "\n",
+ "#Calculation\n",
+ "#As power=curent*voltage\n",
+ "#P_D_max=I_C_max*V_CE\n",
+ "#From the above equation, we get:\n",
+ "\n",
+ "I_C_max=P_D_max/V_CE;\t\t#Maximum collector current that can be allowed without destruction of the transistor, in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Maximum collector current that can be allowed without destruction of the transistor = %d mA.\"%I_C_max); \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum collector current that can be allowed without destruction of the transistor = 5 mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.39: Page number 181\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=5.0;\t\t\t\t#Collector supply voltage in V\n",
+ "V_BB=5.0;\t\t\t\t#Base supply voltage in V\n",
+ "V_BE=0.7;\t\t\t\t#Base-emitter voltage in V\n",
+ "R_B=1.0;\t\t\t\t#Base resistor's resistance in kilo ohm\n",
+ "R_C=0;\t\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "beta=200.0;\t\t\t\t#base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along base circuit<\n",
+ "#We get, VBB- IB*RB - VBE=0.\n",
+ "#From the above equation, we get:\n",
+ "\n",
+ "I_B=(V_BB-V_BE)/R_B;\t\t\t#Base current in mA\n",
+ "\n",
+ "I_C=beta*I_B;\t\t\t\t#Collector current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along collector circuit:\n",
+ "\n",
+ "V_CE=V_CC-I_C*R_C;\t\t\t#Collector-emitter voltage in V\n",
+ "\n",
+ "#As power=curent*voltage\n",
+ "#P_D=I_C*V_CE\n",
+ "#From the above equation, we get:\n",
+ "P_D=V_CE*I_C;\t\t\t\t#Power dissipated in mW\n",
+ "P_D=P_D/1000;\t\t\t\t#Power dissipated in W\n",
+ "\n",
+ "#Result\n",
+ "print(\"Power dissipated = %.1fW\"%P_D);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power dissipated = 4.3W\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.40: Page number 181-182\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=5.0;\t\t\t\t#Collector supply voltage in V\n",
+ "V_BB=1.0;\t\t\t\t#Base supply voltage in V\n",
+ "V_BE=0.7;\t\t\t\t#Base-emitter voltage in V\n",
+ "R_B=10.0;\t\t\t\t#Base resistor's resistance in kilo ohm\n",
+ "R_C=1.0;\t\t\t\t\t#Collector resistor's resistance in kilo ohm\n",
+ "beta=100.0;\t\t\t\t#base current amplification factor\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along base circuit<\n",
+ "#We get, VBB- IB*RB - VBE=0.\n",
+ "#From the above equation, we get:\n",
+ "\n",
+ "I_B=(V_BB-V_BE)/R_B;\t\t\t#Base current in mA\n",
+ "\n",
+ "I_C=beta*I_B;\t\t\t\t#Collector current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along collector circuit:\n",
+ "\n",
+ "V_CE=V_CC-I_C*R_C;\t\t\t#Collector-emitter voltage in V\n",
+ "\n",
+ "#As power=curent*voltage\n",
+ "#P_D=I_C*V_CE\n",
+ "#From the above equation, we get:\n",
+ "P_D=V_CE*I_C;\t\t\t\t#Power dissipated in mW\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Power dissipated = %.0fmW\"%P_D);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power dissipated = 6mW\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.41 : Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VBB=5.0; #Base supply voltage, V\n",
+ "RB=22.0; #Base resistor, kilo ohm\n",
+ "RC=1.0; #Collector resistor, kilo ohm\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "PD_max=800.0; #Maximum power dissipation, mW\n",
+ "VCE_max=15.0; #Maximum collector-emitter voltage, V\n",
+ "IC_max=100.0; #Maximum collector current, mA\n",
+ "\n",
+ "#Calculation\n",
+ "IB=((VBB-VBE)/RB)*1000; #Base current, \u03bcA\n",
+ "IC=beta*IB/1000; #Collector current, mA\n",
+ "\n",
+ "print(\"IC=%.1fmA is much less than IC_max=%dmA. Therefore, will not change with VCC and current rating is not exceeded.\"%(IC,IC_max));\n",
+ "\n",
+ "#VCC=VCE+IC*RC\n",
+ "VCC_max=VCE_max+IC*RC; #Maximum value of Collector supply voltage, V\n",
+ "PD=VCE_max*IC; #Power dissipation, mW\n",
+ "\n",
+ "print(\"PD=%dmW is less than PD_max=%dmW. Therefore, power rating is not exceeded.\"%(PD,PD_max));\n",
+ "\n",
+ "print(\"If base current is removed, transistor will turn off. Hence, VCE_max will be exceeded because entire supply voltage VCC will be dropped across the transistor.\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "IC=19.5mA is much less than IC_max=100mA. Therefore, will not change with VCC and current rating is not exceeded.\n",
+ "PD=293mW is less than PD_max=800mW. Therefore, power rating is not exceeded.\n",
+ "If base current is removed, transistor will turn off. Hence, VCE_max will be exceeded because entire supply voltage VCC will be dropped across the transistor.\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter9_3.ipynb b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter9_3.ipynb
new file mode 100644
index 00000000..e8168ab8
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter9_3.ipynb
@@ -0,0 +1,1907 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1e5463fc2e8c67a2f9099cf3f6c078bc1c9dccccd63589a75ad6ce5024fe6432"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER 9 : TRANSISTOR BIASING"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1: Page number 195-196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "V_CC=6.0; #Collector supply voltage\n",
+ "R_C=2.5; #Collector load in k\u2126\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#(i)\n",
+ "#For faithful amplification Vce (collector-emitter voltage)> 1V for Si transistor.\n",
+ "V_CE_max=1; #Maximum allowed collector-emitter voltage for faithful amplification, in V.\n",
+ "V_Rc_max=V_CC-V_CE_max; #maximum voltage drop across collector load in V.\n",
+ "I_C_max=V_Rc_max/R_C; #Maximum allowed collector current in mA\n",
+ "\n",
+ "#(ii)\n",
+ "IC_min_zero_signal=I_C_max/2; #Minimum zero signal collector current in mA\n",
+ "\n",
+ "#Results\n",
+ "print(\"The maximum allowed collector current during application of signal for faithful amplification = %d mA.\"%I_C_max);\n",
+ "print(\"The minimum zero signal collector current required = %d mA.\"%IC_min_zero_signal);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum allowed collector current during application of signal for faithful amplification = 2 mA.\n",
+ "The minimum zero signal collector current required = 1 mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2: Page number 196\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=13.0; #Collector supply voltage in V\n",
+ "V_knee=1.0; #Knee voltage in V\n",
+ "R_C=4.0; #Collector load in k\u2126\n",
+ "rate_IC_VBE=5.0; #Rate of change of collector current IC with base-emitter voltage VBE in mA/V.\n",
+ "beta=100.0; #base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "V_Rc_max=VCC-V_knee; #Maximum allowed voltage across collector load in V\n",
+ "I_C_max=V_Rc_max/R_C; #Maximum allowed collector current in mA\n",
+ "I_B_max=I_C_max/beta; #Maximum base current in mA\n",
+ "I_B_max=I_B_max*1000; #Maximum base current in \ud835\udf07A\n",
+ "\n",
+ "V_B_max=I_C_max/rate_IC_VBE; #Maximum base voltage signal in V\n",
+ "V_B_max=V_B_max*1000; #Maximum base voltage signal in mV\n",
+ "\n",
+ "#Results\n",
+ "print(\"Maximum base current =%d \ud835\udf07A.\"%I_B_max);\n",
+ "print(\"Maximum input signal voltage =%d mV.\"%V_B_max);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum base current =30 \ud835\udf07A.\n",
+ "Maximum input signal voltage =600 mV.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3: Page number 200-201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=9.0; #Colector supply voltage in V\n",
+ "VBB=2.0; #Base supply voltage in V\n",
+ "R_B=100.0; #Base resistor's resistance in k\u2126\n",
+ "R_C=2.0; #Collector load in k\u2126\n",
+ "beta=50.0; #base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Case (i):\n",
+ "\n",
+ "#Applying Kirchhoff's law to the input circuit\n",
+ "#We get, IB*RB +VBE =VBB.\n",
+ "#Neglecting the small base-emitter voltage, we get:\n",
+ "I_B=VBB/R_B; #Base current in mA\n",
+ "I_C=beta*I_B; #Collector current in mA\n",
+ "\n",
+ "print(\"Collector current = %dmA\"%I_C);\n",
+ "\n",
+ "#Applying Kirchhoff's law to the output ciruit\n",
+ "#We get, IC*RC + VCE= VCC.\n",
+ "#From the above equation, we get:\n",
+ "V_CE=VCC-I_C*R_C; #Collector emitter voltage in V\n",
+ "\n",
+ "print(\"Collector emitter voltage =%dV.\"%V_CE);\n",
+ "\n",
+ "\n",
+ "#Case (ii):\n",
+ "\n",
+ "R_B=50.0;\n",
+ "I_B=VBB/R_B;\n",
+ "I_C=beta*I_B;\n",
+ "V_CE=VCC - I_C*R_C;\n",
+ "\n",
+ "print(\"The new operating point for base resistor RB=50 k\u2126 is, VCE=%dV and IC=%dmA.\"%(V_CE,I_C));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector current = 1mA\n",
+ "Collector emitter voltage =7V.\n",
+ "The new operating point for base resistor RB=50 k\u2126 is, VCE=5V and IC=2mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.4: Page number 201-202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#variable declaration\n",
+ "beta=100.0; #base current amplification factor\n",
+ "VCC=6.0; #Collector suply voltagein V\n",
+ "VBE=0.7 #Base emitter voltage in V\n",
+ "R_B=530.0; #Base resistor's resistance in k\u2126 .\n",
+ "R_C=2.0; #Collector resistor's resistance in k\u2126 .\n",
+ "\n",
+ "#Calculation\n",
+ "#D.C load line equation : VCE=VCC-IC*RC;\n",
+ "#Calculating maximum VCE ,by IC=0;\n",
+ "I_C_Vce_max=0; #Collector current for maximum collector-emitter voltage, in mA\n",
+ "VCE_max=VCC;-I_C_Vce_max*R_C; #Maximum collector-emitter voltage in V\n",
+ "\n",
+ "\n",
+ "#Calculating maximum collector current IC,by VCE=0;\n",
+ "V_CE_IC_max=0; #Collector-emitter voltage for maximum collector current, in V \n",
+ "I_C_max=(VCC-V_CE_IC_max)/R_C; #Maximum collector current in mA\n",
+ "\n",
+ "\n",
+ "#Operating point:\n",
+ "#For input circuit, applying Kirchhoff's law, We get,\n",
+ "#VCC=IB*RB + VBE.\n",
