diff options
13 files changed, 2695 insertions, 0 deletions
diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter11_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter11_3.ipynb new file mode 100644 index 00000000..0bf83b2e --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter11_3.ipynb @@ -0,0 +1,76 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:732d8b53b905e9628a3915cdb529a16e94d453d40d081213ccbffa2aa86b0393"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Transducers as Input Elements to Instrumentation Systems"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.1:pg-317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find change in resistance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 11-1 in Page 317\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "K =2 #Gauge factor \n",
+ "s = 1050 #stress in kg/cm**2\n",
+ "E = 2.1*10**6 #modulus of elasticity of steel in kg/cm**2\n",
+ "\n",
+ "#Calculations\n",
+ "strain = s/E #Hooke's law\n",
+ "change_in_resistance = K*strain\n",
+ "percentchange = change_in_resistance * 100\n",
+ "\n",
+ "print \"The change in resistance = \",round(change_in_resistance,3)\n",
+ "print \"The percentage change in resistance = \",round(percentchange,1),\"%\"\n",
+ "\n",
+ "#Result\n",
+ "# The change in resistance = 0.001\n",
+ "# The percentage change in resistance = 0.1 % \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The change in resistance = 0.001\n",
+ "The percentage change in resistance = 0.1 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter12_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter12_3.ipynb new file mode 100644 index 00000000..9931f7a4 --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter12_3.ipynb @@ -0,0 +1,79 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:35e2428d62ffd12f9aa6768ec790c12643a1c151cf26ec0bf1b75220b1f3f8dd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12:Analog and Digital Data Acquisition Systems"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1:pg-360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find percentage error\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 12-1 in Page 360\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "R = 1 #Resistance of the wire in ohm\n",
+ "R_L = 10*10**3 #Load resistance in ohm\n",
+ "I_supply = 50*10**-3 #power supply current in A\n",
+ "V_out = 1 #output of the amplifier in V\n",
+ "\n",
+ "#Calculations\n",
+ "V_L = (V_out+(I_supply*R))*R_L/(2*R+R_L)\n",
+ "print \"The load voltage calculated = \",round(V_L,2)\n",
+ "\n",
+ "percenterror = ceil((V_L -V_out)/V_L*100)\n",
+ "print \"The percentage error is about \",round(percenterror),\"%, which is unacceptable in most systems\"\n",
+ "\n",
+ "#Result\n",
+ "# The load voltage calculated = 1.05\n",
+ "# The percentage error is about 5 %, which is unacceptable in most systems \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The load voltage calculated = 1.05\n",
+ "The percentage error is about 5.0 %, which is unacceptable in most systems\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter14_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter14_3.ipynb new file mode 100644 index 00000000..50e462df --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter14_3.ipynb @@ -0,0 +1,238 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7da8fa256cdbc53a73e82048dec92ae378065cdecb2b93cd68e82575348dba15"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14:Fiber Optics Measurements"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.1:pg-392"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find acceptance angle and numerical aperture\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 14-1 in Page 392\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "n_2 = 1.45 #Core index of refraction\n",
+ "n_1 = 1.47 #Cladding index of refraction\n",
+ "\n",
+ "#Calculation\n",
+ "theta_c = math.acos(n_2/n_1)\n",
+ "theta_A = 2*math.asin(n_1*math.sin(theta_c))\n",
+ "NA = math.sqrt(n_1**2 -n_2**2)\n",
+ "\n",
+ "print \"The critical angle of the fiber =\",round(theta_c*180/math.pi,2),\"degree\\n\"\n",
+ "print \"The acceptance angle of the fiber =\",round(theta_A*180/math.pi,2),\" degree\\n\"\n",
+ "print \"The numerical aperture of the fiber = \",round(NA,3)\n",
+ "\n",
+ "#Result\n",
+ "# The critical angle of the fiber = 9.46 degree\n",
+ "# The acceptance angle of the fiber = 27.97 degree\n",
+ "# The numerical aperture of the fiber = 0.242 \n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical angle of the fiber = 9.46 degree\n",
+ "\n",
+ "The acceptance angle of the fiber = 27.97 degree\n",
+ "\n",
+ "The numerical aperture of the fiber = 0.242\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.2:pg-393"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find loss in the fiber\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 14-2 in Page 393\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "NA_1 = 0.3 # numerical apertures of Source fiber\n",
+ "NA_2 = 0.242 #numerical apertures of receiving fiber\n",
+ "\n",
+ "#Calculations\n",
+ "loss = 20*math.log10(NA_1/NA_2)\n",
+ "print \"The energy that is lost through the cladding of the receiving fiber = \",round(loss,2),\" dB\"\n",
+ "\n",
+ "#Result\n",
+ "# The energy that is lost through the cladding of the receiving fiber = 1.87 dB \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy that is lost through the cladding of the receiving fiber = 1.87 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.3:pg-395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find current developed in photodiode\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 14-3 in Page 395\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "h = 6.63*10**-34 #Planck's constant\n",
+ "c = 3*10**8 #Speed of light in m/s\n",
+ "Lambda = 1.3*10**-6 # photon wavelength in m\n",
+ "QE = 0.82 #Quantum efficiency\n",
+ "p = 75*10**-6 #Power in W\n",
+ "q = 1.6*10**-19 #Charge of an electron\n",
+ "\n",
+ "#Calculations\n",
+ "e = h*c/Lambda\n",
+ "N = p/e\n",
+ "N_QE= QE*N\n",
+ "I = N_QE*q\n",
+ "print \"The current developed in a PIN photodiode = \",round(I,7),\" A\"\n",
+ "\n",
+ "#Result\n",
+ "# The current developed in a PIN photodiode = 6.43e-05 A \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current developed in a PIN photodiode = 6.43e-05 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.4:pg-401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find elapsed time\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 14-4 in Page 401\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "n = 1.55 #index of refraction \n",
+ "c = 3*10**8 #speed of light in m/s\n",
+ "d = 1.4*10**3 #Distance in m\n",
+ "\n",
+ "#Calculations\n",
+ "v = c/n\n",
+ "t = d/v\n",
+ "print \"t = \",round(t,7),\"s\"\n",
+ "print \"Since twice the time to reach the break is required for the reflection to arrive at the reflectometer,\"\n",
