diff options
113 files changed, 61279 insertions, 0 deletions
diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter25_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter25_4.ipynb new file mode 100644 index 00000000..884c7e96 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter25_4.ipynb @@ -0,0 +1,173 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:0a9697b2451ba5bc5f24eb67c66ef466539d8d3c214c7c35bb64d3c339daf3f9" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 25: Elements of Electro-Mechanical Energy Conversion" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.1, Page Number:876" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "sod=15#stator-core outer diameter\n", + "sid=10.05#stator-core inner diameter\n", + "rod=10.00#rotor-core outer diameter\n", + "rid=5#rotor-core inner diameter\n", + "a=8#axial lenght of the machine\n", + "b=1.20\n", + "ur=1000\n", + "#calculations\n", + "vs=(3.14/4)*((sod*sod)-(sid*sid))*a#volume of stator-core\n", + "vr=(3.14/4)*((rod*rod)-(rid*rid))*a#volume of rotor-core\n", + "va=(3.14/4)*((sid*sid)-(rod*rod))*a#volume of air-gap in the machine\n", + "ed=(.5*b*b)/(4*3.14*math.pow(10,-7))\n", + "e=ed*va*math.pow(10,-6)\n", + "edm=(.5*b*b)/(4*3.14*math.pow(10,-7)*ur)\n", + "es=edm*vs*math.pow(10,-6)\n", + "er=edm*vr*math.pow(10,-6)\n", + "kr=(vs+vr)/vs\n", + "ke=(es+er)/e\n", + "ratio=kr/ke\n", + "eratio=e/(es+er)\n", + "\n", + "#result\n", + "print \"Energy stored in air gap= \",e,\" Joules\"\n", + "print \"Energy stored in stator-core= \",round(es,2),\" Joules\"\n", + "print \"Energy stored in rotor core= \",er,\" Joules\"\n", + "print \"Ratio of energy dtored in air-gap to that stored in the cores=\",round(eratio)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy stored in air gap= 3.609 Joules\n", + "Energy stored in stator-core= 0.45 Joules\n", + "Energy stored in rotor core= 0.27 Joules\n", + "Ratio of energy dtored in air-gap to that stored in the cores= 5.0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.2, Page Number:877" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "n=800#turns\n", + "area=5*5#cross sectional area\n", + "i=1.25#amp\n", + "x=0.25#cm\n", + "l=0.402\n", + "#calculations\n", + "p=4*3.14*10**(-7)*area*10**(-4)/(0.5*10**(-2))\n", + "l=n**2*p\n", + "em=.5*i*i*l\n", + "W=-1*0.5*n**2*4*3.14*10**(-7)*area*10**(-4)*i**2/(0.5*10**(-2))**2\n", + "\n", + "#result\n", + "print \"a)i)coil inductance=\",l,\"H\"\n", + "print \" ii)field energy stored=\",em,\"J\"\n", + "print \"b)mechanical energy output=\",W,\"NW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)coil inductance= 0.40192 H\n", + " ii)field energy stored= 0.314 J\n", + "b)mechanical energy output= -62.8 NW\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 25.4, Page Number:882" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "lo=50#mH\n", + "xo=0.05#cm\n", + "r=0.5#ohm\n", + "x=0.075#cm\n", + "i2=3#A\n", + "x2=0.15#cm\n", + "\n", + "#calculation\n", + "l1=2*lo/(1+(x/xo))\n", + "lambda1=l1*i2*10**(-3)\n", + "W=0.5*l1*i2**2*10**(-3)\n", + "l2=2*lo/(1+(x2/xo))\n", + "lambda2=l2*i2*10**(-3)\n", + "w2=0.5*i2*(lambda1-lambda2)\n", + "\n", + "#result\n", + "print \"a)magnetic stored energy=\",W,\"J\"\n", + "print \"b)change in magnetic stored energy=\",w2,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)magnetic stored energy= 0.18 J\n", + "b)change in magnetic stored energy= 0.0675 J\n" + ] + } + ], + "prompt_number": 19 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter26_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter26_4.ipynb new file mode 100644 index 00000000..1af9bb80 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter26_4.ipynb @@ -0,0 +1,1600 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:fbc29937443ef7eae8e50df5118b16ddcc8ed6efb4b30db1cb412240bf7eac02" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 26: D.C. Generators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.3, Page Number:912" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=450#A\n", + "v=230#v\n", + "rs=50#ohm\n", + "ra=.03#ohm\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "va=ia*ra\n", + "E=v+va\n", + "\n", + "#result\n", + "print \"e.m.f. generated in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e.m.f. generated in the armature= 243.62 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.4, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=50#A\n", + "v=500#v\n", + "rs=250#ohm\n", + "ra=.05#ohm\n", + "rseries=0.03#ohm\n", + "b=1#V\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "vs=ia*rseries\n", + "va=ia*ra\n", + "vb=ish*b\n", + "E=v+va+vs+vb\n", + "\n", + "#result\n", + "print \"generated voltage in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "generated voltage in the armature= 506.16 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.5, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=30#A\n", + "v=220#v\n", + "rs=200#ohm\n", + "ra=.05#ohm\n", + "rseries=0.30#ohm\n", + "b=1#V\n", + "\n", + "#calculations\n", + "vs=i*rseries\n", + "vshunt=v+vs\n", + "ish=vshunt/v\n", + "ia=i+ish\n", + "vb=b*2\n", + "E=v+vs+vb+(ia*ra)\n", + "\n", + "#result\n", + "print \"generated voltage in the armature= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "generated voltage in the armature= 232.552045455 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.6, Page Number:913" + ] + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "#variable declaration\n", + "v=230.0#v\n", + "i=150.0#A\n", + "rs=92.0#ohm\n", + "rseries=0.015#ohm\n", + "rd=0.03#ohm(divertor)\n", + "ra=0.032#ohm\n", + "\n", + "#calculations\n", + "ish=v/rs\n", + "ia=i+ish\n", + "sdr=(rd*rseries)/(rd+rseries)\n", + "tr=ra+sdr\n", + "vd=ia*tr\n", + "Eg=v+vd\n", + "tp=Eg*ia\n", + "pl=(ia*ia*ra)+(ia*ia*sdr)+(v*ish)+(v*i)\n", + "\n", + "#resuts\n", + "print \"i) Induced e.m.f.= \",Eg,\" V\"\n", + "print \"ii)Total power generated= \",tp,\" W\"\n", + "print \"iii)Distribution of the total power:\"\n", + "print \" power lost in armature= \", ia*ia*ra\n", + "print \"power lost in series field and divider= \", ia*ia*sdr\n", + "print \"power dissipated in shunt winding= \", v*ish\n", + "print \"power delivered to load= \", v*i\n", + "print \" ------------\"\n", + "print \"Total= \", pl" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Induced e.m.f.= 236.405 V\n", + "ii)Total power generated= 36051.7625 W\n", + "iii)Distribution of the total power:\n", + " power lost in armature= 744.2\n", + "power lost in series field and divider= 232.5625\n", + "power dissipated in shunt winding= 575.0\n", + "power delivered to load= 34500.0\n", + " ------------\n", + "Total= 36051.7625\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.7, Page Number:914" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=300000.0#w\n", + "v=600.0#v\n", + "sr=75.0#ohm\n", + "abr=0.03#ohm\n", + "cr=0.011#ohm\n", + "rseries=0.012#ohm\n", + "dr=0.036#ohm\n", + "\n", + "#calculatons\n", + "io=p/v#output current\n", + "ish=v/sr\n", + "ia=io+ish\n", + "sdr=(rseries*dr)/(rseries+dr)\n", + "tr=abr+cr+sdr\n", + "vd=ia*tr\n", + "va=v+vd\n", + "pg=va*ia\n", + "W=pg/1000\n", + "\n", + "#result\n", + "print \"Voltage generatedby the armature= \",va,\" V\"\n", + "print \"Power generated by the armature= \",W, \"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage generatedby the armature= 625.4 V\n", + "Power generated by the armature= 317.7032 kW\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.8, Page Number:915" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "phi=7*math.pow(10,-3)\n", + "z=51*20\n", + "a=p=4\n", + "n=1500#r.p.m\n", + "\n", + "#calculations\n", + "Eg=(phi*z*n*p)/(a*60)\n", + "\n", + "#result\n", + "print \"Voltage generated= \",Eg,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage generated= 178.5 V\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.9, Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=8\n", + "phi=0.05#Wb\n", + "n=1200#rpm\n", + "N=500#armature conductor\n", + "\n", + "#calculations\n", + "E=phi*(n/60)*(p/a)*N\n", + "\n", + "#result\n", + "print \"e.m.f generated= \",E,\" V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e.m.f generated= 500.0 V\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.10, Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=127#v\n", + "vt=120#v(terminal voltage)\n", + "r=15#ohms\n", + "i1=8.47#A\n", + "ra=0.02#ohms\n", + "fi=8#A\n", + "\n", + "#calculations\n", + "Eg=v+(i1*ra)\n", + "ia=(Eg-vt)/ra\n", + "il=ia-fi\n", + "\n", + "#result\n", + "print \"Load current \",il,\" A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load current 350.47 A\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.11(a), Page Number:917" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "z=778\n", + "n=500\n", + "ra=0.24\n", + "rl=12.5\n", + "r=250\n", + "v=250\n", + "a=2\n", + "#calculations\n", + "il=v/rl\n", + "si=v/r\n", + "ai=il+si\n", + "emf=v+(ai*ra)\n", + "phi=(emf*60*a)/(p*z*n)\n", + "\n", + "#result\n", + "print \"armature current= \",ai,\" A\"\n", + "print \"induced e.m.f.= \",emf,\" V\"\n", + "print \"flux per pole= \",round(phi*1000,2),\" mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 21.0 A\n", + "induced e.m.f.= 255.04 V\n", + "flux per pole= 9.83 mWb\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.11(b), Page Number:916" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "P=5000.0#w\n", + "P2=2500.0#W\n", + "v=250.0#v\n", + "ra=0.2#ohm\n", + "r=250.0#ohm\n", + "z=120\n", + "N=1000#rpm\n", + "\n", + "#calculations\n", + "gc=P/v\n", + "li=P2/v\n", + "ti=gc+li\n", + "fc=1\n", + "ai=ti+fc\n", + "ard=ai*ra\n", + "emf=v+ard+2\n", + "phi=(emf*60*a)/(p*z*N)\n", + "ac_perparralelpath=ai/p\n", + "\n", + "#result\n", + "print \"Flux per pole= \",phi*1000,\" mWb\"\n", + "print \"Armature current per parallel path= \",ac_perparralelpath,\" A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux per pole= 129.1 mWb\n", + "Armature current per parallel path= 7.75 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.12, Page Number:918" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=125.0#V\n", + "n1=1000#rpm\n", + "n2=800#rpm\n", + "ra=0.04#ohm\n", + "bd=2.0#V(brush drop)\n", + "\n", + "#calculations\n", + "R=v/i\n", + "E1=v+(i*ra)+bd\n", + "E2=(E1*n2)/n1\n", + "il=(E2-bd)/0.675\n", + "\n", + "#result\n", + "print \"Load current when speed drops to 800 r.p.m.= \",round(il,2),\" A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load current when speed drops to 800 r.p.m.= 157.04 A\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.13, Page Number:918" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=4\n", + "n=900 #rpm\n", + "V=220#V\n", + "E=240#V\n", + "ra=0.2#ohm\n", + "phi=10#mWb\n", + "N=8\n", + "\n", + "#calculations\n", + "ia=(E-V)/ra\n", + "Z=(E*600*2)/(phi*math.pow(10,-3)*n*p)\n", + "#since there ae 8 turns in a coil,it means there are 16 active conductor\n", + "number_of_coils=Z/16\n", + "\n", + "#result\n", + "print \"armature current= \",ia,\" A\"\n", + "print \"number of coils= \",number_of_coils" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 100.0 A\n", + "number of coils= 500.0\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.14, Page Number:919" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "V=120.0#V\n", + "ra=0.06#ohm\n", + "rs=25#ohm\n", + "rsw=0.04#ohm(series winding)\n", + "il=100.0#A\n", + "#i)Long shunt\n", + "ish=V/rs\n", + "ia=il+ish\n", + "vd=ia*rsw\n", + "vda=ia*ra\n", + "E=V+vd+vda\n", + "\n", + "print \"Induced e.m.f. when the machine is connected to long shunt= \",E,\" V\"\n", + "print \"Armature current when the machine is connected to long shunt=\",ia,\" A\"\n", + "\n", + "#i)Short shunt\n", + "vds=il*rsw\n", + "vs=V+vds\n", + "ish=vs/rs\n", + "ia=il+ish\n", + "vd=ia*rsw\n", + "vda=ia*ra\n", + "E=V+vd+vda\n", + "\n", + "print \"Induced e.m.f. when the machine is connected to short shunt= \",E,\" V\"\n", + "print \"Armature current when the machine is connected to short shunt=\",ia,\" A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Induced e.m.f. when the machine is connected to long shunt= 130.48 V\n", + "Armature current when the machine is connected to long shunt= 104.8 A\n", + "Induced e.m.f. when the machine is connected to short shunt= 130.496 V\n", + "Armature current when the machine is connected to short shunt= 104.96 A\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.15, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=25000.0#W\n", + "V=500.0#V\n", + "ra=0.03#ohm\n", + "rs=200.0#ohm\n", + "rseries=0.04#ohm\n", + "vb=1.0#V\n", + "n=1200#rpm\n", + "phi=0.02#Wb\n", + "\n", + "#calculations\n", + "i=p/V\n", + "ish=V/rs\n", + "ia=i+ish\n", + "p=4\n", + "vds=ia*rseries\n", + "vda=ia*ra\n", + "vdb=vb*2\n", + "E=V+vds+vda+vdb\n", + "Z=(E*60*4)/(phi*n*p)\n", + "\n", + "#result\n", + "print \"The e.m.f. generated= \",E,\" V\"\n", + "print \"The number of conductors=\",Z" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The e.m.f. generated= 505.675 V\n", + "The number of conductors= 1264.1875\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.16, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=750#rpm\n", + "e=240.0#V\n", + "z=792\n", + "phi=0.0145#Wb\n", + "\n", + "#calculations\n", + "phi_working=(e*60*2)/(n*z*p)\n", + "lambda_=phi/phi_working\n", + "\n", + "#results\n", + "print \"Leakage coefficient= \",round(lambda_,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Leakage coefficient= 1.2\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.17, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "phi=0.07#Wb\n", + "t=220\n", + "rt=0.004#ohm\n", + "n=900#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "z=2*t\n", + "E=(phi*z*n*p)/(60*a)\n", + "rtotal=t*rt\n", + "r_eachpath=rtotal/p\n", + "ra=r_eachpath/a\n", + "vda=ia*ra\n", + "V=E-vda\n", + "\n", + "#result\n", + "print \"Terminal Voltage= \",V, \" V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal Voltage= 459.25 V\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.18, Page Number:920" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "phi=0.07#Wb\n", + "t=220\n", + "rturn=0.004#ohm\n", + "rs=100.0#ohm\n", + "rsc=0.02#ohm\n", + "n=900#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "z=2*t\n", + "E=(phi*z*n*p)/(60*a)\n", + "ra=0.055#ohm\n", + "ra=ra+rsc\n", + "va=ia*ra\n", + "v=E-va\n", + "ish=v/rs\n", + "i=ia-ish\n", + "output=v*i\n", + "\n", + "#result\n", + "print \"Output= \",round(output/1000,3),\" kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output= 20.813 kW\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.19, Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=1200#rpm\n", + "ia=200#A\n", + "v=125#V\n", + "n2=1000#rpm\n", + "ra=0.04#ohm\n", + "vb=2#V\n", + "\n", + "#calculations\n", + "E1=v+vb+(ia*ra)\n", + "E2=E1*n2/n1*0.8\n", + "\n", + "#results\n", + "print \"Generated e.m.f. when field current is reduced to 80%=\",E2,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated e.m.f. when field current is reduced to 80%= 90.0 V\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.20(a), Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "rs=100.0#ohm\n", + "ra=1.0#ohm\n", + "z=378\n", + "phi=0.02#Wb\n", + "rl=10.0#ohm\n", + "n=1000#rpm\n", + "a=2\n", + "\n", + "#calculations\n", + "E=(phi*z*n*p)/(60*a)\n", + "V=(100.0/111.0)*E\n", + "il=V/rl\n", + "P=il*V\n", + "\n", + "#result\n", + "print \"Power absorbed by the load is= \",P,\" W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power absorbed by the load is= 5154.12710007 W\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.20(b), Page Number:921" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "z=300\n", + "phi=0.1#Wb\n", + "n=1000#rpm\n", + "ra=0.2#rpm\n", + "rf=125#ohm\n", + "il=90#A\n", + "\n", + "#calculations\n", + "E=(phi*z*n*p)/(60*a)\n", + "ifield=E/rf\n", + "ia=ifield+il\n", + "V=E-(ia*ra)\n", + "\n", + "#result\n", + "print \"Terminal voltage= \",V,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal voltage= 481.2 V\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(a), Page Number:922" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "n=1200#rpm\n", + "e=250.0#V\n", + "d=350.0#mm\n", + "air_gap=3.0#mm\n", + "al=260.0#mm\n", + "fringing=0.8\n", + "coils=96\n", + "t=3\n", + "\n", + "#calculations\n", + "z=t*coils*2\n", + "a=p*2\n", + "phi=(e*60*a)/(n*z*p)\n", + "di=d+air_gap\n", + "pole_arc=(3.14*di*fringing)/6\n", + "B=phi/(pole_arc*0.000001*al)\n", + "\n", + "#result\n", + "print \"flux per pole= \",phi,\" Wb\"\n", + "print \"effective pole arc lenght= \",pole_arc*0.001,\" m\"\n", + "print \"flux density= \",B,\" T\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 0.0434027777778 Wb\n", + "effective pole arc lenght= 0.147789333333 m\n", + "flux density= 1.12953862717 T\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(b), Page Number:922" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "z=1200\n", + "e=250.0#v\n", + "n=500#rpm\n", + "b=35.0#cm\n", + "ratio=0.7\n", + "lpole=20.0#cm\n", + "\n", + "#calculations\n", + "pole_pitch=(b*3.14)/p\n", + "polearc=ratio*pole_pitch\n", + "pole_area=polearc*lpole\n", + "phi=(e*60*a)/(n*z*p)\n", + "mean_flux=phi/(pole_area*math.pow(10,-4))\n", + " \n", + "#result\n", + "print \"Mean flux density= \",mean_flux,\" Wb/m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Mean flux density= 0.649941505265 Wb/m2\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.21(d), Page Number:923" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=100.0#V\n", + "ra=0.04#ohm\n", + "rseries=0.03#ohm\n", + "rs=60.0#ohm\n", + "\n", + "#calculations\n", + "va=v+(i*rseries)\n", + "ish=va/rs\n", + "ia=i+ish\n", + "e=va+(ia*ra)\n", + "\n", + "#long shunt\n", + "ishunt=v/rs\n", + "vd=ia*(ra+rseries)\n", + "e2=v+vd\n", + "\n", + "#result\n", + "print \"emf generated(short shunt)\",e,\" V\"\n", + "print \"emf generated(long shunt)\",e2,\" V\"\n", + "\n", + "\n", + "#result\n", + "print " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf generated(short shunt) 114.070666667 V\n", + "emf generated(long shunt) 114.123666667 V\n", + "\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.22, Page Number:923" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "w=20000.0#W\n", + "v=220.0#v\n", + "ra=0.04#ohm\n", + "rs=110.0#ohm\n", + "rseries=0.05#ohm\n", + "efficiency=.85\n", + "\n", + "#calculations\n", + "il=w/v\n", + "i_f=v/rs\n", + "ia=il+i_f\n", + "ip=w/efficiency#input power\n", + "total_loss=ip-w\n", + "copper_loss=(ia*ia*(ra+rseries))+(i_f*i_f*rs)\n", + "ironloss=total_loss-copper_loss\n", + "omega=2*3.14*n/60\n", + "T=ip/omega\n", + "\n", + "#omega\n", + "print \"Copper loss= \",copper_loss,\" W\"\n", + "print \"Iron and friction loss= \",ironloss,\" W\"\n", + "print \"Torque developed by the prime mover= \",T,\"Nw-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Copper loss= 1216.88892562 W\n", + "Iron and friction loss= 2312.52283909 W\n", + "Torque developed by the prime mover= 224.803297115 Nw-m\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.23, Page Number:928" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declartaion\n", + "power=10000.0#W\n", + "v=250.0#V\n", + "p=a=6\n", + "n=1000.0#rpm\n", + "z=534\n", + "cu_loss=0.64*1000#W\n", + "vbd=1.0#V\n", + "\n", + "#calculations\n", + "ia=power/v\n", + "ra=cu_loss/(ia*ia)\n", + "E=v+(ia*ra)+vbd\n", + "phi=(E*60*a)/(n*z*p)\n", + "\n", + "#result\n", + "print \"flux per pole= \",phi*1000,\" mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 30.0 mWb\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.24(a), Page Number:928" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=195#A\n", + "pd=250#V\n", + "ra=0.02#ohm\n", + "rsh=50#ohm\n", + "p=250#W\n", + "strayloss=950#W\n", + "#calculations\n", + "ish=pd/rsh\n", + "ia=i+ish\n", + "vda=ia*ra\n", + "E=pd+vda\n", + "cu_loss=(ia*ia*ra)+(pd*ish)\n", + "output_prime=(pd*i)+strayloss+cu_loss\n", + "power_a=output_prime-strayloss\n", + "neu_m=(power_a/output_prime)\n", + "neu_e=(pd*i)/((pd*i)+cu_loss)\n", + "neu_c=(pd*i)/output_prime\n", + "\n", + "#result\n", + "print \"a)e.m.f. generated= \",E,\" V\"\n", + "print \" b)Cu losses= \",cu_loss,\" W\"\n", + "print \" c)output of prime mover= \",output_prime,\" W\"\n", + "print \" d)mechanical efficiency= \",neu_m*100,\" %\"\n", + "print \" electrical efficiency= \",neu_e*100,\" %\"\n", + "print \" commercial efficiency= \",neu_c*100,\" %\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)e.m.f. generated= 254.0 V\n", + " b)Cu losses= 2050.0 W\n", + " c)output of prime mover= 51750.0 W\n", + " d)mechanical efficiency= 98.1642512077 %\n", + " electrical efficiency= 95.9645669291 %\n", + " commercial efficiency= 94.2028985507 %\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.24(b), Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "i=5.0#A\n", + "ra=0.15#ohm\n", + "rf=200.0#ohm\n", + "il=40.0#A\n", + "\n", + "#calculations\n", + "output=v*il\n", + "total_loss=(v*i*0.5)+((il+i*0.5)*(il+i*0.5)*ra)+(v*i*0.5)\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"Efficiency= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 87.8312542029 %\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.25, Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=196#A\n", + "v=220#V\n", + "stray_loss=720#W\n", + "rsh=55#ohm\n", + "e=0.88\n", + "\n", + "#calculations\n", + "output=v*i\n", + "inpute=output/e\n", + "total_loss=inpute-output\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "cu_loss=v*ish\n", + "constant_loss=cu_loss+stray_loss\n", + "culoss_a=total_loss-constant_loss\n", + "ra=culoss_a/(ia*ia)\n", + "I=math.sqrt(constant_loss/ra)\n", + "\n", + "#result\n", + "print \"Load curent corresponding to maximum efficiency\",I,\" A\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load curent corresponding to maximum efficiency 122.283568103 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.26, Page Number:929" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "p=22*1000#w\n", + "v=220#V\n", + "ra=0.05#ohm\n", + "rsh=110#ohm\n", + "rseries=0.06#ohm\n", + "efficiency=.88\n", + "\n", + "#calculations\n", + "ish=v/rsh\n", + "I=p/v\n", + "ia=ish+I\n", + "vdseries=ia*rseries\n", + "cu_loss=(ia*ia*ra)+(ia*ia*rseries)+(rsh*ish*ish)\n", + "total_loss=(p/efficiency)-p\n", + "strayloss=total_loss-cu_loss\n", + "T=(p/efficiency*60)/(2*3.14*n)\n", + "\n", + "#result\n", + "print \"a)cu losses= \",cu_loss,\" W\"\n", + "print \"b)iron and friction loss= \",strayloss,\" W\"\n", + "print \"c)Torque exerted by the prime mover= \",T,\" N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cu losses= 1584.44 W\n", + "b)iron and friction loss= 1415.56 W\n", + "c)Torque exerted by the prime mover= 238.853503185 N-m\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.27, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "i=20#A\n", + "r=10#ohm\n", + "ra=0.5#ohm\n", + "rsh=50#ohm\n", + "vdb=1#V(voltage drop per brush)\n", + "\n", + "#calculations\n", + "v=i*r\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "E=v+(ia*ra)+(2*vdb)\n", + "totalpower=E*ia\n", + "output=v*i\n", + "efficiency=output/totalpower\n", + "\n", + "#result\n", + "print \"induced e.m.f.= \",E,\" V\"\n", + "print \"efficiency= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced e.m.f.= 214.0 V\n", + "efficiency= 77.8816199377 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.28, Page Number:930" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240#V\n", + "i=100#A\n", + "ra=0.1#ohm\n", + "rseries=0.02#ohm\n", + "ri=0.025#ohm\n", + "rsh=100#ohm\n", + "ironloss=1000#W\n", + "frictionloss=500#W\n", + "\n", + "#calculations\n", + "output=v*i\n", + "totalra=ra+rseries+ri\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "copperloss=ia*ia*totalra\n", + "shculoss=ish*v\n", + "total_loss=copperloss+ironloss+frictionloss+shculoss\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"F.L. efficiency of the machine= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "F.L. efficiency of the machine= 87.3089843128 %\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.31, Page Number:931" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=10.0*1000#W\n", + "v=240.0#V\n", + "ra=0.6#ohm\n", + "rsh=160.0#ohm\n", + "mechcoreloss=500.0#W\n", + "culoss=360.0#W\n", + "\n", + "#calculations\n", + "ish=v/rsh\n", + "i=output/v\n", + "ia=ish+i\n", + "culossa=ia*ia*ra\n", + "totalloss=culoss+mechcoreloss+culossa\n", + "inputp=output+totalloss\n", + "efficiency=output/inputp\n", + "\n", + "#result\n", + "print \"Power required= \",inputp*0.001,\" kW\"\n", + "print \"efficinecy= \",efficiency*100,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power required= 11.9780166667 kW\n", + "efficinecy= 83.486275552 %\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.32, Page Number:932" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=110*1000#W\n", + "v=220#V\n", + "ra=0.01#ohm\n", + "rse=0.002#ohm\n", + "rsh=110#ohm\n", + "\n", + "#calculations\n", + "il=p/v\n", + "ish=v/rsh\n", + "ia=il+ish\n", + "E=v+ia*(ra+rse)\n", + "\n", + "#result\n", + "print \"induced emf= \",E,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced emf= 226.024 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 26.33 Page Number:932" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "E=216.0#V\n", + "n=600.0#rpm\n", + "slots=144\n", + "con=6\n", + "n2=500.0#rpm\n", + "\n", + "#calculations\n", + "z=con*slots\n", + "a=p\n", + "phi=(E*60*a)/(n*z*p)\n", + "a=2\n", + "armatureE=(phi*z*n2*p)/(60*a)\n", + "\n", + "#result\n", + "print \"the armature emf= \",armatureE,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the armature emf= 360.0 V\n" + ] + } + ], + "prompt_number": 34 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter27_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter27_4.ipynb new file mode 100644 index 00000000..638b15f1 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter27_4.ipynb @@ -0,0 +1,730 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:02f2208937b2d82cdc7150d6d9062a1310b3e2fcf2346b8c885c3f6fe2fe5405" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 27: Armature Reaction and Commutation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.1, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=722\n", + "ia=100.0#A\n", + "theta_m=8.0#degrees\n", + "\n", + "#calculatons\n", + "i=ia/2\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 802.222222222\n", + "cross-magnetization= 3710.27777778\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.2, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "z=1280\n", + "v=500#V\n", + "ia=200.0#A\n", + "commuter=160\n", + "advanced_segments=4\n", + "\n", + "#calculatons\n", + "i=ia/8\n", + "theta_m=advanced_segments*360/commuter\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 800.0\n", + "cross-magnetization= 1200.0\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.3(a), Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=880\n", + "ia=120.0#A\n", + "theta_m=3.0#degrees\n", + "n=1100#tturns/pole\n", + "#calculatons\n", + "i=ia/2\n", + "atd_perpole=z*i*theta_m/360\n", + "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n", + "iadditional=(atd_perpole/n)\n", + "\n", + "\n", + "#result\n", + "print \"a)armature demagnetization=\",atd_perpole,\"AT\"\n", + "print \"b)cross-magnetization=\",atc_perpole,\"AT\"\n", + "print \"c)additional field current=\",iadditional,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)armature demagnetization= 440.0 AT\n", + "b)cross-magnetization= 6160.0 AT\n", + "c)additional field current= 0.4 A\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.3(b), Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=480\n", + "ia=150.0#A\n", + "theta_m=10.0*2#degrees\n", + "\n", + "#calculatons\n", + "i=ia/4\n", + "total=(z*i)/(2*p)\n", + "atd_perpole=total*(2*theta_m/180)\n", + "atc_perpole=total*(1-(2*theta_m/180))\n", + "\n", + "#result\n", + "print \"armature demagnetization=\",atd_perpole\n", + "print \"cross-magnetization=\",atc_perpole" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization= 500.0\n", + "cross-magnetization= 1750.0\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.4, Page Number:944" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=492\n", + "theta_m=10.0\n", + "ia=143.0+10.0\n", + "\n", + "#calculations\n", + "i1=ia/2#wave wound\n", + "i2=ia/4#lap wound\n", + "atd_perpole1=z*i1*theta_m/360#wave wound\n", + "extra_shunt1=atd_perpole1/theta_m\n", + "atd_perpole2=z*i2*(theta_m/360.0)#lap wound\n", + "extra_shunt2=atd_perpole2/theta_m\n", + "#result\n", + "print \"wave wound:\"\n", + "print \"demagnetization per pole=\",atd_perpole1,\"AT\"\n", + "print \"extra shunt field turns=\",int(extra_shunt1)\n", + "print \"lap wound:\"\n", + "print \"demagnetization per pole=\",atd_perpole2,\"AT\"\n", + "print \"extra shunt field turns=\",int(extra_shunt2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wave wound:\n", + "demagnetization per pole= 1045.5 AT\n", + "extra shunt field turns= 104\n", + "lap wound:\n", + "demagnetization per pole= 522.75 AT\n", + "extra shunt field turns= 52\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.5, Page Number:944" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pole=4\n", + "p=50*1000.0#W\n", + "v=250.0#V\n", + "z=400\n", + "commuter=4\n", + "rsh=50.0#ohm\n", + "a=2\n", + "\n", + "#calculations\n", + "i=p/v\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "i=ia/2\n", + "segments=z/a\n", + "theta=pole*360.0/segments\n", + "atd=z*i*(theta/360)\n", + "extra=atd/ish\n", + "\n", + "#result\n", + "print \"demagnetisation=\",atd,\"AT\"\n", + "print \"extra shunt turns/poles\",extra" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "demagnetisation= 820.0 AT\n", + "extra shunt turns/poles 164.0\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.6, Page Number:943" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=500\n", + "ia=200.0#A\n", + "p=6\n", + "theta=10.0#degrees\n", + "lambda_=1.3\n", + "\n", + "#calculations\n", + "i=ia/2\n", + "atc=((1/(2.0*p))-(theta/360.0))*z*i\n", + "atd=z*i*theta/360\n", + "extra=lambda_*atd/ia\n", + "\n", + "#result\n", + "print \"i)cross magnetization ampere-turns=\",atc\n", + "print \"ii)back ampere-turns\",atd\n", + "print \"iii)series turns required to balance the demagnetising ampere turns\",int(extra)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)cross magnetization ampere-turns= 2777.77777778\n", + "ii)back ampere-turns 1388.88888889\n", + "iii)series turns required to balance the demagnetising ampere turns 9\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.7, Page Number:945" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=22.38#kW\n", + "v=440.0#V\n", + "pole=4\n", + "z=840\n", + "commutator=140\n", + "efficiency=0.88\n", + "ish=1.8#A\n", + "back=1.5\n", + "\n", + "#calculations\n", + "motor_input=p*1000.0/efficiency\n", + "input_i=motor_input/v\n", + "ia=input_i-ish\n", + "i=ia/2.0\n", + "theta=back*360/commutator\n", + "atd=z*i*(theta/360.0)\n", + "atc=((1/(2.0*pole))-(theta/360.0))*z*i\n", + "#result\n", + "print \"armature demagnetization amp-turns/pole=\",atd\n", + "print \"distorting amp-turns/pole=\",atc" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature demagnetization amp-turns/pole= 251.998140496\n", + "distorting amp-turns/pole= 2687.98016529\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.8, Page Number:945" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "ia=1000#A\n", + "p=10\n", + "z=860\n", + "per=0.7\n", + "\n", + "#calculations\n", + "i=ia/p\n", + "at=per/p*z*(i/2)\n", + "\n", + "#result\n", + "print \"AT/pole for compensation winding=\",at" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "AT/pole for compensation winding= 3010.0\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.9, Page Number:948" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=800.0#rpm\n", + "segment=123\n", + "wb=3\n", + "#calculations\n", + "v=n/60.0*segment\n", + "commutation=wb/v\n", + "\n", + "#result\n", + "print \"commutation time=\",commutation*1000,\"millisecond\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "commutation time= 1.82926829268 millisecond\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.10, Page Number:948" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=1500#rpm\n", + "d=30#cm\n", + "ia=150#A\n", + "wb=1.25#cm\n", + "L=0.07*0.001#H\n", + "\n", + "#calculation\n", + "i=ia/2\n", + "v=3.14*d*(n/60)\n", + "tc=wb/v\n", + "E=L*2*i/tc\n", + "\n", + "#result\n", + "print \"average emf=\",E,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average emf= 19.782 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.11, Page Number:949" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "segments=55\n", + "n=900\n", + "wb=1.74\n", + "L=153*math.pow(10,-6)#H\n", + "i=27#A\n", + "\n", + "#calculations\n", + "v=segments*n/60\n", + "Tc=wb/v\n", + "E=L*2*i/Tc\n", + "\n", + "#result\n", + "print \"average emf=\",E,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average emf= 3.91732758621 V\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.12, Page Number:949" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=1500.0#rpm\n", + "ia=150.0#A\n", + "z=64\n", + "wb=1.2\n", + "L=0.05#mH\n", + "\n", + "#calculations\n", + "L=L*0.001\n", + "v=n/60*z\n", + "tc=wb/v\n", + "i=ia/p\n", + "#i.linear\n", + "E1=L*2*i/tc\n", + "#ii.sinusoidal\n", + "E2=1.11*E1\n", + "\n", + "#result\n", + "print \"Linear commutation,E=\",E1,\"V\"\n", + "print \"Sinosoidal commutation,E=\",E2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Linear commutation,E= 5.0 V\n", + "Sinosoidal commutation,E= 5.55 V\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.13, Page Number:951" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=6\n", + "B=0.5#Wb/m2\n", + "Ig=4.0#mm\n", + "ia=500.0#A\n", + "z=540\n", + "\n", + "#calculations\n", + "arm_mmf=z*(ia/p)/(2*p)\n", + "compole=int(B*Ig*0.001/(4*3.14*math.pow(10,-7)))\n", + "mag=0.1*compole\n", + "total_compole=int(compole+mag)\n", + "total_mmf=arm_mmf+total_compole\n", + "Ncp=total_mmf/ia\n", + "\n", + "#result\n", + "print \"Number of turns on each commutating pole=\",int(Ncp)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of turns on each commutating pole= 11\n" + ] + } + ], + "prompt_number": 89 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.14, Page Number:957" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p1=100.0#kW\n", + "V1=250#V\n", + "p2=300.0#kW\n", + "V2=250#V\n", + "i1=200#A\n", + "i2=500#A\n", + "il=600#A\n", + "\n", + "#calculations\n", + "delI1=p1/(p1+p2)*il\n", + "delI2=p2/(p1+p2)*il\n", + "\n", + "#result\n", + "print \"Current supplied by generator 1 with additional load=\",delI1,\"A\"\n", + "print \"Current supplied by generator 2 with additional load=\",delI2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current supplied by generator 1 with additional load= 150.0 A\n", + "Current supplied by generator 2 with additional load= 450.0 A\n" + ] + } + ], + "prompt_number": 92 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 27.23, Page Number:963" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "va=400#V\n", + "ra=0.25#ohm\n", + "vb=410#V\n", + "rb=0.4#ohm\n", + "V=390#V\n", + "\n", + "#calculations\n", + "loada=(va-V)/ra\n", + "loadb=(vb-V)/rb\n", + "pa=loada*V\n", + "pb=loadb*V\n", + "net_v=vb-va\n", + "total_r=ra+rb\n", + "i=net_v/total_r\n", + "terminal_v=va+(i*ra)\n", + "power_AtoB=terminal_v*i\n", + "\n", + "#result\n", + "print \"Current=\",i,\"A\"\n", + "print \"Voltage=\",terminal_v,\"V\"\n", + "print \"Power=\",power_AtoB,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 15.3846153846 A\n", + "Voltage= 403.846153846 V\n", + "Power= 6213.01775148 W\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter28_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter28_4.ipynb new file mode 100644 index 00000000..447ef8ab --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter28_4.ipynb @@ -0,0 +1,388 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:6743417a1c79c6197a7cd49755318e10828c09b3cb248c5af8d5364367840700" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 28: Generator Characteristics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.13, Page Number:984" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "#emf increases by 1 V for every increase of 6 A\n", + "ra=0.02#ohm\n", + "i=96#A\n", + "\n", + "#calculations\n", + "voltageincrease=i/6\n", + "vd=i*ra\n", + "voltage_rise=voltageincrease-vd\n", + "vconsumer=v+voltage_rise\n", + "power_supplied=voltage_rise*i\n", + "\n", + "#result\n", + "print \"voltage supplied ot consumer= \",vconsumer,\" V\"\n", + "print \"power supplied by the booster itself= \",power_supplied/1000,\" kW\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage supplied ot consumer= 234.08 V\n", + "power supplied by the booster itself= 1.35168 kW\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.14, Page Number:985" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=50.0#V\n", + "i=200.0#A\n", + "r=0.3#ohm\n", + "i1=200.0#A\n", + "i2=50.0#A\n", + "\n", + "#calculations\n", + "vd=i*r\n", + "voltage_decrease=v-vd\n", + "feeder_drop=v*r\n", + "booster_voltage=v*v/i1\n", + "voltage_net=feeder_drop-booster_voltage\n", + "\n", + "#result\n", + "print \"Net decrease in voltage= \",voltage_net,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net decrease in voltage= 2.5 V\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.15, Page Number:986" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "inl=5.0#A\n", + "v=440.0#V\n", + "il=6.0#A\n", + "i_full=200.0#A(full load)\n", + "turns=1600\n", + "\n", + "#calcuations\n", + "shunt_turns1=turns*inl\n", + "shunt_turns2=turns*il\n", + "increase=shunt_turns2-shunt_turns1\n", + "n=increase/i_full#number of series turns required\n", + "\n", + "#result\n", + "print \"Number of series turns required= \",n,\" tunrs/pole\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of series turns required= 8.0 tunrs/pole\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.16, Page Number:987" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#turns/pole\n", + "series_winding=4#turns/pole\n", + "r=0.05#ohm\n", + "increase_i=0.2#A\n", + "ia=80#A\n", + "\n", + "#calculations\n", + "additional_at=n*increase_i\n", + "current_required=additional_at/series_winding\n", + "R=(current_required*r)/(ia-current_required)\n", + "\n", + "#result\n", + "print \"Divertor resistance= \",R,\" ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Divertor resistance= 0.0833333333333 ohm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.17, Page Number:987" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "i=100.0#A\n", + "ra=0.1#ohm\n", + "rsh=50.0#ohm\n", + "rse=0.06#ohm\n", + "divertor=0.14#ohm\n", + "\n", + "#calculations\n", + "#short shunt\n", + "vd=i*rse\n", + "ish=v/rsh\n", + "ia=i+ish\n", + "armature_drop=ia*ra\n", + "E=v+vd+armature_drop\n", + "#long shunt\n", + "vd=ia*(ra+rse)\n", + "print vd\n", + "E2=v+vd\n", + "current_divertor=(ia*divertor)/(divertor+rse)\n", + "change=(current_divertor/ia)*100\n", + "\n", + "#result\n", + "print \"a)emf induced using short shunt= \",E\n", + "print \"b)emf induced using long shunt= \",E2\n", + "print \"c)series amp-turns are reduced to \",change,\" %\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "16.704\n", + "a)emf induced using short shunt= 236.44\n", + "b)emf induced using long shunt= 236.704\n", + "c)series amp-turns are reduced to 70.0 %\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.18, Page Number:988" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=250*1000#W\n", + "v=240#V\n", + "v2=220#V\n", + "i=7#A\n", + "inl=12#A\n", + "shunt=650#turns/pole\n", + "series=4#turns/pole\n", + "rse=0.006#ohm\n", + "\n", + "#calculations\n", + "i_fulload=p/v\n", + "shunt_increase=shunt*(inl-i)\n", + "ise=shunt_increase/series\n", + "i_d=i_fulload-ise\n", + "Rd=(ise*rse)/i_d\n", + "\n", + "#results\n", + "print \"resistance of the series amp-turns at no-load\",Rd,\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of the series amp-turns at no-load 0.0212751091703 ohm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.19, Page Number:988" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "p=60.0*1000#W\n", + "n=1600.0#turns/pole\n", + "inl=1.25#A\n", + "vnl=125#V\n", + "il=1.75#A\n", + "vl=150.0#V\n", + "\n", + "#calculations\n", + "extra_excitation=n*(il-inl)\n", + "ise=p/vl\n", + "series=extra_excitation/ise\n", + "ise2=extra_excitation/3\n", + "i_d=ise-ise2\n", + "rd=(ise2*0.02)/i_d\n", + "reg=(vnl-vl)*100/vl\n", + "\n", + "#result\n", + "print \"i)minimum number of series turns/pole= \",series\n", + "print \"ii)divertor resistance= \",rd\n", + "print \"iii)voltage regulation= \",reg,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)minimum number of series turns/pole= 2.0\n", + "ii)divertor resistance= 0.04\n", + "iii)voltage regulation= -16.6666666667 %\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 28.20, Page Number:989" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=50.0#v\n", + "i=200.0#A\n", + "r=0.3#ohm\n", + "i1=160.0#A\n", + "i2=50.0#A\n", + "\n", + "#calculations\n", + "#160 A\n", + "vd=i1*(r-(v/i))\n", + "#50 A\n", + "vd2=i2*(r-(v/i))\n", + "\n", + "#result\n", + "print \"voltage drop at 160 A=\",vd,\"V\"\n", + "print \"voltage drop at 50 A=\",vd2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage drop at 160 A= 8.0 V\n", + "voltage drop at 50 A= 2.5 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter29_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter29_4.ipynb new file mode 100644 index 00000000..f3eda54f --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter29_4.ipynb @@ -0,0 +1,2343 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:f1e5688d45c7bb285838d2aad7b4c0c08dc93f4afbba4c253d97655938545a41" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 29: D.C. Motor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.1, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "r=0.5#ohm\n", + "i=20#A\n", + "\n", + "#calculation\n", + "#as generator \n", + "eg=v+i*r\n", + "#as motor\n", + "eb=v-i*r\n", + "\n", + "#result\n", + "print \"as generator:eg=\",eg,\"V\"\n", + "print \"as motor:eb=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "as generator:eg= 230.0 V\n", + "as motor:eb= 210.0 V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.2, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia=Symbol('ia')\n", + "r=0.1#ohm\n", + "brush_drop=2#V\n", + "n=1000#rpm\n", + "i=100#A\n", + "v=250#V\n", + "n2=700#rpm\n", + "\n", + "#calculations\n", + "rl=v/i\n", + "eg1=v+i*r+brush_drop\n", + "eg2=eg1*n2/n\n", + "ia=solve(eg2-2-ia*r-2.5*ia,ia)\n", + "\n", + "#result\n", + "print \"current delivered to the load=\",ia[0],\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current delivered to the load= 69.7692307692308 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.3, Page Number:999" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "ra=0.8#ohm\n", + "rf=200#ohm\n", + "output=7.46#kW\n", + "efficiency=0.85\n", + "\n", + "#calculations\n", + "input_m=output*1000/efficiency\n", + "im=output*1000/(efficiency*v)\n", + "ish=v/rf\n", + "ia=im-ish\n", + "eb=v-ia*ra\n", + "\n", + "#results\n", + "print \"back emf=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "back emf= 425.642780749 V\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.4, Page Number:1000" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25#kW\n", + "v=250#V\n", + "ra=0.06#ohm\n", + "rf=100#ohm\n", + "\n", + "#calculations\n", + "#as generator\n", + "i=load*1000/v\n", + "ish=v/rf\n", + "ia=i+ish\n", + "eb=v+ia*ra\n", + "power=eb*ia/1000\n", + "\n", + "print \"As generator: power=\",power,\"kW\"\n", + "\n", + "#as motor\n", + "i=load*1000/v\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "power=eb*ia/1000\n", + "\n", + "print \"As generator: power=\",power,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "As generator: power= 26.12424 kW\n", + "As generator: power= 23.92376 kW\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.5, Page Number:1000" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "z=32\n", + "v=200.0#V\n", + "i=12.0#A\n", + "ra=2.0#ohm\n", + "rf=200.0#ohm\n", + "n=1000.0#rpm\n", + "i2=5.0#A\n", + "#calculations\n", + "ia=i+v/rf\n", + "eg=v+ia*ra\n", + "phi=eg*a*60/(z*n*p)\n", + "#as motor\n", + "ia=i2-v/rf\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "\n", + "#result\n", + "print \"flux per pole=\",phi,\"wb\"\n", + "print \"speed of the machine=\",math.ceil(n),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 0.42375 wb\n", + "speed of the machine= 850.0 rpm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.6, Page Number:1002" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=110#A\n", + "v=480#V\n", + "ra=0.2#ohm\n", + "z=864\n", + "p=a=6\n", + "phi=0.05#Wb\n", + "\n", + "#calculations\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "ta=0.159*phi*z*ia*p/a\n", + "\n", + "#result\n", + "print \"the speed=\",math.floor(n),\"rpm\"\n", + "print \"the gross torque=\",ta,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the speed= 636.0 rpm\n", + "the gross torque= 755.568 N-m\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.7, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "z=782\n", + "ra=rf=0.5#ohm\n", + "ia=40#A\n", + "phi=25*0.001#Wb\n", + "p=4\n", + "a=2\n", + "#calculation\n", + "eb=v-ia*ra\n", + "n=60*eb/(phi*z)\n", + "ta=0.159*phi*z*ia*p/a\n", + "\n", + "print \"the speed=\",math.floor(n),\"rpm\"\n", + "print \"the gross torque=\",ta,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the speed= 705.0 rpm\n", + "the gross torque= 248.676 N-m\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.8, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "eb=250.0#V\n", + "n=1500.0#rpm\n", + "ia=50.0#A\n", + "\n", + "#calculations\n", + "pm=eb*ia\n", + "ta=9.55*eb*ia/n\n", + "\n", + "#result\n", + "print \"torque=\",ta,\"N-m\"\n", + "print \"machanical power=\",pm,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 79.5833333333 N-m\n", + "machanical power= 12500.0 W\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.9, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "p=4\n", + "z=800\n", + "load=8.2#kW\n", + "ia=45#A\n", + "phi=25*0.001#Wb\n", + "ra=0.6#ohm\n", + "a=p/2\n", + "\n", + "#calculation\n", + "ta=0.159*phi*z*ia*p/a\n", + "eb=v-ia*ra\n", + "n=eb*a/(phi*z*p)\n", + "tsh=load*1000/(2*3.14*n)\n", + "\n", + "#result\n", + "print \"developed torque=\",ta,\"N-m\"\n", + "print \"shaft torque=\",tsh,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "developed torque= 286.2 N-m\n", + "shaft torque= 270.618131415 N-m\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.10, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "n=500.0#rpm\n", + "i=50.0#A\n", + "ra=0.2#ohm\n", + "\n", + "#calculation\n", + "ia2=2*i\n", + "fb1=v-(i*ra)\n", + "eb2=v-(ia2*ra)\n", + "n2=eb2*n/fb1\n", + "#result\n", + "print \"speed when torque is doubled=\",n2,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when torque is doubled= 476.19047619 N-m\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.11, Page Number:1003" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "r=Symbol('r')\n", + "v=500#V\n", + "load=37.3#kW\n", + "n=1000#rpm\n", + "efficiency=0.90\n", + "ra=0.24#ohm\n", + "vd=2#v\n", + "i=1.8#A\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "input_m=load*1000/efficiency\n", + "il=input_m/v\n", + "tsh=9.55*load*1000/n\n", + "il=ratio*il\n", + "ia=il-i\n", + "r=solve(ia*(r+ra)+vd-v,r)\n", + "\n", + "#result\n", + "print \"full-load line current=\",il,\"A\"\n", + "print \"full-load shaft torque\",tsh,\"N-m\"\n", + "print \"total resistance=\",r[0],\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load line current= 124.333333333 A\n", + "full-load shaft torque 356.215 N-m\n", + "total resistance= 3.82420021762787 ohm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.12, Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=4\n", + "v=220#V\n", + "z=540\n", + "i=32#A\n", + "output=5.595#kW\n", + "ra=0.09#ohm\n", + "i_f=1#A\n", + "phi=30*0.001#Wb\n", + "\n", + "#calculation\n", + "ia=i-i_f\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(phi*z*p)\n", + "tsh=9.55*output/n\n", + "\n", + "#result\n", + "print \"speed=\",n,\"rpm\"\n", + "print \"torque developed=\",tsh*1000,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 804.481481481 rpm\n", + "torque developed= 66.4182473183 N-m\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(a), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "load=20.0#kW\n", + "i=5.0#A\n", + "ra=0.04#ohm\n", + "phi=0.04#Wb\n", + "z=160\n", + "il=95.0#A\n", + "inl=9.0#A\n", + "p=4\n", + "a=2\n", + "#calculation\n", + "#no load\n", + "ea0=v-(inl-i)*ra\n", + "n0=ea0*a*60/(phi*z*p)\n", + "#load\n", + "ea=v-(il-i)*ra\n", + "n=ea*n0/ea0\n", + "\n", + "#result\n", + "print \"no-load speed=\",n0,\"rpm\"\n", + "print \"load speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no-load speed= 1030.5 rpm\n", + "load speed= 1014.375 rpm\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(b), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=a=6\n", + "i=400#A\n", + "n=350#rpm\n", + "phi=80*0.001#Wb\n", + "z=600*2\n", + "loss=0.03#percentage\n", + "\n", + "#calculation\n", + "e=phi*z*n*p/(60*a)\n", + "pa=e*i\n", + "t=pa/(2*3.14*n/60)\n", + "t_net=0.97*t\n", + "bhp=t_net*36.67*0.001/0.746\n", + "#result\n", + "print \"brake-horse-power\",bhp,\"HP\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "brake-horse-power 291.551578696 HP\n" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(c), Page Number:1004" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=774\n", + "phi=24*0.001#Wb\n", + "ia=50#A\n", + "a=2\n", + "#calculations\n", + "t=0.159*phi*z*ia*p/a\n", + "\n", + "#result\n", + "print \"torque=\",t,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 295.3584 N-m\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(d), Page Number:1005" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "i=5.0#A\n", + "ra=0.15#ohm\n", + "rf=200.0#ohm\n", + "il=40.0#A\n", + "\n", + "#calculations\n", + "ih=v/rf\n", + "pi=v*i\n", + "cu_loss_f=cu_loss=v*ih\n", + "output=v*il\n", + "cu_loss_a=(il+ih)**2*ra\n", + "total_loss=cu_loss+cu_loss_a+cu_loss_f\n", + "efficiency=output/(output+total_loss)\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 87.8312542029 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.13(e), Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable delcration\n", + "ia=40#A\n", + "v=220#V\n", + "n=800#rpm\n", + "ra=0.2#ohm\n", + "rf=0.1#ohm\n", + "loss=0.5#kW\n", + "\n", + "#calculations\n", + "eb=v-ia*(ra+rf)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*(ra+rf)\n", + "total_loss=cu_loss+loss*1000\n", + "input_m=v*ia\n", + "output=input_m-total_loss\n", + "\n", + "#result\n", + "print \"output of the motor=\",output/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output of the motor= 7.82 kW\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.14, Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=400.0#N\n", + "d=10.0#cm\n", + "n=840#rpm\n", + "v=220.0#V\n", + "n1=1800#rpm\n", + "efficiency=.80\n", + "d2=24.0#cm\n", + "\n", + "#calculations\n", + "tsh=f*d*0.01/2\n", + "output=tsh*2*3.14*n/60\n", + "input_m=output/efficiency\n", + "i=input_m/v\n", + "d1=n*d2/n1\n", + "\n", + "#calculation\n", + "print \"current taken by the motor=\",round(i),\"A\"\n", + "print \"size of motor pulley=\",d1,\"cm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current taken by the motor= 10.0 A\n", + "size of motor pulley= 11.2 cm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.15, Page Number:1006" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "p=4\n", + "z=280\n", + "ia=45.0#A\n", + "phi=18*0.001#Wb\n", + "ra=0.5+0.3#ohm\n", + "loss=800.0#W\n", + "d=0.41\n", + "a=4\n", + "#calculation\n", + "eb=v-ia*ra\n", + "n=eb*60*a/(phi*z*p*4)\n", + "inpt=v*ia\n", + "cu_loss=ia**2*ra\n", + "total_loss=loss+cu_loss\n", + "output=inpt-total_loss\n", + "tsh=9.55*output/n\n", + "f=tsh*2/d\n", + "\n", + "#result\n", + "print \"pull at the rim of the pulley=\",f,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pull at the rim of the pulley= 628.016180845 N-m\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.16, Page Number:1007" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "v=240#V\n", + "output=11.19#kW\n", + "n=1000#rpm\n", + "ia=50#A\n", + "i=1#A\n", + "z=540\n", + "ra=0.1#ohm\n", + "vd=1#V\n", + "a=2\n", + "#calculation\n", + "eb=v-ia*ra\n", + "ta=9.55*eb*ia/n\n", + "tsh=9.55*output*1000/n\n", + "phi=eb*60*a*1000/(z*n*p)\n", + "input_a=v*ia\n", + "cu_loss=ia**2*ra\n", + "brush_loss=ia*2\n", + "power=input_a-(cu_loss+brush_loss)\n", + "rotational_loss=power-output*1000\n", + "input_m=v*(ia+i)\n", + "efficiency=output*1000/input_m\n", + "\n", + "#result\n", + "print \"total torque=\",ta,\"N-m\"\n", + "print \"useful torque=\",tsh,\"N-m\"\n", + "print \"flux/pole=\",phi,\"mWb\"\n", + "print \"rotational losses=\",rotational_loss,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "total torque= 112.2125 N-m\n", + "useful torque= 106.8645 N-m\n", + "flux/pole= 13.0555555556 mWb\n", + "rotational losses= 460.0 W\n", + "efficiency= 91.4215686275 %\n" + ] + } + ], + "prompt_number": 106 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.17, Page Number:1007" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=460.0#v\n", + "n=500.0#rpm\n", + "i=40.0#A\n", + "i2=30.0#A\n", + "ra=0.8#ohm\n", + "\n", + "#calculation\n", + "t2_by_t1=i2**2/i**2\n", + "change=(1-t2_by_t1)*100#percentage\n", + "eb1=v-i*ra\n", + "eb2=v-i2*ra\n", + "n2=eb2*i*n/(eb1*i2)\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"percentage change in torque=\",change,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 679.127725857 rpm\n", + "percentage change in torque= 43.75 %\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.18, Page Number:1008" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=460.0#V\n", + "output=55.95#kW\n", + "n=750#rpm\n", + "I=252.8#kg-m2\n", + "ia1=1.4\n", + "ia2=1.8\n", + "\n", + "#calculations\n", + "ia=(ia1+ia2)/2\n", + "n=n/60.0\n", + "tsh=output*1000/(2*3.14*n)\n", + "torque_avg=(ia-1)*tsh\n", + "dt=(I*2*3.14*n)/torque_avg\n", + "\n", + "#result\n", + "print \"approximate time to attain full speed=\",dt,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "approximate time to attain full speed= 46.4050282991 s\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.19, Page Number:1008" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=14.92#kW\n", + "v=400.0#V\n", + "n=400.0#rpm\n", + "i=40.0#A\n", + "I=7.5#kg-m2\n", + "ratio=1.2\n", + "\n", + "#calculations\n", + "n=n/60\n", + "t=output*1000/(2*3.14*n)\n", + "torque=(ratio-1)*t\n", + "dt=(I*2*3.14*n)/torque\n", + "\n", + "print \"time to attain full speed=\",dt,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "time to attain full speed= 4.4055406613 s\n" + ] + } + ], + "prompt_number": 138 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.20, Page Number:1009" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "z=944\n", + "phi=34.6*0.001#Wb\n", + "ta=209.0#N-m\n", + "v=500.0#V\n", + "ra=3.0#ohm\n", + "a=2\n", + "#calculation\n", + "ia=ta/(0.159*phi*z*(p/a))\n", + "ea=v-ia*ra\n", + "n=ea/(phi*z*(p/a))\n", + "\n", + "#result\n", + "print \"line current=\",ia,\"A\"\n", + "print \"speed=\",n*60,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= 20.1219966813 A\n", + "speed= 403.798260345 rpm\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.21, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#v\n", + "n=1000#rpm\n", + "ia=8#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i2=50#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "eb0=v-(ia-ish)*ra\n", + "eb=v-(i2-ish)*ra\n", + "n=eb*n/eb0\n", + "\n", + "#result\n", + "print \"speed when loaded=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when loaded= 966.21078037 rpm\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.22, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=800#rpm\n", + "ia=100#A\n", + "v=230#V\n", + "ra=0.15#ohm\n", + "rf=0.1#ohm\n", + "ia2=25#A\n", + "ratio=0.45\n", + "\n", + "#calculation\n", + "eb1=v-(ra+rf)*ia\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed at which motor runs=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which motor runs= 1940.37940379 rpm\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.23, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "#variable declaration\n", + "v=230.0#V\n", + "ra=0.5#ohm\n", + "rf=115.0#ohm\n", + "n1=1200#rpm\n", + "ia=2.5#A\n", + "n2=1120#rpm\n", + "\n", + "#calculation\n", + "eb1=v-ra*ia\n", + "x=n2*eb1/n1\n", + "ia2=solve((v-ra*ia2)-x,ia2)\n", + "ia=ia2[0]+(v/rf)\n", + "input_m=v*ia\n", + "\n", + "#result\n", + "print \"line current=\",round(ia,1),\"A\"\n", + "print \"power input=\",round(input_m,1),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= 35.0 A\n", + "power input= 8050.0 W\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.24, Page Number:1010" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "power=100.0#kW\n", + "n1=300#rpm\n", + "v=220.0#V\n", + "load=10.0#kW\n", + "ra=0.025#ohm\n", + "rf=60.0#ohm\n", + "vd=1.0#V\n", + "\n", + "#calculation\n", + "i=power*1000/v\n", + "ish=v/rf\n", + "ia=i+ish\n", + "eb=v+ia*ra+2*vd\n", + "i=load*1000/v\n", + "ia2=i-ish\n", + "eb2=v-ia2*ra-2*vd\n", + "n2=eb2*n1/eb\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 278.796797778 rpm\n" + ] + } + ], + "prompt_number": 174 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.25, Page Number:1011" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=250.0#V\n", + "n=1000.0#rpm\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "ia=4.0#A\n", + "i=40.0#A\n", + "ratio=0.04#percentage by whih armature reaction weakens field\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia2=ia-ish\n", + "eb0=v-ia2*ra\n", + "n0=n*eb0/v\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*n0/(eb0*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed of machine=\",math.floor(n),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of machine= 960.0 rpm\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.26, Page Number:1011" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ooutput=14.92#kW\n", + "n=1000#rpm\n", + "i=75#A\n", + "ra=0.25#ohm\n", + "ratio=0.20\n", + "\n", + "#calculation\n", + "eb1=v-i*ra\n", + "eb_inst=eb1*(1-ratio)\n", + "ia_inst=(v-eb_inst)/ra\n", + "t_inst=9.55*eb_inst*ia_inst/n\n", + "ia2=i/(1-ratio)\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 93.75 A\n", + "speed= 1224.66216216 rpm\n" + ] + } + ], + "prompt_number": 191 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.27, Page Number:1012" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "i=4.0#A\n", + "n=700.0#rpm\n", + "rf=100.0#A\n", + "v2=6.0#V\n", + "i2=10.0#A\n", + "input_m=8.0#kW\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "il=input_m*1000/v\n", + "ia=il-ish\n", + "ra=v2/i2\n", + "eb0=v-ish*ra\n", + "eb=v-ia*ra\n", + "n=eb*n/eb0\n", + "ta=9.55*eb*ia/n\n", + "inpt=v*i\n", + "cu_loss=ish**2*ra\n", + "constant_loss=inpt-cu_loss\n", + "cu_loss_arm=ia**2*ra\n", + "total_loss=constant_loss+cu_loss_arm\n", + "output=input_m*1000-total_loss\n", + "efficiency=output/(input_m*1000)\n", + "print \n", + "#result\n", + "print \"speed on load=\",n,\"rpm\"\n", + "print \"torque=\",ta,\"N-m\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "speed on load= 623.943661972 rpm\n", + "torque= 103.0636 N-m\n", + "efficiency= 79.2 %\n" + ] + } + ], + "prompt_number": 197 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.28, Page Number:1012" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabe declaration\n", + "v=220#V\n", + "load=11#kW\n", + "inl=5#A\n", + "n_nl=1150#rpm\n", + "ra=0.5#ohm\n", + "rsh=110#ohm\n", + "\n", + "#calculations\n", + "input_nl=v*inl\n", + "ish=v/rsh\n", + "ia0=inl-ish\n", + "cu_loss_nl=ia1**2*ra\n", + "constant_loss=input_nl-cu_loss_nl\n", + "i=load*1000/v\n", + "ia=i-ish\n", + "cu_loss_a=ia**2*ra\n", + "total_loss=cu_loss_a+constant_loss\n", + "output=load*1000-total_loss\n", + "efficiency=output*100/(load*1000)\n", + "eb_nl=v-(ia0*ra)\n", + "eb=v-ia*ra\n", + "n=n_nl*eb/eb_nl\n", + "ta=9.55*eb*ia/n\n", + "\n", + "#result\n", + "print \"torque developed=\",ta,\"N-m\"\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"the speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque developed= 87.096 N-m\n", + "efficiency= 79.5361818182 %\n", + "the speed= 1031.57894737 rpm\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.29, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=18.65#kW\n", + "v=250.0#V\n", + "ra=0.1#ohm\n", + "vb=3#V\n", + "rf=0.05#ohm\n", + "ia=80.0#A\n", + "n=600.0#rpm\n", + "i2=100.0#A\n", + "\n", + "#calculation\n", + "eb1=v-ia*(ra+rf)\n", + "eb2=v-i2*(ra+rf)\n", + "n2=eb2*ia*n/(eb1*i2)\n", + "\n", + "#result\n", + "print \"speed when current is 100 A=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when current is 100 A= 473.949579832 rpm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.30, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220.0#V\n", + "n=800.0#rpm\n", + "i=100.0#A\n", + "ra=0.1\n", + "ratio=1.0/2.0\n", + "#calculation\n", + "ia1=i*math.sqrt(ratio)\n", + "eb1=v-i*ra\n", + "eb2=v-ia1*ra\n", + "n2=eb2*i*n/(eb1*ia1)\n", + "#result\n", + "print \"speed when motor will run when developing half the torque=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when motor will run when developing half the torque= 1147.0 rpm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.31, Page Number:1013" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=a=4\n", + "n=600#rpm\n", + "ia=25#A\n", + "v=450#V\n", + "z=500\n", + "phi=1.7*0.01*math.pow(ia,0.5)\n", + "\n", + "#calculation\n", + "eb=n*phi*z*p/(60*a)\n", + "iara=v-eb\n", + "ra=iara/ia\n", + "i=math.pow((phi*ia*math.sqrt(ia)/(phi*2)),2.0/3.0)\n", + "eb2=v/2-i*ra\n", + "phi2=1.7*0.01*math.pow(i,0.5)\n", + "n2=eb2*phi*n/(eb*phi2)\n", + "\n", + "#result\n", + "print \"speed at which motor will run=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which motor will run= 372.0 rpm\n" + ] + } + ], + "prompt_number": 224 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.32, Page Number:1017" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "import math\n", + "#variable declaration\n", + "v=460.0#V\n", + "ra=0.5#ohm\n", + "\n", + "def f(ia,t):\n", + " n=(v*ia-ia**2*ra)*60/(2*3.14*t)\n", + " return(n)\n", + "\n", + "n1=f(20.0,128.8)\n", + "n2=f(30.0,230.5)\n", + "n3=f(40.0,349.8)\n", + "n4=f(50.0,469.2)\n", + "T=[128.8,230.5,349.8,469.2]\n", + "N=[n1,n2,n3,n4]\n", + "a=plot(T,N)\n", + "xlabel(\"Torque(NM.m)\") \n", + "ylabel(\"Speed(rpm)\") \n", + "plt.xlim((0,500))\n", + "plt.ylim((0,800))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Using matplotlib backend: TkAgg\n", + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.33, Page Number:1017" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "import math\n", + "#variable declaration\n", + "output=5.968#kW\n", + "n=700#rpm\n", + "v1=500#V\n", + "n2=600#rpm\n", + "ra=3.5#ohm\n", + "loss=450#W\n", + "\n", + "#calculation\n", + "\n", + "def fp(i,v):\n", + " p=5.968*((n2*(v1-i*ra)/(v*n))**2)\n", + " return(p)\n", + "\n", + "def fm(i,v):\n", + " m=((v1-i*ra)*i-loss)/1000\n", + " return(m)\n", + "\n", + "p1=fp(7.0,347.0)\n", + "p2=fp(10.5,393.0)\n", + "p3=fp(14.0,434.0)\n", + "p4=fp(27.5,468.0)\n", + "\n", + "m1=fm(7.0,347.8)\n", + "m2=fm(10.5,393.0)\n", + "m3=fm(14.0,434.0)\n", + "m4=fm(27.5,468.0)\n", + "\n", + "#plot\n", + "I=[7,10.5,14,27.5]\n", + "P=[p1,p2,p3,p4]\n", + "M=[m1,m2,m3,m4]\n", + "a=plot(I,P)\n", + "a=plot(I,M)\n", + "xlabel(\"Current\") \n", + "ylabel(\"Power(kW)\") \n", + "plt.xlim((0,30))\n", + "plt.ylim((0,12))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.34, Page Number:1022" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "i=3#A\n", + "ia=3.5#A\n", + "ib=4.5#A\n", + "\n", + "#calculation\n", + "loss=v*i\n", + "#B unexcited\n", + "loss1=v*(ia-i)\n", + "#B excited\n", + "loss2=v*(ib-i)\n", + "loss=loss2-loss1\n", + "\n", + "#result\n", + "print \"iron losses of B=\",loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "iron losses of B= 500.0 W\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.35, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.2#ohm\n", + "rf=110.0#ohm\n", + "ia=5.0#A\n", + "n=1500#rpm\n", + "i2=52.0#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "ia2=i2-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "n2=round(eb2*n/eb1,0)\n", + "input_nl=v*ia\n", + "cu_loss_nl=ia1**2*ra\n", + "constant_loss=input_nl-cu_loss_nl\n", + "cu_loss_l=ia2**2*ra\n", + "total_loss=constant_loss+cu_loss_l\n", + "input_l=v*i2\n", + "output=input_l-total_loss\n", + "tsh=9.55*output/n2\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"shaft torque=\",tsh,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.36, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "ia=5#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i=50#A\n", + "ratio=0.03#percentage by which armature reaction weakens field\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "ia2=i-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 994.0 rpm\n" + ] + } + ], + "prompt_number": 241 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.37, Page Number:1023" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "ia=5#A\n", + "ra=0.22#A\n", + "rf=250#ohm\n", + "i=100#A\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia0=ia-ish\n", + "eb0=v-ia0*ra\n", + "cu_loss=ia0**2*ra\n", + "input_m=v*ia\n", + "constant_loss=input_m-cu_loss\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "cu_loss=ia**2*ra\n", + "total_loss=cu_loss+constant_loss\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "efficiency=output*100/input_m\n", + "per=(eb-eb0)*100/eb0\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"\n", + "print \"percentage change in speed=\",round(per,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 90.8 %\n", + "percentage change in speed= -4.19 %\n" + ] + } + ], + "prompt_number": 244 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.38, Page Number:1024" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "i=25#A\n", + "i2=50#A\n", + "ratio=0.03#percentage by which the armature reaction weakens field\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "vd=1\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ebh=v-ia1*ra-2*vd\n", + "ia2=i2-ish\n", + "eb2=v-ia2*ra-2*vd\n", + "n2=eb2*n/(ebh*(1-ratio))\n", + "ta1=9.55*eb1*ia1/n\n", + "ta2=9.55*eb2*ia2/n2\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"torque in first case=\",ta1,\"N-m\"\n", + "print \"torque in second case=\",ta2,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1010.0 rpm\n", + "torque in first case= 57.11664 N-m\n", + "torque in second case= 110.3912768 N-m\n" + ] + } + ], + "prompt_number": 247 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.39, Page Number:1024" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "n1=1000.0#rpm\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "ia=4.0#A\n", + "i=40.0#A\n", + "ratio=0.04#percentage by which the armature reaction weakens field\n", + "eb1=250.0#V\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "eb2=v-(i-ish)*ra\n", + "n2=eb2*n/(eb1*(1-ratio))\n", + "cu_loss=(ia-ish)**2*ra\n", + "input_m=v*ia\n", + "constant_loss=input_m-cu_loss\n", + "cu_loss_a=(i-ish)**2*ra\n", + "total_loss=constant_loss+cu_loss_a\n", + "inpt=v*i\n", + "output=inpt-total_loss\n", + "efficiency=output*100/inpt\n", + "\n", + "#result\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 960.0 rpm\n", + "efficiency= 82.44 %\n" + ] + } + ], + "prompt_number": 254 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.40, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "v=250#V\n", + "z=120*8\n", + "a=4\n", + "phi=20*0.001#Wb\n", + "i=25#A\n", + "ra=0.1#ohm\n", + "rf=125#ohm\n", + "loss=810#W\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(p*z*phi)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*ra\n", + "cu_loss_shunt=v*ish\n", + "total_loss=loss+cu_loss+cu_loss_shunt\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "tsh=9.55*output/n\n", + "efficiency=output*100/input_m\n", + "\n", + "#result\n", + "print \"gross torque=\",ta,\"N-m\"\n", + "print \"useful torque=\",tsh,\"N-m\"\n", + "print \"efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross torque= 70.288 N-m\n", + "useful torque= 60.2946209124 N-m\n", + "efficiency= 78.1936 %\n" + ] + } + ], + "prompt_number": 256 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.41, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=14.92#kW\n", + "n=1150#rpm\n", + "p=4\n", + "a=2\n", + "z=620\n", + "ra=0.2#ohm\n", + "i=74.8#A\n", + "i2=3#A\n", + "v=230#V\n", + "#calculation\n", + "ia=i-i2\n", + "eb=v-ia*ra\n", + "phi=eb*a*60/(p*z*n)\n", + "ta=9.55*eb*ia/n\n", + "power=eb*ia\n", + "loss_rot=power-output*1000\n", + "input_m=v*i\n", + "total_loss=input_m-output*1000\n", + "per=total_loss*100/input_m\n", + "\n", + "#result\n", + "print \"flux per pole=\",phi*1000,\"mWb\"\n", + "print \"torque developed=\",ta,\"N-m\"\n", + "print \"rotational losses=\",loss_rot,\"W\"\n", + "print \"total losses expressed as a percentage of power=\",per,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "flux per pole= 9.07321178121 mWb\n", + "torque developed= 128.575818783 N-m\n", + "rotational losses= 562.952 W\n", + "total losses expressed as a percentage of power= 13.2759823297 %\n" + ] + } + ], + "prompt_number": 263 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.42, Page Number:1025" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia1=Symbol('ia1')\n", + "output=7.46#kW\n", + "v=250#V\n", + "i=5#A\n", + "ra=0.5#ohm\n", + "rf=250#ohm\n", + "\n", + "#calculation\n", + "input_m=v*i\n", + "ish=v/rf\n", + "ia=i-ish\n", + "cu_loss=v*ish\n", + "cu_loss_a=ra*ia**2\n", + "loss=input_m-cu_loss\n", + "ia1=solve(ra*ia1**2-v*ia1+output*1000+loss,ia1)\n", + "i2=ia1[0]+ish\n", + "input_m1=v*i2\n", + "efficiency=output*100000/input_m1\n", + "ia=math.sqrt((input_m-cu_loss_a)/ra)\n", + "input_a=v*ia\n", + "cu_loss=ia**2*ra\n", + "output_a=input_a-(cu_loss+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"output power at which efficiency is maximum=\",output_a/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 79.5621535016683 %\n", + "output power at which efficiency is maximum= 10.2179357944 kW\n" + ] + } + ], + "prompt_number": 271 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.43, Page Number:1026" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n2_by_n1=1.0/2.0\n", + "ia2_by_ia1=phi1_by_phi2=1.0/2.0\n", + "v2_by_v1=n2_by_n1*phi1_by_phi2\n", + "reduction_v=(1-v2_by_v1)*100\n", + "reduction_i=(1-ia2_by_ia1)*100\n", + "\n", + "#result\n", + "print \"percentage reduction in the motor terminal voltage=\",reduction_v,\"%\"\n", + "print \"percentage fall in the motor current=\",reduction_i,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction in the motor terminal voltage= 75.0 %\n", + "percentage fall in the motor current= 50.0 %\n" + ] + } + ], + "prompt_number": 272 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.44, Page Number:1026" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "v=500#V\n", + "z=1200\n", + "phi=20*0.001#Wb\n", + "ra=0.5#ohm\n", + "rf=250#ohm\n", + "i=20#A\n", + "loss=900#W\n", + "a=2\n", + "#calculation\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "n=eb*a*60/(p*z*phi)\n", + "ta=9.55*eb*ia/n\n", + "cu_loss=ia**2*ra\n", + "cu_loss_f=v*ish\n", + "total_loss=cu_loss+cu_loss_f+loss\n", + "input_m=v*i\n", + "output=input_m-total_loss\n", + "tsh=9.55*output/n\n", + "efficiency=output*100/input_m\n", + "\n", + "#result\n", + "print \"useful torque=\",ta,\"N-m\"\n", + "print \"output=\",output/1000,\"Kw\"\n", + "print \"efficiency==\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "useful torque= 206.28 N-m\n", + "output= 7.938 Kw\n", + "efficiency== 79.38 %\n" + ] + } + ], + "prompt_number": 275 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 29.45, Page Number:1027" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia1=Symbol('ia1')\n", + "output=37.3*1000#W\n", + "v=460#V\n", + "i=4#A\n", + "n=660#rpm\n", + "ra=0.3#ohm\n", + "rf=270#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "cu_loss=v*ish\n", + "ia=i-ish\n", + "cu_loss_a=ia**2*ra\n", + "input_a=loss=v*ia\n", + "ia1=solve(ra*ia1**2-v*ia1+output+loss,ia1)\n", + "i=ia1[0]+ish\n", + "eb1=v-(ia*ra)\n", + "eb2=v-(ia1[0]*ra)\n", + "n2=n*eb2/eb1\n", + "ia=math.sqrt((cu_loss+input_a)/ra)\n", + "\n", + "#result\n", + "print \"the current input=\",i,\"A\"\n", + "print \"speed=\",round(n2,0),\"rpm\"\n", + "print \"armature current at which efficiency is maximum=\",ia,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the current input= 90.2860908863713 A\n", + "speed= 623.0 rpm\n", + "armature current at which efficiency is maximum= 78.3156008298 A\n" + ] + } + ], + "prompt_number": 280 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter30_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter30_4.ipynb new file mode 100644 index 00000000..ce13ea95 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter30_4.ipynb @@ -0,0 +1,2629 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:072a977ff7e7f41108f647b699866e16f58bf91b148a03cefc5a07bc1eeda05b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 30:Speed Control of D.C. Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.1, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "n=250#rpm\n", + "ia=200#A\n", + "ra=0.12#ohm\n", + "ratio=0.80\n", + "ia2=100#A\n", + "\n", + "#calculations\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 320.0 rpm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.2, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ra=0.25#ohm\n", + "ia=50#A\n", + "n=750#rpm\n", + "ratio=1-0.10\n", + "\n", + "#calculation\n", + "ia2=ia/ratio\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 828.0 rpm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.3, Page Number:1032" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "n=800#rpm\n", + "ia=50.0#A\n", + "n2=1000#rpm\n", + "ia2=80.0#A\n", + "ra=0.15#ohm\n", + "rf=250.0#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "eb2=v-ia2*ra\n", + "ish1=v/rf\n", + "r1=(n2*eb1*v)/(n*eb2*ish1)\n", + "r=r1-rf\n", + "ish2=v/r1\n", + "torque_ratio=ish2*ia2/(ish1*ia)\n", + "\n", + "#result\n", + "print \"resistance to be added=\",r,\"ohm\"\n", + "print \"ratio of torque=\",torque_ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 68.9506880734 ohm\n", + "ratio of torque= 1.25411235955\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.3, Page Number:1033" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "rf=250.0#ohm\n", + "ra=0.25#ohm\n", + "n=1500#rpm\n", + "ia=20.0#A\n", + "r=250.0#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ish2=v/(rf+r)\n", + "ia2=ia*1/ish2\n", + "eb2=v-ia2*ra\n", + "eb1=v-ia*ra\n", + "n2=eb2*n/(eb1*ish2)\n", + "\n", + "#result\n", + "print \"new speed=\",round(n2),\"rpm\"\n", + "print \"new armature current=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new speed= 2939.0 rpm\n", + "new armature current= 40.0 A\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.5, Page Number:1033" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "rt=Symbol('rt')\n", + "v=250.0#V\n", + "ra=0.5#ohm\n", + "rf=250.0#ohm\n", + "n=600.0#rpm\n", + "ia=20.0#A\n", + "n2=800.0#rpm\n", + "\n", + "#calculation\n", + "ish1=v/rf\n", + "eb1=v-ia*ra\n", + "rt=solve(((n2*eb1*(v/rt))/(n*(v-(ia*ra/(v/rt)))))-1,rt)\n", + "r=rt[0]-rf\n", + "\n", + "#result\n", + "print \"resistance to be inserted=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be inserted= 88.3128987990058 ohm\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.6, Page Number:1034" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "v=220#V\n", + "ra=0.5#ohm\n", + "ia=40#A\n", + "ratio=1+0.50\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "x=solve((ratio*eb1/((v-ia*ra*x)*x))-1,x)\n", + "per=1-1/x[0]\n", + "\n", + "#result\n", + "print\"main flux has to be reduced by=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "main flux has to be reduced by= 37.2991677469778 %\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.7, Page Number:1034" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "load=10#kW\n", + "i=41#A\n", + "ra=0.2#ohm\n", + "rw=0.05#ohm\n", + "ri=0.1#ohm\n", + "rf=110#ohm\n", + "ratio=1-0.25\n", + "r=1#ohm\n", + "ratio1=1-0.50\n", + "n=2500\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ia2=ratio1*ia1/ratio\n", + "eb1=v-ia1*(ra+ri+rw)\n", + "eb2=v-ia2*(r+ra+ri+rw)\n", + "n2=eb2*n/(eb1*ratio)\n", + "\n", + "#result\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"motor speed=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 26.0 A\n", + "motor speed= 2987.0 rpm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.8, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "load=15#kW\n", + "n=850#rpm\n", + "ia=72.2#A\n", + "ra=0.25#ohm\n", + "rf=100#ohm\n", + "n2=1650#rpm\n", + "ia2=40#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "ratio=(n*eb2)/(n2*eb1)\n", + "per=1-ratio\n", + "#result\n", + "print \"percentage reduction=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction= 46.5636857585 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.9, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "v=220#V\n", + "ra=0.5#ohm\n", + "ia=40#A\n", + "ratio=0.50+1\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "ia2=solve((((v-ra*ia2)*ia2)/(eb1*ratio*ia))-1,ia2)\n", + "per=ia/ia2[0]\n", + "\n", + "#result\n", + "print \"mail flux should be reduced by=\",round(per,4)*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mail flux should be reduced by= 62.7 %\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.10, Page Number:1035" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=20.0#A\n", + "v=220.0#V\n", + "ra=0.5#ohm\n", + "ratio=0.50\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "eb2=ratio*(v-ia*ra)\n", + "r=(v-eb2)/ia-ra\n", + "\n", + "#result\n", + "print \"resistance required in the series=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance required in the series= 5.25 ohm\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.11, Page Number:1036" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "n=1000#rpm\n", + "ia=8#A\n", + "i_f=1#A\n", + "ra=0.2#ohm\n", + "rf=250#ohm\n", + "i=50#A\n", + "\n", + "#calculations\n", + "eb0=v-(ia-i_f)*ra\n", + "kpsi=eb0/1000\n", + "ia=i-i_f\n", + "eb1=v-ia*ra\n", + "n1=eb1/kpsi\n", + "\n", + "#result\n", + "print \"speed=\",round(n1,1),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 966.2 rpm\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.12, Page Number:1037" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240#V\n", + "ra=0.25#ohm\n", + "n=1000#rpm\n", + "ia=40#A\n", + "n2=800#rpm\n", + "i2=20#A\n", + "#calculation\n", + "eb=v-ia*ra\n", + "eb2=n2*eb/n\n", + "r=(v-eb2)/(ia)-ra\n", + "eb3=v-i2*(r+ra)\n", + "n3=eb3*n/eb\n", + "\n", + "#result\n", + "print \"additional resistance=\",r,\"ohm\"\n", + "print \"speed=\",round(n3),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "additional resistance= 1.15 ohm\n", + "speed= 922.0 rpm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.13, Page Number:1037" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=7.48#kW\n", + "v=220#V\n", + "n=990#rpm\n", + "efficiency=0.88\n", + "ra=0.08#ohm\n", + "ish=2#A\n", + "n2=450#rpm\n", + "\n", + "#calculation\n", + "input_p=load*1000/efficiency\n", + "losses=input_p-load*1000\n", + "i=input_p/v\n", + "ia=i-ish\n", + "loss=v*ish\n", + "cu_loss=ia**2*ra\n", + "loss_nl=losses-cu_loss-loss\n", + "eb1=v-20-(ia*ra)\n", + "eb2=n2*eb1/n\n", + "r=(eb1-eb2)/ia\n", + "total_loss=ia**2*(r+ra)+loss+loss_nl\n", + "output=input_p-total_loss\n", + "efficiency=output/(input_p)\n", + "\n", + "#result\n", + "print \"motor input=\",input_p/1000,\"kW\"\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"external resistance=\",r,\"ohm\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor input= 8.5 kW\n", + "armature current= 36.6363636364 A\n", + "external resistance= 2.93403113016 ohm\n", + "efficiency= 41.6691237902 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.14, Page Number:1038" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "eb1=230.0#V\n", + "n=990.0#rpm\n", + "n2=500.0#rpm\n", + "ia=25.0#A\n", + "\n", + "#calculation\n", + "eb2=eb1*n2/n\n", + "r=(eb1-eb2)/ia\n", + "\n", + "#result\n", + "print \"resistance required in series=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance required in series= 4.55353535354 ohm\n" + ] + } + ], + "prompt_number": 83 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.15, Page Number:1038" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.4#ohm\n", + "rf=200.0#ohm\n", + "ia=20.0#A\n", + "n=600.0#rpm\n", + "n2=900.0#rpm\n", + "\n", + "#calculation\n", + "if1=v/rf\n", + "eb1=v-ia*ra\n", + "k2=eb1/(if1*n)\n", + "if2=n*if1/n2\n", + "rf1=v/if1\n", + "rf2=v/if2\n", + "r=rf2-rf1\n", + "\n", + "#result\n", + "print \"resistance to be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 100.0 ohm\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.16, Page Number:1039" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "ia2=Symbol('ia2')\n", + "v=220.0#V\n", + "ra=0.4#ohm\n", + "rf=200.0#ohm\n", + "ia=22.0#A\n", + "n=600.0#rpm\n", + "n2=900.0#rpm\n", + "\n", + "#calculation\n", + "if1=v/rf\n", + "eb1=v-ia*ra\n", + "k1=eb1/(if1*n)\n", + "if2=n*if1/n2\n", + "if2=n2*ia/n\n", + "ia2=solve(v-ra*ia2-(k1*ia*if1*n2)/ia2,ia2)\n", + "if2=ia*if1/ia2[0]\n", + "r=v/if2\n", + "\n", + "#result\n", + "print \"new field resistance to be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new field resistance to be added= 306.828780053869 ohm\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.17, Page Number:1040" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "output=25#kW\n", + "efficiency=0.85\n", + "n=1000#rpm\n", + "ra=0.1#ohm\n", + "rf=125#ohm\n", + "ratio=1.50\n", + "\n", + "#calculation\n", + "input_p=output*1000/efficiency\n", + "i=input_p/v\n", + "if1=v/rf\n", + "ia=i-if1\n", + "il=ratio*ia\n", + "r=v/il\n", + "r_ext=r-ra\n", + "\n", + "#result\n", + "print \"starting resistance=\",round(r_ext,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting resistance= 1.341 ohm\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.18, Page Number:1042" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "n=1000.0#rpm\n", + "ia=17.5#A\n", + "n2=600.0#rpm\n", + "ra=0.4#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "rt=(v-(n2*eb1/n))/ia\n", + "r=rt-ra\n", + "#result\n", + "print \"resistance to be inserted=\",round(r,1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be inserted= 4.4 ohm\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.19, Page Number:1042" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500#V\n", + "ra=1.2#ohm\n", + "rf=500#ohm\n", + "ia=4#A\n", + "n=1000#rpm\n", + "i=26#A\n", + "r=2.3#ohm\n", + "ratio=0.15\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=ia-ish\n", + "eb1=v-ia1*ra\n", + "ia2=i-ish\n", + "eb2=v-ia2*ra\n", + "n2=n*eb2/eb1\n", + "eb2=v-ia2*(r+ra)\n", + "n2_=n*eb2/eb1\n", + "n2__=n*eb2/(eb1*(1-ratio))\n", + "\n", + "#result\n", + "print \"speed when resistance 2.3 ohm is connected=\",round(n2_),\"rpm\"\n", + "print \"speed when shunt field is reduced by 15%=\",round(n2__),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when resistance 2.3 ohm is connected= 831.0 rpm\n", + "speed when shunt field is reduced by 15%= 978.0 rpm\n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.20, Page Number:1043" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "ia1=ia2=20.0#A\n", + "n=1000.0#rpm\n", + "ra=0.5#ohm\n", + "n2=500.0#ohm\n", + "\n", + "#calculation\n", + "eb1=v-ia1*ra\n", + "rt=(v-((n2/n)*eb1))/ia2\n", + "r=rt-ra\n", + "ia3=ia2/2\n", + "n3=n*(v-ia3*rt)/eb1\n", + "#result\n", + "print \"speed=\",round(n3),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 771.0 rpm\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.21, Page Number:1043" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "ra1=0.5#ohm\n", + "n=600.0#rpm\n", + "ia2=ia1=20#A\n", + "r=1.0#ohm\n", + "\n", + "#calculations\n", + "eb1=v-ia1*ra1\n", + "ra2=r+ra1\n", + "eb2=v-ia2*ra2\n", + "n2=eb2*n/eb1\n", + "#torque is half the full-load torque\n", + "ia2=1.0/2.0*ia1\n", + "eb22=v-ia2*ra2\n", + "n2_=eb22*n/eb1\n", + "#result\n", + "print \"speed at full load torque=\",round(n2),\"rpm\"\n", + "print \"speed at half full-load torque=\",round(n2_),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at full load torque= 550.0 rpm\n", + "speed at half full-load torque= 588.0 rpm\n" + ] + } + ], + "prompt_number": 137 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.22, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra1=0.5#ohm\n", + "n=500.0#rpm\n", + "ia2=ia1=30.0#A\n", + "r=1.0#ohm\n", + "\n", + "#calculations\n", + "eb1=v-ia1*ra1\n", + "ra2=r+ra1\n", + "eb2=v-ia2*ra2\n", + "n2=eb2*n/eb1\n", + "\n", + "#torque is half the full-load torque\n", + "ia2=2.0*ia1\n", + "eb22=v-ia2*ra2\n", + "n2_=eb22*n/eb1\n", + "#result\n", + "print \"speed at full load torque=\",round(n2),\"rpm\"\n", + "print \"speed at double full-load torque=\",round(n2_),\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at full load torque= 427.0 rpm\n", + "speed at double full-load torque= 317.0 rpm\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.23, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=37.3*1000#W\n", + "v=500.0#V\n", + "n=750.0#rpm\n", + "efficiency=0.90\n", + "t2=250.0#N-m\n", + "r=5.0#ohm\n", + "ra=0.5#ohm\n", + "\n", + "#calculation\n", + "t1=load/(2*3.14*(n/60))\n", + "ia1=load/(efficiency*v)\n", + "ia2=ia1*math.sqrt(t2/t1)\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*(r+ra)\n", + "n2=eb2*ia1*n/(eb1*ia2)\n", + "\n", + "#result\n", + "print \"speed at which machine will run=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which machine will run= 381.789716486 rpm\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.24, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=7.46*1000#W\n", + "v=220.0#V\n", + "n=900.0#rpm\n", + "efficiency=0.88\n", + "ra=0.08#ohm\n", + "ish=2.0#A\n", + "n2=450.0#rpm\n", + "#calculation\n", + "i=output/(efficiency*v)\n", + "ia2=ia1=i-ish\n", + "eb1=v-ia2*ra\n", + "rt=(v-20-((n2/n)*eb1))/ia2\n", + "r=rt-ra\n", + "input_m=(v)*(ia2+ish)\n", + "total_loss=input_m-output\n", + "cu_loss=ia2**2*ra\n", + "cu_loss_f=v*ish\n", + "total_cu_loss=cu_loss+cu_loss_f\n", + "stray_loss=total_loss-total_cu_loss\n", + "stray_loss2=stray_loss*n2/n\n", + "cu_loss_a=ia1**2*rt\n", + "total_loss2=stray_loss2+cu_loss_f+cu_loss_a\n", + "output2=input_m-total_loss2\n", + "efficiency=output2*100/input_m\n", + "\n", + "#result\n", + "print \"motor output=\",output2,\"W\"\n", + "print \"armature current=\",ia2,\"A\"\n", + "print \"external resistance=\",r,\"ohm\"\n", + "print \"overall efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor output= 4460.66115702 W\n", + "armature current= 36.5330578512 A\n", + "external resistance= 2.42352222599 ohm\n", + "overall efficiency= 52.619059225 %\n" + ] + } + ], + "prompt_number": 175 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.25, Page Number:1044" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240.0#V\n", + "ia=15.0#A\n", + "n=800.0#rpm\n", + "ra=0.6#ohm\n", + "n2=400.0#rpm\n", + "\n", + "#calculation\n", + "eb1=v-ia*ra\n", + "r=((v-(n2*eb1/n))/ia)-ra\n", + "ia3=ia/2\n", + "eb3=v-ia3*(r+ra)\n", + "n3=eb3*n/eb1\n", + "\n", + "#result\n", + "print \"speed=\",n3,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 615.584415584 rpm\n" + ] + } + ], + "prompt_number": 187 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.26, Page Number:1045" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "r=Symbol('r')\n", + "v=400.0#V\n", + "inl=3.5#A\n", + "il=59.5#A\n", + "rf=267.0#ohm\n", + "ra=0.2#ohm\n", + "vd=2.0#V\n", + "ratio=0.02\n", + "speed_ratio=0.50\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=inl-ish\n", + "eb1=v-ia1*ra-vd\n", + "ia2=il-ish\n", + "eb2=v-ia2*ra-vd\n", + "n1_by_n2=eb1*(1-ratio)/eb2\n", + "per_change=(1-1/n1_by_n2)*100\n", + "r=solve(eb2*speed_ratio/(eb2-ia2*r)-1,r)\n", + "#result\n", + "print \"change in speed=\",per_change,\"%\"\n", + "print \"resistance to be added=\",r[0],\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "change in speed= 0.83357557339 %\n", + "resistance to be added= 3.33092370774547 ohm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.27, Page Number:1046" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaraion\n", + "v=200.0#V\n", + "i=50.0#A\n", + "n=1000.0#rpm\n", + "n2=800.0#rpm\n", + "ra=0.1#ohm\n", + "rf=100.0#ohm\n", + "\n", + "#calculations\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ia2=ia1*(n2/n)**2\n", + "eb1=v-ia1*ra\n", + "eb2=v-ia2*ra\n", + "rt=(v-(n2*eb1/n))/ia2\n", + "r=rt-ra\n", + "#result\n", + "print \"resustance that must be added=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resustance that must be added= 1.32708333333 ohm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.28, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "load=37.3#kW\n", + "efficiency=0.90\n", + "n=1000#rpm\n", + "ra=0.1#ohm\n", + "rf=115#ohm\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "tsh=9.55*load*1000/n\n", + "i=load*1000/(v*efficiency)\n", + "ish=v/rf\n", + "ia=i-ish\n", + "eb=v-ia*ra\n", + "ta=9.55*eb*ia/n\n", + "i_permissible=i*ratio\n", + "ia_per=i_permissible-ish\n", + "ra_total=v/ia_per\n", + "r_required=ra_total-ra\n", + "torque=ratio*ta\n", + "#result\n", + "print \"net torque=\",ta,\"N-m\"\n", + "print \"starting resistance=\",r_required,\"ohm\"\n", + "print \"torque developed at starting=\",torque,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "net torque= 365.403326173 N-m\n", + "starting resistance= 0.913513513514 ohm\n", + "torque developed at starting= 548.104989259 N-m\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.29, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "I=Symbol('I')\n", + "v=200.0#V\n", + "rf=40.0#ohm\n", + "ra=0.02#ohm\n", + "i=55.0#A\n", + "n=595.0#rpm\n", + "r=0.58#ohm\n", + "n2=630.0#rpm\n", + "ia_=15.0#A\n", + "rd=5.0#ohm\n", + "ia2=50.0#A\n", + "\n", + "#calculation\n", + "ish=v/rf\n", + "ia1=i-ish\n", + "ra1=r+ra\n", + "eb1=v-ra1*ia1\n", + "ia2=ia1\n", + "eb2=eb1*(n2/n)\n", + "r=(v-eb2)/ia1\n", + "eb2_=v-ia_*ra1\n", + "n2=eb2_*n/eb1\n", + "eb3=eb1\n", + "IR=v-eb3-ia2*ra\n", + "pd=v-IR\n", + "i_d=pd/rd\n", + "i=ia2+i_d\n", + "R=IR/i\n", + "I=solve(rd*(I-ia_)-v+R*I,I)\n", + "eb4=v-R*I[0]-ia_*ra\n", + "n4=n*(eb4/eb1)\n", + "\n", + "#result\n", + "print \"armature circuit resistance should be reduced by=\",ra1-r,\"ohm\"\n", + "print \"speed when Ia=\",n2,\"rpm\"\n", + "print \"value of series resistance=\",R,\"ohm\"\n", + "print \"speed when motor current falls to 15A=\",n4,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature circuit resistance should be reduced by= 0.2 ohm\n", + "speed when Ia= 668.5 rpm\n", + "value of series resistance= 0.344418052257 ohm\n", + "speed when motor current falls to 15A= 636.922222222222 rpm\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.31, Page Number:1051" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=15#A\n", + "n=600#rpm\n", + "\n", + "#calculation\n", + "ia2=math.sqrt(2*2**0.5*i**2)\n", + "n2=n*2*i/ia2\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"current=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 713.524269002 rpm\n", + "current= 25.2268924576 A\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.32, Page Number:1052" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=707#rpm\n", + "ia1=100#A\n", + "v=85#V\n", + "rf=0.03#ohm\n", + "ra=0.04#ohm\n", + "\n", + "#calculation\n", + "ra_total=ra+(2*rf)\n", + "eb1=v-ia1*ra_total\n", + "ia2=ia1*2**0.5\n", + "rf=rf/2\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=n*(eb2/eb1)*(2*ia1/ia2)\n", + "rt=(v-((n/n2)*eb2))/ia2\n", + "r=rt-ra-rf\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1029.46885374 rpm\n", + "additional resistance= 0.171040764009 ohm\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.33, Page Number:1052" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#varable declaration\n", + "v=240.0#V\n", + "ia=40.0#A\n", + "ra=0.3#ohm\n", + "n=1500.0#rpm\n", + "n2=1000.0#rpm\n", + "#calculation\n", + "R=v/ia-ra\n", + "eb1=v-ia*ra\n", + "r=(v-((n2/n)*eb1))/ia-ra\n", + "\n", + "#result\n", + "print \"resistance to be added at starting=\",R,\"ohm\"\n", + "print \"resistance to be added at 1000 rpm\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added at starting= 5.7 ohm\n", + "resistance to be added at 1000 rpm 1.9 ohm\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.34, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=600.0#rpm\n", + "v=250.0#V\n", + "ia1=20.0#A\n", + "ratio=2.0\n", + "\n", + "#calculations\n", + "ia2=ia1*2**(3.0/4.0)\n", + "n2=n*ratio*ia1/ia2\n", + "\n", + "#result\n", + "print \"current=\",ia2,\"A\"\n", + "print \"speed=\",n2,\"rpm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 33.6358566101 A\n", + "speed= 713.524269002 rpm\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.35, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "V=Symbol('V')\n", + "ra=1.0#ohm\n", + "v=220.0#V\n", + "n=350.0#rpm\n", + "ia=25.0#A\n", + "n2=500.0#rpm\n", + "\n", + "#calculation\n", + "ia2=ia*(n2/n)\n", + "eb1=v-ia*ra\n", + "V=solve((n2*eb1*ia2/(n*ia))+ia2-V,V)\n", + "\n", + "#result\n", + "print \" current=\",ia2,\"A\"\n", + "print \"voltage=\",V[0],\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " current= 35.7142857143 A\n", + "voltage= 433.673469387755 V\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.36, Page Number:1053" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000.0#rpm\n", + "ia=20.0#A\n", + "v=200.0#V\n", + "ra=0.5#ohm\n", + "rf=0.2#ohm\n", + "i=20.0#A\n", + "rd=0.2#ohm\n", + "i_f=10.0#A\n", + "ratio=0.70\n", + "\n", + "#calculation\n", + "eb1=v-(ra+rf)*ia\n", + "r_total=ra+rf/2\n", + "eb2=v-r_total*ia\n", + "n2=(eb2*n/(eb1*ratio))\n", + " \n", + "#result\n", + "print \"speed=\",round(n2),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1444.0 rpm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.37, Page Number:1054" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200.0#V\n", + "ia=40.0#A\n", + "n=700.0#rpm\n", + "ratio=0.50+1\n", + "ra=0.15#ohm\n", + "rf=0.1#ohm\n", + "\n", + "#calculations\n", + "ia2=(ratio*2*ia**2)**0.5\n", + "eb1=v-ia*(ra+rf)\n", + "eb2=v-ia2*(ra+rf)\n", + "n2=(eb2/eb1)*(ia*2/ia2)*n\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"\n", + "print \"speed=\",ia2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 777.147765122 rpm\n", + "speed= 69.2820323028 A\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.38, Page Number:1055" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250#V\n", + "ia=20#A\n", + "n=900#rpm\n", + "r=0.025#ohm\n", + "ra=0.1#ohm\n", + "rd=0.2#ohm\n", + "\n", + "#calculation\n", + "#when divertor is added\n", + "eb1=v-ia*(ra+4*r)\n", + "ia2=(ia**2*(ra+rd)/rd)**0.5\n", + "ra_=rd*ra/(ra+rd)\n", + "eb2=v-ia2*ra_\n", + "n2=(eb2/eb1)*(ia*3/(2*ia2))*n\n", + "\n", + "#rearranged field coils in two series and parallel group\n", + "ia2=(ia**2*2)**0.5\n", + "r=ra+r\n", + "eb2=v-ia2*r\n", + "n2_=(eb2/eb1)*(ia*2/(ia2))*n\n", + "\n", + "#result\n", + "print \"speed when divertor was added=\",n2,\"rpm\"\n", + "print \"speed when field coils are rearranged=\",n2_,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed when divertor was added= 1112.87640676 rpm\n", + "speed when field coils are rearranged= 1275.19533144 rpm\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.39, Page Number:1055" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "n=1000.0#rpm\n", + "i=12.0#A\n", + "rf=0.8#ohm\n", + "ra=1.0#ohm\n", + "il=20#A\n", + "ratio=0.15\n", + "\n", + "#calculation\n", + "eb1=v-i*(ra+rf)\n", + "eb2=v-il*(ra+rf/4)\n", + "n2=(eb2/eb1)*(1/(1-ratio))*n\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1162.92198261 rpm\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.40, Page Number:1056" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i2=Symbol('i2')\n", + "v=200.0#v\n", + "n=500.0#rpm\n", + "i=25.0#A\n", + "ra=0.2#ohm\n", + "rf=0.6#ohm\n", + "rd=10.0#ohm\n", + "\n", + "#calculation\n", + "r=ra+rf\n", + "eb1=v-i*r\n", + "i2=solve(((rd+rf)*i2**2)-(v*i2)-(i**2*rd),i2)\n", + "pd=v-i2[1]*rf\n", + "ia2=((rd+rf)*i2[1]-v)/rd\n", + "eb2=pd-ia2*ra\n", + "n2=(eb2/eb1)*(i/i2[1])*n\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 342.848235418389 rpm\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.41, Page Number:1056" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "ra=0.3#ohm\n", + "i=20#A\n", + "n=1200#rpm\n", + "r=3#ohm\n", + "i2=15#A\n", + "ratio=0.80\n", + "\n", + "#calculation\n", + "eb1=v-i*ra\n", + "eb2=v-(r+ra)*i2\n", + "n2=n*(eb2/eb1)/ratio\n", + "power_ratio=(n*i)/(n2*i2*ratio)\n", + "\n", + "#result\n", + "print \"new speed=\",n2,\"rpm\"\n", + "print \"ratio of power outputs=\",power_ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new speed= 1349.65437788 rpm\n", + "ratio of power outputs= 1.48186086214\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.42, Page Number:1057" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=50#A\n", + "v=460#V\n", + "ratio=1-0.25\n", + "\n", + "#calculation\n", + "I=(i**2*ratio**3)**0.5\n", + "eb2=I*ratio*v/i\n", + "R=(v-eb2)/I\n", + "pa=v*i/1000\n", + "power_n=pa*ratio**4\n", + "pa=eb2*I\n", + "\n", + "#result\n", + "print \"Resistance required=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance required= 7.26432660412 ohm\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.44, Page Number:1060" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=500#rpm\n", + "n2=550#rpm\n", + "i=50#A\n", + "v=500#V\n", + "r=0.5#ohm\n", + "\n", + "#calculation\n", + "eb1=v-i*r\n", + "kphi1=eb1/n\n", + "eb2=v-i*r\n", + "kphi2=eb2/n2\n", + "eb_=v-i*2*r\n", + "n=eb_/((eb1/n2)+(eb2/n))\n", + "#result\n", + "print \"speed=\",n,\"rpm\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 248.120300752 rpm\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.45, Page Number:1061" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=14.92#kW\n", + "v=250#V\n", + "n=1000#rpm\n", + "ratio1=5.0\n", + "ratio2=4.0\n", + "t=882#N-m\n", + "\n", + "#calculation\n", + "i=load*1000/v\n", + "k=v/(n*i/60)\n", + "I=(t/((ratio1+ratio2)*0.159*k))**0.5\n", + "nsh=v/((ratio1+ratio2)*k*I)\n", + "eb1=ratio1*k*I*nsh\n", + "eb2=ratio2*k*I*nsh\n", + "\n", + "#result\n", + "print \"current=\",I,\"A\"\n", + "print \"speed of shaft=\",round(nsh*60),\"rpm\"\n", + "print \"voltage across the motors=\",round(eb1),\"V,\",round(eb2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 49.5202984449 A\n", + "speed of shaft= 134.0 rpm\n", + "voltage across the motors= 139.0 V, 111.0 V\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.46, Page Number:1063" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220#V\n", + "t=700#N-m\n", + "n=1200#rpm\n", + "ra=0.008#ohm\n", + "rf=55#ohm\n", + "efficiency=0.90\n", + "t2=375#N-m\n", + "n2=1050#rpm\n", + "\n", + "#calculation\n", + "output=2*3.14*n*t/60\n", + "power_m=output/efficiency\n", + "im=power_m/v\n", + "ish=v/rf\n", + "ia1=im-ish\n", + "eb1=v-ia1*ra\n", + "ia2=ia1*t2/t\n", + "eb2=eb1*n2/n\n", + "r=eb2/ia2-ra\n", + "\n", + "#result\n", + "print \"dynamic break resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "dynamic break resistance= 0.795525014538 ohm\n" + ] + } + ], + "prompt_number": 118 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.47, Page Number:1064" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "load=18.65#kW\n", + "n=450.0#rpm\n", + "efficiency=0.746\n", + "ra=0.2#ohm\n", + "\n", + "#calculations\n", + "I=load*1000/(efficiency*v)\n", + "eb=v-I*ra\n", + "vt=v+eb\n", + "i_max=2*I\n", + "r=vt/i_max\n", + "R=r-ra\n", + "N=n/60\n", + "phizp_by_a=eb/N\n", + "k4=phizp_by_a*v/(2*3.14*r)\n", + "k3=phizp_by_a**2/(2*3.14*r)\n", + "tb=k4+k3*N\n", + "tb0=k4\n", + "#result\n", + "print \"breaking resistance=\",R,\"ohm\"\n", + "print \"maximum breaking torque=\",tb,\"N-m\"\n", + "print \"maximum breaking torque when N=0 =\",tb0,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "breaking resistance= 6.1 ohm\n", + "maximum breaking torque= 1028.3970276 N-m\n", + "maximum breaking torque when N=0 = 522.360394972 N-m\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.48, Page Number:1069" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=120#V\n", + "ra=0.5#ohm\n", + "l=20*0.001#H\n", + "ka=0.05#V/rpm motor constant\n", + "ia=20#A\n", + "\n", + "#calculations\n", + "vt=ia*ra\n", + "alpha=vt/v\n", + "#when alpha=1\n", + "eb=v-ia*ra\n", + "N=eb/ka\n", + "\n", + "#result\n", + "print \"range of speed control=\",0,\"to\",N,\"rpm\"\n", + "print \"range of duty cycle=\",(alpha),\"to\",1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " range of speed control= 0 to 2200.0 rpm\n", + "range of duty cycle= 0.0833333333333 to 1\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.49, Page Number:1080" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=7.46#kW\n", + "v=200#V\n", + "efficiency=0.85\n", + "ra=0.25#ohm\n", + "ratio=1.5\n", + "\n", + "#calculation\n", + "i=load*1000/(v*efficiency)\n", + "i1=ratio*i\n", + "r1=v/i1\n", + "r_start=r1-ra\n", + "eb1=v-i*r1\n", + "\n", + "#result\n", + "print \"starting resistance=\",r_start,\"ohm\"\n", + "print \"back emf=\",eb1,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting resistance= 2.78842716711 ohm\n", + "back emf= 66.6666666667 V\n" + ] + } + ], + "prompt_number": 125 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.50, Page Number:1080" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "ra=0.5#ohm\n", + "ia=40.0#A\n", + "n=7\n", + "\n", + "#calculations\n", + "r1=v/ia\n", + "k=(r1/ra)**(1.0/(n-1))\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 1.812 ohm\n", + "resistance of 2nd section= 1.215 ohm\n", + "resistance of 3rd section= 0.815 ohm\n", + "resistance of 4th section= 0.546 ohm\n", + "resistance of 5th section= 0.366 ohm\n", + "resistance of 6th section= 0.246 ohm\n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.51, Page Number:1081" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=6\n", + "load=3.73#kW\n", + "v=200#V\n", + "ratio=0.50\n", + "i1=0.6#A\n", + "efficiency=0.88\n", + "\n", + "#calculation\n", + "output=load/efficiency\n", + "total_loss=output-load\n", + "cu_loss=total_loss*ratio\n", + "i=output*1000/v\n", + "ia=i-i1\n", + "ra=cu_loss*1000/ia**2\n", + "i_per=i*2\n", + "ia_per=i_per-i1\n", + "r1=v/ia_per\n", + "k=(r1/ra)**(1.0/(n-1))\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-ra\n", + "\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 1.627 ohm\n", + "resistance of 2nd section= 1.074 ohm\n", + "resistance of 3rd section= 0.709 ohm\n", + "resistance of 4th section= 0.468 ohm\n", + "resistance of 5th section= 0.309 ohm\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.52, Page Number:1081" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=7\n", + "load=36.775#kW\n", + "v=400#V\n", + "ratio=0.05\n", + "rsh=200#ohm\n", + "efficiency=0.92\n", + "\n", + "#calculation\n", + "input_m=load*1000/efficiency\n", + "cu_loss=input_m*ratio\n", + "cu_loss_sh=v**2/rsh\n", + "cu_loss_a=cu_loss-cu_loss_sh\n", + "i=input_m/v\n", + "ish=v/rsh\n", + "ia=i-ish\n", + "ra=cu_loss_a/ia**2\n", + "k=(v/(ia*ra))**(1.0/(n))\n", + "i1=k*ia\n", + "r1=v/i1\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "r7=r5/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-r7\n", + "p7=r7-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n", + "print \"resistance of 7th section=\",round(p7,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 0.974 ohm\n", + "resistance of 2nd section= 0.592 ohm\n", + "resistance of 3rd section= 0.36 ohm\n", + "resistance of 4th section= 0.219 ohm\n", + "resistance of 5th section= 0.133 ohm\n", + "resistance of 6th section= 0.0 ohm\n", + "resistance of 7th section= 0.081 ohm\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.53, Page Number:1082" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "n=Symbol('n')\n", + "v=250.0#V\n", + "ra=0.125#ohm\n", + "i2=150.0#A\n", + "i1=200.0#A\n", + "\n", + "#calculation\n", + "r1=v/i1\n", + "n=solve((i1/i2)**(n-1)-(r1/ra),n)\n", + "k=i1/i2\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "r5=r4/k\n", + "r6=r5/k\n", + "r7=r6/k\n", + "r8=r7/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-r5\n", + "p5=r5-r6\n", + "p6=r6-r7\n", + "p7=r7-r8\n", + "p8=r8-ra\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n", + "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n", + "print \"resistance of 7th section=\",round(p7,3),\"ohm\"\n", + "print \"resistance of 8th section=\",round(p8,3),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 0.313 ohm\n", + "resistance of 2nd section= 0.234 ohm\n", + "resistance of 3rd section= 0.176 ohm\n", + "resistance of 4th section= 0.132 ohm\n", + "resistance of 5th section= 0.099 ohm\n", + "resistance of 6th section= 0.074 ohm\n", + "resistance of 7th section= 0.056 ohm\n", + "resistance of 8th section= 0.042 ohm\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.54, Page Number:1083" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "n=Symbol('n')\n", + "v=500#V\n", + "z=20\n", + "ra=1.31#ohm\n", + "t=218#N-m\n", + "ratio=1.5\n", + "slot=60\n", + "phi=23*0.001#Wb\n", + "\n", + "#calculation\n", + "ia=t/(0.159*phi*slot*z)\n", + "i1=ia*ratio\n", + "i2=ia\n", + "k=i1/i2\n", + "r1=v/i1\n", + "n=solve(k**(n-1)-(r1/ra),n)\n", + "r2=r1/k\n", + "r3=r2/k\n", + "r4=r3/k\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "p4=r4-ra\n", + "\n", + "#result\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n", + "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of 1st section= 2.237 ohm\n", + "resistance of 2nd section= 1.491 ohm\n", + "resistance of 3rd section= 0.994 ohm\n", + "resistance of 4th section= 0.678 ohm\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.55, Page Number:1084" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=37.3#kW\n", + "v=440#V\n", + "drop=0.02\n", + "efficiency=0.95\n", + "i_per=1.30\n", + "\n", + "#calculation\n", + "il=load*1000/(v*efficiency)\n", + "i1=i_per*il\n", + "vd=drop*v\n", + "rm=vd/il\n", + "r1=v/i1\n", + "r=(r1-rm)/6\n", + "\n", + "#result\n", + "print \"resistance of each rheostat=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance of each rheostat= 0.615721729566 ohm\n" + ] + } + ], + "prompt_number": 165 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 30.56, Page Number:1085" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=55.95#kW\n", + "v=650.0#V\n", + "r=0.51#ohm\n", + "i1=140.0#A\n", + "i2=100.0#A\n", + "per=0.20\n", + "\n", + "#calculation\n", + "ratio=i1/i2\n", + "r1=v/i1\n", + "r2=((per+1)/ratio-per)*r1\n", + "r3=(per+1)*r2/ratio-per*r1\n", + "r4=((per+1)*r3/ratio)-per*r1\n", + "\n", + "p1=r1-r2\n", + "p2=r2-r3\n", + "p3=r3-r4\n", + "\n", + "#result\n", + "print \"number of steps=\",3\n", + "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n", + "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n", + "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "number of steps= 3\n", + "resistance of 1st section= 1.592 ohm\n", + "resistance of 2nd section= 1.364 ohm\n", + "resistance of 3rd section= 1.17 ohm\n" + ] + } + ], + "prompt_number": 170 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter31_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter31_4.ipynb new file mode 100644 index 00000000..88c66f5b --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter31_4.ipynb @@ -0,0 +1,935 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:02fdabadd118404eca71c942f203b8c36bfc89b9baf1e3f2f8e7065ab9807edb" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 31: Testing of DC Machines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.1, Page Number:1092" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "l=38.1#kg\n", + "d=63.53*0.01#cm\n", + "v=12#rps\n", + "i=49#A\n", + "V=220#V\n", + "\n", + "#calculations\n", + "r=d/2\n", + "torque=l*r*9.81\n", + "power=torque*2*3.14*v\n", + "motor_input=i*V\n", + "efficiency=power*100/motor_input\n", + "\n", + "#result\n", + "print \"Output power=\",round(power),\"W\"\n", + "print \"Efficiency=\",round(efficiency),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output power= 8947.0 W\n", + "Efficiency= 83.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.2(a), Page Number:1093" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "spring_b1=10.0#kg\n", + "spring_b2=35.0#kg\n", + "d=40*0.01#m\n", + "v=950.0#rpm\n", + "V=200.0#V\n", + "i=30.0#A\n", + "\n", + "#calculations\n", + "F=(spring_b2-spring_b1)*9.81\n", + "N=v/60\n", + "R=d/2\n", + "tsh=F*R\n", + "omega=2*3.14*N\n", + "output=tsh*omega\n", + "motor_input=V*i\n", + "efficiency=output/motor_input\n", + "\n", + "#result\n", + "print \"output power=\",output,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output power= 4877.205 W\n", + "efficiency= 81.28675 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.2(b), Page Number:1093" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "t1=2.9#kg\n", + "t2=0.17#kg\n", + "r=7*0.01#m\n", + "i=2.0#A\n", + "V=230.0#V\n", + "n=1500.0#rpm\n", + "\n", + "#calculations\n", + "force=(t1-t2)*9.81\n", + "torque=force*r\n", + "output=torque*2*3.14*n/60\n", + "efficiency=output/(V*i)\n", + "\n", + "#result\n", + "print \"torque=\",torque,\"N-m\"\n", + "print \"output\",output,\"W\"\n", + "print \"efficiency\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 1.874691 N-m\n", + "output 294.326487 W\n", + "efficiency 63.984018913 %\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.3, Page Number:1095" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "V=220.0#V\n", + "i=2.5#A\n", + "ra=0.8#ohm\n", + "rsh=200.0#ohm\n", + "I=20.0#A\n", + "\n", + "#calculations\n", + "input_noload=V*i\n", + "ish=V/rsh\n", + "ia0=i-ish\n", + "culoss=ia0**2*ra\n", + "constant_loss=input_noload-culoss\n", + "ia=32-ish\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "input_=V*I\n", + "output=input_-total_loss\n", + "efficiency=(output/input_)*100\n", + "\n", + "#result\n", + "print \"Efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency= 70.1754545455 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.4, Page Number:1096" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "V=400.0#V\n", + "i=5.0#A\n", + "ra=0.5#ohm\n", + "r=200.0#ohm\n", + "I=50.0#A\n", + "\n", + "#calculations\n", + "input_nl=V*i\n", + "ish=V/r\n", + "ia=i-ish\n", + "cu_loss=ia**2*ra\n", + "constant_loss=input_nl-cu_loss\n", + "Ia=I-ish\n", + "cu_lossa=Ia**2*ra\n", + "total_loss=constant_loss+cu_lossa\n", + "input_nl1=V*I\n", + "output=input_nl1-total_loss\n", + "efficiency=output/input_nl\n", + "Eb1=V-(ia*ra)\n", + "Eb2=V-(Ia*ra)\n", + "change=math.fabs((Eb1-Eb2)/Eb1)\n", + "\n", + "#result\n", + "print \"output=\",output,\"W\"\n", + "print \"efficiency=\",efficiency*10,\"%\"\n", + "print \"percentage change in speed=\",change*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 16852.5 W\n", + "efficiency= 84.2625 %\n", + "percentage change in speed= 5.64617314931 %\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.8, Page Number:1098" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=200*1000.0#W\n", + "v=250.0#V\n", + "i1=36.0#A\n", + "I1=12.0#A\n", + "v1=250.0#V\n", + "pd=6.0#V\n", + "i2=400.0#A\n", + "\n", + "#calculations\n", + "#no load\n", + "ia=i1-I1\n", + "ra=pd/i2\n", + "cu_loss=ia**2*ra\n", + "input_nl=v*i1\n", + "constant_loss=input_nl-cu_loss\n", + "\n", + "#full load\n", + "output_i=p/v\n", + "ia=output_i+I1\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "efficiency=p/(p+total_loss)\n", + "#result\n", + "print \"efficiency at full load=\",efficiency*100,\"%\"\n", + "\n", + "#half load\n", + "output_i=p/(2*v)\n", + "ia=output_i+I1\n", + "cu_lossa=ia**2*ra\n", + "total_loss=cu_lossa+constant_loss\n", + "efficiency=p/((p/2+total_loss)*2)\n", + "\n", + "#result\n", + "print \"efficiency at half load=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency at full load= 91.3736344667 %\n", + "efficiency at half load= 89.6559292335 %\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.9, Page Number:1098" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "p=14.92*1000#W\n", + "e=0.88\n", + "n=700.0#rpn\n", + "rsh=100.0#ohm\n", + "i=78.0#A\n", + "\n", + "#calculations\n", + "input_=0.8*p/e\n", + "total_loss=input_-0.8*p\n", + "input_i=input_/v\n", + "ish=v/rsh\n", + "ia=input_i-ish\n", + "ra=total_loss/(2*(ia**2))\n", + "Ia=i-ish\n", + "total_loss2=Ia**2*ra+total_loss/2\n", + "input__=v*i\n", + "efficiency=(input__-total_loss2)*100/input__\n", + "Eb1=v-(ia*ra)\n", + "Eb2=v-(Ia*ra)\n", + "n2=(n*Eb2)/Eb1\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"speed=\",n2,\"r.p.m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 86.9450046554 %\n", + "speed= 678.443304738 r.p.m\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.10(a), Page Number:1101" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220.0#V\n", + "p=100*1000.0#W\n", + "i2=90.0#A\n", + "\n", + "#calculations\n", + "i1=p/v\n", + "efficiency=math.sqrt(i1/(i1+i2))*100\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 91.4 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.11, Page Number:1102" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=15#A\n", + "v=200#V\n", + "motor_i=100#A\n", + "shunt_i1=3#A\n", + "shunt_i2=2.5#A\n", + "ra=0.05#ohm\n", + "cu_loss=500#W\n", + "cu_lossa=361#W\n", + "ia=85#A\n", + "#calculations\n", + "mech_core_stray_loss=0.5*((v*i)-(motor_i**2*ra)-(ia**2*ra))\n", + "cu_motor=v*shunt_i1\n", + "generator_motor=v*shunt_i2\n", + "total_loss=mech_core_stray_loss+cu_motor+generator_motor\n", + "input_=v*i+cu_motor\n", + "output=v*ia*10**(-3)\n", + "loss=cu_loss*10**(-3)+1.07+0.36\n", + "efficiency=output*100/(output+loss)\n", + "\n", + "#result\n", + "print \"eficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eficiency= 89.8045430534 %\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.12, Page Number:1103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=110#V\n", + "i=48#A\n", + "i1=3#a\n", + "i2=3.5#A\n", + "motor_i=230#A\n", + "ra=0.035#ohm\n", + "\n", + "#calculations\n", + "#motor\n", + "cu_loss=motor_i**2*ra\n", + "brush_loss=motor_i*2\n", + "totalarm_culoss=cu_loss+brush_loss\n", + "shunt_cu=v*i1\n", + "total_cu_lossm=totalarm_culoss+shunt_cu\n", + "#generator\n", + "arm_i=233-i+i2\n", + "cu_loss=arm_i**2*ra\n", + "brush_loss=arm_i*2\n", + "totalarm_culoss=cu_loss+brush_loss\n", + "shunt_cu=v*i2\n", + "total_cu_lossg=totalarm_culoss+shunt_cu\n", + "#set\n", + "totalcu_loss=total_cu_lossm+total_cu_lossg\n", + "total_input=v*i\n", + "stray_loss=total_input-totalcu_loss\n", + "strayloss_per=stray_loss/2\n", + "#motor efficiency\n", + "input_=233*v\n", + "output=input_-(total_cu_lossm+strayloss_per)\n", + "e=output/input_*100\n", + "print \"motor efficiency=\",e,\"%\"\n", + "#generator efficiency\n", + "input_=110*185\n", + "output=input_-(total_cu_lossg+strayloss_per)\n", + "e=output/input_*100\n", + "100\n", + "print \"generator efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 88.4590884705 %\n", + "generator efficiency= 88.5893642506 %\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.13, Page Number:1103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable series\n", + "v=500.0#A\n", + "p=100*1000.0#w\n", + "auxiliary_i=30.0#A\n", + "output_i=200.0#A\n", + "i1=3.5#A\n", + "i2=1.8#A\n", + "ra=0.075#ohm\n", + "vdb=2.0#V\n", + "\n", + "#calculations\n", + "motor_arm=output_i+auxiliary_i\n", + "motorarm_culoss=(motor_arm**2*ra)+(motor_arm*2)\n", + "motorfield_culoss=v*i2\n", + "generatorarm_culoss=(output_i**2*ra)+(output_i*2)\n", + "generatoefield_culoss=v*i1\n", + "total_culoss=motorarm_culoss+motorfield_culoss+generatorarm_culoss+generatoefield_culoss\n", + "power=v*auxiliary_i\n", + "stray_loss=power-total_culoss\n", + "permachine=stray_loss/2\n", + "total_loss=generatorarm_culoss+generatoefield_culoss+permachine\n", + "output=v*output_i\n", + "e=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 93.1001175389 %\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.14, Page Number:1104" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "i=50.0#A\n", + "motor_i=400.0#A\n", + "i1=6.0#A\n", + "i2=5.0#A\n", + "ra=0.015#ohm\n", + "\n", + "#calculations\n", + "motora_culoss=motor_i**2*ra\n", + "generatora_culoss=(motor_i-i)**2*ra\n", + "power=v*i\n", + "stray_loss=power-(motora_culoss+generatora_culoss)\n", + "permachine=stray_loss/2\n", + "#motor\n", + "total_motor_loss=motora_culoss+(v*i2)+permachine\n", + "motor_input=(v*motor_i)+v*i2\n", + "motor_e=(motor_input-total_motor_loss)/motor_input\n", + "\n", + "#generator\n", + "total_gen_loss=generatora_culoss+(v*i1)+permachine\n", + "gen_output=v*(motor_i-i)\n", + "gen_e=(gen_output-total_gen_loss)/gen_output\n", + "\n", + "#result\n", + "print \"motor efficiency=\",motor_e*100,\"%\"\n", + "print \"generator efficiency\",gen_e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 92.3148148148 %\n", + "generator efficiency 91.4642857143 %\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.15, Page Number:1105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=250.0#V\n", + "i=50.0#A\n", + "ia=380.0#A\n", + "i1=5.0#A\n", + "i2=4.2#A\n", + "ra=0.2#ohm\n", + "\n", + "#calculations\n", + "motora_culoss=ia**2*ra\n", + "generatora_culoss=(ia-i)**2*ra\n", + "power=v*i\n", + "stray_loss=power-(motora_culoss+generatora_culoss)\n", + "permachine=stray_loss/2\n", + "#motor\n", + "total_motor_loss=motora_culoss+(v*i2)+permachine\n", + "motor_input=(v*ia)+v*i2\n", + "motor_e=(motor_input-total_motor_loss)/motor_input\n", + "\n", + "#generator\n", + "total_gen_loss=generatora_culoss+(v*i1)+permachine\n", + "gen_output=v*(ia-i)\n", + "gen_e=(gen_output-total_gen_loss)/gen_output\n", + "\n", + "#result\n", + "print \"motor efficiency=\",motor_e*100,\"%\"\n", + "print \"generator efficiency\",gen_e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor efficiency= 88.7038001041 %\n", + "generator efficiency 95.2121212121 %\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.16, Page Number:1107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=220.0#V\n", + "v2=190.0#V\n", + "t=30#sec\n", + "t2=20#sec\n", + "i=20.0#A\n", + "\n", + "#calculations\n", + "avg_v=(v+v2)/2\n", + "avg_i=i/2\n", + "power=avg_v*avg_i\n", + "W=power*(t2/(t-t2))\n", + "\n", + "#result\n", + "print \"Stray loss=\",W,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Stray loss= 4100.0 W\n" + ] + } + ], + "prompt_number": 85 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.17, Page Number:1107" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabledeclaration\n", + "n1=1525.0#rpm\n", + "n2=1475.0#ohm\n", + "dt=25.0#sec\n", + "p=1000.0#W\n", + "t2=20.0#sec\n", + "\n", + "#calculations\n", + "N=(n1+n2)/2\n", + "w=p*(t2/(dt-t2))\n", + "dN=n1-n2\n", + "I=(w*dt)/((2*3.14/60)**2*N*dN)\n", + "\n", + "#result\n", + "print \"Moment of Inertia=\",I,\"kg-m2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Moment of Inertia= 121.708791432 kg-m2\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.18, Page Number:1108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=240.0#V\n", + "v2=225.0#V\n", + "dt=25.0#sec\n", + "t2=6.0#ohm\n", + "iavg=10.0#A\n", + "i2=25.0#A\n", + "v3=250.0#V\n", + "ra=0.4#ohm\n", + "r=250.0#ohm\n", + "\n", + "#calculations\n", + "avg_v=(v+v2)/2\n", + "w_=avg_v*iavg\n", + "W=w_*(t2/(dt-t2))\n", + "ish=v3/r\n", + "ia=i2-ish\n", + "cu_loss=ia**2*ra\n", + "cu_shunt=v3*ia\n", + "total_loss=W+cu_loss+v3\n", + "e=((v*i2)-total_loss)/(v*i2)\n", + "\n", + "#result\n", + "print \"efficiency=\",e*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "734.210526316\n", + "efficiency= 79.7564912281 %\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.19, Page Number:1108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=1000#rpm\n", + "n1=1030#rpm\n", + "n2=970#rpm\n", + "t1=36#sec\n", + "t2=15#sec\n", + "t3=9#sec\n", + "i=10#A\n", + "v=219#V\n", + "\n", + "#calculations\n", + "W=v*i*(t2/(dt-t2))\n", + "dN=n1-n2\n", + "I=(W*t2)/((2*3.14/60)**2*n*dN)\n", + "Wm=W*t2/t1\n", + "iron_loss=W-Wm\n", + "\n", + "#result\n", + "print \"i)moment of inertia=\",I,\"kg.m2\"\n", + "print \"ii)iron loss=\",iron_loss,\"W\"\n", + "print \"iii)mechanical losses=\",Wm,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)moment of inertia= 74.9650087225 kg.m2\n", + "ii)iron loss= 1916.25 W\n", + "iii)mechanical losses= 1368.75 W\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 31.20, Page Number:1110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "iam=56.0#A\n", + "vam=590.0#V\n", + "vdm=40.0#V\n", + "iag=44.0#A\n", + "vag=400.0#V\n", + "vdg=40.0#V\n", + "r=0.3#ohm\n", + "\n", + "#calculations\n", + "input_total=(vdm+vam)*iam\n", + "output=vag*iag\n", + "total_loss=input_total-output\n", + "rse=vdg/iam\n", + "cu_loss=((r+2*rse)*iam**2)+(iag**2*r)\n", + "strayloss=total_loss-cu_loss\n", + "permachine=strayloss/2\n", + "#motor\n", + "inputm=vam*iam\n", + "culossm=(r+rse)*iam**2\n", + "totallossm=culossm+permachine\n", + "output=inputm-totallossm\n", + "em=output*100/inputm\n", + "#generator\n", + "inputg=vag*iag\n", + "culossg=(r)*iag**2\n", + "totalloss=culossg+permachine+(vdm*iam)\n", + "output=vag*iag\n", + "eg=output*100/(output+totalloss)\n", + "\n", + "print \n", + "#result\n", + "print \"motor efficiency=\",em,\"%\"\n", + "print \"generator efficiency=\",eg,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "motor efficiency= 72.6997578692 %\n", + "generator efficiency= 67.0220868241 %\n" + ] + } + ], + "prompt_number": 115 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter32_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter32_4.ipynb new file mode 100644 index 00000000..a29de087 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter32_4.ipynb @@ -0,0 +1,5311 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:69b299b5398cdb7b833f53d6a7d05a19c0a433537449ffb871db80e61817fe5c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 32: Transformer" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.1, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=250.0#V\n", + "v2=3000.0#V\n", + "f=50.0#Hz\n", + "phi=1.2#Wb-m2\n", + "e=8.0#V\n", + "\n", + "#calculations\n", + "n1=v1/e\n", + "n2=v2/e\n", + "a=v2/(4.44*f*n2*phi)\n", + "\n", + "#result\n", + "print \"primary turns=\",n1\n", + "print \"secondary turns=\",n2\n", + "print \"area of core=\",round(a,2),\"m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary turns= 31.25\n", + "secondary turns= 375.0\n", + "area of core= 0.03 m2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.2, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#KVA\n", + "v1=11000#V\n", + "v2=550#V\n", + "f=50#Hz\n", + "bm=1.3#Tesla\n", + "sf=0.9\n", + "per=10#%\n", + "a=20*20*sf/10000#m2\n", + "\n", + "#calculation\n", + "n1=v1/(4.44*f*bm*a)\n", + "n2=v2/(4.44*f*bm*a)\n", + "e_per_turn=v1/n1\n", + "\n", + "#result\n", + "print \"HV TURNS=\",round(n1)\n", + "print \"LV TURNS=\",round(n2)\n", + "print \"EMF per turns=\",round(e_per_turn,1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV TURNS= 1059.0\n", + "LV TURNS= 53.0\n", + "EMF per turns= 10.4 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.3, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=400.0\n", + "n2=1000.0\n", + "a=60.0/10000.0#cm2\n", + "f=50.0#Hz\n", + "e1=520.0#V\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "e2=k*e1\n", + "bm=e1/(4.44*f*n1*a)\n", + "\n", + "#result\n", + "print \"peak value of flux density=\",bm,\"WB/m2\"\n", + "print \"voltage induced in the secondary winding=\",e2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak value of flux density= 0.975975975976 WB/m2\n", + "voltage induced in the secondary winding= 1300.0 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.4, Page Number:1124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "n1=500.0\n", + "n2=50.0\n", + "v=3000.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "i1=load*1000/v\n", + "i2=i1/k\n", + "e1=v/n1\n", + "e2=e1*n2\n", + "phim=v/(4.44*f*n1)\n", + "\n", + "#result\n", + "print \"primary and secondary currents=\",i1,\"A\", i2,\"A\"\n", + "print \"secondary emf=\",e2,\"V\"\n", + "print \"flux=\",phim*1000,\"mWB\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary and secondary currents= 8.33333333333 A 83.3333333333 A\n", + "secondary emf= 300.0 V\n", + "flux= 27.027027027 mWB\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.5, Page Number:1123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "v1=11000#V\n", + "v2=550#V\n", + "load=300#kVA\n", + "phim=0.05#Wb\n", + "\n", + "#calculation\n", + "e=4.44*f*phim\n", + "e2=v2/1.732\n", + "t1=v1/e\n", + "t2=e2/e\n", + "output=load/3\n", + "HV=100*1000/v1\n", + "LV=100*1000/e2\n", + "\n", + "#result\n", + "print \"HV turns=\",t1\n", + "print \"LV turns=\",t2\n", + "print \"emf per turn=\",e2\n", + "print \"full load HV=\",HV\n", + "print \"full load LV=\",LV" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV turns= 990.990990991\n", + "LV turns= 28.6082849593\n", + "emf per turn= 317.551963048\n", + "full load HV= 9\n", + "full load LV= 314.909090909\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.6, Page Number:1124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=500.0\n", + "n2=1200.0\n", + "a=80.0/10000.0#m2\n", + "f=50.0#Hz\n", + "v=500.0#V\n", + "\n", + "#calculation\n", + "phim=n1/(4.44*f*n1)\n", + "bm=phim/a\n", + "v2=n2*v/n1\n", + "\n", + "#result\n", + "print \"peak flux-density=\",bm,\"Wb\"\n", + "print \"voltage induced in the secondary=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak flux-density= 0.563063063063 Wb\n", + "voltage induced in the secondary= 1200.0 V\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.7, Page Number:1125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#varible declaration\n", + "load=25.0#kVA\n", + "n1=250.0\n", + "n2=40.0\n", + "v=1500.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculation\n", + "v2=n2*v/n1\n", + "i1=load*1000/v\n", + "i2=load*1000/v2\n", + "phim=v/(4.44*f*n1)\n", + "\n", + "#result\n", + "print \"i)primary current an secondary current=\",i1,\"A\",i2,\"A\"\n", + "print \"ii)seconary emf=\",v2,\"V\"\n", + "print \"iii)maximum flux=\",phim*1000,\"mWb\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)primary current an secondary current= 16.6666666667 A 104.166666667 A\n", + "ii)seconary emf= 240.0 V\n", + "iii)maximum flux= 27.027027027 mWb\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.8, Page Number:1125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "a=20.0*20.0/10000#m2\n", + "phim=1.0#Wbm2\n", + "v1=3000.0#V\n", + "v2=220.0#V\n", + "\n", + "#calculation\n", + "t2=v2/(4.44*f*phim*a)\n", + "t1=t2*v1/v2\n", + "n1=t1/2\n", + "n2=t2/2\n", + "\n", + "#result\n", + "print \"HV turns=\",n1\n", + "print \"LV turns=\",n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV turns= 168.918918919\n", + "LV turns= 12.3873873874\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.9, Page Number:1126" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2200.0#V\n", + "v2=200.0#V\n", + "i1=0.6#A\n", + "p=400.0#W\n", + "v3=250.0#V\n", + "i0=0.5#A\n", + "pf=0.3\n", + "\n", + "#calculation\n", + "il=p/v1\n", + "imu=(i1**2-il**2)**0.5\n", + "iw=i0*pf\n", + "imu2=(i0**2-iw**2)**0.5\n", + "\n", + "#result\n", + "print \"magnetising currents=\",imu,\"A\"\n", + "print \"iron loss current=\",il,\"A\"\n", + "print \"magnetising components of no load primary current=\",imu2,\"A\"\n", + "print \"working components of no-load primary current=\",iw,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnetising currents= 0.571788552492 A\n", + "iron loss current= 0.181818181818 A\n", + "magnetising components of no load primary current= 0.476969600708 A\n", + "working components of no-load primary current= 0.15 A\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.10, Page Number:1127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=500.0\n", + "n2=40.0\n", + "l=150.0#cm\n", + "airgap=0.1#mm\n", + "e1=3000.0#V\n", + "phim=1.2#Wb/m2\n", + "f=50.0#Hz\n", + "d=7.8#grma/cm3\n", + "loss=2.0#watt/kg\n", + "\n", + "#calculation\n", + "a=e1/(4.44*f*n1*phim)\n", + "k=n2/n1\n", + "v2=k*e1\n", + "iron=l*5\n", + "air=phim*airgap/(1000*4*3.14*10**(-7))\n", + "bmax=iron+air\n", + "imu=bmax/(n1*2**0.5)\n", + "volume=l*a\n", + "im=volume*d*10\n", + "total_i=im*2\n", + "iw=total_i/(e1)\n", + "i0=(imu**2+iw**2)**0.5\n", + "pf=iw/i0\n", + "\n", + "#result\n", + "print \"a)cross sectional area=\",a*10000,\"cm2\"\n", + "print \"b)no load secondary voltage=\",v2,\"V\"\n", + "print \"c)no load current=\",imu,\"A\"\n", + "print \"d)power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cross sectional area= 225.225225225 cm2\n", + "b)no load secondary voltage= 240.0 V\n", + "c)no load current= 1.19577611723 A\n", + "d)power factor= 0.145353269536\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.11, Page Number:1127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "n1=1000\n", + "n2=200\n", + "i=3#A\n", + "pf=0.2\n", + "i2=280#A\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "phi1=math.acos(pf2)\n", + "i2_=i2/5\n", + "phi2=math.acos(pf)\n", + "sinphi=math.sin(phi2)\n", + "sinphi2=math.sin(math.acos(phi1))\n", + "i1=i*complex(pf,-sinphi)+i2_*complex(pf2,-sinphi2)\n", + "\n", + "#result\n", + "print \"primary current=\",abs(i1),\"/_\",math.degrees(phi1),\"degrees\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 64.4918252531 /_ 36.8698976458 degrees\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.12, Page Number:1130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=440.0#v\n", + "v2=110.0#V\n", + "i0=5.0#A\n", + "pf=0.2\n", + "i2=120.0#A\n", + "pf2=0.8\n", + "\n", + "#calculation\n", + "phi2=math.acos(pf2)\n", + "phi0=math.acos(pf)\n", + "k=v2/v1\n", + "i2_=k*i2\n", + "angle=phi2-phi0\n", + "i1=(i0**2+i2_**2+(2*i0*i2_*math.cos(angle)))**0.5\n", + "\n", + "#result\n", + "print \"current taken by the primary=\",i1,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current taken by the primary= 33.9022604184 A\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.13, Page Number:1130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n1=800.0\n", + "n2=200.0\n", + "pf=0.8\n", + "i1=25.0#A\n", + "pf2=0.707\n", + "i2=80.0#A\n", + "#calculations\n", + "k=n2/n1\n", + "i2_=i2*k\n", + "phi2=math.acos(pf)\n", + "phi1=math.acos(pf2)\n", + "i0pf2=i1*pf2-i2_*pf\n", + "i0sinphi=i1*pf2-i2_*math.sin(math.acos(pf))\n", + "phi0=math.atan(i0sinphi/i0pf2)\n", + "i0=i0sinphi/math.sin(phi0)\n", + "\n", + "#result\n", + "print \"no load current=\",i0,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no load current= 5.91703050525 A\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.14, Page Number:1131" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=10#A\n", + "pf=0.2\n", + "ratio=4\n", + "i2=200#A\n", + "pf=0.85\n", + "\n", + "#calculations\n", + "phi0=math.acos(pf)\n", + "phil=math.acos(pf)\n", + "i0=complex(2,-9.8)\n", + "i2_=complex(42.5,-26.35)\n", + "i1=i0+i2_\n", + "phi=math.acos(i1.real/57.333)\n", + "\n", + "#result\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"power factor=\",math.degrees(phi),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= (44.5-36.15j) A\n", + "power factor= 39.0890154959 degrees\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.15, Page Number:1136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable decaration\n", + "load=30.0#KVA\n", + "v1=2400.0#V\n", + "v2=120.0#V\n", + "f=50.0#Hz\n", + "r1=0.1#ohm\n", + "x1=0.22#ohm\n", + "r2=0.034#ohm\n", + "x2=0.012#ohm\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "r02=r2+r1*k**2\n", + "x02=x2+x1*k**2\n", + "z02=(r02**2+x02**2)**0.5\n", + "\n", + "#result\n", + "print \"high voltage side:\"\n", + "print \"equivalent winding resistance=\",r01,\"ohm\"\n", + "print \"reactance=\",x01,\"ohm\"\n", + "print \"impedence=\",z01,\"ohm\"\n", + "print \"low voltage side:\"\n", + "print \"equivalent winding resistance=\",r02,\"ohm\"\n", + "print \"reactance=\",x02,\"ohm\"\n", + "print \"impedence=\",z02,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "high voltage side:\n", + "equivalent winding resistance= 13.7 ohm\n", + "reactance= 5.02 ohm\n", + "impedence= 14.5907642021 ohm\n", + "low voltage side:\n", + "equivalent winding resistance= 0.03425 ohm\n", + "reactance= 0.01255 ohm\n", + "impedence= 0.0364769105051 ohm\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.16, Page Number:1136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50.0#KVA\n", + "v1=4400.0#V\n", + "v2=220.0#V\n", + "r1=3.45#ohm\n", + "r2=0.009#ohm\n", + "x1=5.2#ohm\n", + "x2=0.015#ohm\n", + "\n", + "#calculations\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "r02=r2+k**2*r1\n", + "x01=x1+x2/k**2\n", + "x02=x2+x1*k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "z02=(r02**2+x02**2)**0.5\n", + "cu_loss=i1**2*r01\n", + "\n", + "#result\n", + "print \"i)resistance=\"\n", + "print \"primary=\",r01,\"ohm\"\n", + "print \"secondary=\",r02,\"ohm\"\n", + "print \"iii)reactance=\"\n", + "print \"primary=\",x01,\"ohm\"\n", + "print \"secondary=\",x02,\"ohm\"\n", + "print \"iv)impedence=\"\n", + "print \"primary=\",z01,\"ohm\"\n", + "print \"secondary=\",z02,\"ohm\"\n", + "print \"v)copper loss=\",cu_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance=\n", + "primary= 7.05 ohm\n", + "secondary= 0.017625 ohm\n", + "reactance=\n", + "primary= 11.2 ohm\n", + "secondary= 0.028 ohm\n", + "impedence=\n", + "primary= 13.2341414531 ohm\n", + "secondary= 0.0330853536327 ohm\n", + "copper loss= 910.382231405 W\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.17, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratio=10.0\n", + "load=50.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "f=50.0#Hz\n", + "v=240.0#V\n", + "\n", + "#calculation\n", + "i2=load*1000/v\n", + "z2=v/(i2)\n", + "k=v2/v1\n", + "z2_=z2/k**2\n", + "i2_=k*i2\n", + "\n", + "#result\n", + "print \"a)load impedence=\",z2,\"ohm\"\n", + "print \"b)impedence referred to high tension side=\",z2_,\"ohm\"\n", + "print \"c)the value of current referred to the high tension side=\",i2_,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)load impedence= 1.152 ohm\n", + "b)impedence referred to high tension side= 115.2 ohm\n", + "c)the value of current referred to the high tension side= 20.8333333333 A\n" + ] + } + ], + "prompt_number": 70 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.18, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "v1=11000.0#V\n", + "v2=317.0#V\n", + "load2=0.62#kW\n", + "lvload=0.48#kW\n", + "\n", + "#calculations\n", + "k=v1/v2\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "r1=load2*1000/i**2\n", + "r2=lvload*1000/i2**2\n", + "r2_=r2*k**2\n", + "x01=4*v1/(i1*100)\n", + "x2_=x01*r2_/(r1+r2_)\n", + "x1=x01-x2_\n", + "x2=x2_*10/k**2\n", + "\n", + "#result\n", + "print \"i)r1=\",r1,\"ohm\"\n", + "print \"r2=\",r2,\"ohm\"\n", + "print \"r2_=\",r2_,\"ohm\"\n", + "print \"ii)reactance=\",x01,\"ohm\"\n", + "print \"x1=\",x1,\"ohm\"\n", + "print \"x2=\",x2,\"ohm\"\n", + "print \"x2_=\",x2_,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)r1= 7.502 ohm\n", + "r2= 0.004823472 ohm\n", + "r2_= 5.808 ohm\n", + "ii)reactance= 48.4 ohm\n", + "x1= 27.28 ohm\n", + "x2= 0.175398981818 ohm\n", + "x2_= 21.12 ohm\n" + ] + } + ], + "prompt_number": 76 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.19, Page Number:1137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declarations\n", + "k=19.5\n", + "r1=25.0#ohm\n", + "x1=100.0#ohm\n", + "r2=0.06#ohm\n", + "x2=0.25#ohm\n", + "i=1.25#A\n", + "angle=30#degrees\n", + "i2=200#A\n", + "v=50#V\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "v2=complex(500,0)\n", + "i2=i2*complex(0.8,-0.6)\n", + "z2=complex(r2,x2)\n", + "e2=v2+i2*z2\n", + "beta=math.atan(e2.imag/e2.real)\n", + "e1=e2*k\n", + "i2_=i2/k\n", + "angle=beta+math.radians(90)+math.radians(angle)\n", + "i0=i*complex(math.cos(angle),math.sin(angle))\n", + "i1=-i2_+i0\n", + "v2=-e1+i1*complex(r1,x1)\n", + "phi=math.atan(v2.imag/v2.real)-math.atan(i1.imag/i1.real)\n", + "pf=math.cos(phi)\n", + "power=abs(v2)*i*math.cos(math.radians(60))\n", + "r02=r2+r1/k**2\n", + "cu_loss=abs(i2)**2*r02\n", + "output=500*abs(i2)*pf2\n", + "loss=cu_loss+power\n", + "inpt=output+loss\n", + "efficiency=output*100/inpt\n", + "\n", + "#result\n", + "print \"primary applied voltage=\",v2,\"V\"\n", + "print \"primary pf=\",pf\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary applied voltage= (-11464.2126901-1349.15424294j) V\n", + "primary pf= 0.698572087114\n", + "efficiency= 86.7261056254 %\n" + ] + } + ], + "prompt_number": 94 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.20, Page Number:1138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable description\n", + "load=100#KVA\n", + "v1=1100#V\n", + "v2=220#V\n", + "f=50#Hz\n", + "zh=complex(0.1,0.4)\n", + "zl=complex(0.006,0.015)\n", + "\n", + "#calculations\n", + "k=v1/v2\n", + "#HV \n", + "r1=zh.real+zl.real*k**2\n", + "x1=zh.imag+zl.imag*k**2\n", + "z1=(r1**2+x1**2)**0.5\n", + "#LV\n", + "r2=r1/k**2\n", + "x2=x1/k**2\n", + "z2=z1/k**2\n", + "\n", + "#result\n", + "print \"HV:\"\n", + "print \"resistance=\",r1,\"ohm\"\n", + "print \"reactance=\",x1,\"ohm\"\n", + "print \"impedence=\",z1,\"ohm\"\n", + "print \"LV:\"\n", + "print \"resistance=\",r2,\"ohm\"\n", + "print \"reactance=\",x2,\"ohm\"\n", + "print \"impedence=\",z2,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "HV:\n", + "resistance= 0.25 ohm\n", + "reactance= 0.775 ohm\n", + "impedence= 0.814324873745 ohm\n", + "LV:\n", + "resistance= 0.01 ohm\n", + "reactance= 0.031 ohm\n", + "impedence= 0.0325729949498 ohm\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.21, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=230#V\n", + "v2=460#V\n", + "r1=0.2#ohm\n", + "x1=0.5#ohm\n", + "r2=0.75#ohm\n", + "x2=1.8#ohm\n", + "i=10#A\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "k=v2/v1\n", + "r02=r2+k**2*r1\n", + "x02=x2+k**2*x1\n", + "vd=i*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "vt2=v2-vd\n", + "\n", + "#result\n", + "print \"secondary terminal voltage=\",vt2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary terminal voltage= 424.8 V\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.22, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=1.0#%\n", + "x=5.0#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "mu=r*pf+x*math.sin(math.acos(pf))\n", + "mu2=r**2+x*0\n", + "mu3=r*pf-x*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"regulation at pf=0.8 lag:\",mu,\"%\"\n", + "print \"regulation at pf=1:\",mu2,\"%\"\n", + "print \"regulation at pf=0.8 lead:\",mu3,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation at pf=0.8 lag: 3.8 %\n", + "regulation at pf=1: 1.0 %\n", + "regulation at pf=0.8 lead: -2.2 %\n" + ] + } + ], + "prompt_number": 98 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.23, Page Number:1141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "x=5#%\n", + "r=2.5#%\n", + "\n", + "#calculation\n", + "phi=math.atan(x/r)\n", + "cosphi=math.cos(phi)\n", + "sinphi=math.sin(phi)\n", + "regn=r*cosphi+x*sinphi\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"pf=\",cosphi" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 5.59016994375 %\n", + "pf= 0.4472135955\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.24, Page Number:1142" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=2.5#%\n", + "x=5#%\n", + "load1=500#KVA\n", + "load2=400#KVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "kw=load2*pf\n", + "kvar=load2*math.sin(math.acos(pf))\n", + "drop=(r*kw/load1)+(x*kvar/load1)\n", + "\n", + "#result\n", + "print \"percentage voltage drop=\",drop,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage voltage drop= 4.0 %\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.26, Page Number:1145" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=600#V\n", + "v2=1080#V\n", + "v=720#V\n", + "load=8#W\n", + "load2=10#kVA\n", + "\n", + "#calculation\n", + "ir2=load*1000/v2\n", + "il2=load*1000/v\n", + "ir2_=ir2*v2/v1\n", + "il2_=il2*v/v1\n", + "ir2=math.sqrt(ir2_**2+il2_**2)\n", + "s=complex(load,load2)\n", + "s=abs(s)\n", + "pf=load/s\n", + "i=s*load2*100/v1\n", + "\n", + "#result\n", + "print \"primary current=\",i,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 21.3437474581 A\n", + "power factor= 0.624695047554\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.27, Page Number:1046" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220#V\n", + "v1=110#V\n", + "i=0.5#A\n", + "p=30#W\n", + "r=0.6#ohm\n", + "\n", + "#calculation\n", + "ratio=v/v1\n", + "pf=p/(i*v)\n", + "sinphi=math.sqrt(1-pf**2)\n", + "ip=i*sinphi\n", + "iw=i*pf\n", + "cu_loss=i**2*r\n", + "iron_loss=p-cu_loss\n", + "\n", + "#result\n", + "print \"i)turns ratio=\",ratio\n", + "print \"ii)magnetising component of no-load current=\",ip,\"A\"\n", + "print \"iii)working component of no-load current=\",iw,\"A\"\n", + "print \"iv)the iron loss=\",iron_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)turns ratio= 2\n", + "ii)magnetising component of no-load current= 0.481045692921 A\n", + "iii)working component of no-load current= 0.136363636364 A\n", + "iv)the iron loss= 29.85 W\n" + ] + } + ], + "prompt_number": 104 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.28, Page Number:1047" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=200.0#V\n", + "v2=1000.0#V\n", + "f=50.0#Hz\n", + "vo=2000.0#V\n", + "io=1.2#A\n", + "po=90.0#W\n", + "vs=50.0#V\n", + "i_s=5.0#A\n", + "ps=110.0#W\n", + "p=3.0#kW\n", + "pf=0.8\n", + "v=200.0#V\n", + "\n", + "#calculation\n", + "r0=v**2/po\n", + "ia0=v/r0\n", + "ip=math.sqrt(io**2-ia0**2)\n", + "xm=v/ip\n", + "z=vs/i_s\n", + "r=ps/25\n", + "x=math.sqrt(z**2-r**2)\n", + "r1=r*(v1/v2)**2\n", + "x1=x*(v1/v2)**2\n", + "i_lv1=load*1000/v\n", + "i_lv=(p*1000/pf)/v\n", + "sinphi=math.sin(math.acos(pf))\n", + "reg=i_lv*(r1*pf+x1*sinphi)/v\n", + "vt=v2-reg*1000/v\n", + "\n", + "#result\n", + "print \"LV crrent at rated load=\",i_lv1,\"A\"\n", + "print \"LV current at 3kW at 0.8 lagging pf\",i_lv,\"A\"\n", + "print \"output secondary voltage=\",vt,\"V\"\n", + "print \"percentage regulation=\",reg*100,\"%\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "LV crrent at rated load= 25.0 A\n", + "LV current at 3kW at 0.8 lagging pf 18.75 A\n", + "output secondary voltage= 999.832975251 V\n", + "percentage regulation= 3.34049498886 %\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.29, Page Number:1048" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "loss1=52.0#W\n", + "f1=40.0#Hz\n", + "loss2=90.0#W\n", + "f2=60.0#Hz\n", + "f=50.0#Hz\n", + "\n", + "#calculation\n", + "ans=solve([(loss1/f1)-(A+f1*B),(loss2/f2)-(A+f2*B)],[A,B])\n", + "wh=ans[A]*f\n", + "we=ans[B]*f**2\n", + "\n", + "#result\n", + "print \"hysteresis=\",round(wh),\"W\"\n", + "print \"eddy current=\",round(we),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hysteresis= 45.0 W\n", + "eddy current= 25.0 W\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.30, Page Number:1048" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "m=10#kg\n", + "f=50.0#Hz\n", + "f1=25.0\n", + "f2=40.0\n", + "f3=50.0\n", + "f4=60.0\n", + "f5=80.0\n", + "l1=18.5/f1\n", + "l2=36.0/f2\n", + "l3=50.0/f3\n", + "l4=66.0/f4\n", + "l5=104.0/f5\n", + "#calculation\n", + "ans=solve([l1/f1-(A+f1*B),l2/f2-(A+f2*B)],[A,B])\n", + "eddy_loss_per_kg=ans[B]*f**2/m\n", + "\n", + "#result\n", + "print\"eddy current loss per kg at 50 Hz=\",eddy_loss_per_kg,\"W\"\n", + "\n", + "#plot\n", + "F=[f1,f2,f3,f4,f5]\n", + "L=[l1,l2,l3,l4,l5]\n", + "a=plot(F,L)\n", + "xlabel(\"f -->\") \n", + "ylabel(\"Wi/f\") \n", + "plt.xlim((0,100))\n", + "plt.ylim((0.74,2))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Using matplotlib backend: TkAgg\n", + "Populating the interactive namespace from numpy and matplotlib\n", + "eddy current loss per kg at 50 Hz=" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " -0.118333333333333 W\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.31, Page Number:1148" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "A=Symbol('A')\n", + "B=Symbol('B')\n", + "v1=440#V\n", + "f1=50#Hz\n", + "p1=2500#W\n", + "v2=220#V\n", + "f2=25#Hz\n", + "p2=850#z\n", + "\n", + "#calculation\n", + "ans=solve([(p1/f1)-(A+f1*B),(p2/f2)-(A+f2*B)],[A,B])\n", + "wh=ans[A]*f\n", + "we=ans[B]*f**2\n", + "\n", + "#result\n", + "print \"hysteresis=\",round(wh),\"W\"\n", + "print \"eddy current=\",round(we),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hysteresis= 900.0 W\n", + "eddy current= 1600.0 W\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.32, Page Number:1149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=1000.0#V\n", + "f1=50.0#Hz\n", + "core=1000.0#W\n", + "wh=650.0#W\n", + "we=350.0#W\n", + "v2=2000.0#V\n", + "f2=100.0#Hz\n", + "\n", + "#calculation\n", + "a=wh/f1\n", + "b=we/f1**2\n", + "wh=a*f2\n", + "we=b*f2**2\n", + "new_core=wh+we\n", + "\n", + "#result\n", + "print \"new core loss=\",new_core,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " new core loss= 2700.0 W\n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.33, Page Number:1149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "phi=1.4#Wb/m2\n", + "we=1000.0#W\n", + "wh=3000.0#W\n", + "per=10.0#%\n", + "\n", + "#calculation\n", + "wh1=wh*1.1**1.6\n", + "we1=we*1.1**2\n", + "wh2=wh*0.9**(-0.6)\n", + "wh3=wh*1.1**1.6*1.1**(-0.6)\n", + "#result\n", + "print \"a)wh and we when applied voltage is increased by 10%=\",wh1,\"W\",\"and\",we1,\"W\"\n", + "print \"b)wh when frequency is reduced by 10%=\",wh2,\"W\"\n", + "print \"c)wh and we when both voltage and frequency are increased y 10%=\",wh3,\"W\",\"and\",we1,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)wh and we when applied voltage is increased by 10%= 3494.21441464 W and 1210.0 W\n", + "b)wh when frequency is reduced by 10%= 3195.77171838 W\n", + "c)wh and we when both voltage and frequency are increased y 10%= 3300.0 W and 1210.0 W\n" + ] + } + ], + "prompt_number": 119 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.34, Page Number:1150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2200.0#V\n", + "f=40.0#Hz\n", + "loss=800.0#W\n", + "wh=600.0#W\n", + "we=loss-wh\n", + "v2=3300.0#V\n", + "f2=60.0#Hz\n", + "\n", + "#calculations\n", + "a=wh/f\n", + "b=we/f**2\n", + "core_loss=a*f2+b*f2**2\n", + "\n", + "#result\n", + "print \"core loss at 60 Hz=\",core_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "core loss at 60 Hz= 1350.0 W\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.35, Page Number:1151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=30.0#KvA\n", + "v1=6000.0#V\n", + "v2=230.0#V\n", + "r1=10.0#ohm\n", + "r2=0.016#ohm\n", + "x01=34.0#ohm\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=r1+r2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=load*1000/v1\n", + "vsc=i1*z01\n", + "pf=r01/z01\n", + "\n", + "#result\n", + "print \"primary voltage=\",vsc,\"V\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary voltage= 199.519931911 V\n", + "pf= 0.523468222173\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.36, Page Number:1152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "f=50.0#Hz\n", + "vo=200.0#V\n", + "io=0.7#A\n", + "po=70.0#W\n", + "vs=15.0#v\n", + "i_s=10.0#A\n", + "ps=85.0#W\n", + "load=5.0#kW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cosphi0=po/(vo*io)\n", + "sinphi0=math.sin(math.acos(cosphi0))\n", + "iw=io*cosphi0\n", + "imu=io*sinphi0\n", + "r0=v1/iw\n", + "x0=v1/imu\n", + "z02=vs/i_s\n", + "k=v2/v1\n", + "z01=z02/k**2\n", + "r02=ps/i_s**2\n", + "r01=r02/k**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "output=load/pf\n", + "i2=output*1000/v2\n", + "x02=(z02**2-r02**2)**0.5\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "print z02\n", + "#result\n", + "print \"secondary voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.5\n", + "secondary voltage= 377.788243349 V\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.37, Page Number:1152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "k=1.0/6\n", + "r1=0.9#ohm\n", + "x1=5.0#ohm\n", + "r2=0.03#ohm\n", + "x2=0.13#ohm\n", + "vsc=330.0#V\n", + "f=50.0#Hz\n", + "\n", + "#calculations\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=vsc/z01\n", + "i2=i1/k\n", + "cosphisc=i1**2*r01/(vsc*i1)\n", + "\n", + "#result\n", + "print \"current in low voltage winding=\",i2,\"A\"\n", + "print \"pf=\",round(cosphisc,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current in low voltage winding= 200.396236149 A\n", + "pf= 0.2\n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.38, Page Number:1153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "f=50.0#Hz\n", + "r1=0.2#ohm\n", + "x1=0.4#ohm\n", + "r2=0.5#ohm\n", + "x2=0.1#ohm\n", + "r0=1500.0#ohm\n", + "x0=750.0#ohm\n", + "\n", + "#calculation\n", + "k=v2/v1\n", + "imu=v1/x0\n", + "iw=v1/r0\n", + "i0=(iw**2+imu**2)**0.5\n", + "pi=v1*iw\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=(r01**2+x01**2)**0.5\n", + "i1=load*1000/v1\n", + "vsc=i1*z01\n", + "power=i1**2*r01\n", + "\n", + "#result\n", + "print \"reading of instruments=\",vsc,\"V,\",i1,\"A,\",power,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "reading of instruments= 46.8187996429 V, 20.0 A, 880.0 W\n" + ] + } + ], + "prompt_number": 140 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.39, Page Number:1153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "y=Symbol('y')\n", + "load=1000#kVA\n", + "v1=110#V\n", + "v2=220#V\n", + "f=50#Hz\n", + "per1=98.5#%\n", + "pf=0.8\n", + "per2=98.8#%\n", + "\n", + "#calculaions\n", + "output=load*1\n", + "inpt=output*100/per2\n", + "loss=inpt-output\n", + "inpt_half=(load/2)*pf*100/per1\n", + "loss2=inpt_half-400\n", + "ans=solve([x+y-loss,(x/4)+y-loss2],[x,y])\n", + "kva=load*(ans[y]/ans[x])*0.5\n", + "output=kva*1\n", + "cu_loss=ans[y]\n", + "total_loss=2*cu_loss\n", + "efficiency=output/(output+total_loss)\n", + "#result\n", + "print \"full load copper loss=\",cu_loss,\"kW\"\n", + "print \"maximum efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load copper loss= 4.07324441521606 kW\n", + "maximum efficiency= 0.968720013059872 %\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.40, Page Number:1154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=200.0#v\n", + "v2=400.0#V\n", + "r01=0.15#ohm\n", + "x01=0.37#ohm\n", + "r0=600.0#ohm\n", + "x0=300.0#ohm\n", + "i2=10.0#A\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "imu=v1/x0\n", + "iw=v1/r0\n", + "i0=(imu**2+iw**2)**0.5\n", + "tantheta=iw/imu\n", + "theta=math.atan(tantheta)\n", + "theta0=math.radians(90)-theta\n", + "angle=theta0-math.acos(pf)\n", + "k=v2/v1\n", + "i2_=i2*k\n", + "i1=(i0**2+i2_**2+2*i0*i2_*math.cos(angle))**0.5\n", + "r02=k**2*r01\n", + "x02=x01*k**2\n", + "vd=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-vd\n", + "\n", + "#result\n", + "print \"i)primary current=\",i1,\"A\"\n", + "print \"ii)secondary terminal voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)primary current= 20.6693546639 A\n", + "ii)secondary terminal voltage= 386.32 V\n" + ] + } + ], + "prompt_number": 149 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.43, Page Number:1158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "n1=400.0\n", + "n2=80.0\n", + "r1=0.3#ohm\n", + "r2=0.01#ohm\n", + "x1=1.1#ohm\n", + "x2=0.035#ohm\n", + "v1=2200.0#V\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=n2/n1\n", + "r01=r1+r2/k**2\n", + "x01=x1+x2/k**2\n", + "z01=complex(r01,x01)\n", + "z02=k**2*z01\n", + "v2=k*v1\n", + "i2=load*1000/v2\n", + "vd=i2*(z02.real*pf-z02.imag*math.sin(math.acos(pf)))\n", + "regn=vd*100/v2\n", + "v2=v2-vd\n", + "\n", + "#result\n", + "print \"i)equivalent impedence=\",z02,\"ohm\"\n", + "print \"ii)voltage regulation=\",regn,\"%\"\n", + "print \"secondary terminal voltage=\",v2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)equivalent impedence= (0.022+0.079j) ohm\n", + "ii)voltage regulation= -1.53925619835 %\n", + "secondary terminal voltage= 446.772727273 V\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.44, Page Number:1158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "va=450.0#V\n", + "vb=120.0#V\n", + "v1=120.0#V\n", + "i1=4.2#A\n", + "w1=80.0#W\n", + "v2=9.65#V\n", + "i2=22.2#A\n", + "w2=120.