+ "#From the above equation,\n",
+ "IB=(VCC-VBE)/R_B; #Base current in mA\n",
+ "IC=beta*IB; #Collector current\n",
+ "\n",
+ "#From the output circuit, applying Kirchhoff's law, we get:\n",
+ "VCE=VCC-IC*R_C; #Collector-emitter voltage in V\n",
+ "\n",
+ "\n",
+ "#Stability factor\n",
+ "SF=beta+1; \n",
+ "\n",
+ "#Result\n",
+ "print(\"Operating point: VCE= %dV and IC=%d mA\"%(VCE,IC));\n",
+ "print(\"Stability factor= %d.\"%SF);\n",
+ "\n",
+ "\n",
+ "#plot\n",
+ "limit = plt.gca()\n",
+ "limit.set_xlim([0,10])\n",
+ "limit.set_ylim([0,5])\n",
+ "VCE=[i for i in range(0,(int)(VCC+1))]; #Plot variable for V_CE\n",
+ "IC=[((VCC-i)/(R_C)) for i in (VCE[:])]; #Plot variable for I_C\n",
+ "\n",
+ "p=plot(VCE,IC);\n",
+ "xlabel(\"VCE(V)\");\n",
+ "ylabel(\"IC(mA)\");\n",
+ "title(\"d.c load line\");\n",
+ "show(p);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point: VCE= 4V and IC=1 mA\n",
+ "Stability factor= 101.\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEZCAYAAACZwO5kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGk5JREFUeJzt3XtQVPfdx/HPIqTexQugCKjxEpVFwetoNVk0XqsmijFi\nNQZjMqONo0lnWmsatZ3RxMTUYFrTPonGWCsYGxuNEms1WWu11NbLo6FpiVNJuHi/U0Vu+/zhwwoo\nCMjZs3v2/ZphIrvL/r7smA8ff5xz1uZyuVwCAFhWgNkDAACMRdADgMUR9ABgcQQ9AFgcQQ8AFkfQ\nA4DFEfTwas8++6xeffXVB3qOrKwsBQQEqLS0tJ6musPhcGjt2rX3vG/p0qWaMWOGJOnbb79Vs2bN\nxNHMMEOg2QMA1bHZbLLZbGaPUaXq5it/e1RUlK5fv+6psYAKaPTwer7agn11blgPQQ+vcvToUfXp\n00fNmzfX1KlTVVBQUOVjS0tLtXz5cnXp0kXNmzdXv379lJOTc9818vLyNGHCBLVu3Vpdu3bV+++/\n777v0KFDGjRokFq2bKnw8HDNmzdPRUVF7vv/9Kc/qXv37goODta8efPkcrlqFOiVt48cDocWL16s\nIUOGqHnz5ho1apQuXrzofnx6eroGDx6sli1bKjY2Vvv27bvvGkBVCHp4jcLCQj355JOaOXOmLl++\nrKeeekoff/xxlVsjb731llJTU/XZZ5/p2rVr+uCDD9S4ceP7rjN16lRFRUXp9OnT+v3vf69Fixbp\niy++kCQFBgYqOTlZFy9e1F//+lft3btXa9askSRduHBBCQkJWr58uS5evKjOnTvrwIEDdd5aSklJ\n0fr163Xu3DkVFhZq5cqVkqTc3FyNGzdOixcv1uXLl7Vy5UolJCTowoULdVoHIOjhNdLT01VcXKz5\n8+erQYMGSkhIUP/+/at8/Nq1a7Vs2TJ17dpVkhQTE6NWrVpVu0Z2drYOHjyoFStW6KGHHlLv3r01\ne/ZsbdiwQZLUp08fDRgwQAEBAerQoYNeeOEFd5tOS0uT3W7XpEmT1KBBAy1YsEBt27at0/dqs9mU\nlJSkLl26qGHDhpoyZYqOHTsmSdq4caPGjh2r0aNHS5Ief/xx9evXT2lpaXVaCyDo4TXy8vLUvn37\nCrd16NChyq2R7Oxsde7cudZrtGrVSk2aNHHfFhUVpdzcXElSZmamxo0bp3bt2qlFixZ65ZVX3Fsq\neXl5ioiIqPB8kZGRtVq/vPI/JBo1aqT8/HxJ0jfffKMtW7aoZcuW7o8DBw7ozJkzdV4L/o2gh9do\n166dO3DLfPPNN1VujURGRurkyZO1WiM8PFyXLl1yh6p0+9DHsgCfM2eOevbsqZMnT+rq1atatmyZ\ne189PDxc2dnZ7q9zuVwVPq+srls6UVFRmjFjhi5fvuz+uH79un70ox/V6fkAgh5eY/DgwQoMDNTq\n1atVVFSkrVu36u9//3uVj589e7ZeffVVnTx5Ui6XS8ePH9elS5eqXSMyMlKDBw/WT37yE926dUvH\njx/XunXrNH36dElSfn6+mjVrpsaNG+tf//qX3n33XffXjh07VhkZGfrDH/6g4uJirV69utqWfb9f\n0lZ1//Tp0/Xpp59q9+7dKikpUUFBgZxO510/BIGaIujhNYKCgrR161atX79erVu31kcffaSEhAT3\n/WUnHZUdWfPyyy9rypQpGjlypFq0aKHnn3++yqN0yrfrlJQUZWVlKTw8XJMmTdLPf/5zDRs2TJK0\ncuVKbdq0Sc2bN9cLL7ygqVOnur+2TZs22rJlixYuXKg2bdro5MmTGjJkSJXfT+Vj7Cs3/Mr3lX0e\nERGhbdu2afny5QoNDVVUVJTeeustQ074gn+wGf3GIx07dlTz5s3VoEEDBQUF6dChQ0YuBwCoxPAz\nY202m5xO532PhgAAGMMjWzecIQgA5jE86G02m/s44Pfee8/o5QAAlRi+dXPgwAG1a9dO58+f14gR\nI9S9e3cNHTrU6GUBAP/P8KBv166dJCkkJEQTJ07UoUOH3EHvzVclBABvVpstcUO3bm7cuOG+NOt/\n//tf7d69WzExMRUeU3ZRKH//WLJkiekzeMsHrwWvBa9F9R+1ZWijP3v2rCZOnChJKi4u1ve//32N\nHDnSyCUBAJUYGvSdOnVyX6gJAGAOzoz1Eg6Hw+wRvAavxR28FnfwWtSd4WfGVru4zVan/SYA8Ge1\nzU4aPQBYHEEPABZH0AOAxRH0AGBxBD0AWBxBDwAWR9ADgMUR9ABgcQQ9AFgcQQ8AFkfQA4DFEfQA\nYHEEPQBYHEEPABZH0AOAxRH0AGBxBD0AWBxBDwAWR9ADgMUR9ABgcQQ9AFgcQQ8AFkfQA4DFEfQA\nYHEEPQBYHEEPABZH0AOAxRH0AGBxBD0AWBxBDwAWR9ADgMUR9ABgcQQ9AFgcQQ8AFmd40JeUlCgu\nLk7jx483eikAwD0YHvTJycnq2bOnbDab0UsBAO7B0KDPyclRWlqaZs+eLZfLZeRSAIAqGBr0L730\nkt58800FBPCrAAAwS6BRT7xjxw6FhoYqLi5OTqezysctXbrU/WeHwyGHw2HUSADgk5xOZ7U5ej82\nl0F7KosWLdJvf/tbBQYGqqCgQNeuXVNCQoI2bNhwZ3GbjS0dAKil2manYUFf3r59+7Ry5Up9+umn\nFRcn6AGg1mqbnR7bPOeoGwAwh0cafZWL0+gBoNa8ttEDAMxB0AOAxRH0AGBxBD0AWBxBDwAWR9AD\ngMUR9ABgcQQ9AFgcQQ8AFkfQA4DFEfQAYHEEPQBYHEEPABZH0AOAxRH0AGBxBD0AWBxBDwAWR9AD\ngMUR9ABgcQQ9AFgcQQ8AFkfQA4DFEfQAYHEEPQBYHEEPABZH0AOAxRH0AGBxBD0AWBxBDwAWR9AD\ngMUR9ABgcQQ9AFgcQQ8AFkfQA4DFEfQAYHGGBn1BQYEGDhyo2NhY2e12LV261MjlAAD3YHO5XC4j\nF7hx44YaN26s4uJiDRkyRMnJyRo4cODtxW02Gbw8AFhObbPT8K2bxo0bS5IKCwtVVFSkgAB2iwDA\nkwxP3dLSUsXGxiosLEwjR45U//79jV4SAFCO4UEfEBCgY8eOKScnR3/729+UkZFR4f7sbKMnAAD/\nFuiphVq0aKH4+Hjt2rVL0dHR7tsfeWSpHn9ciouT4uMdcjgcnhoJAHyC0+mU0+ms89cb+svYCxcu\nKDAwUMHBwbp586ZGjRqlhQsXauzYsbcXt9n0v//rUlKSFBoq/c//SJGRRk0DANbgVb+MPX36tIYN\nG6bevXtrwIABGjlypDvky/TqJaWnS9/9rtSnj7R2rcSBOABQfww/vLLaxSv9VDp+XLR7ALgPr2r0\ntUW7B4D651WNvjzaPQDcm083+vJo9wBQP2rc6C9fvqy8vDw1atRIHTt2rJczXGv6U4l2DwB31LbR\nVxv0V65c0Zo1a5SSkqJbt24pNDRUBQUFOnPmjAYNGqS5c+cqPj7eI8MWFUkrVkjJydLrr0uzZkk2\nW52XBgCfVa9BP2LECM2YMUMTJkxQcHCw+3aXy6XDhw9r48aNstvtmj17tkeGlWj3AFCvQW+0ul69\nknYPwJ8ZHvQnT55USkqKUlNT77puTW096GWKafcA/JEhR93k5ubqF7/4hfr37y+73a6SkhKlpqbW\necj6wpE5AHB/1Tb63/zmN0pJSVFubq6mTJmip59+Wk888YROnTpVP4vX4xuP0O4B+It6bfQvvvii\nSktLtWnTJi1btky9evV64AGNQrsHgHurttFfuHBBW7ZsUWpqqk6fPq0pU6Zo/fr1ysnJqZ/FDXor\nQdo9ACur10bfpk0bzZkzR/v27dPevXsVHByssLAwde/eXYsWLXrgYY1CuweAO+p0eGVmZqZSU1O1\nePHiB1vcA28OTrsHYDW1zc4avcNUcXGxdu7cqaysLJWUlMjlcqlJkyZ1HtKTytr9ihW32z3H3QPw\nNzVq9GPGjFGjRo0UExNT4Ro3S5YsebDFPdDoy6PdA7ACQxp9bm6ujh8/XuehvAXtHoA/qtEJU6NH\nj9Yf//hHo2fxiKAg6ac/lfbuldaskcaMkbKzzZ4KAIxTo6AfNGiQJk2apIYNG6pZs2Zq1qyZmjdv\nbvRshipr90OGcGQOAGur0R59x44dtX37dtnt9nq5Dr17cQ/v0VeFvXsAvsSQa91ERUUpOjq6XkPe\nm3DcPQArq1Gjnzlzpk6dOqUxY8booYceuv2FNptefvnlB1vcSxp9ebR7AN7OkEbfqVMnDRs2TIWF\nhcrPz1d+fr6uX79e5yG9Ge0egNX45BuPeArtHoA3qtdGP3v2bJ04ceKe9+Xn52vt2rXauHFj7Sb0\nIbR7AFZQbaM/evSoli9frhMnTshutyskJEQFBQU6efKkrl69qlmzZmnOnDn6zne+U7fFvbzRl0e7\nB+AtDHkrwevXr+sf//iHTp8+rcaNG6tHjx565JFHHmhQybeCXuK9agF4h3oN+nPnzun8+fOKjo6u\ncHtGRoZCQ0MVEhJS90nle0FfhnYPwEz1ukc/b948Xbhw4a7bL168qPnz59d+Ootg7x6AL6m20fft\n21eHDx++533R0dHKyMh4sMV9tNGXR7sH4Gn12uirO1a+qKio5lNZGO0egLerNui7dOminTt33nV7\nWlqaOnfubNhQvqbyFTHHjuWKmAC8R7VbN5mZmRo3bpwGDx6svn37yuVy6fDhwzp48KB27NjxwEfe\nWGHrpjKOzAFgtHo/vLKgoECbNm3Sl19+KZvNpujoaCUmJqpRo0YeH9aXsHcPwCiGHEdvFCsHvUS7\nB2CMeg36pk2bylZFMtlsNl27dq32E1Z6DisHfRnaPYD6VK9H3ZRdpfJeHzUJ+ezsbMXHxys6Olp2\nu12rV6+u8WBWwpE5AMxk6NbNmTNndObMGcXGxio/P199+/bVJ598oh49etxe3E8afXm0ewAPypDr\n0ddV27ZtFRsbK+n2NlCPHj2Ul5dn5JJej3YPwNM89svYrKwsPfbYY8rIyFDTpk1vL+6Hjb482j2A\nuvCqRl8mPz9fkydPVnJysjvkQbsH4BmGN/qioiKNGzdOY8aM0YIFCyoubrNpyZIl7s8dDoccDoeR\n43gt2j2AqjidTjmdTvfnP/vZz7znOHqXy6WZM2eqdevWWrVq1d2L+/nWTWUcdw+gJrzqhKm//OUv\nevTRR9WrVy/38fivvfaaRo8efXtxgv6eaPcAquNVQX/fxQn6KtHuAVSFoLcY2j2AyrzyqBvUHUfm\nAHhQNHofQrsHINHoLY12D6AuaPQ+inYP+C8avZ+g3QOoKRq9BdDuAf9Co/dDtHsA1aHRWwztHrA+\nGr2fo90DqIxGb2G0e8CaaPRwo90DkGj0foN2D1gHjR73RLsH/BeN3g/R7gHfRqPHfdHuAf9Co/dz\ntHvA99DoUSu0e8D6aPRwo90DvoFGjzqj3QPWRKPHPdHuAe9Fo0e9oN0D1kGjx33R7gHvQqNHvaPd\nA76NRo9aKWv3ISHSe+/R7gEz0OhhqLJ2P2QI7R7wFTR61BntHjAHjR4eQ7sHfAONHvWCdg94Do0e\npqDdA96LRo96R7sHjEWjh+lo94B3odHDULR7oP7R6OFVytr90KG0e8AsNHp4zIkT0rPP0u6BB0Wj\nh9eKiaHdA2YwNOhnzZqlsLAwxcTEGLkMfEhQkPTKK9Lnn0tr1khjxkjZ2WZPBViboUGflJSkXbt2\nGbkEfBTtHvAcQ4N+6NChatmypZFLwIfR7gHPYI8epqvc7t9/n3YP1KdAswdYunSp+88Oh0MOh8O0\nWWCesnY/YcLtI3O2bLl9ZE5UlNmTAeZzOp1yOp11/nrDD6/MysrS+PHjdeLEibsX5/BK3ENRkfTG\nG9Lbb0uvvSY995xks5k9FeA9OLwSPq/83v2770qjR0vffmv2VIDvMjToExMTNXjwYGVmZioyMlIf\nfPCBkcvBYsr27h99VOrbl717oK44MxY+oeys2jZt2LsH2LqBJdHugbqj0cPn0O7h72j0sDzaPVA7\nNHr4NNo9/BGNHn6Fdg/cH40elkG7h7+g0cNv0e6Be6PRw5Jo97AyGj0g2j1QHo0elke7h9XQ6IFK\naPfwdzR6+BXaPayARg9Ug3YPf0Sjh9+i3cNX0eiBGqLdw1/Q6AHR7uFbaPRAHdDuYWU0eqCSsnYf\nEnK73UdGmj0RUBGNHnhAZe1+6FCpTx9p7VraPXwbjR6oBu0e3ohGD9Qj2j2sgEYP1BDtHt6CRg8Y\nhHYPX0WjB+qAdg8z0egBD6Ddw5fQ6IEHRLuHp9HoAQ+j3cPb0eiBekS7hyfQ6AET0e7hjWj0gEFo\n9zAKjR7wErR7eAsaPeABtHvUJxo94IVo9zATjR7wMNo9HhSNHvBytHt4mqFBv2vXLnXv3l1du3bV\nihUrjFwK8ClBQdIrr0iffy6tWSONGSNlZ5s9FazKsKAvKSnRiy++qF27dumf//ynUlJS9NVXXxm1\nnM9zOp1mj+A1/Om1uF+796fX4n54LerOsKA/dOiQunTpoo4dOyooKEhTp07Vtm3bjFrO5/GX+A5/\ney2qa/f+9lpUh9ei7gwL+tzcXEWW+y1TRESEcnNzjVoO8Hns3cMohgW9zWYz6qkBy6rc7lNSpNJS\ns6eCrzPs8Mr09HQtXbpUu3btkiS99tprCggI0I9//OM7i/PDAADqpDbRbVjQFxcX65FHHtHevXsV\nHh6uAQMGKCUlRT169DBiOQBAFQINe+LAQP3yl7/UqFGjVFJSoueee46QBwATmHpmLADAeKadGcvJ\nVLdlZ2crPj5e0dHRstvtWr16tdkjma6kpERxcXEaP3682aOY6sqVK5o8ebJ69Oihnj17Kj093eyR\nTLNq1SrZ7XbFxMRo2rRpunXrltkjecysWbMUFhammJgY922XLl3SiBEj1K1bN40cOVJXrlyp9jlM\nCXpOprojKChIq1atUkZGhtLT0/WrX/3Kb1+LMsnJyerZs6ff/7J+/vz5Gjt2rL766isdP37cb7c+\nc3Nz9c477+jw4cM6ceKESkpKlJqaavZYHpOUlOQ+qKXM66+/rhEjRigzM1PDhw/X66+/Xu1zmBL0\nnEx1R9u2bRUbGytJatq0qXr06KG8vDyTpzJPTk6O0tLSNHv2bL++4N3Vq1e1f/9+zZo1S9Lt33m1\naNHC5KnMU1xcrBs3brj/2759e7NH8pihQ4eqZcuWFW7bvn27Zs6cKUmaOXOmPvnkk2qfw5Sg52Sq\ne8vKytLRo0c1cOBAs0cxzUsvvaQ333xTAQH+fb29U6dOKSQkRElJSerTp4+ef/553bhxw+yxTNG+\nfXv98Ic/VFRUlMLDwxUcHKzHH3/c7LFMdfbsWYWFhUmSwsLCdPbs2Wofb8r/Tf7+T/J7yc/P1+TJ\nk5WcnKymTZuaPY4pduzYodDQUMXFxfl1m5duN9gjR45o7ty5OnLkiJo0aXLff55b1eXLl7V9+3Zl\nZWUpLy9P+fn5+t3vfmf2WF7DZrPdN1NNCfr27dsru9yl+rKzsxUREWHGKF6hqKhICQkJmj59up58\n8kmzxzHNwYMHtX37dnXq1EmJiYn6/PPP9cwzz5g9likiIiIUERGh/v37S5ImT56sI0eOmDyVOfbs\n2aNOnTqpdevWCgwM1KRJk3Tw4EGzxzJVWFiYzpw5I0k6ffq0QkNDq328KUHfr18/ff3118rKylJh\nYaE2b96sCRMmmDGK6Vwul5577jn17NlTCxYsMHscUy1fvlzZ2dk6deqUUlNTNWzYMG3YsMHssUzR\ntm1bRUZGKjMzU9LtsIuOjjZ5KnN06NBB6enpunnzplwul/bs2aOePXuaPZapJkyYoA8//FCS9OGH\nH96/ILpMkpaW5urWrZurc+fOruXLl5s1hun279/vstlsrt69e7tiY2NdsbGxrs8++8zssUzndDpd\n48ePN3sMUx07dszVr18/V69evVwTJ050XblyxeyRTLNkyRJX9+7dXXa73fXMM8+4CgsLzR7JY6ZO\nnepq166dKygoyBUREeFat26d6+LFi67hw4e7unbt6hoxYoTr8uXL1T4HJ0wBgMX596ENAOAHCHoA\nsDiCHgAsjqAHAIsj6AHA4gh6ALA4gh4ALI6ghyUNGzZMu3fvrnDb22+/rblz5yozM1Njx45Vt27d\n1LdvXz399NM6d+6cnE6nWrRoobi4OPfH3r17JUk3b96Uw+FQaWmpHn74YfcZq2UWLFigN954Q19+\n+aWSkpI89n0CNUHQw5ISExPvumb55s2blZiYqHHjxukHP/iBMjMzdfjwYc2dO1fnz5+XzWbTo48+\nqqNHj7o/hg8fLklat26dEhISFBAQcNdzl5aW6uOPP1ZiYqLsdrtycnIqXMsJMBtBD0tKSEjQzp07\nVVxcLEnuKx9+/fXXGjx4sL73ve+5H/vYY48pOjq62itmbtq0SU888YSk2z9ENm/e7L7vz3/+szp0\n6OC+9Pb48eP96o0x4P0IelhSq1atNGDAAKWlpUmSUlNTNWXKFGVkZKhPnz5Vft3+/fsrbN2cOnVK\nhYWF+s9//qOoqChJkt1uV0BAgI4fP+5+7mnTprmfo1+/ftq/f7+B3x1QOwQ9LKv8FsvmzZsrhHFV\nhg4dWmHrplOnTrpw4YKCg4Pv+dwlJSXatm2bnnrqKfd9ISEhfv0uYfA+BD0sa8KECdq7d6+OHj2q\nGzduKC4uTtHR0Tp8+HCtnqdRo0YqKCiocNvUqVP10Ucfac+ePerVq5dCQkLc9xUUFKhRo0b18j0A\n9YGgh2U1bdpU8fHxSkpKcrf5adOm6eDBg+4tHen2HntGRkaVz9OyZUuVlJSosLDQfdvDDz+sNm3a\naOHChXf9SyEzM1N2u72evxug7gh6WFpiYqJOnDihxMRESVLDhg21Y8cOvfPOO+rWrZuio6P161//\nWiEhIbLZbHft0W/dulWSNHLkyLv23RMTE/Xvf/9bkyZNqnD7F198oXHjxnnmGwRqgOvRAzVw9OhR\nrVq16r7veHXr1i05HA4dOHDA79/gHN6Dv4lADcTFxSk+Pl6lpaXVPi47O1srVqwg5OFVaPQAYHHU\nDgCwOIIeACyOoAcAiyPoAcDiCHoAsLj/AxBRW6txz5gaAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f8eea67df10>"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.5: Page number 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage in V\n",