+ "print \"Hence the total elapsed time = \",round(2*t,8),\"s\"\n",
+ "\n",
+ "#Result\n",
+ "# t = 7.2e-06 s \n",
+ "# Since twice the time to reach the break is required for the reflection to arrive at the reflectometer, \n",
+ "# Hence the total elapsed time = 1.447e-005 s \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "t = 7.2e-06 s\n",
+ "Since twice the time to reach the break is required for the reflection to arrive at the reflectometer,\n",
+ "Hence the total elapsed time = 1.447e-05 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter1_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter1_3.ipynb new file mode 100644 index 00000000..5edf29c5 --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter1_3.ipynb @@ -0,0 +1,861 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8ce07967ae5b6dd561257d03fd753fc6700a96afdde0b7e95c82ed0afca454d4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 01: Measurement and Error"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.1:pg-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Average voltage Range of error\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-1 in Page 3\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "E_1 = 117.02 # Voltage observed by 1st observer is 117.02V\n",
+ "E_2 = 117.11 # Voltage observed by 2nd observer is 117.11V\n",
+ "E_3 = 117.08 # Voltage observed by 3rd observer is 117.08V\n",
+ "E_4 = 117.03 # Voltage observed by 4th observer is 117.03V\n",
+ "\n",
+ "#Calculations\n",
+ "E_av = (E_1+E_2+E_3+E_4)/4\n",
+ "print \"(a) The average voltage, E_av =\",E_av,\"V\"\n",
+ "\n",
+ "E_max = max (E_1,E_2,E_3,E_4) # Maximum value among the 4 nos\n",
+ "E_min = min (E_1,E_2,E_3,E_4) # Minimum value among the 4 nos\n",
+ "\n",
+ "range_1 = E_max - E_av # Range calculated using two different formulae\n",
+ "range_2 = E_av - E_min # Range calculated using two different formulae\n",
+ "\n",
+ "avg_range = (range_1+range_2)/2\n",
+ "print \"(b) The average range of error = +/-\",round(avg_range,2),\"V\"\n",
+ "\n",
+ "#Result\n",
+ "# (a) The average voltage, E_av = 117.06 V\n",
+ "# (b) The average range of error = +/- 0.05 V \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The average voltage, E_av = 117.06 V\n",
+ "(b) The average range of error = +/- 0.05 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.2:pg-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Total resistance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-2 in Page 4\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "R_1 = 18.7 # The first resistance is 18.7ohm\n",
+ "R_2 = 3.624 # The second resistance is 3.624ohm\n",
+ "\n",
+ "# Calculations\n",
+ "R_T = R_1 + R_2 # formula to calculate total resistance in series\n",
+ "print \"The total resistance connected in series =\",R_T,\" ohm\\n\"\n",
+ "print \"As one of the resistance is accurate to only tenths of an ohm, The result should be reduced to the nearest tenth. \\n Hence \"\n",
+ "print \"the total resistance is =\",round(R_T,1),\" ohm\"\n",
+ "\n",
+ "#Result\n",
+ "# The total resistance connected in series = 22.324 ohm\n",
+ "# As one of the resistance is accurate to only tenths of an ohm, The result should be reduced to the nearest tenth. \n",
+ "# Hence the total resistance is = 22.3 ohm \n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total resistance connected in series = 22.324 ohm\n",
+ "\n",
+ "As one of the resistance is accurate to only tenths of an ohm, The result should be reduced to the nearest tenth. \n",
+ " Hence \n",
+ "the total resistance is = 22.3 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.3:pg-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find voltage drop across resistor\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-3 in Page 4\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "I = 3.18 #Current flowing through the resistor = 3.18A\n",
+ "R = 35.68 # The value of resistor = 35.68ohm\n",
+ "\n",
+ "# Calculations\n",
+ "E = I*R\n",
+ "print \"The voltage drop across the resistor = \",E,\"volts\"\n",
+ "print \"Since there are 3 significant figures involved in the multiplication, the result can be written only to a max of 3 significant figures\"\n",
+ "print \"Hence the voltage drop across the resistor = \",round(E),\" volts\"\n",
+ "\n",
+ "#Result\n",
+ "# The voltage drop across the resistor = 113.4624 volts \n",
+ "# Since there are 3 significant figures involved in the multiplication, the result can be written only to a max of 3 significant figures \n",
+ "# Hence the voltage drop across the resistor = 113 volts \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage drop across the resistor = 113.4624 volts\n",
+ "Since there are 3 significant figures involved in the multiplication, the result can be written only to a max of 3 significant figures\n",
+ "Hence the voltage drop across the resistor = 113.0 volts\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.4:pg-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find sum with range of doubt\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-4 in Page 5\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# let N_1 = X_1 +/- Y_1\n",
+ "# N_2 = X_2 +/- Y_2\n",
+ "X_1 = 826.0\n",
+ "Y_1 = 5\n",
+ "X_2 = 628.0\n",
+ "Y_2 = 3\n",
+ "\n",
+ "#Calculations\n",
+ "X = (X_1 + X_2)\n",
+ "Y = (Y_1 + Y_2)\n",
+ "print \"SUM = \",X,\" +/- \",Y\n",
+ "doubt = Y/X*100\n",
+ "print \"The percentage range of doubt = +/-\",round(doubt,3)\n",
+ "\n",
+ "#Result\n",
+ "# SUM = 1454 +/- 8\n",
+ "# The percentage range of doubt = +/-0.55% \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SUM = 1454.0 +/- 8\n",
+ "The percentage range of doubt = +/- 0.55\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.5:pg-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find difference with range of doubt\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-5 in Page 5\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# let N_1 = X_1 +/- Y_1\n",
+ "# N_2 = X_2 +/- Y_2\n",
+ "X_1 = 826.0\n",
+ "Y_1 = 5\n",
+ "X_2 = 628\n",
+ "Y_2 = 3\n",
+ "\n",
+ "X = (X_1 - X_2)\n",
+ "Y = (Y_1 + Y_2)\n",
+ "print \"SUM = \",X,\" +/- \",Y\n",
+ "doubt = Y/X*100\n",
+ "print \"The percentage range of doubt = +/-\",round(doubt,3)\n",
+ "#Result\n",
+ "# Difference = 198 +/- 8\n",
+ "# The percentage range of doubt = +/-4.04% \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SUM = 198.0 +/- 8\n",
+ "The percentage range of doubt = +/- 4.04\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.6:pg-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find difference with range of doubt\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-6 in Page 5\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# let N_1 = X_1 +/- Y_1\n",
+ "# N_2 = X_2 +/- Y_2\n",
+ "X_1 = 462.0\n",
+ "Y_1 = 4\n",
+ "X_2 = 437.0\n",
+ "Y_2 = 4\n",
+ "\n",
+ "#Calculations\n",
+ "X = (X_1 - X_2)\n",
+ "Y = (Y_1 + Y_2)\n",
+ "print \"SUM = \",X,\" +/- \",Y\n",
+ "doubt = Y/X*100\n",