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=vb/va\n", + "i0=i1*k\n", + "cosphi0=w1/(va*i0)\n", + "phi0=math.acos(cosphi0)\n", + "sinphi0=math.sin(phi0)\n", + "iw=i0*cosphi0\n", + "imu=i0*sinphi0\n", + "r0=va/iw\n", + "x0=va/imu\n", + "z01=v2/i2\n", + "r01=vb/i2**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/va\n", + "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "regn=drop*100/va\n", + "loss=w1+w2\n", + "output=load*1000*pf\n", + "efficiency=output/(output+loss)\n", + "iron_loss=w1\n", + "cu_loss=(0.5**2)*w2\n", + "total_loss=iron_loss+cu_loss\n", + "output=load*1000*pf/2\n", + "efficiency2=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"i)equivalent circuit constants=\"\n", + "print \"z01=\",z01,\"ohm\"\n", + "print \"x01=\",x01,\"ohm\"\n", + "print \"r01=\",r01,\"ohm\"\n", + "print \"ii)efficiency and voltage regulation at pf=0.8=\",efficiency*100,\"%\",regn,\"%\"\n", + "print \"iii)efficiency at half load and pf=0.8=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)equivalent circuit constants=\n", + "z01= 0.434684684685 ohm\n", + "x01= 0.360090249002 ohm\n", + "r01= 0.243486729973 ohm\n", + "ii)efficiency and voltage regulation at pf=0.8= 97.5609756098 % 2.02885695496 %\n", + "iii)efficiency at half load and pf=0.8= 97.3236009732 %\n" + ] + } + ], + "prompt_number": 162 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.45, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#kVA\n", + "va=2200.0#V\n", + "vb=220.0#V\n", + "f=50.0#Hz\n", + "v1=220.0#V\n", + "i1=4.2#A\n", + "w1=148.0#W\n", + "v2=86.0#V\n", + "i2=10.5#A\n", + "w2=360.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "z01=v2/i2\n", + "r01=w2/i2**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/va\n", + "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "regn=drop*100/va\n", + "pf=r01/z01\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"pf=\",round(pf,1),\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 2.94177963326 %\n", + "pf= 0.4 lag\n" + ] + } + ], + "prompt_number": 172 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.46, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=2000.0#V\n", + "v2=400.0#V\n", + "v=60.0#V\n", + "i=4.0#A\n", + "w=100.0#W\n", + "pf=0.8\n", + "v_=400.0#V\n", + "\n", + "#calculations\n", + "z01=v/i\n", + "r01=w/i**2\n", + "x01=(z01**2-r01**2)**0.5\n", + "i1=load*1000/v1\n", + "vd=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n", + "\n", + "#result\n", + "print \"voltage applied to hv side=\",v1+vd,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage applied to hv side= 2065.90767043 V\n" + ] + } + ], + "prompt_number": 182 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.47, Page Number:1159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=250.0#V\n", + "v2=500.0#V\n", + "vs=20.0#V\n", + "i_s=12.0#A\n", + "ws=100.0#W\n", + "vo=250.0#V\n", + "io=1.0#A\n", + "wo=80.0#W\n", + "i2=10#A\n", + "v2=500#V\n", + "pg=0.8\n", + "\n", + "#calculation\n", + "cosphi0=wo/(vo*io)\n", + "iw=io*cosphi0\n", + "imu=(1-iw**2)**0.5\n", + "r0=v1/iw\n", + "x0=v1/imu\n", + "r02=ws/i_s**2\n", + "z02=vs/i_s\n", + "x02=(z02**2-r02**2)**0.5\n", + "k=v2/v1\n", + "r01=r02/k**2\n", + "x01=x02/k**2\n", + "z01=z02/k**2\n", + "cu_loss=i2**2*r02\n", + "iron_loss=wo\n", + "total_loss=iron_loss+cu_loss\n", + "efficiency=i2*v2*pf/(i2*v2*pf+total_loss)\n", + "v1_=((vo*pf+x01)**2+(vo*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n", + "\n", + "#result\n", + "print \"applied voltage=\",v1_,\"V\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "applied voltage= 251.442641983 V\n", + "efficiency= 96.3984469139 %\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.48, Page Number:1160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=230.0#V\n", + "v2=230.0#V\n", + "load=3.0#kVA\n", + "vo=230.0#V\n", + "io=2.0#A\n", + "wo=100.0#W\n", + "vs=15.0#V\n", + "i_s=13.0#A\n", + "ws=120.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v1\n", + "cu_loss=ws\n", + "core_loss=wo\n", + "output=load*1000*pf\n", + "efficiency=output*100/(output+cu_loss+core_loss)\n", + "z=vs/i_s\n", + "r=ws/(vs**2)\n", + "x=(z**2-r**2)**0.5\n", + "regn=i*(r*pf+x*math.sin(math.acos(pf)))*100/v1\n", + "\n", + "#result\n", + "print \"regulation=\",regn,\"%\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 5.90121149256 %\n", + "efficiency= 91.6030534351 %\n" + ] + } + ], + "prompt_number": 194 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.49, Page Number:1161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "efficiency=0.94\n", + "per=0.90\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "output=per*load*1000\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "core_loss=loss/2\n", + "pc=core_loss/per**2\n", + "output=load*1000*pf\n", + "cu_loss=pc\n", + "efficiency=output/(output+cu_loss+core_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 92.5728354534 %\n" + ] + } + ], + "prompt_number": 196 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.50, Page Number:1161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "f=50.0#Hz\n", + "v1=2300.0#V\n", + "v2=230.0#V\n", + "r1=3.96#ohm\n", + "r2=0.0396#ohm\n", + "x1=15.8#ohm\n", + "x2=0.158#ohm\n", + "pf=0.8\n", + "v=230.0#V\n", + "\n", + "#calculations\n", + "i=load*1000/v\n", + "r=r2+r1*(v2/v1)**2\n", + "x=x1*(v2/v1)**2+x2\n", + "v1_=v2+i*(r*pf+x*math.sin(math.acos(pf)))\n", + "v1=v1_*(v1/v2)\n", + "phi=math.atan(r/x)\n", + "pf=math.cos(phi)\n", + "#result\n", + "print \"a)HV side voltage necessary=\",v1,\"V\"\n", + "print \"b)pf=\",round(pf,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)HV side voltage necessary= 2409.9826087 V\n", + "b)pf= 0.97\n" + ] + } + ], + "prompt_number": 199 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.51, Page Number:1162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#v\n", + "r1=3.4#ohm\n", + "x1=7.2#ohm\n", + "r2=0.028#ohm\n", + "x2=0.060#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v2\n", + "r=r1*(v2/v1)**2+r2\n", + "x=x1*(v2/v1)**2+x2\n", + "ad=i*r*pf\n", + "dc=i*x*math.sin(math.acos(pf))\n", + "oc=v2+ad+dc\n", + "bd=i*r*math.sin(math.acos(pf))\n", + "b_f=x*pf\n", + "cf=b_f-bd\n", + "v1_=(oc**2+cf**2)**0.5\n", + "v1=v1_*(v1/v2)\n", + "\n", + "#result\n", + "print \"terminal voltage on hv side=\",v1,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage on hv side= 2229.28500444 V\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.52, Page Number:1163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "i1=0.7#A\n", + "w1=65.0#W\n", + "v=15.0#V\n", + "i2=10.0#A\n", + "w2=75.0#W\n", + "pf=0.80\n", + "#calculation\n", + "il=load*1000/v1\n", + "ih=load*1000/v2\n", + "cu_loss=w2\n", + "constant_loss=w1\n", + "z=v/i2\n", + "r=w2/i2**2\n", + "x=(z**2-r**2)**0.5\n", + "efficiency=load*100000/(load*1000+cu_loss+constant_loss)\n", + "regn=i2*(r*pf+x*math.sin(math.acos(pf)))\n", + "\n", + "#result\n", + "print \"full load efficiency=\",efficiency,\"%\"\n", + "print \"full load regulation=\",regn,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency= 96.6183574879 %\n", + "full load regulation= 13.7942286341 V\n" + ] + } + ], + "prompt_number": 209 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.53, Page Number:1164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=3300.0#V\n", + "v2=230.0#V\n", + "load=50.0#kVA\n", + "z=4\n", + "cu_loss=1.8\n", + "\n", + "#calculations\n", + "x=(z**2-cu_loss**2)**0.5\n", + "i1=load*1000/v1\n", + "r01=cu_loss*v1/(100*i1)\n", + "x01=x*v1/(100*i1)\n", + "z01=z*v1/(100*i1)\n", + "isc=i1*100/z\n", + "print \n", + "#result\n", + "print \"%x=\",x,\"%\"\n", + "print \"resistance=\",r01,\"ohm\"\n", + "print \"reactance=\",x01,\"ohm\"\n", + "print \"impedence=\",z01,\"ohm\"\n", + "print \"primary sc current=\",isc,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "%x= 3.5721142199 %\n", + "resistance= 3.9204 ohm\n", + "reactance= 7.78006477094 ohm\n", + "impedence= 8.712 ohm\n", + "primary sc current= 378.787878788 A\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.54, Page Number:1164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#V\n", + "f=50.0#Hz\n", + "vo=220.0#V\n", + "i_o=4.2#A\n", + "wo=148.0#W\n", + "vs=86.0#V\n", + "i_s=10.5#A\n", + "ws=360.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r01=ws/i_s**2\n", + "r02=k**2*r01\n", + "z10=vs/i_s\n", + "x01=(z10**2-r01**2)**0.5\n", + "x02=k**2*x01\n", + "i1=load*1000/v1\n", + "v1_=((v1*pf+i1*r01)**2+(v1*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n", + "regn1=(v1_-v1)/v1\n", + "i2=i1/k\n", + "core_loss=wo\n", + "cu_loss=i1**2*r01\n", + "cu_loss_half=(i1/2)**2*r01\n", + "efficiency=load*1000*pf*100/(load*1000*pf+core_loss+cu_loss)\n", + "efficiency_half=(load/2)*1000*pf*100/((load/2)*1000*pf+core_loss+cu_loss)\n", + "print v1_ \n", + "#result\n", + "print \"a)core loss=\",wo,\"W\"\n", + "print \"b)equivalent resistance primary=\",r01,\"ohm\"\n", + "print \"c)equivalent resistance secondary=\",r02,\"ohm\"\n", + "print \"d)equivalent reactance primary=\",x01,\"ohm\"\n", + "print \"e)equivalent reactance secondary=\",x02,\"ohm\"\n", + "print \"f)regulation=\",regn1*100,\"%\"\n", + "print \"g)efficiency at full load=\",efficiency,\"%\"\n", + "print \"h)efficiency at half load=\",efficiency_half,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "2265.01840886\n", + "a)core loss= 148.0 W\n", + "b)equivalent resistance primary= 3.26530612245 ohm\n", + "c)equivalent resistance secondary= 0.0326530612245 ohm\n", + "d)equivalent reactance primary= 7.51143635755 ohm\n", + "e)equivalent reactance secondary= 0.0751143635755 ohm\n", + "f)regulation= 2.95538222101 %\n", + "g)efficiency at full load= 97.4548448466 %\n", + "h)efficiency at half load= 95.0360304208 %\n" + ] + } + ], + "prompt_number": 222 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.55, Page Number:1165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "er=1.0/100\n", + "ex=5.0/100\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "regn=er*pf+ex*math.sin(math.acos(pf))\n", + "regn2=er*1\n", + "regn3=er*pf-ex*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"i)regulation with pf=0.8 lag=\",regn*100,\"%\"\n", + "print \"ii)regulation with pf=1=\",regn2*100,\"%\"\n", + "print \"iii)regulation with pf=0.8 lead=\",regn3*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)regulation with pf=0.8 lag= 3.8 %\n", + "ii)regulation with pf=1= 1.0 %\n", + "iii)regulation with pf=0.8 lead= -2.2 %\n" + ] + } + ], + "prompt_number": 223 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.56, Page Number:1165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500#kVA\n", + "v1=3300#V\n", + "v2=500#V\n", + "f=50#Hz\n", + "per=0.97\n", + "ratio=3.0/4\n", + "zper=0.10\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "output=load*ratio*1\n", + "x=0.75\n", + "pi=0.5*(output*(1/per-1))\n", + "pc=pi/x**2\n", + "i1=load*1000/v1\n", + "r=pc*1000/i1**2\n", + "er=i1*r/v1\n", + "ez=zper\n", + "ex=(ez**2-er**2)**0.5\n", + "regn=er*pf+ex*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"regulation=\",regn*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 7.52529846012 %\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.57, Page Number:1166" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "cu_loss=1.5#%\n", + "xdrop=3.5#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "pur=cu_loss/100\n", + "pux=xdrop/100\n", + "regn2=pur*pf+pux*math.sin(math.acos(pf))\n", + "regn1=pur*1\n", + "regn3=pur*pf-pux*math.sin(math.acos(pf))\n", + "\n", + "#result\n", + "print \"i)regulation at unity pf=\",regn1*100,\"%\"\n", + "print \"ii)regulation at 0.8 lag=\",regn2*100,\"%\"\n", + "print \"iii)regulation at 0.8 lead=\",regn3*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)regulation at unity pf= 1.5 %\n", + "ii)regulation at 0.8 lag= 3.3 %\n", + "iii)regulation at 0.8 lead= -0.9 %\n" + ] + } + ], + "prompt_number": 226 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.58, Page Number:1168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=250#KVA\n", + "w1=5.0#kW\n", + "w2=7.5#kW\n", + "efficiency=0.75\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "total_loss=w1+w2\n", + "loss=total_loss/2\n", + "cu_loss=efficiency**2*w2/2\n", + "output=load*efficiency*pf\n", + "efficiency=output*100/(output+cu_loss+2.5)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.0186963113 %\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.59, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "v1=2000.0#V\n", + "v2=200.0#V\n", + "w1=350.0#W\n", + "w2=400.0#W\n", + "\n", + "#calculation\n", + "total_loss=w1+w2\n", + "output=load*1000*1\n", + "efficiency=output/(output+total_loss)\n", + "cu_loss=w2*(0.5)**2\n", + "total_loss=cu_loss+w1\n", + "efficiency2=(load*1000/2)/((load*1000/2)+total_loss)\n", + "\n", + "#result\n", + "print \"i)efficiency at full load=\",efficiency*100,\"%\"\n", + "print \"ii)efficiency at half load=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)efficiency at full load= 97.0873786408 %\n", + "ii)efficiency at half load= 96.5250965251 %\n" + ] + } + ], + "prompt_number": 232 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.60, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.75\n", + "\n", + "#calculation\n", + "ratio=efficiency**2\n", + "\n", + "#result\n", + "print \"ratio of P1 and P2=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of P1 and P2= 0.5625\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.61, Page Number:1170" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11000.0#V\n", + "v2=230.0#V\n", + "load1=150.0#KVA\n", + "f=50.0#Hz\n", + "loss=1.4#kW\n", + "cu_loss=1.6#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "load=load1*(cu_loss/loss)**0.5\n", + "total_loss=loss*2\n", + "output=load*1\n", + "efficiency=output/(output+total_loss)\n", + "cu_loss=cu_loss*(0.5)**2\n", + "total_loss=total_loss+cu_loss\n", + "output2=(load/2)*pf\n", + "efficiency2=output2/(output2+total_loss)\n", + "\n", + "#result\n", + "print \"i)kVA load for max efficiency=\",load1,\"kVA\"\n", + "print \"max efficiency=\",efficiency*100,\"%\"\n", + "print \"ii)efficiency at half load=\",efficiency2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)kVA load for max efficiency= 150.0 kVA\n", + "max efficiency= 98.283858876 %\n", + "ii)efficiency at half load= 95.2481856352 %\n" + ] + } + ], + "prompt_number": 237 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.62, Page Number:1171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab\n", + "#variable declaration\n", + "load=5#kVA\n", + "v1=2300#V\n", + "v2=230#V\n", + "f=50#Hz\n", + "iron_loss=40#W\n", + "cu_loss=112#W\n", + "pf=0.8\n", + "#calculations\n", + "def e(k):\n", + " e=k*pf*1000*100/(k*pf*1000+(cu_loss*(k/5)**2+40))\n", + " return(e)\n", + "\n", + "e1=e(1.25)\n", + "e2=e(2.5)\n", + "e3=e(3.75)\n", + "e4=e(5.0)\n", + "e5=e(6.25)\n", + "e6=e(7.5)\n", + "\n", + "K=[1.25,2.5,3.75,5.0,6.25,7.5]\n", + "E=[e1,e2,e3,e4,e5,e6]\n", + "a=plot(K,E)\n", + "xlabel(\"load,kVA\") \n", + "ylabel(\"Efficiency\") \n", + "plt.xlim((0,8))\n", + "plt.ylim((92,98))\n", + "show(a)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.63, Page Number:1171" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=200.0#kVA\n", + "efficiency=0.98\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "output=load*pf\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "x=loss*1000/(1+9.0/16)\n", + "y=(9.0/16)*x\n", + "cu_loss=x*(1.0/2)**2\n", + "total_loss=cu_loss+y\n", + "output=load*pf*0.5\n", + "efficiency=output/(output+total_loss/1000)\n", + "\n", + "#result\n", + "print \"efficiency at hald load=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency at hald load= 97.9216626699 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.64, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=25.0#kVA\n", + "v1=2200.0#V\n", + "v2=220.0#V\n", + "r1=1.0#ohm\n", + "r2=0.01#ohm\n", + "pf=0.8\n", + "loss=0.80\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=r2+k**2*r1\n", + "i2=load*1000/v2\n", + "cu_loss=i2**2*r02\n", + "iron_loss=loss*cu_loss\n", + "total_loss=cu_loss+iron_loss\n", + "output=load*pf*1000\n", + "efficiency=output/(output+total_loss)\n", + "\n", + "#result\n", + "print \"secondary resistance=\",r02,\"ohm\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary resistance= 0.02 ohm\n", + "efficiency= 97.7284199899 %\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.65, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "r01=0.5#ohm\n", + "x01=1.5#ohm\n", + "ratio=3.0/4\n", + "pf=0.8\n", + "v=220.0#V\n", + "loss=100.0#W\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=k**2*r01\n", + "x02=k**2*x01\n", + "i2=1000*load*ratio/v2\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "cu_loss=i2**2*r02\n", + "total_loss=loss+cu_loss\n", + "output=load*ratio*pf\n", + "inpt=output*1000+total_loss\n", + "efficiency=output*1000/(inpt)\n", + "#result\n", + "print \"output=\",output,\"w\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 2.4 w\n", + "efficiency= 91.8660287081 %\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.66, Page Number:1172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=440.0#V\n", + "v2=220.0#V\n", + "f=50.0#Hz\n", + "loss=324.0#W\n", + "cu_loss=100.0#W\n", + "pf=0.8\n", + "#calculations\n", + "cu_loss=4*cu_loss\n", + "efficiency=load*pf/(load*pf+cu_loss/1000+loss/1000)\n", + "per=(loss/cu_loss)**0.5\n", + "\n", + "#result\n", + "print \"i)efficiency=\",efficiency*100,\"%\"\n", + "print \"ii)percent of full-load=\",per*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)efficiency= 95.6708921311 %\n", + "ii)percent of full-load= 90.0 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.67, Page Number:1173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=4.0#kVA\n", + "v1=200.0#V\n", + "v2=400.0#V\n", + "pf=0.8\n", + "vo=200.0#V\n", + "io=0.8#A\n", + "wo=70.0#W\n", + "vs=20.0#V\n", + "i_s=10.0#A\n", + "ws=60.0#W\n", + "\n", + "#calculation\n", + "i2=load*1000/v2\n", + "loss=ws+wo\n", + "output=load*pf\n", + "efficiency=output/(output+loss/1000)\n", + "z02=vs/i_s\n", + "r02=ws/i2**2\n", + "x02=(z02**2-r02**2)**0.5\n", + "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n", + "v2=v2-drop\n", + "i1=load*1000/v1\n", + "load=load*(wo/ws)**0.5\n", + "load=load*1\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"secondary voltage=\",v2,\"V\"\n", + "print \"current=\",i1,\"A\"\n", + "print \"load at unity pf=\",load,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 96.0960960961 %\n", + "secondary voltage= 383.752729583 V\n", + "current= 20.0 A\n", + "load at unity pf= 4.32049379894 kW\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.69, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "x=Symbol('x')\n", + "y=Symbol('y')\n", + "load=600.0#KVA\n", + "efficiency=0.92\n", + "per=0.60\n", + "\n", + "#calculation\n", + "inpt=load/efficiency\n", + "loss1=inpt-load\n", + "inpt2=load/(2*efficiency)\n", + "loss2=inpt2-load/2\n", + "ans=solve([x+y-loss1,x+y/4-loss2],[x,y])\n", + "cu_loss=ans[y]*0.36\n", + "loss=cu_loss+ans[x]\n", + "output=load*per\n", + "efficiency=output/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "389.913043478261\n", + "efficiency= 92.3282783229260 %\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.70, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#kVA\n", + "e1=0.98\n", + "e2=0.80\n", + "pf=8\n", + "z=0.05\n", + "pf1=0.8\n", + "\n", + "#calculations\n", + "output=load*pf1*e2\n", + "inpt=output/e1\n", + "loss=-output+inpt\n", + "cu_loss=loss/2\n", + "cu_loss_full=cu_loss/pf1**2\n", + "r=round(cu_loss_full*100/load)\n", + "sin=math.sin(math.acos(pf1))\n", + "regn=(r*pf1+5*sin)+(1.0/200)*(5*pf1-r*sin)**2\n", + "#result\n", + "print \"voltage regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation= 3.8578 %\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.71, Page Number:1174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#KVA\n", + "v1=5000.0#V\n", + "v2=440.0#V\n", + "f=25.0#Hz\n", + "cu_loss=1.5\n", + "we=0.5\n", + "wh=0.6\n", + "v2=10000.0\n", + "#calculations\n", + "cu_loss1=cu_loss*load/100\n", + "we1=we*load/100\n", + "wh1=wh*load/100\n", + "cu_loss2=cu_loss1\n", + "we2=(we1*(50.0/25.0)**2)\n", + "wh2=(wh1*(50.0/25))\n", + "e1=load*100/(load+cu_loss1+we1+wh1)\n", + "e2=load*2*100/(load*2+cu_loss2+we2+wh2)\n", + "\n", + "#result\n", + "print \"full load efficiency in first case=\",e1,\"%\"\n", + "print \"full load efficiency in second case=\",e2,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "20.47 0.06 0.05\n", + "full load efficiency in first case= 97.4658869396 %\n", + "full load efficiency in second case= 97.7039570103 %\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.72, Page Number:1175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=300#KVA\n", + "r=1.5#%\n", + "load1=173.2#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cu_loss=r*load*1000/100\n", + "iron_loss=(load1/load)**2*cu_loss\n", + "total_loss=cu_loss+iron_loss\n", + "efficiency=(load*pf)*100/((load*pf)+(total_loss/1000))\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.5610105096 %\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.73, Page Number:1175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100#kVA\n", + "v1=2300#V\n", + "v2=230.0#V\n", + "f=50#Hz\n", + "phim=1.2#Wb/m2\n", + "a=0.04#m2\n", + "l=2.5#m\n", + "bm=1200\n", + "inpt=1200#W\n", + "pi=400#W\n", + "efficiency=0.75\n", + "pf=0.8\n", + "f2=100#Hz\n", + "\n", + "#calculation\n", + "n1=v1/(4.44*f*phim*a)\n", + "k=v2/v1\n", + "n2=k*n1\n", + "i=1989/n1\n", + "cu_loss=efficiency**2*inpt\n", + "total_loss=pi+cu_loss\n", + "output=load*efficiency*pf\n", + "efficiency=output*100/(output+total_loss/1000)\n", + "\n", + "#result\n", + "print \"a)n1=\",round(n1)\n", + "print \" n2=\",round(n2)\n", + "print \"b)magnetising current=\",i,\"A\"\n", + "print \"c)efficiency=\",efficiency,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.00643416423287\n", + "a)n1= 216.0\n", + " n2= 22.0\n", + "b)magnetising current= 9.21512347826 A\n", + "c)efficiency= 98.2398690135 %\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.74, Page Number:1176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=1.8\n", + "x=5.4\n", + "\n", + "#calculation\n", + "pf=r/x\n", + "phi=math.atan(pf)\n", + "phi2=math.atan(x/r)\n", + "regn=r*math.cos(phi2)+x*math.sin(phi2)\n", + "efficiency=100/(100+r*2)\n", + "\n", + "#result\n", + "print \"a)i)phi=\",math.degrees(phi),\"degrees\"\n", + "print \" ii)regulation=\",regn,\"%\"\n", + "print \"b)efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)phi= 18.4349488229 degrees\n", + " ii)regulation= 5.6920997883 %\n", + "b)efficiency= 96.5250965251 %\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.75, Page Number:1176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "f=50.0#Hz\n", + "v1=500.0#V\n", + "v2=250.0#V\n", + "vo=250.0#V\n", + "io=3.0#A\n", + "wo=200.0#W\n", + "vsc=15.0#V\n", + "isc=30.0#A\n", + "wsc=300.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=load*1000/v2\n", + "cu_loss=(i/isc)**2*wsc\n", + "output=load*1000*pf\n", + "efficiency=output*100/(output+cu_loss+wo)\n", + "z=vsc/isc\n", + "r=wsc/isc**2\n", + "x=(z**2-r**2)**0.5\n", + "regn=(i/v2)*(r*pf-x*math.sin(math.acos(pf)))*v2\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 91.6030534351 %\n", + "regulation= 1.72239475667 %\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.76, Page Number:1177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=40.0#kVA\n", + "loss=400.0#W\n", + "cu_loss=800.0#W\n", + "\n", + "#calculation\n", + "x=(loss/cu_loss)**0.5\n", + "output=load*x*1\n", + "efficiency=output/(output+load*2/100)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.2493723732 %\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.77, Page Number:1178" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#kVA\n", + "v1=500#V\n", + "v2=250#V\n", + "vsc=60#V\n", + "isc=20#A\n", + "wsc=150#W\n", + "per=1.2\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "i=load*1000/v1\n", + "cu_loss=per**2*wsc\n", + "output=per*load*1.0\n", + "efficiency=output*100/(output+cu_loss*2/1000)\n", + "output=load*1000*pf\n", + "e2=output*100/(output+cu_loss+wsc)\n", + "\n", + "#result\n", + "print \"maximum efficiency=\",efficiency,\"%\"\n", + "print \"full-load efficiency=\",e2,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum efficiency= 96.5250965251 %\n", + "full-load efficiency= 95.6251494143 %\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.78, Page Number:1181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500.0#kVA\n", + "cu_loss=4.5#kW\n", + "iron_loss=3.5#kW\n", + "t1=6.0#hrs\n", + "t2=10.0#hrs\n", + "t3=4.0#hrs\n", + "t4=4.0#hrs\n", + "load1_=400.0#kW\n", + "load2_=300.0#kW\n", + "load3_=100.0#kW\n", + "pf1=0.8\n", + "pf2=0.75\n", + "pf3=0.8\n", + "\n", + "#calculations\n", + "load1=load1_/pf1\n", + "load2=load2_/pf2\n", + "load3=load3_/pf3\n", + "wc1=cu_loss\n", + "wc2=cu_loss*(load2/load1)**2\n", + "wc3=cu_loss*(load3/load1)**2\n", + "twc=(t1*wc1)+(t2*wc2)+(t3*wc3)+(t4*0)\n", + "iron_loss=24*iron_loss\n", + "total_loss=twc+iron_loss\n", + "output=(t1*load1_)+(t2*load2_)+(t3*load3_)\n", + "efficiency=output*100/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",round(efficiency,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.6 %\n" + ] + } + ], + "prompt_number": 86 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.79, Page Number:1182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#kVA\n", + "loss=3.0#kW\n", + "tf=3.0#hrs\n", + "th=4.0#hrs\n", + "\n", + "#calculation\n", + "iron_loss=loss*24/2\n", + "wcf=loss*tf/2\n", + "wch=loss/8\n", + "wch=wch*4\n", + "total_loss=iron_loss+wch+wcf\n", + "output=load*tf+load*th/2\n", + "efficiency=output*100/(output+total_loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 92.2509225092 %\n" + ] + } + ], + "prompt_number": 89 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.80, Page Number:1182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=100.0#KW\n", + "efficiency=0.98\n", + "tf=4.0#hrs\n", + "th=6.0#hrs\n", + "t10=14.0#hrs\n", + "\n", + "#calculations\n", + "#1st transformer\n", + "inpt=load/efficiency\n", + "tloss=inpt-load\n", + "y=tloss/2\n", + "x=y\n", + "iron_loss=x*24\n", + "cu_loss=x*tf+th*(x/2**2)+t10*(x/10**2)\n", + "loss=iron_loss+cu_loss\n", + "output=tf*load+th*load/2+t10*10\n", + "e1=output/(output+loss)\n", + "#2nd transformer\n", + "y=tloss/(1+1.0/4)\n", + "x=(tloss-y)\n", + "iron_loss=x*24\n", + "wc=tf*y+th*(y/2**2)+t10*(y/10**2)\n", + "loss=iron_loss+wc\n", + "e2=output/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency of forst transformer=\",e1*100,\"%\"\n", + "print \"efficiency ofsecond transformer=\",e2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.408163265306 1.63265306122\n", + "efficiency of forst transformer= 96.5245532574 %\n", + "efficiency ofsecond transformer= 97.7876610788 %\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.81, Page Number:1183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "efficiency=0.95\n", + "nl=10.0#hrs\n", + "ql=7.0#hrs\n", + "hl=5.0#hrs\n", + "fl=2.0#hrs\n", + "\n", + "#calculations\n", + "inpt=load/efficiency\n", + "loss=inpt-load\n", + "wc_fl=loss/2\n", + "iron_loss=loss/2\n", + "wc_fl_4=(1.0/4)**2*wc_fl\n", + "wc_fl_2=(1.0/2)**2*wc_fl\n", + "wc_ql=ql*wc_fl_4\n", + "wc_hl=hl*wc_fl_2\n", + "wc_fl_2=fl*wc_fl\n", + "wc=wc_ql+wc_hl+wc_fl_2\n", + "wh=wc\n", + "loss=wh+24*iron_loss\n", + "output=load*1\n", + "half_output=(output/2)\n", + "q_load=(load/4)\n", + "output=ql*q_load+hl*half_output+fl*output\n", + "e=output*100/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 89.5592740985 %\n" + ] + } + ], + "prompt_number": 115 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.82, Page Number:1183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.98\n", + "load=15#kVA\n", + "t1=12.0#hrs\n", + "t2=6.0#hrs\n", + "t3=6.0#hrs\n", + "pf1=0.5\n", + "pf2=0.8\n", + "k1=2#kW\n", + "k2=12#kW\n", + "\n", + "#calculations\n", + "output=load*1\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "wc=loss/2\n", + "wi=loss/2\n", + "w1=k1/pf1\n", + "w2=k2/pf2\n", + "wc1=wc*(4/load)\n", + "wc2=wc\n", + "wc12=t1*wc1\n", + "wc6=t2*wc2\n", + "wc=(wc12+wc6)\n", + "wi=24*wi\n", + "output=(k1*t1)+(t2*k2)\n", + "inpt=output+wc+wi\n", + "e=output*100/inpt\n", + "\n", + "#result\n", + "print \"efficiency=\",e,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.918367346939 3.67346938776\n", + "efficiency= 95.4351795496 %\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.83, Page Number:1184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=150.0#KVA\n", + "l1_=100.0#kVA\n", + "t=3.0#hrs\n", + "loss=1.0#KW\n", + "\n", + "#calculations\n", + "l1=l1_/2\n", + "l2=l1_\n", + "output=load*1\n", + "loss=loss*2\n", + "e1=output/(output+loss)\n", + "wc1=t*(1.0/3)**2*1\n", + "wc2=8*(2.0/3)**2*1\n", + "wc=wc1+wc2\n", + "wi=24*1\n", + "loss=wc+wi\n", + "output=3*(l1*1)+8*(l2*1)\n", + "e2=(output*100)/(output+loss)\n", + "\n", + "#result\n", + "print \"ordinary efficiency=\",e1*100,\"%\"\n", + "print \"all day efficiency=\",e2,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ordinary efficiency= 98.6842105263 %\n", + "all day efficiency= 97.1480513578 %\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.84, Page Number:1184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50#KVA\n", + "efficiency=0.94#%\n", + "nl=10\n", + "hl=5.0\n", + "ql=6.0\n", + "fl=3.0\n", + "\n", + "#calculations\n", + "pi=0.5*(load*1000)*(1-efficiency)/efficiency\n", + "wch=(0.5)**2*pi\n", + "eh=wch*hl/1000\n", + "wcq=(0.25)**2*pi\n", + "eq=ql*wcq/1000\n", + "e3=pi*3/1000\n", + "e2=pi*24/1000\n", + "e=25*hl+12.5*ql+50*fl\n", + "efficiency=e/(e+e2+eh+eq+e3)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 88.4557217274 %\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.85, Page Number:1185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "t1=7.0#hrs\n", + "t2=4.0#hrs\n", + "t3=8.0#hrs\n", + "t4=5.0#hrs\n", + "k1=3.0#kW\n", + "k2=8.0#kW\n", + "pf1=0.6\n", + "pf2=0.8\n", + "\n", + "#calculations\n", + "x1=k1/(pf1*load)\n", + "x2=k2/(pf2*load)\n", + "x3=load/(1*load)\n", + "pc1=(0.5)**2*0.1\n", + "pc2=pc3=0.10\n", + "o1=k1*t1\n", + "o2=k2*t2\n", + "o3=k2*load\n", + "output=o1+o2+o3\n", + "wc1=pc1*t1\n", + "wc2=pc2*t2\n", + "wc3=pc3*t3\n", + "cu_loss=wc1+wc2+wc3\n", + "loss=400.0*24/10000\n", + "efficiency=output/(output+loss+cu_loss)\n", + "\n", + "#result\n", + "print \"efficency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficency= 98.27465179 %\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.86, Page Number:1185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=.98\n", + "load=15.0#kVA\n", + "t1=12.0\n", + "t2=6.0\n", + "t3=6.0\n", + "pf1=0.8\n", + "pf2=0.8\n", + "pf3=0.9\n", + "k1=2.0\n", + "k2=12.0\n", + "k3=18.0\n", + "#calculations\n", + "output=load*1000\n", + "inpt=output/efficiency\n", + "loss=inpt-output\n", + "cu_loss=loss/2\n", + "x1=k1/(0.5*load)\n", + "x2=k2/(pf2*load)\n", + "x3=k3/(pf3*load)\n", + "wc1=0.131\n", + "wc2=0.918\n", + "wc3=1.632\n", + "o1=t1*k1\n", + "o2=t2*k2\n", + "o3=t3*k3\n", + "output=o1+o2+o3\n", + "loss=wc1+wc2+wc3+0.153*24\n", + "efficiency=(output*100)/(output+loss)\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 96.9798386522 %\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.87, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.0#kW\n", + "v1=115.0#V\n", + "v2=230.0#V\n", + "\n", + "#calculation\n", + "k=v1/v2\n", + "power=load*(1-k)\n", + "power2=k*load\n", + "\n", + "#result\n", + "print \"a)power transferred inductively=\",power,\"kW\"\n", + "print \"b)power transferred conductively=\",power2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)power transferred inductively= 1.5 kW\n", + "b)power transferred conductively= 1.5 kW\n" + ] + } + ], + "prompt_number": 145 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.88, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=500.0#V\n", + "v2=400.0#V\n", + "i=100.0#A\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "i1=k*i\n", + "saving=k*100\n", + "\n", + "#result\n", + "print \"economy of cu=\",saving" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "economy of cu= 80.0\n" + ] + } + ], + "prompt_number": 147 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.89, Page Number:1188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=500.0#KVA\n", + "f=50.0#Hz\n", + "v1=6600.0#V\n", + "v2=5000.0#V\n", + "e=8.0#V\n", + "phim1=1.3#Wb/m2\n", + "\n", + "#calculations\n", + "phim=e/(4.44*f)\n", + "area=phim/phim1\n", + "n1=v1/e\n", + "n2=v2/e\n", + "\n", + "#result\n", + "print \"core area=\",area*10000,\"m2\"\n", + "print \"number of turns on the hv side=\",n1\n", + "print \"number of turns on the lv side=\",n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "core area= 277.2002772 m2\n", + "number of turns on the hv side= 825.0\n", + "number of turns on the lv side= 625.0\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.90, Page Number:1189" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "\n", + "#calculation\n", + "i1=round(load*1000/v1,1)\n", + "k=v2/v1\n", + "i2=i1/k\n", + "kva=2640*i2*0.001\n", + "kva_per=kva*100/load\n", + "i1_=kva*1000/v1\n", + "ic=i1_-i2\n", + "over=ic*100/i1\n", + "\n", + "#result\n", + "print \"i)i1=\",i1,\"A\"\n", + "print \"ii)i2=\",i2,\"A\"\n", + "print \"iii)kVA rating=\",kva,\"kVA\"\n", + "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n", + "print \"v)I1=\",i1_,\"A\"\n", + "print \" Ic=\",ic,\"A\"\n", + "print \"vi)per cent overload=\",over,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)i1= 8.3 A\n", + "ii)i2= 83.0 A\n", + "iii)kVA rating= 219.12 kVA\n", + "iv)per cent increase in kVA= 1095.6 %\n", + "v)I1= 91.3 A\n", + " Ic= 8.3 A\n", + "vi)per cent overload= 100.0 %\n" + ] + } + ], + "prompt_number": 159 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.91, Page Number:1190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#KVA\n", + "v1=2400.0#V\n", + "v2=240.0#V\n", + "\n", + "#calculation\n", + "i1=round(load*1000/v1,1)\n", + "k=v2/v1\n", + "i2=i1/k\n", + "kva=2160*i2*0.001\n", + "kva_per=kva*100/load\n", + "i1_=kva*1000/v1\n", + "ic=i2-i1_\n", + "over=ic*100/i1\n", + "\n", + "#result\n", + "print \"i)i1=\",i1,\"A\"\n", + "print \"ii)i2=\",i2,\"A\"\n", + "print \"iii)kVA rating=\",kva,\"kVA\"\n", + "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n", + "print \"v)I1=\",i1_,\"A\"\n", + "print \" Ic=\",ic,\"A\"\n", + "print \"vi)per cent overload=\",over,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)i1= 8.3 A\n", + "ii)i2= 83.0 A\n", + "iii)kVA rating= 179.28 kVA\n", + "iv)per cent increase in kVA= 896.4 %\n", + "v)I1= 74.7 A\n", + " Ic= 8.3 A\n", + "vi)per cent overload= 100.0 %\n" + ] + } + ], + "prompt_number": 160 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.92, Page Number:1190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5.0#kVA\n", + "v1=110.0#V\n", + "v2=110.0#V\n", + "f=50.0#Hz\n", + "efficiency=0.95\n", + "iron_loss=50.0#W\n", + "v=220.0#V\n", + "\n", + "#calculations\n", + "cu_loss=load*1000/efficiency-load*1000-iron_loss\n", + "efficiency=load*1000/(load*1000+cu_loss/4+iron_loss)\n", + "i2=(load*1000+cu_loss/4+iron_loss)/v\n", + "\n", + "#result\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"current drawn on hv side=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "efficiency= 97.9760216579 %\n", + "current drawn on hv side= 23.1967703349 A\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.93, Page Number:1191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11500#V\n", + "v2=2300#V\n", + "\n", + "#calculations\n", + "kva=(v1+v2)*50*0.001\n", + "\n", + "#result\n", + "print \"voltage output=\",v1+v2,\"V\"\n", + "print \"kVA rating of auto transformer=\",kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage output= 13800 V\n", + "kVA rating of auto transformer= 690.0 kVA\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.94, Page Number:1191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=11500.0#V\n", + "v2=2300.0#V\n", + "load=100.0#KVA\n", + "\n", + "#calculations\n", + "i1=load*100/v1\n", + "i2=load*100/v2\n", + "kva1=(v1+v2)*i1/(100)\n", + "kva2=(v1+v2)*i2/(100)\n", + "#result\n", + "print \"voltage ratios=\",(v1+v2)/v1,\"or\",(v1+v2)/v2\n", + "print \"kVA rating in first case=\",kva1\n", + "print \"kVA rating in second case=\",kva2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage ratios= 1.2 or 6.0\n", + "kVA rating in first case= 120.0\n", + "kVA rating in second case= 600.0\n" + ] + } + ], + "prompt_number": 167 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.95, Page Number:1192" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2400.0#v\n", + "v2=240.0#V\n", + "load=50.0#kVA\n", + "\n", + "#calculations\n", + "i1=load*1000/v1\n", + "i2=load*1000/v2\n", + "output=2640*i2\n", + "i=i2*2640/v1\n", + "k=2640/v1\n", + "poweri=v1*i1*0.001\n", + "power=output/1000-poweri\n", + "\n", + "#result\n", + "print \"rating of the auto-transformer=\",output/1000,\"kVA\"\n", + "print \"inductively transferred powers=\",poweri,\"kW\"\n", + "print \"conductively transferred powers=\",power,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rating of the auto-transformer= 550.0 kVA\n", + "inductively transferred powers= 50.0 kW\n", + "conductively transferred powers= 500.0 kW\n" + ] + } + ], + "prompt_number": 169 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.96, Page Number:1196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "za=complex(0.5,3)\n", + "zb=complex(0.,10)\n", + "load=100#KW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "s=load/pf*complex(pf,math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa)*math.cos(math.atan(sa.imag/sa.real)),\"kW\"\n", + "print \"SB=\",abs(sb)*math.cos(math.atan(sb.imag/sb.real)),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "96.082805253\n", + "SA= 74.5937961595 kW\n", + "SB= 25.4062038405 kW\n" + ] + } + ], + "prompt_number": 174 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.97, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r1=0.005#ohm\n", + "r2=0.01#ohm\n", + "x1=0.05#ohm\n", + "x2=0.04#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "za=complex(r1,x1)\n", + "zb=complex(r2,x2)\n", + "pf=math.cos(math.degrees((-1)*math.acos(pf))*math.degrees(math.atan((za/zb).imag/(za/zb).real)))\n", + "\n", + "#result\n", + "print \"load of B=\",abs(za/zb)\n", + "print \"pf of B=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load of B= 1.21872643265\n", + "pf of B= 0.613584256393\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.98, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=250#kVA\n", + "za=complex(1,6)\n", + "zb=complex(1.2,4.8)\n", + "load1=500#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "s=load1*complex(-pf,math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 224.451917244 -39.3923099293\n", + "SB= 275.942423833 -34.8183886694\n" + ] + } + ], + "prompt_number": 205 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.99, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabledeclaration\n", + "load=100.0#KW\n", + "r1=0.5\n", + "x1=8.0\n", + "r2=0.75\n", + "x2=4.0\n", + "load1=180.0#kW\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "load=load1/pf\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "z1=complex(r1,x1)\n", + "z2=complex(r2,x2)\n", + "s1=s*z2/(z1+z2)\n", + "s2=s*z1/(z1+z2)\n", + "kw1=abs(s1)*math.cos(math.atan(s1.imag/s1.real))\n", + "kw2=abs(s2)*math.cos(math.atan(s2.imag/s2.real))\n", + "\n", + "#result\n", + "print \"kW1=\",kw1,\"kW\"\n", + "print \"kW2=\",kw2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(1.25+12j)\n", + "kW1= 58.119626171 kW\n", + "kW2= 121.880373829 kW\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.100, Page Number:1197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=200.0#kW\n", + "pf=0.85\n", + "za=complex(1,5)\n", + "zb=complex(2,6)\n", + "\n", + "#calculations\n", + "s=load/pf*complex(0.85,-0.527)\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"kVA for A=\",abs(sa),math.cos(math.atan(sa.imag/sa.real)),\"lag\"\n", + "print \"kVA for B=\",abs(sb),math.cos(math.atan(sb.imag/sb.real)),\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kVA for A= 130.53263665 0.819364787986 lag\n", + "kVA for B= 105.238776124 0.884143252833 lag\n" + ] + } + ], + "prompt_number": 216 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.101, Page Number:1198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=2200.0#V\n", + "v2=110.0#V\n", + "load=125.0#kVA\n", + "pf=0.8\n", + "za=complex(0.9,10)\n", + "zb=(100/50)*complex(1.0,5)\n", + "\n", + "#calculation\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 63.0780848499 -39.929442891 degrees\n", + "SB= 62.1031510961 -33.7622749748 degrees\n" + ] + } + ], + "prompt_number": 218 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.102, Page Number:1199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=500#kVA\n", + "za=complex(1,5)\n", + "load2=250#kVA\n", + "zb=complex(1.5,4)\n", + "v2=400#V\n", + "load=750#kVA\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "zb=(500/load2)*zb\n", + "s=load*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 471.125736359 -40.3232138964 degrees\n", + "SB= 281.165527855 -31.0771011508 degrees\n" + ] + } + ], + "prompt_number": 219 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.103, Page Number:1199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=1000#A\n", + "pf=0.8\n", + "za=complex(2,3)\n", + "zb=complex(2.5,5)\n", + "\n", + "#calculations\n", + "i=i*complex(pf,-math.sin(math.acos(pf)))\n", + "ratio=zb/za\n", + "ib=i/(1+ratio)\n", + "ia=i-ib\n", + "ratio=ia.real/ib.real\n", + "\n", + "#result\n", + "print \"IA=\",ia\n", + "print \"IB=\",ib\n", + "print \"ratio of output=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= (504.451038576-341.246290801j)\n", + "IB= (295.548961424-258.753709199j)\n", + "ratio of output= 1.70682730924\n" + ] + } + ], + "prompt_number": 220 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.104, Page Number:1200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v1=1000.0#V\n", + "v2=500.0#V\n", + "load=100.0#kVA\n", + "za=complex(1.0,5.0)\n", + "zb=complex(2.0,2.0)\n", + "load1=300.0#kVA\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "zb=(100.0/250)*zb\n", + "s=load1*complex(pf,-math.sin(math.acos(pf)))\n", + "sa=s*zb/(za+zb)\n", + "sb=s*za/(za+zb)\n", + "zab=za*zb/(za+zb)\n", + "drop=zab.real*240/100+zab.imag*180/100\n", + "v2=v2-v2*drop/100\n", + "\n", + "#result\n", + "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n", + "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n", + "print \"secondary voltage=\",v2,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "SA= 55.8895719399 -64.6284382469 degrees\n", + "SB= 251.890896741 -30.9383707209 degrees\n", + "secondary voltage= 486.177874187 V\n" + ] + } + ], + "prompt_number": 223 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.105, Page Number:1200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n11=5000.0\n", + "n12=440.0\n", + "load1=200#kVA\n", + "n21=5000.0\n", + "n22=480.0\n", + "load2=350#kVA\n", + "x=3.5\n", + "\n", + "#calculation\n", + "i1=load1*1000/n12\n", + "i2=load2*1000/n22\n", + "x1=x*n12/(100*i1)\n", + "x2=x*n22/(100*i2)\n", + "ic=(n22-n12)/0.057\n", + "\n", + "#result\n", + "print \"no-load circulation current=\",ic/i1,\"times the normal current of 200 kVA unit\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no-load circulation current= 1.54385964912 times the normal current of 200 kVA unit\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.106, Page Number:1203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variabe declaration\n", + "ea=6600#V\n", + "eb=6400#V\n", + "za=complex(0.3,3)\n", + "zb=complex(0.2,1)\n", + "zl=complex(8.0,6.0)\n", + "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "\n", + "#result\n", + "print \"IA=\",abs(ia),\"A\"\n", + "print \"IB=\",abs(ib),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "IA= 195.492387533 A\n", + "IB= 422.567795916 A\n" + ] + } + ], + "prompt_number": 227 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.107, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=100.0#kVA\n", + "load2=50.0#kVA\n", + "v1=1000.0#V\n", + "v2=950.0#V\n", + "r1=2.0\n", + "r2=2.5\n", + "x1=8.0\n", + "x2=6.0\n", + "\n", + "#calculations\n", + "ia=load1*1000/v1\n", + "ra=v1*r1/(100*ia)\n", + "xa=v1*x1/(100*ia)\n", + "ib=load2*1000/v2\n", + "rb=v2*r2/(100*ib)\n", + "xb=v2*x2/(100*ib)\n", + "z=((ra+rb)**2+(xa+xb)**2)**0.5\n", + "ic=(v1-v2)/z\n", + "alpha=math.atan((xa+xb)/(ra+rb))\n", + "\n", + "#result\n", + "print \"no load circulating current=\",ic,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no load circulating current= 25.0948635944 A\n" + ] + } + ], + "prompt_number": 231 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Example Number 32.108, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load1=1000.0#KVA\n", + "load2=500.0#kVA\n", + "v1=500.0#V\n", + "v2=510.0#V\n", + "z1=3.0\n", + "z2=5.0\n", + "r=0.4\n", + "\n", + "#calculation\n", + "ia=load1*1000/480\n", + "ib=load2*1000/480\n", + "za=z1*v1/(100*ia)\n", + "zb=z2*v2/(100*ib)\n", + "ic=(v2-v1)/(za+zb)\n", + "\n", + "#result\n", + "print \"cross current=\",ic,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "cross current= 315.656565657 A\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.109, Page Number:1204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "loada=500.0#KVA\n", + "loadb=250.0#kVA\n", + "load=750.0#KVA\n", + "pf=0.8\n", + "v1=405.0#V\n", + "v2=415.0#V\n", + "ra=1.0\n", + "rb=1.5\n", + "xa=5.0\n", + "xb=4.0\n", + "\n", + "#calculations\n", + "ia=loada*1000/400\n", + "ra=400/(100*ia)\n", + "xa=xa*400/(100*ia)\n", + "ib=loadb*1000/400\n", + "rb=rb*400/(100*ib)\n", + "xb=xb*400/(100*ib)\n", + "za=complex(ra,xa)\n", + "zb=complex(rb,xb)\n", + "zl=400**2*0.001/load*complex(pf,math.sin(math.acos(pf)))\n", + "ic=(v1-v2)/(za+zb)\n", + "ia=(v1*zb+(v1-v2)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(v2*za-(v1-v2)*zl)/(za*zb+zl*(za+zb))\n", + "sa=400*ia/1000\n", + "sb=400*ib/1000\n", + "pf1=math.cos(math.atan(sa.imag/sa.real))\n", + "pf2=math.cos(math.atan(sb.imag/sb.real))\n", + "\n", + "#result\n", + "print \"a)cross current=\",-abs(ic),math.degrees(math.atan(ic.imag/ic.real))\n", + "print \"b)SA=\",abs(sa),pf1,\"lag\"\n", + "print \" SB=\",abs(sb),pf2,\"lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)cross current= -229.754569404 -72.8972710309\n", + "b)SA= 387.844943528 0.820048560714 lag\n", + " SB= 351.964386212 0.738709225528 lag\n" + ] + } + ], + "prompt_number": 243 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.110, Page Number:1205" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "zl=complex(2.0,1.5)\n", + "za=complex(0.15,0.5)\n", + "zb=complex(0.1,0.6)\n", + "ea=207#V\n", + "eb=205#V\n", + "\n", + "#calculations\n", + "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n", + "v2_=(ia+ib)*zl\n", + "angle=math.atan(v2_.imag/v2_.real)-math.atan(ia.imag/ia.real)\n", + "pfa=math.cos(angle)\n", + "angle=math.atan(v2_.imag/v2_.real)-math.atan(ib.imag/ib.real)\n", + "pfb=math.cos(angle)\n", + "pa=abs(v2_)*abs(ia)*pfa\n", + "pb=abs(v2_)*abs(ib)*pfb\n", + "\n", + "#result\n", + "print \"power output:\"\n", + "print \" A:\",pa,\"W\"\n", + "print \" B:\",pb,\"W\"\n", + "print \"power factor:\"\n", + "print \" A:\",pfa\n", + "print \" B:\",pfb\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power output:\n", + " A: 6535.37583042 W\n", + " B: 4925.36941503 W\n", + "power factor:\n", + " A: 0.818428780129\n", + " B: 0.775705655277\n" + ] + } + ], + "prompt_number": 248 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 32.111, Page Number:1206" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=200.0#A\n", + "ib=600.0#A\n", + "ra=0.02#ohm\n", + "rb=0.025#ohm\n", + "xa=0.05#ohm\n", + "xb=0.06#ohm\n", + "ea=245.0#V\n", + "eb=240.0#V\n", + "zl=complex(0.25,0.1)\n", + "\n", + "#calculation\n", + "za=(ea/ia)*complex(ra,xa)\n", + "zb=(eb/ib)*complex(rb,xb)\n", + "i=(ea*zb+eb*za)/(za*zb+zl*(za+zb))\n", + "v2=i*zl\n", + "\n", + "#result\n", + "print \"terminal voltage=\",round(abs(v2)),round(math.degrees(math.atan(v2.imag/v2.real))),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 230.0 -3.0 degrees\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter33_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter33_4.ipynb new file mode 100644 index 00000000..495cee05 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter33_4.ipynb @@ -0,0 +1,1433 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:62e227cc38186a0706017dd159987c82bd21be1d7e8602e20c55cf079ab30efe" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 33: Transformer:Three Phase" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.1, Page Number:1216" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=3\n", + "f=50.0#Hz\n", + "vd=22000.0#V\n", + "vs=400.0#V\n", + "phi=0.8\n", + "i=5.0#A\n", + "\n", + "#calcuations\n", + "v_phase_secondary=vs/math.sqrt(3)\n", + "K=(vs/vd)/math.sqrt(3)\n", + "i_primary=i/math.sqrt(3)\n", + "i_secondary=i_primary/K\n", + "il=i_secondary\n", + "output=math.sqrt(3)*il*vs*phi\n", + "\n", + "#result\n", + "print \"Output=\",output/10000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output= 15.2420471066 kW\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.2, Page Number:1217" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=500.0#kVA\n", + "f=50.0#Hz\n", + "vls=11.0#kV\n", + "vld=33.0#kV\n", + "rh=35.0#ohm\n", + "rl=0.876#ohm\n", + "iron_loss=3050.0#W\n", + "phi1=1.0\n", + "phi2=0.8\n", + "\n", + "#calculations\n", + "\n", + "K=(vls*1000)/(math.sqrt(3)*vld*1000)\n", + "r02=rl+K**2*rh\n", + "i_Secondary=(w*1000)/(math.sqrt(3)*vls*1000)\n", + "#full load\n", + "fl_culoss=3*((w/(vls*math.sqrt(3)))**2)*r02\n", + "fl_totalloss=fl_culoss+iron_loss\n", + "fl_efficiency1=w*1000/(w*1000+fl_totalloss)\n", + "fl_efficiency2=(phi2*w*1000)/(w*phi2*1000+fl_totalloss)\n", + "#half load\n", + "cu_loss=.5**2*fl_culoss\n", + "totalloss=cu_loss+iron_loss\n", + "efficiency1=(w*1000/2)/((w*1000/2)+totalloss)\n", + "efficiency2=(w*1000*phi2/2)/((phi2*w*1000/2)+totalloss)\n", + "#result\n", + "print \"full load efficiency at p.f. 1=\",fl_efficiency1*100,\"%\"\n", + "print \"full load efficiency at p.f. 0.8=\",fl_efficiency2*100,\"%\"\n", + "print \"half load efficiency at p.f. 1=\",efficiency1*100,\"%\"\n", + "print \"half load efficiency at p.f. 0.8=\",round(efficiency2*100),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency at p.f. 1= 98.5147491838 %\n", + "full load efficiency at p.f. 0.8= 98.1503046336 %\n", + "half load efficiency at p.f. 1= 98.3585709725 %\n", + "half load efficiency at p.f. 0.8= 98.0 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.3, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=0.02\n", + "va=2000\n", + "reactance=0.1\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculation\n", + "cu_loss=r*100*va/100\n", + "regn=r*100*math.cos(phi)+reactance*100*math.sin(phi)\n", + "\n", + "#result\n", + "print \"Cu loss=\",cu_loss,\"kW\"\n", + "print \"Regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cu loss= 40.0 kW\n", + "Regulation= 7.6 %\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.4, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "w=120.0#kVA\n", + "v1=6000.0\n", + "v2=400.0\n", + "f=50.0#Hz\n", + "iron_loss=1600.0#W\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "cu_loss_fl=iron_loss*((4/3)**2)\n", + "fl_output=w*pf*1000\n", + "total_loss=iron_loss+cu_loss_fl\n", + "efficiency1=fl_output/(fl_output+total_loss)\n", + "cu_loss_hl=0.5**2*cu_loss_fl\n", + "total_loss2=cu_loss_hl+iron_loss\n", + "efficiency2=(w*1000/2)/((w*1000/2)+total_loss2)\n", + "total_loss3=2*iron_loss\n", + "output=(3.0/4)*w*1000\n", + "inpt=output+total_loss3\n", + "efficiency=output/inpt\n", + "\n", + "\n", + "#result\n", + "print \"full load efficiency=\",efficiency1*100,\"%\"\n", + "print \"half load efficiency=\",efficiency2*100,\"%\"\n", + "print \"3/4 load efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load efficiency= 96.7741935484 %\n", + "half load efficiency= 96.7741935484 %\n", + "3/4 load efficiency= 96.5665236052 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.5, Page Number:1218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "rp=8.0#ohm\n", + "rs=0.08#ohm\n", + "z=0.07\n", + "pf=0.75\n", + "v1=33.0\n", + "v2=6.6\n", + "w=2*10.0**6\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "fl_i=w/(math.sqrt(3)*v2*10**3)\n", + "K=v2/(math.sqrt(3)*v1)\n", + "r02=rs+(rp*(K*K))\n", + "z_drop=z*v2*1000/math.sqrt(3)\n", + "z02=z_drop/fl_i\n", + "x02=math.sqrt((z02*z02)-(r02*r02))\n", + "drop=fl_i*(r02*math.cos(phi)+x02*math.sin(phi))\n", + "secondary_v=v2*1000/math.sqrt(3)\n", + "V2=secondary_v-drop\n", + "line_v=V2*math.sqrt(3)\n", + "regn=drop*100/secondary_v\n", + "\n", + "#result\n", + "print \"secondary voltage\",line_v,\"V\"\n", + "print \"regulation=\",regn,\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary voltage 6254.29059005 V\n", + "regulation= 5.23802136291 %\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.6, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=100.0#kWA\n", + "f=50.0#Hz\n", + "v1=3300.0#V\n", + "v2=400.0#V\n", + "rh=3.5#ohm\n", + "rl=0.02#ohm\n", + "pf=0.8\n", + "efficiency=0.958\n", + "\n", + "#calculations\n", + "output=0.8*100\n", + "inpt=output/efficiency\n", + "total_loss=(inpt-output)*1000\n", + "K=v2/(math.sqrt(3)*v1)\n", + "r02=rl+K**2*rh\n", + "i2=((w*1000)/math.sqrt(3))/v2\n", + "cu_loss=3*i2**2*r02\n", + "iron_loss=total_loss-cu_loss\n", + "#result\n", + "print \"ironloss=\",iron_loss,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.0371411080502\n", + "2321.31925314\n", + "ironloss= 1185.98763622 W\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.7, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=5000.0#kVA\n", + "v1=6.6#kV\n", + "v2=33.0#kV\n", + "nl=15.0#kW\n", + "fl=50.0#kW\n", + "drop=0.07\n", + "load=3200.0#kw\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "i2=w*1000/(math.sqrt(3)*v2*1000)\n", + "impedence_drop=drop*(v2/math.sqrt(3))*1000\n", + "z02=impedence_drop/i2\n", + "cu_loss=fl-nl\n", + "r02=cu_loss*1000/(3*i2**2)\n", + "x02=math.sqrt(z02**2-r02**2)\n", + "print \"full-load x02:\",x02\n", + "\n", + "#when load=3200#kW\n", + "i2=load/(math.sqrt(3)*v2*0.8)\n", + "drop_=drop*1000*(r02*math.cos(phi)+z02*math.sin(phi))\n", + "regn=(drop_*100)/(v2*1000/math.sqrt(3))\n", + "vp=v1+regn/100*v1\n", + "print \"Primary voltage=\",vp*1000,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load x02: 15.1695784661\n", + "Primary voltage= 6851.39317975 V\n" + ] + } + ], + "prompt_number": 95 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.8, Page Number:1219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=1\n", + "x=6\n", + "v=6600#V\n", + "v2=4800#V\n", + "pf=0.8\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "regn=(r*math.cos(phi)+z*math.sin(phi))\n", + "secondary_v=v2+regn/100*v2\n", + "secondary_vp=secondary_v/math.sqrt(3)\n", + "K=secondary_vp/v\n", + "\n", + "#result\n", + "print \"Transformation Ratio=\",K" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Transformation Ratio= 0.423426587968\n" + ] + } + ], + "prompt_number": 96 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.9, Page Number:1220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=2000#kVA\n", + "v1=6600#V\n", + "v2=400#V\n", + "pf=0.8\n", + "scv=400#V\n", + "sci=175#A\n", + "scw=17#kW\n", + "ocv=400#V\n", + "oci=150#A\n", + "ocw=15#kW\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "i1=sci/math.sqrt(3)\n", + "z01=scv/i1\n", + "r01=scw*1000/(3*i1*i1)\n", + "x01=math.sqrt(z01**2-r01**2)\n", + "r=i1*r01*100/v1\n", + "x=i1*x01*100/v1\n", + "regn=(r*math.cos(phi)-x*math.sin(phi))\n", + "I1=w*1000/(math.sqrt(3)*v1)\n", + "total_loss=scw+ocw\n", + "fl_output=w*pf\n", + "efficiency=fl_output/(fl_output+total_loss)\n", + "\n", + "#result\n", + "print \"% resistance=\",r,\"%\"\n", + "print \"% reactance=\",x,\"%\"\n", + "print \"% efficiency=\",efficiency*100,\"%\"\n", + "print \"%regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "% resistance= 0.849779616989 %\n", + "% reactance= 6.00073499035 %\n", + "% efficiency= 98.0392156863 %\n", + "%regulation= -2.92061730062 %\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.10, Page Number:1220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=11000.0#V\n", + "v2=440.0#V\n", + "i=5.0#A\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "secondary_rating=v2/math.sqrt(3)\n", + "primary_i=i/math.sqrt(3)\n", + "voltsamps=v1*5/math.sqrt(3)\n", + "i2=voltsamps/secondary_rating\n", + "output=pf*voltsamps/1000\n", + "\n", + "#result\n", + "print \"Each coil current=\",i2,\"A\"\n", + "print \"Total output=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Each coil current= 125.0 A\n", + "Total output= 25.4034118443 kW\n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.12, Page Number:1224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=40#kVA\n", + "\n", + "#calculations\n", + "kVA_per_transformer=load/2*1.15\n", + "delta_delta_rating=kVA_per_transformer*3\n", + "increase=(delta_delta_rating-load)*100/load\n", + "\n", + "#result\n", + "print \"increase=\",increase,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase= 72.5 %\n" + ] + } + ], + "prompt_number": 126 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.13, Page Number:1224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=20#kVA\n", + "v1=2300#v\n", + "v2=230#V\n", + "load=40#kVA\n", + "\n", + "#calculations\n", + "kva_load=load/math.sqrt(3)\n", + "percent_rated=kva_load*100/w\n", + "kvarating_vv=2*w*0.866\n", + "vv_delta=kvarating_vv*100/60\n", + "percentage_increase=kva_load/(load/3)\n", + "\n", + "#result\n", + "print \"i)kVA load of each transformer=\",kva_load,\"kVA\"\n", + "print \"ii)per cent of rated load carried by each transformer=\",percent_rated,\"%\"\n", + "print \"iii)total kVA rating of the V-V bank\",kvarating_vv,\"kVA\"\n", + "print \"iv)ratio of the v-v bank to delta-delta bank\",vv_delta,\"%\"\n", + "print \"v)percent increase in load=\",percentage_increase*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)kVA load of each transformer= 23.0940107676 kVA\n", + "ii)per cent of rated load carried by each transformer= 115.470053838 %\n", + "iii)total kVA rating of the V-V bank 34.64 kVA\n", + "iv)ratio of the v-v bank to delta-delta bank 57.7333333333 %\n", + "v)percent increase in load= 177.646236674 %\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.14, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=150.0#kW\n", + "v1=1000.0#V\n", + "pf=0.866\n", + "v=2000.0#V\n", + "\n", + "#calculations\n", + "il=load*1000/(pf*math.sqrt(3)*1000)\n", + "ip=il/math.sqrt(3)\n", + "ratio=v1/v\n", + "ip=ip*ratio\n", + "I=il\n", + "Ip=I*ratio\n", + "pf=86.6/100*pf\n", + "\n", + "#result\n", + "print \"delta-delta:current in the windings=\",ip,\"A\"\n", + "print \"v-v:current in the windings=\",Ip,\"A\"\n", + "print \"Power factor\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delta-delta:current in the windings= 28.8683602771 A\n", + "v-v:current in the windings= 50.0014667312 A\n", + "Power factor 0.749956\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.15, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=3000#kW\n", + "v=11#kV\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "I=load*1000/(math.sqrt(3)*v*1000*pf)\n", + "transformer_pf=86.6/100*pf\n", + "additional_load=72.5/100*load\n", + "total_load=additional_load+load\n", + "il=total_load*1000/(math.sqrt(3)*v*1000*pf)\n", + "\n", + "#result\n", + "print \"Il=\",il,\"A\"\n", + "print \"phase current=\",il/math.sqrt(3),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Il= 339.521323075 A\n", + "phase current= 196.022727273 A\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.16, Page Number:1225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=400#kVA\n", + "pf=0.866\n", + "v=440#V\n", + "\n", + "#calculations\n", + "kVA_each=(load/2)/pf\n", + "phi=math.acos(pf)\n", + "p1=kVA_each*math.cos(math.radians(30-phi))\n", + "p2=kVA_each*math.cos(math.radians(30+phi))\n", + "p=p1+p2\n", + "\n", + "#result\n", + "print \"kVA supplied by each transformer=\",kVA_each,\"kVA\"\n", + "print \"kW supplied by each transformer=\",p,\"kW\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kVA supplied by each transformer= 230.946882217 kVA\n", + "kW supplied by each transformer= 399.995027715 kW\n" + ] + } + ], + "prompt_number": 136 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.17, Page Number:1228" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V\n", + "load=33.0#kVA\n", + "v2=3300.0#V\n", + "\n", + "#calculations\n", + "vl=0.866*v2\n", + "ilp=load*1000/(math.sqrt(3)*v2)\n", + "ils=ilp/(440/v2)\n", + "main_kva=v2*ilp*0.001\n", + "teaser_kva=0.866*main_kva\n", + "\n", + "#result\n", + "print \"voltage rating of each coil=\",vl\n", + "print \"current rating of each coil=\",ils\n", + "print \"main kVA=\",main_kva,\"kVA\"\n", + "print \"teaser kVA=\",teaser_kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage rating of each coil= 2857.8\n", + "current rating of each coil= 43.3012701892\n", + "main kVA= 19.0525588833 kVA\n", + "teaser kVA= 16.4995159929 kVA\n" + ] + } + ], + "prompt_number": 139 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.18, Page Number:1231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "v2=200.0#V\n", + "output=150.0#kVA\n", + "\n", + "#calculations\n", + "ratio=v2/v\n", + "i2=output*1000/(2*v2)\n", + "i1=i2*ratio\n", + "primary_volts=(math.sqrt(3)*v)/2\n", + "ratio=v2/primary_volts\n", + "\n", + "#result\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"turns ratio\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "primary current= 170.454545455 A\n", + "turns ratio 0.524863881081\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.19, Page Number:1231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=100.0#V\n", + "v2=3300.0#V\n", + "p=400.0#kW\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "K=v/v2\n", + "i2=p*1000/(pf*v)\n", + "ip=1.15*K*i2\n", + "I2m=K*i2\n", + "i2=ip/2\n", + "i1m=math.sqrt(I2m**2+i2**2)\n", + "\n", + "#reslult\n", + "print \"Current=\",i1m,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 174.77684841 A\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.20, Page Number:1232" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "w1=300#kW\n", + "w2=450#kW\n", + "v1=100#V\n", + "pf=0.707\n", + "v2=3300#V\n", + "\n", + "#calculations\n", + "K=v/v2\n", + "i2t=(w2*1000)/(100*pf)\n", + "i1t=1.15*K*i2t\n", + "I2m=(K*w1*1000)/(100*pf)\n", + "i2=i1t/2\n", + "i1m=math.sqrt(I2m**2+i2**2)\n", + "\n", + "#result\n", + "print \"Current=\",i1m,\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current= 169.804606659 A\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.21, Page Number:1233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=80.0#V\n", + "v2=11000.0#V\n", + "w1=500.0#kW\n", + "w2=800.0#kW\n", + "pf=0.5\n", + "\n", + "#calculations\n", + "K=v1/v2\n", + "#unity pf\n", + "i2t=w1*1000/v1\n", + "i1t=1.15*K*i2t\n", + "i2m=K*w2*1000/v1\n", + "i1t_half=i1t/2\n", + "ip=math.sqrt(i2m**2+i1t_half**2)\n", + "\n", + "print \"unity pf\"\n", + "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n", + "#0.5 pf\n", + "i2t=w1*1000/(v1*pf)\n", + "i1t=1.15*K*i2t\n", + "i2m=K*w2*1000/(v1*pf)\n", + "i1t_half=i1t/2\n", + "ip=math.sqrt(i2m**2+i1t_half**2)\n", + "print \"0.5 pf\"\n", + "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "unity pf\n", + "one 3 phase line carries 52.2727272727 A whereas the other 2 carry 77.281082436 A each\n", + "0.5 pf\n", + "one 3 phase line carries 104.545454545 A whereas the other 2 carry 154.562164872 A each\n" + ] + } + ], + "prompt_number": 171 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.22, Page Number:1234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=50#V\n", + "v2=4.6*1000#V\n", + "load=350#kW\n", + "w=200#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "K=v1/v2\n", + "i2t=w*1000/(v1*pf)\n", + "i1t=1.15*K*i2t\n", + "i2m=load*1000/(v1*pf)\n", + "Ki2m=K*i2m\n", + "i1t_half=i1t/2\n", + "i1m=math.sqrt(Ki2m**2+i1t_half**2)\n", + "\n", + "#result\n", + "print \"current in line A=\",i1t\n", + "print \"current in line B=\",i1m\n", + "print \"current in line C=\",i1m" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current in line A= 62.5\n", + "current in line B= 100.11107076\n", + "current in line C= 100.11107076\n" + ] + } + ], + "prompt_number": 173 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.23, Page Number:1234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=231#V\n", + "v2=6600#v\n", + "volt_induced=8#v\n", + "\n", + "#calculations\n", + "hv=v2/volt_induced\n", + "vl=v*math.sqrt(3)\n", + "n_lv1=vl/volt_induced\n", + "n_lv2=math.sqrt(3)*n_lv1/2\n", + "n=2*n_lv2/3\n", + "\n", + "#result\n", + "print \"neutral point is located on the\",math.ceil(n),\"th turn from A downwards\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "neutral point is located on the 29.0 th turn from A downwards\n" + ] + } + ], + "prompt_number": 176 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.24, Page Number:1235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6000.0#V\n", + "v2=440.0#V\n", + "f=50.0#Hz\n", + "area=300.0#cm2\n", + "flux=1.2#Wb/m2\n", + "\n", + "#calculations\n", + "n1=v/(4.44*f*flux*area*0.0001*0.9)\n", + "K=v2/v\n", + "n2=n1*K\n", + "n_lv=math.sqrt(3)*n2/2\n", + "turns=n_lv*2/3\n", + "\n", + "#result\n", + "print \"NUmber of turns in AN=\",math.floor(turns)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " NUmber of turns in AN= 35.0\n" + ] + } + ], + "prompt_number": 183 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.25, Page Number:1235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=250.0#V\n", + "load=30.0#kVA\n", + "v2=250.0#V\n", + "\n", + "#calculations\n", + "il=load*1000/(math.sqrt(3)*v2)\n", + "vl=0.866*v2\n", + "kva=il*vl*(0.001)\n", + "\n", + "#result\n", + "print \"Voltage=\",vl,\"V\"\n", + "print \"kVA rating\",kva,\"kVA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage= 216.5 V\n", + "kVA rating 14.9995599935 kVA\n" + ] + } + ], + "prompt_number": 185 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.26, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#vaiable declaration\n", + "load=500#kVA\n", + "pf=0.8\n", + "za=complex(2,6)\n", + "zb=complex(2,5)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "s=load*complex(math.cos(phi),math.sin(phi))\n", + "z1=za/zb\n", + "z2=zb/za\n", + "sa=s/(1+z1)\n", + "sb=s/(1+z2)\n", + "pfa=cmath.phase(sa)\n", + "pfb=cmath.phase(sb)\n", + "#result\n", + "print \"sa=\",abs(sa)\n", + "print \"sb=\",abs(sb)\n", + "print \"cos phi_a=\",pfa\n", + "print \"cos phi_b=\",pfb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= 230.042839552\n", + "sb= 270.171613479\n", + "cos phi_a= 0.611765735265\n", + "cos phi_b= 0.670521557981\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.27, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "w=2000#kVA\n", + "w1=4000#kVA\n", + "w2=5000#kVA\n", + "pf=0.8\n", + "za=complex(2,8)\n", + "zb=complex(1.6,3)\n", + "\n", + "#calculations\n", + "za_per=(w1/w)*za\n", + "zb_per=zb\n", + "z=za_per+zb_per\n", + "s=complex(w1,w-w2)\n", + "sb=s*(za/z)\n", + "sa=s-sb\n", + "\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (2284.2287695-1821.49046794j)\n", + "sb= (1715.7712305-1178.50953206j)\n" + ] + } + ], + "prompt_number": 211 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.28, Page Number:1237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "load=1400#kVA\n", + "pf=0.866\n", + "w1=1000#kVA\n", + "w2=500#kVA\n", + "v1=6600\n", + "v2=400\n", + "za=complex(0.001,0.003)\n", + "zb=complex(0.0028,0.005)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "zb=(w1/w2)*zb\n", + "z=za/(za+zb)\n", + "x=math.cos(-phi)\n", + "y=math.sin(-phi)*1j\n", + "s=load*(x+y)\n", + "sb=s*z\n", + "sa=s-sb\n", + "\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (929.911014012-588.664867724j)\n", + "sb= (282.488985988-111.396729565j)\n" + ] + } + ], + "prompt_number": 240 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.29, Page Number:1238" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "load=750#kVA\n", + "pf=0.707\n", + "w1=500#kVA\n", + "w2=250#kVA\n", + "v1=3300\n", + "v2=400\n", + "za=complex(2,3)\n", + "zb=complex(1.5,4)\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "zb=(w1/w2)*zb\n", + "z=za/(za+zb)\n", + "x=math.cos(-phi)\n", + "y=math.sin(-phi)*1j\n", + "s=load*(x+y)\n", + "sb=s*z\n", + "sa=s-sb\n", + "per_r=za.real*(sa.real)/w1\n", + "per_x=(za.imag)*(sa.imag)/w1\n", + "total_per=per_r+per_x\n", + "vl=v2-(total_per*4)\n", + "#result\n", + "print \"sa=\",sa\n", + "print \"sb=\",sb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= (399.511103547-348.770523615j)\n", + "sb= (130.738896453-181.639636072j)\n" + ] + } + ], + "prompt_number": 242 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.30, Page Number:1240" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratio=100/5\n", + "i=5#A\n", + "i1=3.5#A\n", + "\n", + "#calculations\n", + "il=i1*ratio\n", + "\n", + "#result\n", + "print \"Line current=\",il,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Line current= 70.0 A\n" + ] + } + ], + "prompt_number": 214 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 33.31, Page Number:1240" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i1=2000#A\n", + "i2=2500#A\n", + "i=5#A\n", + "\n", + "#calculations\n", + "ratio1=i1/i\n", + "ratio2=i2/i\n", + "\n", + "#result\n", + "print \"ratio in first case=\",ratio1\n", + "print \"ratio in second case=\",ratio2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio in first case= 400\n", + "ratio in second case= 500\n" + ] + } + ], + "prompt_number": 216 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter34_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter34_4.ipynb new file mode 100644 index 00000000..d05f1eeb --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter34_4.ipynb @@ -0,0 +1,3065 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:0f43ef5b4c05930620c5e3871d199970ead64e15a20629e8e926abd11e2e9167" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 34:Induction Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.1, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=290.0#rpm\n", + "f=50.0#Hz\n", + "Ns=300.0#rpm(considered)\n", + "#calculation\n", + "P=120*f/Ns\n", + "s=(Ns-n)/Ns\n", + "\n", + "#result\n", + "print \"no. of poles=\",P\n", + "print \"slip=\",s*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no. of poles= 20.0\n", + "slip= 3.33333333333 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.2, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "slot=3\n", + "f=50#Hz\n", + "\n", + "#calculation\n", + "P=2*n\n", + "slots_total=slot*P*n\n", + "Ns=120*f/P\n", + "\n", + "#result\n", + "print \"No. of stator poles=\",P\n", + "print \"Total number of slots=\",slots_total\n", + "print \"Speed=\",Ns,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " No. of stator poles= 6\n", + "Total number of slots= 54\n", + "Speed= 1000 rpm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.3, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "n=3\n", + "f=50#Hz\n", + "slip1=0.04\n", + "slip2=0.03\n", + "\n", + "#calculation\n", + "Ns=120*f/p\n", + "N=Ns*(1-slip1)\n", + "f1=slip2*f*60\n", + "#at standstill s=1\n", + "f2=1*f\n", + "\n", + "#calculation\n", + "print \"speed at which magnetic field of the stator is rotating=\",Ns,\"rpm\"\n", + "print \"speed of the rotor when the slip is 0.04=\",N\n", + "print \"frequency of rotor current=\",f1,\"rpm\"\n", + "print \"frequency of the rotor current at standstill=\",f2,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at which magnetic field of the stator is rotating= 1500 rpm\n", + "speed of the rotor when the slip is 0.04= 1440.0\n", + "frequency of rotor current= 90.0 rpm\n", + "frequency of the rotor current at standstill= 50 Hz\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.4, Page Number:1255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3.0\n", + "p=4.0\n", + "f=50.0#Hz\n", + "slip=0.04\n", + "n=600.0#rpm\n", + "\n", + "#calculations\n", + "Ns=120*f/p\n", + "N=Ns*(1-slip)\n", + "s=(Ns-n)/Ns\n", + "f1=s*f\n", + "\n", + "#result\n", + "print \"the synchronous speed=\",Ns,\"rpm\"\n", + "print \"the rotor speed=\",N,\"rpm\"\n", + "print \"the rotor frequency when n=600 rpm=\",f1,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the synchronous speed= 1500.0 rpm\n", + "the rotor speed= 1440.0 rpm\n", + "the rotor frequency when n=600 rpm= 30.0 Hz\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.5, Page Number:1256" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=12\n", + "n=3\n", + "N=500#rpm\n", + "p2=8\n", + "slip=0.03\n", + "\n", + "#calculation\n", + "f=p*N/120\n", + "Ns=120*f/p2\n", + "N=Ns-slip*Ns\n", + "\n", + "#result\n", + "print \"full load speed of the motor=\",N,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full load speed of the motor= 727.5 rpm\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.6, Page Number:1258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "e=80#V\n", + "r=1#ohm\n", + "x=4#ohm\n", + "rheo=3#ohm\n", + "\n", + "#calculation\n", + "E=e/(3)**0.5\n", + "z=(r**2+x**2)**0.5\n", + "i=E/z\n", + "pf=r/z\n", + "R=rheo+r\n", + "z2=(R**2+x**2)**0.5\n", + "i2=E/z2\n", + "\n", + "pf2=R/z2\n", + "\n", + "#result\n", + "print \"slip rings are short circuited:\"\n", + "print \"current/phase\",i,\"A\"\n", + "print \"pf=\",pf\n", + "print \"slip rings are onnected to a star-connected rheostat of 3 ohm\",\n", + "print \"current/phase\",i2,\"A\"\n", + "print \"pf=\",pf2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip rings are short circuited:\n", + "current/phase 11.2022406722 A\n", + "pf= 0.242535625036\n", + "slip rings are onnected to a star-connected rheostat of 3 ohm current/phase 8.16496580928 A\n", + "pf= 0.707106781187\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.7, Page Number:1258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "v=400#V\n", + "ratio=6.5\n", + "r=0.05#ohm\n", + "x=0.25#ohm\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e2=v*k/(3**0.5)\n", + "R=x-r\n", + "r2=x\n", + "z=(x**2+r2**2)**0.5\n", + "i2=e2/z\n", + "\n", + "#result\n", + "print \"external resistance=\",R,\"ohm\"\n", + "print \"starting current=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.2 ohm\n", + "starting current= 100.491886883 A\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.8, Page Number:1259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=1100#V\n", + "f=50#Hz\n", + "ratio=3.8\n", + "r=0.012#ohm\n", + "x=0.25#ohm\n", + "s=0.04\n", + "#calculation\n", + "e=v/ratio\n", + "z=(r**2+x**2)**0.5\n", + "i=e/z\n", + "pf=r/z\n", + "xr=s*x\n", + "zr=(r**2+xr**2)**0.5\n", + "er=s*e\n", + "i2=er/zr\n", + "pf2=r/zr\n", + "i2=100*ratio\n", + "z2=e/i2\n", + "r2=(z2**2-x**2)**0.5\n", + "R=r2-r\n", + "\n", + "#result\n", + "print \"current with slip rings shorted=\",i,\"A\"\n", + "print \"pf with slip rings shorted=\",pf\n", + "print \"current with slip=4% and slip rings shorted=\",i2\n", + "print \"pf withslip=4% and slip rings shorted=\",pf2\n", + "print \"external resistance=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current with slip rings shorted= 1156.56314266 A\n", + "pf with slip rings shorted= 0.0479447993684\n", + "current with slip=4% and slip rings shorted= 380.0\n", + "pf withslip=4% and slip rings shorted= 0.768221279597\n", + "external resistance= 0.70758173952 ohm\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.9, Page Number:1259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=15#kW\n", + "v=3000#V\n", + "f=50#Hz\n", + "p=6\n", + "ratio=3.6\n", + "r=0.13#ohm\n", + "l=3.61*0.001#H\n", + "\n", + "#calculation\n", + "v=v/3**0.5\n", + "x2=2*3.14*l*f\n", + "k=1/ratio\n", + "r2_=0.1/k**2\n", + "x2_=ratio**2*x2\n", + "is1=v/((r**2+x2_**2)**0.5)\n", + "ns=120*f/p\n", + "ts=(3*3/(2*3.14*f))*((v**2)*r2_)/(r2_**2+x2_**2)\n", + "\n", + "#result\n", + "print \"starting current=\",is1,\"A\"\n", + "print \"ts=\",ts,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting current= 117.896733436 A\n", + "ts= 512.375725888 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.10, Page Number:1261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "zs=complex(0.4,4)\n", + "zr=complex(6,2)\n", + "v=80#V\n", + "s=0.03\n", + "\n", + "#calculation\n", + "e2=v/3**0.5\n", + "i=e2/abs(zr+zs)\n", + "er=s*e2\n", + "xr=s*zs.imag\n", + "ir=er/abs(complex(zs.real,xr))\n", + "\n", + "#result\n", + "print \"rotor current at standstill=\",i,\"A\"\n", + "print \"rotor current when slip-rings are short-circuited=\",ir,\"A\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor current at standstill= 5.26498126493 A\n", + "rotor current when slip-rings are short-circuited= 3.31800758166 A\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.11, Page Number:1261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "e=120#V\n", + "r2=0.3#ohm\n", + "x2=1.5#ohm\n", + "s=0.04\n", + "\n", + "#calculations\n", + "e2=e/3**0.5\n", + "er=s*e2\n", + "xr=s*x2\n", + "zr=(r2**2+xr**2)**0.5\n", + "i=er/zr\n", + "s=r2/x2\n", + "xr=s*x2\n", + "zr=(xr**2+r2**2)**0.5\n", + "er=s*e2\n", + "i2=er/zr\n", + "\n", + "#result\n", + "print \"rotor when running short-circuited=\",i,\"A\"\n", + "print \"slip=\",s\n", + "print \"current when torque is maximum=\",i2,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor when running short-circuited= 9.05821627316 A\n", + "slip= 0.2\n", + "current when torque is maximum= 32.6598632371 A\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.12, Page Number:1264" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50.0#Hz\n", + "s=0.04\n", + "tb=150.0#kg-m\n", + "n=660.0#rpm\n", + "r=0.5#ohm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "t=tb*(2/((sb/s)+s/sb))\n", + "\n", + "#result\n", + "print \"torque=\",t,\"kg-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 90.0 kg-m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.13(a), Page Number:1266" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variablde declaration\n", + "n=3\n", + "vd=0.90\n", + "\n", + "#calculation\n", + "ratio_s=(1/vd)**2\n", + "ratio_i=ratio_s*vd\n", + "cu_loss_increase=ratio_i**2\n", + "\n", + "#result\n", + "print \"increase in motor copper losses=\",cu_loss_increase" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase in motor copper losses= 1.23456790123\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.13(b), Page Number:1264" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "p=6\n", + "f=50.0#Hz\n", + "p1=15.0#kW\n", + "n=980.0#rpm\n", + "efficiency=0.93\n", + "vd=0.10\n", + "fd=0.05\n", + "\n", + "#calculation\n", + "v2=(1-vd)*v\n", + "f2=(1-fd)*f\n", + "n1=120*f/p\n", + "n2=120*f2/p\n", + "s1=(n1-n)/n1\n", + "ratio_f=s1*(v*(1-vd)/v)**2*f2/f\n", + "n2=n2*(1-ratio_f)\n", + "p2=p1*n2/n1\n", + "#result\n", + "print \"the new operating speed=\",n2,\"rpm\"\n", + "print \"the new output power=\",p2,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the new operating speed= 935.3795 rpm\n", + "the new output power= 14.0306925 kW\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(a), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=3\n", + "v1=400#V\n", + "v2=200#V\n", + "r=0.06#ohm\n", + "x=0.3#ohm\n", + "a=1\n", + "#calculations\n", + "r=x-r\n", + "\n", + "#result\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "additional resistance= 0.24 ohm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(b), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "n=3\n", + "f=50#Hz\n", + "p=8\n", + "s=0.02\n", + "r=0.001#ohm\n", + "x=0.005#ohm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "a=r/x\n", + "n2=(1-s)*ns\n", + "ratio=2*s**2*a/(a**2+s**2)\n", + "\n", + "#result\n", + "print \"ratio of the maximum to full-load torque=\",ratio*1000,\"10^-3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of the maximum to full-load torque= 3.9603960396 10^-3\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.14(c), Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=12\n", + "v=600#V\n", + "f=50#Hz\n", + "r=0.03#ohm\n", + "x=0.5#ohm\n", + "n=495#rpm\n", + "s=0.01\n", + "#calculation\n", + "Ns=120*f/p\n", + "a=r/x\n", + "n=Ns*(1-a)\n", + "ratio=2*a*s/(a**2+s**2)\n", + "\n", + "#result\n", + "print \"speed of max torque=\",n,\"rpm\"\n", + "print \"ratio of torques=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of max torque= 470.0 rpm\n", + "ratio of torques= 0.324324324324\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.15, Page Number:1267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=746.0#kW\n", + "f=50.0#Hz\n", + "p=16\n", + "zr=complex(0.02,0.15)\n", + "n=360.0#rpm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "a=zr.real/zr.imag\n", + "ratio=2*a*s/(a**2+s**2)\n", + "N=ns*(1-a)\n", + "R=zr.imag-zr.real\n", + "\n", + "#result\n", + "print \"ratio of torques=\",ratio\n", + "print \"speed at maximum torque=\",N,\"rpm\"\n", + "print \"rotor resistance=\",R,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of torques= 0.550458715596\n", + "speed at maximum torque= 325.0 rpm\n", + "rotor resistance= 0.13 ohm\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.16, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "a=Symbol('a')\n", + "p=4\n", + "f=50.0#Hz\n", + "r=0.025#ohm\n", + "x=0.12#ohm\n", + "ratio=3.0/4.0\n", + "\n", + "#calculations\n", + "s=r/x\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "a=solve(ratio-(2*a/(1+a**2)),a)\n", + "r=a[0]*x-r\n", + "\n", + "#result\n", + "print \"speed at maximum torque=\",n,\"rpm\"\n", + "print \"additional resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed at maximum torque= 1187.5 rpm\n", + "additional resistance= 0.0291699475574164 ohm\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.17, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "s=0.04\n", + "r=0.01#ohm\n", + "x=0.1#ohm\n", + "p=8\n", + "#calculation\n", + "a=r/x\n", + "t_ratio=2*a*s/(a**2+s**2)\n", + "ns=120*f/p\n", + "n=(1-a)*ns\n", + "\n", + "#result\n", + "print \"ratio of torques=\",1/t_ratio\n", + "print \"speed=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of torques= 1.45\n", + "speed= 675.0 rpm\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.18, Page Number:1268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "a=Symbol('a')\n", + "a2=Symbol('a2')\n", + "p=3\n", + "t_ratio=2.5\n", + "t_ratio2=1.5\n", + "s=0.03\n", + "\n", + "#calculation\n", + "t_ratio3=t_ratio2/t_ratio\n", + "a=solve(t_ratio3-(2*a/(1+a**2)),a)\n", + "a2=solve(a2**2-0.15*a2+0.0009,a2)\n", + "r_red=(a[0]-a2[1])/a[0]\n", + "#result\n", + "print \"percentage reduction in rotor circuit resistance=\",r_red*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction in rotor circuit resistance= 56.8784093726987 %\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.19, Page Number:1269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50#Hz\n", + "r=0.08#ohm\n", + "n=650.0#rpm\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "a=1\n", + "r=a*x2-r\n", + "#result\n", + "print \"extra resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "extra resistance= 0.52 ohm\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.20, Page Number:1269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "R=Symbol('R')\n", + "p=4\n", + "f=50.0#Hz\n", + "t=162.8#N-m\n", + "n=1365.0#rpm\n", + "r=0.2#ohm\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "sb=(ns-n)/ns\n", + "x2=r/sb\n", + "R=solve(1.0/(4*x2)-((r+R)/((r+R)**2+x2**2)),R)\n", + "\n", + "#result\n", + "print \"resistance to be added=\",round(R[0],1),\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance to be added= 0.4 ohm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.21, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "f=50.0#Hz\n", + "load=7.46#kW\n", + "t_ratios=1.60\n", + "t_ratiom=2.0\n", + "\n", + "#calcualtion\n", + "t_ratio=t_ratios/t_ratiom\n", + "#0.8a2-2*a+0.8 a=0.04\n", + "#0.5=2*a*sf/a2+sf2 sf=0.01\n", + "a=0.04\n", + "sf=0.01\n", + "ns=120*f/p\n", + "n=ns-sf*ns\n", + "N=ns-a*ns\n", + "\n", + "#result\n", + "print \"full-load speed=\",n,\"rpm\"\n", + "print \"speed at maximum torque=\",N,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full-load speed= 1485.0 rpm\n", + "speed at maximum torque= 1440.0 rpm\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.22, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "v=240#V\n", + "f=50#Hz\n", + "r=0.12#ohm\n", + "x=0.85#ohm\n", + "ratio=1.8\n", + "s=0.04\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e2=k*(v/3**0.5)\n", + "ns=120*f/p\n", + "tf=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n", + "s=r/x\n", + "tmax=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n", + "n=ns*(1-s)\n", + "\n", + "#result\n", + "print \"developed torque=\",tf,\"N-m\"\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"speed at maximum torque=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "developed torque= 52.4097855621 N-m\n", + "maximum torque= 99.9125764956 N-m\n", + "speed at maximum torque= 858.823529412 rpm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.23, Page Number:1270" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "r=0.015#ohm\n", + "x=0.09#ohm\n", + "s=0.03\n", + "\n", + "#calculation\n", + "ns=100#rpm considered\n", + "n=(1-s)*ns\n", + "n2=n/2\n", + "s2=(ns-n2)/ns\n", + "ratio=((s2/s)*(r**2+(s*x)**2)/(r**2+(s2*x)**2))**0.5\n", + "per=1-1/ratio\n", + "phi=math.atan(s2*x/r)\n", + "pf=math.cos(phi)\n", + "\n", + "#result\n", + "print \"percentage reduction=\",per*100,\"%\"\n", + "print \"pf=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage reduction= 22.8528060715 %\n", + "pf= 0.307902262948\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.26, Page Number:1272" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "p=4\n", + "t=100#N-m\n", + "n=1200#rpm\n", + "\n", + "#calculation\n", + "e2=v/2\n", + "ns=120*f/p\n", + "n=ns-n\n", + "n2=n+ns/2\n", + "\n", + "#result\n", + "print \"stator supply voltage=\",e2,\"V\"\n", + "print \"new speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator supply voltage= 220 V\n", + "new speed= 1050 rpm\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.24, Page Number:1274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable delclaration\n", + "v=400.0#V\n", + "f=60.0#Hz\n", + "p=8.0\n", + "n=1140.0#rpm\n", + "e=440.0#V\n", + "e2=550.0#V\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "s1=(ns-n)/ns\n", + "s2=s1*(e/e2)**2\n", + "n2=ns*(1-s2)\n", + "\n", + "#result\n", + "print \"speed=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed= 1053.6 rpm\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.25, Page Number:1274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=450.0#V\n", + "f=60.0#Hz\n", + "p=8.0\n", + "n=873.0#rpm\n", + "t=23.0#degrees\n", + "n2=864.0#rpm\n", + "alpha=1.0/234.0#per degrees centrigrade\n", + "\n", + "#calculation\n", + "s1=(900-n)/900\n", + "s2=(900-n2)/900\n", + "ratio=s2/s1-1\n", + "t2=(s2/s1-1)/alpha+23 \n", + "\n", + "#result\n", + "print \"increase in rotor resistance=\",ratio*100,\"%\"\n", + "print \"approx temperature=\",t2,\"degrees centigrade\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "increase in rotor resistance= 33.3333333333 %\n", + "approx temperature= 101.0 degrees centigrade\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.27, Page Number:1283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=500.0#Hz\n", + "p=6.0\n", + "load=80.0#kW\n", + "alt=100.0\n", + "ns=120.0*f/60.0\n", + "#calculation\n", + "s=alt/(60.0*f)\n", + "n=(1-s)*ns\n", + "cu_loss=(1.0/3.0)*load*1000/3.0\n", + "\n", + "#result\n", + "print \"slip=\",s*1000,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"rotor copper loss=\",cu_loss/10000,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.33333333333 %\n", + "rotor speed= 996.666666667 rpm\n", + "rotor copper loss= 0.888888888889 kW\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.28, Page Number:1283" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=50.0#Hz\n", + "p=4.0\n", + "n=1425.0#rpm\n", + "z=complex(0.4,4)\n", + "ratio=0.8\n", + "loss=500.0#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=75/ns\n", + "e1=v/3**0.5\n", + "tf=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n", + "ir=s*ratio*e1/(z.real**2+(s*z.imag)**2)**0.5\n", + "cu_loss=3*ir**2*z.real\n", + "pm=2*3.4*(n/60)*tf\n", + "pout=pm-loss\n", + "s=z.real/z.imag\n", + "tmax=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n", + "nmax=ns-s*ns\n", + "i=ratio*e1/abs(z)\n", + "tst=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real)/(z.real**2+(z.imag)**2)\n", + "\n", + "#result\n", + "print \" full load torque=\",tf,\"N-m\"\n", + "print \"rotor current=\",ir,\"A\"\n", + "print \"cu_loss=\",cu_loss,\"W\"\n", + "print \"power output=\",pout,\"W\"\n", + "print \"max torque=\",tmax,\"N-m\"\n", + "print \"speed at max torque=\",nmax,\"rpm\"\n", + "print \"starting current=\",i,\"A\"\n", + "print \"starting torque=\",tst,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " full load torque= 78.9197452229 N-m\n", + "rotor current= 22.7215022978 A\n", + "cu_loss= 619.52 W\n", + "power output= 12245.5388535 W\n", + "max torque= 98.6496815287 N-m\n", + "speed at max torque= 1350.0 rpm\n", + "starting current= 50.5546790867 A\n", + "starting torque= 19.5345904017 N-m\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.30, Page Number:1286" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=60#kW\n", + "loss=1#kW\n", + "s=0.03\n", + "\n", + "#calculations\n", + "p2=load-loss\n", + "pm=(1-s)*p2\n", + "cu_loss=s*p2\n", + "rotor_loss=cu_loss*1000/3\n", + "\n", + "#result\n", + "print \"mechanical power developed=\",pm,\"kW\"\n", + "print \"rotor copper loss=\",rotor_loss,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mechanical power developed= 57.23 kW\n", + "rotor copper loss= 590.0 W\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.31, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=6\n", + "load=20#KW\n", + "s=0.03\n", + "i=60#A\n", + "\n", + "#calculation\n", + "fr=s*f\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "cu_loss=s*load*1000\n", + "r2=cu_loss/(3*i**2)\n", + "\n", + "#result\n", + "print \"frequency of rotor current=\",fr,\"Hz\"\n", + "print \"rotor copper loss=\",cu_loss,\"W\"\n", + "print \"rotor resistance=\",r2,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of rotor current= 1.5 Hz\n", + "rotor copper loss= 600.0 W\n", + "rotor resistance= 0.0555555555556 ohm\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.32, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "f=50#Hz\n", + "load=3.73#KW\n", + "n=960#rpm\n", + "loss=280#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "input_r=load*1000*ns/n\n", + "input_s=input_r+loss\n", + "\n", + "#result\n", + "print \"stator input=\",input_s,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator input= 4165.41666667 W\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.33, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "p2=75.0#KW\n", + "alt=100.0\n", + "\n", + "#calculations\n", + "f1=alt/60\n", + "s=f1/f\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "cu_loss_r_per_phase=s*p2/3\n", + "pm=(1-s)*p2\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"rotor copper loss per phase=\",cu_loss_r_per_phase,\"kW\"\n", + "print \"mechancal power=\",pm,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.33333333333 %\n", + "rotor speed= 966.666666667 rpm\n", + "rotor copper loss per phase= 0.833333333333 kW\n", + "mechancal power= 72.5 kW\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.34, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=500.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "n=975.0#rpm\n", + "p1=40.0#KW\n", + "loss_s=1.0#kW\n", + "loss=2.0#KW\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "p2=p1-loss_s\n", + "cu_loss=s*p2\n", + "pm=p2-cu_loss\n", + "pout=pm-loss\n", + "efficiency=pout/p1\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor copper loss=\",cu_loss,\"kW\"\n", + "print \"shaft power=\",pout,\"kW\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 2.5 %\n", + "rotor copper loss= 0.975 kW\n", + "shaft power= 36.025 kW\n", + "efficiency= 90.0625 %\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.35, Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "output=100#KW\n", + "v=3300#V\n", + "f=50#Hz\n", + "n=500#rpm\n", + "s=0.018\n", + "pf=0.85\n", + "cu_loss=2440#W\n", + "iron_loss=3500#W\n", + "rotational_loss=1200#W\n", + "\n", + "#calculations\n", + "pm=output+rotational_loss/1000\n", + "cu_loss_r=(s/(1-s))*pm\n", + "p2=pm+cu_loss_r\n", + "input_s=p2+cu_loss/1000+iron_loss/1000\n", + "il=input_s*1000/(3**0.5*v*pf)\n", + "efficiency=output/input_s\n", + "\n", + "#result\n", + "print \"rotor copper loss=\",cu_loss_r,\"kW\"\n", + "print \"line current=\",il,\"A\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor copper loss= 1.85132382892 kW\n", + "line current= 22.1989272175 A\n", + "efficiency= 92.7202341611 %\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.36, Page Number:1288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "f=50.0#Hz\n", + "p=6.0\n", + "p2=100.0#W\n", + "c=120.0\n", + "\n", + "#calculations\n", + "s=c/(f*60)\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "pm=(1-s)*p2\n", + "cu_loss=s*p2/3\n", + "n2=ns-n\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"mechanical power=\",pm,\"kW\"\n", + "print \"copper loss=\",cu_loss,\"kW\"\n", + "print \"speed of stator field with respect to rotor=\",n2,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 4.0 %\n", + "rotor speed= 960.0 rpm\n", + "mechanical power= 96.0 kW\n", + "copper loss= 1.33333333333 kW\n", + "speed of stator field with respect to rotor= 40.0 rpm\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.37, Page Number:1288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "efficiency=0.9\n", + "output=37#kW\n", + "ratio=1.0/3.0\n", + "\n", + "#calculation\n", + "input_m=output*1000/efficiency\n", + "total_loss=input_m-output*1000\n", + "x=total_loss/(3+0.5)\n", + "input_r=output*1000+x/2+x\n", + "s=x/input_r\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 3.0303030303 %\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.38, Page Number:1289" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=6\n", + "load=45#KW\n", + "i=75#A\n", + "s=0.03\n", + "iron_loss=1200#kW\n", + "loss=900#kW\n", + "r=0.12#ohm\n", + "\n", + "#calculations\n", + "pf=load*1000/(3**0.5*v*i)\n", + "r=r*3/2\n", + "cu_loss=3*(i/3**0.5)**2*r\n", + "cu_loss_r=s*42788\n", + "pm=42788-cu_loss_r\n", + "output_s=pm-loss\n", + "efficiency=output_s/(load*1000)\n", + "t=(output_s*60)/(2*3.14*970)\n", + "\n", + "#result\n", + "print \"pf=\",pf\n", + "print \"rotor cu loss=\",cu_loss_r,\"W\"\n", + "print \"p out=\",output_s,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n", + "print \"torque=\",t,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf= 0.866025403784\n", + "rotor cu loss= 1283.64 W\n", + "p out= 40604.36 W\n", + "efficiency= 90.2319111111 %\n", + "torque= 399.937881673 N-m\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.39(a), Page Number:1287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "v=220.0#V\n", + "f=50.0#Hz\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "ratio=1.75\n", + "s=0.05\n", + "\n", + "#calculations\n", + "k=1/ratio\n", + "e1=v/3**0.5\n", + "e2=k*e1\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=s*e2/z\n", + "pcr=3*i2**2*r\n", + "pm=pcr*(1-s)/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "sm=r/x\n", + "n=ns*(1-sm)\n", + "e3=sm*e2\n", + "\n", + "#result\n", + "print \"load torque=\",tg/9.81,\"kg-m\"\n", + "print \"speed at maximum torque=\",n,\"rpm\"\n", + "print \"rotor emf at max torque=\",e3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load torque= 4.26478644041 kg-m\n", + "speed at maximum torque= 1333.33333333 rpm\n", + "rotor emf at max torque= 8.06457518868 V\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.39(b), Page Number:1290" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "p=4\n", + "i=10#A\n", + "pf=0.86\n", + "loss=0.05\n", + "cu_r=0.04\n", + "m_loss=0.03\n", + "\n", + "#calculation\n", + "input_m=3**0.5*v*i*pf\n", + "loss_s=loss*input_m\n", + "input_r=input_m-loss_s\n", + "cu_lossr=cu_r*input_r\n", + "mec_loss=m_loss*input_r\n", + "output_shaft=input_r-cu_lossr-mec_loss\n", + "s=cu_lossr/input_r\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "wr=2*3.14*n/60\n", + "output_r=input_r-cu_lossr\n", + "tr=output_r/wr\n", + "tin=output_shaft/wr\n", + "\n", + "#result\n", + "print \"slip=\",s*100,\"%\"\n", + "print \"rotor speed=\",n,\"rpm\"\n", + "print \"torque developed in the rotor=\",tr,\"Nw-m\"\n", + "print \"shaft torque=\",tin,\"Nw-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip= 4.0 %\n", + "rotor speed= 1440.0 rpm\n", + "torque developed in the rotor= 36.0531340072 Nw-m\n", + "shaft torque= 34.9264735695 Nw-m\n" + ] + } + ], + "prompt_number": 91 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.40, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440.0#V\n", + "p=40.0\n", + "f=50.0#Hz\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "ratio=3.5\n", + "s=0.05\n", + "\n", + "#calculation\n", + "e1=v/3**0.5\n", + "k=1/ratio\n", + "e2=k*e1\n", + "er=s*e2\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=er/z\n", + "cu_loss=3*i2**2*r\n", + "output=cu_loss*(1-s)/s\n", + "sm=r/x\n", + "er=sm*e2\n", + "zr=(r**2+(x*sm)**2)**0.5\n", + "i2=er/zr\n", + "cu_loss=3*i2**2*r\n", + "input_r=cu_loss/sm\n", + "\n", + "#result\n", + "print \"gross output at 5% slip=\",output,\"W\"\n", + "print \"maximum torque=\",input_r,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross output at 5% slip= 6242.77652849 W\n", + "maximum torque= 8780.04535147 W\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.41, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pout=18.65#kW\n", + "p=4.0\n", + "f=50.0#Hz\n", + "loss=0.025\n", + "s=0.04\n", + "\n", + "#calculations\n", + "pw=loss*pout*1000\n", + "pm=pout*1000+pw\n", + "cu_loss=s*pm/(1-s)\n", + "p2=cu_loss/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tsh=9.55*pout*1000/n\n", + "tg=9.55*pm/n\n", + "\n", + "#result\n", + "print \"rotor cu loss=\",cu_loss,\"W\"\n", + "print \"rotor input=\",p2,\"W\"\n", + "print \"shaft torque=\",tsh,\"N-m\"\n", + "print \"gross electromagnetic torque=\",tg,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor cu loss= 796.510416667 W\n", + "rotor input= 19912.7604167 W\n", + "shaft torque= 123.685763889 N-m\n", + "gross electromagnetic torque= 126.777907986 N-m\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.42, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "f=50.0#Hz\n", + "n=710#rpm\n", + "load=35#kW\n", + "loss=1200#W\n", + "loss_r=600#W\n", + "\n", + "#calculation\n", + "p2=load*1000-loss\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "cu_loss=s*p2\n", + "pm=p2-cu_loss\n", + "tg=9.55*pm/n\n", + "pout=pm-loss_r\n", + "tsh=9.55*pout/n\n", + "\n", + "#result\n", + "print \"rotor copper loss=\",cu_loss/1000,\"kW\"\n", + "print \"gross torque=\",tg,\"N-m\"\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"net torque=\",tsh,\"N-m\"\n", + "print \"mechanical power output=\",pout,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rotor copper loss= 1.80266666667 kW\n", + "gross torque= 430.386666667 N-m\n", + "mechanical power= 31997.3333333 W\n", + "net torque= 422.316244131 N-m\n", + "mechanical power output= 31397.3333333 W\n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.43, Page Number:1292" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "f=50.0#Hz\n", + "s=0.04\n", + "tsh=149.3#N-m\n", + "loss=200#W\n", + "cu_loss=1620#W\n", + "\n", + "#calculations\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "pout=tsh*2*3.14*(n/60)\n", + "output=pout+loss\n", + "p2=output*ns/n\n", + "cu_lossr=p2-output\n", + "p1=p2+cu_loss\n", + "efficiency=pout*100/p1\n", + "\n", + "#result\n", + "print \"output power=\",pout/1000,\"kW\"\n", + "print \"rotor cu loss=\",cu_lossr,\"W\"\n", + "print \"the efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output power= 15.001664 kW\n", + "rotor cu loss= 633.402666667 W\n", + "the efficiency= 85.9444669361 %\n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.44, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pout=18.65#kW\n", + "p=6\n", + "f=50.0#Hz\n", + "n=960#rpm\n", + "i2=35#A\n", + "loss=1#kW\n", + "\n", + "#calculation\n", + "pm=pout+loss\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "cu_lossr=pm*s*1000/(1-s)\n", + "r2=cu_lossr/(3*i2**2)\n", + "\n", + "#result\n", + "print \"resistane per phase=\",r2,\"ohm/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistane per phase= 0.222789115646 ohm/phase\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.45, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "sf=Symbol('sf')\n", + "v=400#V\n", + "p=4\n", + "f=50#Hz\n", + "r=0.01#ohm\n", + "x=0.1#ohm\n", + "ratio=4\n", + "\n", + "#calculation\n", + "e1=v/3**0.5\n", + "e2=e1/ratio\n", + "sm=r/x\n", + "ns=120*f/p\n", + "tmax=(3/(2*3.14*25))*(e2**2/(2*x))\n", + "a=r/x\n", + "sf=solve(0.5*(a**2+sf**2)-2*a*sf,sf)\n", + "n=ns*(1-sf[0])\n", + "tf=tmax/2\n", + "output=2*3.14*n*tf/60\n", + "\n", + "#result\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"full load slip=\",sf[0]\n", + "print \"power output=\",output,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum torque= 318.47133758 N-m\n", + "full load slip= 0.0267949192431123\n", + "power output= 24330.1270189222 W\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.46, Page Number:1291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "f=50.0#Hz\n", + "v=200.0#V\n", + "r=0.1#ohm\n", + "x=0.9#ohm\n", + "k=0.67\n", + "s=0.04\n", + "#calculations\n", + "e1=v/3**0.5\n", + "e2=e1*k\n", + "z=(r**2+(s*x)**2)**0.5\n", + "i2=s*e2/z\n", + "cu_loss=3*i2**2*r\n", + "pm=cu_loss*(1-s)/s\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "sm=r/x\n", + "er=sm*e2\n", + "zr=(r**2+(sm*x)**2)**0.5\n", + "i2=er/zr\n", + "cu_lossr=3*i2**2*r\n", + "output=cu_lossr*(1-sm)/sm\n", + "n=(1-sm)*ns\n", + "tmax=9.55*output/n\n", + "\n", + "#result\n", + "print \"torque=\",tg,\"N-m\"\n", + "print \"maximum torque=\",tmax,\"N-m\"\n", + "print \"speed at max torque=\",n,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 40.4815391879 N-m\n", + "maximum torque= 63.511037037 N-m\n", + "speed at max torque= 1333.33333333 rpm\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.47, Page Number:1293" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "r=0.015#ohm\n", + "x=0.09#ohm\n", + "f=50#Hz\n", + "s=0.04\n", + "p=4\n", + "e2=110#V\n", + "\n", + "#calculations\n", + "z=(r**2+x**2)**0.5\n", + "pf=r/z\n", + "xr=s*x\n", + "zr=(r**2+xr**2)**0.5\n", + "pf2=r/zr\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "er=s*e2\n", + "i2=er/zr\n", + "cu_loss=3*i2**2*r\n", + "pm=cu_loss*(1-s)/s\n", + "tg=9.55*pm/n\n", + "\n", + "#result\n", + "print \"pf of motor at start=\",pf\n", + "print \"pf of motor at s=4%\",pf2\n", + "print \"full load torque=\",tg,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf of motor at start= 0.164398987305\n", + "pf of motor at s=4% 0.972387301981\n", + "full load torque= 582.728189612 N-m\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.48, Page Number:1294" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6.0\n", + "f=50.0#Hz\n", + "tsh=162.84#N-m\n", + "c=90.0\n", + "t=20.36#N-m\n", + "loss=830.0#W\n", + "\n", + "#calculation\n", + "ns=120*f/p\n", + "fr=c/60\n", + "s=fr/f\n", + "n=ns*(1-s)\n", + "output=2*3.14*n*tsh/60\n", + "tg=tsh+t\n", + "p2=tg*ns/9.55\n", + "cu_lossr=s*p2\n", + "p1=p2+cu_lossr\n", + "efficiency=output*100/p1\n", + "\n", + "#result\n", + "print \"motor output=\",output,\"W\"\n", + "print \"cu loss=\",cu_lossr,\"W\"\n", + "print \"motor input\",p1,\"W\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "motor output= 16532.6024 W\n", + "cu loss= 575.497382199 W\n", + "motor input 19758.7434555 W\n", + "efficiency= 83.6723369441 %\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.49, Page Number:1294" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=18.65#kW\n", + "v=420.0#V\n", + "p=6\n", + "f=50.0#Hz\n", + "r=1.0#ohm\n", + "z=complex(0.25,0.75)\n", + "zr=complex(0.173,0.52)\n", + "v1=420.0#V\n", + "v2=350.0#V\n", + "\n", + "#calculations\n", + "k=v2/v1\n", + "r02=zr.real+k**2*z.real\n", + "x02=zr.imag+k**2*z.imag\n", + "z02=((r+r02)**2+x02**2)**0.5\n", + "i2=v2/(3**0.5*z02)\n", + "cu_loss=i2**2*(r+zr.real)\n", + "p2=cu_loss*3\n", + "ns=120*f/p\n", + "tst=9.55*p2/(ns*9.81)\n", + "#result\n", + "print \"torque=\",tst,\"kg-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 48.2909354778 kg-m\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.50, Page Number:1295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=8\n", + "load=37.3#ohm\n", + "v=280#V\n", + "f=50.0#Hz\n", + "i=200#A\n", + "pf=0.25\n", + "r=0.15#ohm\n", + "k=1.0/3\n", + "#calculation\n", + "wsc=2*v*i*pf\n", + "power_phase=v*i*pf\n", + "R=power_phase/i**2\n", + "r2_=R-r\n", + "r2=k**2*r2_\n", + "p2=3*i**2*r2_\n", + "ns=120*f/p\n", + "t=9.55*p2/ns\n", + "\n", + "#result\n", + "print \"resistance perphaseof therotor winding=\",r2,\"ohm\"\n", + "print \"startingtorque=\",t,\"N-m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistance perphaseof therotor winding= 0.0222222222222 ohm\n", + "startingtorque= 305.6 N-m\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.51, Page Number:1295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ratios=1.6\n", + "ratiom=2.0\n", + "sf=0.01\n", + "sb=0.04\n", + "#calculation\n", + "i=(ratios/sf)**0.5\n", + "\n", + "#result\n", + "print \"slip at full load=\",sf\n", + "print \"slip at maximum torque=\",sb\n", + "print \"rotor current=\",i" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "slip at full load= 0.01\n", + "slip at maximum torque= 0.04\n", + "rotor current= 12.6491106407\n" + ] + } + ], + "prompt_number": 159 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.52, Page Number:1297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=200#km/h\n", + "f=100#Hz\n", + "\n", + "#calculation\n", + "w=v*5.0/18/(2*f)\n", + "\n", + "#result\n", + "print \"pole pitch=\",w*1000,\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pole pitch= 277.777777778 mm\n" + ] + } + ], + "prompt_number": 162 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.53, Page Number:1297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "w=6#mm\n", + "f=25#Hz\n", + "p=6#kW\n", + "loss=1.2#kW\n", + "v=2.4#m/s\n", + "\n", + "#calculation\n", + "vs=2*f*w/100\n", + "s=(vs-v)/vs\n", + "p2=p-loss\n", + "pcr=s*p2\n", + "pm=p2-pcr\n", + "f=p2*1000/vs\n", + "\n", + "#result\n", + "print \"synchronous speed=\",vs,\"m/s\"\n", + "print \"slip=\",s\n", + "print \"cu loss=\",pcr,\"kW\"\n", + "print \"mechanical power=\",pm,\"kW\"\n", + "print \"thrust=\",f/1000,\"kN\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous speed= 3 m/s\n", + "slip= 0.2\n", + "cu loss= 0.96 kW\n", + "mechanical power= 3.84 kW\n", + "thrust= 1.6 kN\n" + ] + } + ], + "prompt_number": 163 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.54, Page Number:1304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "s=0.12\n", + "r=0.08#ohm/phase\n", + "pg=9000.0#W\n", + "\n", + "#calculations\n", + "rl=r*(1/s-1)\n", + "v=(pg*rl/3)**0.5\n", + "il=v/rl\n", + "\n", + "#result\n", + "print \"load resistance=\",rl,\"ohm\"\n", + "print \"load voltage=\",v,\"V\"\n", + "print \"load current=\",il,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load resistance= 0.586666666667 ohm\n", + "load voltage= 41.9523539268 V\n", + "load current= 71.5096941934 A\n" + ] + } + ], + "prompt_number": 166 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.55, Page Number:1305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "p=4\n", + "r1=0.15#ohm\n", + "x1=0.45#ohm\n", + "r2_=0.12#ohm\n", + "x2_=0.45#ohm\n", + "xm=complex(0,28.5)#ohm\n", + "s=0.04\n", + "#calculations\n", + "rl_=r2_*(1/s-1)\n", + "i2_=(v/3**0.5)/complex(r1+rl_,x1)\n", + "i0=(v/3**0.5)/xm\n", + "i1=i0+i2_\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "\n", + "#result\n", + "print \"stator current=\",i1,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stator current= (74.5730253701-19.1783634605j) A\n", + "power factor= 0.968485280755\n" + ] + } + ], + "prompt_number": 177 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.56, Page Number:1305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=220#V\n", + "p=4\n", + "f=50#Hz\n", + "power=3.73#kW\n", + "r1=0.45#ohm\n", + "x1=0.8#ohm\n", + "r2_=0.4#ohm\n", + "x2_=0.8#ohm\n", + "b0=-1.0/30\n", + "loss=50#W\n", + "lossr=150#W\n", + "s=0.04\n", + "\n", + "#calculations\n", + "zab=complex(30*complex(r2_/s,x2_))/complex(r2_/s,x2_-1/b0)\n", + "z01=complex(r1,x1)+zab\n", + "vph=v/3**0.5\n", + "i1=v1/z01\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "p2=3*i1.real**2*zab.real\n", + "pm=(1-s)*p2\n", + "ns=120*f/p\n", + "n=ns*(1-s)\n", + "tg=9.55*pm/n\n", + "power_o=pm-lossr\n", + "cu_loss=3*i1.real**2*r1\n", + "cu_lossr=s*p2\n", + "total_loss=loss+cu_loss+cu_lossr+lossr\n", + "efficiency=power_o/(power_o+total_loss)\n", + "\n", + "#result\n", + "print \"input current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"air gap power=\",p2,\"W\"\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"electro magnetic torque=\",tg,\"N-m\"\n", + "print \"output power=\",power_o,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input current= (21.9914486234+42.6194245913j) A\n", + "pf= 0.45854949826\n", + "air gap power= 5173.46132109 W\n", + "mechanical power= 4966.52286825 W\n", + "electro magnetic torque= 32.9377037443 N-m\n", + "output power= 4816.52286825 W\n", + "efficiency= 81.9644851937 %\n" + ] + } + ], + "prompt_number": 184 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.57, Page Number:1306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "load=37.3#kW\n", + "r1=0.1#ohm\n", + "x1=0.4#ohm\n", + "r2_=0.15#ohm\n", + "x2_=0.44#ohm\n", + "loss=1250#W\n", + "lossr=1000#W\n", + "i=20#A\n", + "pf=0.09\n", + "s=0.03\n", + "\n", + "#calculation\n", + "v1=v/3**0.5\n", + "i2_=v1/complex(r1+r2_/s,x1+x2_)\n", + "i1=i2_+complex(1.78,19.9)\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "p2=3*i2_.real**2*r2_/s\n", + "ns=120*f/p\n", + "tg=9.55*p2/ns\n", + "pm=p2*(1-s)\n", + "pout=pm-1000\n", + "cu_losss=3*i1.real**2*r1\n", + "cu_lossr=s*p2\n", + "total_loss=loss+cu_losss+cu_lossr+lossr\n", + "efficiency=pout/(pout+total_loss)\n", + "\n", + "#result\n", + "print \"line current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"electromagnetic torque=\",tg,\"N-m\"\n", + "print \"output=\",pout,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line current= (50.2750367599+11.9125821807j) A\n", + "pf= 0.973057118792\n", + "electromagnetic torque= 224.593900377 N-m\n", + "output= 33218.2329894 W\n", + "efficiency= 89.0932246577 %\n" + ] + } + ], + "prompt_number": 186 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.58, Page Number:1306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "z=complex(0.06,0.2)\n", + "zr=complex(0.06,0.22)\n", + "\n", + "#calculation\n", + "r01=z.real+zr.real\n", + "x01=z.imag+zr.imag\n", + "z01=(r01**2+x01**2)**0.5\n", + "s=z.real/(z.real+z01)\n", + "v1=v/3**0.5\n", + "pmax=3*v1**2/(2*(r01+z01))\n", + "\n", + "#result\n", + "print \"maximum gross power=\",pmax,\"W\"\n", + "print \"slip=\",s" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum gross power= 143676.459572 W\n", + "slip= 0.120771344025\n" + ] + } + ], + "prompt_number": 188 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.59, Page Number:1307" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v1=115#V\n", + "f=60.0#Hz\n", + "p=6\n", + "z=complex(0.07,0.3)\n", + "zr=complex(0.08,0.3)\n", + "gd=0.022#mho\n", + "bo=0.158#mho\n", + "s=0.02\n", + "\n", + "#calculation\n", + "rl_=1/bo*(1/s-1)\n", + "z=complex(z.real+zr.real+rl_,0.6)\n", + "v=v1/3**0.5\n", + "i2=complex(16,-2.36)\n", + "io=v*complex(gd,-bo)\n", + "i1=io+i2\n", + "pf=math.cos(math.atan(i1.imag/i1.real))\n", + "pg=3*abs(i2)**2*rl_/100\n", + "ns=120*f/p\n", + "n=(1-s)*ns\n", + "tg=9.55*pg/n\n", + "p2=3**0.5*v1*abs(i1)*pf\n", + "efficiency=pg*100/p2\n", + "\n", + "#result\n", + "print \"secondary current=\",i2,\"A\"\n", + "print \"primary current=\",i1,\"A\"\n", + "print \"pf=\",pf\n", + "print \"power output=\",pg,\"W\"\n", + "print \"torque=\",tg,\"N-m\"\n", + "print \"input=\",p2,\"W\"\n", + "print \"efficiency=\",efficiency,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "secondary current= (16-2.36j) A\n", + "primary current= (17.460696181-12.8504543912j) A\n", + "pf= 0.805393212665\n", + "power output= 2433.59058228 W\n", + "torque= 19.7625765823 N-m\n", + "input= 3477.92348593 W\n", + "efficiency= 69.9725164204 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 34.60, Page Number:1308" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=400#V\n", + "z=complex(0.4,1)\n", + "zr=complex(0.6,1)\n", + "zm=complex(10,50)\n", + "s=0.05\n", + "\n", + "#calculation\n", + "sm=zr.real/(z.real**2+(z.imag+zr.imag)**2)**0.5\n", + "v1=v/3**0.5\n", + "i2=v1/((z.real+zr.real)**2+(zr.imag+z.imag)**2)**0.5\n", + "tgmax=3*i2**2*z.real*60/(sm*2*3.14*1500)\n", + "#result\n", + "print \"maximum torque=\",tgmax,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum torque= 277.144160399 N-m\n" + ] + } + ], + "prompt_number": 208 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter35_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter35_4.ipynb new file mode 100644 index 00000000..1c89c3bd --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter35_4.ipynb @@ -0,0 +1,1220 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:87ef53401e46d15eef2e50d8ed392f8c9e3784abe371e55cb0923dbffffe7b33" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 35: Computations and Circle Diagrams" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.1, Page Number:1316" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=10#A\n", + "p=450#W\n", + "v=110#V\n", + "r=0.05#ohm\n", + "loss=135#w\n", + "\n", + "#calculations\n", + "cu_loss=3*i**2*r\n", + "core_loss=p-loss-cu_loss\n", + "volt=v/math.sqrt(3)\n", + "g=core_loss/(3*(v/math.sqrt(3))**2)\n", + "y=i*math.sqrt(3)/v\n", + "b=math.sqrt(y**2-g**2)\n", + "\n", + "#result\n", + "print \"exciting conductance=\",g,\"seimens/phase\"\n", + "print \"susceptance/phase=\",b,\"seimens/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "exciting conductance= 0.0247933884298 seimens/phase\n", + "susceptance/phase= 0.155494939853 seimens/phase\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.2, Page Number:1317" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=110.0#V\n", + "i=25.0#A\n", + "v2=30.0#V\n", + "inpt=440.0#W\n", + "loss=40.0#W\n", + "r=0.1#ohm\n", + "ratio=1.6\n", + "\n", + "#calculations\n", + "vs=v2/math.sqrt(3)\n", + "z01=vs/i\n", + "losses=inpt-loss\n", + "r01=losses/(3*i**2)\n", + "x01=math.sqrt(z01**2-r01**2)\n", + "dc_r=r/2.0\n", + "ac_r=dc_r*ratio\n", + "effective_r=r01-ac_r\n", + "\n", + "#result\n", + "print \"x01=\",x01,\"ohm\"\n", + "print \"r1=\",ac_r,\"ohm\"\n", + "print \"r2=\",effective_r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "x01= 0.659157711696 ohm\n", + "r1= 0.08 ohm\n", + "r2= 0.133333333333 ohm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.10, Page Number:1333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "ratio=1/4.0\n", + "slip=3.0\n", + "ratio2=4.0\n", + "\n", + "#calculations\n", + "K=math.sqrt(ratio/((ratio2**2)*0.01*slip))\n", + "\n", + "#result\n", + "print \"Percentage Tapping=\",K*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage Tapping= 72.1687836487 %\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.11, Page Number:1333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=14.92#kW\n", + "v1=400#V\n", + "n=950#rpm\n", + "f=50.0#Hz\n", + "v2=400#V\n", + "ratio=1.8\n", + "i=30#A\n", + "\n", + "#calculations\n", + "v=v1/math.sqrt(ratio)\n", + "If=6*v*i/v1\n", + "K=v/v1\n", + "kisc=K**2*6*i\n", + "ts_tf=(1/6.0)*6**2*(f/1000.0)\n", + "\n", + "#result\n", + "print \"a)voltage=\",v,\"V\"\n", + "print \"b)current=\",If,\"A\"\n", + "print \"c)line current=\",kisc,\"A\"\n", + "print \"d)percentage=\",ts_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)voltage= 298.142397 V\n", + "b)current= 134.16407865 A\n", + "c)line current= 100.0 A\n", + "d)percentage= 30.0 %\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.12, Page Number:1334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "ratio=5.0\n", + "per=5\n", + "\n", + "#calculations\n", + "k=math.sqrt(ratio/3)\n", + "tst_tf=(3.0/5)*5**2*0.01*per*100\n", + "\n", + "#result\n", + "print \"auto-transformation ratio=\",tst_tf,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-transformation ratio= 75.0 %\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.13, Page Number:1334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V\n", + "per=3.5\n", + "v2=92.0#V\n", + "\n", + "#calculations\n", + "k=math.sqrt(2/(v/v2))\n", + "ts_tf=k**2*(v/v2)**2*0.01*per\n", + "\n", + "#result\n", + "print \"auto-transformation ratio=\",ts_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-transformation ratio= 30.4347826087 %\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.14, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=12.0#kW\n", + "v=440.0#V\n", + "efficiency=0.85\n", + "pf=0.8\n", + "i=45.0#A\n", + "v2=220.0#V\n", + "\n", + "#calculations\n", + "isc=i*v/v2\n", + "if_=load*1000/(efficiency*math.sqrt(3)*pf*v)\n", + "ist=isc/math.sqrt(3)\n", + "ratio=ist/if_\n", + "\n", + "#result\n", + "print \"ratio=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio= 2.244\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.15, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "i=60.0#A\n", + "n1=940.0#rpm\n", + "t=150.0#N-m\n", + "i2=300.0#A\n", + "\n", + "#calculations\n", + "sf=(1000-n1)/1000\n", + "tst=t*(i2/i)**2*sf\n", + "s_i=i2/3\n", + "sd_tst=tst/3\n", + "\n", + "#result\n", + "print \"Starting torque=\",tst,\"N-m\"\n", + "print\"when star/delta is used:\"\n", + "print \"starting current=\",s_i,\"A\"\n", + "print \"starting torque=\",sd_tst,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Starting torque= 225.0 N-m\n", + "when star/delta is used:\n", + "starting current= 100.0 A\n", + "starting torque= 75.0 N-m\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.16, Page Number:1336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "tapping=70.7\n", + "ratio=6.0\n", + "slip=4.0\n", + "\n", + "#calculation\n", + "tst_tf=(1.0/3.0)*ratio**2.0*slip*0.01\n", + "tst_tf2=(1.0/2)*ratio**2.0*slip*0.01\n", + "\n", + "#result\n", + "print \"star-delta switch:starting torque=\",tst_tf*100,\"%\"\n", + "print \"auto-transformer switch:starting torque=\",tst_tf2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "star-delta switch:starting torque= 48.0 %\n", + "auto-transformer switch:starting torque= 72.0 %\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.17, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=11.2#W\n", + "f=50.0#Hz\n", + "v=400.0#V\n", + "n=960.0#rpm\n", + "i=86.4#A\n", + "efficiency=0.88\n", + "pf=0.85\n", + "\n", + "#calculations\n", + "isc=i/math.sqrt(3)\n", + "ist=isc/math.sqrt(3)\n", + "il=load*1000/(efficiency*pf*math.sqrt(3)*v)\n", + "iph=il/math.sqrt(3)\n", + "tst_tf=(ist*math.sqrt(3)/il)**2*0.05\n", + "\n", + "#result\n", + "print \"starting torque=\",tst_tf*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting torque= 26.6369577796 %\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.18, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "output=10.0#kW\n", + "v=400.0#V\n", + "pf=0.85\n", + "efficiency=0.88\n", + "v2=200.0#V\n", + "i=40.0#A\n", + "\n", + "#calculations\n", + "il=load*1000/(efficiency*math.sqrt(3)*v*pf)\n", + "isc=i*v/v2\n", + "iscp=isc/math.sqrt(3)\n", + "ist=iscp/math.sqrt(3)\n", + "ratio=ist/il\n", + "\n", + "#result\n", + "print \"ratio=\",ratio" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio= 1.23388000387\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.19, Page Number:1337" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.73*1000#W\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "slip=4.5\n", + "t=250.0\n", + "i=650.0\n", + "tap=60.0\n", + "\n", + "#calculation\n", + "il=i/3\n", + "im=i/3\n", + "tst=t/3\n", + "ilm=(tap/100)**2*i\n", + "imk=(tap/100)*i\n", + "tstk=(tap/100)**2*t\n", + "\n", + "#result\n", + "print \"star/delta:\"\n", + "print \"line current=\",il,\"%\"\n", + "print \"motor current=\",im,\"%\"\n", + "print \"starting torque=\",tst,\"%\"\n", + "print \"60% taps:\"\n", + "print \"line current=\",ilm,\"%\"\n", + "print \"motor current=\",imk,\"%\"\n", + "print \"starting torque=\",tstk,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " star/delta:\n", + "line current= 216.666666667 %\n", + "motor current= 216.666666667 %\n", + "starting torque= 83.3333333333 %\n", + "60% taps:\n", + "line current= 234.0 %\n", + "motor current= 390.0 %\n", + "starting torque= 90.0 %\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.20, Page Number:1338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=180.0\n", + "flt=35.0\n", + "tap=75.0\n", + "\n", + "#calculations\n", + "isc=load*3.0/100\n", + "isck=tap**2*isc/100\n", + "sf=flt*3\n", + "tst_tf=tap**2*sf/100\n", + "#result\n", + "print \"starting current=\",isck,\"%\"\n", + "print \"starting torque=\",tst_tf/100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "starting current= 303.75 %\n", + "starting torque= 59.0625 %\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.21, Page Number:1338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "w=7.46#kW\n", + "ic=1.7\n", + "t=35.0\n", + "ratio=60.0\n", + "\n", + "#calculations\n", + "sf=t*3/100\n", + "il1=ic*3\n", + "tst=(ratio/1000)**2*sf*10000\n", + "il2=(ratio/100)*3*ic\n", + "\n", + "#results\n", + "print \"auto-starter:\"\n", + "print \"line-current=\",il1,\"%\"\n", + "print \"torque=\",tst,\"%\"\n", + "print \"voltage decreased to 60%\"\n", + "print \"line-current\",il2,\"%\"\n", + "print \"torque=\",tst,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "auto-starter:\n", + "line-current= 5.1 %\n", + "torque= 37.8 %\n", + "voltage decreased to 60%\n", + "line-current 3.06 %\n", + "torque= 37.8 %\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.22, Page Number:1342" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "slip=2.0\n", + "r=0.02#ohm\n", + "n=6.0\n", + "#calculations\n", + "smax=r2=slip/100.0\n", + "R1=r2/smax\n", + "K=math.pow(smax,1.0/5)\n", + "R2=K*R1\n", + "R3=K*R2\n", + "R4=K*R3\n", + "R5=K*R4\n", + "p1=R1-R2\n", + "p2=R2-R3\n", + "p3=R3-R4\n", + "p4=R4-R5\n", + "p5=R5-r2\n", + "\n", + "#result\n", + "print \"resistances of various starter sections:\"\n", + "print \"p1=\",p1,\"ohm\"\n", + "print \"p2=\",p2,\"ohm\"\n", + "print \"p3=\",p3,\"ohm\"\n", + "print \"p4=\",p4,\"ohm\"\n", + "print \"p5=\",p5,\"ohm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "resistances of various starter sections:\n", + "p1= 0.542694948073 ohm\n", + "p2= 0.248177141409 ohm\n", + "p3= 0.113492660539 ohm\n", + "p4= 0.0519007670213 ohm\n", + "p5= 0.0237344829577 ohm\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.23, Page Number:1345" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "primary=complex(1,3)\n", + "outer=complex(3,1)\n", + "inner=complex(0.6,5)\n", + "s=4\n", + "outer2=complex(3/(s*0.01),1)\n", + "inner2=complex(0.6/(s*0.01),5)\n", + "v=440#V\n", + "\n", + "\n", + "#calculations\n", + "#s=1\n", + "z01=primary+1/((1/outer)+(1/inner))\n", + "current_per_phase=v/abs(z01)\n", + "torque=3*current_per_phase**2*(z01.real-1)\n", + "\n", + "print \"s=1: torque=\",torque,\"synch watt\"\n", + "\n", + "#s=4\n", + "z01=primary+1/((1/outer2)+(1/inner2))\n", + "current_per_phase=v/abs(z01)\n", + "torque=3*current_per_phase**2*(z01.real-1)\n", + "\n", + "print \"s=4: torque=\",torque,\"synch watt\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1: torque= 35065.3642462 synch watt\n", + "s=4: torque= 32129.9449695 synch watt\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.24, Page Number:1346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inner=complex(0.4,2)\n", + "outer=complex(2,0.4)\n", + "s=5\n", + "inner2=complex(0.4/(s*0.01),2)\n", + "outer2=complex(2/(s*0.01),0.4)\n", + "print \n", + "#calculations\n", + "#s=1\n", + "zi=abs(inner)\n", + "zo=abs(outer)\n", + "r_ratio=inner.imag/outer.imag\n", + "to_ti=r_ratio*(zo/zi)**2\n", + "print \"Ratio of torques when s=1:\",to_ti\n", + "\n", + "#s=5\n", + "zi=abs(inner2)\n", + "zo=abs(outer2)\n", + "print zi\n", + "r_ratio=inner2.imag/outer2.imag\n", + "to_ti=r_ratio*(zi/zo)**2\n", + "\n", + "print \"Ratio of torques when s=5:\",to_ti" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "Ratio of torques when s=1: 5.0\n", + "8.24621125124\n", + "Ratio of torques when s=5: 0.212478752125\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.25, Page Number:1346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "s=5\n", + "zi=complex(0.05,0.4)\n", + "zo=complex(0.5,0.1)\n", + "v=100#V\n", + "\n", + "#calculations\n", + "#s=1\n", + "z=zo*zi/(zo+zi)\n", + "r2=z.real\n", + "z=abs(z)\n", + "i2=v/z\n", + "t=i2**2*r2\n", + "print \"s=1:torque=\",t,\"synch watts\"\n", + "\n", + "#s=0.01\n", + "zi=complex(0.05/(s*0.01),0.4)\n", + "zo=complex(0.5/(s*0.01),0.1)\n", + "z=zo*zi/(zo+zi)\n", + "r2=z.real\n", + "z=abs(z)\n", + "i2=v/z\n", + "t=i2**2*r2\n", + "print \"s=5:torque=\",t,\"synch watts\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1:torque= 22307.6923077 synch watts\n", + "s=5:torque= 9620.58966517 synch watts\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.27, Page Number:1347" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "zo=complex(1,0)\n", + "zi=complex(0.15,3)\n", + "v=250#V\n", + "n=1000#rpm\n", + "\n", + "#calculations\n", + "z2=zo*zi/(zo+zi)\n", + "stator=complex(0.25,3.5)\n", + "z01=z2+stator\n", + "i=complex(v,0)/z01\n", + "i=abs(i)\n", + "cu_loss=i**2*z01.real\n", + "T=cu_loss*3/(2*math.pi*(n/60))\n", + "#result\n", + "print \"torque=\",T,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 135.560320318 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.28, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z1=complex(1,2.8)\n", + "zo=complex(3,1)\n", + "zi=complex(0.5,5)\n", + "v=440#V\n", + "s=0.04\n", + "\n", + "#calculations\n", + "#s=1\n", + "z2=zo*zi/(zo+zi)\n", + "z01=z1+z2\n", + "i2=v/z01\n", + "r2=z2.real\n", + "t=abs(i2)**2*r2\n", + "\n", + "print \"s=1:torque=\",t,\"synch. watt\"\n", + "\n", + "#s=0.04\n", + "zo=complex(3.0/s,1.0)\n", + "zi=complex(0.5/s,5.0)\n", + "z2=zo*zi/(zo+zi)\n", + "z01=z1+z2\n", + "i2=v/z01\n", + "r2=z2.real\n", + "t=abs(i2)**2*r2\n", + "print \"s=4:torque=\",t,\"synch. watt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "s=1:torque= 12388.3258184 synch. watt\n", + "s=4:torque= 11489.1141244 synch. watt\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.29, Page Number:1351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "r=0.30#ohm\n", + "n1=1440.0#rpm\n", + "n2=1320.0#rpm\n", + "ns=120.0*f/4.0\n", + "#calculations\n", + "s1=(ns-n1)/ns\n", + "s2=(ns-n2)/ns\n", + "r=s2*r/s1-r\n", + "\n", + "#result\n", + "print \"external resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.6 ohm\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.30, Page Number:1348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "s=0.03\n", + "ratio=10.0\n", + "r=0.2\n", + "\n", + "#calculations\n", + "ns=120*f/6\n", + "s1=s\n", + "n1=ns*(1-s1)\n", + "n2=n1-10*n1/100\n", + "s2=(ns-n2)/ns\n", + "r=s2*r/s1-r\n", + "\n", + "#result\n", + "print \"external resistance=\",r,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "external resistance= 0.646666666667 ohm\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.31, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f=50#Hz\n", + "s=0.02\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "n=(1-s)*nsc\n", + "nsa=120*f/6\n", + "sa=(nsa-n)/nsa\n", + "f_=sa*f\n", + "n_=(120*f_)/4\n", + "sb=(n_-n)/n_\n", + "f__=sb*f_\n", + "\n", + "#resu;t\n", + "print \"f_=\",f_,\"Hz\"\n", + "print \"f_ _=\",f__,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f_= 20.6 Hz\n", + "f_ _= 1.0 Hz\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.32, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "f2=1.0#Hz\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "s=f2/f\n", + "n=nsc-s*nsc\n", + "nsa=120*f/4\n", + "sa=(nsa-n)/nsa\n", + "f1=sa*f\n", + "n2=120*f1/6\n", + "sb=(n2-n)/n2\n", + "\n", + "#result\n", + "print \"sa=\",sa*100,\"%\"\n", + "print \"sb=\",sb*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sa= 60.8 %\n", + "sb= 3.28947368421 %\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.33, Page Number:1354" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "load=74.6#kW\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "output=load*4/10\n", + "\n", + "#result\n", + "print \"speed of set=\",nsc,\"rpm\"\n", + "print \"electric power transferred=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of set= 600 rpm\n", + "electric power transferred= 29.84 kW\n" + ] + } + ], + "prompt_number": 79 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 35.34, Page Number:1355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "load=25#kW\n", + "\n", + "#calculations\n", + "nsc=120*f/10\n", + "output=load*4/10\n", + "\n", + "#result\n", + "print \"speed of set=\",nsc,\"rpm\"\n", + "print \"electric power transferred=\",output,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "speed of set= 600 rpm\n", + "electric power transferred= 10 kW\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter36_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter36_4.ipynb new file mode 100644 index 00000000..a28f10ba --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter36_4.ipynb @@ -0,0 +1,393 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a362cd0373fe77cde513a2a109a4d7c05a5dbd87d086b1227fbc532438b6bbb6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 36: Single-Phase Motors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.1, Page Number:1374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "R1=1.86\n", + "X1=2.56\n", + "R2=3.56\n", + "X2=2.56\n", + "Xm=53.5\n", + "r1=R1/2\n", + "x1=X1/2\n", + "r2=R2/2\n", + "x2=X2/2\n", + "xm=Xm/2\n", + "v=110\n", + "f=60\n", + "s=0.05\n", + "\n", + "#calculations\n", + "xo=xm+x2\n", + "\n", + "zf=(((r2/s)*xm)/(((r2/s)*(r2/s))+(xo*xo)))*xm\n", + "jf=(((r2/s)*(r2/s)+(x2*xo))/(((r2/s)*(r2/s))+(xo*xo)))*xm\n", + "Jf=math.degrees(math.atan(jf/zf))\n", + "\n", + "zb=(((r2/(2-s))*xm)/(((r2/s)*(r2/(2-s)))+(xo*xo)))*xm\n", + "jb=(((r2/(2-s))*(r2/(2-s))+(x2*xo))/(((r2/(2-s))*(r2/(2-s)))+(xo*xo)))*xm\n", + "Jb=math.degrees(math.atan(jb/zb))\n", + "\n", + "Z1=R1\n", + "J1=X1\n", + "z01=Z1+zf+zb\n", + "j01=jf+jb+J1\n", + "J01=math.degrees(math.atan(j01/z01))\n", + "\n", + "i1=v/z01\n", + "vf=i1*zf\n", + "vb=i1*zb\n", + "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n", + "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "\n", + "i3=vf/z3\n", + "i5=vb/z5\n", + "tf=(i3*i3*r2)/s\n", + "tb=t5=(i5*i5*r2)/(2-s)\n", + "t=tf-tb\n", + "output=t*(1-s)\n", + "\n", + "#result\n", + "print \"output = \",output" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output = 206.798750547\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Example Number 36.2, Page Number:1375" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "p=185\n", + "v=110\n", + "f=50\n", + "s=0.05\n", + "R1=1.86\n", + "X1=2.56\n", + "Xo=53.5\n", + "R2=3.56\n", + "X2=2.56\n", + "Xm=53.5\n", + "cl=3.5#core loss\n", + "fl=13.5#friction loss\n", + "vf=(82.5/100)*v\n", + "ic=(cl*100)/vf\n", + "r1=R1/2\n", + "x1=X1/2\n", + "r2=R2/2\n", + "x2=X2/2\n", + "xm=Xm/2\n", + "rc=vf/ic\n", + "\n", + "#calculations\n", + "\n", + "#motor 1\n", + "c=1/rc #conductance of corebranch\n", + "s=-(1/xm)#susceptance\n", + "a1=(r2/s)/(((r2/s)*r2/s)+(x2*x2))#admittance\n", + "a1j=-x2/(((r2/s)*r2/s)+(x2*x2))#admittance j\n", + "yf=c+a1\n", + "yfj=s+a1j\n", + "zf=(yf*yf)+(yfj*yfj)\n", + "zfr=yf/zf\n", + "zfj=yfj/zf\n", + "\n", + "#motor 2\n", + "a2=(r2/2-s)/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "a2j=-x2/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "Z1=R1\n", + "J1=X1\n", + "yb=yf+a2\n", + "ybj=yfj+a2j\n", + "zb1=(yb*yb)+(ybj*ybj)\n", + "zbr=yb/zb1\n", + "zbj=ybj/zb1\n", + "z01=Z1+zf+zbr\n", + "z01j=J1+zfj+zbj\n", + "\n", + "i1=v/z01\n", + "vf=i1*zf\n", + "vb=i1*zbr\n", + "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n", + "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n", + "\n", + "i3=vf/z3\n", + "i5=vb/z5\n", + "tf=(i3*i3*r2)/s\n", + "tb=t5=(i5*i5*r2)/(2-s)\n", + "t=tf-tb\n", + "watt=t*(1-s)\n", + "net_output=watt-fl\n", + "\n", + "#result\n", + "print \"Net output = \",net_output" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net output = -446.423232085\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.3, Page Number:1376" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "w=250\n", + "v=230\n", + "f=50\n", + "zm=4.5\n", + "zmj=3.7\n", + "za=9.5\n", + "zaj=3.5\n", + "\n", + "#calculations\n", + "zma=math.degrees(math.atan(zmj/zm))\n", + "ialeadv=90-zma\n", + "x=za*(math.tan(math.radians(ialeadv)))\n", + "xc=x+zaj\n", + "c=1000000/(xc*2*50*3.14)\n", + "\n", + "#result\n", + "print \"C= \",c,\" uf\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "C= 211.551875951 uf\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.4, Page Number:1393" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "\n", + "p=250\n", + "f=50\n", + "v=220\n", + "ndc=2000\n", + "ia=1\n", + "ra=20\n", + "la=0.4\n", + "\n", + "#calculations\n", + "ebdc=v-(ia*ra)\n", + "#ac\n", + "xa=2*3.14*f*la\n", + "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n", + "nac=(ebac*ndc)/ebdc\n", + "cos_phi=(ebac+(ia*ra))/v\n", + "pmech=ebac*ia\n", + "T=(pmech*9.55)/nac\n", + "\n", + "#result\n", + "print \"Speed= \",nac,\" rpm\"\n", + "print \"Torque= \",T,\" N-m\"\n", + "print \"Power Factor= \",cos_phi,\" lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed= 1606.22922133 rpm\n", + "Torque= 0.955 N-m\n", + "Power Factor= 0.821013282424 lag\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "Example Number 36.5, Page Number:1394" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "r=30\n", + "l=0.5\n", + "v=250\n", + "idc=0.8\n", + "ndc=2000\n", + "f=50\n", + "ia=0.8\n", + "\n", + "#calculations\n", + "\n", + "xa=2*3.14*f*l\n", + "ra=r\n", + "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n", + "ebdc=v-(r*idc)\n", + "nac=(ndc*ebac)/ebdc\n", + "cos_phi=(ebac+(ia*ra))/v\n", + "\n", + "#result\n", + "print \"Speed= \",nac,\" rpm\"\n", + "print \"Power Factor= \",cos_phi,\" lag\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed= 1700.52062383 rpm\n", + "Power Factor= 0.864635321971 lag\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 36.6, Page Number:1396" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "f=50\n", + "a=30\n", + "w=8\n", + "v=220\n", + "v2=205\n", + "pole=4\n", + "\n", + "#calculations\n", + "\n", + "ns=(120*f)/pole\n", + "tsh=(9.55*w*1000)/ns\n", + "alpha=0.5*(math.degrees(math.asin((v*v*math.sin(math.radians(2*a)))/(v2*v2))))\n", + "\n", + "#result\n", + "print \"Torque angle if voltage drops to 205 V = \",alpha,\" degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Torque angle if voltage drops to 205 V = 42.9327261097 degrees\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter37_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter37_4.ipynb new file mode 100644 index 00000000..7e0be0a9 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter37_4.ipynb @@ -0,0 +1,2781 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:3f52bfdb4973d016ec59d44992f6a2ce15bb8cca394c854d00d33c6af91049f3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 37: Alternators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.1, Page Number:1412" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "s1=36.0\n", + "p1=4.0\n", + "span1=8.0\n", + "s2=72.0\n", + "p2=6.0\n", + "span2=10.0\n", + "s3=96.0\n", + "p3=6.0\n", + "span3=12.0\n", + "\n", + "#calculations\n", + "alpha1=2*p1*180/s1\n", + "alpha2=3*p2*180/s2\n", + "alpha3=5*p3*180/s3\n", + "kc1=math.cos(math.radians(alpha1/2))\n", + "kc2=math.cos(math.radians(alpha2/2))\n", + "kc3=math.cos(math.radians(alpha3/2))\n", + "\n", + "#result\n", + "print \"a)kc=\",kc1\n", + "print \"b)kc=\",kc2\n", + "print \"c)kc=\",kc3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)kc= 0.939692620786\n", + "b)kc= 0.923879532511\n", + "c)kc= 0.881921264348\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.2, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "s=36.0\n", + "p=4.0\n", + "\n", + "#calculations\n", + "n=s/p\n", + "beta=180/n\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "\n", + "#result\n", + "print \"distribution factor=\",kd" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "distribution factor= 0.959795080524\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.3, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=10.0#V\n", + "beta=30.0#degrees\n", + "m=6.0\n", + "\n", + "#calculations\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "arith_sum=6*v\n", + "vector_sum=kd*arith_sum\n", + "\n", + "#calculation\n", + "print \"emf of six coils in series=\",vector_sum,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf of six coils in series= 38.6370330516 V\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.4, Page Number:1414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "beta=180/9\n", + "ratio=2.0/3.0\n", + "m1=9\n", + "m2=6\n", + "m3=3\n", + "\n", + "#calculation\n", + "kd1=math.sin(m1*math.radians(beta/2))/(m1*math.sin(math.radians(beta/2)))\n", + "kd2=math.sin(m2*math.radians(beta/2))/(m2*math.sin(math.radians(beta/2)))\n", + "kd3=math.sin(m3*math.radians(beta/2))/(m3*math.sin(math.radians(beta/2)))\n", + "\n", + "#result\n", + "print \"i) kd=\",kd1\n", + "print \"ii)kd=\",kd2\n", + "print \"iii)kd=\",kd3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) kd= 0.639863387016\n", + "ii)kd= 0.831206922161\n", + "iii)kd= 0.959795080524\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.5, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "slot=18.0\n", + "s=16.0\n", + "m1=3.0\n", + "m2=5.0\n", + "m3=7.0\n", + "\n", + "#calculations\n", + "span=(s-1)\n", + "alpha=180*3/slot\n", + "kc1=math.cos(math.radians(alpha/2))\n", + "kc3=math.cos(math.radians(m1*alpha/2))\n", + "kc5=math.cos(math.radians(m2*alpha/2))\n", + "kc7=math.cos(math.radians(m3*alpha/2))\n", + "\n", + "#result\n", + "print \"kc1=\",kc1\n", + "print \"kc3=\",kc3\n", + "print \"kc5=\",kc5\n", + "print \"kc7=\",kc7" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kc1= 0.965925826289\n", + "kc3= 0.707106781187\n", + "kc5= 0.258819045103\n", + "kc7= -0.258819045103\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.6, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=16.0\n", + "s=144.0\n", + "z=10.0\n", + "phi=0.03#Wb\n", + "n=375.0#rpm\n", + "\n", + "#calculation\n", + "f=p*n/120\n", + "n=s/p\n", + "beta=180/9\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "t=s*z/(3*2)\n", + "eph=4.44*1*0.96*f*phi*t\n", + "el=3**0.5*eph\n", + "#result\n", + "print \"frequency=\",f,\"Hz\"\n", + "print \"phase emf=\",eph,\"V\"\n", + "print \"line emf=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency= 50.0 Hz\n", + "phase emf= 1534.464 V\n", + "line emf= 2657.76961039 V\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.7, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=6\n", + "s=54\n", + "phi=0.1#Wb\n", + "n=1200#rpm\n", + "t=8\n", + "#calculations\n", + "beta=180/9\n", + "kc=math.cos(beta/2)\n", + "f=p*n/120\n", + "n=s/p\n", + "m=s/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "z=s*8/3\n", + "t=z/2\n", + "eph=4.44*0.98*0.96*f*phi*t\n", + "el=3**0.