+ "beta=100.0; #base current amplification factor\n",
+ "I_C_zero_signal=1.0; #zero signal collector current in mA\n",
+ "VBE=0.3; #Base-emitter voltage of Ge transistor in V\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "#Case(i)\n",
+ "I_B_zero_signal=I_C_zero_signal/beta; #Zero signal base current in mA\n",
+ "\n",
+ "#applying the Kirchhoff's law along input circuit:\n",
+ "#We get, VCC=IB*RB +VBE\n",
+ "#From the above equation we get,\n",
+ "R_B=(VCC-VBE)/I_B_zero_signal; #Required base resistor's resistance in k\u2126\n",
+ "\n",
+ "print(\"Value of base resistor for operating the given Ge transistor at zero signal IC=1mA is = %d k\u2126\"%R_B);\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Case(ii)\n",
+ "beta=50;\n",
+ "I_B=(VCC-VBE)/R_B; #Base current of another transistor with beta=50, in mA\n",
+ "I_C_zero_signal=beta*I_B; #Zero signal collector current for beta=50 , in mA\n",
+ "\n",
+ "print(\"The new value of zero signal collector current =%.1fmA\"%I_C_zero_signal);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of base resistor for operating the given Ge transistor at zero signal IC=1mA is = 1170 k\u2126\n",
+ "The new value of zero signal collector current =0.5mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.6:Page number 202-203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "VCC=10.0; #Collector supply voltage in V\n",
+ "VBE=0; #Base emitter voltage in V(considering itas zero due to it's small value)\n",
+ "R_B=1.0; #Base resistor's resistance in M\u2126\n",
+ "R_C=2.0; #Collector resistor's resistance in k\u2126 \n",
+ "R_E=1.0; #Emitter resistor's resistance in k\u2126\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#using Kirchhoff's law in the input circuit, we get:\n",
+ "#VCC=IB*RB +VBE +IE*RE\n",
+ "#Since, IE=(beta +1)*I_B\n",
+ "#From the above equation we get:\n",
+ "I_B=round((VCC-VBE)/((beta + 1)*R_E + R_B*1000),4); #Base current in mA\n",
+ "I_C=round(beta*I_B,2); #Collector current in mA\n",
+ "I_E=I_B+I_C; #Emitter current in mA\n",
+ "\n",
+ "#Result\n",
+ "print(\"Base current =%.4f mA\"%I_B);\n",
+ "print(\"Collector current =%.2f mA\"%I_C);\n",
+ "print(\"Emitter current =%.3f mA\"%I_E);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Base current =0.0091 mA\n",
+ "Collector current =0.91 mA\n",
+ "Emitter current =0.919 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.7: Page number 203-204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCE=8.0; #Collector-emitter voltage at operating point in V\n",
+ "IC=2.0; #Colector current at operating point in mA\n",
+ "VCC=15.0; #Collector supply voltagein V\n",
+ "beta=100.0; #base current amplification factor\n",
+ "VBE=0.6; #base emitter voltage in V\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's law along the output circuit,\n",
+ "#we get, VCC=VCE+IC*RC.\n",
+ "#So, from above equation we get:\n",
+ "RC=(VCC-VCE)/IC; #Collector resistor's resistance in k\u2126 .\n",
+ "IB=IC/beta; #Base current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the input circuit,\n",
+ "#we get, VCC=IB*RB + VBE\n",
+ "#So, from the above equation:\n",
+ "RB=(VCC-VBE)/IB; #Base resistor's resistance in k\u2126 .\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Collector load =%.1f k\u2126 .\"%RC);\n",
+ "print(\"Base resistor=%d k\u2126 .\"%RB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector load =3.5 k\u2126 .\n",
+ "Base resistor=720 k\u2126 .\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.8: Page number 204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage in V\n",
+ "VBE=0.7; #Base-emitter voltage in V\n",
+ "RB=100.0; #Base resistor's resistance in k\u2126\n",
+ "RC=560.0; #Collector resistor's resistance in \u2126\n",
+ "beta_25=100.0; #base current amplification factor at 25 degree celsius\n",
+ "beta_75=150.0; #base current amplification factor at 25 degree celsius\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "\n",
+ "#Applying Kirchhoff's law along input circuit, we get\n",
+ "#VCC=IB*RB+VBE\n",
+ "IB=(VCC-VBE)/RB; #Base current at 25 degree celsius, in mA\n",
+ "\n",
+ "\n",
+ "#For temperature 25 degree celsius\n",
+ "IC_25=beta_25*IB; #Collector current at 25 degree celsius, in mA\n",
+ "\n",
+ "\n",
+ "#Applying Kirchhoff's alw at the output circuit,\n",
+ "#we get: VCC=IC*RC + VCE\n",
+ "#From the above equation,\n",
+ "VCE_25=round(VCC-(IC_25/1000)*RC,2); #Collector emitter voltage at 25 degree celsius, in V\n",
+ "\n",
+ "\n",
+ "#For temperature 75 degree celsius\n",
+ "IC_75=round(beta_75*IB,0); #Collector current at 75 degree celsius, in mA\n",
+ "\n",
+ "#Applying Kirchhoff's alw at the output circuit,\n",
+ "#we get: VCC=IC*RC + VCE\n",
+ "#From the above equation,\n",
+ "VCE_75=round(VCC-(IC_75/1000)*RC,2); #Collector emitter voltage at 75 degree celsius, in V\n",
+ "\n",
+ "\n",
+ "change_IC=(IC_75-IC_25)*100.0/IC_25; #percentage change in collector current\n",
+ "change_VCE=(VCE_75-VCE_25)*100.0/VCE_25; #Percentage change in collector-emitter voltage \n",
+ "\n",
+ "#Results\n",
+ "print(\"The percentage change in collector current =%d%%\"%change_IC);\n",
+ "print(\"The percentage change in collector-emitter voltage =%.1f%%\"%change_VCE);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage change in collector current =50%\n",
+ "The percentage change in collector-emitter voltage =-56.3%\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.10: Page number 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCE_max=20.0; #Maximum collector-emitter voltage in V\n",
+ "VBE=0.7; #Base-emitter voltage in V\n",
+ "IC_max=8.0; #Maximum collector current in mA\n",
+ "IB=40.0; #Base current in microampere\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#During cut off state the collector-emitter voltage is maximum and equal to collector supply voltage\n",
+ "VCC=VCE_max; #Collector supply voltage in V\n",
+ "\n",
+ "#Maximum collector current IC_max=collector supply voltage(VCC)/collector load(RC)\n",
+ "#Collector load(RC)=VCC*IC_max\n",
+ "RC=VCC/IC_max; #Collector load in k\u2126 .\n",
+ "\n",
+ "#Applying Kirchhoff's law along input circuit,\n",
+ "#we get, VCC=IB*RB +VBE.\n",
+ "#From the above equation, we get:\n",
+ "RB=(VCC-VBE)/(IB/1000); #Base resistor's resistance in k\u2126 .\n",
+ "\n",
+ "#Results\n",
+ "print(\"Collector supply voltage = %dV\"%VCC);\n",
+ "print(\"Collector load=%.1f k\u2126 .\"%RC);\n",
+ "print(\"Base resistor's resistance=%.1f k\u2126 .\"%RB);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector supply voltage = 20V\n",
+ "Collector load=2.5 k\u2126 .\n",
+ "Base resistor's resistance=482.5 k\u2126 .\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.12: Page number 208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage in V\n",
+ "VEE=-20.0; #Emitter supply voltage in V\n",
+ "RB=100.0; #Base resistor's resistance in k\u2126\n",
+ "RC=4.7; #Collector resistor's resistance in k\u2126\n",
+ "RE=10.0; #Emitter resistor's resistance in k\u2126\n",
+ "VBE=0.7; #Base-emitter voltage in V\n",
+ "beta=85.0; #Base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's voltage law along the base-emitter circuit (input circuit),\n",
+ "#we get,IB*RB +IE*RE +VBE -VEE=0.\n",
+ "#Since IB=IC/beta and IC~IE,\n",
+ "#(IE/beta)*RB + IE*RE + VBE + VEE =0.\n",
+ "IE=(-VEE-VBE)/(RE + RB/beta); #Emitter current in mA\n",
+ "IC=IE; #Collector current (approximately equal to emitter current) in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law from VCC till collector terminal,\n",
+ "#we get, VCC - IC*RC =VC\n",
+ "VC=VCC-IC*RC; #voltage at collector terminal in V\n",
+ "\n",
+ "#Applying Kirchhoff's law from emitter terminal to VEE\n",
+ "#we get, VE -IE*RE =VEE\n",
+ "VE=VEE + IE*RE; #Voltage at emitter treminal in V\n",
+ "\n",
+ "VCE=VC-VE; #Collector-emitter voltage in V\n",
+ "\n",
+ "#Results\n",
+ "print(\"The collector current = %.2f mA\"%IC);\n",
+ "print(\"The emitter current = %.2f mA\"%IE);\n",
+ "print(\"The voltage at collector terminal = %.1f V\"%VC);\n",
+ "print(\"The collector-emitter voltage = %.1f V\"%VCE);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The collector current = 1.73 mA\n",
+ "The emitter current = 1.73 mA\n",
+ "The voltage at collector terminal = 11.9 V\n",
+ "The collector-emitter voltage = 14.6 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.13: Page number 208-209\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage in V\n",
+ "VEE=-20.0; #Emitter supply voltage in V\n",
+ "RB=100.0; #Base resistor's resistance in k\u2126\n",
+ "RC=4.7; #Collector resistor's resistance in k\u2126\n",
+ "RE=10.0; #Emitter resistor's resistance in k\u2126\n",
+ "beta1=85.0; #Base current amplification factor for case 1 \n",
+ "beta2=100.0; #Base current amplification factor for case 1\n",
+ "VBE_1=0.7; #Base emitter voltage for case 1 in V\n",
+ "VBE_2=0.6; #Base emitter voltage for case 2 in V\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#For beta=85 and VBE=0.7,\n",