+ "print \"The percentage range of doubt = +/-\",round(doubt,3)\n",
+ "\n",
+ "#Result\n",
+ "# Difference = 25 +/- 8\n",
+ "# The percentage range of doubt = +/-32.00% \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SUM = 25.0 +/- 8\n",
+ "The percentage range of doubt = +/- 32.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.7:pg-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Apparent and actual resistance \n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-7 in Page 6\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "I_T = 5*(10**-3) # Reading of the milliammeter in ampere\n",
+ "V_T = 100 # Reading of the voltmeter in volt\n",
+ "sensitivity = 1000 # sensitivity of voltmeter in ohm/volt\n",
+ "scale = 150 # scale of the voltmeter\n",
+ "\n",
+ "#Calculations\n",
+ "R_T = V_T / I_T # formula to calculate total circuit resistance\n",
+ "print \"(a) The apparent circuit resistance neglecting the resistance of milliammeter, R_T = \",R_T,\" ohm\\n\"\n",
+ "\n",
+ "R_V = sensitivity * scale # calculating resistance of voltmeter\n",
+ "R_X = (R_T * R_V)/(R_V - R_T) # effective circuit resistance due to loading effect\n",
+ "print \"(b) The actual circuit resistance with the loading effect of voltmeter, R_X = \",round(R_X,2),\" ohm\\n\"\n",
+ "\n",
+ "percentage_error = (R_X - R_T)*100/ R_X\n",
+ "# %error = (actual-apparent)/ actual\n",
+ "print \"(c) The percentage error due to loading effect of voltmeter = \",round(percentage_error,2),\"%\"\n",
+ "\n",
+ "#result\n",
+ "# (a) The apparent circuit resistance neglecting the resistance of milliammeter, R_T = 20000 ohm\n",
+ "# (b) The actual circuit resistance with the loading effect of voltmeter, R_X = 23076.92 ohm\n",
+ "# (c) The percentage error due to loading effect of voltmeter = 13.33% \n",
+ "\n",
+ "\n",
+ "# The result shown in the textbook is printed incorrectly and does not match with the correct result\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The apparent circuit resistance neglecting the resistance of milliammeter, R_T = 20000.0 ohm\n",
+ "\n",
+ "(b) The actual circuit resistance with the loading effect of voltmeter, R_X = 23076.92 ohm\n",
+ "\n",
+ "(c) The percentage error due to loading effect of voltmeter = 13.33 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.8:pg-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Apparent and actual resistance \n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-8 in Page 7\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "I_T = 800*(10**-3) # Reading of the milliammeter in ampere\n",
+ "V_T = 40 # Reading of the voltmeter in volt\n",
+ "sensitivity = 1000 # sensitivity of voltmeter in ohm/volt\n",
+ "scale = 150 # scale of the voltmeter\n",
+ "\n",
+ "#Calculations\n",
+ "R_T = V_T / I_T # formula to calculate total circuit resistance\n",
+ "print \"(a) The apparent circuit resistance neglecting the resistance of milliammeter, R_T = \",R_T,\" ohm\\n\"\n",
+ "\n",
+ "R_V = sensitivity * scale # calculating resistance of voltmeter\n",
+ "R_X = (R_T * R_V)/(R_V - R_T) # effective circuit resistance due to loading effect\n",
+ "print \"(b) The actual circuit resistance with the loading effect of voltmeter, R_X = \",round(R_X,2),\" ohm\\n\"\n",
+ "\n",
+ "percentage_error = (R_X - R_T)*100/ R_X\n",
+ "# %error = (actual-apparent)/ actual\n",
+ "print \"(c) The percentage error due to loading effect of voltmeter = \",round(percentage_error,2),\"%\"\n",
+ "\n",
+ "#result\n",
+ "# (a) The apparent circuit resistance neglecting the resistance of milliammeter, R_T = 50.00 ohm\n",
+ "# (b) The actual circuit resistance with the loading effect of voltmeter, R_X = 50.02 ohm\n",
+ "# (c) The percentage error due to loading effect of voltmeter = 0.03% \n",
+ "\n",
+ "\n",
+ "# The result shown in the textbook is printed incorrectly and does not match with the correct result\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The apparent circuit resistance neglecting the resistance of milliammeter, R_T = 50.0 ohm\n",
+ "\n",
+ "(b) The actual circuit resistance with the loading effect of voltmeter, R_X = 50.02 ohm\n",
+ "\n",
+ "(c) The percentage error due to loading effect of voltmeter = 0.03 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.9:pg-9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Arithmatic mean and deviation from mean\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-9 in Page 9\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# Independent current measurements taken by six observers\n",
+ "I_1 = 12.8*(10**-3)\n",
+ "I_2 = 12.2*(10**-3)\n",
+ "I_3 = 12.5*(10**-3)\n",
+ "I_4 = 13.1*(10**-3)\n",
+ "I_5 = 12.9*(10**-3)\n",
+ "I_6 = 12.4*(10**-3)\n",
+ "\n",
+ "#Calculations\n",
+ "arithmatic_mean = (I_1 +I_2 +I_3 +I_4 +I_5 +I_6)/6\n",
+ "print \"(a) The arithmatic mean of the observations =\",arithmatic_mean,\"A\"\n",
+ "\n",
+ "d_1 = I_1 - arithmatic_mean\n",
+ "d_2 = I_2 - arithmatic_mean\n",
+ "d_3 = I_3 - arithmatic_mean\n",
+ "d_4 = I_4 - arithmatic_mean\n",
+ "d_5 = I_5 - arithmatic_mean\n",
+ "d_6 = I_6 - arithmatic_mean\n",
+ "\n",
+ "#deviation calculated using the formula d_n = x_n - arithmatic_mean\n",
+ "disp('(b) The deviations from the mean are:' )\n",
+ "print \"d_1 = \",d_1,\" A\\n d_2 = \",d_2,\" A\\n d_3 = \",d_3,\" A\\n d_4 = \", d_4,\" A\\n d_5 = \",d_5,\" A\\n d_6 =\",d_6,\" A\"\n",
+ "\n",
+ "#Result\n",
+ "# (a) The arithmatic mean of the observations =0.01265 A \n",
+ "# (b) The deviations from the mean are: \n",
+ "# d_1 = 0.00015 A\n",
+ "# d_2 = -0.00045 A\n",
+ "# d_3 = -0.00015 A\n",
+ "# d_4 = 0.00045 A\n",
+ "# d_5 = 0.00025 A\n",
+ "# d_6 = -0.00025 A\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The arithmatic mean of the observations = 0.01265 A\n",
+ "(b) The deviations from the mean are:\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "d_1 = 0.00015 A\n",
+ " d_2 = -0.00045 A\n",
+ " d_3 = -0.00015 A\n",
+ " d_4 = 0.00045 A\n",
+ " d_5 = 0.00025 A\n",
+ " d_6 = -0.00025 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.10:pg-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Average deviation\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-10 in Page 10\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# These are the data found out from the example_1-9\n",
+ "d_1 = 0.000150\n",
+ "d_2 = -0.000450\n",
+ "d_3 = -0.000150\n",
+ "d_4 = 0.000450\n",
+ "d_5 = 0.000250\n",
+ "d_6 = -0.000250\n",
+ "\n",
+ "#Calculation\n",
+ "D = (abs(d_1) +abs(d_2) +abs(d_3) +abs(d_4) +abs(d_5) +abs(d_6))/6\n",
+ "print \"The average deviation, D = \",round(D,6),\"A\"\n",
+ "\n",
+ "#Result\n",
+ "# The average deviation, D = 2.83e-004 A \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average deviation, D = 0.000283 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.11:pg-14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Std deviation and Probable error \n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-11 in Page 14\n",
+ "\n",