*eph\n", + "\n", + "#result\n", + "print \"eph=\",eph,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "eph= 1804.529664 V\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.8, Page Number:1416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=16.0\n", + "slots=144.0\n", + "z=4.0\n", + "n=375.0\n", + "airgap=5*0.01\n", + "theta=150.0\n", + "\n", + "#calculation\n", + "kf=1.11\n", + "alpha=(180-theta)\n", + "kc=math.cos(math.radians(alpha/2))\n", + "beta=180/9\n", + "m=slots/(p*3)\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "f=p*n/120\n", + "s=slots/3\n", + "eph=4*kf*kc*kd*f*airgap*s*4/2\n", + "\n", + "#result\n", + "print \"emf per phase=\",eph,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf per phase= 987.908016392 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.9, Page Number:1417" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=10\n", + "f=50#Hz\n", + "n=600#rpm\n", + "slots=180\n", + "s=15\n", + "d=1.2#m\n", + "l=0.4#m\n", + "m=6\n", + "beta=180/18\n", + "#calculations\n", + "area=(1.2*3.14/p)*l\n", + "phi1=area*0.637\n", + "vr=1.1*2*f*phi1\n", + "vp=2**0.5*vr\n", + "v3=0.4*vp\n", + "v5=0.2*vp\n", + "vf=6*vp*0.966\n", + "vf3=6*v3*0.707\n", + "vf5=6*v5*0.259\n", + "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "kd2=math.sin(math.radians(3*m*beta/2))/(6*math.sin(3*math.radians(beta/2)))\n", + "kd3=math.sin(math.radians(5*m*beta/2))/(6*math.sin(5*math.radians(beta/2)))\n", + "vph=vf*2**0.5*60*kd1\n", + "vph3=vf3*2**0.5*60*kd2\n", + "vph5=vf5*2**0.5*60*kd3\n", + "rmsv=(vph**2+vph3**2+vph5**2)**0.5\n", + "rmsvl=3**0.5*(vph**2+vph5**2)**0.5\n", + "\n", + "#result\n", + "print \"i)e=\",vp,\"sin theta+\",v3,\"sin 3theta+\",v5,\"sin 5theta\"\n", + "print \"ii)e=\",vf,\"sin theta+\",vf3,\"sin 3theta+\",vf5,\"sin 5theta\"\n", + "print \"iii)rms value of phase voltage=\",rmsv,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)e= 14.9354392872 sin theta+ 5.97417571489 sin 3theta+ 2.98708785745 sin 5theta\n", + "ii)e= 86.5658061088 sin theta+ 25.3424533826 sin 3theta+ 4.64193453047 sin 5theta\n", + "iii)rms value of phase voltage= 7158.83679423 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.10, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=4\n", + "f=50.0#Hz\n", + "slot=60.0\n", + "z=4.0\n", + "s=3.0\n", + "theta=60.0\n", + "phi=0.943#Wb\n", + "\n", + "#calculation\n", + "m=slot/(p*s)\n", + "beta=slot/5\n", + "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "alpha=(s/15)*180\n", + "kc=math.cos(math.radians(alpha/2))\n", + "z=slot*z/s\n", + "t=z/2\n", + "kf=1.11\n", + "eph=z*kf*kc*kd*f*phi*t/2\n", + "el=3**0.5*eph*0.1\n", + "\n", + "#result\n", + "print \"line voltage=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage= 13196.4478482 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.11, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4.0\n", + "f=50.0#Hz\n", + "slot=15.0\n", + "z=10.0\n", + "kd=0.95\n", + "e=1825#v\n", + "kc=1\n", + "kf=1.11\n", + "#calculations\n", + "slots=p*slot\n", + "slotsp=slots/3\n", + "turnp=20*z/2\n", + "phi=e/(3**0.5*p*kc*kf*kd*f*turnp)\n", + "z=slots*z\n", + "n=120*f/p\n", + "eg=(phi*0.001*z*n)/slots\n", + "\n", + "#result\n", + "print \"emf=\",eg*1000,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf= 749.405577006 V\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.12, Page Number:1419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=360#V\n", + "f=60.0#Hz\n", + "i=3.6#A\n", + "f2=40#Hz\n", + "i2=2.4#A\n", + "\n", + "#calculations\n", + "e2=v*i2*f2/(f*i)\n", + "\n", + "#result\n", + "print \"e2=\",e2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e2= 160.0 V\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.13, Page Number:1418" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=0\n", + "f=50.0#Hz\n", + "slot=2\n", + "z=4\n", + "theta=150#degrees\n", + "phi=0.12#Wb\n", + "per=20#%\n", + "\n", + "#calculations\n", + "alpha=180-theta\n", + "slotp=6\n", + "m=2\n", + "beta=180/slotp\n", + "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n", + "z=10*slot*z\n", + "t=z/2\n", + "e1=4.44*kd1*kd1*f*0.12*t\n", + "kc3=math.cos(3*math.radians(alpha/2))\n", + "f2=f*3\n", + "phi3=(1.0/3)*per*0.12\n", + "e3=4.44*kd3*kd3*theta*0.008*40\n", + "e=(e1**2+e3**2)**0.5\n", + "\n", + "#result\n", + "print \"e=\",e,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "e= 994.25286629 V\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.14, Page Number:1419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=230.0#V\n", + "per=10.0#%\n", + "per2=6.0#%\n", + "f=50.0#Hz\n", + "r=10.0#ohm\n", + "\n", + "#calculation\n", + "#star connection\n", + "e5=per*v/100\n", + "e=(v**2+e5**2)**0.5\n", + "eph=3**0.5*e\n", + "\n", + "#delta\n", + "e3=10*v/100\n", + "f3=10*3\n", + "i=e3/f3\n", + "\n", + "#result\n", + "print \"line voltage for star=\",eph,\"V\"\n", + "print \"line voltage for delta=\",e3,\"V\"\n", + "print \"current=\",i,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage for star= 400.358589267 V\n", + "line voltage for delta= 23.0 V\n", + "current= 0.766666666667 A\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.15(a), Page Number:1420" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=10.0\n", + "p1=24.0\n", + "f=25#Hz\n", + "p3=6.0\n", + "s=0.05\n", + "\n", + "#calculation\n", + "n=120*f/p\n", + "f1=p1*n/120\n", + "n2=120*f1/6\n", + "n3=(1-s)*n2\n", + "f2=s*f1p\n", + "\n", + "\n", + "#result\n", + "print \"frequency=\",f1,\"Hz\"\n", + "print \"speed=\",n3,\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency= 60.0 Hz\n", + "speed= 1140.0 rpm\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.15(b), Page Number:1420" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "p=4\n", + "phi=0.12#Wb\n", + "slotsp=4\n", + "cp=4\n", + "theta=150#degrees\n", + "\n", + "#calculation\n", + "slots=slotsp*3*p\n", + "c=cp*slots\n", + "turns=32\n", + "kb=math.sin(math.radians(60/2))/(p*math.sin(math.radians(7.5)))\n", + "kp=math.cos(math.radians(15))\n", + "eph=4.44*50*0.12*kb*0.966*turns\n", + "el=eph*3**0.5\n", + "\n", + "#result\n", + "print \"line voltage\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line voltage 1365.94840977 V\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.16, Page Number:1426" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#MW\n", + "pf=0.85\n", + "v=11#kV\n", + "r=0.1#ohm\n", + "x=0.66#ohm\n", + "\n", + "#calculation\n", + "i=load*10**6/(3**0.5*v*1000*pf)\n", + "iradrop=i*r\n", + "ixsdrop=i*x\n", + "vp=v*1000/3**0.5\n", + "phi=math.acos(pf)\n", + "sinphi=math.sin(phi)\n", + "e0=((vp*pf+i*r)**2+(vp*sinphi+i*x)**2)**0.5\n", + "el=3**0.5*e0\n", + "\n", + "#result\n", + "print \"linevalue of emf=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "linevalue of emf= 11475.6408913 V\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.17(a), Page Number:1428" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2200.0#V\n", + "f=50.0#Hz\n", + "load=440.0#KVA\n", + "r=0.5#ohm\n", + "i=40.0#A\n", + "il=200.0#A\n", + "vf=1160.0#V\n", + "\n", + "#calculations\n", + "zs=vf/200\n", + "xs=(zs**2-r**2)**0.5\n", + "\n", + "#result\n", + "print \"synchronous impedence=\",zs,\"ohm\"\n", + "print \"synchronous reactance=\",xs,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous impedence= 5.8 ohm\n", + "synchronous reactance= 5.77840808528 ohm\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.17(b), Page Number:1428" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=60.0#kVA\n", + "v=220.0#V\n", + "f=50.0#Hz\n", + "r=0.016#ohm\n", + "x=0.07#ohm\n", + "pf=0.7\n", + "\n", + "#calculations\n", + "i=load*1000/v\n", + "ira=i*r\n", + "ixl=i*x\n", + "#unity pf\n", + "e=((v+ira)**2+(ixl)**2)**0.5\n", + "#pf of 0.7 lag\n", + "e2=((v*pf+ira)**2+(v*pf+ixl)**2)**0.5\n", + "#pf of 0.7 lead\n", + "e3=((v*pf+ira)**2+(v*pf-ixl)**2)**0.5\n", + "\n", + "#result\n", + "print \"voltage with pf=1\",e,\"V\"\n", + "print \"voltage with pf=0.7 lag\",e2,\"V\"\n", + "print \"voltage with pf=0.7 lead\",e3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage with pf=1 225.174386048 V\n", + "voltage with pf=0.7 lag 234.604995966 V\n", + "voltage with pf=0.7 lead 208.03726621 V\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.18(a), Page Number:1429" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=50.0#KVA\n", + "v1=440.0#V\n", + "f=50.0#Hz\n", + "r=0.25#ohm\n", + "x=3.2#ohm\n", + "xl=0.5#ohm\n", + "\n", + "#calculation\n", + "v=v1/3**0.5\n", + "i=load*1000/(3**0.5*v1)\n", + "rd=i*r\n", + "ixl=i*xl\n", + "ea=((v+rd)**2+(ixl)**2)**0.5\n", + "el=3**0.5*ea\n", + "e0=((v+rd)**2+(i*x)**2)**0.5\n", + "e0l=e0*3**0.5\n", + "per=(e0-v)/v\n", + "xa=x-xl\n", + "#result\n", + "print \"internal emf Ea=\",el,\"V\"\n", + "print \"no load emf=\",e0l,\"V\"\n", + "print \"percentage regulation=\",per*100,\"%\"\n", + "print \"valueof synchronous reactance=\",xa,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "internal emf Ea= 471.842539659 V\n", + "no load emf= 592.991130967 V\n", + "percentage regulation= 34.7707115833 %\n", + "valueof synchronous reactance= 2.7 ohm\n" + ] + } + ], + "prompt_number": 87 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.19, Page Number:1432" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "i=200.0#A\n", + "v=50.0#V\n", + "r=0.1#ohm\n", + "il=100.0#A\n", + "pf=0.8\n", + "vt=200.0#V\n", + "\n", + "#calculation\n", + "zs=v/vt\n", + "xs=(zs**2-r**2)**0.5\n", + "ira=il*r\n", + "ixs=il*xs\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n", + "\n", + "#result\n", + "print \"induced voltage=\",e0,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced voltage= 222.090276316 V\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.20, Page Number:1433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=2000.0#V\n", + "i=100.0#A\n", + "pf=0.8\n", + "pf2=0.71\n", + "i2=2.5#A\n", + "v2=500.0#V\n", + "r=0.8#ohm\n", + "\n", + "#calculations\n", + "sinphi1=math.sin(math.acos(pf))\n", + "sinphi2=math.sin(math.acos(pf2))\n", + "zs=v2/i\n", + "xs=(zs**2-r**2)**.5\n", + "#unity pf\n", + "e01=((v+r*i)**2+(i*xs)**2)**0.5\n", + "reg1=(e01-v)*100/v\n", + "#at pf=0.8\n", + "e02=((v*pf+r*i)**2+(v*sinphi1-i*xs)**2)**0.5\n", + "reg2=(e02-v)*100/v\n", + "#at pf=0.71\n", + "e03=((v*pf2+r*i)**2+(v*sinphi2+i*xs)**2)**0.5\n", + "reg3=(e03-v)*100/v\n", + "\n", + "#result\n", + "print \"voltage regulation unity pf=\",reg1,\"%\"\n", + "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n", + "print \"voltage regulation 0.71 lead pf=\",reg3,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.6\n", + "voltage regulation unity pf= 6.88779163216 %\n", + "voltage regulation 0.8 lag pf= -8.875640156 %\n", + "voltage regulation 0.71 lead pf= 21.1141910671 %\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.21, Page Number:1433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=3000.0#V\n", + "load=100.0#kVA\n", + "f=50.0#Hz\n", + "r=0.2\n", + "i1=40.0#A\n", + "i2=200.0#A\n", + "v2=1040.0#V\n", + "pf=0.8\n", + "v1=v/3**0.5\n", + "#calculations\n", + "sinphi1=math.sin(math.acos(pf))\n", + "zs=v2/(3**0.5*i2)\n", + "xs=(zs**2-r**2)**.5\n", + "i=load*1000/(3**0.5*v)\n", + "\n", + "\n", + "#at pf=0.8 lag\n", + "e01=((v1*pf+r*i)**2+(v1*sinphi1+i*xs)**2)**0.5\n", + "reg1=(e01-v1)*100/v1\n", + "#at pf=0.8 lead\n", + "e02=((v1*pf+r*i)**2+(v1*sinphi1-i*xs)**2)**0.5\n", + "reg2=(e02-v1)*100/v1\n", + "\n", + "#result\n", + "print \"voltage regulation 0.8 lag pf=\",reg1,\"%\"\n", + "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation 0.8 lag pf= 2.20611574348 %\n", + "voltage regulation 0.8 lag pf= -1.77945143824 %\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.22, Page Number:1434" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1600.0#kVA\n", + "v=13500.0#V\n", + "r=1.5#ohm\n", + "x=30.0#ohm\n", + "load1=1280.0#kW\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi1=math.sin(math.acos(pf))\n", + "i=load1*1000/(3**0.5*v*pf)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v/3**0.5\n", + "e0=((vp*pf+ira)**2+(vp*sinphi1-ixs)**2)**0.5\n", + "regn=(e0-vp)*100/vp\n", + "\n", + "#result\n", + "print \"percentage regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage regulation= -11.9909032489 %\n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.23, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#kVA\n", + "v=400.0#V\n", + "f=50.0#Hz\n", + "pf=0.8\n", + "r=0.5#ohm\n", + "x=10.0#ohm\n", + "\n", + "#calculations\n", + "i=load*1000/(3**0.5*v)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v/3**0.5\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n", + "regn=(e0-vp)/vp\n", + "thetadel=math.atan((vp*sinphi+ixs)/(vp*pf+ira))\n", + "delta=math.degrees(thetadel)-math.degrees(math.acos(pf))\n", + "\n", + "#result\n", + "print \"voltage regulation=\",regn*100,\"%\"\n", + "print \"power angle=\",delta,\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "voltage regulation= 48.0405877623 %\n", + "power angle= 18.9704078085 degrees\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.24, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=6000.0#KVA\n", + "v=6600.0#V\n", + "p=2.0\n", + "f=50.0#Hz\n", + "i2=125.0#A\n", + "v1=8000.0#V\n", + "i3=800.0#A\n", + "d=0.03\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "sinphi=math.sin(math.acos(pf))\n", + "zs=v1/(3**0.5*i3)\n", + "vp=v/3**0.5\n", + "rd=d*vp\n", + "il=load*1000/(3**0.5*v)\n", + "ira=rd\n", + "ra=ira/il\n", + "xs=(zs**2-ra**2)**0.5\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+il*xs)**2)**0.5\n", + "reg=(e0-vp)/vp\n", + "\n", + "#result\n", + "print \"percentage regulation=\",reg*100,\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "percentage regulation= 62.2972136768 %\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.25, Page Number:1435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "load=2000#KVA\n", + "v=2300#V\n", + "i=600#A\n", + "v2=900#V\n", + "r=0.12#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi=math.sin(math.acos(pf))\n", + "zs=v2/(3**0.5*i)\n", + "rp=r/2\n", + "re=rp*1.5\n", + "xs=(zs**2-re**2)**0.5\n", + "il=load*1000/(3**0.5*v)\n", + "ira=il*rp\n", + "ixs=il*xs\n", + "vp=v/3**0.5\n", + "e0=((vp+ira)**2+(ixs)**2)**0.5\n", + "reg1=(e0-vp)/vp\n", + "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n", + "reg2=(e0-vp)/vp\n", + "#result\n", + "print \"regulation at pf=1\",reg1*100,\"%\"\n", + "print \"regulation at pf=0.8\",reg2*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation at pf=1 7.32796146323 %\n", + "regulation at pf=0.8 23.8398862235 %\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.26, Page Number:1436" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=Symbol('v')\n", + "load=2000#KVA\n", + "load1=11#KV\n", + "r=0.3#ohm\n", + "x=5#ohm\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "sinphi=math.sin(math.acos(pf))\n", + "i=load*1000/(3**0.5*load1*1000)\n", + "vt=load1*1000/3**0.5\n", + "ira=i*r\n", + "ixs=i*x\n", + "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n", + "v=solve(((pf*v+ira)**2+(sinphi*v-ixs)**2)**0.5-e0,v)\n", + "\n", + "#result\n", + "print \"terminal voltage=\",v[1],\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 6978.31767618569 V\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.27, Page Number:1436" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1200#KVA\n", + "load1=3.3#KV\n", + "f=50#Hz\n", + "r=0.25#ohm\n", + "i=35#A\n", + "i2=200#A\n", + "v=1.1#kV\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "zs=v*1000/(3**0.5*i2)\n", + "xs=(zs**2-r**2)**0.5\n", + "v=load1*1000/3**0.5\n", + "theta=math.atan(xs/r)\n", + "ia=load*1000/(3**0.5*load1*1000)\n", + "e=v+ia*zs\n", + "change=(e-v)/v\n", + "\n", + "#result\n", + "print \"per unit change=\",change" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "per unit change= 0.349909254054\n" + ] + } + ], + "prompt_number": 151 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.28, Page Number:1437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50#Hz\n", + "v1=11#kV\n", + "load=3#MVA\n", + "i=100#A\n", + "v2=12370#V\n", + "vt=11000#V\n", + "pf=0.8\n", + "r=0.4#ohm\n", + "\n", + "#calculation\n", + "E0=v1*1000/3**0.5\n", + "v=v2/3**0.5\n", + "pf=0\n", + "sinphi=1\n", + "xs=(v-(E0**2-(i*r)**2)**0.5)/i\n", + "il=load*10**6/(3**0.5*v1*1000)\n", + "ira=il*r\n", + "ixs=il*xs\n", + "e0=((E0*pf+ira)**2+(E0*sinphi+ixs)**2)**0.5\n", + "regn=(e0-E0)*100/E0\n", + "#result\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 19.6180576177 %\n" + ] + } + ], + "prompt_number": 175 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.29, Page Number:1437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "pf=0.8\n", + "vt=3500#v\n", + "load=2280#KW\n", + "v1=3300#V\n", + "r=8#ohm\n", + "x=6#ohm\n", + "\n", + "#calculation\n", + "vl=vt/3**0.5\n", + "vp=v1/3**0.5\n", + "il=load*1000/(3**0.5*v1*pf)\n", + "drop=vl-vp\n", + "z=(r**2+x**2)**0.5\n", + "x=vl/(z+drop/il)\n", + "vtp=vl-x*drop/il\n", + "vtpl=vtp*3**0.5\n", + "\n", + "#result\n", + "print \"terminal voltage=\",vtpl,\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= 3420.781893 V\n" + ] + } + ], + "prompt_number": 176 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.30, Page Number:1441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3.5#MVA\n", + "v=4160#V\n", + "f=50#Hz\n", + "i=200#A\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "il=load*10**6/(3**0.5*v)\n", + "zs=4750/(3**0.5*il)\n", + "ra=0\n", + "ixs=il*zs\n", + "vp=v/3**0.5\n", + "sinphi=math.sin(math.acos(pf))\n", + "e0=((vp*pf)**2+(vp*sinphi+ixs)**2)**0.5\n", + "regn=(e0-vp)/vp\n", + "#result\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulation= 0.91675794767 %\n" + ] + } + ], + "prompt_number": 184 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.39, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "xd=0.7\n", + "xq=0.4\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "v=1\n", + "sinphi=math.sin(math.acos(pf))\n", + "ia=1\n", + "tandelta=ia*xq*pf/(v+xq*sinphi)\n", + "delta=math.atan(tandelta)\n", + "i_d=ia*math.sin(math.radians(36.9)+delta)\n", + "e0=v*math.cos(delta)+i_d*xd\n", + "\n", + "#result\n", + "print \"load angle=\",math.degrees(delta),\"degrees\"\n", + "print \"no load voltage=\",e0,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 14.4702941001 degrees\n", + "no load voltage= 1.51511515874 V\n" + ] + } + ], + "prompt_number": 185 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.40, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "f=50.0#Hz\n", + "xd=0.6\n", + "xq=0.45\n", + "ra=0.015\n", + "pf=0.8\n", + "ia=1\n", + "v=1\n", + "sinphi=math.sin(math.acos(pf))\n", + "#calculation\n", + "tanpsi=(v*sinphi+ia*xq)/(v*pf+ia*ra)\n", + "psi=math.atan(tanpsi)\n", + "delta=psi-math.acos(pf)\n", + "i_d=ia*math.sin(psi)\n", + "iq=ia*math.cos(psi)\n", + "e0=v*math.cos(delta)+iq*ra+i_d*xd\n", + "regn=(e0-v)*100/v\n", + "\n", + "#result\n", + "print \"open circuit voltage=\",e0,\"V\"\n", + "print \"regulation=\",regn,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "open circuit voltage= 1.44767600311 V\n", + "regulation= 44.7676003107 %\n" + ] + } + ], + "prompt_number": 187 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.41, Page Number:1455" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "ia=10#A\n", + "phi=math.radians(20)\n", + "v=400#V\n", + "xd=10#ohm\n", + "xq=6.5#ohm\n", + "\n", + "#calculations\n", + "pf=math.cos(phi)\n", + "sinphi=math.sin(phi)\n", + "tandelta=ia*xq*pf/(v+ia*xq*sinphi)\n", + "delta=math.atan(tandelta)\n", + "i_d=ia*math.sin(phi+delta)\n", + "iq=ia*math.cos(phi+delta)\n", + "e0=v*math.cos(delta)+i_d*xd\n", + "regn=(e0-v)/v\n", + "\n", + "#result\n", + "print \"load angle=\",math.degrees(delta),\"degrees\"\n", + "print \"id=\",i_d,\"A\"\n", + "print \"iq=\",iq,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 8.23131209115 degrees\n", + "id= 4.7303232581 A\n", + "iq= 8.81045071911 A\n" + ] + } + ], + "prompt_number": 189 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.42, Page Number:1459" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "e1=220#V\n", + "f1=60#Hz\n", + "e2=222#V\n", + "f2=59#Hz\n", + "\n", + "#calculation\n", + "emax=(e1+e2)/2\n", + "emin=(e2-e1)/2\n", + "f=(f1-f2)\n", + "epeak=emax/0.707\n", + "pulse=(f1-f2)*60\n", + "\n", + "#result\n", + "print \"max voltage=\",emax,\"V\"\n", + "print \"min voltage=\",emin,\"V\"\n", + "print \"frequency=\",f,\"Hz\"\n", + "print \"peak value of voltage=\",epeak,\"V\"\n", + "print \"number of maximum light pulsations/minute=\",pulse" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max voltage= 221 V\n", + "min voltage= 1 V\n", + "frequency= 1 Hz\n", + "peak value of voltage= 312.588401697 V\n", + "number of maximum light pulsations/minute= 60\n" + ] + } + ], + "prompt_number": 190 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.43, Page Number:1462" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "power=1500#kVA\n", + "v=6.6#kV\n", + "r=0.4#ohm\n", + "x=6#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "i=power*1000/(3**0.5*v*1000)\n", + "ira=i*r\n", + "ixs=i*x\n", + "vp=v*1000/3**0.5\n", + "phi=math.acos(pf)\n", + "tanphialpha=(vp*math.sin(phi)+ixs)/(vp*pf+ira)\n", + "phialpha=math.atan(tanphialpha)\n", + "alpha=phialpha-phi\n", + "\n", + "#result\n", + "print \"power angle=\",math.degrees(alpha)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power angle= 7.87684146241\n" + ] + } + ], + "prompt_number": 198 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.44, Page Number:1464" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3000#KVA\n", + "p=6\n", + "n=1000#rpm\n", + "v=3300#v\n", + "x=0.25\n", + "\n", + "#calculation\n", + "vp=v/3**0.5\n", + "i=load*1000/(3**0.5*v)\n", + "ixs=x*vp\n", + "xs=x*vp/i\n", + "alpha=1*p/2\n", + "psy=3*3.14*vp**2/(60*xs*n)\n", + "tsy=9.55*psy/n\n", + "\n", + "#result\n", + "print \"synchronizing power=\",psy,\"kW\"\n", + "print \"torque=\",tsy*1000,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronizing power= 628.0 kW\n", + "torque= 5997.4 N-m\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.45, Page Number:1465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=3#MVA\n", + "n=1000#rpm\n", + "v1=3.3#kV\n", + "r=0.25\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "vp=v1*1000/3**0.5\n", + "i=load*1000000/(3**0.5*v1*1000)\n", + "ixs=complex(0,r*vp)\n", + "xs=ixs/i\n", + "v=vp*complex(pf,math.sin(math.acos(pf)))\n", + "e0=v+ixs\n", + "alpha=math.atan(e0.imag/e0.real)-math.acos(pf)\n", + "p=6/2\n", + "psy=abs(e0)*vp*math.cos(alpha)*math.sin(math.radians(3))/xs\n", + "tsy=9.55*3*psy*100/n\n", + "\n", + "#result\n", + "print \"synchronous power=\",-psy*3/1000,\"kW\"\n", + "print \"toque=\",-tsy/100,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power= 722.236196153j kW\n", + "toque= 6897.35567326j N-m\n" + ] + } + ], + "prompt_number": 221 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.46, Page Number:1465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=750#KVA\n", + "v=11#kV\n", + "p=4\n", + "r=1#%\n", + "x=15#%\n", + "pf=0.8\n", + "#calculation\n", + "i=load*1000/(3**0.5*v*1000)\n", + "vph=v*1000/3**0.5\n", + "ira=r*vph/1000\n", + "ra=ira/i\n", + "xs=x*vph/(100*i)\n", + "zs=(ra**2+xs**2)**0.5\n", + "#no load\n", + "alpha=p/2\n", + "psy=math.radians(alpha)*vph**2/xs\n", + "#fl 0.8 pf\n", + "e=((vph*pf+i*ra)**2+(vph*math.sin(math.acos(pf)+i*xs))**2)**0.5\n", + "psy2=math.radians(alpha)*e*vph/xs\n", + "\n", + "#result\n", + "print \"Synchronous power at:\"\n", + "print \"no load=\",psy,\"W\"\n", + "print \"at pf of 0.8=\",psy2,\"w\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Synchronous power at:\n", + "no load= 58177.6417331 W\n", + "at pf of 0.8= 73621.2350169 w\n" + ] + } + ], + "prompt_number": 225 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.47, Page Number:1466" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=2000#KVA\n", + "p=8\n", + "n=750#rpm\n", + "v1=6000#V\n", + "pf=0.8\n", + "r=6#ohm\n", + "\n", + "#calculations\n", + "alpha=math.radians(4)\n", + "v=v1/3**0.5\n", + "i=load*1000/(3**0.5*v1)\n", + "e0=((v*pf)**2+(v*math.sin(math.acos(pf))+i*r)**2)**0.5\n", + "psy=alpha*e0*v*3/r\n", + "tsy=9.55*psy/n\n", + "\n", + "#result\n", + "print \"synchronous power=\",psy,\"W\"\n", + "print \"synchronous torque=\",tsy,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power= 514916.500204 W\n", + "synchronous torque= 6556.60343593 N-m\n" + ] + } + ], + "prompt_number": 226 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.48, Page Number:1467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5000#KVA\n", + "v=10000#V\n", + "n=1500#rpm\n", + "f=50#Hz\n", + "r=20#%\n", + "pf=0.8\n", + "phi=0.5\n", + "\n", + "#calculations\n", + "vp=v/3**0.5\n", + "i=load*1000/(3**0.5*v)\n", + "xs=r*vp/(1000*i)\n", + "p=120*f/n\n", + "alpha=math.radians(2)\n", + "#no load\n", + "psy=3*alpha*vp**2/(p*1000)\n", + "tsy=9.55*psy*1000/(n*2)\n", + "#pf=0.8\n", + "v2=vp*complex(pf,math.sin(math.acos(pf)))\n", + "ixs=complex(0,i*4)\n", + "e0=v+ixs\n", + "psy2=abs(e0)*vp*math.cos(math.radians(8.1))*math.sin(math.radians(2))*3/4\n", + "tsy2=9.55*psy2/(n*20)\n", + "\n", + "#result\n", + "print \"synchronous power:\"\n", + "print \"atno load=\",psy,\"w\"\n", + "print \"at 0.8 pf=\",psy2,\"w\"\n", + "print \"torque:\"\n", + "print \"at no load=\",tsy,\"N-m\"\n", + "print \"at pf=0.8=\",tsy2,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "synchronous power:\n", + "atno load= 872.664625997 w\n", + "at 0.8 pf= 1506057.44405 w\n", + "torque:\n", + "at no load= 2777.98239276 N-m\n", + "at pf=0.8= 479.428286357 N-m\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.49, Page Number:1468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=6.6#kW\n", + "load1=3000#kW\n", + "pf=0.8\n", + "xa=complex(0.5,10)\n", + "xb=complex(0.4,12)\n", + "i0=150#A\n", + "\n", + "#calculation\n", + "v=complex(load*1000/3**0.5,0)\n", + "cosphi1=1500*1000/(load*1000*i0*3**0.5)\n", + "phi1=math.acos(cosphi1)\n", + "sinphi1=math.sin(phi1)\n", + "i=328*complex(pf,-math.sin(math.acos(pf)))\n", + "i1=i0*complex(cosphi1,-sinphi1)\n", + "i2=i-i1\n", + "coshi2=i2.real/181\n", + "ea=v+i1*xa\n", + "eal=3**0.5*abs(ea)\n", + "eb=v+i2*xb\n", + "ebl=3**0.5*abs(eb)\n", + "alpha1=(ea.imag/ea.real)\n", + "alpha2=(eb.imag/eb.real)\n", + "#result\n", + "print \"Ea=\",ea,\"V\"\n", + "print \"Eb=\",eb,\"V\"\n", + "print \"alpha1=\",math.degrees(alpha1),\"degrees\"\n", + "print \"alpha2=\",math.degrees(alpha2),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ea= (4602.91884998+1275.81974829j) V\n", + "Eb= (5352.42648271+1524.56032028j) V\n", + "alpha1= 15.8810288383 degrees\n", + "alpha2= 16.3198639435 degrees\n" + ] + } + ], + "prompt_number": 245 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.50, Page Number:1468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declration\n", + "e1=complex(230,0)\n", + "e2=230*complex(0.985,0.174)\n", + "z1=complex(0,2)\n", + "z2=complex(0,3)\n", + "z=6\n", + "i1=((e1-e2)*z+e1*z2)/(z*(z1+z2)+z1*z2)\n", + "i2=((e2-e1)*z+e2*z1)/(z*(z1+z2)+z1*z2)\n", + "i=i1+i2\n", + "v=i*z\n", + "p1=abs(v)*abs(i1)*math.cos(math.atan(i1.imag/i1.real))\n", + "p2=abs(v)*abs(i2)*math.cos(math.atan(i2.imag/i2.real))\n", + "\n", + "#result\n", + "print \"terminal voltage=\",v,\"V\"\n", + "print \"current\",i,\"A\"\n", + "print \"power 1=\",p1,\"W\"\n", + "print \"power 2=\",p2,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "terminal voltage= (222.905384615-28.5730769231j) V\n", + "current (37.1508974359-4.76217948718j) A\n", + "power 1= 3210.60292765 W\n", + "power 2= 5138.29001053 W\n" + ] + } + ], + "prompt_number": 249 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.51, Page Number:1471" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=1500#kW\n", + "v=11#KV\n", + "pf=0.867\n", + "x=50#ohm\n", + "r=4#ohm\n", + "i=50#A\n", + "\n", + "#calculations\n", + "il=load*1000/(3**0.5*v*1000*pf)\n", + "phi=math.acos(pf)\n", + "sinphi=math.sin(phi)\n", + "iwatt=il*pf\n", + "iwattless=il*sinphi\n", + "i1=il/2\n", + "i2=iwatt/2\n", + "iw1=(i**2-i1**2)**0.5\n", + "iw2=i2-iw1\n", + "ia=(i2**2+iw2**2)**0.5\n", + "vt=v*1000/3**0.5\n", + "ir=i*r\n", + "ix=x*i\n", + "cosphi=i2/i\n", + "sinphi=math.sin(math.acos(cosphi))\n", + "e=((vt*cosphi+ir)**2+(vt*sinphi+ix)**2)**0.5\n", + "el=3**0.5*e\n", + "\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"line voltage=\",el,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 43.4628778514 A\n", + "line voltage= 14304.0798593 V\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.52, Page Number:1472" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10#MW\n", + "pf=0.8\n", + "output=6000#kW\n", + "pfa=0.92\n", + "\n", + "#calculations\n", + "phi=math.acos(pf)\n", + "phia=math.acos(pfa)\n", + "tanphi=math.tan(phi)\n", + "tanphia=math.tan(phia)\n", + "loadkvar=load*1000*tanphi\n", + "akvar=output*tanphia\n", + "kwb=(load*1000-output)\n", + "kvarb=loadkvar-akvar\n", + "kvab=complex(kwb,kvarb)\n", + "pfb=math.cos(math.atan(kvab.imag/kvab.real))\n", + "kvarb=kwb*pfb\n", + "kvara=-loadkvar-kvarb\n", + "kvaa=complex(output,kvara)\n", + "pfa=math.cos(math.atan(kvaa.imag/kvaa.real))\n", + "\n", + "#result\n", + "print \"new pfb=\",pfb\n", + "print \"new pfa=\",pfa" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new pfb= 0.628980253433\n", + "new pfa= 0.513894032194\n" + ] + } + ], + "prompt_number": 253 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.54, Page Number:1473" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=6600#V\n", + "load=1000#KVA\n", + "x=20#%\n", + "pf=0.8\n", + "\n", + "#calculation\n", + "i=87.5\n", + "x=8.7\n", + "vp=3810\n", + "e0=4311\n", + "ir=70\n", + "ix=52.5\n", + "IX=762\n", + "vb1=(e0**2-vp**2)**0.5\n", + "i1x=vb1\n", + "i1=i1x/x\n", + "output=3**0.5*v*i1/1000\n", + "b2v=(vp**2+e0**2)**0.5\n", + "i2z=b2v\n", + "i2=b2v/x\n", + "i2rx=e0\n", + "i2r=i2rx/x\n", + "i2x=vp/x\n", + "tanphi2=i2x/i2r\n", + "phi2=math.atan(tanphi2)\n", + "cosphi2=math.cos(phi2)\n", + "output1=3**0.5*v*i2*cosphi2/1000\n", + "\n", + "#result\n", + "print \"power output at unity pf=\",output,\"kW\"\n", + "print \"max power output=\",output1,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " power output at unity pf= 2650.38477722 kW\n", + "max power output= 5664.52285143 kW\n" + ] + } + ], + "prompt_number": 255 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.55, Page Number:1474" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "x=10.0#ohm\n", + "i=220.0#A\n", + "load=11.0#kV\n", + "per=25.0#%\n", + "\n", + "#calculations\n", + "oa1=load*1000/3**0.5\n", + "a1c1=i*x\n", + "e0=(oa1**2+a1c1**2)**0.5\n", + "emf=(1+per/100)*e0\n", + "a1a2=(emf**2-a1c1**2)**0.5-oa1\n", + "ix=a1a2/x\n", + "i1=(i**2+ix**2)**0.5\n", + "pf=i/i1\n", + "bv=(oa1**2+emf**2)**0.5\n", + "imax=bv/x\n", + "ir=emf/x\n", + "ix=oa1/x\n", + "pfmax=ir/imax\n", + "output=3**0.5*load*1000*imax*pfmax*0.001\n", + "#result\n", + "print \"new current=\",i1,\"A\"\n", + "print \"new power factor=\",pf\n", + "print \"max power output=\",output,\"kW\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new current= 281.573453399 A\n", + "new power factor= 0.781323655849\n", + "max power output= 16006.7954319 kW\n" + ] + } + ], + "prompt_number": 258 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.56, Page Number:1475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=20.0#MVA\n", + "load1=35.0#MVA\n", + "pf=0.8\n", + "output=25.0#MVA\n", + "cosphi1=0.9\n", + "\n", + "#calculations\n", + "loadmw=load1*pf\n", + "loadmvar=load1*0.6\n", + "sinphi=math.sin(math.acos(cosphi))\n", + "mva1=25\n", + "mw1=mva1*cosphi1\n", + "mvar1=25*sinphi1\n", + "mw2=loadmw-mw1\n", + "mvar2=loadmvar-mvar1\n", + "mva2=(mw2**2+mvar2**2)**0.5\n", + "cosphi2=mw2/mva2\n", + "\n", + "#result\n", + "print \"output=\",mva2\n", + "print \"pf=\",cosphi2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output= 10.4509862952\n", + "pf= 0.52626611926\n" + ] + } + ], + "prompt_number": 260 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.57, Page Number:1475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declarations\n", + "load=600#KW\n", + "loadm=707#kW\n", + "pf=0.707\n", + "output=900#kW\n", + "pf1=0.9\n", + "\n", + "#calculation\n", + "kva=1000\n", + "kvar=kva*(1-pf1**2)**0.5\n", + "active_p=1307-output\n", + "reactive_p=loadm-kvar\n", + "\n", + "#result\n", + "print \"active power shared by second machine=\",active_p,\"kW\"\n", + "print \"reactive power shared by second machine=\",reactive_p,\"kVAR\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "active power shared by second machine= 407 kW\n", + "reactive power shared by second machine= 271.110105646 kVAR\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.58, Page Number:1476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "l1=500#kW\n", + "l2=1000#kW\n", + "pf1=0.9\n", + "l3=800#kW\n", + "pf2=0.8\n", + "l4=500#kW\n", + "pf3=0.9\n", + "output=1500#kW\n", + "pf=0.95\n", + "\n", + "#calculation\n", + "kw1=l1\n", + "kw2=l2\n", + "kw3=l3\n", + "kw4=500\n", + "kvar2=kw2*0.436/pf1\n", + "kvar3=kw3*0.6/pf2\n", + "kvar4=kw4*0.436/pf3\n", + "kvar=output/pf\n", + "kw=kw1+kw2+kw3+kw4-output\n", + "kvar=kvar2+kvar3+kvar4-kvar\n", + "cosphi=math.cos(math.atan(kvar/kw))\n", + "\n", + "#result\n", + "print \"kW output=\",kw\n", + "print \"pf=\",cosphi" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kW output= 1300\n", + "pf= 0.981685651341\n" + ] + } + ], + "prompt_number": 264 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.59, Page Number:1476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "z=complex(0.2,2)\n", + "ze=complex(3,4)\n", + "emf1=complex(2000,0)\n", + "emf2=complex(22000,100)\n", + "\n", + "#calculations\n", + "i1=complex(68.2,-102.5)\n", + "i2=complex(127,-196.4)\n", + "i=i1+i2\n", + "v=i*ze\n", + "pva1=v*i1\n", + "kw1=pva1.real*3\n", + "a11=math.atan(-i1.imag/i1.real)\n", + "a12=math.atan(-v.imag/v.real)\n", + "pf1=math.cos(a11-a12)\n", + "pva2=v*i2\n", + "kw2=pva2.real*3\n", + "a21=math.atan(-i2.imag/i2.real)\n", + "a22=math.atan(-v.imag/v.real)\n", + "pf2=math.cos(a21-a22)\n", + "\n", + "#result\n", + "print \"kw output 1=\",kw1/1000\n", + "print \"pf 1=\",pf1\n", + "print \"kw output 2=\",kw2/1000\n", + "print \"pf 2=\",pf2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kw output 1= 328.79427\n", + "pf 1= 0.606839673468\n", + "kw output 2= 610.34892\n", + "pf 2= 0.596381892841\n" + ] + } + ], + "prompt_number": 273 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.63, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=5000#KVA\n", + "v=10000#V\n", + "f=50#Hz\n", + "ns=1500#rpm\n", + "j=1.5*10**4#khm2\n", + "ratio=5\n", + "\n", + "#calculation\n", + "t=0.0083*ns*(j/(load*ratio*f))**0.5\n", + "\n", + "#result\n", + "print \"natural time period of oscillation=\",round(t,3),\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "natural time period of oscillation= 1.364 s\n" + ] + } + ], + "prompt_number": 275 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.64, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10000#KVA\n", + "p=4\n", + "v=6600#V\n", + "f=50#Hz\n", + "xs=25#%\n", + "pf=1.5\n", + "\n", + "#calculations\n", + "ratio=100/xs\n", + "ns=120*f/p\n", + "j=(pf/(0.0083*ns))**2*load*ratio*f\n", + "\n", + "#result\n", + "print \"moment of inertia=\",j/1000,\"x10^4 kg-m2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "moment of inertia= 29.0317898098 x10^4 kg-m2\n" + ] + } + ], + "prompt_number": 277 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.65, Page Number:1481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=10.0#MVA\n", + "v=10.0#kV\n", + "f=50.0#Hz\n", + "ns=1500.0#rpm\n", + "j=2.0*10**5#kgm2\n", + "x=40.0\n", + "\n", + "#calculation\n", + "ratio=100.0/x\n", + "t=0.0083*ns*(j/(load*1000*ratio*f))**0.5\n", + "\n", + "#result\n", + "print \"frequency of oscillation of the rotor=\",round(1/t,1),\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of oscillation of the rotor= 0.2 Hz\n" + ] + } + ], + "prompt_number": 283 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.66, Page Number:1483" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "v=11#kV\n", + "z=complex(1,10)\n", + "emf=14#kV\n", + "\n", + "#calculations\n", + "e=emf*1000/3**0.5\n", + "v=v*1000/3**0.5\n", + "costheta=z.real/abs(z)\n", + "pmax=e*v*3/(z.imag*1000)\n", + "pmax_per_phase=(v/abs(z))*(e-(v/abs(z)))*3\n", + "\n", + "#result\n", + "print \"max output =\",pmax_per_phase/1000,\"kW\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max output = 14125.5529273 kW\n" + ] + } + ], + "prompt_number": 285 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 37.67, Page Number:1484" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "load=11#kVA\n", + "load1=10#MW\n", + "z=complex(0.8,8.0)\n", + "v=14#kV\n", + "\n", + "#calculations\n", + "pmax=(load*1000/3**0.5)*(v*1000/3**0.5)*3/z.imag\n", + "imax=((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5/z.imag\n", + "pf=(v/3**0.5)*1000/((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5\n", + "\n", + "#result\n", + "print \"maximum output=\",pmax/1000000,\"MW\"\n", + "print \"current=\",imax,\"A\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum output= 19.25 MW\n", + "current= 1284.92866209 A\n", + "pf= 0.786318338822\n" + ] + } + ], + "prompt_number": 289 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter38_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter38_4.ipynb new file mode 100644 index 00000000..eb91f537 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter38_4.ipynb @@ -0,0 +1,1682 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a6bbecd88376ba06b11df7bbad39447a579ab954844d7c4715263117b7255967" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 38: Synchronous Motor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.1, Page Number:1495" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "p=75#kW\n", + "f=50#Hz\n", + "v=440#V\n", + "pf=0.8\n", + "loss=0.95\n", + "xs=2.5#ohm\n", + "\n", + "#calculations\n", + "ns=120*f/4\n", + "pm=p*1000/loss\n", + "ia=pm/(math.sqrt(3)*v*pf)\n", + "vol_phase=v/math.sqrt(3)\n", + "\n", + "#calculations\n", + "print \"mechanical power=\",pm,\"W\"\n", + "print \"armature current=\",ia,\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mechanical power= 78947.3684211 W\n", + "armature current= 129.489444346 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.2, Page Number:1498" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cmath\n", + "#variable declaration\n", + "p=20\n", + "vl=693#V\n", + "r=10#ohm\n", + "lag=0.5#degrees\n", + "\n", + "#calculations\n", + "#lag=0.5\n", + "alpha=p*lag/2\n", + "eb=vp=vl/math.sqrt(3)\n", + "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n", + "zs=complex(0,10)\n", + "ia=er/zs\n", + "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n", + "print \"displacement:0.5%\"\n", + "print \"alpha=\",alpha,\"degrees\"\n", + "print \"armature emf/phase=\",eb,\"V\"\n", + "print \"armature current/phase=\",ia,\"A\"\n", + "print \"power drawn=\",power_input,\"W\"\n", + "print \"\"\n", + "\n", + "#lag=5\n", + "lag=5\n", + "alpha=p*lag/2\n", + "eb=vp=vl/math.sqrt(3)\n", + "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n", + "zs=complex(0,10)\n", + "ia=er/zs\n", + "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n", + "\n", + "print \"displacement:5%\"\n", + "print \"alpha=\",alpha,\"degrees\"\n", + "print \"armature emf/phase=\",eb,\"V\"\n", + "print \"armature current/phase=\",ia,\"A\"\n", + "print \"power drawn=\",power_input,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "displacement:0.5%\n", + "alpha= 5.0 degrees\n", + "armature emf/phase= 400.103736548 V\n", + "armature current/phase= (3.4871338335-0.152251551219j) A\n", + "power drawn= 4189.63221768 W\n", + "\n", + "displacement:5%\n", + "alpha= 50 degrees\n", + "armature emf/phase= 400.103736548 V\n", + "armature current/phase= (30.6497244054-14.2922012106j) A\n", + "power drawn= 40591.222447 W\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.3, Page Number:1499" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400.0#V/ph\n", + "i=32.0#A/ph\n", + "xs=10.0#ohm\n", + "\n", + "#calculations\n", + "e=math.sqrt(v**2+(i*xs)**2)\n", + "delta=math.atan((i*xs)/v)\n", + "power=3*v*i\n", + "power_other=3*(v*e/10)*math.sin(delta)*0.001\n", + "\n", + "#result\n", + "print \"E=\",e,\"V\"\n", + "print \"delta=\",math.degrees(delta),\"degrees\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E= 512.249938995 V\n", + "delta= 38.6598082541 degrees\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.4, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "w=150#kW\n", + "f=50#Hz\n", + "v=2300#V\n", + "n=1000#rpm\n", + "xd=32#ohm\n", + "xq=20#ohm\n", + "alpha=16#degrees\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "eb=2*vp\n", + "ex_power=eb*vp*math.sin(math.radians(alpha))/xd\n", + "rel_power=(vp**2*(xd-xq)*math.sin(math.radians(2*alpha)))/(2*xd*xq)\n", + "pm=3*(ex_power+rel_power)\n", + "tg=9.55*pm/1000\n", + "\n", + "#result\n", + "print \"torque=\",tg,\"N-m\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "torque= 1121.29686485 N-m\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.6, Page Number:1506" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=11000#V\n", + "ia=60#A\n", + "r=1#ohm\n", + "x=30#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "p2=math.sqrt(3)*v*ia*pf\n", + "cu_loss=ia**2*3\n", + "pm=p2-cu_loss\n", + "vp=v/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=x\n", + "z_drop=ia*zs\n", + "eb=math.sqrt((vp**2+z_drop**2-(2*vp*z_drop*math.cos(theta+phi))))*math.sqrt(3)\n", + "\n", + "#result\n", + "print \"power supplied=\",p2/1000,\"kW\"\n", + "print \"mechanical power=\",pm/1000,\"KW\"\n", + "print \"induced emf=\",eb,\"V\"\n", + "\n", + " " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power supplied= 914.522826396 kW\n", + "mechanical power= 903.722826396 KW\n", + "induced emf= 13039.2734763 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.7, Page Number:1507" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "i=32#A\n", + "pf=1\n", + "xd=10#ohm\n", + "xq=6.5#ohm\n", + "\n", + "#calculations\n", + "e=math.sqrt(v**2+(i*xq)**2)+((xd-xq)*14.8)\n", + "delta=math.atan((i*xq)/v)\n", + "power=3*v*i\n", + "power_other=3*(v*e/10)*math.sin(delta)*0.001\n", + "\n", + "#result\n", + "print \"E=\",e,\"V\"\n", + "print \"delta=\",math.degrees(delta),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E= 502.648089715 V\n", + "delta= 27.4744316263 degrees\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.8, Page Number:1508" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=500#V\n", + "output=7.46#kW\n", + "pf=0.9\n", + "r=0.8#ohm\n", + "loss=500#W\n", + "ex_loss=800#W\n", + "\n", + "#calculations\n", + "pm=output*1000+loss+ex_loss\n", + "ia=(v*pf-math.sqrt(v**2*pf**2-4*r*pm))/(2*r)\n", + "m_input=loss*ia*pf\n", + "efficiency=output*1000/m_input\n", + "\n", + "#result\n", + "print \"commercial efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "commercial efficiency= 82.1029269497 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.9, Page Number:1509" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=2300#V\n", + "r=0.2#ohm\n", + "x=2.2#ohm\n", + "pf=0.5\n", + "il=200#A\n", + "\n", + "#calculations\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x//r)\n", + "v=v/math.sqrt(3)\n", + "zs=math.sqrt(r**2+x**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))\n", + "\n", + "#result\n", + "print \"Eb=\",eb,\"volt/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Eb= 1708.04482042 volt/phase\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.10, Page Number:1509" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "vl=6600#V\n", + "f=50#Hz\n", + "il=50#A\n", + "r=1#ohm\n", + "x=20#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "#0.8 lagging\n", + "power_i=math.sqrt(3)*v*f*pf\n", + "v=vl/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=math.sqrt(x**2+r**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi-theta)))*math.sqrt(3)\n", + "\n", + "print \"0.8 lag: Eb=\",eb\n", + "\n", + "#0.8 leading\n", + "power_i=math.sqrt(3)*v*f*pf\n", + "v=vl/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(x/r)\n", + "zs=math.sqrt(x**2+r**2)\n", + "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))*math.sqrt(3)\n", + "\n", + "print \"0.8 leading:Eb=\",eb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.8 lag: Eb= 5651.1180113\n", + "0.8 leading:Eb= 7705.24623679\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.11, Page Number:1510" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "x=0.4\n", + "pf=0.8\n", + "v=100#V\n", + "phi=math.acos(pf)\n", + "#calculations\n", + "#pf=1\n", + "eb=math.sqrt(v**2+(x*v)**2)\n", + "#pf=0.8 lag\n", + "eb2=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)-phi)))\n", + "#pf=0.8 lead\n", + "eb3=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)+phi)))\n", + "#result\n", + "print \"pf=1: Eb=\",eb,\"V\"\n", + "print \"pf=0.8 lag:Eb=\",eb2,\"V\"\n", + "print \"pf=0.8 lead:Eb=\",eb3,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf=1: Eb= 107.703296143 V\n", + "pf=0.8 lag:Eb= 82.4621125124 V\n", + "pf=0.8 lead:Eb= 128.062484749 V\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.12, Page Number:1510" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaraion\n", + "load=1000#kVA\n", + "v=11000#V\n", + "r=3.5#ohm\n", + "x=40#ohm\n", + "pf=0.8\n", + "\n", + "#calculations\n", + "ia=load*1000/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "phi=math.acos(pf)\n", + "ra=ia*r\n", + "xa=ia*x\n", + "za=math.sqrt(ra**2+xa**2)\n", + "theta=math.atan(x/r)\n", + "\n", + "#pf=1\n", + "eb1=math.sqrt(vp**2+za**2-(2*vp*za*math.cos(theta)))\n", + "alpha1=math.asin(xa*math.sin(theta)/eb1)\n", + "\n", + "#pf=0.8 lag\n", + "eb2=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta-phi)))*math.sqrt(3)\n", + "alpha2=math.asin(xa*math.sin(theta-phi)/eb2)\n", + "#pf=1\n", + "eb3=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta+phi)))*math.sqrt(3)\n", + "alpha3=math.asin(xa*math.sin(theta+phi)/eb3)\n", + "\n", + "#result\n", + "print \"at pf=1\"\n", + "print \"Eb=\",eb1*math.sqrt(3),\"V\"\n", + "print \"alpha=\",math.degrees(alpha1),\"degrees\"\n", + "print \"at pf=0.8 lagging\"\n", + "print \"Eb=\",eb2,\"V\"\n", + "print \"alpha=\",math.degrees(alpha2),\"degrees\"\n", + "print \"at pf=0.8 leading\"\n", + "print \"Eb=\",eb3,\"V\"\n", + "print \"alpha=\",math.degrees(alpha3),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "at pf=1\n", + "Eb= 11283.8105339 V\n", + "alpha= 18.7256601694 degrees\n", + "at pf=0.8 lagging\n", + "Eb= 8990.39249633 V\n", + "alpha= 10.0142654731 degrees\n", + "at pf=0.8 leading\n", + "Eb= 13283.8907748 V\n", + "alpha= 7.71356041367 degrees\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.14, Page Number:1513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z=complex(0.5,0.866)\n", + "v=200#V\n", + "output=6000#W\n", + "loss=500#W\n", + "i=50#A\n", + "\n", + "#calculations\n", + "cu_loss=i**2*z.real\n", + "motor_intake=output+loss+cu_loss\n", + "phi=math.acos(motor_intake/(v*i))\n", + "theta=math.atan(z.imag/z.real)\n", + "zs=abs(z)*i\n", + "eb1=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)-phi)))\n", + "eb2=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)+phi)))\n", + "#result\n", + "print \"lag:eb=\",eb1,\"V\"\n", + "print \"lag:eb=\",eb2,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "lag:eb= 154.286783862 V\n", + "lag:eb= 213.765547573 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.15, Page Number:1513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=2200#V\n", + "f=50#Hz\n", + "z=complex(0.4,6)\n", + "lag=3#degrees\n", + "\n", + "#calculations\n", + "eb=v/math.sqrt(3)\n", + "alpha=lag*8/2\n", + "er=math.sqrt(eb**2+eb**2-(2*eb*eb*(math.cos(math.radians(alpha)))))\n", + "zs=abs(z)\n", + "ia=er/zs\n", + "theta=math.atan(z.imag/z.real)\n", + "phi=theta-(math.asin(eb*math.sin(math.radians(alpha))/er))\n", + "pf=math.cos(phi)\n", + "total_input=3*eb*ia*pf\n", + "cu_loss=3*ia**2*z.real\n", + "pm=total_input-cu_loss\n", + "pm_max=(eb*eb/zs)-(eb**2*z.real/(zs**2))\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"power factor=\",pf\n", + "print \"power of the motor=\",pm/1000,\"kW\"\n", + "print \"max power of motor=\",pm_max/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 44.1583059199 A\n", + "power factor= 0.99927231631\n", + "power of the motor= 165.803353329 kW\n", + "max power of motor= 250.446734776 kW\n" + ] + } + ], + "prompt_number": 72 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.16, Page Number:1514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "eb=250#V\n", + "lead=150#degrees\n", + "v=200#V\n", + "x=2.5#times resistance\n", + "alpha=lead/3\n", + "#calculations\n", + "er=math.sqrt(v**2+eb**2-(2*v*eb*math.cos(math.radians(alpha))))\n", + "theta=math.atan(x)\n", + "phi=math.radians(90)-theta\n", + "pf=math.cos(phi)\n", + "\n", + "#results\n", + "print \"pf at which the motor is operating=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pf at which the motor is operating= 0.928476690885\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.17, Page Number:1514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6600#V\n", + "r=10#ohm\n", + "inpt=900#kW\n", + "e=8900#V\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "eb=e/math.sqrt(3)\n", + "icos=inpt*1000/(math.sqrt(3)*v)\n", + "bc=r*icos\n", + "ac=math.sqrt(eb**2-bc**2)\n", + "oc=ac-vp\n", + "phi=math.atan(oc/bc)\n", + "i=icos/math.cos(phi)\n", + "\n", + "#result\n", + "print \"Line current=\",i,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Line current= 149.188331836 A\n" + ] + } + ], + "prompt_number": 82 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.18, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=6600#V\n", + "x=20#ohm\n", + "inpt=1000#kW\n", + "pf=0.8\n", + "inpt2=1500#kW\n", + "\n", + "#variable declaration\n", + "va=v/math.sqrt(3)\n", + "ia1=inpt*1000/(math.sqrt(3)*v*pf)\n", + "zs=x\n", + "phi=math.acos(pf)\n", + "ia1zs=ia1*zs\n", + "eb=math.sqrt(va**2+ia1zs**2-(2*va*ia1zs*math.cos(math.radians(90)+phi)))\n", + "ia2cosphi2=inpt2*1000/(math.sqrt(3)*v)\n", + "cosphi2=x*ia2cosphi2\n", + "ac=math.sqrt(eb**2-cosphi2*2)\n", + "phi2=math.atan(ac/cosphi2)\n", + "pf=math.cos(phi2)\n", + "alpha2=math.atan(cosphi2/ac)\n", + "\n", + "#results\n", + "print \"new power angle=\",math.degrees(alpha2),\"degrees\"\n", + "print \"new power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new power angle= 25.8661450552 degrees\n", + "new power factor= 0.436270181217\n" + ] + } + ], + "prompt_number": 97 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.19, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=5472#W\n", + "x=10#ohm\n", + "\n", + "#calculations\n", + "va=v/math.sqrt(3)\n", + "iacosphi=inpt/(math.sqrt(3)*v)\n", + "zs=x\n", + "iazs=iacosphi*zs\n", + "ac=math.sqrt(va**2-iazs**2)\n", + "oc=va-ac\n", + "bc=iazs\n", + "phi=math.atan(oc/iazs)\n", + "pf=math.cos(phi)\n", + "ia=iacosphi/pf\n", + "alpha=math.atan(bc/ac)\n", + "#result\n", + "print \"load angle=\",math.degrees(alpha),\"degrees\"\n", + "print \"power factor=\",pf\n", + "print \"armature current=\",ia,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load angle= 19.9987718079 degrees\n", + "power factor= 0.984809614116\n", + "armature current= 8.01997824686 A\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.20, Page Number:1515" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import scipy\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "i2=Symbol('i2')\n", + "v=2000.0#V\n", + "r=0.2#ohm\n", + "xs=2.2#ohm\n", + "inpt=800.0#kW\n", + "e=2500.0#V\n", + "\n", + "#calculations\n", + "i1=inpt*1000/(math.sqrt(3)*v)\n", + "vp=v/math.sqrt(3)\n", + "ep=e/math.sqrt(3)\n", + "theta=math.atan(xs/r)\n", + "i2=solve(((i1*xs+r*i2)**2+(vp+i1*r-xs*i2)**2)-ep**2,i2)\n", + "i=math.sqrt(i1**2+i2[0]**2)\n", + "pf=i1/i\n", + "\n", + "#result\n", + "print \"line currrent=\",i,\"A\"\n", + "print \"power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "line currrent= 241.492937915 A\n", + "power factor= 0.956301702525\n" + ] + } + ], + "prompt_number": 152 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.21, Page Number:1516" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=440#V\n", + "f=50#Hz\n", + "inpt=7.46#kW\n", + "r=0.5#ohm\n", + "pf=0.75\n", + "loss=500#W\n", + "ex_loss=650#W\n", + "\n", + "#calculations\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "cu_loss=3*ia**2*r\n", + "power=inpt*1000+ex_loss\n", + "output=inpt*1000-cu_loss-loss\n", + "efficiency=output/power\n", + "\n", + "#result\n", + "print \"armature current=\",ia,\"A\"\n", + "print \"power=\",power,\"W\"\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "armature current= 13.0516151762 A\n", + "power= 8110.0 W\n", + "efficiency= 82.6693343026 %\n" + ] + } + ], + "prompt_number": 156 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.22, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "v=3300#V\n", + "x=18#ohm\n", + "pf=0.707\n", + "inpt=800#kW\n", + "\n", + "#calculations\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "ip=ia/math.sqrt(3)\n", + "zs=x\n", + "iazs=ip*zs\n", + "phi=math.acos(pf)\n", + "theta=math.radians(90)\n", + "eb=math.sqrt(v**2+iazs**2-(2*v*iazs*(-1)*pf))\n", + "alpha=math.asin(iazs*math.sin(theta+phi)/eb)\n", + "\n", + "#result\n", + "print \"excitation emf=\",eb,\"V\"\n", + "print \"rotor angle=\",math.degrees(alpha),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "excitation emf= 4972.19098879 V\n", + "rotor angle= 17.0098509277 degrees\n" + ] + } + ], + "prompt_number": 157 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.23, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inpt=75#kW\n", + "v=400#V\n", + "r=0.04#ohm\n", + "x=0.4#ohm\n", + "pf=0.8\n", + "efficiency=0.925\n", + "\n", + "#calculations\n", + "input_m=inpt*1000/efficiency\n", + "ia=input_m/(math.sqrt(3)*v)\n", + "zs=math.sqrt(r**2+x**2)\n", + "iazs=ia*zs\n", + "phi=math.atan(x/r)\n", + "theta=math.radians(90)-phi\n", + "vp=v/math.sqrt(3)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n", + "cu_loss=3*ia**2*r\n", + "ns=120*50/40\n", + "pm=input_m-cu_loss\n", + "tg=9.55*pm/ns\n", + "\n", + "#result\n", + "print \"emf=\",eb,\"eb\"\n", + "print \"mechanical power=\",pm,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "emf= 235.683320812 eb\n", + "mechanical power= 79437.5456538 W\n" + ] + } + ], + "prompt_number": 158 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.24, Page Number:1517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "r=0.5#ohm\n", + "zs=x=4#ohm\n", + "i=15#A\n", + "i2=60#A\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "iazs=i*zs\n", + "xs=math.sqrt(x**2-r**2)\n", + "theta=math.atan(xs/r)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta)))\n", + "iazs2=i2*zs\n", + "phi=theta-math.acos(vp**2-vp**2+iazs2**2/(2*vp*iazs2))\n", + "pf=math.cos(phi)\n", + "input_m=math.sqrt(3)*v*i2*pf\n", + "cu_loss=3*i2**2*r\n", + "pm=input_m-cu_loss\n", + "ns=120*50/6\n", + "tg=9.55*pm/ns\n", + "\n", + "#result\n", + "print \"gross torque developed=\",tg,\"N-m\"\n", + "print \"new power factor=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "gross torque developed= 310.739709828 N-m\n", + "new power factor= 0.912650996943\n" + ] + } + ], + "prompt_number": 161 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.25, Page Number:1518" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=7.46#kW\n", + "xs=10#W/phase\n", + "efficiency=0.85\n", + "\n", + "#calculations\n", + "input_m=inpt*1000/efficiency\n", + "il=input_m/(math.sqrt(3)*v)\n", + "zs=il*xs\n", + "vp=v/math.sqrt(3)\n", + "eb=math.sqrt(vp**2+zs**2)\n", + "\n", + "#result\n", + "print \"minimum current=\",il,\"A\"\n", + "print \"inducedemf=\",eb,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum current= 12.6677441416 A\n", + "inducedemf= 263.401798584 V\n" + ] + } + ], + "prompt_number": 164 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.26, Page Number:1518" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "f=50#Hz\n", + "inpt=37.5#kW\n", + "efficiency=0.88\n", + "zs=complex(0.2,1.6)\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "input_m=inpt/efficiency\n", + "ia=input_m*1000/(math.sqrt(3)*v*pf)\n", + "vp=v/math.sqrt(3)\n", + "er=ia*abs(zs)\n", + "phi=math.acos(pf)\n", + "theta=math.atan(zs.imag/zs.real)\n", + "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n", + "alpha=math.asin(math.sin(theta+phi)*er/eb)\n", + "pm=3*eb*vp*math.sin(alpha)/abs(zs)\n", + "#result\n", + "print \"excitation emf=\",eb*math.sqrt(3),\"V\"\n", + "print \"total mechanical power developed=\",pm,\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "excitation emf= 495.407915636 V\n", + "total mechanical power developed= 44844.4875189 W\n" + ] + } + ], + "prompt_number": 206 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.27, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "import scipy\n", + "from sympy.solvers import solve\n", + "from sympy import Symbol\n", + "#variable declaration\n", + "v=6600.0#V\n", + "xs=20.0#ohm\n", + "inpt=1000.0#kW\n", + "pf=0.8\n", + "inpt2=1500.0#kW\n", + "phi2=Symbol('phi2')\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "ia=inpt*1000/(math.sqrt(3)*v*pf)\n", + "theta=math.radians(90)\n", + "er=ia*xs\n", + "zs=xs\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n", + "alpha=math.asin(inpt2*1000*zs/(3*eb*vp))\n", + "#vp/eb=cos(alpha+phi2)/cos(phi2)\n", + "#solving we get\n", + "phi2=math.radians(19.39)\n", + "pf=math.cos(phi2)\n", + "#result\n", + "print \"new power factor=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "new power factor= 0.943280616635\n" + ] + } + ], + "prompt_number": 228 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.28, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "x=4#ohms/phase\n", + "r=0.5#ohms/phase\n", + "ia=60#A\n", + "pf=0.866\n", + "loss=2#kW\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "zs=abs(complex(r,x))\n", + "phi=math.acos(pf)\n", + "iazs=ia*zs\n", + "theta=math.atan(x/r)\n", + "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n", + "pm_max=(eb*vp/zs)-(eb**2*r/zs**2)\n", + "pm=3*pm_max\n", + "output=pm-loss*1000\n", + "\n", + "#result\n", + "print \"maximum power output=\",output/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum power output= 51.3898913442 kW\n" + ] + } + ], + "prompt_number": 229 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.29, Page Number:1519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "z=10#ohm\n", + "x=0.5#ohm\n", + "v=2000#V\n", + "f=25#Hz\n", + "eb=1600#V\n", + "\n", + "#calculations\n", + "pf=x/z\n", + "pm_max=(eb*v/z)-(eb**2*pf/zs)\n", + "ns=120*f/6\n", + "tg_max=9.55*pm_max/ns\n", + "\n", + "#result\n", + "print \"maximum total torque=\",tg_max,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum total torque= 5505.51976175 N-m\n" + ] + } + ], + "prompt_number": 231 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.30, Page Number:1520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variabke declaration\n", + "v=2000#V\n", + "n=1500#rpm\n", + "x=3#ohm/phase\n", + "ia=200#A\n", + "\n", + "#calculations\n", + "eb=vp=v/math.sqrt(3)\n", + "zs=ia*x\n", + "sinphi=(eb**2-vp**2-zs**2)/(2*zs*vp)\n", + "phi=math.asin(sinphi)\n", + "pf=math.cos(phi)\n", + "pi=math.sqrt(3)*v*ia*pf/1000\n", + "tg=9.55*pi*1000/n\n", + "\n", + "#result\n", + "print \"power input=\",pi,\"kW\"\n", + "print \"power factor=\",pf\n", + "print \"torque=\",tg,\"N-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power input= 669.029147347 kW\n", + "power factor= 0.965660395791\n", + "torque= 4259.48557144 N-m\n" + ] + } + ], + "prompt_number": 234 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.31, Page Number:1520" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=3300#V\n", + "r=2#ohm\n", + "x=18#ohm\n", + "e=3800#V\n", + "\n", + "#calculations\n", + "theta=math.atan(x/r)\n", + "vp=v/math.sqrt(3)\n", + "eb=e/math.sqrt(3)\n", + "alpha=theta\n", + "er=math.sqrt(vp**2+eb**2-(2*vp*eb*math.cos(theta)))\n", + "zs=math.sqrt(r**2+x**2)\n", + "ia=er/zs\n", + "pm_max=((eb*vp/zs)-(eb**2*r/zs**2))*3\n", + "cu_loss=3*ia**2*r\n", + "input_m=pm_max+cu_loss\n", + "pf=input_m/(math.sqrt(3)*v*ia)\n", + "\n", + "#result\n", + "print \"maximum total mechanical power=\",pm_max,\"W\"\n", + "print \"current=\",ia,\"A\"\n", + "print \"pf=\",pf\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "maximum total mechanical power= 604356.888001 W\n", + "current= 151.417346198 A\n", + "pf= 0.857248980398\n" + ] + } + ], + "prompt_number": 235 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.32, Page Number:1521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=415#V\n", + "e=520#V\n", + "z=complex(0.5,4)\n", + "loss=1000#W\n", + "\n", + "#calculations\n", + "theta=math.atan(z.imag/z.real)\n", + "er=math.sqrt(v**2+e**2-(2*v*e*math.cos(theta)))\n", + "zs=abs(z)\n", + "i=er/zs\n", + "il=math.sqrt(3)*i\n", + "pm_max=((e*v/zs)-(e**2*z.real/zs**2))*3\n", + "output=pm_max-loss\n", + "cu_loss=3*i**2*z.real\n", + "input_m=pm_max+cu_loss\n", + "pf=input_m/(math.sqrt(3)*il*v)\n", + "efficiency=output/input_m\n", + "\n", + "#result\n", + "print \"power output=\",output/1000,\"kW\"\n", + "print \"line current=\",il,\"A\"\n", + "print \"power factor=\",pf\n", + "print \"efficiency=\",efficiency*100,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power output= 134.640174346 kW\n", + "line current= 268.015478962 A\n", + "power factor= 0.890508620247\n", + "efficiency= 78.4816159071 %\n" + ] + } + ], + "prompt_number": 240 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.33, Page Number:1524" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "v=400#V\n", + "inpt=37.3#kW\n", + "efficiency=0.88\n", + "z=complex(0.2,1.6)\n", + "pf=0.9\n", + "\n", + "#calculations\n", + "vp=v/math.sqrt(3)\n", + "zs=abs(z)\n", + "il=inpt*1000/(math.sqrt(3)*v*efficiency*pf)\n", + "izs=zs*il\n", + "theta=math.atan(z.imag/z.real)\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta+phi)))\n", + "input_m=inpt*1000/efficiency\n", + "cu_loss=3*il**2*z.real\n", + "pm=input_m-cu_loss\n", + "\n", + "#result\n", + "print \"induced emf=\",eb*math.sqrt(3),\"V\"\n", + "print \"total mechanical power=\",pm/1000,\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "induced emf= 494.75258624 V\n", + "total mechanical power= 39.6138268735 kW\n" + ] + } + ], + "prompt_number": 243 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.34, Page Number:1525" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "inpt=48#kW\n", + "v=693#V\n", + "pf=0.8\n", + "ratio=0.3\n", + "x=2#W/phase\n", + "\n", + "#calculations\n", + "il=inpt*1000/(math.sqrt(3)*v*pf)\n", + "vp=v/math.sqrt(3)\n", + "zs=x\n", + "izs=zs*il\n", + "theta=math.atan(float(\"inf\"))\n", + "phi=math.acos(pf)\n", + "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta-phi)))\n", + "i_cosphi=pf*il\n", + "bc=i_cosphi*x\n", + "eb=eb+(ratio*eb)\n", + "ac=math.sqrt(eb**2-bc**2)\n", + "oc=ac-vp\n", + "phi2=math.atan(oc/bc)\n", + "pf=math.cos(phi2)\n", + "i2=i_cosphi/pf\n", + "\n", + "#result\n", + "print \"current=\",i2,\"A\"\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current= 46.3871111945 A\n", + "pf= 0.862084919821\n" + ] + } + ], + "prompt_number": 251 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 38.35, Page Number:1526" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#variable declaration\n", + "load=60.0#kW\n", + "inpt=240.0#kW\n", + "pf=0.8\n", + "pf2=0.9\n", + "\n", + "#calculations\n", + "total_load=inpt+load\n", + "phi=math.acos(pf2)\n", + "kVAR=total_load*math.tan(phi)\n", + "#factory load\n", + "phil=math.acos(pf)\n", + "kVAR=inpt*math.tan(phil)\n", + "kVA=inpt/pf\n", + "kVAR1=total_load*math.sin(phil)\n", + "lead_kVAR=kVAR1-kVAR\n", + "#synchronous motor\n", + "phim=math.atan(lead_kVAR/load)\n", + "motorpf=math.cos(phim)\n", + "motorkVA=math.sqrt(load**2+lead_kVAR**2)\n", + "\n", + "#result\n", + "print \"leading kVAR supplied by the motor=\",motorkVA\n", + "print \"pf=\",pf" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "leading kVAR supplied by the motor= 60.0\n", + "pf= 0.8\n" + ] + } + ], + "prompt_number": 253 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter39_4.ipynb b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter39_4.ipynb new file mode 100644 index 00000000..e889465f --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/chapter39_4.ipynb @@ -0,0 +1,256 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:c262c33cbbcf1d1756b9358f8cf1d8ed92f53825858905e2598fd8e15870c7ca" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 39: Special Machines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.1, Page Number:1537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable description\n", + "p=8.0 #number of poles\n", + "tp=5.0 #number of teeth for each pole\n", + "nr=50.0 #number of rotor teeth\n", + "\n", + "#calculation\n", + "ns=p*tp #number of stator teeth\n", + "B=((nr-ns)*360)/(nr*ns) #stepping angle\n", + "\n", + "#result\n", + "print \"stepping angle is \",B,\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "stepping angle is 1.8 degrees\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.2, Page Number:1537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=2.5\n", + "rn=25\n", + "f=3600\n", + "\n", + "#calculation\n", + "r=360/B\n", + "s=r*rn\n", + "n=(B*f)/360\n", + "\n", + "#result\n", + "print \"Resolution =\",int(r),\"steps/revolution\"\n", + "print \" Number of steps required for the shaft to make 25 revolutions =\",int(s)\n", + "print \" Shaft speed\", int(n),\"rps\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Resolution = 144 steps/revolution\n", + "Number of steps required for the shaft to make 25 revolutions = 3600\n", + "Shaft speed 25 rps\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.3, Page Number:1544" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=15 #stepping angle\n", + "pn=3 #number of phases\n", + "nr=360/(pn*B) #number of rotor teeth\n", + "\n", + "#number of stator teeth\n", + "ns1=((360*nr)/(360-(nr*B))) #ns>nr\n", + "ns2=((360*nr)/(360+(nr*B))) #nr>ns\n", + "\n", + "#result\n", + "print \"When ns>nr: ns= \",ns1\n", + "print \"When nr>ns: ns= \",ns2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When ns>nr: ns= 12\n", + "When nr>ns: ns= 6\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.4, Page Number:1545" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#variable declaration\n", + "B=1.8\n", + "pn=4\n", + "\n", + "#calculation\n", + "nr=360/(pn*B) #number of rotor teeth\n", + "ns=nr\n", + "\n", + "#result\n", + "print \"Number of rotor teeth = \",int(nr)\n", + "print \"Number of statot teeth = \",int(ns)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of rotor teeth = 50.0\n", + "Number of statot teeth = 50.0\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example Number 39.5, Page Number:1555" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#variable declaration\n", + "er=20\n", + "\n", + "#calculation\n", + "a=40\n", + "e2=er*math.cos(math.radians(a))\n", + "e1=er*math.cos(math.radians(a-120))\n", + "e3=er*math.cos(math.radians(a+120))\n", + "\n", + "#result\n", + "print \"a) For a=40 degrees\"\n", + "print \" e2s=\" ,e2,\"V\"\n", + "print \" e1s=\" ,e1,\"V\"\n", + "print \" e3s=\" ,e3,\"V\"\n", + "\n", + "#calculation\n", + "a=(-40)\n", + "e2=er*math.cos(math.radians(a))\n", + "e1=er*math.cos(math.radians(a-120))\n", + "e3=er*math.cos(math.radians(a+120))\n", + "\n", + "#result\n", + "print \"b) For a=-40 degrees\"\n", + "print \" e2s=\" ,e2,\"V\"\n", + "print \" e1s=\" ,e1,\"V\"\n", + "print \" e3s=\" ,e3,\"V\"\n", + "\n", + "#calculation\n", + "a=30\n", + "e12=math.sqrt(3)*er*math.cos(math.radians(a-150))\n", + "e23=math.sqrt(3)*er*math.cos(math.radians(a-30))\n", + "e31=math.sqrt(3)*er*math.cos(math.radians(a+90))\n", + "\n", + "#result\n", + "print \"c) For a=30 degrees\"\n", + "print \" e12=\" ,e12,\"V\"\n", + "print \" e23=\" ,e23,\"V\"\n", + "print \" e31=\" ,e31,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) For a=40 degrees\n", + " e2s= 15.3208888624 V\n", + " e1s= 3.47296355334 V\n", + " e3s= -18.7938524157 V\n", + "b) For a=-40 degrees\n", + " e2s= 15.3208888624 V\n", + " e1s= -18.7938524157 V\n", + " e3s= 3.47296355334 V\n", + "c) For a=30 degrees\n", + " e12= -17.3205080757 V\n", + " e23= 34.6410161514 V\n", + " e31= -17.3205080757 V\n" + ] + } + ], + "prompt_number": 41 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example32_4.png b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example32_4.png Binary files differnew file mode 100644 index 00000000..0c99fa16 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example32_4.png diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example33_4.png b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example33_4.png Binary files differnew file mode 100644 index 00000000..3db6b46d --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter29example33_4.png diff --git a/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter32example30_4.png b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter32example30_4.png Binary files differnew file mode 100644 index 00000000..1e7a1724 --- /dev/null +++ b/A_Textbook_of_Electrical_Technology_:_AC_and_DC_Machines_(Volume_-_2)_by_A_K_Theraja_B_L_Thereja/screenshots/chapter32example30_4.png diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap10_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap10_2.ipynb new file mode 100644 index 00000000..f57bdbb9 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap10_2.ipynb @@ -0,0 +1,78 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 10 : BJT LOW FREQUENCY MODELS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 10.1 Pg 187" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gm=0.40 ohm\n", + "rbe=250.00 ohm\n", + "rbb = 250.0\n", + "gbc= 4.0 *10**-7\n", + "rce=32.89 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Ic=10#\n", + "Vce=10#\n", + "hie=500#\n", + "hoe=10**-5#\n", + "hfe=100#\n", + "hre=10**-4#\n", + "gm=Ic/25#\n", + "print \"gm=%0.2f\"%gm,'ohm'\n", + "rbe=hfe/gm#\n", + "print \"rbe=%0.2f\"%rbe,'ohm'\n", + "rbb=hie-rbe#\n", + "print \"rbb =\",rbb\n", + "gbc=hre/rbe#\n", + "print \"gbc=\",gbc*10**7,'*10**-7'\n", + "rce=-1/((hoe-(1+hfe)*gbc))\n", + "print \"rce=%0.2f\"%(rce*10**-3),'kohm'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap11_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap11_2.ipynb new file mode 100644 index 00000000..e56e99a4 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap11_2.ipynb @@ -0,0 +1,201 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter -11 : BJT HIGH FREQUENCY MODELS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 11.1 Pg 204" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Id=15.00 mA\n", + "Id=9.60 mA\n", + "Id=0.60 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Idss=15*10**-3\n", + "Vgso=-5\n", + "#Id=Idss*(1-(Vgs/Vgso))**2\n", + "Vgs=0\n", + "Id=Idss*(1-(Vgs/Vgso))**2\n", + "print \"Id=%0.2f\"%(Id*10**3),\"mA\"\n", + "Vgs1=-1\n", + "Id=Idss*(1-(Vgs1/Vgso))**2\n", + "print \"Id=%0.2f\"%(Id*10**3),\"mA\"\n", + "Vgs2=-4\n", + "Id=Idss*(1-(Vgs2/Vgso))**2\n", + "print \"Id=%0.2f\"%(Id*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ex 11.2 Pg 204" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Id=6.75 mA\n", + "Id=3.00 mA\n", + "Id=0.75 mA\n", + "Id=0.00 mA\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEPCAYAAABoekJnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8lWWZ//HPV5RSR6M8pHgIVLRSU0wRJXWbJ2QKYqpR\nKw2cFDOopsbxNL1Ex/mpw6STGeoYFdkYYmOKiDLUuMfSJCBETTBJmATJyBMeCDlcvz/uZ8liu/fa\na6+9nr0O+/t+vdbLtZ713M+6FsK+9n3fz3XfigjMzMwqtVWtAzAzs8bmRGJmZt3iRGJmZt3iRGJm\nZt3iRGJmZt3iRGJmZt2SayKRNFzSEklPS7qwg3Ouz95fJGlwZ20lTZO0MHssk7Qwz+9gZmalbZ3X\nhSX1AW4ATgRWAvMkzYiIxUXnjAD2i4hBko4EbgSGlmobEacXtf834OW8voOZmXUuzx7JEGBpRCyP\niPXANGBUm3NGAlMBImIu0E/SbuW0lSTgb4Ef5/gdzMysE3kmkj2AZ4ter8iOlXNO/zLaHgM8HxG/\nr0q0ZmZWkTwTSblrr6jC658B3FZhWzMzq5Lc5khIcxt7Fb3ei9SzKHXOntk525RqK2lrYDRwWEcf\nLsmLiJmZVSAiuvQLfp49kvnAIEkDJPUFTgNmtDlnBnAWgKShwMsR8XwZbU8EFkfEc6UCiIi6f1x2\n2WU1j6EZYnScjrPeH40SZyVy65FExAZJ44HZQB9gSkQsljQue//miJglaYSkpcDrwNhSbYsufxqe\nZDczqwt5Dm0REfcB97U5dnOb1+PLbVv03thqxWhmZt3jyvYaa2lpqXUInWqEGMFxVpvjrK5GibMS\nqnRMrN5Jimb9bmZmeZFE1NFku5mZ5WT9+lpHsJkTiZlZg1m+HA48EFavrnUkiROJmVkDeeklOPVU\nmDABdtml1tEkniMxM2sQ69bBySfD4YfDN7+Zz2dUMkfiRGJm1gA2bYLPfjbNjUyfDlvlNJ5USSLJ\ntY7EzMyq49JL4Q9/gJ/9LL8kUiknEjOzOnfTTfBf/wUPPwzbblvraN7OQ1tmZnVs5kw45xz45S9h\n333z/zwPbZmZNZH582Hs2JRMeiKJVKrORtrMzAxSrcioUXDLLXDkkbWOpjQnEjOzOlOoFbnoIvjE\nJ2odTec8R2JmVkd6olakFNeRFHEiMbNG01O1IqV4st3MrIHVc61IKU4kZmZ1oN5rRUrx0JaZWY31\ndK1IKR7aMjNrMI1SK1JKA43CmZk1l0aqFSnFicTMrAYarVakFM+RmJn1sFrXipTiOpIiTiRmVo/q\noVaklEoSSa5fQdJwSUskPS3pwg7OuT57f5GkweW0lTRB0mJJT0i6Js/vYGZWTYVakVtvrb8kUqnc\n7tqS1Ae4ATgRWAnMkzQjIhYXnTMC2C8iBkk6ErgRGFqqraTjgZHAhyJivaQ62bXYzKy0Rq4VKSXP\nfDgEWBoRyyNiPTANGNXmnJHAVICImAv0k7RbJ22/CFyVHSciVuf4HczMqmLmTLj8crjvPth551pH\nU115JpI9gGeLXq/IjpVzTv8SbQcBx0p6RFKrpMOrGrWZWZUVakXuuqtxa0VKybMgsdyZ7i5N6pBi\nfndEDJV0BDAd2Ke9EydOnPjW85aWFlpaWrr4UWZm3VPvtSKtra20trZ26xp5JpKVwF5Fr/ci9SxK\nnbNnds42JdquAO4EiIh5kjZJ2ikiXmgbQHEiMTPraY1QK9L2l+zLL7+8y9fIc2hrPjBI0gBJfYHT\ngBltzpkBnAUgaSjwckQ830nbu4CPZm32B/q2l0TMzGpp3bqUPEaMgAkTah1NvnLrkUTEBknjgdlA\nH2BKdtfVuOz9myNilqQRkpYCrwNjS7XNLv094HuSHgfeJEtEZmb1YtMmGDMGdtkFJk2qdTT5c0Gi\nmVmVXXwxPPhg2lek0W7z9eq/ZmY11qy1IqW4R2JmViX1tK9IpdwjMTOrkWbYV6RSTbLSi5lZ7dR7\nrUjenEjMzLqhEWpF8uY5EjOzCtXzviKV8n4kRZxIzCxP9b6vSKU82W5m1kMK+4r87GfNk0Qq5URi\nZtZFvbFWpBQPbZmZdUEz1IqU4qEtM7Mc9eZakVJ6+ciemVl5li2DkSN7b61IKU4kZmadePHFtBz8\nxRf33lqRUjxHYmZWQjPWipTiOpIiTiRm1l3NWitSiifbzcyq6JJLXCtSDicSM7N23Hgj3Hmna0XK\n4aEtM7M2mr1WpBQPbZmZdZNrRbrOo35mZhnXilTGicTMDNeKdIfnSMys1+tttSKluI6kiBOJmZWj\nN9aKlFJJIin5RyZpV0lfknS7pLmSHsmef0nSrmUENFzSEklPS7qwg3Ouz95fJGlwZ20lTZS0QtLC\n7DG8K1/YzKxYoVbk1ludRCrV4V1bkqYA+wL3ATcBqwABuwNDgOmSlkbEFzpo3we4ATgRWAnMkzQj\nIhYXnTMC2C8iBkk6ErgRGNpJ2wCujYhru/ndzayXc61IdZS6/fdbEfFYO8cXA/8DXC3pQyXaDwGW\nRsRyAEnTgFFZ+4KRwFSAiJgrqZ+k3YCBnbTtUrfLzKytmTPhiitSrcjOO9c6msbWYUeugySCpL0l\nXVDqnMwewLNFr1dkx8o5p38nbSdkQ2FTJPUrEYOZ2dsUakXuusu1ItVQVkFiNh/yaeAM0g/5n5bR\nrNyZ7q72Lm4Ersie/zPwTeDv2jtx4sSJbz1vaWmhpaWlix9lZs3GtSJbam1tpbW1tVvX6PCuLUk7\nAn9DSh77AXcBp0dE215FR+2HAhMjYnj2+mJgU0RcU3TOTUBrREzLXi8BjiMNbZVsmx0fANwTEQe3\n8/m+a8vMtvDiizBsGJx/PkyYUOto6lO179p6npRILouIfSPi68CbXbj2fGCQpAGS+gKnATPanDMD\nOAveSjwvR8TzpdpK2r2o/Wjg8S7EZGa91Lp1MHp0Kjp0EqmuUkNbF5N6I5MlTQfu6MqFI2KDpPHA\nbKAPMCUiFksal71/c0TMkjRC0lLgdWBsqbbZpa+RdChp6GwZMK4rcZlZ77NpE4wZA7vsApMm1Tqa\n5tNpQaKkfYHTs8cg4DLgpxHxu/zDq5yHtsys4KKL4Be/SPuK+Dbf0nKvbJd0MKmXclpE1PW9Dk4k\nZgapVuS661KtiG/z7VyuiSSbfN+a7C6riHihyxH2ICcSM+vN+4pUKpf9SLI5jcuBdcCm7HAA+3Q5\nQjOzHuJ9RXpOOXMkS4GhEfHnngmpOtwjMeu9li1Lt/lOnuwl4buq6os2Zp4B1lYWkplZz/K+Ij2v\nnB7JYcAPgF+xuY4kIuLL+YbWPe6RmPU+3lek+3KZbJc0H3iQVPi3iTTZHhExtdJAe4ITiVnv4n1F\nqiOXyXagT0R8rcKYzMx6RGFfkZ/9zEmkp5WTSO7L7tyaQbpzC4CIeDG3qMzMusD7itRWOUNby3n7\nSr4REXV9+6+Htsx6B9eKVJf3bC/iRGLW/ObPh1NPTcnES8JXR1Vv/5XUUsYHHt+VDzMzqxbvK1I/\nSs2RfEzSvwI/Iy3rvoqUeHYDDiftp/5A9jAz6zGuFakvJYe2JO1A2iv9I8De2eH/A34J3B0Rr+Ue\nYYU8tGXWnFwrki/PkRRxIjFrPq4VyV/V60gkvR84F3h/duhJ4JaIeKqyEM3MKudakfpUarL9KNL8\nx6vAfwC3AG8Ardl7ZmY9plArcvfdrhWpNx0ObUm6H7g6IlrbHD8OuCgiTs0/vMp5aMusebhWpOdU\ndY5E0u8iYv8O3nsqIg6oIMYe40Ri1hxcK9Kzqr2MfKk7st7oyoeYmVXCtSKNodRk+16SrifbWreN\nPXKKx8wMcK1IIyk1tDWGtMZWe4nEy8ibWW5cK1I7riMp4kRi1phcK1JbVa0jkXRPiXYRESPLCGg4\n8O9AH+C7EXFNO+dcD5xKmncZExELy2kr6evAJGBnL2lv1jxcK9J4Ss2RlOpQdvqrvqQ+wA2kNblW\nAvMkzYiIxUXnjAD2i4hBko4EbgSGdtZW0l7ASaTlWsysSXhfkcbUYSJpWz9SgSHA0ohYDiBpGmnd\nrsVF54wEpmafN1dSP0m7AQM7aXst8I/A3d2M0czqxMyZcMUVqVZk551rHY11RZ4dxz2AZ4ter+Dt\nd3t1dE7/jtpKGgWsiIjHqh2wmdXG/PkwdizcdZcLDhtROVvtVqrcme6yJ3UkbQtcQhrW6rT9xIkT\n33re0tJCS0tLuR9lZj3EtSK11draSmtra7eukdtdW5KGAhMjYnj2+mJgU/GkuaSbgNaImJa9XgIc\nRxraeltb4F7g52wuiNyTNIcyJCL+1ObzfdeWWZ178UUYNgzOPx8mTKh1NAbVr2zvrvnAIEkDJPUF\nTgNmtDlnBnAWvJV4Xo6I5ztqGxFPRMR7I2JgRAwkDXkd1jaJmFn9W7cORo9ORYdOIo0tt6GtiNgg\naTwwm3QL75SIWCxpXPb+zRExS9IISUuB14Gxpdq29zF5xW9m+dm0CcaMgV12gUmTah2NdVenQ1uS\nPhIRv2xzbFhEPJRrZN3koS2z+nXRRfCLX6RaEd/mW1/yGtr6djvHbujKh5iZFXhfkeZTqrL9KOBo\nYBdJX2Pz3VE7kO/cipk1KdeKNKdScyR9SUmjT/bfgjXAp/IMysyaT6FWZOZM14o0m3LmSAYUKswb\niedIzOrHsmXpNt/Jk70kfL2r6qKNRd4h6RZgQNH5EREf7WJ8ZtYLeV+R5ldOj+Qx0mKKvwE2Zocj\nIhbkHFu3uEdiVnveV6Tx5LIfiaQFEfHhbkVWA04kZrXlfUUaU15DW/dI+hJwJ7CucNB7gJhZKd5X\npPcop0eynHYqyLMlSuqWeyRmtXPjjXDddWlfEd/m21i81W4RJxKz2pg5E845J9WK+DbfxpNLZbuk\n7SV9I7tzC0mDJH2s0iDNrHl5X5HeqZyRy+8Db5Kq3AGeA/4lt4jMrCF5X5Heq5xEsm+2h8ibABHx\ner4hmVmjca1I71ZOIlmX7UwIgKR9Kbp7y8x6N+8rYuXctXUycCnwQWAOMAwYExEP5B9e5TzZbpY/\n14o0n6rXkUjaCng38ElgaHb4KxGxurIQzayZuFbEwJXtZlYh14o0p7yWSLka+DNwO2k7XKD+K9ud\nSMzy41qR5pVXIlnO2yvbIyL26Vp4PcuJxCwf8+fDqaemZOLbfJtPXnMkF0bE7d2KzMyagmtFrD2e\nIzGzsrz4Ytqc6vzzfZtvM/McSREnErPq8b4ivUdPzpF49V+zXsK1Ir1LLos2RsSAiBjY9lFmQMMl\nLZH0tKQLOzjn+uz9RZIGd9ZW0j9n5z4q6eeS9ionFjOrTKFW5NZbnUSsfeX0SD5P+z2SH3bSrg/w\nFHAisBKYB5wREYuLzhkBjI+IEZKOBL4VEUNLtZW0Q0S8mrWfABwSEV9o5/PdIzHrJteK9D557ZB4\nBJsTybbAR0n7t5dMJMAQYGlELM+CmwaMAhYXnTMSmAoQEXMl9ZO0GzCwo7aFJJL5K9L8jZlV2cyZ\ncMUVqVbEScRK6TSRRMT44teS+pEm3juzB/Bs0esVQNsbBts7Zw+gf6m2kv4FOBN4g81Lt5hZlTzy\nSNpXZOZMFxxa58rpkbT1BqnH0Jlyx5W61IUCiIhLgUslXQRcB4xt77yJEye+9bylpYWWlpaufpRZ\nr7JhA0yaBNdeC9//vmtFeoPW1lZaW1u7dY1OE4mke4pebkVaBXh6GddeCRRPhO9F6lmUOmfP7Jxt\nymgLcBswq6MAihOJmZX29NNw1lmw3XawYAHsvXetI7Ke0PaX7Msvv7zL1yinR1J81/gG4P8i4tmO\nTi4yHxgkaQBpV8XTgDPanDMDGA9MkzQUeDkinpf0QkdtJQ2KiKez9qOAhWXEYmYd2LQpTapfdll6\nfOlLvjvLuqacRPIHYFVErAWQtK2kAYWJ8I5ExAZJ44HZQB9gSnbX1bjs/ZsjYpakEZKWkoodx5Zq\nm136KkkHABuB3wNf7OJ3NrPMihVw9tnwyitpUv397691RNaIyloiBTgqIt7MXr8DeCgiDu+B+Crm\n23/NOhYBP/oRfP3r8OUvw0UXwdaVzJha08nr9t8+hSQCEBHrJG3T5ejMrC6sXg3nnQdPPQX33w+H\nHVbriKzRlTMS+mdJowovsueu3TBrQDNmwCGHwD77pOXgnUSsGsoZ2toP+E9SbQeku6fOjIilOcfW\nLR7aMttszRr46lehtRWmToVjjql1RFavchnayhLGkZJ2yF6/2kkTM6sjDzyQigtPOQUWLYIddqh1\nRNZsyp5ecwIxayxr16YFF6dPTxtRjRhR64isWflucbMmNG9emv9YtQoee8xJxPLlG/7Mmsj69XDl\nlanA8Prr4fTTax2R9QZlJRJJw4ABRedHZ8vIm1nPevJJOPNM2HVXePRR6N+/8zZm1dDp0JakHwGT\ngGHA4dnjiJzjMrMybdyYtr899lgYNw5mzXISsZ5VTo/kw8AHfS+tWf1ZtgzGjEnrZc2d6yXfrTbK\nmWx/Atg970DMrHwRMGUKDBkCH/tYqg9xErFaKadHsgvwpKRfA+uyYxERI/MLy8w6smoVnHMOrFyZ\nakQOOqjWEVlvV04imZh3EGZWnjvugPHj4dxz4c47oW/fWkdkVsYSKY3KS6RYM3nppZRA5s+HH/7Q\nOxdafipZIqXDORJJD2X/fU3Sq20ea7obrJmVZ/ZsOPhg2GknWLjQScTqj3skZnXqtdfgggvg3nvT\n/uknnFDriKw3qGqPpJ2L7ypp78Kj6+GZWbkeeggOPRTeeCMtceIkYvWs08l2SSNJ+7b3B/4EvA9Y\nDByYb2hmvc+6dWnf9KlTYfJkGD261hGZda6cHsmVwFHA7yJiIHACMDfXqMx6oUcfhSOOgCVL0nLv\nTiLWKMpJJOsj4s/AVpL6RMQDpGVSzKwKNmyAq66Ck05Ke6j/9KdpvSyzRlFOHclL2aZWvwD+U9Kf\ngNfyDcusd3j6aTjrLNhuO1iwAPb27KM1oHJ6JKOAN4C/B+4HlgIfzzMos2a3aRN85ztw1FHwmc/A\nnDlOIta4St7+K2lrYE5EHN9zIVWHb/+1erViBZx9NrzySiouPOCAWkdktlnVb/+NiA3AJkn9uhHU\ncElLJD0t6cIOzrk+e3+RpMGdtZU0SdLi7Pw7Jb2r0vjMekoE3Hpr2rnw2GPTLb5OItYMOi1IlDQD\nGAzMAV7PDkdEfLnTi0t9gKeAE4GVwDzgjIhYXHTOCGB8RIyQdCTwrYgYWqqtpJOAn0fEJklXZwFd\n1Oaz3SOxurF6NZx3Hjz1VOqFHHZYrSMya19eBYl3At8AHgQWFD3KMQRYGhHLI2I9MI0051JsJDAV\nICLmAv0k7VaqbUTMiYhNWfu5wJ5lxmPW42bMgEMOScu8z5/vJGLNp9O7tiLiB5J2TU9jdRevvwfw\nbNHrFUDblYLaO2cPUgFkZ20BzgZ+3MW4zHK3Zg189atpr5Dbb4djjql1RGb56DCRSBJwGTAe6JMd\n2wh8OyIuL/P65Y4tdakb9VYj6VLgzYi4rb33J06c+NbzlpYWWlpaKvkYsy574AEYOxZOOSUVF+6w\nQ60jMmtfa2srra2t3bpGh3Mkkr4GnAqcGxHLsmP7ADcB90fEtZ1eXBoKTIyI4dnri4FNEXFN0Tk3\nAa0RMS17vQQ4DhhYqq2kMcA5wAkR8Zd2PttzJNbj1q6FSy6B6dPhlltgxIhaR2TWNdWeIzkL+Ewh\niQBExDPAZ7P3yjEfGCRpgKS+wGnAjDbnzChcL0s8L0fE86XaShoOXACMai+JmNXCvHlp/mPVqrTQ\nopOI9Ral5ki2bm9OJCJWZ/UlnYqIDZLGA7NJw2NTsruuxmXv3xwRsySNkLSUdFfY2FJts0t/G+gL\nzEkjcPwqIs4vJyazalu/Hq68Em66Cb71LTj99FpHZNazSg1tLYyIwV19r154aMt6wpNPwplnwnvf\nC9/9LvTvX+uIzLqn2kNbH2pnZ8RXJb0KHNy9UM0a28aN8M1vpsLCcePS5lNOItZbdThEFRF9ejIQ\ns0axbBmMGZPWy5o7N9WHmPVmZe+QaNbbRcCUKTBkCHz846k+xEnErLxl5M16vVWr4JxzYOXKVCNy\n0EG1jsisfrhHYtaJO+5I+6cPHpyGspxEzLbkHolZB156CcaPT+tjzZgBR7a3QI+ZuUdi1p7Zs+Hg\ng2GnnWDhQicRs1LcIzEr8tprcMEFMGsWTJ0KJ5xQ64jM6p97JGaZhx5KcyFr16YlTpxEzMrjHon1\neuvWwWWXpR7I5MkwenStIzJrLE4k1qs9+iicdVaqB1m0CHbdtdYRmTUeD21Zr7RhA1x1FZx0EvzD\nP8CddzqJmFXKPRLrdZ5+OvVCttsOFiyAvfeudURmjc09Eus1Nm2C73wHjjoKPvMZmDPHScSsGtwj\nsV5hxQo4+2x45ZV0d9YBB9Q6IrPm4R6JNbUIuPXWtHPhscc6iZjlwT0Sa1qrV8N558FTT8H996dk\nYmbV5x6JNaUZM+CQQ9JtvfPnO4mY5ck9Emsqa9bAV7+a9gq5/XY45phaR2TW/NwjsabxwAPwoQ/B\nNtuk4kInEbOe4R6JNby1a+GSS2D6dLjlFhgxotYRmfUu7pFYQ5s3L81/rFqVFlp0EjHree6RWENa\nvx6uvBJuugm+9S04/fRaR2TWe+XeI5E0XNISSU9LurCDc67P3l8kaXBnbSV9WtJvJW2U5Ptxepkn\nn4ShQ1NvZOFCJxGzWss1kUjqA9wADAc+CJwh6QNtzhkB7BcRg4BzgRvLaPs4MBp4MM/4rb5s2gTX\nXpsKC8eNg3vvhf79ax2VmeU9tDUEWBoRywEkTQNGAYuLzhkJTAWIiLmS+knaDRjYUduIWJIdyzl8\nqxfLlsGYMSmZzJ2b6kPMrD7kPbS1B/Bs0esV2bFyzulfRltrchEwZQoMGQIf/3iqD3ESMasvefdI\noszzculaTJw48a3nLS0ttLS05PExlpM//hG+8AVYuTLViBx0UK0jMms+ra2ttLa2dusaeSeSlcBe\nRa/3IvUsSp2zZ3bONmW0Lak4kVhjueMOmDABzjknbTrVt2+tIzJrTm1/yb788su7fI28E8l8YJCk\nAcBzwGnAGW3OmQGMB6ZJGgq8HBHPS3qhjLaQU2/GauOll2D8+LQ+1t13w5FH1joiM+tMrnMkEbGB\nlCRmA08Ct0fEYknjJI3LzpkFPCNpKXAzcH6ptgCSRkt6FhgK3Cvpvjy/h/WM2bPh4INhp53Sbb1O\nImaNQRHlTmM0FknRrN+t2bz2GlxwAcyaBd/7HpxwQq0jMuu9JBERXRrp8RIpVlMPPQSHHprWy3rs\nMScRs0bkJVKsJtatg8sug6lTYfJkGD261hGZWaWcSKzHvPlmmvt4+OE0hLXffmm59113rXVkZtYd\nniOx3LzwQkoaDz+chrB+85tUTDhsGJxyCowcCV6cwKy+VDJH4kRiVRGR9kZ/6KHNieO559KdV8OG\nwdFHp4UWd9yx1pGaWSlOJEWcSPL1xhup1qOQOB5+GHbYYXPSGDYs3crbp0+tIzWzrnAiKeJEUl3P\nPbe5p/Hww/DEE3DggZsTx9FHwx5eCc2s4TmRFHEiqdzGjfD441smjlde2dzTOPpoOOII2G67Wkdq\nZtXmRFLEiaR8a9bAI49sThxz56Z9PooTxwEHwFauOjJrek4kRZxI2hcBy5dvThoPPQS//33a97yQ\nOI46CnbeudaRmlktOJEUcSJJims3CsNUEVtOig8e7NV1zSxxIinSWxNJqdqNQuIYMMD1G2bWPieS\nIr0hkbh2w8yqzYmkSDMmEtdumFnenEiKNEMiWbVqy96GazfMLG9OJEUaLZFs3JgSRXHiWLNmc8Jw\n7YaZ9QQnkiL1nkjWrEn1GoXEMXcu7L77lsNU++/v2g0z61lOJEXqKZG0rd14+GFYutS1G2ZWf5xI\nitQykbh2w8walRNJkZ5MJK7dMLNm4URSJK9E4toNM2tmTiRFqpVI1q6FefO2rN3YccctFzR07YaZ\nNYu6SySShgP/DvQBvhsR17RzzvXAqcAbwJiIWFiqraT3ALcD7wOWA38bES+3c92KEkl7tRsHHbRl\n4ujfv8uXNTNrCJUkktxuLpXUB7gBGA58EDhD0gfanDMC2C8iBgHnAjeW0fYiYE5E7A/8PHtdkY0b\nYdEimDwZPvc5GDgwJY2pU2GXXWDSJFi9Ot2ae9118KlPVT+JtLa2VveCOWiEGMFxVpvjrK5GibMS\neVYpDAGWRsTyiFgPTANGtTlnJDAVICLmAv0k7dZJ27faZP/9RLkBrVkDc+bAxIlw8snwnvfAaafB\nggVw/PFw330pcdxzD1x8MRx7bP4FgI3wl6sRYgTHWW2Os7oaJc5KbJ3jtfcAni16vQI4soxz9gD6\nl2j73oh4Pnv+PPDejgJYtqzj2o0JE+C221y7YWbWXXkmknInKMoZi1N714uIkNTh5xTPa3z+867d\nMDPLRUTk8gCGAvcXvb4YuLDNOTcBpxe9XkLqYXTYNjtnt+z57sCSDj4//PDDDz/86Pqjqz/v8+yR\nzAcGSRoAPAecBpzR5pwZwHhgmqShwMsR8bykF0q0nQF8Hrgm++9d7X14V+86MDOzyuSWSCJig6Tx\nwGzSLbxTImKxpHHZ+zdHxCxJIyQtBV4HxpZqm136amC6pL8ju/03r+9gZmada9qCRDMz6xlNtUi5\npEmSFktaJOlOSe8qeu9iSU9LWiLp5BrH+WlJv5W0UdJhRcffKenHkh6T9KSkimtk8owze+9Dkn4l\n6Yks3nfUY5zZ+3tLek3S12sRX1EcxXF+uOj4SZLmZ3+O8yUdXycxtv1/Xjf/hopJGiLp15IWSpon\n6Yhax9QRSROyn1FPSHpbgXY9kfR1SZuyIvDS8ppsr8UDOAnYKnt+NXB19vyDwKPANsAAYGnhvBrF\n+X5gf+AB4LCi42OAH2fPtwWWAXvXYZxbA4uAg7PX767HP8+i939CWg3h67WKsZM/z0PZfAPJgcCK\nOoyxrv4NtYm5FTgle34q8ECtY+ogzuOBOcA22etdah1TiVj3Au7Pfga9p7Pz85xs73ERMafo5Vzg\nk9nzUaT3kyoSAAAJ0ElEQVQf0OuB5dmczBDgkR4OEYCIWAJpKYI2VgHbZ5X92wNvAmt6NrrNSsR5\nMvBYRDyenfdSD4e2hRJxIukTwDOkObia6ijOiHi06OWTwLaStsn+vvaoEn+WdfVvqI1VQGH0oR+w\nsoaxlPJF4KrC/9eIWF3jeEq5FvhH4O5yTm6qoa02zgZmZc/7k4oaCwqFj3UlImaTEscq0o0Ek6Kd\ndcTqwCAgJN0vaYGkC2odUHsk/RXpH8PEGofSFZ8EFtQiiXSinv8NXQR8U9IfgEmkcoF6NAg4VtIj\nklolHV7rgNojaRSpV/xYuW0arkciaQ6wWztvXRIR92TnXAq8GRG3lbhUrncZlBNnO20+RxrS2h14\nD/ALST+PiGX1FCdpeOMjwOHAWuDnkhZExP/kFGalcU4ErouIN9RedyUHFcZZaHsgaUj2pDxiK/qc\nimNso8fu1CkR86XAl4EvR8RPJX0a+B45/xl2pJM4twbeHRFDs3mc6cA+PRlfQSdxXkwadXjr9M6u\n13CJJCJK/gWRNAYYAZxQdHglacyvYE9y7v52FmcHjgZ+GhEbgdWSHiL9sM4tkVQY57PAgxHxIoCk\nWcBhQG6JpMI4hwCflPSvpCGPTZLWRsTk6ka3WYVxImlP4E7gzDx/cYCKY+zxf0PFSsUs6UcRcWL2\n8ifAd3smqrfrJM4vkv4fExHzsonsnSLihR4LMNNRnJIOAgYCi7LfvfYEFkgaEhF/6uh6TTW0pbT0\n/AXAqIj4S9FbM4DTJfWVNJDUxfx1LWJsR3G2XwJ8FEDS9qQK/8XtNaqB4jhnAwdL2lbS1sBxwG9r\nE9bbvBVnRBwbEQMjYiBpS4J/yTOJdNFbcUrqB9xLWr3hV7UL6W2K/5/X87+hpZKOy55/FPhdLYMp\n4S42//veH+hbiyRSSkQ8ERHvLfp3s4J000WHSaTQsGkewNPA/wELs8fkovcuId1psoTsDo8axjma\n9Fv9WuCPwH3Z8XcAPwIeJ/1grvVdRu3Gmb33WeCJLNar6zXOonMuA75Wj3EC/wS8VvT3diGwcz3F\nmL1XN/+G2sR8OOnmmkeBXwGDax1TB3FuA9ya/ZtZALTUOqYyYn6GMu7ackGimZl1S1MNbZmZWc9z\nIjEzs25xIjEzs25xIjEzs25xIjEzs25xIjEzs25xIrGqkvReSbdJ+n22JPrD2cKJpdq8T1Lb3TPL\n+axRkj5QebSNKVun6bDs+SU1+PxdJd2bFaS+IGmHNu/flS1VgqThkuZmS6cvlDRN0l7Ze0OzdacW\nKm2bcFl2fKSkb/T097LKOZFY1WTrWd0FtEbEvhFxOHA6aZmFUgYCn6ngI0eTljevqay6vycVF3/V\nYoHC8cAPImItaanx0YU3lPYAGgbcky23cT1wVkR8ICIGA/9JWoYeYCpwTnb8QNLaUwD3kJa22aYn\nvox1nxOJVdNHgXUR8R+FAxHxh4i4AUDSAEkPZisGL5B0VHba1cAx2W+mX5G0ldImZb9W2qTs3LYf\nJOlo4OPApKzdPpIOzX7DLWxs1q+ddn0k/UDS40obSX01O95u2+y3/w9nz3eWtCx7PkbSDEk/B+ZI\n2l7S97NrLpL0N9l5J2e9sgWSpmdL3xTH835Jc4teD5D0WPb8BEm/ya45RVLfLZvqatKS8wsl3Zod\nvCvrCT4h6Zyik/9O0lNZ7+AWSd/Oju8i6SfZn/Wvsz/XznyKtKQLwI9JvywUjAbuj7RE0YWkZWme\nKrwZEfdExC+yl7uQqueJZHHhOalCvW42z7JO1LoE34/meZBWYb22xPvbAu/Ing8C5mXPjwPuKTrv\nXODS7Pk7gHnAgHau933gb4pePwYckz2/nLTyb9s2Hwb+u+j1jqXaUrTBE7AzsCx7Poa0lEi/7PU1\nxd+dtEjkzsD/Attmxy4EvtFOTAsL3y875xLgncAfgP2y41OBr7QT06ttrvXuoj/rx0mbjvUnLfzZ\nj7RQ64PA9dl5twHDsud7A0928v94N+Dxotd9Scmg8Ln3AyOy5wvINj/r4FrfAF4kLWR4buHvRvbe\nWOCaWv+d9qO8h3skVk1brLcj6QZJj0oqLO7XF/hu9hv3dKAwv9F2meqTgbMkLSRtnPQeYL8OPlPZ\nZ70LeFds/m13KnBsO+f/HthH0vWSTgFe7ULbtubE5v1iTgC+U3gjOz6UNPT2cPZdziL9sG5rOnBa\n9vxvSbs5HkBKWku7GNNXJBXWnNqTtNvhEOB/I+LliNgA3MHmP/MTgRuy+O4GdpC0XYnrv4+0X07h\ne75JWtDx05J2Ju32OLttI0k7ZX8XnlK25XFE/DNpnaz/Jg1t3l/U5Dk2D4FZnWu4ZeStrv2WzbtS\nEhHjJe0EzM8O/T2wKiLOVNoF8i/tXKNgfGy54yWSrgT+Ol06CvuJd7RYXCHBbAX8Jjvv7oiYKOkQ\n4BTgPNIP7r9vr21mA5uHgN/Z5ry2uy62t2/DnIjobP7nduAOSXeSvtvvsxg7u/aWJ0gtpIQ2NCL+\nIumBLOa2f0YqOibgyCwhlKttLD8m9S4E3BVpGwRIfx8+TOrBvAAcmiWRvyo0jIhngJsk3ULaOuHd\nkXbc3KqduK1OuUdiVRNpY6t3Sjqv6PD2bP6BsCPZmDjpt/M+2fNXgeI7f2YD5xcmsSXtL2m7iPin\niBhclEReza5JRLwCvCTpI9l7Z5Im/TdFxKFZu4lZYusTEXeSfvgNjog17bXNni8n/dYMaW6gI3OA\nLxVeZHMsjwDDJO2bHdte0qC2DbMfphuzeKZlh58CBhTatomp2Pqiyf4dgZeyJPJ+Uo8oSEODx0nq\nl537yaL2/00akizEfWiJ7whpde22GyK1kno+XyIllYJ/BS7NYil46++DpL8uOr4/KWkXeni7Z59l\nDcCJxKrtE6QfWs9kk8g/II37A0wGPp8NvRxAWjodYBGwMRv6+AppY6Ingd9Iehy4kfZ7z9OAC7KJ\n7H2Az5Mm3xcBHwKuaKfNHsAD2VDOrWy+66mjtv8GfFHSb4Cd2JwUgy1/Y74SeHc2if8oaYnwP5Pm\nUn6cXffh7Hu353bS0vzTASJNVo8l9VQeI/2Qvamddv8BPJZNtt8PbC3pSeAq0vAWEfEc8P9I+4f8\nkjRfsiZr/2Xg8OwGgd+S5io6FBF/zD5j+6JjQRoue09E/G/R8SeArwA/lLRE0i+z71/YufRz2VDX\nQuCHwGeza0EajnuwVCxWP7yMvFkvIGn7iHg965HcCUyJiLsrvNZEYHFE3F7NGIuuXxiOPDyb07E6\n5x6JWe8wMfvN/3HgmUqTSOY7pB5cXj4G/MRJpHG4R2JmZt3iHomZmXWLE4mZmXWLE4mZmXWLE4mZ\nmXWLE4mZmXWLE4mZmXXL/wf/WGS922XkNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7ff224186490>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "from numpy import arange\n", + "from __future__ import division\n", + "Vgs=arange(-5,-21,-5) ##Id=Idss*(1-(Vgs/Vgso))**2\n", + "Vgso=-20\n", + "Idss=12*10**-3\n", + "Id=[]\n", + "for x in Vgs:\n", + " Id.append(Idss*(1-(x/Vgso))**2)\n", + "for x in Id:\n", + " print \"Id=%0.2f\"%(x*10**3),\"mA\"\n", + "y=arange(0,13,1)\n", + "x=arange(0,-21,-5)\n", + "plot(Vgs,Id)\n", + "xlabel(\"Gate-to-source voltage (VGS)\")\n", + "ylabel(\"Drain current ID(mA)\")\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 11.4 Pg 205" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Id=5.00 mA\n", + "gm=2500.00 microsec\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Idss=20*10**-3\n", + "vp=-8\n", + "gmo=5000*10**-6\n", + "vgs=-4\n", + "#Id=Idss*(1-(Vgs/Vgso))**2\n", + "Id=Idss*(1-(vgs/vp))**2\n", + "print \"Id=%0.2f\"%(Id*10**3),'mA'\n", + "gm=gmo*(1-(vgs/vp))\n", + "print \"gm=%0.2f\"%(gm*10**6),'microsec'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 11.5 Pg 206" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "k=0.12 mA\n", + "Idon=1.11 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Idon=10*10**-3\n", + "vgs=-12\n", + "vgsth=-3\n", + "#Id=K*(vgs-vgsth)**2\n", + "#Idon=K*(vgs-vgsth)**2\n", + "k=Idon/((vgs-vgsth)**2)\n", + "print \"k=%0.2f\"%(k*10**3),'mA'\n", + "vgs1=-6\n", + "Idon=k*(vgs1-vgsth)**2\n", + "print \"Idon=%0.2f\"%(Idon*10**3),'mA'\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap12_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap12_2.ipynb new file mode 100644 index 00000000..3a0afb22 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap12_2.ipynb @@ -0,0 +1,186 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter -12 : THYRISTORS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 12.1 Pg 224" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SCR= 24.0 A**2s\n" + ] + } + ], + "source": [ + "I=40#\n", + "t=15*10**-3#\n", + "SCR=(I**2)*t#\n", + "print \"SCR=\",SCR,'A**2s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 12.2 Pg 224" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tmax= 7.5 ms\n" + ] + } + ], + "source": [ + "a=75.0\n", + "Is=100.0\n", + "tmax=a/Is**2#\n", + "print \"tmax=\",tmax*10**3,'ms'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 12.3 Pg 224" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vp= 9.7 V\n" + ] + } + ], + "source": [ + "VD=0.7#\n", + "n=0.75#\n", + "Vbb=12#\n", + "Vp=n*Vbb+VD#\n", + "print \"Vp=\",Vp,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 12.4 Pg 225" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n= 0.615384615385\n", + "Vp= 9.93076923077 V\n" + ] + } + ], + "source": [ + "rb1=4*10**3#\n", + "rb2=2.5*10**3#\n", + "Vbb=15#\n", + "Vd=0.7#\n", + "n=rb1/(rb1+rb2)#\n", + "print \"n=\",n##intrinsic standoff ratio\n", + "Vp=n*Vbb+Vd#\n", + "print \"Vp=\",Vp,\"V\" #peak point voltage" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 12.5 Pg 225" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rb1=4.20 kohm\n", + "rb2=2.80 kohm\n" + ] + } + ], + "source": [ + "n=0.60#\n", + "rbb=7*10**3#\n", + "rb1=rbb*n#\n", + "print \"rb1=%0.2f\"%(rb1*10**-3),\"kohm\"\n", + "rb2=rbb-rb1#\n", + "print \"rb2=%0.2f\"%(rb2*10**-3),\"kohm\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap13_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap13_2.ipynb new file mode 100644 index 00000000..7a012030 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap13_2.ipynb @@ -0,0 +1,248 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 13 : PASSIVE CIRCUITS DEVICES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 13.4 Pg 248" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reqmin= 1.76538461538 ohm\n", + "Reqmax= 2.23235294118 ohm\n", + "Req= 2.0 ohm\n", + "t= 11.75 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1min=2.7#\n", + "R2min=5.1#\n", + "Rmin=R1min+R2min#\n", + "R1max=3.3#\n", + "R2max=6.9#\n", + "Rmax=R1max+R2max#\n", + "a=9-Rmin#\n", + "b=Rmax-9#\n", + "tolerance=b/9#\n", + "Reqmin=(R1min*R2min)/(R1min+R2min)#\n", + "print \"Reqmin=\",Reqmin,'ohm'\n", + "Reqmax=(R1max*R2max)/(R1max+R2max)#\n", + "print \"Reqmax=\",Reqmax,'ohm'\n", + "R1N=3#\n", + "R2N=6#\n", + "Req=(R1N*R2N)/(R1N+R2N)#\n", + "print \"Req=\",Req,'ohm'\n", + "minval=Reqmin#\n", + "maxval=Reqmax#\n", + "maxchng=0.235#\n", + "t=(maxchng/2)*100#\n", + "print \"t=\",t,'%'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 13.5 Pg 248" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L= 1.00091141943 H\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "N=150#\n", + "mur=3540#\n", + "mu0=4*pi*10**-7#\n", + "l=0.05#\n", + "A=5*10**-4#\n", + "L=(mur*mu0*A*N*N)/l#\n", + "print \"L=\",L,\"H\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 13.6 Pg 249" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "k= 0.199757665685\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "from __future__ import division\n", + "\n", + "#e.g 13.6\n", + "L1=40*10**-6#\n", + "L2=80*10**-6#\n", + "M=11.3*10**-6#\n", + "k=M/sqrt(L1*L2)#\n", + "print \"k=\",k" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 13.7 Pg 250" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R0= 10.471975512 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "Q=90#\n", + "L=15*10**-6#\n", + "f=10*10**6#\n", + "R0=(2*pi*f*L)/Q#\n", + "print \"R0=\",R0,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 13.8 Pg 251" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C= 88.5 pF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "A=0.04#\n", + "d=0.02#\n", + "e0=8.85*10**-12#\n", + "er=5.0#\n", + "C=(e0*er*A)/d# \n", + "print \"C=\",C*10**12,\"pF\"##answer printed in the book is wrong." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 13.9 Pg 252" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "d= 4.96261682243 mm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "A=0.2#\n", + "C=0.428*10**-6#\n", + "e0=8.85*10**-12#\n", + "er=1200#\n", + "d=(e0*er*A)/C##ans printed in the book is wrong\n", + "print \"d=\",d*10**3,'mm'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap16_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap16_2.ipynb new file mode 100644 index 00000000..f6fdd499 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap16_2.ipynb @@ -0,0 +1,538 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 16 : PN JUNCTION DIODE APPLICATIONS RECTIFIERS AND FILTERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.1 Pg 329" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V2 = 23.0 V\n", + "Vm=32.53 V\n", + "Vdc=10.34 V\n", + "PIV=32.53 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "V1=230#\n", + "#a=(N2/N1)\n", + "b=(1/10)#\n", + "V2=V1*b#\n", + "print \"V2 =\",V2,\"V\"\n", + "Vm=sqrt(2)*V2#\n", + "print \"Vm=%0.2f\"%Vm,\"V\"\n", + "Vdc=0.318*Vm#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "PIV=Vm#\n", + "print 'PIV=%0.2f'%PIV,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.2 Pg 329" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vm=33.94 V\n", + "Im=1.70 mA\n", + "Idc=0.54 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "RL=20*10**3#\n", + "V2=24#\n", + "Vm=sqrt(2)*V2#\n", + "print 'Vm=%0.2f'%Vm,\"V\"\n", + "Im=Vm/RL#\n", + "print 'Im=%0.2f'%(Im*10**3),\"mA\"\n", + "Idc= 0.318*Im#\n", + "print 'Idc=%0.2f'%(Idc*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.3 Pg 330" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V2=115.00 V\n", + "Vm=162.63 V\n", + "Im=0.81 A\n", + "Pm=132.25 W\n", + "Vdc=51.72 V\n", + "Idc=0.26 A\n", + "Pdc=13.37 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "V1=230#\n", + "#a=(N2/N1)\n", + "b=(1/2)#\n", + "RL=200#\n", + "V2=V1*b#\n", + "print 'V2=%0.2f'%V2,\"V\"\n", + "Vm=sqrt(2)*V2#\n", + "print 'Vm=%0.2f'%Vm,\"V\"\n", + "Im=Vm/RL#\n", + "print 'Im=%0.2f'%Im,\"A\"\n", + "Pm=(Im**2)*RL#\n", + "print 'Pm=%0.2f'%Pm,\"W\"\n", + "Vdc=0.318*Vm#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "Idc=(Vdc/RL)#\n", + "print 'Idc=%0.2f'%Idc,\"A\"\n", + "Pdc=(Idc**2)*RL#\n", + "print 'Pdc=%0.2f'%Pdc,\"W\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.4 Pg 331" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Idc=0.05 A\n", + "Im=0.16 A\n", + "Vin=98.17 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "Vdc=30#\n", + "RL=600#\n", + "Rf=25#\n", + "Idc=(Vdc/RL)#\n", + "print 'Idc=%0.2f'%Idc,\"A\"\n", + "Im=pi*Idc#\n", + "print 'Im=%0.2f'%Im,\"A\"\n", + "Vin=Im*(Rf+RL)#\n", + "print 'Vin=%0.2f'%Vin,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.5 Pg 332" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vdc=13.49 V\n", + "vdc=2.65 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "V2=30#\n", + "RL=5.1*10**3#\n", + "VS=V2/2#\n", + "Vm=sqrt(2)*VS#\n", + "Vdc=0.636*Vm#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "vdc=Vdc/RL#\n", + "print 'vdc=%0.2f'%(vdc*1e3),\"mV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.6 Pg 333" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vdc=51.72 V\n", + "PIV=81.32 V\n", + "fout=100.00 Hz\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "V1=230#\n", + "fin=50#\n", + "#let a=N1/N2\n", + "a=1/4#\n", + "V2=V1*a#\n", + "Vm=sqrt(2)*V2#\n", + "Vdc=0.636*Vm#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "PIV=Vm#\n", + "print 'PIV=%0.2f'%PIV,\"V\"\n", + "fout=2*fin#\n", + "print 'fout=%0.2f'%fout,\"Hz\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.7 Pg 334" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vdc=20.71 V\n", + "PIV=65.05 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt\n", + "V1=230#\n", + "#LET a=N2/N1\n", + "a=1/5#\n", + "RL=100#\n", + "V2=V1*a#\n", + "Vs=V2/2#\n", + "Vm=sqrt(2)*Vs#\n", + "Vdc=2*Vm/pi#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "PIV=2*Vm#\n", + "print 'PIV=%0.2f'%PIV,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.8 Pg 335" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Imax=560.00 mA\n", + "RL=505.08 ohm\n", + "Vdc=180.06 V\n", + "Idc=0.36 A\n", + "PIV=565.69 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt\n", + "Vs=200#\n", + "Imax=700*10**-3#\n", + "Iavg=250*10**-3#\n", + "Imax=0.8*Imax#\n", + "print 'Imax=%0.2f'%(Imax*10**3),\"mA\"\n", + "Vm=sqrt(2)*Vs#\n", + "RL=Vm/Imax#\n", + "print 'RL=%0.2f'%RL,\"ohm\"\n", + "Vdc=2*Vm/pi#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "Idc=Vdc/RL#\n", + "print 'Idc=%0.2f'%Idc,\"A\"\n", + "PIV=2*Vm#\n", + "print 'PIV=%0.2f'%PIV,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.9 Pg 336" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L=1.50 H\n", + "L=0.19 H\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "f=50#\n", + "y=0.05#\n", + "RL=100#\n", + "L=RL/(y*3*sqrt(2)*2*pi*f)#\n", + "print \"L=%0.2f\"%L,\"H\"\n", + "f=400#\n", + "y=0.05#\n", + "L=RL/(y*3*sqrt(2)*2*pi*f)#\n", + "print \"L=%0.2f\"%L,\"H\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.10 Pg 337" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C=289.00 microF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vdc=30#\n", + "RL=1*10**3#\n", + "y=0.01#\n", + "C=2890/(y*RL)#\n", + "print \"C=%0.2f\"%C,'microF'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.11 Pg 338" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C=119.50 microF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vdc=12#\n", + "Idc=100*10**-3#\n", + "y=0.01#\n", + "L=1#\n", + "C=1.195/(L*y)#\n", + "print \"C=%0.2f\"%C,'microF'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.12 Pg 339" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "y= 0.076 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Idc=0.2#\n", + "Vdc=30#\n", + "C1=100#\n", + "C2=100#\n", + "L=5#\n", + "f=50#\n", + "RL=Vdc/Idc#\n", + "y=5700/(L*C1*C2*RL)#\n", + "print 'y=',y*100,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 16.13 Pg 340" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vdc=351.00 V\n", + "I=2.09 A\n", + "Iavg=0.67 A\n", + "Pdc=702.00 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vs=150#\n", + "Idc=2#\n", + "Vdc=2.34*Vs#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"\n", + "I=Idc/0.955#\n", + "print 'I=%0.2f'%I,\"A\"\n", + "Iavg=2/3#\n", + "print 'Iavg=%0.2f'%Iavg,\"A\"\n", + "Pdc=Vdc*Idc#\n", + "print 'Pdc=%0.2f'%Pdc,\"W\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap17_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap17_2.ipynb new file mode 100644 index 00000000..d1a76597 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap17_2.ipynb @@ -0,0 +1,277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 17 : CONTROLLED RECTIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 17.1 Pg 370" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=22.797\n", + "cosalpha=0.873\n", + "alpha=29.157 degree\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,cos,acos\n", + "RL=100#\n", + "Vm=300#\n", + "#load power P= Vdc*Idc\n", + "a=(Vm/(2*pi))**2*(1/RL)#\n", + "print \"a=%0.3f\"%a\n", + "p=25#\n", + "#1+cosb=sgrt(25/a)\n", + "b=a*1+cos(sqrt(p/a))#\n", + "cosalpha=(sqrt(p/a))-1#\n", + "p=80#\n", + "cosalpha=(sqrt(p/a))-1#\n", + "print \"cosalpha=%0.3f\"%cosalpha\n", + "#or#\n", + "alpha=acos(cosalpha)*180/pi\n", + "print 'alpha=%0.3f'%alpha,'degree'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 17.2 Pg 371" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "P=4044.96 mW OR\n", + "P=4.04 W\n", + "P=2916.00 mW OR\n", + "P=2.92 W\n", + "P=1011.240000 mW OR\n", + "P=1.01 W\n", + "P=86.86 mW OR\n", + "P=0.09 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "vm=200#\n", + "Rl=1*10**3#\n", + "#ALPHA=0degree\n", + "Vdc=vm*0.318#\n", + "Idc=Vdc/Rl#\n", + "P=Vdc*Idc#\n", + "print \"P=%0.2f\"%(P*1e3),'mW',\"OR\"\n", + "print \"P=%0.2f\"%P,'W'\n", + "#alpha=45 degree\n", + "Vdc=vm*0.27#\n", + "Idc=Vdc/Rl#\n", + "P=Vdc*Idc#\n", + "print \"P=%0.2f\"%(P*1e3),'mW',\"OR\"\n", + "print \"P=%0.2f\"%P,'W'\n", + "#alpha=90 degree\n", + "Vdc=vm*0.159#\n", + "Idc=Vdc/Rl#\n", + "P=Vdc*Idc#\n", + "print \"P=%02f\"%(P*1e3),'mW',\"OR\"\n", + "print \"P=%0.2f\"%P,'W'\n", + "\n", + "#alpha=135 degree\n", + "Vdc=vm*0.04660#\n", + "Idc=Vdc/Rl#\n", + "P=Vdc*Idc#\n", + "print \"P=%0.2f\"%(P*1e3),'mW',\"OR\"\n", + "print \"P=%0.2f\"%P,'W'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 17.3 Pg 372" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vm=311 V\n", + "Vdc=74.28 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi,cos\n", + "Vrms=220#\n", + "a=60#\n", + "Vm=sqrt (2)*Vrms#\n", + "print 'Vm=%02.f'%Vm,\"V\"\n", + "Vdc=(Vm/(2*pi))*(1+cos(pi/180*60))#\n", + "print 'Vdc=%0.2f'%Vdc,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 17.4 Pg 373" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vm=141.42 V\n", + "RL=76.85 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi,cos\n", + "Vrms=100#\n", + "a=45#\n", + "Idc=0.5#\n", + "Vm=sqrt (2)*Vrms#\n", + "print 'Vm=%0.2f'%Vm,\"V\"\n", + "#Idc=(Vm/(2*pi*RL))*(1+cosd(a))#\n", + "RL=(Vm/(2*pi*Idc))*(1+cos(pi/180*a))#\n", + "print \"RL=%0.2f\"%RL,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 17.5 Pg 374" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=0.75\n", + "f=25.00 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Ton=30*10**-6#\n", + "Toff=10*10**-6#\n", + "#consider duty cycle=a\n", + "a=Ton/(Ton+Toff)#\n", + "print \"a=%0.2f\"%a\n", + "f=(1/(Ton+Toff))\n", + "print \"f=%0.2f\"%(f*10**-3),'kHZ'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 17.6 Pg 375" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=0.75\n", + "Vl=150.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Ton=30*10**-3#\n", + "Toff=10*10**-3#\n", + "Vdc=200#\n", + "a=Ton/(Ton+Toff)#\n", + "print \"a=%0.2f\"%a\n", + "Vl=Vdc*a#\n", + "print 'Vl=%0.2f'%(Vl),\"V\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap18_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap18_2.ipynb new file mode 100644 index 00000000..2161d14f --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap18_2.ipynb @@ -0,0 +1,1220 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 18 : BJT BIASING AND STABILISATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.1 Pg 402" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=2.00 mA\n", + "Vce=20.00 V\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAERFJREFUeJzt3X+snfVdwPH3R8oykCVEu+EGNSwBzEAiNyRIqJOjJkup\nc9OmuHYxLjNxNa7dD0icJIs0oYnsDw1OlC2RNYu62xm5Yrc1blO5gJCwUAp0HWQQIYHRdWsYc6Oa\nsOzjH+e59HB27r3n3Hue8/x6v5KTnh/POffLyaHfvp/n+Z4bmYkkST9V9QAkSfXghCBJApwQJEkF\nJwRJEuCEIEkqOCFIkoASJ4SI2BQR90TEsYj4ekR8aJntPhkRT0XEYxExV9Z4JEkr21Dia78CfDQz\nH42Ic4DDEfHVzHxiaYOI2ApclJkXR8QvA3cAV5c4JknSMkorhMz8dmY+Wlz/IfAE8Jahzd4FfLbY\n5iHg3Ig4r6wxSZKWN5NjCBFxITAHPDT00PnAcwO3nwcumMWYJEmvVfqEUOwu+mfgw0Up/MQmQ7f9\nLg1JqkCZxxCIiDOBu4B/yMy7R2zyLWDTwO0LivuGX8dJQpLWIDOH/9G9rDLPMgrgTuAbmXnbMpsd\nBH6/2P5q4KXMPDFqw7vuSt785uSGG5KXX04yvaz1cvPNN1c+hrZcfC99P+t8mVSZu4w2A78H/FpE\nHCku10XErojYBZCZh4D/joingU8Df7zci23bBo8/Di+8AFdcAQ88UOLIJamDSttllJn/xRgTTmbu\nHvc1N26E+XlYWIDrr4edO+GWW+Dss9c1VEkSDV2pbC2sT6/Xq3oIreF7OV2+n9WKtexnmrWIyOXG\nubAAu3f3a2HfPjjrrBkPTpJqKiLIOhxUnpXhWnjwwapHJEnN1PhCGGQtSNJpnSuEQdaCJK1dqwph\nkLUgqes6XQiDrAVJmkxrC2GQtSCpiyyEEZZq4fhxa0GSltOJQhhkLUjqCgthFR5bkKTROlcIgwZr\nwe9EktQ2FsIE/E4kSTqt04UwyFqQ1DYWwhpZC5K6zkIYwVqQ1AYWwhRYC5K6yEJYxVIt7NjRX7dg\nLUhqCgthyoZXOVsLktrKQpiAxxYkNYmFUCKPLUhqMwthjawFSXVnIcyItSCpbSyEKbAWJNWRhVAB\na0FSG1gIU2YtSKoLC6Fi1oKkprIQSmQtSKqShVAj1oKkJrEQZsRakDRrFkJNWQuS6s5CqIC1IGkW\nLIQGsBYk1ZGFUDFrQVJZLISGsRYk1YWFUCPWgqRpshAazFqQVCULoaasBUnrZSG0hLUgadYshAZY\nqoUdO2DfPmtB0ngshBZaqoXjx60FSeWxEBpmYQE++EF473s9tiBpZRZCy23bBkePemxB0vRZCA1m\nLUhaiYXQIdaCpGmyEFrCWpA0zELoKGtB0nqVOiFExGci4kREHF3m8V5EfD8ijhSXj5c5nrbbuBHm\n5+HWW2H7drjxRjh1qupRSWqKsgthP7BllW3uzcy54rKv5PF0grUgaS1KnRAy837ge6tsNvb+LY3P\nWpA0qaqPISRwTUQ8FhGHIuLSisfTOtaCpHFtqPjnPwJsysxTEXEdcDdwyagN9+7d++r1Xq9Hr9eb\nxfhaYakWFhb6teCZSFI7LS4usri4uObnl37aaURcCHwhMy8fY9tngCsz88Wh+z3tdEpOnoQ9e+Dw\nYdi/HzZvrnpEksrSqNNOI+K8iIji+lX0J6gXV3ma1sFjC5KWU/Zpp/PAg8AvRMRzEfEHEbErInYV\nm2wHjkbEo8BtwI4yx6PTPLYgaZgrleUqZ6mlGrXLSPVgLUgCC0FDrAWpPSwErYu1IHWXhaBlWQtS\ns1kImhprQeoWC0FjsRak5rEQVAprQWo/C0ETsxakZrAQVDprQWonC0HrYi1I9WUhaKasBak9LARN\njbUg1YuFoMpYC1KzWQgqhbUgVc9CUC1YC1LzWAgqnbUgVcNCUO1YC1IzWAiaKWtBmh0LQbVmLUj1\nZSGoMtaCVC4LQY1hLUj1YiGoFqwFafosBDWStSBVz0JQ7VgL0nRYCGo8a0GqhoWgWrMWpLWzENQq\n1oI0OxaCGsNakCZjIai1rAWpXBaCGslakFZnIagTrAVp+iwENZ61II1mIahzrAVpOiwEtYq1IJ1m\nIajTrAVp7SwEtZa1oK6zEKSCtSBNxkJQJ1gL6iILQRrBWpBWZyGoc6wFdYWFIK3CWpBGsxDUadaC\n2sxCkCZgLUinWQhSwVpQ21gI0hpZC+o6C0EawVpQG1gI0hRYC+qiUieEiPhMRJyIiKMrbPPJiHgq\nIh6LiLkyxyNNYuNGmJ+HW2+F7dvhxhvh1KmqRyWVZ9kJISLeFBGXjbj/soh445ivvx/YssLP2Apc\nlJkXAx8A7hjzdaWZsRbUFSsVwl8DG0fc/7PAX43z4pl5P/C9FTZ5F/DZYtuHgHMj4rxxXluaJWtB\nXbDShHBRZt47fGdm3gf80pR+/vnAcwO3nwcumNJrS1NnLajNNqzw2BtWeOzMKY5h+Aj4yNOJ9u7d\n++r1Xq9Hr9eb4hCk8S3VwsICXH897NzpmUiqh8XFRRYXF9f8/GVPO42IQ8DfZOaXhu7fCuzJzOvG\n+gERFwJfyMzLRzz2KWAxMw8Ut58Ers3ME0PbedqpaunkSdizBw4fhv37YfPmqkcknTbpaacrFcJH\ngC9GxPXAYfr/kr8SuAZ457pGedpBYDdwICKuBl4angykOhushe3bXbegZltxYVpEvB54L/CL9Hfl\nHAPmM/N/x3rxiHngWvoHp08AN1PsbsrMTxfb3E7/TKSXgfdn5iMjXsdCUO1ZC6qbSQvBlcrSlLnK\nWXUxtZXKEfHDiPjBMpf/mc5wpfbxTCQ1lYUglchaUJX8LiOpRqwFNYmFIM2ItaBZsxCkmrIWVHcW\nglQBa0GzYCFIDTBYC3Nz8OCDVY9IshCkyg3Wwr59cNZZVY9IbWEhSA0zfGzBWlBVLASpRqwFTZOF\nIDWYtaAqWQhSTVkLWi8LQWoJa0GzZiFIDWAtaC0sBKmFrAXNgoUgNYy1oHFZCFLLWQsqi4UgNZi1\noJVYCFKHWAuaJgtBaglrQcMsBKmjrAWtl4UgtZC1ILAQJGEtaG0sBKnlrIXushAkvYa1oHFZCFKH\nWAvdYiFIWpa1oJVYCFJHWQvtZyFIGou1oGEWgiRroaUsBEkTsxYEFoKkIdZCe1gIktbFWuguC0HS\nsqyFZrMQJE2NtdAtFoKksVgLzWMhSCqFtdB+FoKkiVkLzWAhSCqdtdBOFoKkdbEW6stCkDRT1kJ7\nWAiSpsZaqBcLQVJlhmvhgQeqHpEmYSFIKsVgLdxyC5x9dtUj6h4LQVItWAvNYyFIKp21UA0LQVLt\nWAvNUOqEEBFbIuLJiHgqIj424vFeRHw/Io4Ul4+XOR5J1dm4Eebn4dZbYft2uOEGOHWq6lFpUGkT\nQkScAdwObAEuBXZGxNtGbHpvZs4Vl31ljUdSPSzVwvHj1kLdlFkIVwFPZ+azmfkKcAB494jtxt6/\nJakdrIV6KnNCOB94buD288V9gxK4JiIei4hDEXFpieORVDPWQr1sKPG1xzkt6BFgU2aeiojrgLuB\nS0ZtuHfv3lev93o9er3eFIYoqWpLtbCw0K+FnTv7q5w9E2lyi4uLLC4urvn5pZ12GhFXA3szc0tx\n+ybgx5n5iRWe8wxwZWa+OHS/p51KHXDyJOzZA4cPw/79sHlz1SNqtjqddvowcHFEXBgRrwPeAxwc\n3CAizouIKK5fRX+CevEnX0pSF3hsoVqlTQiZ+SNgN/Bl4BvA5zPziYjYFRG7is22A0cj4lHgNmBH\nWeOR1BweW6iGK5Ul1drSKmePLUyuTruMJGndrIXZsRAkNcbCAuzeDTt2WAvjsBAktda2bfD449ZC\nWSwESY1kLazOQpDUCdbC9FkIkhrPWhjNQpDUOdbCdFgIklrFWjjNQpDUadbC2lkIklqr67VgIUhS\nwVqYjIUgqRO6WAsWgiSNYC2szkKQ1DldqQULQZJWYS2MZiFI6rQ214KFIEkTsBZOsxAkqdC2WrAQ\nJGmNul4LFoIkjdCGWrAQJGkKulgLFoIkraKptWAhSNKUdaUWLARJmkCTasFCkKQStbkWLARJWqO6\n14KFIEkz0rZasBAkaQrqWAsWgiRVoA21YCFI0pTVpRYsBEmqWFNrwUKQpBJVWQsWgiTVSJNqwUKQ\npBmZdS1YCJJUU3WvBQtBkiowi1qwECSpAepYCxaCJFWsrFqwECSpYepSCxaCJNXIUi3cfnt/oliP\nSQvBCUGSaubkSXj96+Gcc9b3Ok4IkiTAYwiSpDVyQpAkAU4IkqSCE4IkCSh5QoiILRHxZEQ8FREf\nW2abTxaPPxYRc2WOR5K0vNImhIg4A7gd2AJcCuyMiLcNbbMVuCgzLwY+ANxR1nh02uLiYtVDaA3f\ny+ny/axWmYVwFfB0Zj6bma8AB4B3D23zLuCzAJn5EHBuRJxX4piE/9NNk+/ldPl+VqvMCeF84LmB\n288X9622zQUljkmStIwyJ4RxV5INL5pwBZokVaC0lcoRcTWwNzO3FLdvAn6cmZ8Y2OZTwGJmHihu\nPwlcm5knhl7LSUKS1mCSlcobShzHw8DFEXEh8ALwHmDn0DYHgd3AgWICeWl4MoDJ/oMkSWtT2oSQ\nmT+KiN3Al4EzgDsz84mI2FU8/unMPBQRWyPiaeBl4P1ljUeStLJGfLmdJKl8tV6pPM7CNo0vIp6N\niMcj4khEfK3q8TRNRHwmIk5ExNGB+34mIr4aEd+MiK9ExLlVjrFJlnk/90bE88Vn9EhEbKlyjE0R\nEZsi4p6IOBYRX4+IDxX3T/T5rO2EMM7CNk0sgV5mzmXmVVUPpoH20/88DvpT4KuZeQnwH8VtjWfU\n+5nAXxaf0bnM/LcKxtVErwAfzczLgKuBDxZ/X070+azthMB4C9s0OQ/Qr1Fm3g98b+juVxdXFn/+\n9kwH1WDLvJ/gZ3RimfntzHy0uP5D4An667wm+nzWeUIYZ2GbJpPAv0fEwxHxh1UPpiXOGzgz7gTg\nSvv121N8t9md7oKbXHFm5xzwEBN+Pus8IXi0e/o2Z+YccB39pHx71QNqk+LX+vm5XZ87gLcCVwDH\ngb+odjjNEhHnAHcBH87MHww+Ns7ns84TwreATQO3N9GvBK1RZh4v/vwu8C/0d8tpfU5ExM8BRMSb\nge9UPJ5Gy8zvZAH4O/yMji0izqQ/Gfx9Zt5d3D3R57POE8KrC9si4nX0F7YdrHhMjRURZ0fEG4rr\nPw28Azi68rM0hoPA+4rr7wPuXmFbraL4S2vJ7+BndCwREcCdwDcy87aBhyb6fNZ6HUJEXAfcxumF\nbX9e8ZAaKyLeSr8KoL8g8R99PycTEfPAtcBG+vtj/wz4V+CfgJ8HngV+NzNfqmqMTTLi/bwZ6NHf\nXZTAM8CuUd9eoNeKiF8B7gMe5/RuoZuArzHB57PWE4IkaXbqvMtIkjRDTgiSJMAJQZJUcEKQJAFO\nCJKkghOCJAlwQpCWFRH/GRHvGLrvIxHxtxFxSUQcKr5W+HBEfD4i3hQRvYj4/sDXNx+JiF+v6r9B\nmkSZv0JTarp5YAfwlYH73gP8CfBF+l83/CWAiLgWeCP9RUH3ZeZvzXis0rpZCNLy7gJ+MyI2wKvf\nIvkW4GLgwaXJACAz783MY/jVzWowJwRpGZn5Iv2l/1uLu3bQ/xqAy4BHVnjq24d2Gb215KFKU+GE\nIK1sabcR9HcXfW6M59w/8Bu/5jLzmfKGJ02PE4K0soPAb0TEHHB2Zh4BjgFXVjssafqcEKQVFL+O\n8B76v/93qQ4+B1wTEUu7koiIX42IyyoYojQ1TgjS6uaBy4s/ycz/A95J/1c9fjMijgF/BHyX/llG\nw8cQtlU1cGkSfv21JAmwECRJBScESRLghCBJKjghSJIAJwRJUsEJQZIEOCFIkgpOCJIkAP4fQ4Db\nYCXfIREAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f3408d27b10>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "Vbb=10#\n", + "Rb=47*10**3#\n", + "Vcc=20#\n", + "Rc=10*10**3#\n", + "B=100#\n", + "Ic=Vcc/Rc##saturation current\n", + "print \"Ic=%0.2f\"%(Ic*10**3),'mA'\n", + "Vce=Vcc##cut-off voltage\n", + "print 'Vce=%0.2f'%Vce,\"V\"\n", + "i=arange(2,0,-0.1)\n", + "plot(i)#\n", + "xlabel(\"VCE\")#\n", + "ylabel( \"IC\")#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.2 Pg 403" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IC=66.67 mA\n", + "Vce=20.00 V\n", + "Ib=1.86e-04 A\n", + "Ic=3.72e-02 A\n", + "Vce=8.84 V\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAERFJREFUeJzt3W+MbHV9x/H3p158oJBcaZWLlvbepFothUJMTaNSJtzU\nglL/9IF/miZok2pv6p/amyj4hH1WJcHYtJE0dTXYVlqj0QAtKQgs0BhLpBe4IEhpIZUWLraKvfdB\no63fPpiz3GHZXfbuzplz5sz7lWyYPTuz85vDgW/ec2ZmU1VIkvQTXS9AktQPDgRJEuBAkCQ1HAiS\nJMCBIElqOBAkSUCLAyHJGUluTXJ/kvuSfLDZvpTksSSHmq8L21qDJGnr0tb7EJLsAfZU1d1JTgbu\nAt4KvB04WlWfbOWOJUnbsqutX1xVTwBPNJePJXkAeFnz47R1v5Kk7ZnJOYQke4FzgW80mz6Q5J4k\ny0l2z2INkqTNtT4QmqeLvgR8qKqOAVcB+4BzgMeBK9tegyTpubV2DgEgyUnA9cANVfWpdX6+F7iu\nqs5as90PWJKkbaiqbT8l3+arjAIsA9+aHAZJTp+42tuAw+vdvqr8quLyyy/vfA19+XJfuC/cF5t/\n7VRrJ5WB1wG/Ddyb5FCz7WPAu5KcAxTwCPC+FtcgSdqiNl9l9A+sXyA3tHWfkqTt853KPTcajbpe\nQm+4L45zXxznvpieVk8qb1eS6uO6JKnPklB9PKksSZovDgRJEuBAkCQ1HAiSJMCBIElqOBAkSYAD\nQZLUcCBIkgAHgiSp4UCQJAEOBElSw4EgSQIcCJKkhgNBkgQ4ECRJDQeCJAlwIEiSGg4ESRLgQJAk\nNRwIkiTAgSBJajgQJEmAA0GS1HAgSJIAB4IkqeFAkCQBDgRJUsOBIEkCHAiSpEZvB8KBA3D0aNer\nkKTF0duB8MMfwllnwc03d70SSVoMqaqu1/AsSaqquOEGeO974eKL4Yor4JRTul6ZJPVXEqoq2719\nbwsB4KKL4PBha0GSZqHXhTDJWpCkzfW2EJKckeTWJPcnuS/JB5vtpya5KclDSW5Msnsrv89akKR2\ntVYISfYAe6rq7iQnA3cBbwXeA/xnVV2R5KPAi6rq0jW3fVYhTLIWJOnZelsIVfVEVd3dXD4GPAC8\nDHgzcHVztasZD4kTYi1I0vTN5BxCkr3AbcAvAv9WVS9qtgf43ur3E9fftBAmWQuSNLbTQtg1zcWs\np3m66MvAh6rq6HgGjFVVJVn3//xLS0tPXx6NRoxGo3V//2otHDw4roXlZdi/f4oPQJJ6amVlhZWV\nlan9vlYLIclJwPXADVX1qWbbg8Coqp5Icjpwa1W9cs3ttlwIk6wFSYust+cQmqeDloFvrQ6DxrXA\nJc3lS4CvTus+PbcgSdvX5quMXg/cDtwLrN7JZcCdwBeBnwEeBd5eVU+tue22CmGStSBp0ey0EObm\njWnb8dRT43MLN9/suQVJw+dA2AJrQdIi6O05hD7x3IIkPbeFKIRJ1oKkobIQTpC1IEnrW7hCmGQt\nSBoSC2EHrAVJOm6hC2GStSBp3lkIU2ItSFp0FsI6rAVJ88hCaIG1IGkRWQjPwVqQNC8shJZZC5IW\nhYVwAqwFSX1mIcyQtSBpyCyEbbIWJPWNhdARa0HS0FgIU2AtSOoDC6EHrAVJQ2AhTJm1IKkrFkLP\nWAuS5pWF0CJrQdIsWQg9Zi1ImicWwoxYC5LaZiHMCWtBUt9ZCB2wFiS1wUKYQ9aCpD6yEDpmLUia\nFgthzlkLkvrCQugRa0HSTlgIA2ItSOqShdBT1oKkE2UhDJS1IGnWLIQ5YC1I2goLYQFYC5JmwUKY\nM9aCpI30uhCSfDbJkSSHJ7YtJXksyaHm68I21zA01oKktrRaCEnOA44Bn6+qs5ptlwNHq+qTm9zO\nQtgCa0HSpF4XQlXdAXx/nR9te8E6zlqQNE1dnVT+QJJ7kiwn2d3RGgZh925YXoarroJ3vxsOHICj\nR7telaR51MVAuArYB5wDPA5c2cEaBsdakLRTu2Z9h1X15OrlJJ8BrlvvektLS09fHo1GjEajtpc2\n91Zr4YYbxrXguQVp2FZWVlhZWZna72v9ZadJ9gLXTZxUPr2qHm8ufxj45ar6rTW38aTyDj31FBw8\nOC6F5WXYv7/rFUlq205PKrf9KqNrgPOBnwKOAJcDI8ZPFxXwCPC+qjqy5nYOhCnxlUjS4uj1QNgu\nB8J0WQvSYnAgaMusBWnYev0+BPWLr0SStBkLYUFZC9LwWAjaFmtB0loWgqwFaSAsBO2YtSAJLASt\nYS1I88tC0FRZC9LishC0IWtBmi8WglpjLUiLxULQllgLUv9ZCJoJa0EaPgtBJ8xakPrJQtDMWQvS\nMFkI2hFrQeqP1gohyUuSnLnO9jOTvHi7d6hhsRak4djsKaM/YfyXztb6SeCP21mO5tHq33K+6qrx\n33I+cACOHu16VZJO1GYD4eeq6ra1G6vqduCX2luS5pW1IM23zQbCZs8GnzTthWgYrAVpfm02EB5O\n8qa1G5O8EfiX9pakIbAWpPmz4auMkrwCuB74OnAXEODVwGuBi6vq260tylcZDYqvRJJmo7VXGVXV\nQ8DZwO3APuBngduAs9scBhoea0GaD74PQTNlLUjtafN9CMeSHN3g67+3e4dabNaC1F8WgjpjLUjT\n5WcZaW5ZC1K/WAjqBWtB2jkLQYNgLUjdsxDUO9aCtD0WggbHWpC6YSGo16wFaessBA2atSDNjoWg\nuWEtSJuzELQwrAWpXRaC5pK1ID2bhaCFZC1I09fqQEjy2SRHkhye2HZqkpuSPJTkxiS721yDhsu/\nziZNV9uF8DngwjXbLgVuqqpXADc330vbZi1I09H6OYQke4Hrquqs5vsHgfOr6kiSPcBKVb1yzW08\nh6Bt8dyCFtk8nkM4raqONJePAKd1sAYNlLUgbV+nJ5WbDDAFNFWeW5C2Z1cH93kkyZ6qeiLJ6cCT\n611paWnp6cuj0YjRaDSb1WkwVmvh4MFxLSwvw/79Xa9Kmp6VlRVWVlam9vu6OIdwBfBfVfWJJJcC\nu6vq0jW38RyCpspzC1oEvT6HkOQa4OvAzyf5TpL3AB8Hfi3JQ8AFzfdSqzy3ID0336mshWMtaKh6\nXQhSH1kL0vosBC00a0FDYiFIO2AtSMdZCFLDWtC8sxCkKbEWtOgsBGkd1oLmkYUgtcBa0CKyEKTn\nYC1oXlgIUsusBS0KC0E6AdaC+sxCkGbIWtCQWQjSNlkL6hsLQeqItaChsRCkKbAW1AcWgtQD1oKG\nwEKQpsxaUFcsBKlnrAXNKwtBapG1oFmyEKQesxY0TywEaUasBbXNQpDmhLWgvrMQpA5YC2qDhSDN\noclaOPtsuOWWrlckWQhS56wFTYuFIM05a0F9YSFIPWItaCcsBGlArAV1yUKQespa0ImyEKSBshY0\naxaCNAesBW2FhSAtAGtBs2AhSHPGWtBGLARpwVgLaouFIM0xa0GTLARpgVkLmiYLQRoIa0FzWwhJ\nHk1yb5JDSe7sah3SUFgL2qnOCiHJI8Crq+p76/zMQpB2wFpYTHNbCI1tL1zSxqwFbUeXhfCvwA+A\n/wP+rKr+fOJnFoI0JdbC4thpIeya5mJO0Ouq6vEkLwZuSvJgVd2x+sOlpaWnrzgajRiNRrNfoTQA\nq7Vw8OC4FpaX4YILul6VpmFlZYWVlZWp/b5evMooyeXAsaq6svneQpBaYC0M21yeQ0jygiSnNJdf\nCLwBONzFWqRF4rkFbaaTQkiyD/hK8+0u4K+q6o8mfm4hSC2zFoZnp4XQi6eM1nIgSLPx1FPjcwu3\n3OK5hSFwIEjaMWthGObyHIKkfvHcgsBCkLSGtTC/LARJU2UtLC4LQdKGrIX5YiFIao21sFgsBElb\nYi30n4UgaSasheGzECSdMGuhnywESTNnLQyThSBpR6yF/rAQJHXKWhgOC0HS1FgL3bIQJPWGtTDf\nLARJrbAWZs9CkNRL1sL8sRAktc5amA0LQVLvWQvzwUKQNFPWQnssBElzxVroLwtBUmeshemyECTN\nLWuhXywESb1gLeychSBpEKyF7lkIknrHWtgeC0HS4FgL3bAQJPWatbB1FoKkQbMWZsdCkDQ3rIXN\nWQiSFoa10C4LQdJcshaezUKQtJCshemzECTNPWthzEKQtPCshemwECQNyiLXwlwWQpILkzyY5J+T\nfLSLNUgaJmth+2Y+EJI8D/hT4ELgF4B3JXnVrNcxL1ZWVrpeQm+4L45zXxy33r7YvRuWl+HTn4ZL\nLoEDB+Do0dmvbd50UQivAR6uqker6kfAXwNv6WAdc8H/8I9zXxznvjhus31hLZyYLgbCy4DvTHz/\nWLNNkqZubS28//3gKcr1dTEQ/FchaeZWa+H88yHbPu06bDN/lVGSXwGWqurC5vvLgB9X1ScmruPQ\nkKRt2MmrjLoYCLuAbwP7gf8A7gTeVVUPzHQhkqRn2DXrO6yq/03yfuDvgecByw4DSepeL9+YJkma\nvd59dMWiv2ktyaNJ7k1yKMmdzbZTk9yU5KEkNybZ3fU625Dks0mOJDk8sW3Dx57ksuY4eTDJG7pZ\ndTs22BdLSR5rjo1DSS6a+Nkg90WSM5LcmuT+JPcl+WCzfeGOi032xfSOi6rqzRfjp5AeBvYCJwF3\nA6/qel0z3gePAKeu2XYF8JHm8keBj3e9zpYe+3nAucDh53rsjN/UeHdznOxtjpuf6PoxtLwvLgf+\ncJ3rDnZfAHuAc5rLJzM+//iqRTwuNtkXUzsu+lYIvmltbO2rBN4MXN1cvhp462yXMxtVdQfw/TWb\nN3rsbwGuqaofVdWjjA/218xinbOwwb6AZx8bMOB9UVVPVNXdzeVjwAOM37e0cMfFJvsCpnRc9G0g\n+Ka18fs0vpbkm0l+t9l2WlUdaS4fAU7rZmmd2Oixv5Tx8bFqUY6VDyS5J8nyxNMkC7EvkuxlXE3/\nyIIfFxP74hvNpqkcF30bCJ7hhtdV1bnARcDvJzlv8oc1bsGF3E9beOxD3y9XAfuAc4DHgSs3ue6g\n9kWSk4EvAx+qqmd8KtGiHRfNvvgS431xjCkeF30bCP8OnDHx/Rk8c8INXlU93vzzu8BXGCfekSR7\nAJKcDjzZ3QpnbqPHvvZY+elm22BV1ZPVAD7D8fwf9L5IchLjYfAXVfXVZvNCHhcT++IvV/fFNI+L\nvg2EbwIvT7I3yfOBdwDXdrymmUnygiSnNJdfCLwBOMx4H1zSXO0S4Kvr/4ZB2uixXwu8M8nzk+wD\nXs74TY6D1fyPb9XbGB8bMOB9kSTAMvCtqvrUxI8W7rjYaF9M9bjo+sz5OmfGL2J89vxh4LKu1zPj\nx76P8asC7gbuW338wKnA14CHgBuB3V2vtaXHfw3jd6//kPG5pPds9tiBjzXHyYPAr3e9/pb3xe8A\nnwfuBe5h/D/A04a+L4DXAz9u/ps41HxduIjHxQb74qJpHhe+MU2SBPTvKSNJUkccCJIkwIEgSWo4\nECRJgANBktRwIEiSAAeC9LQkt6z9iOAkf5Dk00lekeTvmo9bvivJ3yR5SZJRkh9MfPTwoSQXdPUY\npJ2Y+V9Mk3rsGuCdjN/otOodwEeA64EPV9XfAiQ5H3gx48+Gub2qfmPGa5WmzkKQjvsy8Kbm736v\nfqLkSxm/5f/rq8MAoKpuq6r7Wf9jh6W55ECQGlX1Pcaf9fLGZtM7gS8CZwL/tMlNz1vzlNG+lpcq\ntcKBID3T6tNGMH666AtbuM0dVXXuxNcj7S1Pao8DQXqma4H9Sc4FXlBVh4D7gVd3uyypfQ4EaUKN\n/+DIrcDnOF4HXwBem2T1qSSS/GqSMztYotQaB4L0bNcAZzX/pKr+B7iY8Z8pfCjJ/cDvAd9l/Cqj\ntecQfrOrhUs74cdfS5IAC0GS1HAgSJIAB4IkqeFAkCQBDgRJUsOBIEkCHAiSpIYDQZIEwP8Dkz0a\nLXMgajYAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f2cf6497910>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "\n", + "Vbb=10#\n", + "Rb=50*10**3#\n", + "Vcc=20#\n", + "Rc=300#\n", + "beta=200#\n", + "Ic=Vcc/Rc##saturation current\n", + "print \"IC=%0.2f\"%(Ic*1e3),'mA'\n", + "Vce=Vcc##cut-off voltage\n", + "print 'Vce=%0.2f'%Vce,\"V\"\n", + "Ib=(Vbb-0.7)/Rb#\n", + "print \"Ib=%0.2e\"%Ib,\"A\"\n", + "Ic=beta*Ib#\n", + "print \"Ic=%0.2e\"%Ic,\"A\"\n", + "Vce=Vcc-Ic*Rc#\n", + "print 'Vce=%0.2f'%Vce,\"V\"\n", + "i=arange(21,0,-0.1)\n", + "plot(i)#\n", + "xlabel(\"VCE\")#\n", + "ylabel( \"IC\")#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.3 Pg 404" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=0.14 mA\n", + "Ic=11.11 mA\n", + "Vce=15.89 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rb=180*10**3#\n", + "Vcc=25#\n", + "Rc=820#\n", + "beta=80#\n", + "Ib=Vcc/Rb##saturation current\n", + "print \"Ib=%0.2f\"%(Ib*1e3),'mA'\n", + "Ic=beta*Ib#\n", + "print \"Ic=%0.2f\"%(Ic*1e3),'mA'\n", + "Vce=Vcc-(Ic*Rc)##cut-off voltage\n", + "print 'Vce=%0.2f'%Vce,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.4 Pg 404" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rb=40.00 Kohm\n", + "S= 101\n", + "Ic=3.00e-02 A\n", + "Vce=2.10 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=12#\n", + "Rc=330#\n", + "Ib=0.3*10**-3#\n", + "beta=100#\n", + "#Ib=Vcc/Rb##saturation current\n", + "Rb=Vcc/Ib#\n", + "print \"Rb=%0.2f\"%(Rb*1e-3),'Kohm'\n", + "S=1+beta#\n", + "print \"S=\",S\n", + "Ic=beta*Ib#\n", + "print \"Ic=%0.2e\"%Ic,\"A\"\n", + "Vce=Vcc-(Ic*Rc)##cut-off voltage\n", + "print 'Vce=%0.2f'%Vce,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.5 Pg 405" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=0.04 mA\n", + "Ic=4.00 mA\n", + "Vce=8.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rb=400*10**3#\n", + "Vcc=20#\n", + "Rc=2*10**3#\n", + "Re=1*10**3#\n", + "beta=100#\n", + "Ib=Vcc/(Rb+(beta*Re))##saturation current\n", + "print \"Ib=%0.2f\"%(Ib*10**3),'mA'\n", + "Ic=beta*Ib#\n", + "print \"Ic=%0.2f\"%(Ic*10**3),'mA'\n", + "Vce=Vcc-(Ic*(Rc+Re))##cut-off voltage\n", + "print 'Vce=%0.2f'%Vce,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.6 Pg 406" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=2.35 mA\n", + "VCe=6.82 V\n", + "Icsat=5.45 mA\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEPCAYAAABMTw/iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEmBJREFUeJzt3X+s3XV9x/HnW25R0bZm88eKpYNtljhiheIMcTqPv5bC\ngC24zBk3pRKTWYeolE6WMm4FGhGN4jYjUDU203YGl83+mFKEAyQm/ugPxRZhM0opkx+ZCuJmUsZ7\nf3zPoae3t7f3x/me7/d8z/OR3PT8uvfz4aR98b2f1/fzPZGZSJKa6xlVT0CSVC6DXpIazqCXpIYz\n6CWp4Qx6SWo4g16SGq7UoI+I50XEzRFxT0Tsi4izyhxPknSksZJ//vXA9sz804gYA55T8niSpAmi\nrA1TEbEQ2J2Zv1XKAJKkaSlz6eYU4NGI+FxE7IqImyLihBLHkyRNosygHwOWA5/KzOXAL4EPljie\nJGkSZa7RHwAOZOa3O/dvZkLQR4QX2pGkWcjMmO5rSzuiz8yHgAciYmnnoTcCeyd5nV+ZXHnllZXP\noS5fvhe+F74XU3/NVNln3VwMfCEijgd+CKwseTxJ0gSlBn1mfhf4vTLHkCRNzZ2xNdFqtaqeQm34\nXhzie3GI78XslXYe/bQGj8gqx5ekYRQRZB3KWElSPRj0ktRwBr0kNZxBL0kNZ9BLUsMZ9JLUcAa9\nJDWcQS9JDWfQS1LDGfSS1HAGvSQ1nEEvSQ1n0EtSw1Ue9L/4RdUzkKRmqzzoly6FG26AJ5+seiaS\n1EyVB/3WrbB5M7z85bB9O3h5eknqr1p88EhmEfiXXQaLF8NHPwqnn17ZtCSp1obyg0ci4Lzz4O67\n4c1vhhUrYOVKOHCg6plJ0vCrRdB3zZsH73433HcfnHhisZxzxRUWtpI0F7UK+q4FC+Caa2D3brj/\nfgtbSZqLWqzRH8vOnbB6NTzyCFx3HZx9drHcI0mjaKZr9EMR9ICFrSR1DGUZOx0WtpI0O0MT9F29\nhe2iRRa2knQsQxf0XQsWwPr1FraSdCxDs0Z/LBa2kkZF7crYiPgx8Djwf8DBzHxlz3N9C3qwsJU0\nGupYxibQyswzekO+DBa2knSkQa3RD3QRxcJWkg4Z1BH9rRHxnYh41wDGe5qFrSQNZo1+UWb+JCJe\nAOwALs7MuzrP9XWN/lgsbCU1Qe3K2MMGi7gSeCIzP9a5n1deeeXTz7daLVqtVqlzsLCVNGza7Tbt\ndvvp++vWratP0EfECcBxmfmLiHgOcAuwLjNv6Tw/0CP6XgcPwoYNsG5dUdpefXUR/JJUd3U76+ZF\nwF0RsQf4JrC1G/JV85LIkkZFYzZMzdX+/bB2Ldx6K4yPwzvfCWNjVc9Kko5U6zX6IwavUdB3WdhK\nqjuDvg8sbCXVWd3W6IeSO2wlNYlBPwULW0lNYNBPw8TPsD31VLjxRnfYShoOrtHPwq5dcOmlFraS\nqmEZOyAWtpKqYhk7IEcrbB98sOqZSdLhDPo5mljYLltmYSupXgz6PrGwlVRXrtGXxMJWUlksY2sk\nE7ZtKwrbF7/YwlZSf1jG1kgEnHuuha2kahn0AzA2ZmErqToG/QBZ2Eqqgmv0FbKwlTQblrFDxsJW\n0kxZxg4ZC1tJZTPoa8LCVlJZDPqasbCV1G+u0decha2kiSxjG8jCVlIvy9gGOlph62fYSpoOg36I\nTCxs/QxbSdNh0A8hC1tJM+EafQNY2EqjxTJ2RFnYSqPDMnZEWdhKOhqDvmEsbCVNVHrQR8RxEbE7\nIraUPZYOmVjYLl0KN9xgYSuNokEc0V8C7ANcjK/AkiWwcWOxfr95c3GEv317saYvaTSUGvQRsRg4\nB9gAeB5IhZYvh9tugw9/GD7wAXjTm2DPnqpnJWkQyj6i/zhwGfBUyeNoGiLgvPMsbKVRM1bWD46I\nc4FHMnN3RLSO9rrx8fGnb7daLVqto75UfTJvXlHYvu1tcO21xXLOqlWwZg3Mn1/17CRN1G63abfb\ns/7+0s6jj4j1wF8CTwLPAhYAX87Mt/e8xvPoa2D/fli7FnbsgPFxuOii4uwdSfVUyw1TEfFaYHVm\nnjfhcYO+RnbuhNWr3WEr1V2dN0yZ6DV35pkWtlITeQkETergQdiwAdatK47sr7oKFi+uelaSoN5H\n9Boi3cLWHbbS8DPoNSV32ErDz6UbzYiXRJaqV8uzbo46uEE/lDJh69biksiLF3tJZGnQXKNX6dxh\nKw0Xg16zZmErDQeDXnNmYSvVm2v06jt32ErlsoxVLVjYSuWxjFUtWNhK9WHQq1S9he2iRRa2UhUM\neg3EggWwfr2FrVQF1+hVCQtbafYsYzU0LGyl2bGM1dCwsJUGw6BX5SxspXIZ9KoNC1upHK7Rq7Ys\nbKXJWcaqUSxspSNZxqpRLGyluTPoNRQsbKXZM+g1VCxspZlzjV5DzcJWo8gyViPHwlajxjJWI8fC\nVpqaQa/GsLCVJmfQq3EsbKXDuUavxrOwVdPUqoyNiGcBdwDPBI4H/i0zL+953qDXQFjYqkn6VsZG\nxAsj4rRJHj8tIl4wnR+emb8CXpeZpwPLgNdFxKunOzmpXyYrbC+80MJWo2GqNfq/B54/yeO/Dlw/\n3QEy8386N48HjgN+Ou3ZSX3WW9ieeGJR2K5da2GrZpsq6H8nM++Y+GBm3gm8fLoDRMQzImIP8DBw\ne2bum/k0pf7qLWz377ewVbONTfHc/CmemzfdATLzKeD0iFgIfC0iWpnZ7j4/Pj7+9GtbrRatVmu6\nP1qasyVLYOPGQ4XtJz9pYav6abfbtNvtWX//UcvYiNgO/GNmbpvw+DnAxZl59owHi7gC+N/M/Gjn\nvmWsamNiYXvddXDGGVXPSjpS3866iYilwFbgG8BOIIAzgVcB52bmvdOYzPOBJzPz5xHxbOBrwLrM\n/HrneYNetXPwINx0E3zoQ0Vpe/XVRfBLddG3s24y8z6KM2XuBE4BfpPiVMll0wn5jkXAbZ01+m8C\nW7ohL9XVvHmwapWFrZrDDVPSMezfXwT9jh0wPg4XXQRjU7VbUsn6uXTzBHC0FM7MXDCL+U0cw6DX\n0HCHreqiVjtjjzm4Qa8h4w5b1YGXKZZK5A5bDSODXpoFd9hqmBj00hy4w1bDwDV6qY8sbDUIlrFS\nxSxsVTbLWKliFraqG4NeKkm3sL33XgtbVcugl0q2cKGFrarlGr00YBa2mivLWGkIWNhqLixjpSHQ\nW9hecIGFrcpl0EsV6l4SubewveIKC1v1l0Ev1UBvYXv//Ra26i/X6KUa6i1sP/IROOccC1sdYhkr\nNUQmbNkCa9ZY2OpwlrFSQ0TA+ecfXtiuXGlhq5kz6KWa6y1sFy2ysNXMGfTSkLCw1Wy5Ri8NKXfY\nji7LWGmEuMN2NFnGSiNksksiW9hqIoNeaoDez7C1sNVEBr3UIL2fYWthqy7X6KUGs7BtJstYSYex\nsG0ey1hJh7GwValBHxEnRcTtEbE3Ir4fEe8tczxJR9db2HpJ5NFS9hH9QeD9mXkacBbwnoh4aclj\nSprCggVwzTUWtqOk1KDPzIcyc0/n9hPAPcCJZY4paXqWLIGNG2HbNti8uTjC3769WNNXswysjI2I\nk4E7gNM6oW8ZK9WEhe1wmWkZO1bmZLoi4rnAzcAl3ZDvGh8ff/p2q9Wi1WoNYkqSenQL2xUrYMOG\n4s+zz4arriqCX9Vqt9u02+1Zf3/pR/QRMQ/YCvx7Zn5iwnMe0Us19PjjcO218OlPF5dIXrMG5s+v\nelbqqtXplRERwGeAfRNDXlJ9dQvbPXssbJug1CP6iHg1cCfwPaA70OWZ+dXO8x7RS0Ng1y649FJ3\n2NaFO2MllcLCtj5qtXQjqTncYTu8DHpJM+IO2+Fj0EuaFXfYDg/X6CX1hYXt4FjGSqqMhe1gWMZK\nqoyFbT0Z9JL6zsK2Xgx6SaWxsK0H1+glDYyFbX9YxkqqNQvbubOMlVRrFraDZ9BLqoSF7eAY9JIq\nZWFbPtfoJdXKzp2werWF7VQsYyUNPQvbqVnGShp6kxW2F15oYTtbBr2k2rKw7Q+DXlLtLVgA69db\n2M6Wa/SShs6oF7aWsZJGwigXtpaxkkaCO2ynz6CXNNR6C9tFiyxsJ2PQS2qEiYXtqafCjTda2IJr\n9JIaqsmFrWWsJHU0tbC1jJWkDgvbgkEvqfG6he29945mYWvQSxoZCxeOZmFbatBHxGcj4uGIuLvM\ncSRpJpYsgY0bYcsW2LSpOMLfvr1Y02+iUsvYiHgN8ASwMTNfNsnzlrGSKjWMhW2tytjMvAv4WZlj\nSNJc9Ba2F1xwqLB98MGqZ9Y/rtFLEkVhu2rVocJ22bLmFLYGvST1aGJhO1b1BMbHx5++3Wq1aLVa\nlc1Fkrq6hW13h+3111e3w7bdbtNut2f9/aXvjI2Ik4EtlrGShlXdCttalbERsQn4BrA0Ih6IiJVl\njidJZRj2wtZr3UjSDD32GFx7bfFxhqtWwZo1MH/+4Mav1RG9JDXRsBW2HtFL0hzt3AmXXgqPPjqY\nwtbLFEtSBQZZ2Lp0I0kVqHNha9BLUh/VcYetQS9JJahTYesavSQNQD8LW8tYSaqpfhW2lrGSVFNV\nFbYGvSQN2KALW4NekioyqMLWNXpJqonpFraWsZI0xKZT2FrGStIQK6OwNeglqYb6Wdi6dCNJQ2D/\nfli7Fm69FX7yE9foJamxdu6EV7zCoJekRrOMlSQdxqCXpIYz6CWp4Qx6SWo4g16SGs6gl6SGM+gl\nqeEMeklqOINekhrOoJekhis16CNiRUT8ICL+IyL+psyxJEmTKy3oI+I44B+AFcDvAm+NiJeWNd6w\na7fbVU+hNnwvDvG9OMT3YvbKPKJ/JfCfmfnjzDwIbAb+uMTxhpp/iQ/xvTjE9+IQ34vZKzPoXww8\n0HP/QOcxSdIAlRn0Xn9YkmqgtOvRR8RZwHhmrujcvxx4KjOv7XmN/zOQpFmoxQePRMQYcC/wBuC/\ngG8Bb83Me0oZUJI0qbGyfnBmPhkRfw18DTgO+IwhL0mDV+lHCUqSylfZzlg3UxUi4qSIuD0i9kbE\n9yPivVXPqWoRcVxE7I6ILVXPpUoR8byIuDki7omIfZ3eayRFxOWdfyN3R8QXI+KZVc9pUCLisxHx\ncETc3fPYr0XEjoi4LyJuiYjnTfUzKgl6N1Md5iDw/sw8DTgLeM8IvxddlwD78Myt64HtmflSYBkw\nkkufEXEy8C5geWa+jGIp+M+rnNOAfY4iK3t9ENiRmUuBr3fuH1VVR/RupurIzIcyc0/n9hMU/5hP\nrHZW1YmIxcA5wAZg2mcVNE1ELARek5mfhaLzyszHKp5WVR6nOCA6oXOSxwnAg9VOaXAy8y7gZxMe\nPh/4fOf254E/mepnVBX0bqaaROfI5Qzgm9XOpFIfBy4Dnqp6IhU7BXg0Ij4XEbsi4qaIOKHqSVUh\nM38KfAzYT3EG388z89ZqZ1W5F2Xmw53bDwMvmurFVQX9qP9KfoSIeC5wM3BJ58h+5ETEucAjmbmb\nET6a7xgDlgOfyszlwC85xq/nTRURvw28DziZ4rfd50bE2yqdVI1kcUbNlJlaVdA/CJzUc/8kiqP6\nkRQR84AvA/+Umf9a9Xwq9Crg/Ij4EbAJeH1EbKx4TlU5ABzIzG937t9MEfyj6BXANzLzvzPzSeBf\nKP6ujLKHI+I3ACJiEfDIVC+uKui/A7wkIk6OiOOBtwBfqWgulYqIAD4D7MvMT1Q9nypl5t9m5kmZ\neQpF2XZbZr696nlVITMfAh6IiKWdh94I7K1wSlX6AXBWRDy78+/ljRRl/Sj7CvCOzu13AFMeIJa2\nYWoqbqY6zO8DfwF8LyJ2dx67PDO/WuGc6mLUl/guBr7QORj6IbCy4vlUIjO/2/nN7jsU3c0u4MZq\nZzU4EbEJeC3w/Ih4APg74MPAlyLiIuDHwJ9N+TPcMCVJzeZHCUpSwxn0ktRwBr0kNZxBL0kNZ9BL\nUsMZ9JLUcAa9Rk5E3BYRfzjhsfdFxKciYmlEbO9c/nVnRPxzRLwwIloR8Vjn8sndr9dX9d8gzUQl\nG6akim2i2Hl7S89jbwHWAFspLhu9DSAiXgu8gGLz1p2Zed6A5yrNmUf0GkVfBv6oc8nb7lVDTwRe\nQnFNlW3dF2bmHZm5Fy+ypiFm0GvkdC57+y2K695DcXT/JeA0iu31R/OaCUs3p5Q8VakvDHqNqu7y\nDRTLNl+cxvfclZln9Hz9qLzpSf1j0GtUfQV4Q0ScAZzQuQb+XuDMaqcl9Z9Br5HU+XCX2yk+j7N7\nNP9F4FUR0V3SISL+ICJOq2CKUt8Y9Bplm4CXdf4kM38FnAtc3Dm9ci/wV8CjFGfdTFyjv6CqiUsz\n4WWKJanhPKKXpIYz6CWp4Qx6SWo4g16SGs6gl6SGM+glqeEMeklqOINekhru/wGO+l+4xPWeSQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f2d0cb4b310>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "\n", + "Vcc=12#\n", + "Rc=2.2*10**3#\n", + "Rb=240#\n", + "B=50#\n", + "Vbe=0.7#\n", + "RE=0#\n", + "Ic=(Vcc-Vbe)/(RE+(Rb/B))##collector current\n", + "print \"Ic=%0.2f mA\"%Ic\n", + "Vce=Vcc-(Ic*10**-3)*Rc##CE voltage\n", + "print 'VCe=%0.2f V'%Vce\n", + "Icsat=Vcc/Rc#\n", + "print 'Icsat=%0.2f mA'%(Icsat*10**3)\n", + "Vcec=Vcc##cutoff voltage\n", + "i=arange(5.45,0,-0.5)\n", + "plot(i)#\n", + "xlabel(\"VCE\")#\n", + "ylabel( \"IC\")#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.7 Pg 407" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=6.00 mA\n", + "Vce=30.00 V\n", + "Ib=20.00 microA\n", + "Ic=2.00 mA\n", + "Vce= 20.00 V\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEPCAYAAACjjWTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEd5JREFUeJzt3X2sZGV9wPHvDxbL8qJWeVErDYvRxC5LQVrc1CJjfQlQ\ntYV0UZq2wh+mTSyCCVhtAvf2HwlrW5VVTFqR7lKl3cW4pUAj2jIV0uwi7IJ0odomkIhFliqlbFkS\nLL/+MTPLcLn3MjN3zpy37ye52blzZuc8J0ee/frcM+dGZiJJaraDyh6AJKl4TvaS1AJO9pLUAk72\nktQCTvaS1AJO9pLUAoVO9hHxyoi4MSIejIgHImJ9kfuTJC1uVcHv/zng1sz8rYhYBRxe8P4kSYuI\noj5UFRGvAHZn5gmF7ECSNLIil3HWAI9HxHURsSsi/jIiDitwf5KkJRQ52a8C3gJck5lvAf4X+ESB\n+5MkLaHINftHgEcy8zv9729kwWQfEd6YR5ImkJkxzusLK/vM/BHwg4h4U/+pdwF7Fr7u6aeTyy5L\njj022bo1yWzO19zcXOlj8Pg8vjYeX5OPLXOyRi76OvuLgK9ExH3AScCnFr5g9WrYuBG2b4fLL4cN\nG2Dv3oJHJUktU+hkn5n3ZeYvZ+YvZua5mfnkUq9dvx5274Y1a+Ckk2DbtiJHJkntUqlP0Dat8jud\nTtlDKJTHV29NPr4mH9ukCrvOfqSdR+RS+9+/H+bmYMsW2LSpN/FLkiAiyDF/QFvZyX5gxw644AJY\ntw6+8AU45pjZjE2SqmqSyb5SyziLcS1fklau8mU/bMcOuPBCOPFEK19SezWy7IetXw+7dln5kjSu\nWpX9MNfyJbVV48t+2GAt/4QTrHxJeim1LfthruVLapNWlf0wK1+SlteIsh9m5UtqutaW/TArX5Je\nrHFlP8zKl9RElv0CVr4k9TS67IdZ+ZKawrJfhpUvqc1aU/bDrHxJdWbZj8jKl9Q2rSz7YVa+pLqx\n7CfgnTQltUHry36Yd9KUVAeW/Qr5W7EkNZVlvwQrX1JVWfZTZOVLahLLfgRWvqQqsewLYuVLqjvL\nfkxWvqSyWfYzYOVLqqPCyz4iHgb+B/g/4NnMPG1oW+3KfpiVL6kMVS37BDqZecrwRN8E3mNHUl3M\nouwfAn4pM3+8yLZal/0w77EjaVaqXPbfioi7I+LDM9hfKax8SVU2i7J/bWY+GhFHA98ELsrMO/rb\nGlP2w6x8SUWapOxXFTWYgcx8tP/n4xHxdeA04I7B9vn5+QOv7XQ6dDqdoodUuEHlz831Kn/TJtiw\noexRSaqrbrdLt9td0XsUWvYRcRhwcGY+FRGHA7cBf5KZt/W3N7Lsh1n5kqatimv2xwJ3RMS9wE7g\n5sFE3xau5UuqAj9BO0NWvqRpqGLZa4iVL6ksln1JrHxJk7Lsa2Rh5W/dWvaIJDWZZV8BVr6kcVj2\nNbV+Peza5Z00JRXHsq8Y76Qp6aVY9g3g/fIlFcGyrzArX9JiLPuGsfIlTYtlXxNWvqQBy77BrHxJ\nK2HZ15DX5UvtZtm3hNflSxqXZV9zruVL7WPZt5B30pQ0Csu+QVzLl9rBsm85K1/SUiz7hrLypeay\n7HWAlS9pmGXfAla+1CyWvRZl5Uuy7FvGypfqz7LXS7LypXay7FvMypfqybLXWKx8qT0sewFWvlQn\nlr0m5p00pWaz7PUi3klTqjbLXlOx8Ldibd1a9ogkrVThZR8RBwN3A49k5vsWbLPsK87Kl6qnqmV/\nMfAA4KxeQ1a+1AyFTvYR8XrgbOBLwFj/Cqk6Vq+GjRth+3a44grYsAH27i17VJLGUXTZfwa4DHiu\n4P1oBqx8qb5WFfXGEfFeYG9m7o6IzlKvm5+fP/C40+nQ6Sz5UlXAoPLPPbd3Xf62ba7lS0Xrdrt0\nu90VvUdhP6CNiE8Bvwv8FDgUeDnwtcz8vaHX+APaGtu/H+bmYMsWuPpqOO+8skcktcMkP6CdyXX2\nEXEGcKlX4zSTV+xIs1XVq3EGnNUbyrV8qfr8BK2mynvsSMWretmrBRbeSdPKl6rBsldhrHypGJa9\nKsXKl6rDstdMWPnS9Fj2qix/K5ZULsteM2flSytj2asWrHxp9ix7lcrKl8Zn2at2rHxpNix7VYaV\nL43GsletLbzHjpUvTY9lr0qy8qWlWfZqDNfypemy7FV5Vr70Qpa9Gsl77EgrZ9mrVqx8ybJXC1j5\n0mQse9XWzp29331r5attLHu1ylvfauVLo7Ls1Qiu5atNLHu1lmv50vIsezWOla+ms+wlrHxpMZa9\nGs3KVxNZ9tICVr7UY9mrNax8NYVlLy3DO2mqzSx7tZKVrzqrXNlHxKERsTMi7o2IByLiyiL3J43K\nylfbLFn2EXEMcHRm7lnw/Fpgb2Y+PtIOIg7LzKcjYhVwJ3BpZt7Z32bZq3RWvupm2mW/CThqkedf\nDXxu1B1k5tP9hy8DDgZ+MvLopBmw8tUGy5X9PZl56hLb9mTm2pF2EHEQsAt4A/DFzPz40DbLXpVi\n5asOJin7VctsO3KZbYeMuoPMfA44OSJeAXwjIjqZ2R1sn5+fP/DaTqdDp9MZ9a2lqRtU/hVX9Cp/\n0ybYsKHsUantut0u3W53Re+xXNnfCnwhM29Z8PzZwEWZedbYO4u4HNifmX/a/96yV2VZ+aqqaa/Z\nXwJ8JiL+KiIuioiPRsRmeuv1l4w4oKMi4pX9x6uBdwO7xxmgVBbX8tUky15nHxGHAr8NnAgksAe4\nITP3j/TmEeuAzfT+UTkIuD4zPz203bJXLVj5qpJJyt4PVUkjeuYZmJuDzZvh6qvhvPPKHpHaaqqT\nfUTso1fzi8nMfPmY41tsH072qh0rX2Wb6pp9Zh6RmUcu8bXiiV6qK++kqTpyGUdagUHlr10L11xj\n5Ws2KndvHKnpBpX/hjdY+ao2y16aEtfyNSuWvVQi1/JVZZa9VAArX0Wy7KWKsPJVNZa9VDArX9Nm\n2UsVZOWrCix7aYasfE2DZS9VnHfSVFkse6kkVr4mZdlLNbJ+PezaBWvWWPkqnmUvVcCOHXDBBbBu\nXe8eO0cfXfaIVGWWvVRTg7X8NWt6E76Vr2mz7KWKGVT+SSf11vKtfC1k2UsNMKj844+38jU9lr1U\nYVa+FmPZSw1j5WtaLHupJoYr//Of97r8NrPspQYbrnyvy9e4LHuphoavy/fTt+1j2UstMXxdvpWv\nUVj2Us1Z+e1j2UstZOVrFJa91CBWfjtY9lLLWflaSqFlHxHHAVuAY4AE/iIzrx7abtlLBbHym6uK\nZf8s8LHMXAusBz4SEW8ueJ+SsPL1QjNds4+I7cCmzPzH/veWvTQDVn6zVLHsD4iI44FTgJ2z2qek\nHitfq2axk4g4ArgRuDgz9w1vm5+fP/C40+nQ6XRmMSSpdVavho0b4dxze7/7dts276RZF91ul263\nu6L3KHwZJyIOAW4G/iEzP7tgm8s4Ugn274e5OdiyBTZtgg0byh6RxjHJMk7RV+MEsBn4cWZ+bJHt\nTvZSibxffj1Vcc3+bcDvAO+IiN39rzML3qekEXm//PbwE7SSACu/TqpY9pJqwspvNste0otY+dVm\n2UuaCiu/eSx7Scuy8qvHspc0dVZ+M1j2kkZm5VeDZS+pUFZ+fVn2kibinTTLY9lLmhnvpFkvlr2k\nFbPyZ8uyl1QKK7/6LHtJU2XlF8+yl1Q6K7+aLHtJhbHyi2HZS6oUK786LHtJM2HlT49lL6myrPxy\nWfaSZs7KXxnLXlItWPmzZ9lLKpWVPz7LXlLtWPmzYdlLqowdO+DCC+HEE6385Vj2kmptUPknnGDl\nT5tlL6mSrPylWfaSGmNh5W/dWvaI6s2yl1R5Vv4LWfaSGsm1/JWz7CXVipVfwbKPiC9HxGMRcX+R\n+5HUHlb+ZAot+4g4HdgHbMnMdYtst+wlTaytlV+5ss/MO4AnityHpPay8kdX+Jp9RBwP/L1lL6lI\nbar8ypW9JM2K1+Uvb1XZA5ifnz/wuNPp0Ol0ShuLpHo79FC46io455xe5W/b1ozK73a7dLvdFb2H\nyziSGmn/fpibgy1bYNMm2LCh7BFNzyTLOEVfjXMDcAbwamAvcEVmXje03cleUqGaeL/8yq3ZZ+b5\nmfm6zPyZzDxueKKXpFnwfvk9foJWUms0pfIrV/aSVCVtrnzLXlIr1bnyLXtJGlHbKt+yl9R6dat8\ny16SJtCGyrfsJWlIHSrfspekFWrqnTQte0laQlXvpGnZS9IUNanyLXtJGkGVKt+yl6SC1L3yLXtJ\nGlPZlW/ZS9IM1LHyLXtJWoEyKt+yl6QZq0vlW/aSNCWzqnzLXpJKVOXKt+wlqQBFVr5lL0kVUbXK\nt+wlqWDTrnzLXpIqqAqVb9lL0gxNo/Ite0mquLIq37KXpJJMWvmTlL2TvSSV6JlnYG4O9u3rTfij\ncLKXpJrKhBhx+nbNXpJqatSJflKFTvYRcWZE/FtE/HtE/FGR+5IkLa2wyT4iDgY+D5wJ/AJwfkS8\nuaj9VVG32y17CIXy+OqtycfX5GObVJFlfxrwH5n5cGY+C/wN8BsF7q9ymv4/OI+v3pp8fE0+tkkV\nOdn/HPCDoe8f6T8nSZqxIid7L7ORpIoo7NLLiFgPzGfmmf3vPwk8l5lXDb3GfxAkaQKVuc4+IlYB\n3wPeCfwncBdwfmY+WMgOJUlLWlXUG2fmTyPiD4FvAAcD1zrRS1I5Sv0ErSRpNkr7BG3TP3AVEQ9H\nxHcjYndE3FX2eFYqIr4cEY9FxP1Dz70qIr4ZEd+PiNsi4pVljnEllji++Yh4pH8Od0fEmWWOcVIR\ncVxE3B4ReyLiXyPio/3nG3H+ljm+ppy/QyNiZ0TcGxEPRMSV/efHOn+llH3/A1ffA94F/BD4Dg1b\nz4+Ih4BTM/MnZY9lGiLidGAfsCUz1/Wf2wj8V2Zu7P+D/bOZ+YkyxzmpJY5vDngqM/+81MGtUES8\nBnhNZt4bEUcA9wC/CVxIA87fMsd3Hg04fwARcVhmPt3/WeidwKXA+xnj/JVV9m35wFXBd7uYncy8\nA3hiwdPvBzb3H2+m9x9YLS1xfNCAc5iZP8rMe/uP9wEP0vvMSyPO3zLHBw04fwCZ+XT/4cvo/Qz0\nCcY8f2VN9m34wFUC34qIuyPiw2UPpiDHZuZj/cePAceWOZiCXBQR90XEtXVd5hgWEccDpwA7aeD5\nGzq+Hf2nGnH+IuKgiLiX3nm6PTP3MOb5K2uyb8NPhd+WmacAZwEf6S8TNFb/XtVNO69fBNYAJwOP\nAn9W7nBWpr/E8TXg4sx8anhbE85f//hupHd8+2jQ+cvM5zLzZOD1wNsj4h0Ltr/k+Strsv8hcNzQ\n98fRq/vGyMxH+38+Dnyd3tJV0zzWXy8lIl4L7C15PFOVmXuzD/gSNT6HEXEIvYn++szc3n+6Medv\n6Pj+enB8TTp/A5n5JHALcCpjnr+yJvu7gTdGxPER8TLgA8BNJY1l6iLisIg4sv/4cOA9wP3L/61a\nugn4UP/xh4Dty7y2dvr/AQ2cQ03PYUQEcC3wQGZ+dmhTI87fUsfXoPN31GAJKiJWA+8GdjPm+Svt\nOvuIOAv4LM9/4OrKUgZSgIhYQ6/moffBta/U/fgi4gbgDOAoeuuDVwB/B2wFfh54GDgvM/+7rDGu\nxCLHNwd06C0BJPAQ8PtDa6S1ERG/Cnwb+C7P/1/9T9L7VHvtz98Sx/fHwPk04/yto/cD2IP6X9dn\n5qcj4lWMcf78UJUktYC/llCSWsDJXpJawMleklrAyV6SWsDJXpJawMleklrAyV6tExH/FBHvWfDc\nJRFxTUS8KSJu7d829p6I+NuIOCYiOhHx5NDtcndHxK+VdQzSuAr7TVVShd0AfBC4bei5DwAfB24G\nPpaZtwBExBnA0fQ+mPPtzHzfjMcqTYVlrzb6GvDr/XuDD+6U+DrgjcC/DCZ6gMz85/4dBhtxq1y1\nl5O9Wqf/C2XuAs7uP/VBeh87XwvsWuavnr5gGWdNwUOVpsbJXm01WMqB3hLOV0f4O3dk5ilDXw8V\nNzxpupzs1VY3Ae+MiFOAwzJzN7CH3q1jpcZxslcr9X+5xe3AdTxf9V8FfiUiBss7RMTbI2JtCUOU\npsrJXm12A7Cu/yeZ+QzwXnq/yu77EbEH+APgcXpX4yxcsz+3rIFL4/IWx5LUApa9JLWAk70ktYCT\nvSS1gJO9JLWAk70ktYCTvSS1gJO9JLWAk70ktcD/A8wkK1W+faCcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f2cf32fe390>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "\n", + "Vcc=30#\n", + "Rb=1.5*10**6#\n", + "Rc=5*10**3#\n", + "beta=100#\n", + "Ic=Vcc/Rc##saturation current\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Vce=Vcc##cut-off voltage\n", + "print 'Vce=%0.2f V'%Vce\n", + "Ib=Vcc/Rb##base current\n", + "print 'Ib=%0.2f microA'%(Ib*10**6)\n", + "Ic=beta*Ib#\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Vce=Vcc-Ic*Rc#\n", + "print 'Vce= %0.2f V'%Vce\n", + "i=arange(6,0,-0.2)\n", + "plot(i)#\n", + "xlabel(\"VCE\")#\n", + "ylabel( \"IC\")#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.9 Pg 408" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=9.92 mA\n", + "Vce= 16.87 V\n", + "S=74.394\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rb=180*10**3#\n", + "Vcc=25#\n", + "Rc=820#\n", + "Re=200#\n", + "beta=80#\n", + "Vbe=0.7#\n", + "Ic=(Vcc-Vbe)/(Re+(Rb/beta))##collector current\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Vce=Vcc-(Ic*Rc)##collector to emitter voltage\n", + "print 'Vce= %0.2f V'%Vce\n", + "S=(1+beta)/(1+beta*(Re/(Re+Rb)))#\n", + "print \"S=%0.3f\"%S##stability factor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.10 Pg 409" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=0.85 mA\n", + "Vce= 1.55 V\n", + "Ic=1.00 mA\n", + "Vce= 10.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vbe=0.7#\n", + "Rb=100*10**3#\n", + "Vcc=10#\n", + "Rc=10*10**3#\n", + "beta=100#\n", + "Ic=(Vcc-Vbe)/(Rc+(Rb/beta))##collector current\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Vce=Vcc-(Ic*Rc)##collector to emitter voltage\n", + "print 'Vce= %0.2f V'%Vce\n", + "Ic=Vcc/Rc#\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Vce=Vcc#\n", + "print 'Vce= %0.2f V'%Vce" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.11 Pg 410" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=0.05 mA\n", + "Ic=2.33 mA\n", + "Ie=2.33 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rb=100*10**3#\n", + "Vcc=10#\n", + "Rc=2*10**3#\n", + "beta1=50#\n", + "Vbe=0.7#\n", + "Ib=(Vcc-Vbe)/(Rb+(beta1*Rc))#\n", + "print 'Ib=%0.2f mA'%(Ib*10**3)\n", + "Ic=beta1*Ib#\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Ie=Ic#\n", + "print 'Ie=%0.2f mA'%(Ie*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.12 Pg 411" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IB=15.82 microA\n", + "IC=1581.82 microA\n", + "IC=1.58 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=9#\n", + "RB=220*10**3#\n", + "RC=3.3*10**3#\n", + "VBE=0.3#\n", + "B=100#\n", + "#if vc=0\n", + "IB=(VCC-VBE)/(RB+(B*RC))#\n", + "print 'IB=%0.2f microA'%(IB*10**6)\n", + "IC=B*IB#\n", + "print 'IC=%0.2f microA'%(IC*10**6) #CORRECTION IN BOOK\n", + "#if VC=9\n", + "VC=9#\n", + "IC=B*IB#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "#IC*RC=0,which means collector resistance is short circuited" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.13 Pg 412" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=1.96 mA\n", + "Vb=0.90 V\n", + "Vc=5.53 V\n", + "IR2=0.28 mA\n", + "Ib=0.04 mA\n", + "IR1=0.32 mA\n", + "R1=14.63 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=12#\n", + "Rc=3.3*10**3#\n", + "Re=100#\n", + "Ie=2*10**-3#\n", + "Vbe=0.7#\n", + "alpha=0.98#\n", + "Ic=alpha*Ie#\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Vb=Vbe+(Ie*Re)#\n", + "print 'Vb=%0.2f V'%Vb\n", + "Vc=Vcc-(Ic*Rc)##collector to emitter voltage\n", + "print 'Vc=%0.2f V'%Vc\n", + "R2=20*10**3#\n", + "IR2=Vc/R2#\n", + "print 'IR2=%0.2f mA'%(IR2*10**3)\n", + "Ib=Ie-Ic#\n", + "print 'Ib=%0.2f mA'%(Ib*10**3)\n", + "IR1=IR2+Ib#\n", + "print 'IR1=%0.2f mA'%(IR1*10**3)\n", + "R1=(Vc-Vb)/IR1#\n", + "print 'R1=%0.2f kohm'%(R1*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.14 Pg 414" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IC=1.90 mA\n", + "RB=117.00 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=24#\n", + "RC=10*10**3#\n", + "RE=270#\n", + "VBE=0.7#\n", + "B=45#\n", + "VCE=5#\n", + "IC=(VCC-VCE)/RC#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "RB=(2.6*10**3)*B#\n", + "print 'RB=%0.2f kohm'%(RB*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.15 Pg 416" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=0.01 mA\n", + "Ic=1.06 mA\n", + "Vce=1.09 V\n", + "S=16.091\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rb=33*10**3#\n", + "Vcc=3#\n", + "Rc=1.8*10**3#\n", + "beta=90#\n", + "Vbe=0.7#\n", + "Ib=(Vcc-Vbe)/(Rb+(Rc*beta))##collector current\n", + "print 'Ib=%0.2f mA'%(Ib*10**3)\n", + "Ic=beta*Ib#\n", + "print 'Ic=%.2f mA'%(Ic*10**3)\n", + "Vce=Vcc-(Ic*Rc)##collector to emitter voltage\n", + "print 'Vce=%0.2f V'%Vce\n", + "S=(1+beta)/(1+beta*(Rc/(Rc+Rb)))#stability factor\n", + "print \"S=%0.3f\"%S" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.16 Pg 416" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vb=3.33 V\n", + "Ve=2.63 V\n", + "Ie=05 mA\n", + "Ic=05 mA\n", + "Ve=2.63 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vbe=0.7#\n", + "Vcc=10#\n", + "Rc=1*10**3#\n", + "beta=100#\n", + "R1=10*10**3#\n", + "R2=5*10**3#\n", + "Re=500#\n", + "Vb=Vcc*(R2/(R1+R2))#\n", + "print 'Vb=%0.2f V'%Vb\n", + "Ve=Vb-Vbe#\n", + "print 'Ve=%0.2f V'%Ve\n", + "Ie=Ve/Re#\n", + "print 'Ie=%02.f mA'%(Ie*10**3)\n", + "Ic=Ie#\n", + "print 'Ic=%02.f mA'%(Ic*10**3)\n", + "Vce=Vcc-(Rc+Re)#\n", + "print 'Ve=%0.2f V'%Ve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.17 Pg 418" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vb=2.81 V\n", + "Ve=2.11 V\n", + "Ie=3.11 mA\n", + "Ic=3.11 mA\n", + "VRc=3.11 V\n", + "Vc=5.89 V\n", + "Vce=3.78 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=9#\n", + "Rc=1*10**3#\n", + "Re=680#\n", + "beta=100#\n", + "R1=33*10**3#\n", + "R2=15*10**3#\n", + "Vb=Vcc*(R2/(R1+R2))#\n", + "print 'Vb=%0.2f V'%Vb\n", + "Vbe=0.7#\n", + "Ve=Vb-Vbe#\n", + "print 'Ve=%0.2f V'%Ve\n", + "Ie=Ve/Re#\n", + "print 'Ie=%0.2f mA'%(Ie*10**3)\n", + "Ic=Ie#\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "VRc=Ic*Rc#\n", + "print 'VRc=%0.2f V'%VRc\n", + "Vc=Vcc-VRc#\n", + "print 'Vc=%0.2f V'%Vc\n", + "Vce=Vc-Ve#\n", + "print 'Vce=%0.2f V'%Vce" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.18 Pg 419" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rc=2200.00 ohm\n", + "R1=40.00 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=5#\n", + "RE=0.3*10**3#\n", + "IC=1*10**-3#\n", + "VCE=2.5#\n", + "B=100#\n", + "VBE=0.7#\n", + "ICO=0#\n", + "R2=10*10**3#\n", + "IE=IC#\n", + "RC=((VCC-VCE)/IC)-RE#\n", + "print 'Rc=%0.2f ohm'%RC\n", + "VE=IE*RE#\n", + "VB=VE+VBE#\n", + "R1=VCC*R2-R2#\n", + "print 'R1=%0.2f kohm'%(R1*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.19 Pg 420" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VB=10.00 V\n", + "IE=1.86 mA\n", + "VCE=18.14 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=20#\n", + "RC=1*10**3#\n", + "RE=5*10**3#\n", + "R1=10*10**3#\n", + "R2=10*10**3#\n", + "B=462#\n", + "VBE=0.7#\n", + "VB=Vcc*R2/(R1+R2)#\n", + "print 'VB=%0.2f V'%VB\n", + "VE=VB-VBE#\n", + "IE=VE/RE#\n", + "print 'IE=%0.2f mA'%(IE*10**3)\n", + "IC=IE#\n", + "VCE=Vcc-IC*RC#\n", + "print 'VCE=%0.2f V'%VCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.20 Pg 422" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IC=0.62 mA\n", + "IE=0.65 mA\n", + "IB=26.04 microA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=8#\n", + "VRC=0.5#\n", + "RC=800#\n", + "a=0.96#\n", + "VCE=VCC-VRC##VRC=IC*RC\n", + "IC=VRC/RC#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "IE=IC/a#\n", + "print 'IE=%0.2f mA'%(IE*10**3)\n", + "IB=IE-IC#\n", + "print 'IB=%0.2f microA'%(IB*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.21 Pg 423" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ICdiff=43.478 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=12#\n", + "RC=1*10**3#\n", + "RE=100#\n", + "R1=25*10**3#\n", + "R2=5*10**3#\n", + "B=50#\n", + "VBE=0.6#\n", + "VTH=VCC*R2/(R1+R2)#\n", + "RTH=R1*R2/(R1+R2)#\n", + "IE50=(VTH-VBE)/(RE+RTH/B)#\n", + "B=150#\n", + "IE150=(VTH-VBE)/(RE+RTH/B)#\n", + "ICdiff=(IE150-IE50)/IE50#\n", + "print \"ICdiff=%0.3f %%\"%(ICdiff*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.24 Pg 424" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RE=1.40 kohm\n", + "RTH=2.98 kohm\n", + "R2=7.00 kohm\n", + "R1=5.17 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "B=50#\n", + "VBE=0.7#\n", + "VCC=22.5#\n", + "RC=5.6*10**3#\n", + "VCE=12#\n", + "IC=1.5*10**-3#\n", + "S=3#\n", + "RE=(VCC-IC*RC-VCE)/IC#\n", + "print 'RE=%0.2f kohm'%(RE*10**-3)\n", + "RTH=(4375)-RE#\n", + "print 'RTH=%0.2f kohm'%(RTH*10**-3)\n", + "R2=0.1*B*RE#\n", + "print 'R2=%0.2f kohm'%(R2*10**-3)\n", + "R1=(-RTH*R2)/(RTH-R2)#\n", + "print 'R1=%0.2f kohm'%(R1*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.25 Pg 425" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ie=1.86 mA\n", + "IC=1.86 mA\n", + "VCE=8.84 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=10#\n", + "VEE=10#\n", + "RC=1*10**3#\n", + "RE=5*10**3#\n", + "RB=50*10**3#\n", + "VBE=0.7#\n", + "VE=-VBE#\n", + "IE=(VEE-VBE)/RE#\n", + "print 'Ie=%0.2f mA'%(IE*10**3)\n", + "IC=IE#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "VC=VCC-IC*RC#\n", + "VCE=VC-VE#\n", + "print 'VCE=%0.2f V'%VCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.26 Pg 426" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IE1=1.89 mA\n", + "VC1=10.54 V\n", + "VCE1=11.24 V\n", + "IE2=1.92 mA\n", + "VC2=10.40 V\n", + "VCE2=8.74 V\n", + "delIc=1.51 %\n", + "delVCE=28.60 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=20#\n", + "VEE=20#\n", + "RC=5*10**3#\n", + "RE=10*10**3#\n", + "RB=10*10**3#\n", + "B1=50#\n", + "B2=100#\n", + "VBE1=0.7#\n", + "VBE2=0.6#\n", + "IE1=(VEE-VBE1)/(RE+RB/B1)#\n", + "print 'IE1=%0.2f mA'%(IE1*10**3)\n", + "IC1=IE1#\n", + "VC1=VCC-IC1*RC#\n", + "print 'VC1=%0.2f V'%VC1\n", + "VE=-VBE1#\n", + "VCE1=VC1-VE#\n", + "print 'VCE1=%0.2f V'%VCE1\n", + "IE2=(VEE-VBE2)/(RE+RB/B2)#\n", + "print 'IE2=%0.2f mA'%(IE2*10**3)\n", + "IC2=IE2#\n", + "VC2=VCC-IC2*RC#\n", + "print 'VC2=%0.2f V'%VC2\n", + "VE=-VBE2#\n", + "VCE2=VC-VE#\n", + "print 'VCE2=%0.2f V'%VCE2\n", + "delIc=(IC2-IC1)/IC1#\n", + "print \"delIc=%0.2f %%\"%(delIc*100)\n", + "delVCE=(VCE1-VCE2)/VCE2#\n", + "print \"delVCE=%0.2f %%\"%(delVCE*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.27 Pg 427" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VB=-2.00 V\n", + "VE=-1.80 V\n", + "IC=1.80 mA\n", + "VC=-8.40 V\n", + "VCE=-6.60 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=12#\n", + "RC=2*10**3#\n", + "RE=1*10**3#\n", + "R1=100*10**3#\n", + "R2=20*10**3#\n", + "B=100#\n", + "VBE=-0.2#\n", + "VB=-VCC*R2/(R1+R2)#\n", + "print 'VB=%0.2f V'%VB\n", + "VE=VB-VBE#\n", + "print 'VE=%0.2f V'%VE\n", + "IE=-VE/RE#\n", + "IC=IE#\n", + "print \"IC=%0.2f mA\"%(IC*10**3)\n", + "VC=-(VCC-IC*RC)#\n", + "print 'VC=%0.2f V'%VC\n", + "VCE=VC-(VE)#\n", + "print 'VCE=%0.2f V'%VCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 18.28 Pg 428" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VB=-0.41 V\n", + "VE=-0.11 V\n", + "IC=0.40 mA\n", + "VRC=0.61 V\n", + "VC=-3.89 V\n", + "VCE=-3.78 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=4.5#\n", + "RC=1.5*10**3#\n", + "RE=0.27*10**3#\n", + "R2=2.7*10**3#\n", + "R1=27*10**3#\n", + "B=44#\n", + "VBE=-0.3#\n", + "VB=-VCC*R2/(R1+R2)#\n", + "print 'VB=%0.2f V'%VB\n", + "VE=VB-VBE#\n", + "print 'VE=%0.2f V'%VE\n", + "IE=-VE/RE#\n", + "IC=IE#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "VRC=IC*RC#\n", + "print 'VRC=%0.2f V'%VRC\n", + "VC=-(VCC-VRC)\n", + "print 'VC=%0.2f V'%VC\n", + "VCE=VC-(VE)#\n", + "print 'VCE=%0.2f V'%VCE" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap19_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap19_2.ipynb new file mode 100644 index 00000000..4d1188c0 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap19_2.ipynb @@ -0,0 +1,749 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 19 : SINGLE STAGE BJT AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.1 Pg 456" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=9.30 microA\n", + "Ic=0.93 mA\n", + "re=26.88 ohm\n", + "Ri=2.69 kohm\n", + "Ris=2.68 kohm\n", + "R0=10.00 kOhm\n", + "Av=372.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=10#\n", + "Rc=10*10**3#\n", + "Rb=1*10**6#\n", + "beta=100#\n", + "Vbe=0.7#\n", + "Ib=(Vcc-Vbe)/Rb#\n", + "print 'Ib=%0.2f microA'%(Ib*10**6)\n", + "Ic=beta*Ib#\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Ie=Ic#\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "Ri=beta*re#\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "Ris=(Rb*beta*re)/(Rb+beta*re)\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)\n", + "R0=Rc#\n", + "print 'R0=%0.2f kOhm'%(R0*10**-3)\n", + "Av=Rc/re#\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.2 Pg 458" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ib=2.00 microA\n", + "ic=100.00 microA\n", + "Ap=10000.00\n", + "Gp=40.00 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Ri=2.5*10**3#\n", + "Av=200#\n", + "Vs=5*10**-3#\n", + "beta=50#\n", + "ib=(Vs/Ri)\n", + "print 'ib=%0.2f microA'%(ib*10**6)\n", + "ic=beta*ib#\n", + "print 'ic=%0.2f microA'%(ic*10**6)\n", + "Ai=beta#\n", + "Ap=Ai*Av#\n", + "print \"Ap=%0.2f\"%Ap\n", + "Gp=10*log10(Ap)\n", + "print 'Gp=%0.2f dB'%Gp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.3 Pg 460" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=12.00 mA\n", + "re=2.08 ohm\n", + "Ri=150.31 kohm\n", + "rIS=60.05 kohm\n", + "Av=5.00\n", + "Gp=6.99 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Vcc=20#\n", + "Rc=5*10**3#\n", + "Re=1*10**3#\n", + "Rb=100*10**3#\n", + "beta=150#\n", + "Vbe=0.7\n", + "Ic=Vcc/(Re+(Rb/beta))\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Ie=Ic#\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "Ri=beta*(re+Re)\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "Ris=(Rb*Ri)/(Rb+Ri)\n", + "print 'rIS=%0.2f kohm'%(Ris*10**-3)\n", + "Av=Rc/Re#\n", + "print \"Av=%0.2f\"%Av\n", + "Gp=10*log10(Av)\n", + "print 'Gp=%0.2f dB'%Gp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.4 Pg 462" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=1.09 mA\n", + "re=22.92 ohm\n", + "Ri=1145.83 ohm\n", + "Ris=1143.21 ohm\n", + "Av=436.36\n", + "Av=10.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=12#\n", + "Rc=10*10**3#\n", + "Re=1*10**3#\n", + "Rb=500*10**3#\n", + "beta=50#\n", + "Ic=Vcc/(Re+(Rb/beta))\n", + "print 'Ic=%0.2f mA'%(Ic*10**3)\n", + "Ie=Ic#\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "Ri=beta*re#\n", + "print 'Ri=%0.2f ohm'%Ri\n", + "Ris=(Rb*Ri)/(Rb+Ri)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "R0=Rc#\n", + "Av=R0/re#\n", + "print \"Av=%0.2f\"%Av\n", + "Av=Rc/Re#\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.5 Pg 463" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vth=7.26 V\n", + "Rth=1.14e+04 ohm\n", + "IE=0.79 mA\n", + "re=31.48 ohm\n", + "rl=2.48 kohm\n", + "Av=78.83 \n", + "V0=394.14 mV\n", + "Ri=6.30 kohm\n", + "Ris=4.05 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=30#\n", + "Rc=10*10**3#\n", + "RL=3.3*10**3#\n", + "R1=47*10**3#\n", + "R2=15*10**3#\n", + "Re=8.2*10**3#\n", + "beta=200#\n", + "Vs=5*10**-3#\n", + "Vbe=0.7#\n", + "Vth=(Vcc*R2)/(R1+R2)\n", + "print 'Vth=%0.2f V'%Vth\n", + "Rth=(R1*R2)/(R1+R2)\n", + "print 'Rth=%0.2e ohm'%Rth\n", + "Ie=(Vth-Vbe)/(Re+(Rth/beta))\n", + "print 'IE=%0.2f mA'%(Ie*10**3)\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "rl=(Rc*RL)/(Rc+RL)\n", + "print 'rl=%0.2f kohm'%(rl*10**-3)\n", + "Av=rl/re#\n", + "print \"Av=%0.2f \"%Av\n", + "Vin=5#\n", + "V0=Av*Vin\n", + "print 'V0=%0.2f mV'%V0\n", + "Ri=beta*re#\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "Ris=(Rth*Ri)/(Rth+Ri)\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.6 Pg 465" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vth=1.67 V\n", + "Rth=8.33e+03 ohm\n", + "IE=0.83 mA\n", + "re=30.17 ohm\n", + "Ris=1277.37 ohm\n", + "rl=4.55 kohm\n", + "Av=150.65\n", + "Vin=6.80 mV\n", + "V0=1.03 mV\n", + "Avs=102.50\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=10#\n", + "Rc=5*10**3#\n", + "Re=1*10**3#0\n", + "RL=50*10**3#\n", + "R1=50*10**3#\n", + "R2=10*10**3#\n", + "Rs=600#\n", + "beta=50#\n", + "Vs=10*10**-3#\n", + "Vbe=0.7#\n", + "Vth=(Vcc*R2)/(R1+R2)\n", + "print 'Vth=%0.2f V'%Vth\n", + "Rth=(R1*R2)/(R1+R2)\n", + "print 'Rth=%0.2e ohm'%Rth\n", + "Ie=(Vth-Vbe)/(Re+(Rth/beta))\n", + "print 'IE=%0.2f mA'%(Ie*10**3)\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "Ri=beta*re#\n", + "Ris=(Rth*Ri)/(Rth+Ri)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "rl=(Rc*RL)/(Rc+RL)\n", + "print 'rl=%0.2f kohm'%(rl*10**-3)\n", + "Av=rl/re#\n", + "print \"Av=%0.2f\"%Av\n", + "Vin=(Vs*Ris)/(Ris+Rs)\n", + "print 'Vin=%0.2f mV'%(Vin*10**3)\n", + "V0=Av*Vin#\n", + "print 'V0=%0.2f mV'%V0\n", + "Avs=(Av*Vin)/Vs#\n", + "print \"Avs=%0.2f\"%Avs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.7 Pg 467" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vth=-3.13 V\n", + "Rth=6.78 kohm\n", + "IE=-2.35 mA\n", + "re1=12.78 ohm\n", + "Ris=3.19 kohm\n", + "re=1.77 kohm\n", + "Av=138.28\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=-18#\n", + "Rc=4.3*10**3#\n", + "Re=1*10**3#0\n", + "RL=3*10**3#\n", + "R1=39*10**3#\n", + "R2=8.2*10**3#\n", + "beta1=200#\n", + "Vbe=-0.7#\n", + "Vth=(Vcc*R2)/(R1+R2)\n", + "print 'Vth=%0.2f V'%Vth\n", + "Rth=(R1*R2)/(R1+R2)\n", + "print 'Rth=%0.2f kohm'%(Rth*10**-3)\n", + "Ie=(Vth-Vbe)/(Re+(Rth/beta1))\n", + "print 'IE=%0.2f mA'%(Ie*10**3)\n", + "re1=(30*10**-3)/(-Ie)\n", + "print 're1=%0.2f ohm'%re1\n", + "Ri=beta1*re#\n", + "Ris=(Rth*Ri)/(Rth+Ri)\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)\n", + "re=(Rc*RL)/(Rc+RL)\n", + "print 're=%0.2f kohm'%(re*10**-3)\n", + "Av=re/re1#\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.8 Pg 468" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vth=1.82 V\n", + "Rth=9.09 kohm\n", + "IE=1.02 mA\n", + "re=24.39 ohm\n", + "Ris=1923.08 ohm\n", + "Av=233.70\n", + "Vin=0.01 mV\n", + "V0=0.00 V\n", + "Avs=222.15\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=20#\n", + "Rc=5.7*10**3#\n", + "Re=1*10**3#\n", + "R1=100*10**3#\n", + "R2=10*10**3#\n", + "Rs=100#\n", + "beta1=100#\n", + "Vbe=0.7#\n", + "Vth=(Vcc*R2)/(R1+R2)\n", + "print 'Vth=%0.2f V'%Vth\n", + "Rth=(R1*R2)/(R1+R2)\n", + "print 'Rth=%0.2f kohm'%(Rth*10**-3)\n", + "Ie=(Vth-Vbe)/(Re+(Rth/beta1))\n", + "print 'IE=%0.2f mA'%(Ie*10**3)\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "Ri=beta1*re#\n", + "Ris=(Rth*Ri)/(Rth+Ri)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "rl=Rc#\n", + "Av=rl/re#\n", + "print \"Av=%0.2f\"%Av\n", + "Vin=(Vs*Ris)/(Ris+Rs)\n", + "print 'Vin=%0.2f mV'%Vin\n", + "V0=Av*Vin#\n", + "print 'V0=%0.2f V'%(V0*10**-3)\n", + "Avs=(Av*Vin)/Vs#\n", + "print \"Avs=%0.2f\"%Avs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.9 Pg 469" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vth=1.67 V\n", + "Rth=8.33e+00 ohm\n", + "RE=1000.00 ohm\n", + "Ie=0.83 mA\n", + "re=30.17 ohm\n", + "Ri=26.51 kohm\n", + "Ris=6340.21 ohm\n", + "rl=4.55 kohm\n", + "Av=8.57 \n", + "VinBYVs=0.91\n", + "Avs=7.83\n", + "V0=783.23 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=10#\n", + "Rc=5*10**3#\n", + "RE1=500#\n", + "R1=50*10**3#\n", + "R2=10*10**3#\n", + "Rs=600#\n", + "rE=500#\n", + "beta1=50#\n", + "Vbe=0.7#\n", + "vs=100*10**-3#\n", + "Rl=50*10**3#\n", + "Vth=(Vcc*R2)/(R1+R2)\n", + "print 'Vth=%0.2f V'%Vth\n", + "Rth=(R1*R2)/(R1+R2)\n", + "print 'Rth=%0.2e ohm'%(Rth*10**-3)\n", + "RE=RE1+rE#\n", + "print 'RE=%0.2f ohm'%RE\n", + "Ie=(Vth-Vbe)/(RE+(Rth/beta1))\n", + "print 'Ie=%0.2f mA'%(Ie*10**3)\n", + "re=25/(Ie*10**3)\n", + "print 're=%0.2f ohm'%re\n", + "Ri=beta1*(re+rE)\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "Ris=(Rth*Ri)/(Rth+Ri)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "rl=(Rc*Rl)/(Rc+Rl)\n", + "print 'rl=%0.2f kohm'%(rl*10**-3)\n", + "Av=rl/(re+rE)\n", + "print \"Av=%0.2f \"%Av\n", + "VinBYVs=(Ris)/(Ris+Rs)\n", + "print \"VinBYVs=%0.2f\"%VinBYVs\n", + "Avs=Av*VinBYVs#\n", + "print \"Avs=%0.2f\"%Avs\n", + "V0=Avs*vs#\n", + "print 'V0=%0.2f mV'%(V0*10**3) #answer printed in the book is wrong(variation in decimal point) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " ## Ex 19.10 Pg 470" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ris=53.62 ohm\n", + "Ai=0.98\n", + "Av=62.82\n", + "Ap=61.56\n", + "Gp=17.89 dB\n", + "Vo=628.21 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "\n", + "VS=10*10**-3#\n", + "a=0.98#\n", + "VBE=0.7#\n", + "VCC=10#\n", + "RC=10*10**3#\n", + "RL=5.1*10**3#\n", + "RE=20*10**3#\n", + "VEE=10#\n", + "IE=(VEE-VBE)/RE#\n", + "re=25/IE*10**-3#\n", + "Ri=re#\n", + "Ris=(RE*re)/(RE+re)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "Ai=a#\n", + "print \"Ai=%0.2f\"%Ai\n", + "rL=(RC*RL)/(RC+RL)\n", + "Av=rL/re#\n", + "print \"Av=%0.2f\"%Av\n", + "Ap=Av*Ai#\n", + "print \"Ap=%0.2f\"%Ap\n", + "Gp=10*log10(Ap)\n", + "print 'Gp=%0.2f dB'%Gp\n", + "Vin=VS#\n", + "Vo=Av*Vin#\n", + "print 'Vo=%0.2f mV'%(Vo*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.11 Pg 471" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Avs=32.56\n", + "Av=62.83\n", + "vin=5.18 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rs=50#\n", + "IE=0.465*10**-3#\n", + "re1=53.8#\n", + "Ri=53.8#\n", + "Ris=52.4#\n", + "rL=3.38*10**3#\n", + "Avs=rL/(Rs+re1)\n", + "print \"Avs=%0.2f\"%Avs\n", + "Av=rL/re1#\n", + "print \"Av=%0.2f\"%Av\n", + "Vs=10#\n", + "vo=Avs*Vs#\n", + "vin=vo/Av#\n", + "print 'vin=%0.2f mV'%vin" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.12 Pg 473" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri=501.61 kohm\n", + "Ro=32.26 ohm\n", + "Av=1.00 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VEE=10#\n", + "RE=10*10**3#\n", + "RB=100*10**3#\n", + "B=50#\n", + "VBE=0.7#\n", + "IE=(VEE-VBE)/(RE+(RB/B))\n", + "re=25/IE*10**-3#\n", + "Ri=B*(RE+re)\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "Ris=(RB*Ri)/(RB+Ri)\n", + "Rs=0#\n", + "Ro=re+((RB*Rs)/(RB+Rs))/B#\n", + "print 'Ro=%0.2f ohm'%Ro\n", + "Av=RE/(re+RE)\n", + "print \"Av=%0.2f \"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 19.13 Pg 475" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IE=0.82 mA\n", + "Ris=9.12 kohm\n", + "Ro=51.44 ohm\n", + "Vin=4.10 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "B=80#\n", + "VBE=0.7#\n", + "VCC=15#\n", + "R1=20*10**3#\n", + "R2=20*10**3#\n", + "RS=2*10**3#\n", + "VS=5*10**-3#\n", + "RE=8.2*10**3#\n", + "RL=1.5*10**3#\n", + "VTH=VCC*R2/(R1+R2)\n", + "RTH=(R1*R2)/(R1+R2)\n", + "IE=(VTH-VBE)/(RE+(RTH/B))\n", + "print 'IE=%0.2f mA'%(IE*10**3)\n", + "re=25/IE*10**-3#\n", + "rL=(RE*RL)/(RE+RL)\n", + "Ri=B*(rL+re)\n", + "Ris=(RTH*Ri)/(RTH+Ri)\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)\n", + "Ro=re+((RS*RTH)/(RS+RTH))/B#\n", + "print 'Ro=%0.2f ohm'%Ro\n", + "Vin=VS*Ris/(RS+Ris)\n", + "print 'Vin=%0.2f mV'%(Vin*10**3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap20_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap20_2.ipynb new file mode 100644 index 00000000..8176c9b7 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap20_2.ipynb @@ -0,0 +1,501 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 20 : HYBRID PARAMETERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.2 Pg 511" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ris=995.45 Ohm\n", + "Ro=10.26 kohm\n", + "Ros=911.16 ohm\n", + "Ais=-22.78\n", + "Avs=-22.78\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hie=1.0*10**3\n", + "hre=1*10**-4\n", + "hoe=100*10**-6\n", + "RC=1000\n", + "RS=1000\n", + "rL=RC\n", + "hfe=50\n", + "Ai=-hfe/(1+hoe*rL)\n", + "Ri=hie+hre*Ai*rL\n", + "Ris=Ri\n", + "print 'Ris=%0.2f Ohm'%Ris\n", + "delh=hie*hoe-hre*hfe\n", + "his=1000\n", + "Ro=(RS+his)/(RS*hoe+delh)\n", + "print 'Ro=%0.2f kohm'%(Ro*10**-3)\n", + "Ros=(Ro*rL)/(Ro+rL)\n", + "print 'Ros=%0.2f ohm'%Ros\n", + "Ais=(Ai*RS)/(RS+Ris)\n", + "print \"Ais=%0.2f\"%Ais\n", + "Av=(Ai*rL)/Ri\n", + "Avs=(Av*Ris)/(RS+Ris)\n", + "print \"Avs=%0.2f\"%Avs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.3 Pg 512" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ai=48.78 \n", + "Ri=1112.20 Ohm\n", + "Av=43.86 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hie=1.1*10**3\n", + "hre=2.5*10**-4\n", + "hfe=50\n", + "hoe=25*10**-6\n", + "rs=1*10**3\n", + "rL=1*10**3\n", + "Ai=hfe/(1+hoe*rL)\n", + "print \"Ai=%0.2f \"%Ai\n", + "Ri=hie+hre*Ai*rL\n", + "print 'Ri=%0.2f Ohm'%Ri\n", + "Av=(Ai*rL)/Ri\n", + "print \"Av=%0.2f \"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.4 Pg 513" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ris=197.38 ohm\n", + "Ros=3636.36 ohm\n", + "Avs=-3.20 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RC=4*10**3\n", + "RB=40*10**3\n", + "RS=10*10**3\n", + "hie=1100\n", + "hfe=50\n", + "hre=0\n", + "hoe=0\n", + "RB2=40*10**3\n", + "rL=(RC*RB2)/(RC+RB2)\n", + "Ai=-hfe/(1+hoe*rL)\n", + "Ri=hie+hre*Ai*rL\n", + "Av=(Ai*rL)/Ri\n", + "RB1=40*10**3/(1-Av)\n", + "Ris=(Ri*RB1)/(Ri+RB1)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "Ros=rL##Ro=infinity\n", + "print 'Ros=%0.2f ohm'%Ros\n", + "Avs=(Av*Ris)/(RS+Ris)\n", + "print \"Avs=%0.2f \"%Avs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.5 Pg 514" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ai=0.98\n", + "Ri=28.59 ohm\n", + "Ro=56.05 kohm\n", + "Av=41.12\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hib=28\n", + "hfb=-0.98\n", + "hrb=5*10**-4\n", + "hob=0.34*10**-6\n", + "rL=1.2*10**3\n", + "Rs=0\n", + "Ai=-hfb/(1+hob*rL)\n", + "print \"Ai=%0.2f\"%Ai\n", + "Ri=hib+hrb*Ai*rL\n", + "print 'Ri=%0.2f ohm'%Ri\n", + "delh=hib*hob-hrb*hfb\n", + "Ro=(Rs+hib)/(Rs*hib+delh)\n", + "print 'Ro=%0.2f kohm'%(Ro*10**-3)\n", + "Av=(Ai*rL)/Ri\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.6 Pg 515" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ai=45.33\n", + "Ri=228.67 kohm\n", + "Ris=4893.01 ohm\n", + "Ros=58.14 ohm\n", + "Aid=7.69\n", + "Av=0.99\n", + "Avs=0.82\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hic=2*10**3\n", + "hfc=-51\n", + "hrc=1\n", + "hoc=25*10**-6\n", + "rL=5*10**3\n", + "RE=5*10**3\n", + "Rs=1000\n", + "R1=10*10**3\n", + "R2=10*10**3\n", + "Ai=-hfc/(1+hoc*rL)\n", + "print \"Ai=%0.2f\"%Ai\n", + "Ri=hic+hrc*Ai*rL\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "a=(R1*R2)/(R1+R2)\n", + "Ris=(Ri*a)/(Ri+a)\n", + "print 'Ris=%0.2f ohm'%Ris\n", + "Ro=-(Rs+hic)/hfc\n", + "Ros=(Ro*RE)/(Ro+RE)\n", + "print 'Ros=%0.2f ohm'%Ros\n", + "Ais=(Ai*Rs)/(Rs+Ris)\n", + "print \"Aid=%0.2f\"%Ais\n", + "Av=(Ai*rL)/Ri\n", + "print \"Av=%0.2f\"%Av\n", + "Avs=(Av*Ris)/(Rs+Ris)\n", + "print \"Avs=%0.2f\"%Avs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.7 Pg 516" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ris=1.22 kohm\n", + "Ros=3.12 kohm\n", + "Avs=-111.11\n", + "Ais=-50.