+ "#As calculated in the previous question,\n",
+ "IC_1=1.73; #Collector current in mA.\n",
+ "VCE_1=14.6; #Collector-emitter voltage in V.\n",
+ "\n",
+ "\n",
+ "#For case (ii)\n",
+ "#beta=100 and VBE=0.6\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along the base-emitter circuit (input circuit),\n",
+ "#we get,IB*RB +IE*RE +VBE -VEE=0.\n",
+ "#Since IB=IC/beta and IC~IE,\n",
+ "#(IE/beta)*RB + IE*RE + VBE +VEE =0.\n",
+ "IE_2=round((-VEE-VBE_2)/(RE + RB/beta2),2); #Emitter current in mA\n",
+ "IC_2=IE_2; #Collector current (approximately equal to emitter current) in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law from VCC till collector terminal,\n",
+ "#we get, VCC - IC*RC =VC\n",
+ "VC=round(VCC-IC_2*RC,1); #voltage at collector terminal in V\n",
+ "\n",
+ "#Applying Kirchhoff's law from emitter terminal to VEE\n",
+ "#we get, VE -IE*RE =VEE\n",
+ "VE=round(VEE + IE_2*RE,1); #Voltage at emitter treminal in V\n",
+ "\n",
+ "VCE_2=VC-VE; #Collector-emitter voltage in V\n",
+ "\n",
+ "\n",
+ "change_IC= (IC_2-IC_1)*100/IC_1; #%age change in collector current\n",
+ "\n",
+ "change_VCE=(VCE_2-VCE_1)*100/VCE_2; #%age change in collector-emitter voltage\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Percentage change in collector current =%.1f%%\"%change_IC);\n",
+ "print(\"Percentage change in collector-emitter voltage =%.1f%%\"%change_VCE);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage change in collector current =1.7%\n",
+ "Percentage change in collector-emitter voltage =-3.5%\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.14: Page number 210\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage in V\n",
+ "VBE=0.7 #Base-emitter voltage in V\n",
+ "RB=100.0; #Base resistor's resistance in k\u2126\n",
+ "RC=1.0; #Collector resistor's resistance in k\u2126\n",
+ "beta=100.0; #base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's law along input circuit,\n",
+ "#we get, VCC -IC*RC -IB*RB -VBE=0.\n",
+ "#since IC= beta*IB,\n",
+ "#We get,\n",
+ "IB=(VCC-VBE)/(RB + beta*RC); #Base current in mA\n",
+ "IC=beta*IB; #Collector current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit,\n",
+ "#we get, VCC-VCE - IC*RC=0.\n",
+ "#From the above equation,\n",
+ "VCE=VCC-IC*RC; #Collector emitter voltage in V\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The operating point : VCE=%.2fV and IC=%.2fmA.\"%(VCE,IC));\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The operating point : VCE=10.35V and IC=9.65mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.15: Page number 210-211\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage in V\n",
+ "VBE=0.3; #Base emitter voltage in V\n",
+ "IC=1.0; #Collector current in mA\n",
+ "VCE=8.0; #Collector emitter voltage in V\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Case(i)\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit,\n",
+ "#we get, VCC-IC*RC-VCE=0.\n",
+ "#from the above equation we get,\n",
+ "RC=(VCC-VCE)/IC; #Collector load in kilo ohm\n",
+ "IB=IC/beta; #Base current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along input circuit\n",
+ "#we get, VCC-VBE-(beta*IB*RC)-IB*RB=0.\n",
+ "#From the above equation we get,\n",
+ "RB=round((VCC-VBE-beta*IB*RC)/IB,0); #Base resistor's resistance in k\u2126\n",
+ "\n",
+ "#Results\n",
+ "print(\"The resistance value of base resistor=%d k\u2126 and collector load= %d k\u2126.\"%(RB,RC));\n",
+ "\n",
+ "#Case(ii)\n",
+ "\n",
+ "beta=50;\n",
+ "\n",
+ "#Applying Kirchhoff's law along input circuit,\n",
+ "#we get, VCC -IC*RC -IB*RB -VBE=0.\n",
+ "#since IC= beta*IB,\n",
+ "#We get,\n",
+ "IB=(VCC-VBE)/(RB + beta*RC); #Base current in mA\n",
+ "IC=beta*IB; #Collector current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit,\n",
+ "#we get, VCC-VCE - IC*RC=0.\n",
+ "#From the above equation,\n",
+ "VCE=round(VCC-IC*RC,1); #Collector emitter voltage in V\n",
+ "\n",
+ "#Results\n",
+ "print(\"The operating point : VCE=%.1fV and IC=%.1fmA.\"%(VCE,IC));\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The resistance value of base resistor=770 k\u2126 and collector load= 4 k\u2126.\n",
+ "The operating point : VCE=9.6V and IC=0.6mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.16 : Page number 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCE=2.0; #Collector-emitter voltage at operating point in V\n",
+ "VBE=0.7; #Base-emitter voltage in V \n",
+ "IC=1.0; #Collector current at operating point in mA\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "IB=IC/beta; #Base current in mA\n",
+ "\n",
+ "#As, VCE=VCB +VBE\n",
+ "#we get,\n",
+ "VCB=VCE-VBE; #Collector-base voltage in V\n",
+ "RB=VCB/IB; #Base resistor's resistance in k\u2126\n",
+ "\n",
+ "#Results\n",
+ "print(\"Value of base resistor's resistance=%d k\u2126.\"%RB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of base resistor's resistance=130 k\u2126.\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.17 : Page number 211-212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage in V\n",
+ "VBE=0.7 #Base-emitter voltage in V\n",
+ "RB=400.0; #Base resistor's resistance in k\u2126\n",
+ "RC=4.0; #Collector resistor's resistance in k\u2126\n",
+ "RE=1.0; #Emitter resistor's resistance in k\u2126\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's law along outut circuit,\n",
+ "#we get, VCC -(IC+IB)*RC -IB*RB -VBE - IE*RE=0.\n",
+ "#since IC= beta*IB, IC+IB ~ IC and IE~IC,\n",
+ "#We get, VCC - IC*RC -(IC/beta)*RB -VBE - IE*RE\n",
+ "IC=(VCC-VBE)/(RB/beta + RC + RE); #Collector current current in mA.\n",
+ "IE=IC; #Emitter current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit,\n",
+ "#we get, VCC-VCE - IC*RC -IE*RE=0. (IE~IC)\n",
+ "#From the above equation,\n",
+ "VCE=VCC-IC*(RC+RE); #Collector emitter voltage in V\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The operating point : VCE=%.1fV and IC=%.2fmA.\"%(VCE,IC));\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The operating point : VCE=5.7V and IC=1.26mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.18 : Page number 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage in V\n",
+ "RB=100.0; #Base resistor's resistance in k\u2126\n",
+ "RC=10.0; #Collector resistor's resistance in k\u2126\n",
+ "RE=0; #Emitter resistor's resistance in k\u2126\n",
+ "VBE=0.7; #Base-emitter voltage in V\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's law along outut circuit,\n",
+ "#we get, VCC -(IC+IB)*RC -IB*RB -VBE - IE*RE=0.\n",
+ "#since IC= beta*IB, IC+IB ~ IC and IE~IC,\n",
+ "#We get, VCC - IC*RC -(IC/beta)*RB -VBE - IE*RE\n",
+ "IC=(VCC-VBE)/(RC +RB/beta + RE); #Collector current in mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit,\n",
+ "#we get, VCC-VCE - IC*RC =0. (IE~IC)\n",
+ "#From the above equation,\n",
+ "VCE=VCC-IC*RC; #Collector-emitter voltage in V\n",
+ "\n",
+ "#Results\n",
+ "print(\"The d.c bias values are: VCE=%.2fV and IC=%.3fmA\"%(VCE,IC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The d.c bias values are: VCE=1.55V and IC=0.845mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.19: Page number 214-215\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage in V\n",
+ "R1=10.0; #Resistor R1's resistance in k\u2126\n",
+ "R2=5.0; #Resistor R2's resistance in k\u2126\n",
+ "RC=1.0; #Collector resistor's resistance in k\u2126 \n",
+ "RE=2.0; #Emitter resistor's resistance in k\u2126\n",
+ "VBE=0.7; #Base-emitter voltage in V\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's law along output circuit\n",
+ "#VCE=VCC-IC*(RC+RE);\n",
+ "#IC=0, for VCE_max\n",
+ "VCE_max=VCC; #Maximum collector-emitter voltage in V\n",
+ "#VCE=0, for IC_max\n",
+ "IC_max=VCC/(RC+RE); #Maximum collector current in mA\n",
+ "\n",
+ "#Operating point\n",
+ "V2=(VCC*R2)/(R1+R2); #Voltage across R2 resistor V\n",
+ "IE=(V2-VBE)/RE; #Emitter current in mA\n",
+ "IC=IE; #Collector current(Approx. equal to emitter current) in mA\n",
+ "VCE=VCC-IC*(RC+RE); #Collector-emitter voltage in V\n",
+ "\n",
+ "#Results\n",
+ "print(\"Collector-emitter voltage at operating point=%.2fV\"%VCE);\n",
+ "print(\"Collector current at operating point = %.2fmA\"%IC);\n",
+ "\n",
+ "#plot\n",
+ "limit = plt.gca()\n",
+ "limit.set_xlim([0,20])\n",
+ "limit.set_ylim([0,6])\n",
+ "VCE=[i for i in range(0,(int)(VCC+1))]; #Plot variable for V_CE\n",
+ "IC=[((VCC-i)/(RC+RE)) for i in (VCE[:])]; #Plot variable for I_C\n",
+ "\n",
+ "p=plot(VCE,IC);\n",
+ "xlabel(\"VCE(V)\");\n",
+ "ylabel(\"IC(mA)\");\n",
+ "title(\"d.c load line\");\n",
+ "show(p);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector-emitter voltage at operating point=8.55V\n",