+ "import numpy\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# let the 10 resistance measurements in ohm be taken as elements of matrix\n",
+ "x = [101.2,101.7,101.3,101.0,101.5,101.3,101.2,101.4,101.3,101.1]\n",
+ "\n",
+ "#Calculations\n",
+ "arithmatic_mean = numpy.mean(x)\n",
+ "sigma = numpy.std(x)\n",
+ "probable_error = 0.6745 * sigma\n",
+ "print \"(a) The arithmatic mean of the readings = \",arithmatic_mean,\" ohm\\n\"\n",
+ "print \"(b) The standard deviation of the readings = \",round(sigma,1),\" ohm\\n\"\n",
+ "print \"(c) The probable error of the readings = \",round(probable_error,2),\"ohm\"\n",
+ "\n",
+ "#Result\n",
+ "# (a) The arithmatic mean of the readings = 101.3 ohm\n",
+ "# (b) The standard deviation of the readings = 0.2 ohm\n",
+ "# (c) The probable error of the readings = 0.13 ohm \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The arithmatic mean of the readings = 101.3 ohm\n",
+ "\n",
+ "(b) The standard deviation of the readings = 0.2 ohm\n",
+ "\n",
+ "(c) The probable error of the readings = 0.13 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.12:pg-14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Limiting error \n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-12 in Page 14\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "scale = 150\n",
+ "percentage_accuracy = 1.0/100# accuracy of 1% full scale reading\n",
+ "V = 83 #voltage measured by instrument = 83 volt \n",
+ "\n",
+ "#Calculations\n",
+ "limiting_error = percentage_accuracy * scale\n",
+ "print \"The magnitude of the limiting error = \",limiting_error,\" V\\n\"\n",
+ "\n",
+ "percentage_error = limiting_error/V * 100\n",
+ "print \"The percentage limiting error = \",round(percentage_error,2),\" percent\"\n",
+ "\n",
+ "#Result\n",
+ "# The magnitude of the limiting error = 1.5 V\n",
+ "# The percentage limiting error = 1.81 percent \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnitude of the limiting error = 1.5 V\n",
+ "\n",
+ "The percentage limiting error = 1.81 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.13:pg-15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find the maximum error\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-13 in Page 15\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# For the given tolerence of 0.1% \n",
+ "# highest value of resistor is 1.001 times the nominal value\n",
+ "# lowest value of resistor is 0.999 times the nominal value\n",
+ "\n",
+ "#Calculations\n",
+ "V_out_max = 1.001 * 1.001/ 0.999\n",
+ "V_out_min = 0.999 * 0.999/ 1.003\n",
+ "total_var = 0.1 * 3 # total variation of the resultant voltage is sum of tolerences\n",
+ "print \"The total variation of the resultant voltage = +/- \",total_var,\"%\"\n",
+ "\n",
+ "#Result\n",
+ "# The total variation of the resultant voltage = +/- 0.3 %\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total variation of the resultant voltage = +/- 0.3 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.14:pg-16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find limiting error\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 1-14 in Page 16\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# let I = X_1 +/- Y_1\n",
+ "# R = X_2 +/- Y_2\n",
+ "X_1 = 2.00\n",
+ "Y_1 = 0.5\n",
+ "X_2 = 100\n",
+ "Y_2 = 0.2\n",
+ "\n",
+ "#Calculations\n",
+ "P_1 = ((1+0.005)**2)*(1+0.002)\n",
+ "print \"For the worst possible combination of the values of current and resistance,\\nThe highest power dissipation becomes,\\n\"\n",
+ "print \"P = \",round(P_1,3),\" (I**2)*R Watts\"\n",
+ "P_2 = ((1-0.005)**2)*(1-0.002)\n",
+ "print \"For the lowest power dissipation.\\nP = \",round(P_2,3),\" (I**2)*R Watts\\n\"\n",
+ "lim_error = 2 * Y_1 + Y_2\n",
+ "print \"The limiting error = +/- \",lim_error,\"%\"\n",
+ "\n",
+ "#Result\n",
+ "# For the worst possible combination of the values of current and resistance,\n",
+ "# The highest power dissipation becomes,\n",
+ "# P = 1.012 (I**2)*R Watts\n",
+ "# For the lowest power dissipation.\n",
+ "# P = 0.988 (I**2)*R Watts\n",
+ "# The limiting error = +/- 1.2% \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For the worst possible combination of the values of current and resistance,\n",
+ "The highest power dissipation becomes,\n",
+ "\n",
+ "P = 1.012 (I**2)*R Watts\n",
+ "For the lowest power dissipation.\n",
+ "P = 0.988 (I**2)*R Watts\n",
+ "\n",
+ "The limiting error = +/- 1.2 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter2_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter2_3.ipynb new file mode 100644 index 00000000..d6153f2a --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter2_3.ipynb @@ -0,0 +1,262 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3fb09c0fd0a89152f5948cdf5eed31775a718eb29c5fc9edfb34ed6af2984184"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 02:Systems of Units of Measurement"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1:pg-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To convert area in metre to feet\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 2-1 in Page 29\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "A_m = 5000 # area in metre**2 unit\n",
+ "\n",
+ "#Calculation\n",
+ "A_ft = A_m * (1/0.3048)**2 # As 1ft = 0.3048m\n",
+ "print \"The area in feet = \",round(A_ft),\" sq.ft\"\n",
+ "\n",
+ "#Result\n",
+ "# The area in feet = 53820 sq.ft \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The area in feet = 53820.0 sq.ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.2:pg-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To convert flux density to different units\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 2-2 in Page 29\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "B_cm = 20 # flux density in maxwell/sq.cm\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "B_in = B_cm *2.54**2 # converting to lines/sq.inch\n",
+ "print \"The flux density in lines/sq.in =\",round(B_in),\" lines/(in**2)\"\n",
+ "\n",
+ "#Result\n",
+ "# The flux density in lines/sq.in = 129 lines/(in**2) \n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The flux density in lines/sq.in = 129.0 lines/(in**2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.3:pg-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To convert velocity to a different unit\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 2-3 in Page 29\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "c_s = 2.997925 * 10**8 # velocity in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "c_hr = 2.997925 *10**8* 1/10**3* 3.6*10**3 # velocity in km/hr\n",
+ "print \"The velocity of light in km/hr = \",\"{:.3E}\".format(c_hr),\" km/hr\"\n",
+ "\n",
+ "#Result \n",
+ "# The velocity of light in km/hr = 1.079e+009 km/hr "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of light in km/hr = 1.079E+09 km/hr\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.4:pg-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To convert density to a different unit\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 2-4 in Page 29\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "Density_ft = 62.5\n",