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hie=1500\n", + "hfe=50\n", + "hre=50*10**-4\n", + "hoe=20*10**-6\n", + "RC=5*10**3\n", + "RL=10*10**3\n", + "R1=20*10**3\n", + "R2=10*10**3\n", + "rL=(RC*RL)/(RC+RL)\n", + "Ai=-hfe\n", + "Ri=hie\n", + "a=(R1*R2)/(R1+R2)\n", + "Ris=(Ri*a)/(Ri+a)\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)\n", + "Ro=1/hoe\n", + "Ros=(Ro*rL)/(Ro+rL)##correction \n", + "print 'Ros=%0.2f kohm'%(Ros*10**-3)\n", + "Avs=(Ai*rL)/Ri\n", + "print \"Avs=%0.2f\"%Avs\n", + "Ais=Ai##correction\n", + "print \"Ais=%0.2f\"%Ais" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.8 Pg 517" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hie=2.24 kohm\n", + "hfe=156.52 ohm\n", + "Ris=1.45 kohm\n", + "Avs=236.41\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "RC=12*10**3#\n", + "RL=4.7*10**3#\n", + "R1=33*10**3#\n", + "R2=4.7*10**3#\n", + "IC=1*10**-3#\n", + "hiemin=1*10**3#\n", + "hiemax=5*10**3#\n", + "hfemin=70#\n", + "hfemax=350#\n", + "hie=sqrt(hiemin*hiemax)#\n", + "print 'hie=%0.2f kohm'%(hie*10**-3)\n", + "hfe=sqrt(hfemin*hfemax)#\n", + "print 'hfe=%0.2f ohm'%hfe ##answer printed in the book is wrong\n", + "Ri=hie#\n", + "a=(R1*R2)/(R1+R2)#\n", + "Ris=(Ri*a)/(Ri+a)#\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)\n", + "Ai=hfe#\n", + "rc=(RC*RL)/(RC+RL)#\n", + "Avs=(Ai*rc)/Ri#\n", + "print \"Avs=%0.2f\"%Avs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.9 Pg 518" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ris=1.17 kohm\n", + "Ros=2.56 kohm\n", + "Ai=120.00\n", + "Av=275.74\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RB=330*10**3\n", + "RC=2.7*10**3\n", + "hfe=120\n", + "hie=1.175*10**3\n", + "hoe=20*10**-6\n", + "Ri=hie\n", + "Ris=(hie*RB)/(hie+RB)\n", + "print 'Ris=%0.2f kohm'%(Ris*10**-3)\n", + "Ro=1/hoe\n", + "Ros=(Ro*RC)/(Ro+RC)\n", + "print 'Ros=%0.2f kohm'%(Ros*10**-3)\n", + "Ai=hfe\n", + "print \"Ai=%0.2f\"%Ai\n", + "Av=(hfe*RC)/Ri\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.10 Pg 519" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hfb=-0.98\n", + "hfc=-51.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hfe=50\n", + "hfb=-hfe/(1+hfe)\n", + "print \"hfb=%0.2f\"%hfb\n", + "hfc=-(1+hfe)\n", + "print \"hfc=%0.2f\"%hfc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 20.11 Pg 520" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ai=-41.13\n", + "Ri=412.29 kohm\n", + "Av=1.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hie=1100\n", + "hre=2.5*10**-4\n", + "hfe=50\n", + "hoe=24*10**-6\n", + "rL=10*10**3\n", + "RS=1*10**3\n", + "hic=hie\n", + "hrc=1-hre\n", + "hfc=-(1+hfe)\n", + "Ai=hfc/(1+hoe*rL)\n", + "print \"Ai=%0.2f\"%Ai\n", + "Ri=hie+hrc*-Ai*rL\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "Av=(-Ai*rL)/Ri\n", + "print \"Av=%0.2f\"%Av" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap21_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap21_2.ipynb new file mode 100644 index 00000000..56603bf0 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap21_2.ipynb @@ -0,0 +1,495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 21 : MULTISTAGE BJT AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.1 Pg 565" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=8000.00\n", + "GV=78.06 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Av1=10#\n", + "Av2=20#\n", + "Av3=40#\n", + "Av=Av1*Av2*Av3#\n", + "print \"Av=%0.2f\"%Av\n", + "GV1=20*log10(Av1)#\n", + "GV2=20*log10(Av2)#\n", + "GV3=20*log10(Av3)#\n", + "GV=GV1+GV2+GV3##CORRECTION\n", + "print 'GV=%0.2f dB'%GV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.2 Pg 565" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=3000.00\n", + "Av3=10.00\n", + "Av2=15.00\n", + "vin2=1.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "vin1=0.05#\n", + "vout3=150#\n", + "Av1=20#\n", + "vin3=15#\n", + "Av=vout3/vin1#\n", + "print \"Av=%0.2f\"%Av\n", + "Av3=vout3/vin3#\n", + "print \"Av3=%0.2f\"%Av3\n", + "Av2=Av/(Av3*Av1)#\n", + "print \"Av2=%0.2f\"%Av2\n", + "vin2=Av2/vin3#\n", + "print 'vin2=%0.2f V'%vin2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.3 Pg 566" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri1=2750.00 ohm\n", + "Ri2=2750.00 ohm\n", + "Ro1=1774.19 ohm\n", + "Ro2=3333.33 ohm\n", + "Av1=64.52\n", + "Av2=121.21\n", + "Av=7820.14\n", + "Gv=77.86 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "VCC=10#\n", + "Rc=5*10**3#\n", + "RB=1*10**6#\n", + "RE=1*10**3#\n", + "RL=10*10**3#\n", + "B1=100#\n", + "B2=100#\n", + "B=B1#\n", + "IE=VCC/(RE+(RB/B1))#\n", + "re=25/(IE*10**3)#\n", + "Ri1=B*re#\n", + "print 'Ri1=%0.2f ohm'%Ri1\n", + "Ri2=B*re#\n", + "print 'Ri2=%0.2f ohm'%Ri2\n", + "Ro1=(Rc*Ri2)/(Rc+Ri2)#\n", + "print 'Ro1=%0.2f ohm'%Ro1\n", + "Ro2=(Rc*RL)/(Rc+RL)#\n", + "print 'Ro2=%0.2f ohm'%Ro2\n", + "Av1=Ro1/re#\n", + "print \"Av1=%0.2f\"%Av1\n", + "Av2=Ro2/re#\n", + "print \"Av2=%0.2f\"%Av2\n", + "Av=Av1*Av2#\n", + "print \"Av=%0.2f\"%Av\n", + "Gv=20*log10(Av)#\n", + "print 'Gv=%0.2f dB'%Gv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.4 Pg 567" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri1=1165.73 ohm\n", + "Ro1=861.43 ohm\n", + "Ro2=2481.20 ohm\n", + "Av1=73.90\n", + "Av2=212.85\n", + "Av=15728.47\n", + "Gv=83.93 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "VCC=15#\n", + "Rc=3.3*10**3#\n", + "RE=1000#\n", + "R1=33*10**3#\n", + "R2=8.2*10**3#\n", + "RL=10*10**3#\n", + "B=100#\n", + "VBE=0.7#\n", + "VTH=VCC*(R2/(R1+R2))#\n", + "RTH=(R1*R2)/(R1+R2)#\n", + "IE=(VTH-VBE)/(RE+(RTH/B))#\n", + "re=25/(IE*10**3)#\n", + "Ri2=B*re#\n", + "print 'Ri1=%0.2f ohm'%Ri2 #the answer of Ri2 varies from the answer printed in the book with slight difference(11.7 in book & 11.65 here),but this affects some answers further.\n", + "Ro1=(Rc*Ri2)/(Rc+Ri2)#\n", + "print 'Ro1=%0.2f ohm'%Ro1 \n", + "Ro2=(Rc*RL)/(Rc+RL)#\n", + "print 'Ro2=%0.2f ohm'%Ro2 \n", + "Av1=Ro1/re#\n", + "print \"Av1=%0.2f\"%Av1\n", + "Av2=Ro2/re#\n", + "print \"Av2=%0.2f\"%Av2\n", + "Av=Av1*Av2#\n", + "print \"Av=%0.2f\"%Av\n", + "Gv=20*log10(Av)#\n", + "print 'Gv=%0.2f dB'%Gv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.5 Pg 568" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2=500.03 kHZ\n", + "Av=84.85\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "bw=500*10**3#\n", + "Avmax=120#\n", + "f1=25#\n", + "f2=bw+f1#\n", + "print 'f2=%0.2f kHZ'%(f2*10**-3)\n", + "Av=Avmax/(sqrt(2))\n", + "print \"Av=%0.2f\"%Av #ans printed in the book is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.6 Pg 569" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri1=1296.41 ohm\n", + "Ri2=1296.41 ohm\n", + "Av1=797.79\n", + "Av2=615.38\n", + "Av=490949.75\n", + "Gv=113.82 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "VCC=10#\n", + "RB=470*10**3#\n", + "RE=1*10**3#\n", + "RL=1*10**3#\n", + "a=4#\n", + "B=50#\n", + "IE=VCC/(RE+(RB/B))#\n", + "re=25/(IE*10**3)#\n", + "Ri1=(RB*(B*re))/(RB+(B*re))#\n", + "print 'Ri1=%0.2f ohm'%Ri1\n", + "Ri2=(RB*(B*re))/(RB+(B*re))#\n", + "print 'Ri2=%0.2f ohm'%Ri2\n", + "RI2=(a**2)*Ri2#\n", + "RO1=RI2#\n", + "RI2=(a**2)*RL#\n", + "Av1=RO1/re#\n", + "print \"Av1=%0.2f\"%Av1\n", + "RO2=RI2#\n", + "Av2=RO2/re#\n", + "print \"Av2=%0.2f\"%Av2\n", + "Av=Av1*Av2#\n", + "print \"Av=%0.2f\"%Av\n", + "Gv=20*log10(Av)#\n", + "print 'Gv=%0.2f dB'%Gv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.7 Pg 570" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av1=4.71\n", + "Av2=4.94\n", + "Av=23.24\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=12#\n", + "R1=100*10**3#\n", + "R2=20*10**3#\n", + "R3=10*10**3#\n", + "R4=2*10**3#\n", + "R5=10*10**3#\n", + "R6=2*10**3#\n", + "B=100#\n", + "B2=100#\n", + "VTH=VCC*(R2/(R1+R2))#\n", + "IE1=VTH/R4#\n", + "re1=25/IE1*10**-3#\n", + "VR6=VCC-IE1*R3#\n", + "IE2=VR6/R6#\n", + "re2=25/IE2*10**-3#\n", + "Ri2=B2*(re2+R6)#\n", + "R01=(R3*Ri2)/(R3+Ri2)#\n", + "RO2=R5#\n", + "Av1=R01/(re1+R4)#\n", + "print \"Av1=%0.2f\"%Av1\n", + "Av2=RO2/(re2+R6)#\n", + "print \"Av2=%0.2f\"%Av2\n", + "Av=Av1*Av2#\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.8 Pg 571" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IC1=07 mA\n", + "VCE1=4.80 V\n", + "VCE2=-6.48 V\n", + "Av1=2.93 \n", + "Av2=1.00 \n", + "Av=2.93 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=10#\n", + "R1=800#\n", + "R2=200#\n", + "R3=600#\n", + "R4=200#\n", + "R5=100#\n", + "R6=1*10**3#\n", + "B=100#\n", + "B2=B#\n", + "VBE=0.7#\n", + "RE=200#\n", + "VR2=VCC*(R2/(R1+R2))#\n", + "IE1=(VR2-VBE)/RE#\n", + "IC1=IE1#\n", + "print 'IC1=%02.f mA'%(IC1*10**3)\n", + "VC1=VCC-IC1*R3#\n", + "VE1=IE1*R4#\n", + "VCE1=VC1-VE1#\n", + "print 'VCE1=%0.2f V'%VCE1\n", + "VE2=VC1-(-VBE)#\n", + "IE2=(VCC-VE2)/R6#\n", + "IC2=IE2#\n", + "VC2=IC2*R5#\n", + "VCE2=VC2-VE2#\n", + "print 'VCE2=%0.2f V'%VCE2\n", + "re1=25/IE1*10**-3#\n", + "re2=25/IE2*10**-3#\n", + "Ri2=B2*(re2+R6)#\n", + "R01=(R3*Ri2)/(R3+Ri2)#\n", + "Av1=R01/(re1+R4)#\n", + "print \"Av1=%0.2f \"%Av1\n", + "Av2=1#\n", + "print \"Av2=%0.2f \"%Av2\n", + "Av=Av1*Av2#\n", + "print \"Av=%0.2f \"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 21.9 Pg 572" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ai=15000.00\n", + "re2=14.42 ohm\n", + "re1=1442.31 ohm\n", + "Ri1=12.00 kohm\n", + "Av=0.98 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=10#\n", + "R1=30*10**3#\n", + "R2=20*10**3#\n", + "RE=1.5*10**3#\n", + "B1=150#\n", + "B2=100#\n", + "VBE=0.7#\n", + "Ai=B1*B2#\n", + "print \"Ai=%0.2f\"%Ai\n", + "VR2=VCC*(R2/(R1+R2))#\n", + "VB2=VR2-VBE#\n", + "VE2=VB2-VBE#\n", + "IE2=VE2/RE#\n", + "re2=25/(IE2*10**3)#\n", + "print 're2=%0.2f ohm'%re2\n", + "Ib2=IE2/B2#\n", + "IE1=Ib2#\n", + "re1=25/(IE1*10**3)#\n", + "print 're1=%0.2f ohm'%re1\n", + "Ri1=(R1*R2)/(R1+R2)#\n", + "print 'Ri1=%0.2f kohm'%(Ri1*10**-3)\n", + "Av=RE/((re1/B2)+(re2+RE))#\n", + "print \"Av=%0.2f \"%Av" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap22_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap22_2.ipynb new file mode 100644 index 00000000..d28c4e5e --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap22_2.ipynb @@ -0,0 +1,763 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 22 : FET AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.1 Pg 601" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VS=2.50 V\n", + "VD=5.00 V\n", + "VDS=2.50 V\n", + "VGS=-2.50 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "ID=5*10**-3#\n", + "VDD=10#\n", + "RD=1*10**3#\n", + "RS=500#\n", + "VS=ID*RS#\n", + "print 'VS=%0.2f V'%VS\n", + "VD=VDD-ID*RD#\n", + "print 'VD=%0.2f V'%VD\n", + "VDS=VD-VS#\n", + "print 'VDS=%0.2f V'%VDS\n", + "VGS=-VS#\n", + "print 'VGS=%0.2f V'%VGS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.2 Pg 602" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ID=0.18 mA\n", + "VGS=-0.98 V\n", + "R1=1.50 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "RD=56*10**3#\n", + "RG=1*10**6#\n", + "IDSS=1.5*10**-3#\n", + "VP=-1.5#\n", + "VD=10#\n", + "VDD=20#\n", + "ID=VD/RD#\n", + "print 'ID=%0.2f mA'%(ID*10**3)\n", + "#ID=IDSS*(1-(VGS/VP))**2\n", + "VGS=VP*(1-sqrt(ID/IDSS))#\n", + "print 'VGS=%0.2f V'%VGS\n", + "VS=VGS#\n", + "R1=(-VS/ID)-4*10**3#\n", + "print 'R1=%0.2f kohm'%(R1*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.3 Pg 603" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RS=933.33 ohm\n", + "RD=5.73 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "ID=1.5*10**-3#\n", + "VDS=10#\n", + "IDSS=5*10**-3#\n", + "VP=-2#\n", + "VDD=20#\n", + "#ID=IDSS*(1-(VGS/VP))**2\n", + "VGS=VP*(1-(ID/IDSS))#\n", + "VS=-VGS#\n", + "RS=(VS/ID)#\n", + "print 'RS=%0.2f ohm'%RS\n", + "RD=((VDD-VDS)/ID)-RS#\n", + "print 'RD=%0.2f kohm'%(RD*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.5 Pg 604" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RS=528.31 ohm\n", + "RD=1.50 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "VP=5#\n", + "IDSS=12*10**-3#\n", + "VDD=12#\n", + "ID=4*10**-3#\n", + "VDS=6#\n", + "VGS=VP*(1-sqrt(ID/IDSS))#\n", + "VS=VGS#\n", + "RS=VS/ID#\n", + "print 'RS=%0.2f ohm'%RS\n", + "RD=VDS/ID#\n", + "print 'RD=%0.2f kohm'%(RD*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.6 Pg 605" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IDQ=5.00 mA\n", + "VDS=10.00 V\n", + "RD=2.00 kohm\n", + "RS=440.00 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "IDSS=10*10**-3#\n", + "VDD=20#\n", + "IDQ=IDSS/2#\n", + "print 'IDQ=%0.2f mA'%(IDQ*10**3)\n", + "VDSQ=VDD/2#\n", + "print 'VDS=%0.2f V'%VDSQ\n", + "VGS=-2.2#\n", + "RD=(VDD-VDSQ)/IDQ#\n", + "print 'RD=%0.2f kohm'%(RD*10**-3)\n", + "RS=-VGS/IDQ#\n", + "print 'RS=%0.2f ohm'%(RS)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.7 Pg 606" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VGS=-3.78 V\n", + "VDS=4.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VDD=20#\n", + "RD=2.5*10**3#\n", + "RS=1.5*10**3#\n", + "R1=2*10**6#\n", + "R2=250*10**3#\n", + "ID=4*10**-3#\n", + "VG=(R2*VDD)/(R1+R2)#\n", + "VS=ID*RS#\n", + "VGS=VG-VS#\n", + "print 'VGS=%0.2f V'%VGS\n", + "VD=VDD-ID*RD#\n", + "VDS=VD-VS#\n", + "print 'VDS=%0.2f V'%VDS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.8 Pg 607" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=-6.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=4*10**-3#\n", + "RD=1.5*10**3#\n", + "AV=-gm*RD#\n", + "print \"Av=%0.2f\"%AV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.9 Pg 608" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rL=9.80e+03 ohm\n", + "Av=-24.51\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=2.5*10**-3#\n", + "rd=500*10**3#\n", + "RD=10*10**3#\n", + "rL=(RD*rd)/(rd+RD)#\n", + "print 'rL=%0.2e ohm'%rL\n", + "AV=-gm*rL#\n", + "print \"Av=%0.2f\"%AV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.10 Pg 608" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=-26.67\n", + "Ri=100.00 Mohm\n", + "Ro=13.33 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=2*10**-3#\n", + "rd=40*10**3#\n", + "RD=20*10**3#\n", + "RG=100*10**6#\n", + "rL=(RD*rd)/(RD+rd)#\n", + "Av=-gm*rL#\n", + "print \"Av=%0.2f\"%Av\n", + "Ri=RG#\n", + "print 'Ri=%0.2f Mohm'%(Ri*10**-6)\n", + "Ro=rL#\n", + "print 'Ro=%0.2f kohm'%(Ro*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.11 Pg 609" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=-16.67\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 22.11\n", + "gm=2*10**-3#\n", + "rd=10*10**3#\n", + "RD=50*10**3#\n", + "rl=(rd*RD)/(rd+RD)#\n", + "Av=-gm*rl#\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.12 Pg 610" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=-48.89\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RD=100*10**3#\n", + "gm=1.6*10**-3#\n", + "rd=44*10**3#\n", + "Cgs=3*10**-12#\n", + "Cds=1*10**-12#\n", + "Cgd=2.8*10**-12#\n", + "rl=(RD*rd)/(RD+rd)#\n", + "Av=-gm*rl#\n", + "print \"Av=%0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.13 Pg 610" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VO=0.84 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=4500*10**-6#\n", + "RD=3*10**3#\n", + "RL=5*10**3#\n", + "vin=100*10**-3#\n", + "ID=2*10**-3#\n", + "rl=(RD*RL)/(RD+RL)#\n", + "VO=gm*rl*vin#\n", + "print 'VO=%0.2f V'%VO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.14 Pg 611" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=-2.00\n", + "Av=-1.97\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 22.14#\n", + "gm=4*10**-3#\n", + "RD=1.5*10**3#\n", + "RG=10*10**6#\n", + "rs=500#\n", + "rl=RD#\n", + "AV=-(gm*rl)/(1+gm*rs)#\n", + "print \"Av=%0.2f\"%AV\n", + "RL=100*10**3#\n", + "rL=(RD*RL)/(RD+RL)#\n", + "AV=-(gm*rL)/(1+gm*rs)#\n", + "print \"Av=%0.2f\"%AV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.15 Pg 612" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=-1.35\n", + "Av=-4.16\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RD=1.5*10**3#\n", + "RS=750#\n", + "RG=1*10**6#\n", + "IDSS=10*10**-3#\n", + "VP=-3.5#\n", + "IDQ=2.3*10**-3#\n", + "VGSQ=-1.8#\n", + "gmo=-2*IDSS/VP#\n", + "gm=gmo*(1-(VGSQ/VP))#\n", + "rL=RD#\n", + "AV=-(gm*rL)/(1+gm*RS)#\n", + "print \"Av=%0.2f\"%AV\n", + "AV=-gm*rL#\n", + "print \"Av=%0.2f\"%AV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.16 Pg 614" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV=0.99\n", + "Ro=125.00 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=8000*10**-6#\n", + "RS=10*10**3#\n", + "RG=100*10**6#\n", + "(1/gm)#\n", + "AV=RS/(RS+(1/gm))#\n", + "print \"AV=%0.2f\"%AV\n", + "Ri=RG#\n", + "Ro=1/gm#\n", + "print 'Ro=%0.2f ohm'%Ro" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.17 Pg 616" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV=0.96 \n", + "Ri=0.50 Mohm\n", + "Ro=175.44 ohm\n", + "Vo=1.77 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "vin=2*10**-3#\n", + "gm=5500*10**-6#\n", + "R1=1*10**6#\n", + "R2=1*10**6#\n", + "RS=5000#\n", + "RL=2000#\n", + "(1/gm)#\n", + "AV=RS/(RS+(1/gm))#\n", + "print \"AV=%0.2f \"%AV\n", + "Ri=(R1*R2)/(R1+R2)#\n", + "print 'Ri=%0.2f Mohm'%(Ri*10**-6)\n", + "Ro=(RS/gm)/(RS+1/gm)#\n", + "print 'Ro=%0.2f ohm'%Ro\n", + "Vo=(RL/(RL+Ro))*(AV*vin)#\n", + "print 'Vo=%0.2f mV'%(Vo*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.18 Pg 618" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV=25.00 \n", + "Ri1=333.33 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=2500*10**-6#\n", + "Ri=2000#\n", + "RD=10000#\n", + "AV=gm*RD#\n", + "print \"AV=%0.2f \"%AV\n", + "Ri1=(Ri/gm)/(Ri+1/gm)#\n", + "print 'Ri1=%0.2f ohm'%Ri1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.19 Pg 618" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ro=333.33 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "gm=2*10**-3#\n", + "rd=50*10**3#\n", + "Rs=1*10**3#\n", + "Ro=(Rs/gm)/(Rs+1/gm)#\n", + "print 'Ro=%0.2f ohm'%Ro" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 22.20 Pg 619" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri1=100.00 ohm\n", + "Vs=1.00 V\n", + "Av=3.75 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 22.20\n", + "gmo=5*10**-3#\n", + "RD=1*10**3#\n", + "Rs=200#\n", + "ID=5*10**-3#\n", + "Ri1=(Rs/gmo)/(Rs+1/gmo)#\n", + "print 'Ri1=%0.2f ohm'%Ri1\n", + "Vs=ID*Rs#\n", + "print 'Vs=%0.2f V'%Vs\n", + "VGS=Vs#\n", + "IDSS=2*ID#\n", + "VGSo=(-2*IDSS)/ID#\n", + "gm=gmo*(1-VGS/-VGSo)#\n", + "Av=gm*RD#\n", + "print \"Av=%0.2f \"%Av" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap23_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap23_2.ipynb new file mode 100644 index 00000000..34612b3b --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap23_2.ipynb @@ -0,0 +1,628 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter -23 : AMPLIFIERS WITH COMPOUND CONFIGURATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.1 Pg 644" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=26.12\n", + "vo=522.35 mV\n", + "Zi=RG=10.00 Mohm\n", + "Z0=RD=2.20 kohm\n", + "VL=428.15 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "ID=4*10**-3#\n", + "IDSS=2*ID#\n", + "RS=390#\n", + "VGSQ=-ID*RS#\n", + "VP=-4.5#\n", + "RD=2.2*10**3#\n", + "gm0=(2*IDSS)/(-VP)#\n", + "gm=gm0*(1-(VGSQ/VP))#\n", + "Av1=-gm*RD#\n", + "Av2=-gm*RD#\n", + "Av=Av1*Av2#\n", + "print \"Av=%0.2f\"%Av\n", + "vi=20*10**-3#\n", + "vo=Av*vi#\n", + "print 'vo=%0.2f mV'%(vo*10**3)\n", + "Zi=10*10**6#\n", + "RG=10*10**6#\n", + "print \"Zi=RG=%0.2f Mohm\"%(Zi*10**-6)\n", + "Z0=2.2*10**3#\n", + "RD=2.2*10**3#\n", + "print \"Z0=RD=%0.2f\"%(Z0*10**-3),'kohm'\n", + "RL=10*10**3#\n", + "VL=(RL/(Z0+RL))*vo#\n", + "print 'VL=%0.2f V'%(VL*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.3 Pg 645" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VB1=10.33 V\n", + "VB2=3.99 V\n", + "AV=189.73\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=18#\n", + "R1=7.5*10**3#\n", + "R2=6.2*10**3#\n", + "R3=3.9*10**3#\n", + "RC=1.5*10**3#\n", + "B1=200#\n", + "B2=200#\n", + "RE=1*10**3#\n", + "CE=100*10**-6#\n", + "VB1=VCC*(R2+R3)/(R1+R2+R3)#\n", + "print 'VB1=%0.2f V'%VB1\n", + "VB2=VCC*(R3)/(R1+R2+R3)#\n", + "print 'VB2=%0.2f V'%VB2\n", + "IE2=(VB2-0.7)/RE#\n", + "IC2=IE2#\n", + "IE1=IC2#\n", + "IE=IE1#\n", + "re1=26*10**-3/IE#\n", + "AV1=-re1/re1#\n", + "AV2=-RC/re1#\n", + "AV=AV1*AV2#\n", + "print \"AV=%0.2f\"%AV ##ans given in book has -ve sign which is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.4 Pg 646" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BD=25600.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "B1=160#\n", + "B2=160#\n", + "BD=B1*B2#\n", + "print \"BD=%0.2f\"%(BD)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.5 Pg 647" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "B=77.46\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "BD=6000#\n", + "B1=BD#\n", + "B2=B1#\n", + "B=sqrt(BD)#\n", + "print \"B=%0.2f\"%(B)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.6 Pg 647" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IB=2.45 microA\n", + "IE=14.73 mA\n", + "VE2=7.51 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vcc=15#\n", + "RB=2.4*10**6#\n", + "BD=6000#\n", + "RE=510#\n", + "Vi=120*10**-3#\n", + "VBE=1.6#\n", + "IB=(Vcc-VBE)/(RB+BD*RE)#\n", + "print 'IB=%0.2f microA'%(IB*10**6)\n", + "IE=BD*IB#\n", + "print 'IE=%0.2f mA'%(IE*10**3)\n", + "IE2=IE\n", + "VE2=IE2*RE#\n", + "print 'VE2=%0.2f V'%VE2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.7 Pg 648" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri=10.00 Mohm\n", + "Ro=0.10 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hfe=100#\n", + "B=100#\n", + "BD=100**2#\n", + "RE=1*10**3#\n", + "hie=1*10**3#\n", + "ri=10**3#\n", + "Ri=ri+BD*RE#\n", + "print 'Ri=%0.2f Mohm'%(Ri*10**-6)\n", + "Ro=ri/BD#\n", + "print 'Ro=%0.2f ohm'%Ro" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.8 Pg 649" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vidc=4.83 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=16#\n", + "B1=160#\n", + "B2=200#\n", + "RB=1.5*10**6#\n", + "Vi=120*10**-3#\n", + "VEB1=0.7#\n", + "RC=100#\n", + "IB1=(VCC-VEB1)/(RB+B1*B2*RC)#\n", + "IB2=B1*IB1#\n", + "IC2=B2*IB2#\n", + "IE1=IB2#\n", + "IC=IE1+IC2#\n", + "Vodc=VCC-IC*RC#\n", + "VBE=0.7#\n", + "Vidc=Vodc-VBE#\n", + "print 'Vidc=%0.2f V'%Vidc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.9 Pg 650" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ID=6.00 mA\n", + "Vo=6.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VDD=18#\n", + "RD=2*10**3#\n", + "IDSS=6*10**-3#\n", + "VP=-3#\n", + "ID=IDSS#\n", + "print 'ID=%0.2f mA'%(ID*10**3)\n", + "Vo=VDD-ID*RD#\n", + "print 'Vo=%0.2f V'%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.10 Pg 650" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IE=4.61 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VEE=-18#\n", + "R1=4.3*10**3#\n", + "R2=4.3*10**3#\n", + "RE=1.8*10**3#\n", + "B=100#\n", + "VB=-(-VEE*R2)/(R1+R2)#\n", + "VE=VB-0.7\n", + "IE=(VE-(VEE))/RE#\n", + "print 'IE=%0.2f mA'%(IE*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.11 Pg 651" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I=3.67 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VZ=5.1#\n", + "VBE=0.7#\n", + "RE=1.2*10**3#\n", + "B=200#\n", + "I=(VZ-VBE)/RE#\n", + "print 'I=%0.2f mA'%(I*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.12 Pg 652" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I=8.65 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=18#\n", + "Rx=2*10**3#\n", + "VBE=0.7#\n", + "Ix=(VCC-VBE)/Rx#\n", + "I=Ix#\n", + "print 'I=%0.2f mA'%(I*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.13 Pg 653" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I=2.30 mA\n", + "I=4.60 mA\n", + "I=1.15 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VC=5#\n", + "Re=2*10**3#\n", + "VCC=6#\n", + "R=2.2*10**3#\n", + "VBE=0.7#\n", + "B=100#\n", + "I=(VCC-2*VBE)/Re#\n", + "print 'I=%0.2f mA'%(I*10**3)\n", + "Re=1*10**3#\n", + "I=(VCC-2*VBE)/Re#\n", + "print 'I=%0.2f mA'%(I*10**3)\n", + "Re=4*10**3#\n", + "I=(VCC-2*VBE)/Re#\n", + "print 'I=%0.2f mA'%(I*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.14 Pg 654" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IE=3.67 mA\n", + "IC=1.83 mA\n", + "VC=6.38 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=15#\n", + "VEE=15#\n", + "RE=3.9*10**3#\n", + "RC=4.7*10**3#\n", + "IE=(VEE-0.7)/RE#\n", + "print 'IE=%0.2f mA'%(IE*10**3)\n", + "IC=IE/2#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "VC=VCC-IC*RC#\n", + "print 'VC=%0.2f V'%VC" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.15 Pg 655" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IE=0.34 mA\n", + "IC=0.17 mA\n", + "VC=5.84 V\n", + "Av=246.55\n", + "vo1=0.49 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=12#\n", + "VEE=12#\n", + "RE=33*10**3#\n", + "RC1=36*10**3#\n", + "RC2=36*10**3#\n", + "B1=150#\n", + "B2=150#\n", + "vi1=2*10**-3#\n", + "IE=(VEE-0.7)/RE#\n", + "print 'IE=%0.2f mA'%(IE*10**3)\n", + "IC=IE/2#\n", + "print 'IC=%0.2f mA'%(IC*10**3)\n", + "RC=36*10**3#\n", + "VC=VCC-IC*RC#\n", + "print 'VC=%0.2f V'%VC\n", + "re1=25*10**-3/IE#\n", + "Av=RC/(2*re1)#\n", + "print \"Av=%0.2f\"%Av\n", + "vo1=Av*vi1#\n", + "print 'vo1=%0.2f V'%vo1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 23.16 Pg 656" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ac=0.50\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "B=200#\n", + "ri=20*10**3#\n", + "RC=47*10**3#\n", + "RE=43*10**3#\n", + "Ac=(B*RE)/(ri+2*(B+1)*RE)#\n", + "print \"Ac=%0.2f\"%Ac" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap24_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap24_2.ipynb new file mode 100644 index 00000000..a313e56d --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap24_2.ipynb @@ -0,0 +1,316 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter -24 : FREQUENCY RESPONSE OF BJT AND JFET AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 24.1 Pg 685" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G=13.01 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Pi=5#\n", + "Po=100#\n", + "G=10*log10(Po/Pi)#\n", + "print 'G=%0.2f dB'%G" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 24.2 Pg 685" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G=23.01 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Pi=5*10**-3#\n", + "Po=1#\n", + "G=10*log10(Po/Pi)#\n", + "print 'G=%0.2f dB'%G #ans given in the book is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 24.3 Pg 686" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G=6.99 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Pi=20*10**-6#\n", + "Po=100*10**-6#\n", + "G=10*log10(Po/Pi)#\n", + "print 'G=%0.2f dB'%G" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 24.4 Pg 687" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G=43.98 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Po=25#\n", + "G=10*log10(Po/(1*10**-3))#\n", + "print 'G=%0.2f dB'%G" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 24.5 Pg 688" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G=6.02 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "V2=100#\n", + "V1=25#\n", + "G=10*log10(V2/V1)#\n", + "print 'G=%0.2f dB'%G" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " ## Ex 24.8 Pg 689" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f1=318.31 HZ\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGXlJREFUeJzt3Xu0nXV95/H3VzCWWNRVnBaIWXJTGahEoGXAajmVkFIH\nFYrIRXQchGnNKBSVYshaNUiDcp8xEApVQSWJQwEdIBKJ1ROsUyBGRANESSLtCSowywQNmjGY7/zx\nPGdnc9g5OZe997Mv79daWezr2d8NrHzOc/l9nshMJEkCeFHVA0iSOoehIEmqMRQkSTWGgiSpxlCQ\nJNUYCpKkmo4MhYg4LiLWRMRjEXFB1fNIUr+ITlunEBG7AD8EZgJPACuB0zLz0UoHk6Q+0IlbCkcA\nazPz8czcCnwJeEfFM0lSX+jEUJgGDNXd31A+JklqsU4Mhc7anyVJfWTXqgdo4Alget396RRbCzUR\nYXBI0gRkZoz2fCduKXwHeE1E7BMRU4BTgDtGvigze/bPxz/+8cpn8Pv5/frx+/Xyd8sc2+/SHbel\nkJnPRcQHga8BuwCfTc88kqS26LhQAMjMu4G7q55DkvpNJ+4+6nsDAwNVj9BSfr/u1svfr5e/21h1\n3OK1sYiI7Ma5JalKEUF24YFmSVJFDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiS\nagwFSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCSpD4z1svaG\ngiT1sG3b4NZb4fDDx/Z6Q0GSetDWrfCFL8DBB8Pll8O8eWN7364tnUqS1FZbtsBNN8Gll8I++8CC\nBXDMMRAxtvcbCpLUAzZvhhtugCuvhDe8ARYtgje+cfw/x1CQpC62aVOxNbBgAQwMwNKlRShMlMcU\nJKkLPfUUzJkD++8P69bBvffCLbdMLhDAUJCkrjI0BOeeCwceCM88A6tWFccQDjywOT/fUJCkLrB2\nLZx1FsyYAVOmwMMPw8KFxcHkZjIUJKmDrV4Np58ORx0F06bBY48Vp5jutVdrPs9QkKQOtHIlnHAC\nzJxZbB2sWwcXXQR77NHaz/XsI0nqEJnFAeP582HNGjj/fFi8GKZObd8MhoIkVSwT7r4bLrkEnnyy\nOKvojDOKYwftZihIUkW2bYPbby/C4Lnn4MIL4eSTYZddqpvJUJCkNtu6FZYsgU9+El72sqKX6Pjj\n4UUdcJS340IhIuYBZwFPlw/Nycxl1U0kSc0x2V6idui4UAASuCozr6p6EElqhmefheuvn3wvUTt0\nYigAdFBuStLEbNoE11xTbBEcffTke4naoQP2YDX0oYh4KCI+GxGvqHoYSRqP+l6itWthxYrm9BK1\nQyVbChGxHNizwVNzgeuAT5T3LwauBN4/8oXz6q4YMTAwwMDAQLPHlKRx2bChWG38xS/CqacWvUTN\nrqEYj8HBQQYHB8f1nsixXrizAhGxD3BnZr5+xOPZyXNL6i9r1xYHj2+/Hc48Ez784dbVUExGRJCZ\no+6e77jdRxFR/6/yROAHVc0iSaNZvRre/e6il2jvveFHP2ptL1E7dOKB5ksj4g0UZyH9GPiriueR\npOdZubKoorjvPjjvPLjuumK9QS/o6N1HO+LuI0nt1qiX6KyzYLfdqp5s7May+6gTtxQkqWNkwrJl\nRRhU3UvUDoaCJDXQib1E7WAoSFKdTu4lagdDQZLY3kt02WXw6ld3Zi9ROxgKkvrayF6im2/u3F6i\ndjAUJPWlbuwlaoc+2UsmSYVu7iVqB0NBUl/YsAHOPRcOPBB+8Yuil+imm4r72s5QkNTT1q6Fs8+G\nGTOKtQUPPwzXXlttUV0nMxQk9aRe7CVqB0NBUk9ZuRJOOAFmzoRDDoF16+Cii2CPPaqerDt49pGk\nrteol2jJku7qJeoUhoKkrpUJd99dVFH0Qy9ROxgKkrpOv/YStYOhIKlr9HsvUTsYCpI63nAv0aWX\nFqeS9msvUTsYCpI61ubNcMMN23uJFi3q716idjAUJHWcTZuKrYEFC2BgwF6idnJPnKSOUd9LtG5d\ncZqpvUTtZShIqtzQ0PZeomeesZeoSoaCpMqsXQtnnfX8XqKFC+0lqpKhIKntVq+G008veommTYPH\nHrOXqFMYCpLapr6XaMYMe4k6kWcfSWqpRr1EixfD1KlVT6ZGDAVJLWEvUXcyFCQ1lb1E3c1QkNQU\n9hL1BkNB0qRs2QI33giXXWYvUS8wFCRNyObNcP31cNVV9hL1EkNB0rhs3AjXXGMvUa9yb5+kMRnu\nJTrgAHuJepmhIGlUQ0Nwzjn2EvULQ0FSQ/W9RC95ib1E/cJQkPQ8w71ERx5pL1E/MhQkAS/sJVq/\n3l6iflRJKETEyRHxcET8NiIOG/HcnIh4LCLWRMSsKuaT+kUmDA7CrFlw0knF+oL16+GCC4oFaOo/\nVZ2S+gPgROD6+gcj4iDgFOAgYBrw9Yh4bWZua/+IUu8a7iWaP3/7WUX2EgkqCoXMXAMQL1zy+A5g\nSWZuBR6PiLXAEcB97Z1Q6k32EmlnOm3x2t48PwA2UGwxSJoEe4k0Vi0LhYhYDuzZ4KkLM/POcfyo\nbNJIUt+xl0jj1bJQyMxjJ/C2J4DpdfdfVT72AvPmzavdHhgYYGBgYAIfJ/Ume4kEMDg4yODg4Lje\nE5nV/SIeEd8EPpqZq8r7BwGLKY4jTAO+DhyQI4aMiJEPSeKFvURz5sChh1Y9lTpFRJCZo24nVnVK\n6okRMQQcCSyNiLsBMvMR4BbgEeBuYLZ/+0s7t6NeIgNB41XplsJEuaUgFYaGitXGN98Mp54Kf/u3\n1lBoxzp2S0HS5NT3Ek2ZYi+RmsdQkLpIo16iK66wl0jNYyhIXcBeIrVLpy1ek1TKhBUritXHa9bA\n+efD4sUwdWrVk6mXjSkUIuI/AvsA24B/G66pkNR8I3uJPvYxeM977CVSe+wwFCJiX+A84K0UC8h+\nAgSwV0S8CrgLuDozH2/DnFLPs5dInWCHp6RGxC3APwKDZUFd/XMvBv4MOCsz39XyKV84m6ekqmeM\n7CWaO9deIrXGWE5JdZ2CVJGRvURz59pLpNYaSyiMekwhIl4NPJuZ/zcijgLeBKzNzC83cU6pr9hL\npE422jGFvwP+S3l7CTATGATeGhEDmXluWyaUesSmTUUn0XAv0V13WUOhzjPalsJpFFdAmwr8O7Bn\nZj4bEbsCD7VjOKkXPPUUXH013HADvO1tRS/RgQdWPZXU2GiHsrZk5v/LzI0Uu4yeBcjM54DftGU6\nqYsNDcE55xQB8MwzsGoV3HSTgaDONtqWwssj4i8pTkMdvs3w/ZZPJnWptWvhU58qTi8988yil8ga\nCnWL0ULhXuBtDW4DrGjZRFKXWr26WGOwfDnMnl30EllDoW7jKanSJK1cWaw+vu8+OO88+MAHivUG\nUqeZ1CmpEfERRrk+cmZeNYnZpK6WWRwwnj/fXiL1ltF2H+1OEQqvA/4YuIPieMLxwAOtH03qPMO9\nRJdcAk8+aS+Res9Odx9FxLeAt2bmL8v7uwNfzcw3t2G+Hc3k7iO1VX0v0dat23uJdrVnWF1k0iua\nS78P1HcfbS0fk3reyF6iefPsJVJvG0sofAF4ICJup9h9dALw+ZZOJVVsy5ZiTcGllxa9RAsW2Euk\n/jCms48i4nDgzRTHGO7NzAdbPdhO5nH3kVpiZC/R3Ln2Eql3TPbso92HjyNk5ipg1WivkbqZvURS\nYbTdR1+OiB8C/xv4Tmb+HCAifo/ibKQTgNdQFOVJXcleIun5dni4LDNnArcB7wK+HRHPRMQzwLeB\ndwL/q3yN1HXsJZIaG/VAc2Z+A/hGm2aRWs5eIml0Oz2xLiLujIjTI+Kl7RhIaoXVq+H00+HII2Hv\nvYteoiuuMBCkkcZytvWVFGcePRIRt0XEOyPid1o8l9QUK1fCCSfAzJkwYwasXw+f+IRFddKOjLkQ\nr7y4zp8BZwPHZWZllV+ekqrRNOolev/77SWSmrWimYjYDXg7xUHnw3DxmjqQvUTS5O00FCLiFuA/\nAcuAa4HngFNbPJc0ZvYSSc0zlkK8Pwc2UmwlnAz8GLgtMxe0frwdzuTuI72gl2juXHuJpNFMdkXz\n64DTgFOAp4F/ogiRgWYOKY2XvURS64y2gf0ocBfw55n57wAR8eG2TCU1sHlzsfL4yiuLXqJFi+wl\nkppttA3tvwR+DdwbEf8QEcdQtKRKbbVpE1x8Mey3X3HJy7vugqVLDQSpFUarufhKZp4C/CHwLeA8\n4D9ExHURMatdA6p/PfUUzJkD++8P69YVp5necotFdVIr7fSQXGZuzsxFmXk8MB14EPhYyydT3xoa\ngnPPtZdIqsK4ztPIzJ9n5g2Z+ZbJfGhEnBwRD0fEbyPisLrH94mIX0fEg+WfhZP5HHWXtWvhrLOK\nlccvfnHRS7RwYXEwWVJ7VHUm9w+AE4HrGzy3NjPdQdBHVq8u1hjccw/Mnl30EllDIVWjkjO6M3NN\nZv6ois9W56jvJTrkEHuJpE7Qict89i13HQ1GxJuqHkbNlQkrVsCsWXDSScX6gvXri0qKl1XWpiVp\nWMt2H0XEcmDPBk9dmJl37uBtPwGmZ+bG8ljDVyLiYC/52f0yYdmyoqTOXiKpc7UsFDLz2Am85zfA\nb8rb342IdRSX/PzuyNfOmzevdntgYICBgYGJjqoWspdIqs7g4CCDg4Pjes+Yq7NbISK+CXw0M1eV\n918JbMzM30bEfsC9wB9m5qYR77P7qMPZSyR1nqZVZzdbRJwIfBp4JbA0Ih7MzL8AjgYuioitwDbg\nr0YGgjqbvURSd6t0S2Gi3FLoPCN7iebOtYZC6jQdu6Wg3rFpU7E1sGABDAwUvUTWUEjdyz28mhB7\niaTeZChoXIaG4Jxz7CWSepWhoDGp7yWaMsVeIqlXGQoa1erVcPrpcNRRMG1a0Ut0xRWw115VTyap\nFQwFNVTfSzRjRnHc4KKL7CWSep1nH6kmszhgPH8+rFkD558PixfD1KlVTyapXQwFkQl3311UUdhL\nJPU3Q6GP1fcSPffc9l6iXXapejJJVTEU+tDIXqJ58+wlklQwFPqIvUSSdsZQ6AObN8P118NVVxW9\nRIsW2UskqTFDoYeN7CVaurQIBUnaEfci96Ad9RIZCJJ2xlDoIfW9RL/4hb1EksbPUOgB9b1EL3lJ\n0Ut07bX2EkkaP0Ohiw33Eh155PZeossvt5dI0sQZCl1oZC/R+vX2EklqDs8+6hKZsGJFsfp4uJdo\nyRLYbbeqJ5PUSwyFDjfcSzR/Pjz9dNFLdMYZ9hJJag1DoUPZSySpCoZCh7GXSFKVDIUOsWUL3Hgj\nXHaZvUSSqmMoVKy+l+jQQ4uL2hx1VNVTSepXhkJFNm6Ea66xl0hSZ3FPdZsN9xIdcIC9RJI6j6HQ\nJvYSSeoGhkKL2UskqZsYCi0y3Et01FH2EknqHoZCk43sJVq3zl4iSd3Ds4+aILM4YDx/vr1Ekrqb\noTAJw71El1xSnFVkL5GkbmcoTIC9RJJ6laEwDvYSSep1hsIYbNlSrCm49FLYd99iJfJb3mIvkaTe\nYyiMwl4iSf2mkh0fEXF5RDwaEQ9FxO0R8fK65+ZExGMRsSYiZlUx36ZNcPHFsN9+cP/9RS/RXXcZ\nCJJ6X1V7w+8BDs7MGcCPgDkAEXEQcApwEHAcsDAi2jbjcC/R/vvbSySpP1USCpm5PDO3lXfvB15V\n3n4HsCQzt2bm48Ba4IhWzzM0BOeeay+RJHXCeTNnAl8tb+8NbKh7bgMwrVUfXN9LNGWKvUSS1LID\nzRGxHNizwVMXZuad5WvmAr/JzMWj/Khs9OC8efNqtwcGBhgYGBjzbKtXF2sMli+H2bOLXiJrKCT1\nmsHBQQYHB8f1nshs+Hduy0XE+4CzgWMyc0v52McAMvNT5f1lwMcz8/4R782JzL1yZVFFcd99cN55\n8IEPFOsNJKkfRASZOerJ9FWdfXQccD7wjuFAKN0BnBoRUyJiX+A1wAOT+axMWLECZs2Ck04qrnv8\n4x/DBRcYCJI0UlXrFBYAU4DlUawA+9fMnJ2Zj0TELcAjwHPA7AltEmAvkSRNRGW7jyZjtN1H9hJJ\nUmNj2X3UMyua7SWSpMnr+lCwl0iSmqdrQ+HZZ4teoiuvtJdIkpqla0Nhv/3g6KOLXiJrKCSpObr2\nQPOjj6Y1FJI0DmM50Ny1odCNc0tSlTp28ZokqTMZCpKkGkNBklRjKEiSagwFSVKNoSBJqjEUJEk1\nhoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMo\nSJJqDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiSagwFSVJNJaEQEZdHxKMR8VBE\n3B4RLy8f3ycifh0RD5Z/FlYxnyT1q6q2FO4BDs7MGcCPgDl1z63NzEPLP7OrGa9ag4ODVY/QUn6/\n7tbL36+Xv9tYVRIKmbk8M7eVd+8HXlXFHJ2q1//H9Pt1t17+fr383caqE44pnAl8te7+vuWuo8GI\neFNVQ0lSP9q1VT84IpYDezZ46sLMvLN8zVzgN5m5uHzuJ8D0zNwYEYcBX4mIgzPzl62aU5K0XWRm\nNR8c8T7gbOCYzNyyg9d8E/hIZn53xOPVDC1JXS4zY7TnW7alMJqIOA44Hzi6PhAi4pXAxsz8bUTs\nB7wGWD/y/Tv7UpKkialkSyEiHgOmAD8vH/rXzJwdEScBFwFbgW3A32Xm0rYPKEl9qrLdR5KkztMJ\nZx+NS0QcFxFrIuKxiLig6nmaKSI+FxFPRsQPqp6lFSJiekR8MyIejojVEXFO1TM1S0T8TkTcHxHf\ni4hHIuKTVc/UChGxS3l24J1Vz9JsEfF4RHy//H4PVD1Ps0XEKyLi1nLh8CMRcWTD13XTlkJE7AL8\nEJgJPAGsBE7LzEcrHaxJIuLNwGbgC5n5+qrnabaI2BPYMzO/FxG/C6wCTuih/35TM/NXEbEr8C/A\nRzPzX6qeq5ki4sPA4cDumfn2qudppoj4MXB4Zv58py/uQhHxeWBFZn6u/H/0pZn5zMjXdduWwhEU\nK54fz8ytwJeAd1Q8U9Nk5reAjVXP0SqZ+bPM/F55ezPwKLB3tVM1T2b+qrw5BdiF7cfMekJEvAp4\nK/AZoFdP9ujJ71VWCb05Mz8HkJnPNQoE6L5QmAYM1d3fUD6mLhMR+wCHUqxo7wkR8aKI+B7wJPDN\nzHyk6pma7GqKswa37eyFXSqBr0fEdyLi7KqHabJ9gacj4saI+G5E/GNETG30wm4Lhe7Z16UdKncd\n3QqcW24x9ITM3JaZb6CobfnTiBioeKSmiYjjgacy80F69Ldp4E8y81DgL4D/Xu7O7RW7AocBCzPz\nMOBZ4GONXthtofAEML3u/nSKrQV1iYh4MXAbcHNmfqXqeVqh3CxfCvxR1bM00RuBt5f73ZcAb4mI\nL1Q8U1Nl5k/Lfz4NfJlid3Wv2ABsyMyV5f1bKULiBbotFL4DvKas2J4CnALcUfFMGqOICOCzwCOZ\n+T+qnqeZIuKVEfGK8vZuwLHAg9VO1TyZeWFmTs/MfYFTgW9k5nurnqtZImJqROxe3n4pMAvombMA\nM/NnwFBEvLZ8aCbwcKPXVrKieaIy87mI+CDwNYoDeZ/tlTNXACJiCXA0sEdEDFEs3rux4rGa6U+A\nM4DvR8TwX5hzMnNZhTM1y17A5yPiRRS/bH0xM/+54plaqdd25f4B8OXi9xZ2BRZl5j3VjtR0HwIW\nlb9QrwP+a6MXddUpqZKk1uq23UeSpBYyFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMoqOdFxDllVfAX\nGzz3+oj4XHn7fRGxoP0TvlC5QHPUxVMR8QcR8dV2zaT+0FWL16QJ+gDFtcB/0uC584HhIOiqRTuZ\n+WREbIyIw0Zex1yaKLcU1NMi4h+A/YBlEfE3I557CXBkXR9M/XP7RMQ3IuKhiPh6REwvH98/Iu4r\nL8by9xHxywbvfWlELC0vuPODiHhX+fgfR8S3y8fvj4jfLT/n3ohYVf45qsHP2yUiLo+IB8p5/lvd\n03cAp03qX5JUx1BQT8vMvwZ+Agw06Fs6lOKiTY0sAG7MzBnAIuDT5eP/E7g6Mw/h+TXu9Y4DnsjM\nN5QXS1pWVgt8CTinbFI9Bvg1Rc32sZl5OEWn0Kcb/Lz3A5sy8wiKkrazy+pxgAeAP93R95fGy1BQ\nP3s18NMdPHcksLi8fTPwprrH/6m8vWQH7/0+cGxEfCoi3pSZvwBeB/w0M1dBcZGhzPwtxQV5PhMR\n3wduAQ5q8PNmAe8t+6LuA34POKB87qfAPjv7otJYeUxB/SwZ/doAE7puQGY+FhGHAv8Z+PuI+GeK\nKuZGzqMIi/eUl5vdsoPXfTAzl+9gxq46FqLO5paC+tm/AXvW3a8Pgf9DsTsH4N3AveXt+4B3lrdP\npYGI2AvYkpmLgCvYvptqr4j4o/I1u5ch8DLgZ+Vb30vR/jvS14DZ5XV1iYjX1l01a6/ye0hN4ZaC\n+sGOfpN+iGK3Tv3rhl/7IeDGiDgfeIrtNcN/A9wcERdS/GXd6Dq3rwcuj4htwFbgrzNza0ScAiwo\nr7fwK4pO+4XAbRHxXmAZUH8luuFZPkOxi+i75TUpngJOKJ87gu2BJU2a1dnqaxFxE3BdZo7pWtER\nsVtm/rq8fSpwSmae2MIRdzbPIuCK8jKZ0qS5paB+dwXwEWBMoQAcHhHXUOxq2gic2arBdiYifh94\nhYGgZnJLQZJU44FmSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpJr/DwbJVH+O2CX6AAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f96c83d7e50>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,pi\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "R=5*10**3#\n", + "C=0.1*10**-6#\n", + "f1=1/(2*pi*R*C)#\n", + "print 'f1=%0.2f HZ'%f1\n", + "i=arange(-21,0,3)\n", + "plot(i)#\n", + "xlabel(\"f (log scale)\")#\n", + "ylabel( \"Av(dB)\")#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 24.9 Pg 690" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fLS=6.87 HZ\n", + "fLC=25.67 HZ\n", + "fLE=326.85 HZ\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGXlJREFUeJzt3Xu0nXV95/H3VzCWWNRVnBaIWXJTGahEoGXAajmVkFIH\nFYrIRXQchGnNKBSVYshaNUiDcp8xEApVQSWJQwEdIBKJ1ROsUyBGRANESSLtCSowywQNmjGY7/zx\nPGdnc9g5OZe997Mv79daWezr2d8NrHzOc/l9nshMJEkCeFHVA0iSOoehIEmqMRQkSTWGgiSpxlCQ\nJNUYCpKkmo4MhYg4LiLWRMRjEXFB1fNIUr+ITlunEBG7AD8EZgJPACuB0zLz0UoHk6Q+0IlbCkcA\nazPz8czcCnwJeEfFM0lSX+jEUJgGDNXd31A+JklqsU4Mhc7anyVJfWTXqgdo4Alget396RRbCzUR\nYXBI0gRkZoz2fCduKXwHeE1E7BMRU4BTgDtGvigze/bPxz/+8cpn8Pv5/frx+/Xyd8sc2+/SHbel\nkJnPRcQHga8BuwCfTc88kqS26LhQAMjMu4G7q55DkvpNJ+4+6nsDAwNVj9BSfr/u1svfr5e/21h1\n3OK1sYiI7Ma5JalKEUF24YFmSVJFDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiS\nagwFSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCSpD4z1svaG\ngiT1sG3b4NZb4fDDx/Z6Q0GSetDWrfCFL8DBB8Pll8O8eWN7364tnUqS1FZbtsBNN8Gll8I++8CC\nBXDMMRAxtvcbCpLUAzZvhhtugCuvhDe8ARYtgje+cfw/x1CQpC62aVOxNbBgAQwMwNKlRShMlMcU\nJKkLPfUUzJkD++8P69bBvffCLbdMLhDAUJCkrjI0BOeeCwceCM88A6tWFccQDjywOT/fUJCkLrB2\nLZx1FsyYAVOmwMMPw8KFxcHkZjIUJKmDrV4Np58ORx0F06bBY48Vp5jutVdrPs9QkKQOtHIlnHAC\nzJxZbB2sWwcXXQR77NHaz/XsI0nqEJnFAeP582HNGjj/fFi8GKZObd8MhoIkVSwT7r4bLrkEnnyy\nOKvojDOKYwftZihIUkW2bYPbby/C4Lnn4MIL4eSTYZddqpvJUJCkNtu6FZYsgU9+El72sqKX6Pjj\n4UUdcJS340IhIuYBZwFPlw/Nycxl1U0kSc0x2V6idui4UAASuCozr6p6EElqhmefheuvn3wvUTt0\nYigAdFBuStLEbNoE11xTbBEcffTke4naoQP2YDX0oYh4KCI+GxGvqHoYSRqP+l6itWthxYrm9BK1\nQyVbChGxHNizwVNzgeuAT5T3LwauBN4/8oXz6q4YMTAwwMDAQLPHlKRx2bChWG38xS/CqacWvUTN\nrqEYj8HBQQYHB8f1nsixXrizAhGxD3BnZr5+xOPZyXNL6i9r1xYHj2+/Hc48Ez784dbVUExGRJCZ\no+6e77jdRxFR/6/yROAHVc0iSaNZvRre/e6il2jvveFHP2ptL1E7dOKB5ksj4g0UZyH9GPiriueR\npOdZubKoorjvPjjvPLjuumK9QS/o6N1HO+LuI0nt1qiX6KyzYLfdqp5s7May+6gTtxQkqWNkwrJl\nRRhU3UvUDoaCJDXQib1E7WAoSFKdTu4lagdDQZLY3kt02WXw6ld3Zi9ROxgKkvrayF6im2/u3F6i\ndjAUJPWlbuwlaoc+2UsmSYVu7iVqB0NBUl/YsAHOPRcOPBB+8Yuil+imm4r72s5QkNTT1q6Fs8+G\nGTOKtQUPPwzXXlttUV0nMxQk9aRe7CVqB0NBUk9ZuRJOOAFmzoRDDoF16+Cii2CPPaqerDt49pGk\nrteol2jJku7qJeoUhoKkrpUJd99dVFH0Qy9ROxgKkrpOv/YStYOhIKlr9HsvUTsYCpI63nAv0aWX\nFqeS9msvUTsYCpI61ubNcMMN23uJFi3q716idjAUJHWcTZuKrYEFC2BgwF6idnJPnKSOUd9LtG5d\ncZqpvUTtZShIqtzQ0PZeomeesZeoSoaCpMqsXQtnnfX8XqKFC+0lqpKhIKntVq+G008veommTYPH\nHrOXqFMYCpLapr6XaMYMe4k6kWcfSWqpRr1EixfD1KlVT6ZGDAVJLWEvUXcyFCQ1lb1E3c1QkNQU\n9hL1BkNB0qRs2QI33giXXWYvUS8wFCRNyObNcP31cNVV9hL1EkNB0rhs3AjXXGMvUa9yb5+kMRnu\nJTrgAHuJepmhIGlUQ0Nwzjn2EvULQ0FSQ/W9RC95ib1E/cJQkPQ8w71ERx5pL1E/MhQkAS/sJVq/\n3l6iflRJKETEyRHxcET8NiIOG/HcnIh4LCLWRMSsKuaT+kUmDA7CrFlw0knF+oL16+GCC4oFaOo/\nVZ2S+gPgROD6+gcj4iDgFOAgYBrw9Yh4bWZua/+IUu8a7iWaP3/7WUX2EgkqCoXMXAMQL1zy+A5g\nSWZuBR6PiLXAEcB97Z1Q6k32EmlnOm3x2t48PwA2UGwxSJoEe4k0Vi0LhYhYDuzZ4KkLM/POcfyo\nbNJIUt+xl0jj1bJQyMxjJ/C2J4DpdfdfVT72AvPmzavdHhgYYGBgYAIfJ/Ume4kEMDg4yODg4Lje\nE5nV/SIeEd8EPpqZq8r7BwGLKY4jTAO+DhyQI4aMiJEPSeKFvURz5sChh1Y9lTpFRJCZo24nVnVK\n6okRMQQcCSyNiLsBMvMR4BbgEeBuYLZ/+0s7t6NeIgNB41XplsJEuaUgFYaGitXGN98Mp54Kf/u3\n1lBoxzp2S0HS5NT3Ek2ZYi+RmsdQkLpIo16iK66wl0jNYyhIXcBeIrVLpy1ek1TKhBUritXHa9bA\n+efD4sUwdWrVk6mXjSkUIuI/AvsA24B/G66pkNR8I3uJPvYxeM977CVSe+wwFCJiX+A84K0UC8h+\nAgSwV0S8CrgLuDozH2/DnFLPs5dInWCHp6RGxC3APwKDZUFd/XMvBv4MOCsz39XyKV84m6ekqmeM\n7CWaO9deIrXGWE5JdZ2CVJGRvURz59pLpNYaSyiMekwhIl4NPJuZ/zcijgLeBKzNzC83cU6pr9hL\npE422jGFvwP+S3l7CTATGATeGhEDmXluWyaUesSmTUUn0XAv0V13WUOhzjPalsJpFFdAmwr8O7Bn\nZj4bEbsCD7VjOKkXPPUUXH013HADvO1tRS/RgQdWPZXU2GiHsrZk5v/LzI0Uu4yeBcjM54DftGU6\nqYsNDcE55xQB8MwzsGoV3HSTgaDONtqWwssj4i8pTkMdvs3w/ZZPJnWptWvhU58qTi8988yil8ga\nCnWL0ULhXuBtDW4DrGjZRFKXWr26WGOwfDnMnl30EllDoW7jKanSJK1cWaw+vu8+OO88+MAHivUG\nUqeZ1CmpEfERRrk+cmZeNYnZpK6WWRwwnj/fXiL1ltF2H+1OEQqvA/4YuIPieMLxwAOtH03qPMO9\nRJdcAk8+aS+Res9Odx9FxLeAt2bmL8v7uwNfzcw3t2G+Hc3k7iO1VX0v0dat23uJdrVnWF1k0iua\nS78P1HcfbS0fk3reyF6iefPsJVJvG0sofAF4ICJup9h9dALw+ZZOJVVsy5ZiTcGllxa9RAsW2Euk\n/jCms48i4nDgzRTHGO7NzAdbPdhO5nH3kVpiZC/R3Ln2Eql3TPbso92HjyNk5ipg1WivkbqZvURS\nYbTdR1+OiB8C/xv4Tmb+HCAifo/ibKQTgNdQFOVJXcleIun5dni4LDNnArcB7wK+HRHPRMQzwLeB\ndwL/q3yN1HXsJZIaG/VAc2Z+A/hGm2aRWs5eIml0Oz2xLiLujIjTI+Kl7RhIaoXVq+H00+HII2Hv\nvYteoiuuMBCkkcZytvWVFGcePRIRt0XEOyPid1o8l9QUK1fCCSfAzJkwYwasXw+f+IRFddKOjLkQ\nr7y4zp8BZwPHZWZllV+ekqrRNOolev/77SWSmrWimYjYDXg7xUHnw3DxmjqQvUTS5O00FCLiFuA/\nAcuAa4HngFNbPJc0ZvYSSc0zlkK8Pwc2UmwlnAz8GLgtMxe0frwdzuTuI72gl2juXHuJpNFMdkXz\n64DTgFOAp4F/ogiRgWYOKY2XvURS64y2gf0ocBfw55n57wAR8eG2TCU1sHlzsfL4yiuLXqJFi+wl\nkppttA3tvwR+DdwbEf8QEcdQtKRKbbVpE1x8Mey3X3HJy7vugqVLDQSpFUarufhKZp4C/CHwLeA8\n4D9ExHURMatdA6p/PfUUzJkD++8P69YVp5necotFdVIr7fSQXGZuzsxFmXk8MB14EPhYyydT3xoa\ngnPPtZdIqsK4ztPIzJ9n5g2Z+ZbJfGhEnBwRD0fEbyPisLrH94mIX0fEg+WfhZP5HHWXtWvhrLOK\nlccvfnHRS7RwYXEwWVJ7VHUm9w+AE4HrGzy3NjPdQdBHVq8u1hjccw/Mnl30EllDIVWjkjO6M3NN\nZv6ois9W56jvJTrkEHuJpE7Qict89i13HQ1GxJuqHkbNlQkrVsCsWXDSScX6gvXri0qKl1XWpiVp\nWMt2H0XEcmDPBk9dmJl37uBtPwGmZ+bG8ljDVyLiYC/52f0yYdmyoqTOXiKpc7UsFDLz2Am85zfA\nb8rb342IdRSX/PzuyNfOmzevdntgYICBgYGJjqoWspdIqs7g4CCDg4Pjes+Yq7NbISK+CXw0M1eV\n918JbMzM30bEfsC9wB9m5qYR77P7qMPZSyR1nqZVZzdbRJwIfBp4JbA0Ih7MzL8AjgYuioitwDbg\nr0YGgjqbvURSd6t0S2Gi3FLoPCN7iebOtYZC6jQdu6Wg3rFpU7E1sGABDAwUvUTWUEjdyz28mhB7\niaTeZChoXIaG4Jxz7CWSepWhoDGp7yWaMsVeIqlXGQoa1erVcPrpcNRRMG1a0Ut0xRWw115VTyap\nFQwFNVTfSzRjRnHc4KKL7CWSep1nH6kmszhgPH8+rFkD558PixfD1KlVTyapXQwFkQl3311UUdhL\nJPU3Q6GP1fcSPffc9l6iXXapejJJVTEU+tDIXqJ58+wlklQwFPqIvUSSdsZQ6AObN8P118NVVxW9\nRIsW2UskqTFDoYeN7CVaurQIBUnaEfci96Ad9RIZCJJ2xlDoIfW9RL/4hb1EksbPUOgB9b1EL3lJ\n0Ut07bX2EkkaP0Ohiw33Eh155PZeossvt5dI0sQZCl1oZC/R+vX2EklqDs8+6hKZsGJFsfp4uJdo\nyRLYbbeqJ5PUSwyFDjfcSzR/Pjz9dNFLdMYZ9hJJag1DoUPZSySpCoZCh7GXSFKVDIUOsWUL3Hgj\nXHaZvUSSqmMoVKy+l+jQQ4uL2hx1VNVTSepXhkJFNm6Ea66xl0hSZ3FPdZsN9xIdcIC9RJI6j6HQ\nJvYSSeoGhkKL2UskqZsYCi0y3Et01FH2EknqHoZCk43sJVq3zl4iSd3Ds4+aILM4YDx/vr1Ekrqb\noTAJw71El1xSnFVkL5GkbmcoTIC9RJJ6laEwDvYSSep1hsIYbNlSrCm49FLYd99iJfJb3mIvkaTe\nYyiMwl4iSf2mkh0fEXF5RDwaEQ9FxO0R8fK65+ZExGMRsSYiZlUx36ZNcPHFsN9+cP/9RS/RXXcZ\nCJJ6X1V7w+8BDs7MGcCPgDkAEXEQcApwEHAcsDAi2jbjcC/R/vvbSySpP1USCpm5PDO3lXfvB15V\n3n4HsCQzt2bm48Ba4IhWzzM0BOeeay+RJHXCeTNnAl8tb+8NbKh7bgMwrVUfXN9LNGWKvUSS1LID\nzRGxHNizwVMXZuad5WvmAr/JzMWj/Khs9OC8efNqtwcGBhgYGBjzbKtXF2sMli+H2bOLXiJrKCT1\nmsHBQQYHB8f1nshs+Hduy0XE+4CzgWMyc0v52McAMvNT5f1lwMcz8/4R782JzL1yZVFFcd99cN55\n8IEPFOsNJKkfRASZOerJ9FWdfXQccD7wjuFAKN0BnBoRUyJiX+A1wAOT+axMWLECZs2Ck04qrnv8\n4x/DBRcYCJI0UlXrFBYAU4DlUawA+9fMnJ2Zj0TELcAjwHPA7AltEmAvkSRNRGW7jyZjtN1H9hJJ\nUmNj2X3UMyua7SWSpMnr+lCwl0iSmqdrQ+HZZ4teoiuvtJdIkpqla0Nhv/3g6KOLXiJrKCSpObr2\nQPOjj6Y1FJI0DmM50Ny1odCNc0tSlTp28ZokqTMZCpKkGkNBklRjKEiSagwFSVKNoSBJqjEUJEk1\nhoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMo\nSJJqDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiSagwFSVJNJaEQEZdHxKMR8VBE\n3B4RLy8f3ycifh0RD5Z/FlYxnyT1q6q2FO4BDs7MGcCPgDl1z63NzEPLP7OrGa9ag4ODVY/QUn6/\n7tbL36+Xv9tYVRIKmbk8M7eVd+8HXlXFHJ2q1//H9Pt1t17+fr383caqE44pnAl8te7+vuWuo8GI\neFNVQ0lSP9q1VT84IpYDezZ46sLMvLN8zVzgN5m5uHzuJ8D0zNwYEYcBX4mIgzPzl62aU5K0XWRm\nNR8c8T7gbOCYzNyyg9d8E/hIZn53xOPVDC1JXS4zY7TnW7alMJqIOA44Hzi6PhAi4pXAxsz8bUTs\nB7wGWD/y/Tv7UpKkialkSyEiHgOmAD8vH/rXzJwdEScBFwFbgW3A32Xm0rYPKEl9qrLdR5KkztMJ\nZx+NS0QcFxFrIuKxiLig6nmaKSI+FxFPRsQPqp6lFSJiekR8MyIejojVEXFO1TM1S0T8TkTcHxHf\ni4hHIuKTVc/UChGxS3l24J1Vz9JsEfF4RHy//H4PVD1Ps0XEKyLi1nLh8CMRcWTD13XTlkJE7AL8\nEJgJPAGsBE7LzEcrHaxJIuLNwGbgC5n5+qrnabaI2BPYMzO/FxG/C6wCTuih/35TM/NXEbEr8C/A\nRzPzX6qeq5ki4sPA4cDumfn2qudppoj4MXB4Zv58py/uQhHxeWBFZn6u/H/0pZn5zMjXdduWwhEU\nK54fz8ytwJeAd1Q8U9Nk5reAjVXP0SqZ+bPM/F55ezPwKLB3tVM1T2b+qrw5BdiF7cfMekJEvAp4\nK/AZoFdP9ujJ71VWCb05Mz8HkJnPNQoE6L5QmAYM1d3fUD6mLhMR+wCHUqxo7wkR8aKI+B7wJPDN\nzHyk6pma7GqKswa37eyFXSqBr0fEdyLi7KqHabJ9gacj4saI+G5E/GNETG30wm4Lhe7Z16UdKncd\n3QqcW24x9ITM3JaZb6CobfnTiBioeKSmiYjjgacy80F69Ldp4E8y81DgL4D/Xu7O7RW7AocBCzPz\nMOBZ4GONXthtofAEML3u/nSKrQV1iYh4MXAbcHNmfqXqeVqh3CxfCvxR1bM00RuBt5f73ZcAb4mI\nL1Q8U1Nl5k/Lfz4NfJlid3Wv2ABsyMyV5f1bKULiBbotFL4DvKas2J4CnALcUfFMGqOICOCzwCOZ\n+T+qnqeZIuKVEfGK8vZuwLHAg9VO1TyZeWFmTs/MfYFTgW9k5nurnqtZImJqROxe3n4pMAvombMA\nM/NnwFBEvLZ8aCbwcKPXVrKieaIy87mI+CDwNYoDeZ/tlTNXACJiCXA0sEdEDFEs3rux4rGa6U+A\nM4DvR8TwX5hzMnNZhTM1y17A5yPiRRS/bH0xM/+54plaqdd25f4B8OXi9xZ2BRZl5j3VjtR0HwIW\nlb9QrwP+a6MXddUpqZKk1uq23UeSpBYyFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMoqOdFxDllVfAX\nGzz3+oj4XHn7fRGxoP0TvlC5QHPUxVMR8QcR8dV2zaT+0FWL16QJ+gDFtcB/0uC584HhIOiqRTuZ\n+WREbIyIw0Zex1yaKLcU1NMi4h+A/YBlEfE3I557CXBkXR9M/XP7RMQ3IuKhiPh6REwvH98/Iu4r\nL8by9xHxywbvfWlELC0vuPODiHhX+fgfR8S3y8fvj4jfLT/n3ohYVf45qsHP2yUiLo+IB8p5/lvd\n03cAp03qX5JUx1BQT8vMvwZ+Agw06Fs6lOKiTY0sAG7MzBnAIuDT5eP/E7g6Mw/h+TXu9Y4DnsjM\nN5QXS1pWVgt8CTinbFI9Bvg1Rc32sZl5OEWn0Kcb/Lz3A5sy8wiKkrazy+pxgAeAP93R95fGy1BQ\nP3s18NMdPHcksLi8fTPwprrH/6m8vWQH7/0+cGxEfCoi3pSZvwBeB/w0M1dBcZGhzPwtxQV5PhMR\n3wduAQ5q8PNmAe8t+6LuA34POKB87qfAPjv7otJYeUxB/SwZ/doAE7puQGY+FhGHAv8Z+PuI+GeK\nKuZGzqMIi/eUl5vdsoPXfTAzl+9gxq46FqLO5paC+tm/AXvW3a8Pgf9DsTsH4N3AveXt+4B3lrdP\npYGI2AvYkpmLgCvYvptqr4j4o/I1u5ch8DLgZ+Vb30vR/jvS14DZ5XV1iYjX1l01a6/ye0hN4ZaC\n+sGOfpN+iGK3Tv3rhl/7IeDGiDgfeIrtNcN/A9wcERdS/GXd6Dq3rwcuj4htwFbgrzNza0ScAiwo\nr7fwK4pO+4XAbRHxXmAZUH8luuFZPkOxi+i75TUpngJOKJ87gu2BJU2a1dnqaxFxE3BdZo7pWtER\nsVtm/rq8fSpwSmae2MIRdzbPIuCK8jKZ0qS5paB+dwXwEWBMoQAcHhHXUOxq2gic2arBdiYifh94\nhYGgZnJLQZJU44FmSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpJr/DwbJVH+O2CX6AAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f96c1c65bd0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,pi\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", + "\n", + "\n", + "RC=4*10**3#\n", + "R1=40*10**3#\n", + "R2=10*10**3#\n", + "RE=2*10**3#\n", + "RS=1*10**3#\n", + "RL=2.2*10**3#\n", + "CS=10*10**-6#\n", + "CE=20*10**-6#\n", + "CC=1*10**-6#\n", + "B=100#\n", + "VCC=20#\n", + "VB=(R2*VCC)/(R2+R1)#\n", + "IE=(VB-0.7)/RE#\n", + "re=(26*10**-3)/IE#\n", + "B*re#\n", + "vo=-(RC*RL)/(RC+RL)#\n", + "Av=vo/re#\n", + "a=(R1*R2)/(R1+R2)#\n", + "Ri=(a*(B*re))/(a+(B*re))#\n", + "Rs=1*10**3#\n", + "vibyvs=Ri/(Ri+Rs)#\n", + "Avs=Av*vibyvs#\n", + "a=(R1*R2)/(R1+R2)#\n", + "Ri=(a*(B*re))/(a+(B*re))#\n", + "fLS=1/(2*pi*(Rs+Ri)*CS)#\n", + "print 'fLS=%0.2f HZ'%fLS\n", + "fLC=1/(2*pi*(RC+RL)*CC)#\n", + "print 'fLC=%0.2f HZ'%fLC\n", + "a=(R1*R2)/(R1+R2)#\n", + "RS=(a*RS)/(a+RS)#\n", + "b=(RS/B+re)#\n", + "Re=(RE*b)/(RE+b)#\n", + "fLE=1/(2*pi*Re*CE)#\n", + "print 'fLE=%0.2f HZ'%fLE\n", + "i=arange(-21,0,3)\n", + "plot(i)#\n", + "xlabel(\"f (log scale)\")#\n", + "ylabel( \"Av(dB)\")#\n", + "show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap25_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap25_2.ipynb new file mode 100644 index 00000000..cf6ed37c --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap25_2.ipynb @@ -0,0 +1,568 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 25 : LARGE SIGNAL OR POWER AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.1 Pg 734" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ICsat=8.77 mA\n", + "VCEsat=0.00 V\n", + "ICcutoff= 0\n", + "VCEcutoff=5.26 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=10#\n", + "R1=10*10**3#\n", + "R2=5*10**3#\n", + "RC=1*10**3#\n", + "RE=500#\n", + "RL=1.5*10**3#\n", + "B=100#\n", + "VBE=0.7#\n", + "VR2=VCC*(R2/(R1+R2))#\n", + "IEQ=(VR2-VBE)/RE#\n", + "ICQ=IEQ#\n", + "VCEQ=VCC-ICQ*(RC+RE)#\n", + "rL=(RC*RL)/(RC+RL)#\n", + "ICsat=ICQ+(VCEQ/rL)#\n", + "print 'ICsat=%0.2f mA'%(ICsat*10**3)\n", + "VCEsat=0#\n", + "print \"VCEsat=%0.2f V\"%VCEsat\n", + "ICcutoff=0#\n", + "print \"ICcutoff=\", ICcutoff\n", + "VCEcutoff=VCEQ+ICQ*rL#\n", + "print 'VCEcutoff=%0.2f V'%VCEcutoff" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.2 Pg 734" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PP=9.61 V\n", + "PP=20.72 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VCC=20#\n", + "R1=10*10**3#\n", + "R2=1.8*10**3#\n", + "RC=620#\n", + "RE=200#\n", + "RL=1.2*10**3#\n", + "hfe=180#\n", + "VB=VCC*(R2/(R1+R2))#\n", + "VBE=0.7#\n", + "VE=VB-VBE#\n", + "IE=VE/RE#\n", + "IC=IE#\n", + "VCE=VCC-IE*(RC+RE)#\n", + "ICQ=IC#\n", + "VCEQ=VCE#\n", + "rL=(RC*RL)/(RC+RL)#\n", + "PP=2*ICQ*rL#\n", + "print 'PP=%0.2f V'%PP\n", + "PP=2*VCEQ#\n", + "print 'PP=%0.2f V'%PP" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.3 Pg 735" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ap=1375.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "re=8#\n", + "RC=220#\n", + "RE=47#\n", + "R1=4.7*10**3#\n", + "R2=470#\n", + "B=50#\n", + "rL=RC#\n", + "AV=rL/re#\n", + "Ai=B#\n", + "Ap=AV*Ai#\n", + "print \"Ap=%0.2f\" %Ap" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.4 Pg 736" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ne=25.00 %\n", + "power rating of transistor=20W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Ptrdc=20#\n", + "Poac=5#\n", + "ne=(Poac/Ptrdc)#\n", + "print 'ne=%0.2f %%'%(ne*100)\n", + "print \"power rating of transistor=20W\"#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.5 Pg 737" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "poac=4.71 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "pcdc=10#\n", + "nc=0.32#\n", + "poac=pcdc*nc/(1-nc)#\n", + "print 'poac=%0.2f W'%poac" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.6 Pg 738" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ptrdc=7.00 W\n", + "Pcdc=3.50 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "nc=0.5#\n", + "VCC=24#\n", + "Poac=3.5#\n", + "Ptrdc=Poac/nc#\n", + "print 'Ptrdc=%0.2f W'%Ptrdc\n", + "Pcdc=Ptrdc-Poac#\n", + "print 'Pcdc=%0.2f W'%Pcdc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.7 Pg 739" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pindc=12.00 W\n", + "PRLdc=5.76 W\n", + "Poac=0.72 W\n", + "Ptrdc=6.24 W\n", + "Pcdc=5.52 W\n", + "no=6.00 %\n", + "no=11.54 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "VCC=20#\n", + "VCEQ=10#\n", + "ICQ=600*10**-3#\n", + "RL=16#\n", + "IP=300*10**-3#\n", + "Pindc=VCC*ICQ#\n", + "print 'Pindc=%0.2f W'%Pindc\n", + "PRLdc=ICQ**2*RL#\n", + "print 'PRLdc=%0.2f W'%PRLdc\n", + "I=IP/sqrt(2)#\n", + "Poac=I**2*RL#\n", + "print 'Poac=%0.2f W'%Poac\n", + "Ptrdc=Pindc-PRLdc#\n", + "print 'Ptrdc=%0.2f W'%Ptrdc\n", + "Pcdc=Ptrdc-Poac#\n", + "print 'Pcdc=%0.2f W'%Pcdc\n", + "no=Poac/Pindc#\n", + "print 'no=%0.2f %%'%(no*100)\n", + "no=Poac/Ptrdc#\n", + "print 'no=%0.2f %%'%(no*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.8 Pg 740" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RL1=1.80 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "a=15#\n", + "RL=8#\n", + "RL1=a**2*RL#\n", + "print 'RL1=%0.2f kohm'%(RL1*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.9 Pg 741" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=25.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "RL=16#\n", + "RL1=10*10**3#\n", + "a=sqrt(RL1/RL)#\n", + "print \"a=%0.2f\"%a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.10 Pg 742" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Poac=100.00 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RL=8#\n", + "a=10#\n", + "ICQ=500*10**-3#\n", + "RL=a**2*RL#\n", + "Poac=(1/2)*ICQ**2*RL#\n", + "print 'Poac=%0.2f W'%Poac" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.11 Pg 742" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Poac=50.00 mW\n", + "ICQ=0.01 A\n", + "a=7.9\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "Ptrdc=100*10**-3#\n", + "VCC=10#\n", + "RL=16#\n", + "no=0.5#\n", + "Poac=no*Ptrdc#\n", + "print 'Poac=%0.2f mW'%(Poac*10**3)\n", + "ICQ=2*Poac/VCC#\n", + "print 'ICQ=%0.2f A'%ICQ\n", + "RL1=VCC/ICQ#\n", + "a=sqrt(RL1/RL)#\n", + "print \"a=%0.1f\"%a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.12 Pg 743" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Poac=5.00 mW\n", + "a=7.07\n", + "P=250.00 mW\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "VCC=10#\n", + "IP=50*10**-3#\n", + "RL=4#\n", + "I=IP/sqrt(2)#\n", + "Poac=I**2*RL#\n", + "print 'Poac=%0.2f mW'%(Poac*10**3)\n", + "ICQ=IP#\n", + "RL1=VCC/ICQ#\n", + "a=sqrt(RL1/RL)#\n", + "print \"a=%0.2f\"%a\n", + "V1=VCC#\n", + "V2=V1/a#\n", + "I2p=V2/RL#\n", + "I2=I2p/sqrt(2)#\n", + "P=(I2**2)*RL#\n", + "print 'P=%0.2f mW'%(P*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.13 Pg 744" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "P=16.00 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RL=8#\n", + "VP=16#\n", + "P=(VP**2)/(2*RL)#\n", + "print 'P=%0.2f W'%P" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 25.14 Pg 745" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pindc=12.50 W\n", + "Poac=7.50 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "no=0.6#\n", + "Pcdc=2.5#\n", + "#Poac=Pindc*no#\n", + "#Pindc=2*Pcdc+Poac#\n", + "Pindc=(2*Pcdc)/(1-no)#\n", + "print 'Pindc=%0.2f W'%Pindc\n", + "Poac=0.6*Pindc#\n", + "print 'Poac=%0.2f W'%Poac" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap26_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap26_2.ipynb new file mode 100644 index 00000000..35554731 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap26_2.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 26 : TUNED AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 26.1 Pg 802" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=1.30 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "L=150*10**-6#\n", + "C=100*10**-12#\n", + "fo=0.159/sqrt (L*C)#\n", + "print 'fo=%0.2f MHZ'%(fo*10**-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 26.2 Pg 803" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=1.59 MHZ\n", + "Zp=200.00 Kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "L=100*10**-6#\n", + "C=100*10**-12#\n", + "R=5#\n", + "fo=0.159/sqrt (L*C)#\n", + "print 'fo=%0.2f MHZ'%(fo*10**-6)\n", + "Zp=L/(C*R)#\n", + "print 'Zp=%0.2f Kohm'%(Zp*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 26.3 Pg 804" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BW=10.00 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "fo=1*10**6#\n", + "Qo=100#\n", + "BW=fo/Qo#\n", + "print 'BW=%0.2f kHZ'%(BW*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 26.4 Pg 805" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Qo=160.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "fo=1600*10**3#\n", + "BW=10*10**3#\n", + "Qo=fo/BW#\n", + "print \"Qo=%0.2f\"%(Qo)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 26.5 Pg 806" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Qo=40.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "fo=2*10**6#\n", + "BW=50*10**3#\n", + "Qo=fo/BW#\n", + "print \"Qo=%0.2f\"%(Qo)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 26.6 Pg 807" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Zp=57.10 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "fo=455*10**3#\n", + "BW=10*10**3#\n", + "XL=1255#\n", + "Qo=fo/BW#\n", + "R=XL/Qo#\n", + "L=XL/(2*pi*fo)#\n", + "C=1/(XL*2*pi*fo)#\n", + "Zp=L/(C*R)#\n", + "print 'Zp=%0.2f kohm'%(Zp*10**-3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap27_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap27_2.ipynb new file mode 100644 index 00000000..865701c9 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap27_2.ipynb @@ -0,0 +1,636 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 27 : FEEDBACK AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.1 Pg 819" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av1=9.76 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=400#\n", + "beta=0.1#\n", + "AV1=AV/(1+beta*AV)#\n", + "print \"Av1=%0.2f \"%(AV1)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.2 Pg 820" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta=0.10\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=1000#\n", + "AV1=10#\n", + "beta=((AV/AV1)-1)/AV#\n", + "print \"beta=%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.3 Pg 820" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta=0.04\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=100#\n", + "AV1=20#\n", + "beta=((AV/AV1)-1)/AV#\n", + "print \"beta=%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.4 Pg 820" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=50.00\n", + "beta=0.10\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vo=12.5#\n", + "Vin1=1.5#\n", + "Vin=0.25#\n", + "AV=Vo/Vin#\n", + "print \"Av=%0.2f\"%(AV)#\n", + "AV1=Vo/Vin1#\n", + "beta=((AV/AV1)-1)/AV#\n", + "print \"beta=%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.5 Pg 821" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta=4.17e-03\n", + "beta=0.02\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=60#\n", + "AV1=80#\n", + "#80=AV/(1-BETA*AV)\n", + "beta=((AV1/AV)-1)/AV1#\n", + "print \"beta=%0.2e\"%beta\n", + "beta=1/AV#\n", + "print \"beta=%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.6 Pg 821" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av=1200.00\n", + "beta=9.17e-03\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV1=100#\n", + "Vin=50*10**-3#\n", + "Vin1=0.6#\n", + "Vo=AV1*Vin1#\n", + "Av=Vo/Vin#\n", + "print \"Av=%0.2f\"%(Av)\n", + "beta=((Av/AV1)-1)/Av#\n", + "print 'beta=%0.2e'%(beta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.7 Pg 821" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=0.49 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Av=800#\n", + "B=0.05#\n", + "dAvbyAv=20#\n", + "a=dAvbyAv*(1/(1+B*Av))#\n", + "print 'a=%0.2f %%'%a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.8 Pg 821" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta=0.010\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV1=100#\n", + "A=0.01#\n", + "B=0.2#\n", + "C=B/A#\n", + "AV=AV1*C#\n", + "beta=C/AV#\n", + "print \"beta=%0.3f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.9 Pg 822" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BW1=1200.00 kHZ\n", + "AV1=16.67 \n", + "beta1=0.04\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=100#\n", + "BW=200*10**3#\n", + "beta=0.05#\n", + "BW1=(1+beta*AV)*BW#\n", + "print 'BW1=%0.2f kHZ'%(BW1*10**-3)\n", + "AV1=AV/(1+beta*AV)#\n", + "print \"AV1=%0.2f \"%(AV1)#\n", + "#1*10**6=(1+beta1*AV)*BW#\n", + "beta1=(((1*10**6)/(200*10**3))-1)/100#\n", + "print \"beta1=%0.2f\"%beta1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.10 Pg 822" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta=0.01\n", + "BW1=40.00 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=1500#\n", + "BW=4*10**6#\n", + "AV1=150#\n", + "beta=((1500/150)-1)/1500#\n", + "print \"beta=%0.2f\"%beta\n", + "BW1=(1+beta*AV)*BW#\n", + "print 'BW1=%0.2f MHZ'%(BW1*10**-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.11 Pg 822" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ri=13.44 kohm\n", + "FC1=468.75 HZ \n", + "FC2=1604800.00 HZ \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Rin=4.2*10**3#\n", + "AV=220#\n", + "beta=0.01#\n", + "Ri=(1+beta*AV)*Rin#\n", + "print 'Ri=%0.2f kohm'%(Ri*10**-3)\n", + "F1=1.5*10**3#\n", + "FC1=F1/(1+beta*AV)#\n", + "print 'FC1=%0.2f HZ '%FC1\n", + "F2=501.5*10**3#\n", + "FC2=(1+beta*AV)*F2#\n", + "print 'FC2=%0.2f HZ '%FC2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.12 Pg 822" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Av1=90.91\n", + "fl1=4.55 HZ\n", + "fu2=2.20 MHZ\n", + "D1=0.45 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=1000#\n", + "f1=50#\n", + "f2=200*10**3#\n", + "D=0.05#\n", + "beta=0.01#\n", + "AV1=AV/(1+beta*AV)#\n", + "print \"Av1=%0.2f\"%AV1\n", + "fl1=f1/(1+beta*AV)#\n", + "print 'fl1=%0.2f HZ'%(fl1)\n", + "fu2=(1+beta*AV)*f2#\n", + "print 'fu2=%0.2f MHZ'%(fu2*10**-6)\n", + "D1=D/(1+beta*AV)#\n", + "print 'D1=%0.2f %%'%(D1*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.13 Pg 823" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta=0.04 \n", + "AV1=20.00 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=100#\n", + "RDN=0.8#\n", + "#0.8=1-(1/(1+beta*AV))#\n", + "beta=((1/0.2)-1)/100#\n", + "print \"beta=%0.2f \"%beta\n", + "AV1=AV/(1+beta*AV)#\n", + "print \"AV1=%0.2f \"%AV1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.14 Pg 823" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV1=14.29 \n", + "Ri1=31.50 kohm\n", + "Ri1=2.38 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "AV=300#\n", + "Ri=1.5*10**3#\n", + "R0=50*10**3#\n", + "b=1/15#\n", + "AV1=AV/(1+b*AV)#\n", + "print \"AV1=%0.2f \"%AV1\n", + "Ri1=(1+b*AV)*Ri##input resistance\n", + "print 'Ri1=%0.2f kohm'%(Ri1*10**-3)\n", + "Ri1=R0/(1+b*AV)##output resistance\n", + "print 'Ri1=%0.2f kohm'%(Ri1*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.15 Pg 823" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV=23.50\n", + "Ri=1341.85 ohm\n", + "AV1=3.92\n", + "Ri1=8051.12 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hfe=100#\n", + "hie=2*10**3#\n", + "Rc=470#\n", + "Re1=100#\n", + "Re2=100#\n", + "R1=15000#\n", + "R2=5600#\n", + "AV=(hfe*Rc)/hie#\n", + "print \"AV=%0.2f\"%(AV)\n", + "a=((R1*R2)/(R1+R2))#\n", + "Ri=(a*hie)/(a+hie)#\n", + "print 'Ri=%0.2f ohm'%Ri\n", + "b=Re1/Rc#\n", + "AV1=AV/(1+b*AV)#\n", + "print \"AV1=%0.2f\"%(AV1)\n", + "Ri1=Ri*(1+b*AV)#\n", + "print 'Ri1=%0.2f ohm'%Ri1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 27.16 Pg 823" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R01=1.68 kohm\n", + "R02=2.95 kohm\n", + "Ri1=308.99 kohm\n", + "RO2=19.07 ohm\n", + "AV1=78.49\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "hfe=99#\n", + "hie=2*10**3#\n", + "hie1=2000#\n", + "hie2=2000#\n", + "Rc=22*10**3#\n", + "R4=100#\n", + "R1=220*10**3#\n", + "R2=22*10**3#\n", + "RC1=4.7*10**3#\n", + "R3=7.8*10**3#\n", + "Ri=hie#\n", + "a=(R1*R2)/(R1+R2)#\n", + "b=(a*Rc)/(a+Rc)#\n", + "R01=(b*hie1)/(b+hie1)\n", + "print 'R01=%0.2f kohm'%(R01*10**-3)\n", + "Ri2=hie#\n", + "C=(R3+R4)#\n", + "R02=(RC1*C)/(RC1+C)\n", + "print 'R02=%0.2f kohm'%(R02*10**-3)\n", + "AV1=hfe*R01/hie#\n", + "AV2=hfe*R02/hie#\n", + "AV=AV1*AV2#\n", + "bta=R4/(R3+R4)#\n", + "Ri1=Ri*(1+bta*AV)#\n", + "print 'Ri1=%0.2f kohm'%(Ri1*10**-3)\n", + "RO2=R02/(1+bta*AV)#\n", + "print 'RO2=%0.2f ohm'%RO2\n", + "AV1=AV/(1+bta*AV)#\n", + "print \"AV1=%0.2f\"%AV1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap28_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap28_2.ipynb new file mode 100644 index 00000000..dea0e081 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap28_2.ipynb @@ -0,0 +1,509 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 28 : SINUSOIDAL OSCILLATORS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.1 Pg 838" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L=0.03 H\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "fo=22*10**3##\n", + "C=2*10**-9#\n", + "L=((0.159/fo)**2)/C#\n", + "print \"L=%0.2f H\"%L" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.2 Pg 838" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo1=3.11 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "fo=2.2*10**6#\n", + "#fo1=(sqrt(2))/sqrt(C)#\n", + "fo1=sqrt(2)*fo#\n", + "print 'fo1=%0.2f MHZ'%(fo1*10**-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.3 Pg 839" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=2.91 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C=100*10**-12#\n", + "L1=30*10**-6#\n", + "L2=1*10**-8#\n", + "fo=1/(2*pi*sqrt((L1+L2)*C))#\n", + "print 'fo=%0.2f MHZ'%(fo*10**-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.4 Pg 839" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=1.05 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "L1=1000*10**-6#\n", + "L2=100*10**-6#\n", + "M=20*10**-6#\n", + "C=20*10**-12#\n", + "fo=1/(2*pi*sqrt((L1+L2+2*M)*C))#\n", + "print 'fo=%0.2f MHZ'%(fo*10**-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.5 Pg 840" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=73.05 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C=1*10**-9#\n", + "L1=4.7*10**-3#\n", + "L2=47*10**-6#\n", + "fo=1/(2*pi*sqrt((L1+L2)*C))#\n", + "print 'fo=%0.2f kHZ'%(fo*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.6 Pg 840" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C=13.89 pF\n", + "C=2.98 pF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "L1=2*10**-3#\n", + "L2=20*10**-6#\n", + "fo=950*10**3#\n", + "C=1/(4*pi**2*(L1+L2)*fo**2)#\n", + "print 'C=%0.2f pF'%(C*10**12)\n", + "fo=2050*10**3#\n", + "C=1/(4*pi**2*(L1+L2)*fo**2)#\n", + "print 'C=%0.2f pF'%(C*10**12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.7 Pg 840" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C=11.53 pF\n", + "AV=10.00 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "L1=0.1*10**-3#\n", + "L2=10*10**-6#\n", + "fo=4110*10**3#\n", + "M=20*10**-6#\n", + "C=1/(4*pi**2*(L1+L2+M)*fo**2)#\n", + "print 'C=%0.2f pF'%(C*10**12)\n", + "AV=(L1/L2)#\n", + "print \"AV=%0.2f \"%AV" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.8 Pg 841" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C=0.01 microF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "#e.g 28.8\n", + "fo=100*10**3#\n", + "L=0.5*10**-3#\n", + "C=2/(4*pi**2*L*fo**2)#\n", + "print 'C=%0.2f microF'%(C*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.9 Pg 841" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV=10.00 \n", + "fo=2.36 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C1=0.001*10**-6#\n", + "C2=0.01*10**-6#\n", + "L=5*10**-6#\n", + "AV=C2/C1#\n", + "print \"AV=%0.2f \"%(AV)\n", + "C=(C1*C2)/(C1+C2)\n", + "fo=1/(2*pi*sqrt(L*C))#\n", + "print 'fo=%0.2f MHZ'%(fo*10**-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.10 Pg 841" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=24.35 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C1=0.1*10**-6#\n", + "C2=1*10**-6#\n", + "L=470*10**-6#\n", + "C=(C1*C2)/(C1+C2)\n", + "fo=1/(2*pi*sqrt(L*C))#\n", + "print 'fo=%0.2f kHZ'%(fo*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.11 Pg 842" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L1=284.41 microH\n", + "L2=61.08 microH\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C1=100*10**-12#\n", + "C2=7500*10**-12#\n", + "f01=950*10**3#\n", + "f02=2050*10**3#\n", + "C=(C1*C2)/(C1+C2)#\n", + "#f01=1/(2*pi*sqrt(L*C))\n", + "L1=1/(4*(pi)**2*C*f01**2)#\n", + "print 'L1=%0.2f microH'%(L1*10**6)\n", + "L2=1/(4*(pi)**2*C*f02**2)#\n", + "print 'L2=%0.2f microH'%(L2*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.13 Pg 842" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo=734.53 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C1=0.1*10**-6#\n", + "C2=1*10**-6#\n", + "C3=100*10**-12#\n", + "L=470*10**-6#\n", + "C=1/((1/C1)+(1/C2)+(1/C3))#\n", + "fo=1/(2*pi*sqrt(L*C))#\n", + "print 'fo=%0.2f kHZ'%(fo*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.14 Pg 843" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs=1.09 MHZ\n", + "Q=409.67\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "L=0.33#\n", + "C1=0.065*10**-12#\n", + "C2=1*10**-12#\n", + "R=5.5*10**3#\n", + "fs=1/(2*pi*sqrt(L*C1))#\n", + "print 'fs=%0.2f MHZ'%(fs*10**-6)\n", + "Q=(2*pi*fs*L)/R#\n", + "print \"Q=%0.2f\"%(Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 28.15 Pg 843" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs=0.63 MHZ\n", + "fp=0.65 MHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "L=0.8#\n", + "C1=0.08*10**-12#\n", + "C2=1*10**-12#\n", + "R=5*10**3#\n", + "fs=1/(2*pi*sqrt(L*C1))#\n", + "print 'fs=%0.2f MHZ'%(fs*10**-6)\n", + "C=(C1*C2)/(C1+C2)#\n", + "fp=1/(2*pi*sqrt(L*C))#\n", + "print 'fp=%0.2f MHZ'%(fp*10**-6)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap29_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap29_2.ipynb new file mode 100644 index 00000000..8536a43b --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap29_2.ipynb @@ -0,0 +1,474 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 29 : NON SINUSOIDAL OSCILLATORS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.1 Pg 861" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f=362.32 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R=20*10**3#\n", + "C=100*10**-12#\n", + "f=1/(1.38*R*C)#\n", + "print 'f=%0.2f kHZ'%(f*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.2 Pg 861" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T=0.70 ms\n", + "f=1.42 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=2*10**3#\n", + "R2=20*10**3#\n", + "C1=0.01*10**-6#\n", + "C2=0.05*10**-6#\n", + "T=0.69*(R1*C1+R2*C2)\n", + "print 'T=%0.2f ms'%(T*10**3)\n", + "f=1/T#\n", + "print 'f=%0.2f kHZ'%(f*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.3 Pg 861" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C1=144.93 pF\n", + "C2=1304.35 pF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "T1=1*10**-6#\n", + "f=100*10**3#\n", + "R1=10*10**3#\n", + "R2=10*10**3#\n", + "T=1/f#\n", + "C1=T1/(0.69*R1)#\n", + "print 'C1=%0.2f pF'%(C1*10**12)\n", + "T2=T-T1#\n", + "C2=T2/(0.69*R1)#\n", + "print 'C2=%0.2f pF'%(C2*10**12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.4 Pg 862" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RC1=RC2=RC= RC=3000.00 ohm\n", + "C1=14975.85 pF\n", + "C2=12077.29 pF\n", + "tao1=449.28 microsec\n", + "tao2=362.32 microsec\n", + "tao11=22.46 microsec\n", + "tao12=18.12 microsec\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "T2A=310*10**-6#\n", + "T2B=250*10**-6#\n", + "VCC=15#\n", + "IC=5*10**-3#\n", + "hFC=20#\n", + "RC=VCC/IC#\n", + "RC1=RC#\n", + "RC2=RC#\n", + "print \"RC1=RC2=RC=\",'RC=%0.2f ohm'%RC\n", + "hFE=hFC#\n", + "IBsat=IC/hFE#\n", + "IB=2*IBsat#\n", + "R=VCC/IB#\n", + "R1=R#\n", + "R2=R#\n", + "C1=T2A/(0.69*R1)#\n", + "print 'C1=%0.2f pF'%(C1*10**12)\n", + "C2=T2B/(0.69*R2)#\n", + "print 'C2=%0.2f pF'%(C2*10**12)\n", + "tao1=R1*C1#\n", + "print 'tao1=%0.2f microsec'%(tao1*10**6)\n", + "tao2=R2*C2#\n", + "print 'tao2=%0.2f microsec'%(tao2*10**6)\n", + "tao11=RC1*C1/2#\n", + "print 'tao11=%0.2f microsec'%(tao11*10**6)\n", + "tao12=RC2*C2/2#\n", + "print 'tao12=%0.2f microsec'%(tao12*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.5 Pg 862" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T=50.00 microsec\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "f=20*10**3#\n", + "T=1/f#\n", + "print 'T=%0.2f microsec'%(T*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.6 Pg 862" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T=10.00 us\n", + "tp=0.10 us\n", + "R3=7.25 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "f=100*10**(-3)#\n", + "T=(1/f)#\n", + "print 'T=%0.2f us'%(T)\n", + "tp=(1/T)#\n", + "print 'tp=%0.2f us'%tp\n", + "C1=0.001*10**(-6)#\n", + "R3=((5*10**(-6))/(0.69*C1))#\n", + "print 'R3=%0.2f kohm'%(R3*10**(-3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.7 Pg 863" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T=13.80 microsec\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "RC=2*10**3#\n", + "R3=20*10**3#\n", + "rbb=200#\n", + "C1=1000*10**-12#\n", + "T=0.69*C1*R3#\n", + "print 'T=%0.2f microsec'%(T*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.8 Pg 864" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tp=24.20 microS\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=2.2*10**3#\n", + "C1=0.01*10**-6#\n", + "tp=1.1*R1*C1#\n", + "print 'tp=%0.2f microS'%(tp*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.9 Pg 864" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R1=9.09 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "tp=10*10**-6#\n", + "c=1000*10**-12#\n", + "R1=tp/(1.1*c)#\n", + "print 'R1=%0.2f kohm'%(R1*10**-3)\n", + "#t=(0:0.1:5*pi)'#\n", + "#plot2d1('onn',t,[squarewave(t,60)])#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.10 Pg 865" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "t2=3.29 microS\n", + "t1=8.05 microS\n", + "dc=70.99 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=6.8*10**3#\n", + "R2=4.7*10**3#\n", + "C1=1000*10**-12#\n", + "t2=0.7*R2*C1#\n", + "print 't2=%0.2f microS'%(t2*10**6)\n", + "t1=0.7*(R1+R2)*C1#\n", + "print 't1=%0.2f microS'%(t1*10**6)\n", + "dc=(t1/(t1+t2))*100#\n", + "print 'dc=%0.2f %%'%dc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.11 Pg 865" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f=1.03 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=27*10**3#\n", + "R2=56*10**3#\n", + "C1=0.01*10**-6#\n", + "t2=0.7*R2*C1#\n", + "t1=0.7*(R1+R2)*C1#\n", + "T=t1+t2#\n", + "f=1/T#\n", + "print 'f=%0.2f kHZ'%(f*10**-3)\n", + "#t=(0:0.1:6*pi)'#\n", + "#plot2d1('onn',t,[squarewave(t,60)])#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 29.12 Pg 866" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R2=5.19 kohm\n", + "R1=2.60 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "f=50*10**3#\n", + "dutyc=0.60#\n", + "C=0.0022*10**-6#\n", + "T=1/f#\n", + "t1=dutyc*T#\n", + "t2=T-t1#\n", + "R2=(t2)/(0.7*C)#\n", + "print 'R2=%0.2f kohm'%(R2*10**-3)\n", + "R1=(t1)/(0.7*C)-R2#\n", + "print 'R1=%0.2f kohm'%(R1*10**-3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap30_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap30_2.ipynb new file mode 100644 index 00000000..9bf4e426 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap30_2.ipynb @@ -0,0 +1,135 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 30 : LINEAR WAVE SHAPING CIRCUIT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 30.2 Pg 886" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tao=10.00 msec\n", + "vf=3.30 V\n", + "Output=0.30 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import exp\n", + "C=1*10**-6#\n", + "Vi=6#\n", + "R=10*10**3#\n", + "Vo=-3#\n", + "t=8*10**-3#\n", + "tao=R*C#\n", + "print 'tao=%0.2f msec'%(tao*10**3)\n", + "vf=6*(1-exp(-8/10))#\n", + "print 'vf=%0.2f V'%vf\n", + "output=vf-3.0#\n", + "print 'Output=%0.2f V'%output" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 30.3 Pg 886" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "vc=0.30 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import exp\n", + "t=0.1#\n", + "tao=0.2#\n", + "vc=0.5*exp(-t/tao)#\n", + "print 'vc=%0.2f V'%vc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 30.4 Pg 887" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "vp=10.00 kV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "tao=250*10**-12#\n", + "v=50#\n", + "a=v/tao#\n", + "t=0.05*10**-6#\n", + "vp=a*t#\n", + "print 'vp=%0.2f kV'%(vp*10**-3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap31_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap31_2.ipynb new file mode 100644 index 00000000..725b5278 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap31_2.ipynb @@ -0,0 +1,108 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 31 : TIME BASE CIRCUIT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 31.1 Pg 901" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f=29.66 HZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "R=100*10**3#\n", + "C=0.4*10**-6#\n", + "n=0.57#\n", + "f=1/(2.3*R*C*log10(1/(1-n)))#\n", + "print 'f=%0.2f HZ'%f" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 31.2 Pg 901" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T=0.24 msec\n", + "f=4138.65 HZ\n", + "R=413.87 kohm\n", + "R=41.39 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "n=0.62#\n", + "R=5*10**3#\n", + "C=0.05*10**-6#\n", + "T=2.3*R*C*log10(1/(1-n))\n", + "print 'T=%0.2f msec'%(T*10**3)\n", + "f=1/T#\n", + "print 'f=%0.2f HZ'%f\n", + "f1=50#\n", + "T1=1/f1#\n", + "R=T1/(2.3*C*log10(1/(1-n)))#\n", + "print 'R=%0.2f kohm'%(R*10**-3)\n", + "C=0.5*10**-6#\n", + "R=T1/(2.3*C*log10(1/(1-n)))#\n", + "print 'R=%0.2f kohm'%(R*10**-3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap32_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap32_2.ipynb new file mode 100644 index 00000000..62602e6d --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap32_2.ipynb @@ -0,0 +1,426 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 32 : OPERATIONAL AMPLIFIERS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.1 Pg 919" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CMRR=89.99 dB\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log10\n", + "Adm=200000#\n", + "Acm=6.33#\n", + "CMRR=20*log10(Adm/Acm)#\n", + "print 'CMRR=%0.2f dB'%CMRR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.2 Pg 919" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acm=0.95 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Adm=30000#\n", + "#CMRR=20*log10(Adm/Acm)#\n", + "a=90/20#\n", + "Acm=(Adm/10**a)#\n", + "print \"Acm=%0.2f \"%(Acm)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.3 Pg 919" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fmax=795.77 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "#e.g 32.3\n", + "SR=0.5*10**6#\n", + "Vpk=0.1#\n", + "fmax=SR/(2*pi*Vpk)#\n", + "print 'fmax=%0.2f kHZ'%(fmax*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.4 Pg 920" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fmax=7957.75 HZ\n", + "fmax=206.90 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "Vpk=10#\n", + "slewrate=0.5*10**6#\n", + "fmax=slewrate/(2*pi*Vpk)#\n", + "print 'fmax=%0.2f HZ'%fmax #value of microamp 741\n", + "slewrate=13*10**6#\n", + "fmax=slewrate/(2*pi*Vpk)#\n", + "print 'fmax=%0.2f kHZ'%(fmax*10**-3) #TLO 81\n", + "#value of microamp 741 is much lower than that of the input signal.And value of TLO81 is much higher than input signal,therefore TLO81 can be used" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.5 Pg 920" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vin=40.00 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "ACL=200#\n", + "Vout=8#\n", + "Vin=Vout/ACL#\n", + "print 'Vin=%0.2f mV'%(Vin*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.8 Pg 920" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V0=2.