+ "Collector current at operating point = 2.15mA\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEZCAYAAAB2AoVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVPXaB/DvIHhBQVEBQUQUNZVBGEBTChk0KD14SVJB\nQ0KpXvW4JFtvpeekvLXyZOEpseyc1/DSUYEuWqZgFq9jLi/RQTwqdg6SYgiYdwUNuc37x45RUJAZ\nZs/eM/v7WYuVzsD8HmZNz/x8Zu/9Ven1ej2IiMim2UldABERiY/NnohIAdjsiYgUgM2eiEgB2OyJ\niBSAzZ6ISAHY7EnWnnvuObz++uvteoySkhLY2dmhoaHBTFXdpdVqkZ6e/sD7UlJSEB8fDwD45Zdf\n4OTkBB7pTFKxl7oAotaoVCqoVCqpy2hRa/Xde7u3tzcqKystVRbRfbizJ9mz1t2wtdZNtonNnmSl\noKAAQUFBcHZ2RmxsLKqrq1v83oaGBqxcuRKDBg2Cs7MzQkJCcP78+YeuUV5ejsmTJ6NXr14YPHgw\nPv74Y8N9eXl5GDNmDFxcXODp6YlFixahtrbWcP+3336LoUOHokePHli0aBH0en2bmnrzUZJWq8Xy\n5cvx+OOPw9nZGU8++SSuXLli+P4jR44gNDQULi4uCAwMxP79+x+6BlFr2OxJNmpqajB16lQkJCTg\n2rVrmD59Or744osWxySrV69GZmYmcnJycPPmTWzcuBGOjo4PXSc2Nhbe3t6oqKjA559/jmXLlmHf\nvn0AAHt7e6xZswZXrlzB4cOHkZubi3Xr1gEALl++jJiYGKxcuRJXrlyBr68vDh48aPKYKSMjA5s2\nbcLFixdRU1OD1NRUAEBZWRmio6OxfPlyXLt2DampqYiJicHly5dNWocIYLMnGTly5Ajq6uqwePFi\ndOjQATExMRg5cmSL35+eno633noLgwcPBgD4+/ujZ8+era5RWlqKQ4cOYdWqVejYsSMCAgKQlJSE\nTz75BAAQFBSEUaNGwc7ODv3798cLL7xg2FVnZ2dDrVZj2rRp6NChA5KTk9GnTx+TfleVSoXExEQM\nGjQInTt3xowZM3Ds2DEAwJYtWzBx4kQ89dRTAIAnnngCISEhyM7ONmktIoDNnmSkvLwcffv2bXJb\n//79WxyTlJaWwtfX1+g1evbsia5duxpu8/b2RllZGQCgqKgI0dHR8PDwQPfu3fGnP/3JMF4pLy+H\nl5dXk8fr16+fUevf6943ii5duqCqqgoAcO7cOXz22WdwcXExfB08eBAXLlwweS0iNnuSDQ8PD0PT\nbXTu3LkWxyT9+vVDcXGxUWt4enri6tWrhsYKCIdFNjbx+fPnY/jw4SguLsaNGzfw1ltvGebsnp6e\nKC0tNfycXq9v8vfmTB3veHt7Iz4+HteuXTN8VVZW4pVXXjHp8YgANnuSkdDQUNjb2yMtLQ21tbXY\nvn07fvzxxxa/PykpCa+//jqKi4uh1+tx/PhxXL16tdU1+vXrh9DQUCxduhR37tzB8ePHsWHDBjz7\n7LMAgKqqKjg5OcHR0RH//ve/8dFHHxl+duLEiSgsLMSOHTtQV1eHtLS0VnfbD/vgtqX7n332WXz9\n9dfYu3cv6uvrUV1dDZ1Od98bIZEx2OxJNhwcHLB9+3Zs2rQJvXr1wqeffoqYmBjD/Y0nJjUecbNk\nyRLMmDEDUVFR6N69O55//vkWj965d5edkZGBkpISeHp6Ytq0aXjjjTcwbtw4AEBqaiq2bdsGZ2dn\nvPDCC4iNjTX8bO/evfHZZ5/htddeQ+/evVFcXIzHH3+8xd+n+TH4zXf6ze9r/LuXlxe++uorrFy5\nEm5ubvD29sbq1atFOSmMlEMlZnjJ9evXkZSUhMLCQqhUKmzYsAGjR48WazkiImqBqGfQLl68GBMn\nTsTnn3+Ouro63Lp1S8zliIioBaLt7G/cuAGNRoMzZ86I8fBERGQE0Wb2Z8+ehaurKxITExEUFITn\nn38et2/fFms5IiJqhWjNvq6uDkePHsWCBQtw9OhRdO3aFW+//bZYyxERUStEm9l7eXnBy8vLcAbk\nM888c1+zl/PVDImI5MzYCbxoO/s+ffqgX79+KCoqAgB899138PPzu+/7Gi8kxa/2f61YsULyGmzp\ni88nn0+5fplC1KNx1q5di9mzZ6Ompga+vr7YuHGjmMsREVELRG32AQEBrZ4BSURElsEzaG2IVquV\nugSbwufTvPh8SkvUM2gfurhKZfL8iYhIqUzpndzZExEpAJs9EZECsNkTESkAmz0RkQKw2RMRKQCb\nPRGRArDZExEpAJs9EZECsNkTESkAmz0RkQKw2RMRKQCbPRGRArDZExEpAJs9EZECsNkTESkAmz0R\nkQKw2RMRKQCbPRGRArDZExEpAJs9EZECsNkTESkAmz0RkQKw2RMRKQCbPRGRArDZExEpAJs9EZEC\n2Iu9gI+PD5ydndGhQwc4ODggLy9P7CWJiKgZ0Zu9SqWCTqdDz549xV6KiIhaYJExjl6vt8QyRETU\nAtGbvUqlwhNPPIGQkBCsX79e7OWIiOgBRB/jHDx4EB4eHrh06RIiIyMxdOhQhIWFGe7/+WfA11fs\nKoiIlE30Zu/h4QEAcHV1xdNPP428vLwmzd7fPwUTJwJqNaDVaqHVasUuiYjIquh0Ouh0unY9hkov\n4kD99u3bqK+vh5OTE27duoWoqCisWLECUVFRwuIqFfLz9Zg5Exg3Dnj/faBLF7GqISKyDSqVyujP\nQkWd2f/6668ICwtDYGAgHn30UURHRxsafaOgICA/H7h5Exg1Cjh1SsyKiIiUSdSd/UMXv+fdSa8H\n0tOBpUuBd94BnnsOUKmkqoyISL5M2dnLptk3OnkSmDlT2PGvWwc4OUlUHBGRTMlujGMKtRr48Ueg\nUycgJAQ4dkzqioiIrJ/smj0AODoCH38MrFgBREYCH34ojHmIiMg0shvjNHf6NDBjBjBwoDDT79HD\nQsUREcmUTYxxmhs8GDh8GPD0BDQa4IcfpK6IiMj6yL7ZA0DnzsDatcDq1cCkSUBqKtDQIHVVRETW\nQ/ZjnOZKSoDYWKBXL2DzZqB3b3FqIyKSK5sc4zTn4wMcOCActaPRAPv3S10REZH8Wd3O/l45OUBi\nIrBwIbBsGdChgxmLIyKSKZs4qcpYZWXA7NlCo9+yBfj9umtERDZLEWOc5vr2BXJzgbAw4azbvXul\nroiISH6sfmd/r337gPh44euNNwAHB7M9NBGRbChyjNPcxYvAnDlAZSWQkQF4e5v14YmIJKfIMU5z\nbm5AdjYwZQowciSwc6fUFRERSc/mdvb3OnwYiIsDpk4FVq0SLq5GRGTtuLNvZswY4OhR4Nw54LHH\nhLxbIiIlsulmDwA9ewLbtwMJCcDo0UBWltQVERFZnk2PcZo7ehTMuyUiq8cxzkM05t1WVgp5tz/9\nJHVFRESWoahmDwDOzsDWrUByMjB2LLBpE4NRiMj2KWqM01xhoRCMEhws5N126yZZKUREbcYxjpH8\n/O7m3QYHM++WiGyXops9IOTdrl9/N+923TqOdYjI9ih6jNPc6dPC0ToDBwqB58y7JSI54hinne7N\nuw0KAvLypK6IiMg82Oyb6dQJSEsTcm6jo4XcW+bdEpG14xinFcy7JSI54hjHzJrn3X7/vdQVERGZ\nhjv7NmLeLRHJhSx39vX19dBoNJg0aZLYS4lqwgThUgu5uUBUFFBRIXVFRERtJ3qzX7NmDYYPHw6V\nSiX2UqJj3i0RWStRm/358+eRnZ2NpKQkqxnXPEyHDkBKCrBtGzB3LrB0KVBbK3VVREStE7XZv/TS\nS3j33XdhZ2d7nwNHRAiXTC4oALRa4JdfpK6IiKhl9mI98K5du+Dm5gaNRgOdTtfi96WkpBj+rNVq\nodVqxSrJ7Brzbt99V8i7/d//FbJviYjMSafTtdpH20K0o3GWLVuGf/zjH7C3t0d1dTVu3ryJmJgY\nfPLJJ3cXt6KjcR7m0CFg1izm3RKR+EzpnRY59HL//v1ITU3F119/3XRxG2r2AHD1KjBvnjDSycoC\nBg2SuiIiskWyPPSykS0cjfMwjXm3zz0nhJ1nZkpdERGRgCdViYR5t0QkFlnv7JWmed7tqVNSV0RE\nSsZmL6J7827Dw5l3S0TS4RjHQk6eFMY6QUFCGpaTk9QVEZG14hhHxtTqu3m3ISHMuyUiy2KztyBH\nRyHukHm3RGRpHONIhHm3RGQqjnGsCPNuiciSuLOXgR07gP/6L+CVV4CXXgJs8LpxRGRGsr1cQouL\ns9kblJQAcXFC3u2mTcy7JaKWcYxjxXx8hIxbPz/m3RKR+XFnL0M5OUIwysKFQjgK826J6F4c49iQ\n8nLhkskdOgBbtgAeHlJXRERywTGODfH0vJt3GxzMvFsiah/u7K3Avn1AfDwwZw7wxhuAvWj5YkRk\nDTjGsWEXLwrNvrISyMgAvL2lroiIpMIxjg1rzLudMkXIu925U+qKiMiacGdvhZh3S6Rsou7sr127\nhsLCQpw5cwYNDQ1GF0fmExoqJGGdOwc89hjw889SV0REctfqzv769etYt24dMjIycOfOHbi5uaG6\nuhoXLlzAmDFjsGDBAkRERJi+OHf27aLXAx98IHxou3YtEBsrdUVEZAlm/4A2MjIS8fHxmDx5Mnrc\nc1lGvV6P/Px8bNmyBWq1GklJSRYrmO6Xn38373bNGubdEtk6Ho2jYDdvAi++KCRiZWUBw4dLXRER\nicUiR+MUFxfjzTffhJ+fn7E/SiJydga2bQMWLxbybjduZDAKEd3VpmZfVlaGv/71rxg5ciTUajXq\n6+uRmZkpdm1kJJUKSEoSTsJKTb17XD4RUavN/u9//zu0Wi20Wi2uXLmC9PR0eHh4ICUlBf7+/paq\nkYykVgthKB07Mu+WiAStzuwdHBwwZswYrF69GiNHjgQADBgwAGfPnjXP4pzZi65xtPM//wPMny/s\n/onIupn9A9rLly/js88+Q2ZmJioqKjBjxgxs2rQJ58+fb3exAJu9pZw+DcyYAfj6Mu+WyBaY/QPa\n3r17Y/78+di/fz9yc3PRo0cPuLu7Y+jQoVi2bFm7iiXLacy79fAQglF++EHqiojI0kw69LKoqAiZ\nmZlYvnx5+xbnzt7itm+/m3e7ZAnzbomskSm9s00Xy62rq8Pu3btRUlKC+vp66PV6dO3a9aE/V11d\njfDwcNy5cwd1dXV45plnkJKSYlSBZF7TpgFBQcLZtvv2AZs3M++WSAna1OwnTZqELl26wN/fH3ZG\nbAU7d+6Mffv2wdHREXV1dXj88ccxYcIEPProoyYXTO3n4wMcOAD8+c/CWGfrVmDsWKmrIiIxtanZ\nl5WV4fjx4yYt4OjoCACoqalBbW2tUW8WJB4HB+GKmVqtcKmFBQuAZcuYd0tkq9rUeZ966il88803\nJi3Q0NCAwMBAuLu7IyoqynAIJ8nDhAnCtXX+7/+AqCigokLqiohIDG3a2Y8ZMwbTpk1DfX09HBwc\nAAgfENy8efOhP2tnZ4djx47hxo0bePrpp1FYWNjkUgv3zvAbT+Aiy/L0BL77DnjzTWGev3mz0PiJ\nSB50Oh10Ol27HqNNR+P4+Phg586dUKvV7RrDvPnmm3B0dMTLL78sLM6jcWSnMe82Pl64dPLv7+1E\nJCOiXQjN29sbfn5+Rjf6y5cv4/r16wCA3377Dd9++y2GDRtm1GOQZUVECMEox44J8/xffpG6IiIy\nhzaNcQYMGICIiAhMmDABHTt2BCC8syxZsqTVn6uoqEBCQgLq6+vR0NCAmTNnYuLEie2vmkTl5gbs\n3i1cTG3kSGD9emDyZKmrIqL2aHOzHzBgAGpqalBTU9PmB/f398fRo0dNLo6kY2cnnHgVFgbExQkf\n4DLvlsh6MbyEHuraNWDuXKC0VAhG8fWVuiIiZTP7zD4pKQknTpx44H1VVVVIT0/Hli1bjFqQrI+L\ni3CZhYQEYPRooeETkXVpdWdfUFCAlStX4sSJE1Cr1XB1dUV1dTWKi4tx48YNzJ07F/Pnz0cnE/9t\nz5299Tl69G7e7fvvM++WSAqiZdBWVlbin//8JyoqKuDo6Ihhw4bhkUceMblQw+Js9lbp5k3hYmon\nTgCffgrwACsiyzJ7s7948SIuXbp0X95sYWEh3Nzc4OrqalqljYuz2VstvR7YsAF47TXg3XeFEQ+D\nUYgsw+wz+0WLFuHy5cv33X7lyhUsXrzYuOrIpqhUwLx5gE53t9lXVUldFRG1pNVmX1xcjPDw8Ptu\nHzt2LP71r3+JVhRZDz8/4Mcfhbzb4GDm3RLJVavNvrKyssX7amtrzV4MWSdHRyHucMUKIDIS+Ogj\nYcxDRPLRarMfNGgQdu/efd/t2dnZ8OXB1tTMrFnAoUPCGbfTpwO/XymDiGSg1Q9oi4qKEB0djdDQ\nUAQHB0Ov1yM/Px+HDh3Crl272n1EDj+gtU137gD//d/Arl1AZiYwapTUFRHZFlEOvayursa2bdtw\n8uRJqFQq+Pn5IS4uDl3McIA1m71t27EDePFF4NVXgZdeYt4tkbmIdpy9WNjsbV9JiXBtnV69gE2b\nmHdLZA5mP/SyW7ducHJyeuCXs7Nzu4olZfDxAb7/XjhqR6MR/kxElsedPVlMTo5wQbWFC4GlS5l3\nS2QqjnFI9srLgdmzhfn9li2Ah4fUFRFZH9GSqojMpTHvduxY4SSsvXulrohIGbizJ8kw75bINNzZ\nk1Vh3i2R5bDZk6Qa826nTBHybnfulLoiItvEMQ7JxuHDwjH5U6cy75aoNRzjkFUbM0YY65w7B4SG\nAsXFUldEZDvY7ElWevYU8m6fe05o/pmZUldEZBs4xiHZYt4t0YNxjEM2JSgIyM8HKiuFK2eeOiV1\nRUTWi82eZM3ZGdi6FUhOBsLDhYup8R+DRMbjGIesxsmTwlgnKAhYtw5wcpK6IiJpcIxDNk2tFvJu\nO3UCQkKYd0tkDDZ7sirN827XreNYh6gtRG32paWliIiIgJ+fH9RqNdLS0sRcjhSkMe/244+Zd0vU\nFqLO7C9cuIALFy4gMDAQVVVVCA4Oxpdffolhw4YJi3NmT+3EvFtSItnN7Pv06YPAwEAAQurVsGHD\nUF5eLuaSpDCdOgFpacDq1UB0tPDfhgapqyKSH4sdjVNSUoLw8HAUFhaiW7duwuLc2ZMZMe+WlMKU\n3mkvUi1NVFVV4ZlnnsGaNWsMjb5RSkqK4c9arRZardYSJZENasy7/fOfhbzbrVuFkBQia6fT6aDT\n6dr1GKLv7GtraxEdHY0JEyYgOTm56eLc2ZNImHdLtkx2GbR6vR4JCQno1asX3nvvvfsXZ7MnEZWX\nC0ftdOjAvFuyLbL7gPbgwYPYsmUL9u3bB41GA41Ggz179oi5JJGBpyeQmwuEhQl5t99+K3VFRNLh\n5RJIERrzbufMEfJu7S3yaRWROGQ3xnno4mz2ZEEXLwrNvrISyMgAvL2lrojINLIb4xDJiZsbkJ3N\nvFtSJu7sSZEOHRI+vGXeLVkj7uyJ2ig09G7e7WOPAT//LHVFROJisyfFasy7TUgARo8GsrKkrohI\nPBzjEEGIP5w5Exg/nnm3JH8c4xCZKDhYGOvcvMm8W7JNbPZEv3N2BrZtAxYvFq6ps3Ejg1HIdnCM\nQ/QAzLslOeMYh8hM1GogLw/o2JF5t2Qb2OyJWtC1K5CeDixfzrxbsn4c4xC1QVGRMNbx9RVyb3v0\nkLoiUjKOcYhEMmQIcPiwcJlkjQb44QepKyIyDps9URt17gysXSvk3E6axLxbsi4c4xCZoKQEiI0V\n8m43b2beLVkWxzhEFuLjAxw4IBy1o9EI2bdEcsadPVE75eQAiYlC3u2yZcy7JfExvIRIImVlwOzZ\nzLsly+AYh0giffs2zbvdu1fqioia4s6eyMwa827j44W8WwcHqSsiW8OdPZEMREQIV9A8dgzQaoFf\nfpG6IiI2eyJRuLkBu3cz75bkg2McIpEdPgzExTHvlsyHYxwiGRozhnm3JD02eyILaJ53m5kpdUWk\nNBzjEFnY0aPCFTTHjWPeLZmGYxwiKxAUJAScV1Yy75Ysh82eSALOzsDWrUByMhAeDmzaxGAUEpeo\nzX7u3Llwd3eHv7+/mMsQWSWVCpg3TzgJ6913gTlzhN0+kRhEbfaJiYnYs2ePmEsQWT21GvjxR+GQ\nTObdklhEbfZhYWFwcXERcwkim+DoKMQdrljBvFsSB2f2RDIyaxZw6JDQ+KdPB65fl7oishVs9kQy\nM3iwcNatpyfzbsl87KUuICUlxfBnrVYLrVYrWS1EctGpE5CWJlxUbdIk4NVXgZdeAuy4PVMknU4H\nnU7XrscQ/aSqkpISTJo0CSdOnLh/cZ5URfRQJSXCtXV69mTeLQlkd1JVXFwcQkNDUVRUhH79+mHj\nxo1iLkdkk3x8hIxb5t1Se/ByCURWJCcHmDsXWLCAebdKxgxaIgUoLxeO2mHerXLJboxDRObn6cm8\nWzIed/ZEVox5t8rEnT2RwjDvltqKzZ7IyjHvltqCYxwiG8K8W2XgGIdI4Zh3Sy1hsyeyMc3zbrOy\npK6I5IBjHCIbxrxb28QxDhE1wbxbasRmT2TjmHdLAMc4RIpy8qQw1gkKEtKwnJykrohMwTEOEbWK\nebfKxWZPpDDMu1UmjnGIFOz0aWGsM3Cg8AbQo4fUFVFbcIxDREZh3q1ysNkTKVxj3u3q1ULe7erV\nQEOD1FWRuXGMQ0QGzLu1DhzjEFG7MO/WdnFnT0QPxLxb+WIGLRGZFfNu5YljHCIyK+bd2g7u7Imo\nTRrzbufMEfJu7e2lrki5uLMnItE05t0WFAgXVGPerXVhsyeiNmPerfXiGIeITMK8W+lwjENEFsO8\nW+vCZk9EJmued5uZKXVF1BJRm/2ePXswdOhQDB48GKtWrRJzKSKSiEoFLFoEfPMN8PrrwIsvAr/9\nJnVV1Jxozb6+vh5//OMfsWfPHpw6dQoZGRn46aefxFqOAOh0OqlLsCl8Po3zsLxbPp/SEq3Z5+Xl\nYdCgQfDx8YGDgwNiY2Px1VdfibUcgf8zmRufT+M1z7vduPFuMAqfT2mJ1uzLysrQr18/w9+9vLxQ\nVlYm1nJEJBMqFTBvnnASVmqqcBJWZaXUVZFozV6lUon10ERkBZrn3VZVSV2Rsol2nP2RI0eQkpKC\nPXv2AAD+8pe/wM7ODq+++urdxfmGQERkEtlc9bKurg6PPPIIcnNz4enpiVGjRiEjIwPDhg0TYzki\nImqFaJcysre3xwcffIAnn3wS9fX1mDdvHhs9EZFEJL1cAhERWYZkZ9DyhCvz8vHxwYgRI6DRaDBq\n1Cipy7Eqc+fOhbu7O/z9/Q23Xb16FZGRkRgyZAiioqJw/fp1CSu0Lg96PlNSUuDl5QWNRgONRmP4\nLI8errS0FBEREfDz84NarUZaWhoA41+jkjR7nnBlfiqVCjqdDgUFBcjLy5O6HKuSmJh4X/N5++23\nERkZiaKiIowfPx5vv/22RNVZnwc9nyqVCkuWLEFBQQEKCgrw1FNPSVSd9XFwcMB7772HwsJCHDly\nBB9++CF++ukno1+jkjR7nnAlDk7kTBMWFgYXF5cmt+3cuRMJCQkAgISEBHz55ZdSlGaVHvR8Anx9\nmqpPnz4IDAwEAHTr1g3Dhg1DWVmZ0a9RSZo9T7gyP5VKhSeeeAIhISFYv3691OVYvV9//RXu7u4A\nAHd3d/z6668SV2T91q5di4CAAMybN49jMROVlJSgoKAAjz76qNGvUUmaPY+vN7+DBw+ioKAAOTk5\n+PDDD3HgwAGpS7IZKpWKr9l2mj9/Ps6ePYtjx47Bw8MDL7/8stQlWZ2qqirExMRgzZo1cHJyanJf\nW16jkjT7vn37orS01PD30tJSeHl5SVGKzfDw8AAAuLq64umnn+bcvp3c3d1x4cIFAEBFRQXc3Nwk\nrsi6ubm5GRpSUlISX59Gqq2tRUxMDOLj4zF16lQAxr9GJWn2ISEhOH36NEpKSlBTU4OsrCxMnjxZ\nilJswu3bt1H5+8VHbt26hb179zY5EoKMN3nyZGzevBkAsHnzZsP/YGSaiooKw5937NjB16cR9Ho9\n5s2bh+HDhyM5Odlwu9GvUb1EsrOz9UOGDNH7+vrqV65cKVUZNuHMmTP6gIAAfUBAgN7Pz4/Pp5Fi\nY2P1Hh4eegcHB72Xl5d+w4YN+itXrujHjx+vHzx4sD4yMlJ/7do1qcu0Gs2fz/T0dH18fLze399f\nP2LECP2UKVP0Fy5ckLpMq3HgwAG9SqXSBwQE6AMDA/WBgYH6nJwco1+jPKmKiEgBGEtIRKQAbPZE\nRArAZk9EpABs9kRECsBmT0SkAGz2REQKwGZPRKQAbPZkk8aNG4e9e/c2ue3999/HggULUFRUhIkT\nJ2LIkCEIDg7GzJkzcfHiReh0OnTv3t1wzXWNRoPc3FwAwG+//QatVouGhgYMHDgQRUVFTR47OTkZ\n77zzDk6ePInExESL/Z5EbcVmTzYpLi4OmZmZTW7LyspCXFwcoqOjsXDhQhQVFSE/Px8LFizApUuX\noFKpMHbsWMM11wsKCjB+/HgAwIYNGxATEwM7O7v7HruhoQFffPEF4uLioFarcf78+SbXfiKSAzZ7\nskkxMTHYvXs36urqAAiXhi0vL8fp06cRGhqKP/zhD4bvDQ8Ph5+fX6vXW9+2bRumTJkCQHgjycrK\nMtz3/fffo3///obLdk+aNOm+NxoiqbHZk03q2bMnRo0ahezsbABAZmYmZsyYgcLCQgQFBbX4cwcO\nHGgyxjl79ixqampw5swZeHt7AwDUajXs7Oxw/Phxw2PPmjXL8BghISG8xDTJDps92ax7xy1ZWVlN\nGnJLwsLCmoxxBgwYgMuXL6NHjx4PfOz6+np89dVXmD59uuE+V1dXlJeXm/eXIWonNnuyWZMnT0Zu\nbi4KCgpw+/ZtaDQa+Pn5IT8/36jH6dKlC6qrq5vcFhsbi08//RTfffcdRowYAVdXV8N91dXV6NKl\ni1l+ByJzYbMnm9WtWzdEREQgMTHRsKufNWsWDh06ZBjvAMLMvbCwsMXHcXFxQX19PWpqagy3DRw4\nEL1798ZLouiLAAAAz0lEQVRrr712378YioqKoFarzfzbELUPmz3ZtLi4OJw4cQJxcXEAgM6dO2PX\nrl1Yu3YthgwZAj8/P/ztb3+Dq6srVCrVfTP77du3AwCioqLum8PHxcXhP//5D6ZNm9bk9n379iE6\nOtoyvyBRG/F69kRtUFBQgPfeew+ffPJJq993584daLVaHDx4EHZ23EuRfPDVSNQGGo0GERERaGho\naPX7SktLsWrVKjZ6kh3u7ImIFIDbDyIiBWCzJyJSADZ7IiIFYLMnIlIANnsiIgX4fwAbXN1xo6Og\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f8eeacf1ad0>"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.20: Page number 215-216\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage in V\n",