+ "\n",
+ "#Calcualtions\n",
+ "Density_in = 62.5 * (1/12.0)**3\n",
+ "Density_cm = Density_in * 453.6 * (1/2.54)**3\n",
+ "print \"(a) The density of water in lb/cubic inch = \",round(Density_in,6),\" lb/(in**3).\\n\"\n",
+ "print \"(b) The density of water in g/cubic cm = \",round(Density_cm,6), \"g/(cm**3).\"\n",
+ "\n",
+ "#Result\n",
+ "# (a) The density of water in lb/cubic inch = 0.036169 lb/(in**3).\n",
+ "# (b) The density of water in g/cubic cm = 1.001171 g/(cm**3). \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The density of water in lb/cubic inch = 0.036169 lb/(in**3).\n",
+ "\n",
+ "(b) The density of water in g/cubic cm = 1.001171 g/(cm**3).\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.5:pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To convert speed limit to a different unit\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 2-5 in Page 30\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "speed_km = 60 # speed limit in km/hr\n",
+ "\n",
+ "#Calculations\n",
+ "speed_m = 60 *10**3 *10**2 *(1/2.54) *(1/12.0)*(1.0/5280)\n",
+ "speed_ft = 37.3 *5280 *(1/(3.6*10**3))\n",
+ "\n",
+ "print \"(a) The speed limit in m/hr = \",round(speed_m,1),\" mi/hr\\n\"\n",
+ "print \"(b) The speed limit in ft/s = \",round(speed_ft,1),\" ft/s\"\n",
+ "\n",
+ "#Result\n",
+ "# (a) The speed limit in m/hr = 37.3 mi/hr\n",
+ "# (b) The speed limit in ft/s = 54.7 ft/s \n",
+ "\n",
+ "\n",
+ "#The answer given in textbook is printed incorrectly and does not match with calculated answer\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The speed limit in m/hr = 37.3 mi/hr\n",
+ "\n",
+ "(b) The speed limit in ft/s = 54.7 ft/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter4_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter4_3.ipynb new file mode 100644 index 00000000..9cf22584 --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter4_3.ipynb @@ -0,0 +1,240 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:122a31de547475cc4aadab2eac419ec88d91c65017876c6ee98e7639ab9ef3a9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 04:Electromechanical Indicating Instruments"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.1:pg-56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find Shunt resistance required\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 4-1 in Page 56\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "I_m = 1*(10.0**-3) #Full scale deflection of the movement in ampere\n",
+ "R_m = 100.0 #Internal resistance of the movement(the coil) in ohm\n",
+ "I = 100.0*(10**-3) #Full scale of the ammeter including the shunt in Ampere\n",
+ "\n",
+ "#Calculations\n",
+ "I_s = I - I_m # calculating current through shunt\n",
+ "R_s = I_m * R_m/ I_s #calculating shunt to be added\n",
+ "print \"The value of the shunt resistance required, R_s =\",round(R_s,2),\"ohm\"\n",
+ "\n",
+ "#Result\n",
+ "# The value of the shunt resistance required, R_s = 1.01 ohm\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of the shunt resistance required, R_s = 1.01 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.2:pg-57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To design Ayrton shunt\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 4-2 in Page 57\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "I_1 = 1 #Full scale currents of the ammeter in amp\n",
+ "I_2 = 5\n",
+ "I_3 = 10\n",
+ "R_m = 50 #Internal resistance of the movement(the coil) in ohm\n",
+ "I_m = 1*(10**-3) #Full scale deflection of the movement in ampere\n",
+ "\n",
+ "#Calculations\n",
+ "# On the 1-A range: \n",
+ "I_s1 = I_1 - I_m # calculating current through shunt\n",
+ "#Using the eq. R_s = I_m * R_m/ I_s\n",
+ "#1 R_a +R_b +R_c = I_m * R_m/ I_s # As (R_a +R_b +R_c) are parallel with R_m\n",
+ "\n",
+ "# On the 5-A range\n",
+ "I_s2 = I_2 - I_m\n",
+ "#2 R_a +R_b = I_m * (R_c +R_m)/ I_s # As (R_a+R_b) in parallel with (R_c+R_m)\n",
+ "\n",
+ "# On the 10-A range\n",
+ "I_s3 = I_3 - I_m\n",
+ "#3 R_a = I_m * (R_b +R_c +R_m)/ I_s # As R_a is parallel with (R_b +R_c +R_m)\n",
+ "\n",
+ "\n",
+ "import numpy as np\n",
+ "a = np.array([[1,4999,-9999],[1,4999,1],[1,-1,1]])\n",
+ "b = np.array([0.05005,50,-50])\n",
+ "answer = np.linalg.solve(a.T, b)\n",
+ "\n",
+ "\n",
+ "\n",
+ "R_a = answer[0]\n",
+ "R_b = answer[1]\n",
+ "R_c = answer[2]\n",
+ "\n",
+ "disp('The different resistors used for the ayrton shunt for different ranges are:')\n",
+ "print \"R_a = \",round(R_a,7),\" ohm\\n\"\n",
+ "print \"R_b = \",round(R_b,7),\" ohm\\n\"\n",
+ "print \"R_c = \",round(R_c,6),\" ohm\"\n",
+ "\n",
+ "#Result\n",
+ "# The different resistors used for the ayrton shunt for different ranges are: \n",
+ "# R_a = 0.005005 ohm\n",
+ "# R_b = 0.005005 ohm\n",
+ "# R_c = 0.040040 ohm \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The different resistors used for the ayrton shunt for different ranges are:\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R_a = 0.005005 ohm\n",
+ "\n",
+ "R_b = 0.005005 ohm\n",
+ "\n",
+ "R_c = 0.04004 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.3:pg-60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To design multirange dc voltmeter\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 4-3 in Page 60\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "R_m = 100 # internal resistance of movement\n",
+ "I_fsd = 1*(10**-3) #full-scale current in Amp\n",
+ "V_1 = 10 #different ranges in volt\n",
+ "V_2 = 50\n",
+ "V_3 = 250\n",
+ "V_4 = 500\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#For the 10-V range\n",
+ "R_T = V_1 / I_fsd\n",
+ "R_4 = R_T - R_m\n",
+ "print \"The value of the resistance R_4 = \",R_4,\" ohm\\n\"\n",
+ "\n",
+ "#For the 50-V range\n",
+ "R_T = V_2 / I_fsd\n",
+ "R_3 = R_T - (R_4 +R_m)\n",
+ "print \"The value of the resistance R_3 = \",R_3/1000,\"K ohm\\n\"\n",
+ "\n",
+ "#For the 250-V range\n",
+ "R_T = V_3 / I_fsd\n",
+ "R_2 = R_T -(R_3 +R_4 +R_m)\n",
+ "print \"The value of the resistance R_2 =\",R_2/1000,\"k ohm\\n\"\n",
+ "\n",
+ "#For the 500-V range\n",
+ "R_T = V_4 / I_fsd\n",
+ "R_1 = R_T - (R_2 +R_3 +R_4 +R_m)\n",
+ "print \"The value of the resistance R_1 =\",R_1/1000,\"K ohm\"\n",
+ "\n",
+ "#Result\n",
+ "# The value of the resistance R_4 = 9900 ohm\n",
+ "# The value of the resistance R_3 = 40k ohm\n",
+ "# The value of the resistance R_2 = 200k ohm\n",
+ "# The value of the resistance R_1 = 250k ohm \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of the resistance R_4 = 9900.0 ohm\n",
+ "\n",
+ "The value of the resistance R_3 = 40.0 K ohm\n",
+ "\n",
+ "The value of the resistance R_2 = 200.0 k ohm\n",
+ "\n",
+ "The value of the resistance R_1 = 250.0 K ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter5_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter5_3.ipynb new file mode 100644 index 00000000..203a765e --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter5_3.ipynb @@ -0,0 +1,398 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e254c8288fbd2f2cd14434e82e95f71176cc32f312efb578ff8980e82a33844f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5:Bridge Measurements"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.1:Pg-101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find deflection caused by the given unbalance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 5-1 in Page 101\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# Resistances of the 4 arms in ohm\n",
+ "R_1 = 1000.0\n",
+ "R_2 = 100.0\n",
+ "R_3 = 200.0\n",
+ "R_4 = 2005.0\n",
+ "\n",
+ "E = 5 # battery EMF in volt\n",
+ "S_I = 10*(10**-3)/(10**-6) #Current sensitivity in m/A\n",
+ "R_g = 100.0 #Internal resistance of galvanometer in ohm\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Calculations are made wrt fig 5-3 in page 103\n",
+ "#Bridge balance occurs if arm BC has a resistance of 2000 ohm. The diagram shows arm BC has as a resistance of 2005 ohm\n",
+ "\n",
+ "#To calculate the current in the galvanometer, the ckt is thevenised wrt terminals B and D.\n",
+ "#The potenttial from B to D, with the galvanometer removed is the Thevenin voltage\n",
+ "\n",
+ "# E_TH = E_AD - E_AB \n",
+ "\n",
+ "E_TH = E * ((R_2/(R_2+R_3)) - (R_1/ (R_1+R_4)))\n",
+ "R_TH = ((R_2 * R_3/(R_2+R_3)) + (R_1 * R_4/ (R_1+R_4)))\n",
+ "\n",
+ "#When the galvanometer is now connected to the output terminals, The current through the galvanometer is\n",
+ "\n",
+ "I_g = E_TH /(R_TH +R_g)\n",
+ "d = I_g * S_I\n",
+ "print \"The deflection of the galvanometer = \",round(d*1000,2),\" mm\"\n",
+ "\n",
+ "#Result\n",
+ "# The deflection of the galvanometer = 33.26 mm \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The deflection of the galvanometer = 33.26 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.2:pg-102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To check the capability of detecting unbalance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 5-2 in Page 102\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# Resistances of the 4 arms in ohm\n",
+ "R_1 = 1000.0\n",
+ "R_2 = 100.0\n",
+ "R_3 = 200.0\n",
+ "R_4 = 2005\n",
+ "\n",
+ "E = 5 # battery EMF in volt\n",
+ "S_I = 1*(10**-3)/(10**-6) #Current sensitivity in m/A\n",
+ "R_g = 500 #Internal resistance of galvanometer in ohm\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Calculations are made wrt fig 5-3 in page 103\n",
+ "#Bridge balance occurs if arm BC has a resistance of 2000 ohm. The diagram shows arm BC has as a resistance of 2005 ohm\n",
+ "\n",
+ "#To calculate the current in the galvanometer, the ckt is thevenised wrt terminals B and D.\n",
+ "#The potenttial from B to D, with the galvanometer removed is the Thevenin voltage\n",
+ "\n",
+ "# E_TH = E_AD - E_AB \n",
+ "\n",
+ "E_TH = E * ((R_2/(R_2+R_3)) - (R_1/ (R_1+R_4)))\n",
+ "R_TH = ((R_2 * R_3/(R_2+R_3)) + (R_1 * R_4/ (R_1+R_4)))\n",
+ "\n",
+ "#When the galvanometer is now connected to the output terminals, The current through the galvanometer is\n",
+ "\n",
+ "I_g = E_TH /(R_TH +R_g)\n",
+ "d = I_g * S_I\n",
+ "print \"The deflection of the galvanometer = \",round(d*1000,2),\" mm\"\n",
+ "print 'Given that galvanometer is capable of detecting a deflection of 1mm'\n",
+ "print 'Hence looking at the result,it can be seen that this galvanometer produces a deflection that can be easily observed'\n",
+ "\n",
+ "#Result\n",
+ "# The deflection of the galvanometer = 2.247 mm \n",
+ "# Given that galvanometer is capable of detecting a deflection of 1mm \n",
+ " \n",
+ "# Hence looking at the result,it can be seen that this galvanometer produces a deflection that can be easily observed \n",
+ " \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The deflection of the galvanometer = 2.25 mm\n",
+ "Given that galvanometer is capable of detecting a deflection of 1mm\n",
+ "Hence looking at the result,it can be seen that this galvanometer produces a deflection that can be easily observed\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.3:Pg-111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# To find the unknown impedence\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 5-3 in Page 111\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# The given polar forms in textbook is represented in rect form\n",
+ "Z_1 = 17.36482 +1j *98.48078\n",
+ "Z_2 = 250\n",
+ "Z_3 = 346.4102 +1j *200\n",
+ "\n",
+ "#Calculations\n",
+ "#The first condition for bridge balance is Z_1*Z_4 = Z_2*Z_3\n",
+ "mod_Z_4 = (abs(Z_2)*abs(Z_3))/abs(Z_1)\n",
+ "\n",
+ "#The second condition for bridge balance requires that sum of the phase angles of opposite arms be equal\n",
+ "theta_Z_4 = math.atan(Z_2.imag)+math.atan(Z_3.imag)-math.atan(Z_1.imag)*180/math.pi\n",
+ "\n",
+ "print \"The impedence of the unknown arm =\",round(mod_Z_4),\" ohm /_ \",round(theta_Z_4),\" deg\\n\"\n",
+ "print \"Here the magnitude of impedence is 1000 and phase angle is 50 in degrees\\n\"\n",
+ "print \"The above value indicates that we are dealing with a capacitive element, possibly consisting of a series combination of a resistor and capacitance\"\n",
+ "#Result\n",
+ "# The impedence of the unknown arm = 1000 ohm /_ -50 deg\n",
+ "# Here the magnitude of impedence is 1000 and phase angle is 50 in degrees\n",
+ "# The above value indicates that we are dealing with a capacitive element, possibly consisting of a series combination of a resistor and capacitance \n",
+ " \n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The impedence of the unknown arm = 1000.0 ohm /_ -88.0 deg\n",
+ "\n",
+ "Here the magnitude of impedence is 1000 and phase angle is 50 in degrees\n",
+ "\n",
+ "The above value indicates that we are dealing with a capacitive element, possibly consisting of a series combination of a resistor and capacitance\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.4:pg-112"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find the unknown impedence\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 5-4 in Page 112\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# The notations are wrt to the figure 5-10 in page 109\n",
+ "\n",
+ "#Arm AB\n",
+ "R_1 = 450\n",
+ "#Arm BC\n",
+ "R_2 = 300\n",
+ "C = 0.265 *(10**-6)\n",
+ "#Arm DA\n",
+ "R_3 = 200\n",
+ "L = 15.9*(10**-3)\n",
+ "f = 1000\n",
+ "\n",
+ "#Calculations\n",
+ "w = 2*math.pi*f\n",
+ "Z_1 = 450\n",
+ "Z_2 = R_2 - 1j *floor(1/(w*C))\n",
+ "Z_3 = R_3 + 1j*ceil(w*L)\n",
+ "\n",
+ "Z_4 = Z_1*Z_3/Z_2\n",
+ "print \"The impedence of the unknown arm = \",round(imag(Z_4)),\" ohm\\n\"\n",
+ "print \"The result indicates that Z_4 is a pure inductance with an inductive reactance of 150 ohm at a frequency of 1 khz.\\n\"\n",
+ "\n",
+ "L_ans = imag(Z_4)/w\n",
+ "print \"The inductance present in the arm CD = \",round(L_ans*1000,1),\"m H\"\n",
+ "\n",
+ "#Result\n",
+ "# The impedence of the unknown arm = 150i ohm\n",