+ "R1=10.0; #Resistor R1's resistance in k\u2126 .\n",
+ "R2=5.0; #Resistor R2's resistance in k\u2126 .\n",
+ "RC=1.0; #Collector resistor's resistance in k\u2126 . \n",
+ "RE=2.0; #Emitter resistor's resistance in k\u2126 .\n",
+ "VBE=0.7; #Base-emitter voltage in V\n",
+ "\n",
+ "#Calculations\n",
+ "#Using Thevenin's Theorem for replacing circuit consisting of VCC,R1,R2\n",
+ "E0=(VCC*R2)/(R1+R2); #Thevenin's voltage in V\n",
+ "R0=(R1*R2)/(R1+R2); #Thevenin's equivalent resistance in k\u2126 .\n",
+ "\n",
+ "#Applying Kirchhoff' law along thevenin's equivalent circuit,\n",
+ "#E0=IB*R0+VBE+IE*RE;\n",
+ "#Since IE~IC and IC=beta*IB\n",
+ "#IC=(E0-VBE)/(R0/beta +RE);\n",
+ "IC=(E0-VBE)/RE; #(Since R0/beta << RE) collector current in mA\n",
+ "VCE=VCC-IC*(RC+RE); #Collector emitter voltage in V\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Collector-emitter voltage at operating point=%.2fV\"%VCE);\n",
+ "print(\"Collector current at operating point = %.2fmA\"%IC);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Collector-emitter voltage at operating point=8.55V\n",
+ "Collector current at operating point = 2.15mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.21: Page number 216-217\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage in V\n",
+ "RE=1.0; #Emitter resistor, k\u2126 .\n",
+ "R1=50.0; #Resistor R1, k\u2126 .\n",
+ "R2=10.0; #Resistor R2, k\u2126 .\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#(i)\n",
+ "VBE=0.1; #Base-emitter voltage in V\n",
+ "V2=(VCC*R2)/(R1+R2); #Voltage drop across resistor R2, V \n",
+ "IE=(V2-VBE)/RE; #Emitter current in mA\n",
+ "\n",
+ "print(\"(i)Emitter current= %.1fmA\"%IE);\n",
+ "\n",
+ "#(ii)\n",
+ "VBE=0.3; #Base-emitter voltage in V\n",
+ "V2=(VCC*R2)/(R1+R2); #Voltage drop across resistor R2, V\n",
+ "IE=(V2-VBE)/RE; #Emitter current in mA\n",
+ "\n",
+ "print(\"(ii)Emitter current= %.1fmA\"%IE);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)Emitter current= 1.9mA\n",
+ "(ii)Emitter current= 1.7mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.22: Page number 217\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=20.0; #Collector supply voltage, V\n",
+ "R1=10.0; #Resistor R1, k\u2126\n",
+ "R2=10.0; #Resistor R2, k\u2126 .\n",
+ "RC=1.0; #Collector resistor, k\u2126 .\n",
+ "RE=5.0; #Emitter resistor, k\u2126 .\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "V2=(VCC*R2)/(R1+R2); #Voltage drop across resistor R2, V\n",
+ "\n",
+ "#Applying kirchhoff's law from base terminal to emitter resistor\n",
+ "#V2=VBE+IE*RE\n",
+ "#VBE is neglected due to its small value\n",
+ "\n",
+ "IE=V2/RE; #Emitter current in mA\n",
+ "IC=IE; #Collector current (approx. equal to emitter current), mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along output circuit\n",
+ "VCE=VCC-IC*(RC+RE); #Collector-emitter voltage , V\n",
+ "VC=VCC-IC*RC; #Voltage at collector terminal,V\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Emitter current =%dmA\"%IE);\n",
+ "print(\"Collector-emitter voltage=%dV\"%VCE);\n",
+ "print(\"Collector terminal's voltage=%dV\"%VC);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Emitter current =2mA\n",
+ "Collector-emitter voltage=8V\n",
+ "Collector terminal's voltage=18V\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.23: Page number 219-220\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "VCC=12.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=50; #Base current amplification factor\n",
+ "R1=150; #Resistor R1, k\u2126 .\n",
+ "R2=100; #Resistor R2, k\u2126 .\n",
+ "RC=4.7; #Collector resistor, k\u2126 .\n",
+ "RE=2.2; #Emitter resistor, k\u2126 .\n",
+ "\n",
+ "#Calculations\n",
+ "#Using Thevenin's theorem, calculating Thevenin's voltage and resistance\n",
+ "E0=(VCC*R2)/(R1+R2); #Thevenin's voltage, V\n",
+ "R0=(R1*R2)/(R1+R2); #Thevenin's resistance, k\u2126 .\n",
+ "\n",
+ "#Applying Kirchhoff' law along thevenin's equivalent circuit,\n",
+ "#E0=IB*R0+VBE+IE*RE;\n",
+ "#Since IE~IC and IC=beta*IB\n",
+ "IB=round((E0-VBE)/(R0+beta*RE),3); #Base current in mA\n",
+ "IC=round(beta*IB,1); #Collector current, mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit\n",
+ "VCE=VCC-IC*(RC+RE); #Collector-emitter voltage, V\n",
+ "\n",
+ "S=(beta+1)*(1+R0/RE)/(beta +1+R0/RE); #Stability factor\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Operating point : VCE= %.2fV and IC=%.1fmA\"%(VCE,IC));\n",
+ "print(\"Stability factor=%.1f\"%S);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point : VCE= 3.72V and IC=1.2mA\n",
+ "Stability factor=18.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.24 : Page number 220\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage , V\n",
+ "beta=100.0; #Base current amplification factor\n",
+ "R1=6.0; #Resistor R1, k\u2126 .\n",
+ "R2=3.0; #Resistor R2, k\u2126 .\n",
+ "RC=470.0; #Collector resistor, \u2126.\n",
+ "RE=1.0; #Emitter resistor, k\u2126 .\n",
+ "\n",
+ "#Calculations\n",
+ "#Using Thevenin's theorem, calculating Thevenin's voltage and resistance\n",
+ "E0=(VCC*R2)/(R1+R2); #Thevenin's voltage, V\n",
+ "R0=(R1*R2)/(R1+R2); #Thevenin's resistance, k\u2126 .\n",
+ "\n",
+ "#Applying Kirchhoff' law along thevenin's equivalent circuit,\n",
+ "#E0=IB*R0+VBE+IE*RE;\n",
+ "#Since IE~IC and IC=beta*IB\n",
+ "IB=round((E0-VBE)/(R0+beta*RE),3); #Base current in mA\n",
+ "IC=round(beta*IB,1); #Collector current, mA\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit\n",
+ "VCE=VCC-IC*(RC/1000+RE); #Collector-emitter voltage, V\n",
+ "\n",
+ "S=(beta+1)*(1+R0/RE)/(beta +1+R0/RE); #Stability factor\n",
+ "\n",
+ "#Results\n",
+ "print(\"Operating point : VCE= %.2fV and IC=%.1fmA\"%(VCE,IC));\n",
+ "print(\"Stability factor=%.2f\"%S);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point : VCE= 8.83V and IC=4.2mA\n",
+ "Stability factor=2.94\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.25 : Page number 221-222\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Varaible declaration\n",
+ "VCC=9; #Collector supply voltage, V\n",
+ "VCE=3; #Collector-emitter voltage, V\n",
+ "VBE=0.3; #Base-emitter voltage in V\n",
+ "RC=2.2; #Collector resistor , k\u2126 .\n",
+ "IC=2; #Collector current, mA\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "IB=IC/beta; #Base current in mA\n",
+ "\n",
+ "#According to given relation, I1=10*IB\n",
+ "I1=IB*10; #Current through the resistor R1, mA\n",
+ "\n",
+ "#I1=VCC/(R1+R2), .'s LAW\n",
+ "R1_R2_sum=VCC/I1; #Sum of the resistor's R1 and R2, k\u2126 (OHM'S LAW).\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit\n",
+ "#VCC=IC*RC+VCE+IE*RE\n",
+ "#IC~IE\n",
+ "RE=(VCC-IC*RC-VCE)/IC; #Emitter resistor, k\u2126 .\n",
+ "RE=round(RE*1000,0); #Emittter resistor, \u2126 .\n",
+ "\n",
+ "IE=IC; #Emittter current(approximately equal to collector current), mA\n",
+ "VE=IE*(RE/1000); #Voltage at emitter terminal (OHM's LAW), V\n",
+ "V2=VBE+VE; #Voltage drop across resistor R2, V\n",
+ "\n",
+ "R2=V2/I1; #Resistor R2,(OHM's LAW), k\u2126 .\n",
+ "R1=R1_R2_sum-R2; #Resistor R1, k\u2126 .\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"RE=%d \u2126., R1=%.2f k\u2126 . and R2=%.2f k\u2126 .\"%(RE,R1,R2));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "RE=800 \u2126., R1=17.75 k\u2126 . and R2=4.75 k\u2126 .\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.26 : Page number 222\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=16.0; #Collector supply voltage, V\n",
+ "R2=20.0; #Resistor R2, k\u2126\n",
+ "RE=2.0; #Emitter resistor, k\u2126\n",
+ "VCE=6.0; #Collector-emitter voltage, V\n",
+ "IC=2.0; #Collector current , mA\n",
+ "VBE=0.3; #Base-emitter voltage,V\n",
+ "alpha=0.985; #Current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "beta=alpha/(1-alpha); #Base current amplificatioon factor\n",
+ "IE=IC; #Emitter current, mA\n",
+ "IB=IC/beta; #Base current, mA\n",
+ "VE=IE*RE; #Emitter voltage,(OHM's LAW) V\n",
+ "V2=VBE+VE; #Voltage drop across resistor R2,(Kirchhoff's law) V\n",
+ "V_R1=VCC-V2; #Voltage drop across resistor R1, V\n",
+ "I1=V2/R2; #Current through resistor R2 an R1,(OHM's LAW) mA\n",
+ "R1=V_R1/I1; #Resistor R1,(OHM's LAW) k\u2126\n",
+ "\n",
+ "V_RC=(VCC-VCE-VE); #Voltage across collector resistor, V\n",
+ "RC=V_RC/IC; #Collector resistor,(OHM's LAW) k\u2126\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"R1=%.1f k\u2126 and RC=%d k\u2126.\"%(R1,RC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R1=54.4 k\u2126 and RC=3 k\u2126.\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.27 :Page number 222-223\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=15.0; #Collector supply voltage, V\n",