+ "# The result indicates that Z_4 is a pure inductance with an inductive reactance of 150 ohm at a frequency of 1 khz.\n",
+ "# The inductance present in the arm CD = 23.9m H \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The impedence of the unknown arm = 150.0 ohm\n",
+ "\n",
+ "The result indicates that Z_4 is a pure inductance with an inductive reactance of 150 ohm at a frequency of 1 khz.\n",
+ "\n",
+ "The inductance present in the arm CD = 23.9 m H\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.5:pg-119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To balance the unbalanced bridge\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 5-5 in Page 119\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "Z_1 = -1000j\n",
+ "Z_2 = 500\n",
+ "Z_3 = 1000\n",
+ "Z_4 = 100+500j\n",
+ "\n",
+ "# The balance is not possible with this condition as theta_1+theta_4 will be slightly negative than theta_2+theta3\n",
+ "# Balance can be achieved by 2 methods:\n",
+ "print \"First option is to modify Z_1 so that its phase angle is decreased to less than 90deg by placing a resistor in parallel with the capacitor.\"\n",
+ "# The resistance R_1 can be determined by the standard approach\n",
+ "\n",
+ "#Calculations\n",
+ "Y_1 = Z_4/(Z_2*Z_3)\n",
+ "#Also,\n",
+ "# Y_1 = (1/R) + %i/1000\n",
+ "# equating both the equations and solving for R_1\n",
+ "\n",
+ "R_1 = 1/(Y_1-(1j/1000 ))\n",
+ "print \"The value of the resistor R_1 in parallel with capacitor = \",R_1.real,\" ohm\\n\",\n",
+ "\n",
+ "# It should be noted that the addition of R_1 upsets the first balance condition as the magnitude of Z_1 is changed\n",
+ "# Hence the variable R_3 should be adjusted to compensate this effect\n",
+ "\n",
+ "print 'The second option is to modify the phase angle of arm 2 or arm 3 by adding series capacitor'\n",
+ "Z_3_1 = Z_1 *Z_4/Z_2\n",
+ "# substituting for the component values and solving for X_C yeilds\n",
+ "\n",
+ "X_C = abs(1000- Z_3_1)/-1j\n",
+ "print \"The value of the reactance of the capacitor used, X_C = \",X_C.imag,\" ohm\"\n",
+ "\n",
+ "\n",
+ "#In this case the magnitude of the Z_3 is increased so that the first balance condition is changed\n",
+ "#A small adjustment of R_3 is necessary to restore balance\n",
+ "\n",
+ "#Result\n",
+ "# First option is to modify Z_1 so that its phase angle is decreased to less than 90deg by placing a resistor in parallel with the capacitor. \n",
+ "# The value of the resistor R_1 in parallel with capacitor = 5000 ohm\n",
+ " \n",
+ "# The second option is to modify the phase angle of arm 2 or arm 3 by adding series capacitor \n",
+ "# The value of the reactance of the capacitor used, X_C = 200 ohm \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "First option is to modify Z_1 so that its phase angle is decreased to less than 90deg by placing a resistor in parallel with the capacitor.\n",
+ "The value of the resistor R_1 in parallel with capacitor = 5000.0 ohm\n",
+ "The second option is to modify the phase angle of arm 2 or arm 3 by adding series capacitor\n",
+ "The value of the reactance of the capacitor used, X_C = 200.0 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter6_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter6_3.ipynb new file mode 100644 index 00000000..c47588e7 --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter6_3.ipynb @@ -0,0 +1,321 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:bf5e1ba8fe50db5d826f3aa4aa6f0fbfe2110f01141414923f54b110cd4d507c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6:Electronic Instruments for Measuring Basic Parameters"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3:pg-144"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find the maximum time \n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 6-3 in Page 144\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "R = 100*(10**3) # Value of resistance in ohm\n",
+ "C = 0.1*(10**-6) # The value of integrating capacitor in F\n",
+ "V_ref = 2 # The reference voltage in V\n",
+ "V_out = 10 # The maximum limit of the output in V\n",
+ "\n",
+ "#Calculations\n",
+ "T = R*C\n",
+ "print \"The integrator time constant = \",T,\" s\"\n",
+ "V_s = V_ref/T #Unit is V/s\n",
+ "V = 1/V_s\n",
+ "print \"Therefore the integrator output = \",V,\" s/V \\nTherefore to integrate 10V \"\n",
+ "T_max = V*V_out #The max time the ref voltage can be integrated\n",
+ "print \"The time required = \",T_max,\" s\"\n",
+ "\n",
+ "#Result\n",
+ "# The integrator time constant = 0.010 s\n",
+ "# Therefore the integrator output = 0.005 s/V \n",
+ "# Therefore to integrate 10V \n",
+ "# The time required = 0.0500 s \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The integrator time constant = 0.01 s\n",
+ "Therefore the integrator output = 0.005 s/V \n",
+ "Therefore to integrate 10V \n",
+ "The time required = 0.05 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4:pg-162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find the distributed capacitance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 6-4 in Page 162\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# Frequency measurements in Hz\n",
+ "f_1 = 2*10**6\n",
+ "f_2 = 4*10**6\n",
+ "# Value of tuning capacitor in F\n",
+ "C_1 = 460*10**-12\n",
+ "C_2 = 100*10**-12\n",
+ "\n",
+ "#Calculations\n",
+ "C_d = (C_1-(4*C_2))/3\n",
+ "print \"C_d = \",round(C_d,13),\" F\\n\"\n",
+ "print \"i.e The value of the distributed capacitance = \",round(C_d*10**12,1),\" pF\"\n",
+ "\n",
+ "#Result\n",
+ "# C_d = 2E-011 F\n",
+ "# i.e The value of the distributed capacitance = 20 pF \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "C_d = 2e-11 F\n",
+ "\n",
+ "i.e The value of the distributed capacitance = 20.0 pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5:pg-162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find the self capacitance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 6-5 in Page 162\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "# Values of frequencies in Hz\n",
+ "f_1 = 2*10**6\n",
+ "f_2 = 5*10**6\n",
+ "# Values of the tuning capacitors in F\n",
+ "C_1 = 450*10**-12\n",
+ "C_2 = 60*10**-12\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#Using the equation f = 1/(2*%pi*sqrt(L*(C_2+C_d)))\n",
+ "#Since f_2 = 2.5*f_1\n",
+ "#Equating & reducing the equations\n",
+ "# 1/(C_2 +C_d) = 6.25/(C_1 +C_d)\n",
+ "\n",
+ "C_d = (C_1 -6.25*C_2)/5.25\n",
+ "print \"C_d = \",round(C_d,13),\" F\\n\"\n",
+ "print \"i.e The value of the distributed capacitance = \",round(C_d*10**12,1),\" pF\"\n",
+ "\n",
+ "#Result\n",
+ "# C_d = 1.43E-011 F\n",
+ "# i.e The value of the distributed capacitance = 14.3 pF \n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "C_d = 1.43e-11 F\n",
+ "\n",
+ "i.e The value of the distributed capacitance = 14.3 pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6:pg-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find percentage error\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 6-6 in Page 163\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "R = 10 #Resistance of the coil in ohm\n",
+ "f = 1*10**6 #The oscillator frequency in Hz\n",
+ "C = 65*10**-12 #The value of resonating capacitor in F\n",
+ "R_i = 0.02 #The value of the insertion resistor in ohm\n",
+ "\n",
+ "#Calculations\n",
+ "w = 2*math.pi*f\n",
+ "Q_e = 1/(w*C*R)\n",
+ "print \"The effective Q of the coil = \",round(Q_e,1),\"\\n\"\n",
+ "Q_i = 1/(w*C*(R+R_i))\n",
+ "print \"The indicated Q of the coil = \",round(Q_i,1),\"\\n\"\n",
+ "percenterror = (Q_e - Q_i)/Q_e*100\n",
+ "print \"The percentage error is = \",round(percenterror,1),\" %\"\n",
+ "\n",
+ "#Result\n",
+ "# The effective Q of the coil = 244.9\n",
+ "# The indicated Q of the coil = 244.4\n",
+ "# The percentage error is = 0.2 % \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The effective Q of the coil = 244.9 \n",
+ "\n",
+ "The indicated Q of the coil = 244.4 \n",
+ "\n",
+ "The percentage error is = 0.2 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.7:pg-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find percentage error\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 6-7 in Page 163\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "R = 0.1 #Resistance of the coil in ohm\n",
+ "f = 40*10**6 #The frequency at resonance in Hz\n",
+ "C = 135*10**-12 #The value of tuning capacitor in F\n",
+ "R_i = 0.02 #The value of the insertion resistor in ohm\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "w = 2*math.pi*f\n",
+ "Q_e = 1/(w*C*R)\n",
+ "print \"The effective Q of the coil = \",ceil(Q_e),\"\\n\"\n",
+ "Q_i = 1/(w*C*(R+R_i))\n",
+ "print \"The indicated Q of the coil = \",ceil(Q_i),\"\\n\"\n",
+ "percenterror = (Q_e - Q_i)/Q_e*100\n",
+ "print \"The percentage error is = \",ceil(percenterror),\" %\"\n",
+ "\n",
+ "#Result\n",
+ "# The effective Q of the coil = 295\n",
+ "# The indicated Q of the coil = 246\n",
+ "# The percentage error is = 17 % \n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The effective Q of the coil = 295.0 \n",
+ "\n",
+ "The indicated Q of the coil = 246.0 \n",
+ "\n",
+ "The percentage error is = 17.0 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter7_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter7_3.ipynb new file mode 100644 index 00000000..88aa47b3 --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter7_3.ipynb @@ -0,0 +1,76 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e7340f8f28dc1125639b884b427c98c7b76b7b5253f0bd98a418a9d51e4810f2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7:Oscilloscopes\n"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.1:pg-184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find minimum distance\n",
+ "# Modern Electronic Instrumentation And Measurement Techniques\n",
+ "# By Albert D. Helfrick, William D. Cooper\n",
+ "# First Edition Second Impression, 2009\n",
+ "# Dorling Kindersly Pvt. Ltd. India\n",
+ "# Example 7-1 in Page 184\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "D = 4*10**-2 #Deflection on the screen in m\n",
+ "G = 100*100 # Deflection factor in V/m\n",
+ "E_a = 2000 #Accelarating potential in V\n",
+ "\n",
+ "#Calculations\n",
+ "# wkt. L = 2*d*E_a/(G*I_d)\n",
+ "\n",
+ "#Also L/D = I_d / d\n",
+ "#Therefore\n",
+ "\n",
+ "L = math.sqrt(2*D*E_a/G)\n",
+ "print \"The distance from the deflection plates to the oscilloscope tube screen = \",round(L,3),\"m\"\n",
+ "\n",
+ "#Result\n",
+ "# The distance from the deflection plates to the oscilloscope tube screen = 0.126 m \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance from the deflection plates to the oscilloscope tube screen = 0.126 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter9_3.ipynb b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter9_3.ipynb new file mode 100644 index 00000000..0655eef8 --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/Chapter9_3.ipynb @@ -0,0 +1,144 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:349ae7afdee1d1b3c3dc4037b8dc3bb200738707d16369e5edfee0d065859f9b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9: Signal Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.1:pg-277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find dynamic range of spectrum analyser\n",
+ "\n",
+ "# Given data\n",
+ "I_p = +25.0; #Third order intercept point in dBm\n",
+ "MDS = -85.0; #noise level in dBm\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "dynamic_range = 2/3.0*(I_p -MDS);\n",
+ "print \"The dynamic range of the spectrum analyser =\",int(dynamic_range),\" dB\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The dynamic range of the spectrum analyser = 73 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.2:pg-277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find minimum detectable signal\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "# Given data\n",
+ "NF = 20.0; #Noise figure in dB\n",
+ "BW = 1*10.0**3; #Bandwidth in Hz\n",
+ "\n",
+ "#Calculations\n",
+ "MDS=-114+10*math.log10((BW/(1*10.0**6)))+NF\n",
+ "print \"The minimum detectable signal of the spectrum analyser = \",int(MDS),\" dBm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum detectable signal of the spectrum analyser = -124 dBm\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.3:pg-285"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To find dynamic range and total frequency display\n",
+ "\n",
+ "import math\n",
+ "# Given data\n",
+ "T = 4.0; #Sample window in s\n",
+ "f_s = 20*10.0**3; # sample frequency in Hz\n",
+ "N = 10.0; #no of bits\n",
+ "\n",
+ "#Calculations\n",
+ "f_r = 1/T;\n",
+ "f_h = f_s/2.0; \n",
+ "R_d = 20*math.log10(2.0**N);\n",
+ "\n",
+ "print \"The ratio of the spectral calculation = \",round(f_r,2),\" Hz\\n\"\n",
+ "print \"The maximum calculated spectral frequency = \",int(f_h),\" Hz\\n\"\n",
+ "print \"The dynamic range = \",int(R_d),\" dB\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of the spectral calculation = 0.25 Hz\n",
+ "\n",
+ "The maximum calculated spectral frequency = 10000 Hz\n",
+ "\n",
+ "The dynamic range = 60 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/11.1new_2.png b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/11.1new_2.png Binary files differnew file mode 100644 index 00000000..3c6f12aa --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/11.1new_2.png diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/5.1new_2.png b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/5.1new_2.png Binary files differnew file mode 100644 index 00000000..4128c87a --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/5.1new_2.png diff --git a/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/5.4_1.png b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/5.4_1.png Binary files differnew file mode 100644 index 00000000..ba94c9df --- /dev/null +++ b/Modern_Electronic_Instrumentation_And_Measurement_Techniques_by_A._D._Helfrick_And_W._D._Cooper/screenshots/5.4_1.png |