+ "R1=10.0; #Resistor R1, k\u2126 \n",
+ "R2=5.0; #Resistor R2, k\u2126 \n",
+ "RC=1.0; #Collector resistor, k\u2126 \u007f\n",
+ "RE=2.0; #Emitter resistor, k\u2126 \n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=100; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#Using Thevenin's theorem, calculating Thevenin's voltage and resistance\n",
+ "E0=(VCC*R2)/(R1+R2); #Thevenin's voltage, V\n",
+ "R0=(R1*R2)/(R1+R2); #Thevenin's resistance, k\u2126 \n",
+ "\n",
+ "#Applying Kirchhoff' law along Thevenin's equivalent circuit,\n",
+ "#E0=IB*R0+VBE+IE*RE;\n",
+ "#Since IE~IC and IB=IE/beta,\n",
+ "IE=(E0-VBE)/(R0/beta + RE); #Emitter current , mA\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "print(\"The exact value of emitter current in the circuit = %.2fmA.\"%IE);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The exact value of emitter current in the circuit = 2.11mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.28: Page number 223-224\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "IE=2.0; #Emitter current, mA\n",
+ "IB=50.0; #Base current, mA\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "VBE=0.2; #Base-emitter voltage, V\n",
+ "R2=10.0; #Resistor R2, k\u2126\n",
+ "RE=1.0; #Emitter resistance, k\u2126\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's law from the base to the emitter resistor,\n",
+ "V2=VBE+IE*RE; #Voltage at base terminal, V\n",
+ "I2=V2/R2; #Current through the resistor R2, mA\n",
+ "I1=I2+IB/1000; #Current through the resistor R2, mA\n",
+ "V1=VCC-V2; #Voltage drop across the resistor R2\n",
+ "R1=V1/I1; #Resistor R1, k\u2126\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The value of the resistor R1=%.2f k\u2126.\"%R1);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of the resistor R1=28.89 k\u2126.\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.30 :Page number 225-226\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=8.0; #Collector supply voltage, V\n",
+ "RB=360.0; #Base resistor, k\u2126\n",
+ "RC=2.0; #Collector resistor, k\u2126\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=100.0; #base current amplification factor\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "IC_max=VCC/RC; #Maximum collector current, mA\n",
+ "VCE_max=VCC; #Maximum collector voltage, V\n",
+ "\n",
+ "#Operating point\n",
+ "#Applying Kirchhoff's law along the input circuit\n",
+ "IB=(VCC-VBE)/RB; #Base current, mA\n",
+ "IC=beta*IB; #Collector current, mA\n",
+ "\n",
+ "#Kirchhoff' law along the output circuit\n",
+ "VCE=VCC-IC*RC; #Collector-emitter voltage, V\n",
+ "\n",
+ "#Results\n",
+ "print(\"VCE=%.2fV, is approximately half of VCC=%dV \\n therefore it is mid-point biased.\"%(VCE,VCC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "VCE=3.94V, is approximately half of VCC=8V \n",
+ " therefore it is mid-point biased.\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.31: page number 226\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=50.0; #Base current amplification factor\n",
+ "R1=12.0; #Resistor R1, k\u2126 \n",
+ "R2=2.7; #Resistor R2, k\u2126 \n",
+ "RC=620.0; #Collector resistor, \u2126 \n",
+ "RE=180.0; #Emitter resistor, \u2126\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "#Voltage divder rule across R1 and R2\n",
+ "V2=round((VCC*R2)/(R1+R2),2); #Voltage drop across resistor R2, V\n",
+ "IE=round(((V2-VBE)/RE)*1000,2); #Emitter current, mA\n",
+ "IC=IE; #Collector current(Approximately equal to emitter current), mA\n",
+ "print(\"IC~IE=%.2fmA.\"%IC);\n",
+ "\n",
+ "#Applying Kirchhoff's law along the output circuit\n",
+ "VCE=VCC-(IC/1000)*(RC+RE); #Collector-emitter voltage, V\n",
+ "\n",
+ "#Results\n",
+ "print(\"VCE=%.2fV, is approximately half of VCC=%dV \\n therefore it is mid-point biased.\"%(VCE,VCC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "IC~IE=6.33mA.\n",
+ "VCE=4.94V, is approximately half of VCC=10V \n",
+ " therefore it is mid-point biased.\n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.32 : Page number 227\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "VCC=10.0; #Collector supply voltage, V\n",
+ "IC=10.0; #Collector current, mA \n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "R1=1.5; #Resistor R1, k\u2126 \n",
+ "R2=680.0; #Resistor R2, \u2126 \n",
+ "RC=260.0; #Collector resistor, \u2126 \n",
+ "RE=240.0; #Emitter resistor, \u2126 \n",
+ "beta_min=100; #Minimum value of base current amplification factor\n",
+ "beta_max=400; #Maximum value of base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#Voltage divder rule across R1 and R2\n",
+ "V2=round((VCC*R2/1000)/(R1+R2/1000),2); #Voltage drop across resistor R2, V\n",
+ "IE=round((V2-VBE)/(RE/1000),0); #OHM' LAW, Emitter current, mA\n",
+ "IC=IE; #Collector current(approx. equal to emitter current),mA\n",
+ "beta_avg=sqrt(beta_min*beta_max); #Average value of base current amplification factor\n",
+ "IB=IE/(beta_avg +1); #Base current, mA\n",
+ "IB=IB*1000; #Base current, \ud835\udf07A\n",
+ "\n",
+ "#Results\n",
+ "print(\"Base current= %.2f \ud835\udf07A\"%IB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Base current= 49.75 \ud835\udf07A\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.33 : Page number 227-228\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VEE=12.0; #Emitter supply voltage, V\n",
+ "RC=1.5; #Collector resistor, k\u2126\n",
+ "RB=120.0; #Base resistor k\u2126\n",
+ "RE=510.0; #Emitter resistor, \u2126 \n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=60.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's voltage law,\n",
+ "#IB*RB - VBE - IE*RE +VEE=0\n",
+ "#Since IE~IC and IC=beta*IB,\n",
+ "IB=(VEE-VBE)/(RB + beta*RE/1000); #Base current , mA\n",
+ "IC=round(beta*IB,1); #Collector current, mA\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along output circuit,\n",
+ "VCE=VEE-IC*(RC + RE/1000); #Collector-emitter voltage, V\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"Operating point : VCE= %.2fV and IC=%.1fmA.\"%(VCE,IC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point : VCE= 2.96V and IC=4.5mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 60
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.34 : Page number 228-229\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import floor\n",
+ "\n",
+ "#Variable declaration\n",
+ "VEE=9.0; #Emitter supply voltage, V\n",
+ "RC=1.2; #Collector resistor, k\u2126\n",
+ "RB=100.0; #Base resistor ,k\u2126\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "beta=45.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#Applying Kirchhoff's voltage law,\n",
+ "#IB*RB + VBE=VEE\n",
+ "#Since IE~IC and IC=beta*IB,\n",
+ "IB=round((VEE-VBE)/RB,3); #Base current , mA\n",
+ "IC=floor(beta*IB*100)/100; #Collector current, mA\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law along output circuit,\n",
+ "VCE=VEE-IC*RC; #Collector-emitter voltage, V\n",
+ "\n",
+ "#Results\n",
+ "print(\"Operating point : VCE= %.2fV and IC=%.2fmA.\"%(VCE,IC));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Operating point : VCE= 4.52V and IC=3.73mA.\n"
+ ]
+ }
+ ],
+ "prompt_number": 68
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.35 : Page number 229\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "VCC=16.0; #Collector supply voltage, V\n",
+ "VBE=0.7; #Base-emitter voltage, V\n",
+ "IC=1.0; #Collector current, mA\n",
+ "VCE=6.0; #Collector-emitter voltage, V\n",
+ "beta=150.0; #Base current amplification factor\n",
+ "\n",
+ "#Calculations\n",
+ "#For a good design, VE=VCC/10;\n",
+ "VE=VCC/10; #Emitter terminal's voltage, V\n",
+ "#OHM's Law\n",
+ "#And, taking IE~IC\n",
+ "RE=VE/IC; #Emitter resistor, k\u2126\n",
+ "\n",
+ "#Applying Kirchhoff's voltage law alog output circuit:\n",
+ "#VCC=IC*RC + VCE + VE\n",
+ "RC=(VCC-VCE-VE)/IC; #Collector resistor, k\u2126\n",
+ "V2=VE+VBE; #Voltage drop across resistor R2,V\n",
+ "#From the relation I1=10*IB\n",
+ "R2=(beta*RE)/10; #Resistor R2, kilo ohm\n",
+ "\n",
+ "#From voltage divider rule across R1 and R2,\n",
+ "#V2=(VCC*R2)/(R1+R2)\n",
+ "R1=(VCC-V2)*R2/V2; #Resistor R1, k\u2126 \n",
+ "\n",
+ "#Results\n",
+ "print(\"RE=%.1f k\u2126 , RC=%.1f k\u2126, R1=%.0f k\u2126 and R2=%d k\u2126.\"%(RE,RC,R1,R2));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "RE=1.6 k\u2126 , RC=8.4 k\u2126, R1=143 k\u2126 and R2=24 k\u2126.\n"
+ ]
+ }
+ ],
+ "prompt_number": 69
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.36 : Page number 230-231\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "ICBO=5.0; #Collector to base leakage current, microampere\n",
+ "beta=40.0; #Base current amplification factor\n",
+ "IC_zero_signal=2.0; #Zero signal collector current, mA\n",
+ "op_temp=25.0; #operating temperature, degree celsius\n",
+ "temp_risen=55.0; #Temperature risen, degree celsius\n",
+ "temp_ICBO_doubles=10.0; #Temperature after which ICBO doubles, degree celsius\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#(i)\n",
+ "ICEO=(beta+1)*ICBO; #Collector to emitter leakage current, microampere\n",
+ "\n",
+ "#(ii)\n",
+ "Number_of_times_ICBO_doubled=(temp_risen - op_temp)/temp_ICBO_doubles; #Number of times ICBO doubles\n",
+ "ICBO_final=ICBO*2**Number_of_times_ICBO_doubled; #Final value of collector to base leakage current, microampere\n",
+ "ICEO_final=ICBO_final*(beta + 1); #Final value of collector to emitter leakage current, microampere\n",
+ "\n",
+ "IC_zero_signal_55=(ICEO_final/1000) +IC_zero_signal; #Zero signal collector current at 55 degree celius\n",
+ "change=(IC_zero_signal_55-IC_zero_signal)*100/IC_zero_signal; #Percentage change in zero signal collector current\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) The percentage change in the zero signal collector current=%.0f%%. \"%change)\n",
+ "\n",
+ "#(iii)\n",
+ "#For the silicon transistor\n",
+ "ICBO=0.1; #Collector to base leakage current, microampere\n",
+ "\n",
+ "ICEO=(beta+1)*ICBO; #Collector to emitter leakage current, microampere\n",
+ "\n",
+ "Number_of_times_ICBO_doubled=(temp_risen - op_temp)/temp_ICBO_doubles; #Number of times ICBO doubles\n",
+ "ICBO_final=ICBO*2**Number_of_times_ICBO_doubled; #Final value of collector to base leakage current, microampere\n",
+ "ICEO_final=ICBO_final*(beta + 1); #Final value of collector to emitter leakage current, microampere\n",
+ "\n",
+ "IC_zero_signal_55=(ICEO_final/1000) +IC_zero_signal; #Zero signal collector current at 55 degree celius\n",
+ "change=(IC_zero_signal_55-IC_zero_signal)*100/IC_zero_signal; #Percentage change in zero signal collector current\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(ii) The percentage change in the zero signal collector current=%.1f%%. \"%change)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The percentage change in the zero signal collector current=82%. \n",
+ "(ii) The percentage change in the zero signal collector current=1.6%. \n"
+ ]
+ }
+ ],
+ "prompt_number": 70
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.37 : Page number 231\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "ICBO=0.02 #Collector to base leakage current, \ud835\udf07A\n",
+ "alpha=0.99; #Current amplification factor\n",
+ "IE=1.0; #Emitter current, mA\n",
+ "op_temp=27.0; #operating temperature, degree celsius\n",
+ "temp_risen=57.0; #Temperature risen, degree celsius\n",
+ "temp_ICBO_doubles=6.0; #Temperature after which ICBO doubles, degree celsius\n",
+ "\n",
+ "#Calculations\n",
+ "Number_of_times_ICBO_doubled=(temp_risen - op_temp)/temp_ICBO_doubles; #Number of times ICBO doubles\n",
+ "ICBO_55=ICBO*2**Number_of_times_ICBO_doubled; #collector to base leakage current at 55 degree celsius, \ud835\udf07A\n",
+ "IC=alpha*IE + ICBO_55/1000; #Collector current, mA\n",
+ "IB=IE-IC; #Base current, mA\n",
+ "IB=IB*1000; #Base current,\ud835\udf07A\n",
+ "\n",
+ "#Results\n",
+ "print(\"Base current at 57 degree celsius=%.1f \ud835\udf07A \"%IB);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Base current at 57 degree celsius=9.4 \ud835\udf07A \n"
+ ]
+ }
+ ],
+ "prompt_number": 71
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter10_ac_load_line_3.png b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter10_ac_load_line_3.png
new file mode 100644
index 00000000..d7feffd7
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter10_ac_load_line_3.png
Binary files differ
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter18_clipping_ckt_output_3.png b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter18_clipping_ckt_output_3.png
new file mode 100644
index 00000000..76486c7b
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter18_clipping_ckt_output_3.png
Binary files differ
diff --git a/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter8_dc_load_line_3.png b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter8_dc_load_line_3.png
new file mode 100644
index 00000000..9b26fbe2
--- /dev/null
+++ b/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/screenshots/chapter8_dc_load_line_3.png
Binary files differ
diff --git a/sample_notebooks/AdityaR/Chapter_5-Sample_Notebook.ipynb b/sample_notebooks/AdityaR/Chapter_5-Sample_Notebook.ipynb
new file mode 100644
index 00000000..a77ec491
--- /dev/null
+++ b/sample_notebooks/AdityaR/Chapter_5-Sample_Notebook.ipynb
@@ -0,0 +1,279 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5 General Case of Forces in a plane"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.2 Equations of equilibrium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('The reaction at P is', 5656.85424949238, 'N')\n",
+ "('The reaction at Q is ', 4000.0, 'N')\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Initialization of Variables\n",
+ "W=2000 #N\n",
+ "Lab=2 #m #length of the member from the vertical to the 1st load of 2000 N\n",
+ "Lac=5 #m #length of the member from the vertical to the 2nd load of 2000 N\n",
+ "Lpq=3.5 #m\n",
+ "\n",
+ "#Calculations\n",
+ "Rq=((W*Lab)+(W*Lac))/Lpq #N #take moment abt. pt P\n",
+ "Xp=Rq #N #sum Fx=0\n",
+ "Yp=2*W #N #sum Fy=0\n",
+ "Rp=math.sqrt(Xp**2+Yp**2) #N\n",
+ "\n",
+ "#Resuts\n",
+ "print('The reaction at P is' ,Rp ,'N')\n",
+ "print('The reaction at Q is ',Rq ,'N')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.3 Equations of equilibrium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('The reaction at A i.e Ra is ', matrix([[ 120.27406887]]), 'N')\n",
+ "('The reaction at B i.e Rb is ', matrix([[ 35.13703443]]), 'N')\n",
+ "('The required tension in the string is ', matrix([[ 40.57275258]]), 'N')\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math,numpy\n",
+ "#Initilization of vaiables\n",
+ "W=25 #N # self weight of the ladder\n",
+ "M=75 #N # weight of the man standing o the ladder\n",
+ "theta=63.43 #degree # angle which the ladder makes with the horizontal\n",
+ "alpha=30 #degree # angle made by the string with the horizontal\n",
+ "Loa=2 #m # spacing between the wall and the ladder\n",
+ "Lob=4 #m #length from the horizontal to the top of the ladder touching the wall(vertical)\n",
+ "\n",
+ "#Calculations\n",
+ "#Using matrix to solve the simultaneous eqn's 3 & 4\n",
+ "A=numpy.matrix('2 -4; 1 -0.577')\n",
+ "B=numpy.matrix('100;100')\n",
+ "C=numpy.linalg.inv(A)*B\n",
+ "\n",
+ "#Results\n",
+ "print('The reaction at A i.e Ra is ',C[0] ,'N')\n",
+ "print('The reaction at B i.e Rb is ',C[1] ,'N')\n",
+ "\n",
+ "#Calculations\n",
+ "T=C[1]/math.cos(math.radians(alpha)) #N # from (eqn 1)\n",
+ "\n",
+ "#Results\n",
+ "print('The required tension in the string is ',T, 'N')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.4 Equations of Equilibrium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('The reaction at B i.e Rb is ', 25.0, 'N')\n",
+ "('The horizontal reaction at A i.e Xa is ', 21.650635094610966, 'N')\n",
+ "('The vertical reaction at A i.e Ya is ', 112.5, 'N')\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#Initilization of variables\n",
+ "W=100 #N\n",
+ "theta=60 #degree angle made by the ladder with the horizontal\n",
+ "alpha=30 #degree angle made by the ladder with the vertical wall\n",
+ "Lob=4 #m length from the horizontal to the top of the ladder touching the wall(vertical)\n",
+ "Lcd=2 #m length from the horizontal to the centre of the ladder where the man stands\n",
+ "\n",
+ "#Calculations\n",
+ "Lab=Lob*(1/math.cos(math.radians(alpha))) #m length of the ladder\n",
+ "Lad=Lcd*math.tan(math.radians(alpha)) #m\n",
+ "Rb=(W*Lad)/Lab #N take moment at A\n",
+ "Xa=Rb*math.sin(math.radians(theta)) #N From eq'n 1\n",
+ "Ya=W+Rb*math.cos(math.radians(theta)) #N From eq'n 2\n",
+ "\n",
+ "#Results\n",
+ "print('The reaction at B i.e Rb is ',Rb, 'N')\n",
+ "print('The horizontal reaction at A i.e Xa is ',Xa, 'N')\n",
+ "print('The vertical reaction at A i.e Ya is ',Ya,'N')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.5 Equations of Equilibrium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('The horizontal reaction at A i.e Xa is ', 28.867513459481287, 'N')\n",
+ "('The vertical reaction at A i.e Ya is ', 100, 'N')\n",
+ "('The reaction at B i.e Rb is ', 28.867513459481287, 'N')\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#Initilization of variables\n",
+ "W=100 #N self weight of the man\n",
+ "alpha=30 #degree angle made by the ladder with the wall\n",
+ "Lob=4 #m length from the horizontal to the top of the ladder touching the wall(vertical)\n",
+ "Lcd=2 #m\n",
+ "\n",
+ "#Calculations\n",
+ "# using the equiblirium equations\n",
+ "Ya=W #N From eq'n 2\n",
+ "Lad=Lcd*math.tan(math.radians(alpha)) #m Lad is the distance fom pt A to the point where the line from the cg intersects the horizontal\n",
+ "Rb=(W*Lad)/Lob #N Taking sum of moment abt A\n",
+ "Xa=Rb #N From eq'n 1\n",
+ "\n",
+ "#Results\n",
+ "print('The horizontal reaction at A i.e Xa is ',Xa, 'N')\n",
+ "print('The vertical reaction at A i.e Ya is ',Ya,'N' )\n",
+ "print('The reaction at B i.e Rb is ',Rb ,'N')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.6 Equations of Equilibrium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('The horizontal reaction at A i.e Xa is ', 3.84, 'N')\n",
+ "('The vertical reaction at A i.e Ya is ', 7.12, 'N')\n",
+ "('Therefore the reaction at A i.e Ra is ', 8.089499366462674, 'N')\n",
+ "('The reaction at D i.e Rd is ', 4.8, 'N')\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#Initilization of variables\n",
+ "d=0.09 #m diametre of the right circular cylinder\n",
+ "h=0.12 #m height of the cyinder\n",
+ "W=10 #N self weight of the bar\n",
+ "l=0.24 #m length of the bar\n",
+ "\n",
+ "#Calculations\n",
+ "theta=math.degrees(math.atan(h/d)) #angle which the bar makes with the horizontal\n",
+ "Lad=math.sqrt(d**2+h**2) #m Lad is the length of the bar from point A to point B\n",
+ "Rd=(W*h*(math.cos(theta*math.pi/180)))/Lad #N Taking moment at A\n",
+ "Xa=Rd*(math.sin(theta*math.pi/180)) #N sum Fx=0.... From eq'n 1\n",
+ "Ya=W-(Rd*(math.cos(theta*math.pi/180))) #N sum Fy=0..... From eq'n 2\n",
+ "Ra=math.sqrt(Xa**2+Ya**2) #resultant of Xa & Ya\n",
+ "\n",
+ "#Results\n",
+ "print('The horizontal reaction at A i.e Xa is ',Xa, 'N')\n",
+ "print('The vertical reaction at A i.e Ya is ',Ya, 'N')\n",
+ "print('Therefore the reaction at A i.e Ra is ',Ra,'N')\n",
+ "print('The reaction at D i.e Rd is ',Rd,'N')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}