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=1*10**3#\n", + "R2=2*10**3#\n", + "Vi=1#\n", + "Acl=R2/R1#\n", + "V0=Acl*Vi#\n", + "print 'V0=%0.2f V'%V0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.9 Pg 921" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acl=10.00\n", + "Zin=10.00 kohm\n", + "Zout=80.00 ohm\n", + "CMRR=10000.00 \n", + "fmax=15.92 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "Acm=0.001#\n", + "Aol=180000#\n", + "Zin=1*10**6#\n", + "Zout=80#\n", + "SR=0.5#\n", + "R2=100*10**3#\n", + "R1=10*10**3#\n", + "Acl=R2/R1#\n", + "print \"Acl=%0.2f\"%Acl\n", + "Zin=R1#\n", + "print 'Zin=%0.2f kohm'%(Zin*10**-3)\n", + "print 'Zout=%0.2f ohm'%Zout\n", + "CMRR=Acl/Acm#\n", + "print \"CMRR=%0.2f \"%CMRR\n", + "Vpk=5#\n", + "fmax=SR/(2*pi*Vpk)#\n", + "print 'fmax=%0.2f kHZ'%(fmax*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.10 Pg 921" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acl=11.00\n", + "CMRR=11000.00\n", + "fmax=14.47 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "R2=100*10**3#\n", + "R1=10*10**3#\n", + "Acl=1+(R2/R1)#\n", + "Acm=0.001#\n", + "print \"Acl=%0.2f\"%Acl\n", + "CMRR=Acl/Acm#\n", + "print \"CMRR=%0.2f\"%CMRR\n", + "SR=0.5#\n", + "Vpk=5.5#\n", + "fmax=SR/(2*pi*Vpk)#\n", + "print 'fmax=%0.2f kHZ'%(fmax*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.11 Pg 922" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CMRR=1000.00\n", + "fmax=26.53 kHZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Acm=0.001#\n", + "AOL=180000#\n", + "Zin=1*10**6#\n", + "Zout=80#\n", + "SR=0.5#\n", + "Acl=1#\n", + "CMRR=Acl/Acm#\n", + "print \"CMRR=%0.2f\"% CMRR\n", + "Vpk=3#\n", + "fmax=SR/(2*pi*Vpk)\n", + "print 'fmax=%0.2f kHZ'%(fmax*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.12 Pg 922" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vout=-3.52 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V1= 0.1#\n", + "V2=1#\n", + "V3=0.5#\n", + "R1=10*10**3#\n", + "R2=10*10**3#\n", + "R3=10*10**3#\n", + "R4=22*10**3#\n", + "Vout=((-R4*V1)/R1)+((-R4*V2)/R2)+((-R4*V3)/R3)#\n", + "print 'Vout=%0.2f V'%Vout" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 32.14 Pg 922" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vout=4.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V1=-2#\n", + "V2=2#\n", + "V3=-1#\n", + "R1=200*10**3#\n", + "R2=250*10**3#\n", + "R3=500*10**3#\n", + "Rf=1*10**6#\n", + "Vout=(-Rf/R1)*V1+(-Rf/R2)*V2+(-Rf/R3)*V3#\n", + "print 'Vout=%0.2f V'%Vout" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap33_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap33_2.ipynb new file mode 100644 index 00000000..51b66e83 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap33_2.ipynb @@ -0,0 +1,165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 33 : OP AMP APPLICATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 33.1 Pg 935" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C=1.00e-08 microF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "R1=1*10**3#\n", + "R2=100*10**3#\n", + "Rf=R2#\n", + "f1=159#\n", + "C=1/(2*pi*R2*f1)#\n", + "print 'C=%0.2e microF'%C" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 33.2 Pg 935" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f=31.21 HZ\n", + "fmin=312.07 HZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "R1=1*10**3#\n", + "Rf=51*10**3#\n", + "Cf=0.1*10**-6#\n", + "f=1/(2*pi*Rf*Cf)#\n", + "print 'f=%0.2f HZ'%f #ans given in book is wrong\n", + "fmin=10*f#\n", + "print 'fmin=%0.2f HZ'%fmin" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 33.3 Pg 935" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f=1591.55 HZ\n", + "fmin=159.15 HZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "R1=10*10**3#\n", + "Cf=0.01*10**-6#\n", + "f=1/(2*pi*R1*Cf)#\n", + "print 'f=%0.2f HZ'%f #ans given in book is wrong\n", + "fmin=f/10#\n", + "print 'fmin=%0.2f HZ'%fmin" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 33.4 Pg 936" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f0=3120.69 HZ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "R=51*10**3#\n", + "C=0.001*10**-6#\n", + "f0=1/(2*pi*R*C)#\n", + "print 'f0=%0.2f HZ'%f0" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap34_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap34_2.ipynb new file mode 100644 index 00000000..16a4ff5c --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap34_2.ipynb @@ -0,0 +1,859 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 34 : REUGULATED POWER SUPPLIES " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.1 Pg 955" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LR=20.00 microV/V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VL=100*10**-6#\n", + "VS=5#\n", + "LR=VL/VS#\n", + "print 'LR=%0.2f microV/V'%(LR*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.2 Pg 955" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VL=14.00 microV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "LR=1.4*10**-6#\n", + "VS=10#\n", + "#LR=VL/VS#\n", + "VL=LR*VS\n", + "print 'VL=%0.2f microV'%(VL*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.3 Pg 956" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LR=125.00 microV/mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "IL=40*10**-3#\n", + "VNL=8#\n", + "VFL=7.995#\n", + "LR=(VNL-VFL)/IL#\n", + "print 'LR=%0.2f microV/mA'%(LR*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.4 Pg 956" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VFL=5.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VNL=5#\n", + "IL=20*10**-3#\n", + "LR=10*10**-6#\n", + "#LR=(VNL-VFL)/IL#\n", + "VFL=VNL-IL*LR#\n", + "print 'VFL=%0.2f'%VFL" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.5 Pg 957" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VAR=0.20 mV\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 34.5\n", + "V0=10#\n", + "R=0.00002\n", + "VAR=V0*R#\n", + "print 'VAR=%0.2f mV'%(VAR*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.6 Pg 957" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "vl=12.00 V\n", + "Vd=18.00 V\n", + "Iz=0.05 A\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 34.6\n", + "vs=30#\n", + "rs=240#\n", + "vz=12#\n", + "rl=500#\n", + "vl=vz#\n", + "print 'vl=%0.2f V'%vl\n", + "Is=(vs-vz)/rs\n", + "Vd=Is*rs#\n", + "print 'Vd=%0.2f V'%Vd\n", + "Iz=Is-(vl/rl)\n", + "print 'Iz=%0.2f A'%Iz" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.7 Pg 957" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vomin=5.11 \n", + "Vsmin=5.71 \n", + "Vomax=5.25 \n", + "Vsmax=14.25 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vz=5.1#\n", + "rz=10#\n", + "Izmin=1*10**-3#\n", + "Izmax=15*10**-3#\n", + "Rs=600#\n", + "Vomin=Vz+Izmin*rz#\n", + "print 'Vomin=%0.2f '%Vomin\n", + "Vsmin=Izmin*Rs+Vomin#\n", + "print 'Vsmin=%0.2f '%Vsmin\n", + "Vomax=Vz+Izmax*rz#\n", + "print 'Vomax=%0.2f '%Vomax\n", + "Vsmax=Izmax*Rs+Vomax#\n", + "print 'Vsmax=%0.2f '%Vsmax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.8 Pg 958" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Is=24.00 mA\n", + "ILmax=21.00 mA\n", + "RLmin=571.43 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vs=24#\n", + "Rs=500#\n", + "Vz=12#\n", + "Izmin=3*10**-3#\n", + "Izmax=90*10**-3#\n", + "rz=0#\n", + "Is=(Vs-Vz)/Rs#\n", + "print 'Is=%0.2f mA'%(Is*10**3)\n", + "ILmax=Is-Izmin#\n", + "print 'ILmax=%0.2f mA'%(ILmax*10**3)\n", + "RLmin=Vz/ILmax#\n", + "print 'RLmin=%0.2f ohm'%(RLmin)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.9 Pg 958" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IL=5.00 mA\n", + "Izmax=25.00 mA\n", + "Izmin=7.00 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vsmin=22#\n", + "Rs=1*10**3#\n", + "Vz=10#\n", + "RL=2*10**3#\n", + "Vsmax=40#\n", + "IL=Vz/RL#\n", + "print 'IL=%0.2f mA'%(IL*10**3)\n", + "Izmax=((Vsmax-Vz)/Rs)-IL#\n", + "print 'Izmax=%0.2f mA'%(Izmax*10**3)\n", + "Izmin=((Vsmin-Vz)/Rs)-IL#\n", + "print 'Izmin=%0.2f mA'%(Izmin*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.10 Pg 958" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rsmax=30.00 ohm\n", + "Pzmx=1.90 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vz=10#\n", + "Vsmin=13#\n", + "Vsmax=16#\n", + "ILmin=10*10**-3#\n", + "ILmax=85*10**-3#\n", + "Izmin=15*10**-3#\n", + "Rsmax=(Vsmin-Vz)/(Izmin+ILmax)#\n", + "print 'Rsmax=%0.2f ohm'%Rsmax\n", + "Izmax=((Vsmax-Vz)/Rsmax)-ILmin#\n", + "Pzmax=Izmax*Vz#\n", + "print 'Pzmx=%0.2f W'%Pzmax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.11 Pg 959" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rsmax=499.67 ohm\n", + "Rsmin=77.89 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "Vsmin=19.5#\n", + "Vsmax=22.5#\n", + "RL=6*10**3#\n", + "Vz=18#\n", + "Izmin=2*10**-6#\n", + "Pzmax=60*10**-3#\n", + "rz=20#\n", + "Izmax=sqrt(Pzmax/rz)#\n", + "IL=Vz/RL#\n", + "ILmax=IL#\n", + "ILmin=IL#\n", + "Rsmax=(Vsmin-Vz)/(Izmin+ILmax)#\n", + "print 'Rsmax=%0.2f ohm'%Rsmax\n", + "Rsmin=(Vsmax-Vz)/(Izmax+ILmin)#\n", + "print 'Rsmin=%0.2f ohm'%Rsmin" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.12 Pg 959" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Izmin=0.86 mA\n", + "Izmax=2.68 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vsmin=8#\n", + "Vsmax=12#\n", + "Rs=2.2*10**3#\n", + "Vz=5#\n", + "RL=10*10**3#\n", + "Ismin=(Vsmin-Vz)/Rs#\n", + "Ismax=(Vsmax-Vz)/Rs#\n", + "IL=Vz/RL#\n", + "Izmin=Ismin-IL#\n", + "print 'Izmin=%0.2f mA'%(Izmin*10**3)\n", + "Izmax=Ismax-IL#\n", + "print 'Izmax=%0.2f mA'%(Izmax*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.13 Pg 960" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rsmin=83.33 ohm\n", + "Iz=28.00 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VL=5#\n", + "Vz=5#\n", + "IL=20*10**-3#\n", + "Pzmax=500*10**-3#\n", + "Vsmax=15#\n", + "Vsmin=9#\n", + "Izmax=Pzmax/Vz#\n", + "Ismax=IL+Izmax#\n", + "Vz=VL#\n", + "Rsmin=(Vsmax-Vz)/(Izmax+IL)#\n", + "print 'Rsmin=%0.2f ohm'%Rsmin\n", + "ILmax=IL#\n", + "Iz=((Vsmin-Vz)/Rsmin)-ILmax#\n", + "print 'Iz=%0.2f mA'%(Iz*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.14 Pg 960" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=233.03 microA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vz=10#\n", + "Vbe=0.7#\n", + "RL=100#\n", + "Vs=15#\n", + "B=100#\n", + "Rs=33#\n", + "VL=Vz+Vbe#\n", + "IL=VL/RL#\n", + "Is=(Vs-VL)/Rs#\n", + "Ic=Is-IL#\n", + "Ib=Ic/B#\n", + "print 'Ib=%0.2f microA'%(Ib*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.15 Pg 960" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IB=38.00 microA\n", + "Iz=3.68 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vs=15#\n", + "Vz=8.3#\n", + "B=100#\n", + "R=1.8*10**3#\n", + "RL=2*10**3#\n", + "Vbe=0.7#\n", + "VL=Vz-Vbe#\n", + "Vce=Vs-VL#\n", + "IR=(Vs-Vz)/R#\n", + "IL=VL/RL#\n", + "IB=IL/B#\n", + "print 'IB=%0.2f microA'%(IB*10**6) #In question beta is 100 but while solving it is taken as 50 which is wrong\n", + "Iz=IR-IB#\n", + "print 'Iz=%0.2f mA'%(Iz*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.16 Pg 961" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rmax=119.05 ohm\n", + "Izmax=63.00 mA\n", + "Pzmax=0.79 W\n", + "PRmax=0.47 W\n", + "VCEmax=8.00 V\n", + "PDmax=16.00 W\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "ILmin=0#\n", + "ILmax=2#\n", + "VL=12#\n", + "Vsmin=15#\n", + "Vsmax=20#\n", + "B=100#\n", + "VBE=0.5#\n", + "Vz=12.5#\n", + "Izmin=1*10**-3#\n", + "IBmax=ILmax/B#\n", + "IR=IBmax+Izmin\n", + "Rmax=(Vsmin-Vz)/IR#\n", + "print 'Rmax=%0.2f ohm'%Rmax\n", + "Izmax=(Vsmax-Vz)/Rmax#\n", + "print 'Izmax=%0.2f mA'%(Izmax*10**3)\n", + "Pzmax=Vz*Izmax#\n", + "print 'Pzmax=%0.2f W'%Pzmax\n", + "PRmax=(Vsmax-Vz)*Izmax#\n", + "print 'PRmax=%0.2f W'%PRmax\n", + "VCEmax=Vsmax-VL#\n", + "print 'VCEmax=%0.2f V'%VCEmax\n", + "PDmax=VCEmax*ILmax#\n", + "print 'PDmax=%0.2f W'%PDmax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.17 Pg 961" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RD=600.00 ohm\n", + "R1=530.00 ohm\n", + "R2=670.00 ohm\n", + "R3=1.51 kohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VL=12#\n", + "IL=200*10**-3#\n", + "Vs=30#\n", + "Rs=10#\n", + "B1=150#\n", + "Ic1=10*10**-3#\n", + "VBE1=0.7#\n", + "B2=100#\n", + "VBE2=0.7#\n", + "Vz=6#\n", + "Rz=10#\n", + "Iz=20*10**-3#\n", + "ID=10*10**-3#\n", + "I1=10*10**-3#\n", + "RD=(VL-Vz)/ID#\n", + "print 'RD=%0.2f ohm'%RD\n", + "#a=R1/R2#\n", + "a=(VL/(Vz+VBE2))-1#\n", + "Ic2=Ic1#\n", + "IB2=Ic2/B2#\n", + "V2=Vz+VBE2#\n", + "Vz=12#\n", + "R1=(Vz-V2)/I1#\n", + "print 'R1=%0.2f ohm'%R1\n", + "R2=R1/a#\n", + "print 'R2=%0.2f ohm'%R2\n", + "hfe1=B1#\n", + "IB1=(IL+I1+ID)/hfe1#\n", + "I=IB1+Ic2#\n", + "R3=(Vs-(VBE1+VL))/I#\n", + "print 'R3=%0.2f kohm'%(R3*10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.18 Pg 961" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vout=8.20 V\n", + "IE1=8.20 mA\n", + "P1=137.76 mW\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vs=25#\n", + "Vz=15#\n", + "RL=1*10**3#\n", + "VBE2=0.7#\n", + "Vout=(Vz/2)+VBE2#\n", + "print 'Vout=%0.2f V'%Vout\n", + "IL=Vout/RL#\n", + "IE1=IL#\n", + "print 'IE1=%0.2f mA'%(IE1*10**3)\n", + "Vce1=Vs-Vout#\n", + "P1=Vce1*IE1#\n", + "print 'P1=%0.2f mW'%(P1*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.19 Pg 961" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voutmin=1.25 V\n", + "Voutmax=30.16 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "IADJ=100*10**-6#\n", + "Vin=35#\n", + "VREF=1.25#\n", + "R2=0#\n", + "R1=220#\n", + "Voutmin=VREF*(1+(R2/R1))+IADJ*R2#\n", + "print 'Voutmin=%0.2f V'%Voutmin\n", + "R2=5000#\n", + "Voutmax=VREF*(1+(R2/R1))+IADJ*R2#\n", + "print 'Voutmax=%0.2f V'%Voutmax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.20 Pg 962" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vo=9.77 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=220#\n", + "R2=1500#\n", + "Vo=1.25*(1+(R2/R1))#\n", + "print 'Vo=%0.2f V'%Vo #answer given in book is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 34.21 Pg 962" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vo=13.75 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "R1=240#\n", + "R2=2.4*10**3#\n", + "Vo=1.25*(1+(R2/R1))#\n", + "print 'Vo=%0.2f V'%Vo" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap3_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap3_2.ipynb new file mode 100644 index 00000000..abc387fe --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap3_2.ipynb @@ -0,0 +1,859 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 3 : Semiconductors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.1 Pg 59" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l = 45.6 km\n", + "J = 5.80e+05 A/m**2\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt, pi\n", + "R=1000#\n", + "sigma=5.8*10**7#\n", + "d=0.001#\n", + "\n", + "#l is length of the cu wire\n", + "l=R*sigma*pi*(d*d/4)##R=l/(sigma*pi*(d*d/4))\n", + "print \"l = %0.1f km\"%(l*10**-3)\n", + "E=10*10**-3#\n", + "J=sigma*E##current density\n", + "print 'J = %0.2e A/m**2'%J" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.2 Pg 60" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 1.133e+29 /m**3\n", + "J = 1.16e+06 A/m**2\n", + "A = 3.14e-06 m**2\n", + "I = 3.64 A\n", + "V = 6.40e-05 m/s\n" + ] + } + ], + "source": [ + "from math import sqrt, pi\n", + "d=2*10**-3#\n", + "sigma=5.8*10**7#\n", + "mu=0.0032#\n", + "E=20*10**-3#\n", + "q=1.6*10**-19#\n", + "n=sigma/(q*mu)##sigma=q*n*mu\n", + "print 'n = %0.3e /m**3'%(n)\n", + "J=sigma*E##current density\n", + "print 'J = %0.2e A/m**2'%J\n", + "A=pi*d*d/4##area of cross-section of wire\n", + "print 'A = %0.2e m**2'%A\n", + "I=J*A##current flowing in the wire\n", + "print 'I = %0.2f A'%I\n", + "V=mu*E##electron drift velocity\n", + "print 'V = %0.2e m/s'%V\n", + "#answer printed in the book is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.3 Pg 61" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 6.49e+07 S/m\n", + "mu = 0.700 m**2/vs\n", + "t = 3.980 ps\n" + ] + } + ], + "source": [ + "p=1.54*10**-8#\n", + "n=5.8*10**28#\n", + "q=1.6*10**-19#\n", + "sigma=1/p##p=1/sigma..conductivity\n", + "print 'sigma = %0.2e S/m'%sigma\n", + "mu=sigma/(q*n*10**-2)##mobility\n", + "print 'mu = %0.3f m**2/vs'%mu\n", + "m=9.1*10**-31#\n", + "t=(m*mu)/q##relaxation time\n", + "print 't = %0.3f ps'%(t*1e12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.4 Pg 62" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 2.24 ohm-mu**-1\n", + "sigma1 = 4.32e-04 ohm-m**-1\n" + ] + } + ], + "source": [ + "mun=0.38#\n", + "mup=0.18#\n", + "n=2.5*10**19#\n", + "a=0.13#\n", + "b=0.05#\n", + "n2=1.5*10**16#\n", + "q=1.6*10**-19#\n", + "sigma=q*n*(mun+mup)## intrinsic coductivity for germanium\n", + "print 'sigma = %0.2f ohm-mu**-1'%sigma\n", + "sigma1=q*n2*(a+b)##intrinsic coductivity for silicon\n", + "print 'sigma1 = %0.2e ohm-m**-1'%sigma1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.5 Pg 62" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "e = 3.27e-04 ohm-m**-1\n", + "h = 1.13e-04 ohm-m**-1\n" + ] + } + ], + "source": [ + "n=1.41*10**16#\n", + "mun=0.145#\n", + "mup=0.05#\n", + "q=1.6*10**-19#\n", + "#sigma=q*n*(mun+mup)#\n", + "e=q*n*mun##contribution by electrons\n", + "h=q*n*mup##contribution by holes\n", + "print 'e = %0.2e ohm-m**-1'%e\n", + "print 'h = %0.2e ohm-m**-1'%h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.6 Pg 63" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R = 125.00 ohm\n", + "rho = 0.025 ohm-m\n", + "n = 1.92e+21 /m**3\n", + "J = 2.00e+05 amp/m**2\n", + "v = 650.00 m/sec\n" + ] + } + ], + "source": [ + "q=1.60*10**-19#\n", + "l=0.2*10**-3#\n", + "a=0.04*10**-6#\n", + "v=1#\n", + "i=8*10**-3#\n", + "mun=0.13#\n", + "#concentration of free electrons\n", + "R=v/i##resistance\n", + "print 'R = %0.2f ohm'%R\n", + "rho=(R*a)/l#\n", + "print 'rho = %0.3f ohm-m'%rho\n", + "sigma=1/rho##conductivity\n", + "n=sigma/(q*mun)##concentration of free electrons\n", + "print 'n = %0.2e /m**3'%n\n", + "#Drift velocity\n", + "j=i/a#\n", + "print 'J = %0.2e amp/m**2'%j\n", + "v=j/(n*q)#\n", + "print 'v = %0.2f m/sec'%v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.7 Pg 64" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 2.13 ohm-m**-1\n", + "n = 2.3e+19 /m**3\n" + ] + } + ], + "source": [ + "rho=0.47#\n", + "q=1.6*10**-19#\n", + "mun=0.39#\n", + "mup=0.19#\n", + "sigma=1/rho##conductivity of intrinsic semiconductor\n", + "print 'sigma = %0.2f ohm-m**-1'%sigma\n", + "n=sigma/(q*(mun+mup))##intrinsic carrier concentration of germanium\n", + "print 'n = %0.1e /m**3'%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.8 Pg 66" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 5.00e+20 /m**3\n", + "SIGMA = 14.40 ohm-m**-1\n" + ] + } + ], + "source": [ + "ND=10**21#\n", + "NA=5*10**20#\n", + "q=1.6*10**-19#\n", + "mun=0.18#\n", + "ND1=ND-NA##number of free electrons\n", + "print 'n = %0.2e /m**3'%ND1\n", + "SIGMA=ND1*q*mun##conductivity of silicon\n", + "print 'SIGMA = %0.2f ohm-m**-1'%SIGMA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.9 Pg 66" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 0.01 (ohm-m)**-1\n", + "ND = 1.74e+17 atoms/m**3\n" + ] + } + ], + "source": [ + "rho=100.0#\n", + "q=1.6*10**-19#\n", + "mun=0.36#\n", + "sigma=1.0/rho#\n", + "print 'sigma = %0.2f (ohm-m)**-1'%sigma\n", + "ND= sigma/(q*mun)##donar concentration\n", + "print 'ND = %0.2e atoms/m**3'%ND" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.10 Pg 66" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 1.76e+24 electrons/cm**3\n", + "p = 2.64e+24 holes/cm**3\n" + ] + } + ], + "source": [ + "ND=2*10**14#\n", + "NA=3*10**14#\n", + "ni=2.3*10**19#\n", + "n=(ni**2)/NA#\n", + "print 'n = %0.2e electrons/cm**3'%n\n", + "p=(ni**2)/ND#\n", + "print 'p = %0.2e holes/cm**3'%p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.11 Pg 67" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 3750\n", + "p = 4.50e+11\n" + ] + } + ], + "source": [ + "ND=5*10**8#\n", + "NA=6*10**16#\n", + "ni=1.5*10**10#\n", + "n=(ni**2)/NA##number of electons\n", + "p=(ni**2)/ND##number of holes\n", + "print \"n = %0.f\"%n\n", + "print \"p = %0.2e\"%p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.12 Pg 67" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 1.60 S/m\n", + "l = 1.26 mm\n" + ] + } + ], + "source": [ + "from math import pi\n", + "d=0.001#\n", + "q=1.6*10**-19#\n", + "ND=10**20#\n", + "R=1000#\n", + "mun=0.1#\n", + "n=ND##number of free electrons\n", + "sigma=q*n*mun##conductivity\n", + "print 'sigma = %0.2f S/m'%sigma\n", + "a=(1/sigma)*(1/(pi*(0.001**2)/4))\n", + "l=R/a#\n", + "print 'l = %0.2f mm'%(l*10**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.13 Pg 67" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p = 3.47e+17 /cm**3\n", + "n = 1.80e+09 /cm**3\n", + "n = 4.80e+14 /cm**3\n", + "p = 4.69e+05 /cm**3\n" + ] + } + ], + "source": [ + "sigma=100#\n", + "rho=0.1#\n", + "ni=1.5*10**10#\n", + "mun=1300#\n", + "mup=500#\n", + "ni1=2.5*10**13#\n", + "mun1=3800#\n", + "mup1=1800#\n", + "q=1.602*10**-19#\n", + "#concentration of p type germanium\n", + "p=sigma/(q*mup1)#\n", + "print 'p = %0.2e /cm**3'%p\n", + "n=(ni1**2)/p#\n", + "print 'n = %0.2e /cm**3'%n\n", + "#concentration of n type silicon\n", + "n=rho/(mun*q)#\n", + "print 'n = %0.2e /cm**3'%n\n", + "p=(ni**2)/n#\n", + "print 'p = %0.2e /cm**3'%p\n", + "# ans in the textbook are wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.14 Pg 68" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ND = 4.41e+14 /cm**3\n", + "p = 1.42e+12 /cm**3\n", + "sigma = 0.27 (ohm-cm**)-1\n", + "rho = 3.72 ohm-cm\n" + ] + } + ], + "source": [ + "mun=3800#\n", + "mup=1800#\n", + "ni=2.5*10**13#\n", + "Nge=4.41*10**22#\n", + "q=1.602*10**-19#\n", + "ND=Nge/10**8#\n", + "print 'ND = %0.2e /cm**3'%ND\n", + "p=(ni**2)/ND#\n", + "print 'p = %0.2e /cm**3'%p\n", + "n=ND#\n", + "sigma=q*n*mun#\n", + "print 'sigma = %0.2f (ohm-cm**)-1'%sigma\n", + "rho=1/sigma#\n", + "print 'rho = %0.2f ohm-cm'%rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.15 Pg 68" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 4.45e-06 (ohm-cm)**-1\n", + "rho = 224690.83 ohm-cm\n", + "ND = 9.92e+14 /cm**3\n", + "p = 2.33e+05 /cm**3\n", + "sigma = 0.21 (ohm-cm)**-1\n", + "rho = 4.67 ohm-cm\n" + ] + } + ], + "source": [ + "Nsi=4.96*10**22#\n", + "ni=1.52*10**10#\n", + "q=1.6*10**-19#\n", + "mun=1350#\n", + "mup=480#\n", + "#resistivity of intrinsic silicon\n", + "sigma=q*ni*(mun+mup)\n", + "print 'sigma = %0.2e (ohm-cm)**-1'%sigma\n", + "rho=1/sigma#\n", + "print 'rho = %0.2f ohm-cm'%rho\n", + "#resistivity of doped silicon\n", + "ND=Nsi/(50*10**6)#\n", + "print 'ND = %0.2e /cm**3'%ND\n", + "n=ND#\n", + "p=(ni**2)/n#\n", + "print 'p = %0.2e /cm**3'%p\n", + "sigma=q*n*mun#\n", + "print 'sigma = %0.2f (ohm-cm)**-1'%sigma\n", + "rho=1/sigma#\n", + "print 'rho = %0.2f ohm-cm'%rho" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.16 Pg 69" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 4.40e-04 ohm-m**-1\n", + "sigma = 38.45 ohm-m**-1\n", + "sigma34 = 7.48e-04 ohm-m**-1\n" + ] + } + ], + "source": [ + "mup=0.048#\n", + "mun=0.135#\n", + "q=1.602*10**-19#\n", + "Nsi=5*10**28#\n", + "ni=1.5*10**16#\n", + "sigma=q*ni*(mun+mup)#\n", + "print 'sigma = %0.2e ohm-m**-1'%sigma\n", + "NA=Nsi/10**7#\n", + "P=NA#\n", + "n=ni**2/P#\n", + "sigma=q*P*mup#\n", + "print 'sigma = %0.2f ohm-m**-1'%sigma\n", + "alpha=0.05#\n", + "T=34-20#\n", + "sigma20=0.44*10**-3#\n", + "sigma34=sigma20*(1+alpha*T)#\n", + "print 'sigma34 = %0.2e ohm-m**-1'%sigma34" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.17 Pg 71" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DP = 4.40e+01 m**2/s\n", + "Dn = 9.31e+01 m**2/s\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "mun=3600#\n", + "mup=1700#\n", + "k=1.38*10**23#\n", + "T=300#\n", + "DP=mup*(T/11600)##answer given in the book is wrong\n", + "print 'DP = %0.2e m**2/s'%DP\n", + "Dn=mun*(T/11600)##answer given in the book is wrong\n", + "print 'Dn = %0.2e m**2/s'%Dn" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.18 Pg 74" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu = 1000.00 cm**2/volt-sec\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "RH=160#\n", + "rho=0.16#\n", + "mun=(1/rho)*RH#\n", + "print 'mu = %0.2f cm**2/volt-sec'%mun" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.19 Pg 77" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 7.50e+21 /m**3\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "I=50#\n", + "B=1.2#\n", + "t=0.5*10**-3#\n", + "Vh=100#\n", + "q=1.6*10**-19#\n", + "n=(B*I)/(Vh*q*t)#\n", + "print 'n = %0.2e /m**3'%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.20 Pg 77" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 3.12e+21 /m**3\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "rho=20*10**-2#\n", + "mu=100*10**-4#\n", + "q=1.6*10**-19#\n", + "n=1/(rho*q*mu)#\n", + "print 'n = %0.2e /m**3'%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.21 Pg 77" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu = 0.04 m**2/V-s\n", + "n = 1.71e+22 /m**3\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Rh=3.66*10**-4#\n", + "rho=8.93*10**-3#\n", + "mu=Rh/rho#\n", + "print 'mu = %0.2f m**2/V-s'%mu\n", + "q=1.6*10**-19#\n", + "\n", + "n=1/(q*Rh)#\n", + "print 'n = %0.2e /m**3'%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex3.22 Pg 77" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma = 111.11 S/m\n", + "RH = 2.70e-05 m**3*C\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "rho=9*10**-3#\n", + "mup=0.003#\n", + "sigma=1/rho#\n", + "print 'sigma = %0.2f S/m'%sigma\n", + "RH= mup/sigma#\n", + "print 'RH = %0.2e m**3*C'%RH" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap5_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap5_2.ipynb new file mode 100644 index 00000000..5bd9c597 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap5_2.ipynb @@ -0,0 +1,539 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 5 : PN JUNCTION DIODE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.1 Pg 102" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 10.72 uA\n" + ] + } + ], + "source": [ + "from math import exp \n", + "I0=2*10**-7\n", + "Vf=0.1\n", + "I=I0*(exp (40*Vf)-1)\n", + "print \"I = %0.2f\"%(I*10**6),'uA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.2 Pg 102" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VT=25.69 mV\n", + "I=5.24 A\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import exp\n", + "I0=1*10**-3\n", + "Vf=0.22\n", + "T=298\n", + "n=1\n", + "VT=T/11600\n", + "print \"VT=%0.2f\"%(VT*10**3),'mV'\n", + "I=I0*(exp (Vf/(n*VT))-1)\n", + "print \"I=%0.2f\"%I,\"A\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.3 Pg 103" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of n = 1.17605641518\n" + ] + } + ], + "source": [ + "from math import log\n", + "from __future__ import division\n", + "I1=0.5*10**-3\n", + "V1=340*10**-3\n", + "I2=15*10**-3\n", + "V2=440*10**-3\n", + "kTbyq=25*10**-3\n", + "a=V1/kTbyq\n", + "b=V2/kTbyq\n", + "#log(I1/I2)==log(exp((b-a)/n))\n", + "n=(a-b)/(log(I1/I2))\n", + "print \"value of n =\",n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.4 Pg 103" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I400=10.24 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "I300=10*10**-6\n", + "T1=300\n", + "T2=400\n", + "I400=I300*(2**((T2-T1)/10))\n", + "print \"I400=%0.2f\"%(I400*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.5 Pg 103" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VF=0.72 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "rB=2.0\n", + "IF=12*10**-3\n", + "VF=0.7+IF*rB\n", + "print \"VF=%0.2f\"%VF,'V'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.8 Pg 104" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IF=0.50 A\n", + "IR=3.33 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "PD=0.5\n", + "VF=1\n", + "VBR=150\n", + "IF=(PD/VF)\n", + "print \"IF=%0.2f\"%IF,\"A\"\n", + "IR=(PD/VBR)\n", + "print \"IR=%0.2f\"%(IR*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.9 Pg 104" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VD=VS=5.00 V\n", + "VR= 0\n", + "I= 0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R=330\n", + "VS=5\n", + "VD=VS\n", + "print \"VD=VS=%0.2f\"% VD,'V'\n", + "VR=0\n", + "print \"VR=\",VR\n", + "I=0\n", + "print \"I=\",I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.10 Pg 105" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VD= 0\n", + "VR= 12 V\n", + "I=25.53 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "VS=12\n", + "R=470\n", + "VD=0\n", + "print \"VD=\",VD\n", + "VR=VS\n", + "print \"VR=\",VR,\"V\"\n", + "I=(VS/R)\n", + "print \"I=%0.2f\"%(I*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.11 Pg 105" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I=6.62 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "VS=6\n", + "R1=330\n", + "R2=470\n", + "VD=0.7\n", + "RT=R1+R2\n", + "I=(VS-0.7)/RT\n", + "print \"I=%0.2f\"%(I*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.12 Pg 105" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VR=4.30 V\n", + "I=8.43 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "VS=5\n", + "R=510\n", + "VF=0.7\n", + "VR=VS-0.7\n", + "print \"VR=%0.2f\"%VR,\"V\"\n", + "I=VR/R\n", + "print \"I=%0.2f\"%(I*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.13 Pg 105" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I=3.07 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "VS=6\n", + "VD1=0.7\n", + "VD2=0.7\n", + "VR=1.5*10**3\n", + "I=(VS-VD1-VD2)/VR\n", + "print \"I=%0.2f\"%(I*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.14 Pg 106" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I=3.21 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "VS=12\n", + "R1=1.5*10**3\n", + "R2=1.8*10**3\n", + "VD1=0.7\n", + "VD2=0.7\n", + "I=(VS-VD1-VD2)/(R1+R2)\n", + "print \"I=%0.2f\"%(I*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.15 Pg 106" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VO= 0 V\n", + "VO= 4.3 V\n", + "VO= 4.3 V\n", + "VO= 4.3 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V1=0\n", + "V2=0\n", + "VO=0\n", + "print \"VO=\",VO,\"V\"\n", + "V1=0\n", + "V2=5\n", + "VO=V2-0.7\n", + "print \"VO=\",VO,\"V\"\n", + "V1=5\n", + "V2=0\n", + "VO=V1-0.7\n", + "print \"VO=\",VO,\"V\"\n", + "V1=5\n", + "V2=5\n", + "VO=V2-0.7\n", + "print \"VO=\",VO,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.16 Pg 106" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I= 0.999965 mA\n", + "R1= 50\n", + "V= 0 mV\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm0VNWV/z+bx4wTKCAgyoyACChBHMBnYgxqB42azmRM\nYrpjOjFDr0532kxir3Sm/nV3OiuJy9aYNnZiNGZwJA5E1EaDIMg8z/OgyCCDwDu/P3ZVXr3nG6rq\n3XvPuffuz1pvUcOtcze1T+3vGfcR5xyGYRiG0RrtfBtgGIZhpAMTDMMwDKMsTDAMwzCMsjDBMAzD\nMMrCBMMwDMMoCxMMwzAMoyxMMAyjESJym4jc7dsOwwgNsX0YhmEYRjlYD8MwDMMoCxMMI7eIyFdF\nZLOI7BOR5SLy7sLr00Tk/sLjASJSJyI3icgGEdklIl9rpryBIrKn5PndIrKj5Pn9IvKlwuNPicjS\nwr3XiMhnSq5bJiJXlzxvX7jv2MLziSLykojsEZHXROTSqL8bw2gKEwwjl4jIcODzwHjn3EnAFcD6\nwttNjdNeDAwD3gN8S0TObnyBc24dsE9ExhVemgzsL7l2MjCz8HgHcHXh3p8C/rMoCMCvgI+UFP0+\nYKdz7jUR6Qc8DvyLc6478BXgtyJyWiX/f8OoBhMMI68cBzoBo0Skg3Nuo3NubeE9aeL6O5xzR5xz\nC4EFwJhmyn0eqBWR01HheRi4VEQGAic55xYAOOeeLAgMzrkXgKdRQQF4AJgqIp0Lzz9aeA3gRuBJ\n59wfC599FpgLXFX5V2AYlWGCYeQS59xq4MvANGCHiDwgIn1a+Mj2kscHgW7NXPc8UAtMAl4oPL8U\nFYMXixeJyJUi8mcReb0wjHUVcGqJbctQ0egKvB/tdQCcBXywMBy1p/DZi4HTy/2/G0a1mGAYucU5\n94BzbhIahB3w/QiKfR4Vi1p0+On/0IB+aeE5ItIJ+C3wA6BXYWjpSRr2bB5Ah6WuAZaW9H42Avc7\n57qX/J3onPtBBLYbRouYYBi5RESGici7C8H7CHAYHaYqu4imXiz0Dg6jQ0fPO+f2AzuB61ExAehY\n+NsN1InIlegcSim/RucuPgv8suT1/wXeLyJXiEiNiHQWkdrC3IZhxIoJhpFXOgHfBXYB24DTgNsK\n7zkaTnw3NQne0gammcBu59yWkucA8wAKIvJF4CHgDbQn8UiDwp3bDrwEXAg8WPL6ZrTX8TVUiDYC\n/4D9lo0E8LpxT0TuBa5GV4CMbuaaHwFXouPGn3TOzU/QRMMwDKOA71bJz4Epzb0pIlcBQ5xzQ4HP\nAHcmZZhhGIbREK+C4Zx7EdjTwiVTgfsK184GThGR3knYZhiGYTTEdw+jNfoBm0qebwbO8GSLYRhG\nrgldMOCdq1EsW6JhGIYH2vs2oBW2AP1Lnp9ReK0BImIiYhiGUQXOuSaXiDdF6D2MR4GbQBOuAW86\n53Y0daFzLtK/ujrH1KmOm292HD/e8PXPftZx1VX6OOr7+v67/fbbvdtQyd+3vuWYNMlx4EDD13/y\nE8ewYY79++379P33m984BgxwbNrU8PUZMxw9ezrWrLHv09dfpXgVDBF5AF1rPlxENonIzSJyi4jc\nAppvB1grIquBu4DPJWXbz34GmzfDnXdCu5JvSQR+9CPYvVvfM/zx8stw993w0EPQrVGijs99Di66\nCL7yFT+2Gcq2beqLhx6CMxrNPr773XDbbXDjjVBX58c+ozK8Dkk55z5SxjW3JmFLKfv2wTe+AU89\nBR07vvP9Dh3g3nvhssvgwx+GHj2SttCoq4Mvfxm+/304vZksSj/8IQwfDp/9LIwd2/Q1Rrx885vw\nyU/Cu97V9Ptf+hL86lf6d+ONiZpmVEHoQ1Je+MEPYMoUGNNcPlJg1Ci47jr43veSsysJamtrfZtQ\nFg8/DMePw8c+1vw1J58Mt9+urVhfpOX7jIMlS+Cxx+BrTZ4eorRrp8L+9a/D0aOtl5nn7zMEMnFE\nq4i4qP4fBw7AgAEwZw4MHNjytRs2wHnnwdq1GpyMZHAOxo+HadPg/e9v+dojR2DQIHjyyZYbAEb0\n3HwzDB6sYtAal10Gn/609TKSRkRwGZr0Tpz77oNLL21dLADOOkt7Iv/93/HbZdTz4ouwfz9cfXXr\n13bqBF/8ovYajeTYsQN+/3u45Zbyrv/qV3V4MQPt10xjPYwS6urg7LN1wnvSpPI+M2eOzmOsWtVw\nctyIj+uvh/e8RydTy2HPHm0ArFkDp54ar22GcscdsHUr3HVXedc7p7+9n/9cFysYyWA9jDYwa5ZO\ncl9ySfmfGT8eunbVVq8RP7t3w4wZ8PGPl/+Z7t3hqqt0YtWIn7o6+J//0cUG5SKiQ1L33BObWUYE\nmGCU8L//q4FIytZbvfaTn9QfiBE/Dz6owf/EEyv73M03a+vViJ9Zs3SZc6Ur0266SYex9u+Pxy6j\n7ZhgFDhyRFfefPSjlX/2xhu1or/1VvR2GQ35xS8q610Uefe74fXXYdGi6G0yGnL//ZU3vECXR190\nETzxRDx2GW3HBKPA9OkwejT079/6tY3p3VvXmT/1VPR2GfWsXQvr18N731v5Z9u1gxtugN/9LnKz\njBKOHoXf/ra6hheojx5+OFqbjOgwwSjwhz9oZa2WD3xAexlGfDzyiC6jbV/ldtPrrjPBiJsXXoAh\nQ6preAFccw0884z11kPFBAPdAPbEE62v6W+Ja6/VMt5+Ozq7jIY88ogGlGq58ELYuRNWr47OJqMh\njzwCU6dW//kePWDiRN03Y4SHCQaak6hfP91XUS19++qywOeei84uo57XX4f58+Hyy6svo107FXbr\nZcSDc/Doo20TDNBGweOPR2OTES0mGERTyQH+6q90LsSIniee0InrLl3aVs5VV8Ef/xiNTUZDFi5U\nUT7nnLaVM2WKzgdaQsLwMMFA8920ZTiqyPveZxPfcfHkk9H46LLLdLPlgQNtL8toyOOPq48qXR3V\nmEGDNNXOa69FY5cRHbkXjM2bYdcuOP/8tpc1bpxuLNu4se1lGfXU1elmvbYMRxU54QRd0TZzZtvL\nMhry7LNwxRXRlHXlldYTDJHcC8aMGdrqjCKtR7t2uuTz6afbXpZRz8KFulv7zDOjKc96gtFz8KD2\n3CZPjqa8K6+04d0QMcGYoXmJouKKKywYRU1UvYsiJhjRM2uW7uyudAd+c1x6qS5ysF3fYZFrwXAu\nHsH4059swi5Knn02Wh+de64mJNy0Kboy807Uv6POnTVP26xZ0ZVptJ1cC8bKlVBToxuNoqJvX11L\nvnRpdGXmmbff1qBx2WXRldmunQ6dWMLI6Iha1EF7Gc8/H22ZRtvItWAUW0VtXdXRmMmTdcer0XZm\nz4Zhw6I/BnfyZAtGUbFnjza+Jk6MtlwTjPDItWA8/3y0LdciJhjR8eKL0U2klmI+io5Zs+CCC/Ro\ngCiZOFEXPFiakHDItWC89BJcfHH05RaDUQbOpvLOrFnx+Ojcc2H7dk0VYrSNWbPiOfSoa1edSH/p\npejLNqojt4KxcaOOjw8aFH3ZAwbo3MiaNdGXnSfq6jRtSxyCUVOj5do8RtuJS9RBh6Vsz0w45FYw\nipU86vkL0DJtjLztLFum+y9OPz2e8s1Hbeftt2HevOjnL4pMmmQ9jJDIrWC89FK8ZwdfcoktCWwr\ncbZcQct++eX4ys8D8+fD4MFw0knxlD9hAsydC8eOxVO+URm5FYy4xl2LXHCBrvAxqiduwTjvPF3+\nfOhQfPfIOnH7qEcPzSS9ZEl89zDKJ5eCsX8/rFgRTf6o5hg9GjZsgH374rtH1ok7GHXpoinp58+P\n7x5ZJ24fgQ53/fnP8d7DKI9cCsYrr+jqi06d4rtHhw56jzlz4rtHltm5U8/AGDky3vtYT7B6nIt/\naBdMMEIil4Ixe3Z8k3SlWDCqnrlzNTVEFEkhW8J8VD2bN+tKtgED4r2PCUY45FIw5s7VFNdxY8Go\neoqCETfmo+op+iiOlYalnHOOitOePfHex2id3ApGksHINvBVzpw5yfho2DB4803bwFcNSf2O2rfX\n+UYb3vVP7gRj506d9B48OP57Fc9vsAOVKsO55IJRu3ba27ReRuUk5SPQxpcNS/knd4Lx6qvaWom7\nGw16DxvyqJytW3XdfVQHJrWG+ahyiqIe50rDUs4/XzcIGn7JnWAk2SoCvZdV9MpIamy8yPnn29La\nSlm/Xs+s6Ns3mfuZYIRBLgUjqVYR6DnfVtErI2lRP+8881GlJO2jQYN0T9OuXcnd03gnuRSMJCv6\nuHHaerWJ7/JJahVbkf79NSfStm3J3TPtvPpqsr8jkfrfkuGPXAnGtm1w+HD868ZL6dtXK/uWLcnd\nM804l9wKqSIi2suwYFQ+STe8wHqCIZArwSi2ipIaGwcLRpWyYYMexJPU2HgRC0bl41z94pEkOe88\nva/hj1wJRtLzF0VsHqN85s3TwJA05qPyWbMGTjwRevVK9r4m6v7JlWC89pq/YGQ9jPJYsEBzcCWN\n9QLLZ8ECrdNJM2yY7qOyHd/+yJVgLFyoR3MmjQlG+SxY4MdHQ4bA7t3wxhvJ3ztt+PJRTQ2MGaMN\nP8MPuRGMffu0dZLEDu/GDB6sraLXX0/+3mlj4UINCknTrp32bEzYW2fBAj8+ApvH8E1uBGPRIhg1\nSlspSVMMRtYyapl9+2DHDm3t+8DGyMvDl6iD3nfhQj/3NnIkGL660UVsUrV1fIo6WDAqh717dfPc\noEF+7n/uuVpPDD/kRjB8topAexgLFvi7fxrwOdQBekqiBaOWWbhQ0437EvVRo2D5cjh61M/9806u\nBMNnD8OCUev4FoxRo2DlSgtGLeG7p961q+7MX7XKnw15JheCUVenwdpnRR850oJRa/gW9a5d4Ywz\n1E9G0/juqYM2vmzo0A+5EIx166BHDzjlFH82FFtGFoyapq4OFi/2KxhgPcHW8N0LBK0jJhh+8CoY\nIjJFRJaLyCoR+WoT79eKyF4RmV/4+0Y19/HdjS5iwah51qyBU0/1K+pgPmqJ48dV1EeP9muHTXz7\no72vG4tIDfBj4HJgCzBHRB51zi1rdOnzzrmpbblXCN1o0MnCxYt9WxEmvoejioweDffd59uKMFm9\nWtOBnHyyXztsSMofPnsYE4DVzrn1zrmjwK+Ba5q4rs2pAkMKRtYyapoQhjrAWq8tEUrDa9Ag3QS7\nd69vS/KHT8HoB2wqeb658FopDrhIRBaIyJMiMrKaG4USjEwwmiekYLRzp24iNBqycKH/4SjQjbDn\nnGO/JR94G5JCxaA15gH9nXMHReRK4A/AsKYunDZt2l8e19bWUltbC8D+/bB9u7/dw6UMGaK27N+v\n2T6NehYt0iDgm5oaXdG2eDFcdJFva8JiyRL40Id8W6EUG1+XXOLbknQxc+ZMZs6cWfXnfQrGFqB/\nyfP+aC/jLzjn9pc8ni4iPxWRHs65d6SIKxWMUpYtg7PP9rfRqJSaGhgxQn94Eyf6tiYcDh6ErVvD\nEHWoD0YmGA1ZulT3qoSArZSqjtLGNMAdd9xR0ed9DknNBYaKyAAR6Qh8CHi09AIR6S2ixx2JyARA\nmhKLlli6VFuMoWDDUu9k+XIYOhTa+2y+lGDzGO/kyBFYv179FAI28e0Hbz9R59wxEbkVeAqoAX7m\nnFsmIrcU3r8LuAH4OxE5BhwEPlzpfZYsMcEInRBF/fe/921FWKxcCQMHQqdOvi1RzjlH641zyZ6g\nmXe8tumcc9OB6Y1eu6vk8U+An7TlHkuXwmc+05YSomX0aHj8cd9WhMWSJeEMdUC9qFswqie0htdp\np0GHDjon2KePb2vyQ+Z3eoc07gq2uqMpQuth9OypQrFzp29LwiG03xFonVm61LcV+SLTgnHggJ6v\nMHCgb0vq6dMHjh3TFNGGEloPQ0SD0bLGW0hzTGg+AhMMH2RaMJYv13OAQ1ghVcSCUUMOHYItW/yc\nhNgSFowaEtqQFJiPfJBpwQixGw26tNYqurJihS6n7dDBtyUNsWBUT3GF1LAmd0D5w3yUPJkWjBBb\nRWA9jFJC9ZGJej2hrZAqYoKRPJkWjNAmU4tYMKonVB+ZqNcTqo9699YMujYfmByZF4wQh6QsGNUT\n4mQqQL9+8NZb8EZF20SzSag+Ks4HWuMrOTIrGMV0E74Oq2+JM8+EPXsswR2E23oV0Z6gCXu4PgIT\njKTJrGCElm6ilHbtNL9V3oPR4cOwaVM46SYaY8FICbWHAeajpMmsYITcKgJrvYKukBo0KLwVUkVs\n6BDefjvMFVJFTDCSJbOCEXKrCKyig/koDaxcCWedFd4KqSLmo2TJrGBYDyN80uCjvAejUBeOFLHF\nCcliguEJaxmFuwejyFln6VGg+/e3fm1WCf13ZJkTkiWTgnHoEGzeHM6BPE0xeLCu4jp0yLcl/li2\nLOxgVFMDw4frAoq8sny5LtAIGWt8JUcmBWPVKt2ZGupkKujqrcGDdeI3jxw9qpOpIYs62LDUihUq\nmiFjgpEcmRSMNFRyyPc8xrp10LcvdO7s25KWyXMwqqvTxleoK6SK5F3UkySTgpGGbjTkOxilRdTz\n7KMtW+Ckk/QvZIYPz29PPWkyKRhpCUZ5bhmlxUd5DkZp8dGAAXruzcGDvi3JPiYYHhkxIr8Tqmnx\n0eDBsHGjbmDLG2nxUfv2ugF01SrflmSfzAmGc+mp6EOHwtq1mnEzb6Rl2LBTJ+jfH9as8W1J8ixf\nno7fEeS7J5gkmROM7dv1R96jh29LWqdrV+jVS1cL5Y20iDrkNxilyUdnn51PHyVN5gQjTZUc8hmM\n9uzRxIN9+vi2pDzyGozS9FvK+36ZpMicYKRlqKNIHgVjxQpdqini25LyyGMwOngQdu7UCeU0kMff\nkQ8yJxhpahVBPiu6+Sh8Vq3SCf+aGt+WlEfRR875tiTbmGB4Jo/ByHwUPmnzUffuOie4datvS7KN\nCYZn8jg+njYf9eqlu5537/ZtSXKkzUeQT2FPmkwJxpEjujs1xGNZm6NfPz2qNU/HtaYtGInkbx4j\nbT6CfDa+kiZTgrF6taakDjnpYGPatdP9GHmp6MeP656GUI9lbY68tV7TKBh5E3UfZEowVqxI1wqp\nInkKRhs2QM+e0K2bb0sqI08+StPm11Ly5CNfZEow0rQztZQ8VfQ0BiLI13DH9u2aRbh7d9+WVEae\nfOSLTAlGWoORCUb45Gm4I60+GjAAtm3L96FkcWOCEQAmGOEzZIgOpx096tuS+Emrj4qHklkSwvjI\njGCkddwV1ObVq3XpZtZJq486ddIVbWvX+rYkftLqI8hX48sHmRGMXbt0+eNpp/m2pHJOOEHHizdt\n8m1J/KQ5GOVljDytc4GQr6FDH2RGMIorpNKSn6gxeajo+/dr4sH+/X1bUh158BGYqBvNkxnBSHOr\nCPLRlV65UvdftEtprcuDj9K4+bWUvIi6L1L6030naW4VQT6CUdoyCTcmDz5K4+bXUoYP14aJJSGM\nBxOMQMhDMEq7j/Iw3JF2H3XvDl266PJaI3pMMALBBCN8evfWs71ff923JfGRdh+BDUvFSWYEY+NG\nXYOdVs48U7OhvvWWb0viI+3BqJiEMMvCntb0OqVk3Uc+yYxg9O+va+XTSk2NTgivXOnbknioq9MN\nVcOG+bakbWQ9GKVd1CEfQ4e+yIxgpL2SQ7aD0ebNcPLJcNJJvi1pG1kORmne/FpKln9HvjHBCIgs\nj71mIRBBtn1UPCAqjZtfSzHBiA8TjIDIckXPkmBk3Udp3fxaZOBAParVkhBGjwlGQOQhGKWdIUNg\n3To4dsy3JdGTFR+1b6+isXq1b0uyR2YEI+0rOyDbm46yEoy6dIE+fVQ0skZWfATZbnz5JDOC0auX\nbwvazsknayLCLVt8WxI9FozCJ+3pdUrJqo9841UwRGSKiCwXkVUi8tVmrvlR4f0FIjKu+bLiszNJ\nsljRDx6EnTv1gJsskEUfQbZEPcur2XziTTBEpAb4MTAFGAl8RERGNLrmKmCIc24o8BngzsQNTZgs\nVvRVqzSZXU2Nb0uiIYuCcfSoHhA1ZIhvS6Ihiz4KgWYFQ0Smi8jAGO89AVjtnFvvnDsK/Bq4ptE1\nU4H7AJxzs4FTRKR3jDZ5J4sVPUstV8imj9au1QOi0rz5tZSij7I4H+iTlnoY9wJPicjXRSSO3JX9\ngNIjgzYXXmvtmjNisCUYshiMTDDCJ2s+OvVUXS21c6dvS7JF++becM79RkSmA98C5orI/YCrf9v9\nRxvvXa72N56daPJz06ZN+8vj2tpaamtrqzLKN1ncGLZiBVx+uW8roqNfPzhwAN58E045xbc10ZA1\nwYD631LvjIxJbNum84FtyZk3c+ZMZs6cWfXnmxWMAkeBA0Bn4EQgylOntwClZ6/1R3sQLV1zRuG1\nd1AqGGlmwADYvl03HXXp4tuaaFixAm691bcV0VGahPCCC3xbEw0rVsD48b6tiJaijy691Lcl0fDA\nAzrP9F//VX0ZjRvTd9xxR0Wfb2kOYwowH+gGjHPO3e6cu6P4V525DZgLDBWRASLSEfgQ8Gijax4F\nbirYMxF40zm3I4J7B0v79jpBvGqVb0uiISv5iRqTtWEp81H4hOCjluYwvg580Dn3Vefcwahv7Jw7\nBtwKPAUsBR50zi0TkVtE5JbCNU8Ca0VkNXAX8Lmo7QiRLFX0bdugc2c92CZLZMlHEEYwipqs+Wjl\nSv/ZnlsakprsXLxrDJxz04HpjV67q9HzDA1mlEeWKnoWAxHo/+nhh31bEQ179sDhw7qDPUtkbYl6\nCL+lZnsYcYuF0TwmGOGTRR9lZfNrkUGDYNMmPSUx7ezfr4ss+jVeR5owmUkNkiWyGIyyxrBhmtzu\n+HHflrSdrPqoY0c9yXLNGt+WtJ1Vq/SAtXaeI7YJRoBkadNRVoNRt256bsTGjb4taTtZ9RFkp/EV\nio9MMALk1FOhQwfYkYH1YKFU9DiwYBQ+WdnXFMKEN5hgBEsWgtGRI5p5d9Ag35bEQxZ8BNnKUtuY\nrPgoFFE3wQiULKzwWL0azjpLe0tZJAvB6PhxzSM1dKhvS+IhCz4C62EYrZCFih5KqygusuCj9es1\ndUbXrr4tiYcsNLycM8EwWiELY68rVmTjJMTmyIJgZF3Ue/aEujrYvdu3JdWzbZumCQph86sJRqBk\nIRhleWwcdMnmG29oIsK0knUfleb9Sish+cgEI1AGDYLNm3XiOK1kvfXarp0eOLRypW9LqifrPoL0\nC0ZIPXUTjEBJ+6ajrCYdbIwFo/BJu4+sh2GURZor+q5dOhxw2mm+LYmXtM81hRSM4iLtPgqp4WWC\nETBpFoys5idqTJpX4ezdq/MvvvMTxU2af0cQVi/QBCNg0lzRQ2oVxUnafTRsWPZFfcgQXT589Khv\nSyrn0CFdJTVggG9LFBOMgEl7MMqLYKxcqUs300ZILdc46dxZe1Hr1vm2pHJWrdIjWdu3djZqQphg\nBEyaBWP58nwEo5NO0r8tTR4cHDZ5mL8oktbfUmg+MsEImF69NHVDGjcd5aWHAekNRuaj8AnNRyYY\nASOSzknVt9/WtN+DB/u2JBksGIVPmn0UUk/dBCNw0rgkcO1aOOMM6NTJtyXJkMZgdPy4JocMIT9R\nEqTRR2BDUkaFpLGi56nlCun00YYNmmepWzffliRDGhteIW5+NcEInDQGo9AqedyYj8KnTx84fBj2\n7PFtSfls3apZhENIOljEBCNwLBiFz4ABsH27rplPC3nzURqTEIboIxOMwEnjpqMQK3qctG+vySJX\nrfJtSfmENpmaBGkUjNB8ZIIROJ07Q9++6dp0lJc9GKWkLRiFNpmaBOajtmOCkQLSVNFff117Q717\n+7YkWdLkI8hfLxDS6aPQGl4mGCkgTRU9L0kHG5MmH+3bp4kHzzjDtyXJkiYfgfUwjCpJU0XPY8sV\n0rVss5h0sF3Ofv1Dh+r5MseP+7akdQ4d0oUUoSQdLJKzKpNOTDDCp+gj53xb0jp59VHXrppuZ/16\n35a0TmhJB4uYYKQAE4zwOfVU3dm+fbtvS1onrz6C9KTaCXE4CkwwUkHfvnDwYDo2HS1dCiNH+rbC\nD2kR9jwLRpp8FNqEN5hgpIK0bDo6ckRTTgwd6tsSP6TBRwDLlsGIEb6t8ENafGQ9DKNNpKGir1ql\nk3QdO/q2xA9p8NGxY5p0MMRglARp8BGYYBhtJA0VPc8tV0iHj9as0SHOrl19W+KHNPiork5tDHFo\n1wQjJZx9dvjLNvM8fwHpCEZ5F/V+/XQfyr59vi1pno0bNeHgSSf5tuSdmGCkhJEjNSCHTN4FY/Bg\nPar18GHfljRP3n3Urp3Osa1c6duS5gnZRyYYKWHoUF0/fuSIb0uaJ++t1w4dNAlhyD3BkINRUoTe\nWw/ZRyYYKaFTJxg4MNyW0bFjOukd4lLAJBk1KuyeYMjBKClGjDAfVYsJRooIeVhq3To4/fT8TqYW\nGTkSlizxbUXTFCdTTdTD9RGYYBgREXJFD7mSJ0nIPYwNG6BHjzAnU5Mk5N+Rc1p/Qh3aNcFIESH3\nMPI+f1Ek5GBkoq4MGaKLE0I8IXHLFj1nvUcP35Y0jQlGirBgFD5DhsCmTWGulAq55Zok7durn0Kc\n+A79d2SCkSKGDdO5grff9m3JO7FgpHTsqCulQtyPsWxZ2MEoSUJtfJlgGJHRqZOm3ghtpVRdnbbW\nTDCUUCe+Qw9GSWKCUR0mGCkjxHmMTZvg5JPhlFN8WxIGIU58hz6ZmjQmGNVhgpEyQqzoNuHdkBB9\ntGULdOmi53YYYfqoKOomGEZkhNjDCL2SJ02IPrL5i4YMHgzbtuk5M6GwYwfU1EDPnr4taR4TjJQR\nYstoyRILRqUMHaoJ5EJaKWWi3pD27dVPy5b5tqSeNPjIi2CISA8ReUZEVorI0yLS5Oi3iKwXkYUi\nMl9EXknazhAJcaXUokUwerRvK8IhxJVSS5bYsGFjQusJmmA0zz8DzzjnhgEzCs+bwgG1zrlxzrkJ\niVkXMJ07w5ln6iE4IVBXpxX9nHN8WxIWoQWjRYvg3HN9WxEWofXW0yDqvgRjKnBf4fF9wLUtXCvx\nm5MuQlo3B0TSAAAQHUlEQVS2uXatTqSefLJvS8IipGBUVweLF1svsDEh+QjSIeq+BKO3c25H4fEO\noHcz1zngWRGZKyJ/m4xp4RPSsk0bjmqakHoY69eroHfv7tuSsAhJMJxLx2+pfVwFi8gzwOlNvPX1\n0ifOOScirpliLnbObRORnsAzIrLcOfdiUxdOmzbtL49ra2upra2tyu40MHIk/P73vq1Q0lDJfRBS\nMEpDy9UHgwfD9u3w1luav8knGzfCCSfEv+x55syZzJw5s+rPi3PNxer4EJHl6NzEdhHpAzznnGsx\n6bKI3A4ccM79exPvOR//D18sXgzXXx/GpOoHPwjXXgsf+5hvS8Li6FFt1e/e7T/l+7e/Dfv3w/e/\n79eOEBk7Fu65B8aP92vHY4/BT38K06cne18RwTlX9rC/ryGpR4FPFB5/AvhD4wtEpKuInFh43A24\nAliUmIUBM3y47q5+6y3fltjYeHN06KAr2kIYlrJeYPOMHg0LF/q2Qm1Ig498Ccb3gPeKyErg3YXn\niEhfEXmicM3pwIsi8howG3jcOfe0F2sDo0MHPQTH95DH4cM6Pp73A3ma49xzYcEC31ZoMLIhqaYZ\nMyYMH6Vl2DC2OYyWcM69AVzexOtbgasLj9cCYxM2LTUUg9EEj4uNly3TceCOHf3ZEDIhBCMT9ZYZ\nMwYef9y3FSrqt93m24rWsZ3eKSWEYGRDHS0Tgo9M1Fum6COfU6CHD+tm3DSIuglGShkzxv/YqwlG\ny5x7rvrIZzCy4aiW6dVLN8Nu2uTPhmXL9ECnTp382VAuJhgpJYRgZILRMiEEI/NR6/juCaZlwhtM\nMFLLaafp2vENG/zZYMGodXwHI/NR6/j2UZp6gSYYKcbnsNSOHXDoEJx1lp/7p4UQgpEJRsv49lFa\nVkiBCUaq8VnR58/XTU9imb5axOfS2u3b4cgRTVZpNI/v+cA0iboJRorxGYzmz4fzzvNz7zThMxgV\nfWSi3jLDhvnbCLttGxw7Bmeckfy9q8EEI8X4DEbz5sG4cX7unSZ87sqfN89EvRyKG2EXL07+3kUf\npUXUTTBSzLBhsHmzn2A0f74JRjl06KCi4SsYmY/Kw9fw7quvpkvUTTBSTPv2mhU16Yq+d6+Ojw8f\nnux908p552nwThobNiyfsWPhtdeSv2/aeoEmGCln/HiYOzfZe772mk7S1dQke9+04sNHe/bArl16\nbrXROuefn7yPQAXj/POTv2+1mGCkHB/ByFquleFL1MeMgXb2Cy+LceN02PDtt5O7565dsG+fnv+e\nFqw6pRxfgmFj4+Vz7rmwahUcPJjcPdM21OGbbt0051aSc03FOaa0THiDCUbqGTlSd3vv35/cPW0y\ntTI6dYIRI5KdazIfVc748TBnTnL3S6Oom2CknA4dtAWb1KTqoUOwZg2cc04y98sKSfcEbdiwct71\nrmR9lLb5CzDByARJVvR587RXk4bMmiGRpGDs26dnRI8cmcz9soL1MFrHBCMDJBmMZs+GCy5I5l5Z\nIkkfzZmjy0Q7dEjmfllhzBhYuVJ70XGze3c6V7GZYGQAE4zwGTVKD8k5cCD+e5mPqiPJuaZXXtHT\nMtO2NN0EIwMMH64b6fbsif9eFoyqo2NH3bsyf37895o9GyZOjP8+WSSpYak//zmdPjLByAA1Nboi\nJu5exo4duss7bd3oUEgiGDlnot4WkpoPNMEwvDJxolbCOJk9W7vRthmsOi68EF56Kd57bNig6/r7\n94/3PlllwoT4f0d1dToklUZRt59+Rrj4Ypg1K957WMu1bRR9FOexusXhqDRtBguJUaO0J71rV3z3\nWL5cT8zs2TO+e8SFCUZGuOgibRkdPx7fPUww2saAARrI162L7x7mo7ZRU6OCG2dPMK3DUWCCkRl6\n9oTevWHJknjKP3ZMx98tGFWPiPYy4gxGL79sPmorl1wC//d/8ZVvgmEEQZzDUgsW6Klgp50WT/l5\nIU4fHTyo50ObYLSNuId3X37ZBMMIgDgr+gsvwOTJ8ZSdJy66KD4fvfyybj7r2jWe8vPChAnaQIpj\nA9/u3boLf+zY6MtOAhOMDGGCET7jxsHatfDmm9GX/cILcOml0ZebN7p108nvOJbXvvCC/k7bt4++\n7CQwwcgQw4dr1totW6Itt64OXnwRJk2Kttw80qGDrvV/+eXoyzZRj464Gl/PP59uUTfByBAiWhmf\ney7acpctg5NP1jkMo+1cdhn86U/RlnnkiC5KuOiiaMvNK5Mnw8yZ0Zc7c6YJhhEQl18Ozz4bbZnW\nco2W97wHZsyItsw5c+Dss+Gkk6ItN6/U1upqtiNHoivzjTd0SXXaUpqXYoKRMYqCEeXmsD/9SX9A\nRjRMmKBniuzeHV2Zzz2X7pZraHTvrokIoxw6fOEF3e2f5izCJhgZY8gQ3Xy0cmU05R07pq3hK66I\npjxDA8akSdEOHT71lPkoaqLurc+YocORacYEI2OIRFvR58zRuYs+faIpz1Ci9NHevboM1IYNo+W9\n741WMKZPhylToivPByYYGeQ974muoj/1FLzvfdGUZdQTpY9mzNBVPV26RFOeoVx4ISxdGs2xAatX\n68bKMWPaXpZPTDAyyOWX63BHFBN2JhjxcM45cPgwrFjR9rLMR/HQqZMKcRQLFIq9i7QnhTTByCC9\neunGo7aOkb/+uuamuuSSaOwy6hGBqVPh0UfbVo5z8Mc/mmDExdSp8MgjbS9n+nS48sq2l+MbE4yM\ncs01ba/ojz2m47idO0djk9GQKHz02ms6iT5iRDQ2GQ2ZOhWeeAKOHq2+jLfe0mSGl18enV2+MMHI\nKMXWa11d9WX87ndw3XXR2WQ05LLLYPFi2Lmz+jJ++1u4/vr0D3WESr9+uvLwxRerL2P6dE022L17\ndHb5wgQjo5x9NpxwArz6anWf379fd6VefXWkZhkldOqkPbjHH6++DBP1+LnmGvjDH6r//G9+Ax/8\nYHT2+MQEI8PccAM8+GB1n33ySU0zccop0dpkNOSGG+CBB6r77LJlKuzvele0NhkNue467clVczjZ\nwYO6KOHaa6O3ywcmGBnmxhvhl7/UzXeV8otfwMc+Fr1NRkOmTtWsqNUkjLz/fvjQh+yM9bgZMUL3\nIVWzWuqJJ2D8+HQex9oUVtUyzIgR0L9/5RV961ZNiXD99fHYZdTTpYt+z7/6VWWfO35cRf1Tn4rH\nLqMhN92k33el3HsvfPKTkZvjDROMjPPxj8PPf17ZZ+6/X4OYHcSTDDfdpD6qJP/X00/rhOyoUfHZ\nZdTzkY/oXNPeveV/ZtMmeOWVbDW8TDAyzsc/rsFl8+byrj9+HO6+Gz796XjtMuqZNEnzf1Wy8/uu\nu+Dmm+OzyWhIz5668a6Sxtc998CHP5ytHfjiokxr6gkRcVn4f8TFl76klfZ732v92ocfhv/8z3jP\nNDbeyb336nf/5JOtX7t8uWamXbfOeoFJMnu2CsCqVa2fmPfWWzBwoO6/GDYsGfuqQURwzpW9KNt6\nGDngy1/W1k5rx4I6B9//PvzjPyZjl1HPRz8K8+ZpEsHW+Ld/g89/3sQiaS64QIcBf/3r1q+9+24V\n9ZDFohq8CIaIfFBElojIcRE5r4XrpojIchFZJSJfTdLGLDFwIHzgA/Cv/9rydQ89pENSU6cmY5dR\nT+fO8I1vwFe+0vJcxqJFugP/1luTs82o5zvfUT8dPtz8NW++qb35r389ObuSwlcPYxHwAeCF5i4Q\nkRrgx8AUYCTwERGxBAhV8u1v6/jrsmVNv793L/zTP8FNN820ZZoRMrOCcz5vuUUnSpvbJFZXB1/4\nAnzzm9CjRzT2pY1Kvs84mDwZxo3TnnhzfPOb2ugaOzY5u5LCS2hwzi13zrV2xM8EYLVzbr1z7ijw\na+Ca+K3LJr17w3e/C3/91zq+WopzGqyuvhrefHOmF/uySiUBrkMHncv47Gdhw4Z3vv+d76ho/N3f\nRWdf2vAtGAA//jHceaeeoNeYRx/Vv+9+N3m7kiDktmQ/YFPJ882F14wq+Zu/0Zw2U6bAjh362qFD\n8JnPaID693/3a5+hu+u/8Q3NM7V0qb5WVwc/+IGOi//qV61PuBrx0q+f7sm44YaGK9t+9zv9jT34\nIJx6qj/74iS2qicizwCnN/HW15xzj5VRhC17ihgRXY75rW/ppr4xYzQo1dZqiuwsLf9LM1/4guYB\nmzxZc4Jt3Qp9+8Lzz+vph4Z/rrhCU7p86lN6nMDRo5oG5LHHdHI8q3hdVisizwH/4Jyb18R7E4Fp\nzrkphee3AXXOuXeMHoqIiYthGEYVVLKsNoTObXPGzgWGisgAYCvwIeAjTV1YyX/YMAzDqA5fy2o/\nICKbgInAEyIyvfB6XxF5AsA5dwy4FXgKWAo86JxrZo2PYRiGETeZ2OltGIZhxE/Iq6RaxTb2RYuI\nrBeRhSIyX0Re8W1P2hCRe0Vkh4gsKnmth4g8IyIrReRpEbETRsqgme9ymohsLtTP+SIyxaeNaUJE\n+ovIc4UN04tF5IuF1yuqn6kVDNvYFwsOqHXOjXPOTfBtTAr5OVofS/ln4Bnn3DBgRuG50TpNfZcO\n+I9C/RznnPujB7vSylHg751zo9CpgM8X4mVF9TO1goFt7IsLW0BQJc65F4E9jV6eCtxXeHwfkJGz\n1+Klme8SrH5WhXNuu3PutcLjA8AydF9bRfUzzYJhG/uixwHPishcEflb38ZkhN7OucI2SXYAvX0a\nkwG+ICILRORnNrxXHYWVp+OA2VRYP9MsGDZbHz0XO+fGAVeiXdZJvg3KEoUc/FZvq+dOYCAwFtgG\nWG6CChGRE4DfAl9yzu0vfa+c+plmwdgC9C953h/tZRhV4pzbVvh3F/B7dNjPaBs7ROR0ABHpA+z0\nbE9qcc7tdAWAe7D6WREi0gEVi/udc8UUlxXVzzQLxl829olIR3Rj36OebUotItJVRE4sPO4GXIFm\nFTbaxqPAJwqPPwE0k4vWaI1CQCvyAax+lo2ICPAzYKlz7oclb1VUP1O9D0NErgR+CNQAP3POZTRH\nZPyIyEC0VwGaAeCX9n1Whog8AFwKnIaOB38LeAR4CDgTWA/8tXOulaOsjCa+y9uBWnQ4ygHrgFtK\nxt+NFhCRS9DjJBZSP+x0G/AKFdTPVAuGYRiGkRxpHpIyDMMwEsQEwzAMwygLEwzDMAyjLEwwDMMw\njLIwwTAMwzDKwgTDMAzDKAsTDMOImEIq6bUi0r3wvHvh+Zm+bTOMtmCCYRgR45zbhOY9+l7hpe8B\ndznnNvqzyjDajm3cM4wYEJH2wKvouQ6fBsY65477tcow2kZ73wYYRhZxzh0TkX8CpgPvNbEwsoAN\nSRlGfFwJbAVG+zbEMKLABMMwYkBExgKXAxcCf19MIW0YacYEwzAippBK+k70kJpNwL8B/8+vVYbR\ndkwwDCN6/hZY75ybUXj+U2CEnWBopB1bJWUYhmGUhfUwDMMwjLIwwTAMwzDKwgTDMAzDKAsTDMMw\nDKMsTDAMwzCMsjDBMAzDMMrCBMMwDMMoCxMMwzAMoyz+P+9ogKfj3aWWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fe2b44c3710>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,pi,sin\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,show,xlabel,ylabel,title\n", + "R=20*10**3\n", + "I=(R-0.7)/R\n", + "print \"I=\",I,\"mA\"\n", + "rj=50\n", + "rB=1\n", + "re=rB+rj\n", + "R1=(R*re)/(re+R)\n", + "print \"R1=\",R1\n", + "V=10*(re/(re+1000))\n", + "print \"V=\",V,'mV'\n", + "i=arange(0,6*pi,0.01)\n", + "y=[]\n", + "for x in i:\n", + " y.append(sin(x))\n", + "plot(i,y)\n", + "xlabel(\"X\")\n", + "ylabel(\"Y\")\n", + "title(\"sin wave\")\n", + "show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap7_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap7_2.ipynb new file mode 100644 index 00000000..8d552ef5 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap7_2.ipynb @@ -0,0 +1,385 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 7 : SPECIAL PURPOSE DIODES AND OPTO ELECTRONIC DEVICES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.1 Pg 136" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Izm=73.53 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "pzm=500*10**-3#\n", + "vz=6.8#\n", + "Izm=pzm/vz#\n", + "print \"Izm=%0.2f\"%(Izm*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.2 Pg 137 " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Td=83.25 mW\n", + "pz=416.75 mW\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "pzm=500*10**-3#\n", + "d=3.33*10**-3#\n", + "a=75#\n", + "b=50#\n", + "Td=d*(a-b)#\n", + "print \"Td=%0.2f\"%(Td*10**3),\"mW\"\n", + "pz=pzm-Td #\n", + "print \"pz=%0.2f\"%(pz*10**3),'mW'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.3 Pg 138" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rz=5.00 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "IZ=10*10**-3#\n", + "vz=0.05#\n", + "rz=vz/IZ#\n", + "print \"rz=%0.2f\"%rz,\"ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.4 Pg 139" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VZ1=5.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Vz=4.7#\n", + "rz=15#\n", + "Iz=20*10**-3#\n", + "VZ1= Vz+(rz*Iz)#\n", + "print \"VZ1=%0.2f\"%VZ1,\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.5 Pg 139" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CT=2.50e-12 F\n", + "fo=1.01 MHz\n", + "CT=2.50e-11 F\n", + "fo=318.31 kHz\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt,pi\n", + "C1=5*10**-12##min\n", + "C2=5*10**-12##min\n", + "L=10*10**-3#\n", + "CT=(C1*C2)/(C1+C2)##CTmax\n", + "print \"CT=%0.2e\"%CT,\"F\"\n", + "fo=1/(2*pi*sqrt(L*CT))#\n", + "print \"fo=%0.2f\"%(fo*10**-6),\"MHz\"\n", + "C1=50*10**-12##max\n", + "C2=50*10**-12##max\n", + "CT=(C1*C2)/(C1+C2)##CTmin\n", + "print \"CT=%0.2e\"%CT,\"F\"\n", + "fo=1/(2*pi*sqrt(L*CT))#\n", + "print \"fo=%0.2f\"%(fo*10**-3),\"kHz\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.6 Pg 139" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f=25.00 MHz\n", + "f=125.00 MHz\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "T=0.04*10**-6#\n", + "f=1/T#\n", + "print \"f=%0.2f\"%(f*10**-6),\"MHz\"\n", + "print \"f=%0.2f\"%(f*5*10**-6),\"MHz\"##frequency of 5th harmonic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.7 Pg 140" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rs=387.50 ohm\n", + "Rsmax=375.00 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Vs=8#\n", + "VDmin=1.8#\n", + "VDmax=2#\n", + "Ifmax=16*10**-3#\n", + "Rs=(Vs-VDmin)/Ifmax#\n", + "print \"Rs=%0.2f\"%Rs,\"ohm\"\n", + "Rsmax=(Vs-VDmax)/Ifmax#\n", + "print \"Rsmax=%0.2f\"%Rsmax,\"ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.8 Pg 140" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Imax=18.09 mA\n", + "Imin=16.38 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VDmin=1.5#\n", + "VDmax=2.3#\n", + "Vs=10#\n", + "R1=470#\n", + "Imax=(Vs-VDmin)/R1#\n", + "print \"Imax=%0.2f\"%(Imax*10**3),\"mA\"\n", + "Imin=(Vs-VDmax)/R1#\n", + "print \"Imin=%0.2f\"%(Imin*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.9 Pg 140" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Imin=16.67 mA\n", + "Imax=27.07 mA\n", + "Imin=16.67 mA\n", + "Imax=26.67 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "VDmin=1.8#\n", + "VDmax=3#\n", + "Vs1=24#\n", + "Rs1=820#\n", + "Vs2=5#\n", + "Rs2=120#\n", + "Imin=(Vs2-VDmax)/Rs2#\n", + "print \"Imin=%0.2f\"%(Imin*10**3),\"mA\"\n", + "Imax=(Vs1-VDmin)/Rs1#\n", + "print \"Imax=%0.2f\"%(Imax*10**3),\"mA\"\n", + "Imin=(Vs2-VDmax)/Rs2#\n", + "print \"Imin=%0.2f\"%(Imin*10**3),\"mA\"\n", + "Imax=(Vs2-VDmin)/Rs2#\n", + "print \"Imax=%0.2f\"%(Imax*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 7.10 Pg 141" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R=2.00 kohm\n", + "Id=0.30 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "r=1*10**3#\n", + "I=10*10**-3#\n", + "V=30#\n", + "#I=30/(R+r)\n", + "R=(V/I)-r##when dark\n", + "print \"R=%0.2f\"%(R*10**-3),\"kohm\"\n", + "R=100*10**3##when illuminated\n", + "Id=(V/(r+R))#\n", + "print \"Id=%0.2f\"%(Id*10**3),\"mA\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap8_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap8_2.ipynb new file mode 100644 index 00000000..3963e259 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap8_2.ipynb @@ -0,0 +1,486 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 8 : BIPOLAR JUNCTION TRANSISTORS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.1 Pg 161" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=0.20 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 8.1\n", + "Ie=10*10**-3#\n", + "Ic=9.8*10**-3#\n", + "#Ie=Ib+Ic\n", + "Ib=Ie-Ic#\n", + "print \"Ib=%0.2f\"%(Ib*10**3),'mA'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.2 Pg 161" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a=0.9873\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Ie=6.28*10**-3#\n", + "Ic=6.20*10**-3#\n", + "a=Ic/Ie#\n", + "print \"a=%0.4f\"%a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.3 Pg 161" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=9.67 mA\n", + "Ib=0.33 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g8.3\n", + "a=0.967#\n", + "Ie=10*10**-3#\n", + "Ic=Ie*a##a=Ic/Ie\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "Ib=Ie-Ic#\n", + "print \"Ib=%0.2f\"%(Ib*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.4 Pg 162" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=9.87 mA\n", + "Ib=0.13 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "Ie=10*10**-3#\n", + "alpha=0.987#\n", + "Ic=Ie*alpha##alpha=Ic/Ie\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "Ib=Ie-Ic#\n", + "print \"Ib=%0.2f\"%(Ib*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.5 Pg 163" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta= 39.0\n", + "alpha= 0.975\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "alpha=0.975#\n", + "beta=200#\n", + "beta=(alpha/(1-alpha))#\n", + "print \"beta=\",beta\n", + "alpha=(beta/(1+beta))#\n", + "print \"alpha=\",alpha" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.6 Pg 163" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IE=40.40 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "BETA=100#\n", + "IC=40*10**-3#\n", + "IB=IC/BETA#\n", + "IE=IC+IB#\n", + "print \"IE=%0.2f\"%(IE*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.7 Pg 164" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=9.93 mA\n", + "Ib=0.07 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "beta=150#\n", + "Ie=10*10**-3#\n", + "alpha=beta/(1+beta)\n", + "Ic=alpha*Ie##as alpha=(Ic/Ie)\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "Ib=Ie-Ic##as Ie=Ib+Ic\n", + "print \"Ib=%0.2f\"%(Ib*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.8 Pg 164" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=80.00 mA\n", + "Ie=80.47 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "beta=170#\n", + "Ic=80*10**-3#\n", + "Ib=Ic/beta##beta=(Ic/Ib)\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "Ie=Ic+Ib#\n", + "print \"Ie=%0.2f\"%(Ie*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.9 Pg 165" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=25.00 mA\n", + "Ie=25.12 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Ib=125*10**-6#\n", + "beta=200#\n", + "Ic=beta*Ib#\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "Ie=Ic+Ib#\n", + "print \"Ie=%0.2f\"%(Ie*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.10 Pg 165" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ib=0.09 mA\n", + "Ic=11.91 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Ie=12*10**-3#\n", + "beta=140#\n", + "Ib=Ie/(1+beta)#\n", + "print \"Ib=%0.2f\"%(Ib*10**3),\"mA\"\n", + "Ic=Ie-Ib##as Ie=Ib+Ic\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.11 Pg 165" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BETA= 19.5238095238\n", + "ALPHA= 0.951276102088\n", + "IE=2.15 mA\n", + "BETAn= 20.4545454545\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "IB=105*10**-6#\n", + "IC=2.05*10**-3#\n", + "BETA=IC/IB#\n", + "print \"BETA=\",BETA\n", + "ALPHA=BETA/(1+BETA)#\n", + "print \"ALPHA=\",ALPHA\n", + "IE=IC+IB#\n", + "print \"IE=%0.2f\"%(IE*10**3),\"mA\"\n", + "DELTA_IB=27*10**-6#\n", + "DELTA_IC=0.65*10**-3#\n", + "IBn=IB+DELTA_IB#\n", + "ICn=IC+DELTA_IC#\n", + "BETAn=ICn/IBn#\n", + "print \"BETAn=\",BETAn" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.12 Pg 166" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=5.15 mA\n", + "Ie=5.25 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "#e.g 8.12\n", + "alpha=0.98#\n", + "Ico=5*10**-6#\n", + "Ib=100*10**-6#\n", + "Ic=((alpha*Ib)/(1-alpha))+(Ico/(1-alpha))#\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "Ie=Ic+Ib#\n", + "print \"Ie=%0.2f\"%(Ie*10**3),\"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 8.13 Pg 166" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ic=13.01 mA\n", + "Icbo50=49.25 microA\n", + "Ic=15.01 mA\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "Icbo=10*10**-6#\n", + "beta=50#\n", + "#Value of collector current when Ib=0.25*10**-3#\n", + "Ib=0.25*10**-3#\n", + "Ic=(beta*Ib)+(1+beta)*Icbo#\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"\n", + "#Value of new collector current if temperature rises to 50 degree\n", + "t1=27#\n", + "t2=50#\n", + "Icbo50=Icbo*2**((t2-t1)/10)#\n", + "print \"Icbo50=%0.2f\"%(Icbo50*10**6),\"microA\"\n", + "#collector current at 50 degree\n", + "Ic=beta*Ib+(1+beta)*Icbo50#\n", + "print \"Ic=%0.2f\"%(Ic*10**3),\"mA\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap9_2.ipynb b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap9_2.ipynb new file mode 100644 index 00000000..f290a4a5 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/Chap9_2.ipynb @@ -0,0 +1,62 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 9 : BJT CHARACTERISTICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 9.1 Pg 175" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pdmax70= 0.3974\n" + ] + } + ], + "source": [ + "Pdmax=500*10**-3#\n", + "DF=2.28*10**-3#\n", + "T=70#\n", + "Pdmax70=Pdmax-DF*(T-25)#\n", + "print \"Pdmax70=\",Pdmax70" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/11DrainCurrentGraph.png b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/11DrainCurrentGraph.png Binary files differnew file mode 100644 index 00000000..850b8aa1 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/11DrainCurrentGraph.png diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/18VceVsIce.png b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/18VceVsIce.png Binary files differnew file mode 100644 index 00000000..a0bb1a73 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/18VceVsIce.png diff --git a/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/24GainGraph.png b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/24GainGraph.png Binary files differnew file mode 100644 index 00000000..90794494 --- /dev/null +++ b/A_Textbook_of_Electronic_Circuits_by_R._S._Sedha/screenshots/24GainGraph.png diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter10_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter10_1.ipynb new file mode 100644 index 00000000..9213c6d1 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter10_1.ipynb @@ -0,0 +1,316 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10 : Diodes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 445 Ex: 10.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGxNJREFUeJzt3Xm0bGV95vHvw2AHBNTrVZRB0YgoiogkiGLCcYgBHJJW\nUTFpo3YrrY3aTm0btbmKMQ5LJepyiANxaEHUKwtc2NGlHkTFiUFmE1oxIFFUnADbiV//Uftw6xzO\nUFWn9qnp+1lrr1vDrr3fqlW3fud533fvnapCkqQF2426AZKk8WJhkCQtYmGQJC1iYZAkLWJhkCQt\nYmGQJC1iYdBESHJlkoe3sN0tST60wnNzSa7qun9xkj8ddhvWkuSmJHff6P1qdlkYNCmqWdrYbm8r\nVt23qr7YQhuGIsnTkpw96nZo8lkYJEmLWBg0cZL8hyQnJvl+s7wlya2a526b5FNJrk1yXZIzkuzZ\n9dq7JTkryS+SfAbY3Md+r0zysOb2liSnJvlAs62Lkxzcte4eST7RtOM7SZ67ynb/Kcm7knym2dZ8\nkrussO5tknyw2e6VSV6ejnsD7wQelOSXSa7r9X1JS1kYNIleDhwCHNgshwCvaJ7bDngfcJdm+RXw\n9q7XfgT4BnB74ATgb+i9O2npeo8BTgZuA5y+sJ8k2wFnAOcDewAPB/57kkeusu2nAK+mU6guAP73\nCuu9DdgVuBtwOPBU4OlVdRnwX4FzqmrXqtrU43uSbsHCoEn0FODVVfXjqvox8CrgPwFU1XVV9cmq\n+n9VdT3wWjo/oDR/hf8R8Mqq+m1VnU3nBzwDtuPsqvo/1Tnh2IfpFCmAPwY2V9Vrqup3VfVd4L3A\nk1fZ1qeq6ktV9Rs6he9B3Umnaf/2wJOAl1XVDVX1PeBNC+99He9DWmSHUTdAGsAewPe67v9b8xhJ\ndgbeAvw5cLvm+V2SpFnnp1X1q67Xfg/Ye8B2/LDr9o3AHzRp4a7AHkl+2vX89sBKA9cFXH3znaob\nmq6gPYDvd623GdiRW773RQVEWi8TgybRNcA+XffvwrYf0BcB9wQOqarb0EkLaZZ/B27XFI8Fd2X4\ns52uAr5bVbfrWnarqkevsH7oKk5JdgE20Xmf3X4M/JZbvveFouKpkjUUFgZNopOBVyTZnGQz8L/o\ndOUA7EJnXOHnSTYBxy+8qOl6+SbwqiQ7JnkIsNKP9Xp8Hfhlkv+RZKck2ye5b5I/WuU1RyU5rBlE\nP4HOWEF3WqCqfg+cCvxdkl2S3BV4Adve+w+BvZLsOPy3pFliYdAkeg2dH/gLm+WbzWMAJwI70fnr\n+ivAp1n8l/RTgAcC19EpKB9YY18r/RW+3HEVBTf/gD8auD/wHeBHwD8Cu62yrY/QKWI/AQ4C/nqF\nNjwXuKHZ7tl0BqlPap77HHAJ8IMk167xvqQVpa0L9STZG/ggcEc6X+x/rKq3LrPeW4Ej6fTRPq2q\nzm+lQdKYSnIScHVVvXLUbZGg3cHn3wIvqKoLmj7Tc5N8tplWB0CSo4B7VNW+SR5IZx72oS22SRpH\nzibSWGmtK6mqflBVFzS3rwcuo5k50uWxNFG+qr4G3DbJ7m21SRpTbZ3uQxrIhkxXTbIPnX7Try15\nak86MzgWXA3sxeJpgNJUq6qnj7oNUrfWB5+bbqSPA89vksMtVlly37+cJGmEWk0MzbS5TwAfrqrT\nllnl+yw+uGgvFh/Qs7Adi4UkDaCq+h7Dai0xNEeavg+4tKpOXGG10+mc64UkhwI/q6plu5E+8Yni\nzncuXvjC4oYbiiqXQZfjjz9+5G2YlsXP0s9znJdBtdmVdBidudgPTXJ+sxyZ5NgkxwJU1ZnAd5Jc\nAbwbeM5KG3vc4+DCC+Gaa+D+94cvf7nFlkvSDGutK6mqvkQPhaeqjut1m5s3w8knw9atcPTRcMwx\ncMIJsPPOa79WktSbiTzy2fSwPnNzc6NuwtTwsxwuP8/x0NqRz8OUpFZq59atcNxxpgdJWioJNU6D\nzxvF9CBJwzXxiaGb6UGStpnZxNDN9CBJ6zdViaGb6UHSrDMxLGF6kKTBTG1i6GZ6kDSLTAyrMD1I\nUu9mIjF0Mz1ImhUmhh6ZHiRpdTOXGLqZHiRNMxPDAEwPknRLM50YupkeJE0bE8M6mR4kqcPEsAzT\ng6RpYGIYItODpFlmYliD6UHSpDIxtMT0IGnWmBj6YHqQNElMDBvA9CBpFpgYBmR6kDTuTAwbzPQg\naVqZGIbA9CBpHJkYRsj0IGmamBiGzPQgaVyYGMaE6UHSpDMxtMj0IGmUTAxjyPQgaRKZGDaI6UHS\nRjMxjDnTg6RJYWIYAdODpI1gYpggpgdJ48zEMGKmB0ltMTFMKNODpHFjYhgjpgdJw2RimAKmB0nj\nwMQwpkwPktbLxDBlTA+SRsXEMAFMD5IGYWKYYqYHSRvJxDBhTA+SemVimBGmB0ltMzFMMNODpNWY\nGGaQ6UFSG0wMU8L0IGkpE8OMMz1IGpZWC0OS9yf5YZKLVnh+LsnPk5zfLK9osz3TbvNmOPlkeN3r\n4Oij4UUvghtvHHWrJE2avgpDkk1J7tfHS04CjlhjnbOq6qBmeU0/7dHyTA+S1mPNwpDkrCS7JdkE\nnAu8N8lbetl4VZ0N/HStXfSyLfXH9CBpUL0khttU1S+AxwEfrKpDgEcMaf8FPDjJt5KcmWT/IW1X\nDdODpH7t0MM62ye5M/BEYGEMYFhThM4D9q6qG5McCZwG3HO5Fbds2XLz7bm5Oebm5obUhOm3kB62\nbu2kB2cuSdNpfn6e+fn5dW9nzemqSY4GXgl8uaqeneQPgTdU1eN72kGyD3BGVR3Qw7rfBQ6uquuW\nPO501SH58Y/huc+Fc8+Fk06Cww4bdYsktWXQ6aqtH8ewWmFIsjtwbVVVkkOAU6tqn2XWszAMmcc9\nSNOvteMYkuyX5HNJLmnu36/XaaVJTga+AuyX5Kokz0hybJJjm1WeAFyU5ALgRODJ/b4BDcaxB0kr\n6aUr6YvAS4B3VdVBSQJcXFX32YgGNm0wMbTI9CBNpzaPfN65qr62cKf5hf5tvzvS+DI9SOrWS2H4\nUZJ7LNxJ8gTg39trkkbB4x4kLeilMBwHvJvOOME1wAuAZ7faKo2M6UHSqmMMSbYHXl9VL06yC7Bd\nc7DbhnKMYTQce5AmWytjDFX1e+Ah6fwyXz+KoqDRMT1Is6mXWUnvAvYAPgYs9DpXVW1tuW3dbTAx\njJjpQZo8bc5K+gPgOuBhwKOb5TH97kiTzfQgzQ6v4Ka+mR6kyTCWRz5rOpkepOnWS1fSe4C/BX7T\n3L8IOKa1FmkieNyDNL088lnrYnqQpo9HPmvdTA/SdOnnyOd7eeSzVmN6kKZDz7OSktyazpHPv2y3\nScvu21lJE8aZS9LotTkraXOStwFfAs5K8g9Jbj9IIzU7TA/S5OqlK+kU4FrgcXQurPMj4KNtNkrT\nwbEHaTL1ckqMi6vqvkseu6iXazgPi11Jk89rTUsbr81TYnwmyTFJtmuWJwGf6b+JmmWmB2ly9JIY\nrgd2Bm5qHtoOuKG5XVW1W3vNu7kNJoYpYnqQNsagicFzJWlknLkktavVwpDkfsA+wA4Lj3nabQ2D\n6UFqT2uFIclJwAHAJWzrTqKqnt7vzgZlYZh+pgdp+NosDJcC9xnlL7OFYTaYHqThanNW0jeA/ftv\nktQfZy5J46GXwnAScE6Sf0lyUbNc2HbDNLs8aloarV66kv4vnRPnXcziMYYrW23Z4jbYlTSjHHuQ\nBtdmV9K1VXV6VX2nqq5cWPpvotQ/04O08XpJDO8AbgucwbaruJXTVbXRTA9Sf9pMDDsDvwYeCTy6\nWR7T746k9TI9SBvDI581kUwP0traPI5hJ+A/05myuhNQAFX1jAHaORALg5bjcQ/S6trsSvoQsDtw\nBDAP7A1c3++OpGHzuAepHb0UhntU1SuB66vqA8BRwAPbbZbUO8cepOHqpTAszET6eZID6MxQukN7\nTZL6Z3qQhqeXwvCeJJuAVwCnA5cCb2i1VdKATA/S+jkrSVPLmUuadW0OPnfv5FP97kAaFdODNJi+\nCgOwZyutkFri2IPUv34LwwWttEJqmelB6p1jDJo5jj1oVgx9jCHJx5p/L1pm8XoMmlimB2l1KyaG\nJHtU1TVJ9lnuea/HoGlgetA0a+1cSePAwqA2ec4lTauhF4Yk19OcMG8ZVVW79buzQVkYtBFMD5o2\nQx9jqKpdqmrXFZYNKwrSRnHsQepYLTFsWu2FVXVdKy1avi0mBm0o04OmQRtdSVeyclcSVXW3fnc2\nKAuDRsGxB026sRx8TvJ+4FHAtVV1wArrvBU4ErgReFpVnb/MOhYGjYzpQZOqjeMY7tX8+4Dllh63\nfxKdC/ystI+j6FzvYV/gWcA7+2i7tCEce9CsWa0r6T1V9cwk8yzTpVRVD+1pB53jIM5YLjEkeRfw\nhar6aHP/cuDwqvrhkvVMDBoLpgdNkjZmJT2z+Xeuqh66dFlPY7vsCVzVdf9qYK8hbVsaOtODZsEO\na62QZAc64wT7ANsDoXMcw5uH1Ial1WzZaLBly5abb8/NzTE3Nzek3Uv9WThj69atnTO2mh40Lubn\n55mfn1/3dtYcfE7yaeBXwEXATQuPV9WretrB2l1J81V1SnPfriRNFGcuaZwN2pW0ZmIA9qyq+w3Q\npl6cDhwHnJLkUOBnS4uCNM5MD5pGvVyP4TNJ/nyQjSc5GfgKsF+Sq5I8I8mxSY4FqKozge8kuQJ4\nN/CcQfYjjZpjD5omvXQlPQ74MJ0i8tvmYc+VJK3AmUsaF21e8/nNwKHAzp4rSVqb6UGTrpfC8G/A\nJVV105prSgK81rQmWy9dSR8A7gZ8GvhN8/Awp6uuya4kTTJnLmlU2uxK+i7weeBWwC7Nsmu/O5Jm\nlelBk8YruEkbyPSgjTSWZ1cdFguDpo0zl7QR2uxKkjRkzlzSODMxSCNmelBbWutKSnJH4Jl0TqK3\ncAqNqqpn9LuzQVkYNO0ce1Ab2iwM5wBfBM5l20n0qqo+0XcrB2Rh0KwwPWiY2iwMF1TV/Qdu2RBY\nGDRLTA8aljYHnz+V5FEDtEnSADzuQaPWS2K4HtiZzlHPnkRP2kCmB62HxzFIU8yxBw1i6IUhyb2r\n6rIkD1ju+ao6r9+dDcrCIJke1L82CsN7quqZSeZZ5jrMVfXQvls5IAuDtI3pQb2yK0maIaYH9cLC\nIM0g04NW47mSpBnkOZfUBhODNCVMD1qqtcSQ5HO9PCZptEwPGpYVC0OSnZLcHrhDkk1dyz7AnhvV\nQEm986hpDcNqieFY4JvAfnROoLewnA68vf2mSRqU6UHr0cspMZ5XVW/doPas1AbHGKQBOfYwu1qd\nrprkwSy+HgNV9cF+dzYoC4O0Ph73MJvaPO32h4G7AxcAv194vKqe2+/OBmVhkIbD9DBb2iwMlwH7\nj/KX2cIgDY/pYXa0eYDbxcCd+2+SpHHkzCWtpZfCcAfg0iSfSXJGs5zedsMktcuZS1pJL11Jc83N\nAhYiSVXVWS22a2kb7EqSWuTYw3RqrSupquaBK4Edm9tfB87vd0eSxpfpQd16OSXGs4CPAe9uHtoL\n+GSbjZK08Rx70IJexhj+G/AQ4BcAVfUvwB3bbJSk0TE9qJfC8Ouq+vXCnSQ7sMwV3SRND9PDbOul\nMJyV5OXAzkn+jE630hntNkvSODA9zKZeZiVtB/wX4JHNQ/8MvHcjpwk5K0kaPWcuTZ5Wjnxuuo0u\nrqp7radx62VhkMaDR01Pllamq1bV74BvJ7nrwC2TNDUce5gNvYwxbAIuSfJ5j3yWBI49TLtexhgO\nZ9sRzws88lkS4NjDOGtzjOGSqtpvPY1bLwuDNN4cexhPbY4xXO4Yg6TVOPYwXRxjkDQ0jj1Mh37O\nrrpIc0K9DWFXkjR5HHsYvVav+TxqFgZpMjn2MFptXtrzeradG+lWwI7A9VW1W9+tHJCFQZpspofR\naPN6DLtU1a5VtSuwE/A44B0DtFHSjHLsYbL0Mvh8s6q6qapOA47oZf0kRyS5PMm/JnnpMs/PJfl5\nkvOb5RX9tEfS5HDm0uTopSvp8V13twMOBg6vqget8brtgW8DjwC+D3wDOKaqLutaZw54YVU9do1t\n2ZUkTRHHHjbGoF1JO/SwzmPYNsbwOzqX+fyLHl53CHBFVV3ZNPCU5nWXLVmv70ZLmmwL6WHr1k56\ncOxhvPQyxvC0qnp6szyzqv6uqq7tYdt7Ald13b+6eWzR5oEHJ/lWkjOT7N970yVNOscextOaiSHJ\nB4DnV9XPmvu3A95UVc9Y46W99P2cB+xdVTcmORI4Dbjncitu2bLl5ttzc3PMzc31sHlJ4870MDzz\n8/PMz8+vezu9jDFcUFX3X+uxZV53KLClqo5o7r8MuKmqXr/Ka74LHFxV1y153DEGaQY49jBcrU1X\n7Ww7m7rubAK27+F13wT2TbJPklsBTwIWnUojye5J0tw+hE6huu6Wm5I0C5y5NB56KQxvAs5JckKS\n1wDnAG9c60XNCfiOo3Mp0EuBj1bVZUmOTXJss9oTgIuSXACcCDx5kDchabo49jBaPZ0SI8l9gIfR\nGTf4fFVd2nbDluzfriRpRnnU9OA8V5KkqeXYw2AsDJKmnumhP20OPkvSWHDsYWOYGCRNJNPD2kwM\nkmaK6aE9JgZJE8/0sDwTg6SZZXoYLhODpKlietjGxCBJmB6GwcQgaWrNenowMUjSEqaHwZgYJM2E\nWUwPJgZJWoXpoXcmBkkzZ1bSg4lBknpkelidiUHSTJvm9GBikKQBmB5uycQgSY1pSw8mBklaJ9ND\nh4lBkpYxDenBxCBJQzTL6cHEIElrmNT0YGKQpJbMWnowMUhSHyYpPZgYJGkDzEJ6MDFI0oDGPT2Y\nGCRpg01rejAxSNIQjGN6MDFI0ghNU3owMUjSkI1LejAxSNKYmPT0YGKQpBaNMj2YGCRpDE1iejAx\nSNIG2ej0YGKQpDE3KenBxCBJI7AR6cHEIEkTZJzTg4lBkkasrfRgYpCkCTVu6cHEIEljZJjpwcQg\nSVNgHNKDiUGSxtR604OJQZKmzKjSg4lBkibAIOnBxCBJU2wj04OJQZImTK/pYSwTQ5Ijklye5F+T\nvHSFdd7aPP+tJAe12R5JmgZtp4fWCkOS7YG3A0cA+wPHJLn3knWOAu5RVfsCzwLe2VZ7tM38/Pyo\nmzA1/CyHy8+zd5s3w8knw+teB0cfDS96Edx443C23WZiOAS4oqqurKrfAqcAf7FknccCHwCoqq8B\nt02ye4ttEv7nGyY/y+Hy8+xfG+mhzcKwJ3BV1/2rm8fWWmevFtskSVNn2OmhzcLQ62jx0oERR5kl\naQBL08OgWpuVlORQYEtVHdHcfxlwU1W9vmuddwHzVXVKc/9y4PCq+uGSbVksJGkAg8xK2qGNhjS+\nCeybZB/gGuBJwDFL1jkdOA44pSkkP1taFGCwNyZJGkxrhaGqfpfkOOCfge2B91XVZUmObZ5/d1Wd\nmeSoJFcANwBPb6s9kqTeTMQBbpKkjTNWp8TwgLjhWeuzTDKX5OdJzm+WV4yinZMgyfuT/DDJRaus\n4/eyR2t9nn43e5dk7yRfSHJJkouTPG+F9fr7flbVWCx0upuuAPYBdgQuAO69ZJ2jgDOb2w8Evjrq\ndo/j0uNnOQecPuq2TsIC/AlwEHDRCs/7vRzu5+l3s/fP8k7A/ZvbuwDfHsbv5jglBg+IG55ePku4\n5VRhLaOqzgZ+usoqfi/70MPnCX43e1JVP6iqC5rb1wOXAXssWa3v7+c4FQYPiBueXj7LAh7cRMsz\nk+y/Ya2bPn4vh8vv5gCaGaAHAV9b8lTf3882p6v2ywPihqeXz+Q8YO+qujHJkcBpwD3bbdZU83s5\nPH43+5RkF+DjwPOb5HCLVZbcX/X7OU6J4fvA3l3396ZT2VZbZ6/mMS225mdZVb+sqhub258Gdkyy\naeOaOFX8Xg6R383+JNkR+ATw4ao6bZlV+v5+jlNhuPmAuCS3onNA3OlL1jkdeCrcfGT1sgfEae3P\nMsnuSdLcPoTO1OXrNr6pU8Hv5RD53exd8zm9D7i0qk5cYbW+v59j05VUHhA3NL18lsATgGcn+R1w\nI/DkkTV4zCU5GTgc2JzkKuB4OrO9/F4OYK3PE7+b/TgM+GvgwiTnN4/9LXAXGPz76QFukqRFxqkr\nSZI0BiwMkqRFLAySpEUsDJKkRSwMkqRFLAySpEUsDJpKzcF9FzW3D2xOrdD2Pl+V5OEtbv9pSd7W\n3P7LJPdua1+abRYGzYKD6Jx6uFVVdXxVfa7NXXTd/kvAk8upFRYGTYQkf5/kOV33tyR5UXP7jUku\nSnJhkicued2OwKuBJzUXfXlikj9O8pUk5yX5cpJ7NuvunOTU5qInW5N8NcnBzXOPbF5zbrPOrZdp\n4z8leXxz+8qmjec27dpvmfXP6T5zaJL5JA9IsinJac3ZRc9JcsCS1z0IeAzwxuY93D3J85p2f6s5\nslgamIVBk+KjQPeP/tHAKc0P8YHA/YBH0PmxvPlc8831KF4JnFJVB1XVqcDlwJ9U1QPonI7htc3q\nzwF+UlX3aV5zMFBJNgMvBx5eVQcD5wIvXKaNxba/6gv4UbP+O4EXr/aektwZuFNVnQe8Cji3qg6k\nc3qDDzbrp3lP59A5/82Lq+oBVfUd4KV0LthyIHDsKp+jtCYLgyZCczGSOya5c5IDgZ9W1feBhwAf\nqY5rgbPoXKioW1h82uHbAh9vxiDezLYumcPoXNSIqroEuLB5/NBmna8056N5Ks25aNawtfn3PDpX\n01vqVDrnBYJOgfhYVzs+1LTjC8Dtk+y6zOu739OFwEeS/BXw+x7aJq1obE6iJ/XgY3R+SO9E8wNO\n5y/zfq+FcALwuar6j83FTb7Q9dzSbS3c/2xVPaXP9v66+ff3LPN/raquSfKTpqvoiSz+S7+X99T9\n2KOAP6XTxfTyJAdUlQVCAzExaJJ8FDiGTnFY+Ov6bDrjB9sluQOdH8evL3ndL4Duv7h3A65pbj+t\n6/Evs61rZ3/gADo/vl8FDkvyh81zt06y7xDf00uB3arq4q739FfNvubodEktvfjKL5v3sXDq5btU\n1TzwP4HbALcYA5F6ZWHQxKiqS+lc8PzqhfPJV9Un6XSjfAv4HPCSpksJtv1F/QVg/4XBZ+ANwN8n\nOY/OackX1nsHcIckl9BJFZcAP6+qH9MpICcn+RbwFeAWg8mrNZ2VU8zH6Vwv49Sux7YABzf7ei3w\nN8ts5xTgJUnOBfYFPpTkQjrdVv9QVb/oo33SIp52W2ok2Q7Ysap+3aSDzwL3rKrfjbhp0oZyjEHa\n5tbA55sprgGebVHQLDIxSJIWcYxBkrSIhUGStIiFQZK0iIVBkrSIhUGStIiFQZK0yP8HWzWxZ9qq\nEFsAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f78f4620690>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diode voltage at operating point = 0.70 volts\n", + "1.3 current at opeating point = 1.30 milli-amperes\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show\n", + "V_ss=2#\n", + "R=1*10**3#\n", + "V_D=arange(0,2+0.001,0.001)\n", + "I_D=[]\n", + "for x in V_D:\n", + " I_D.append(10**3*(V_ss-x)/R)\n", + "plot(V_D,I_D) \n", + "title('load line plot')\n", + "xlabel('voltage in volts')\n", + "ylabel('current in milli-amperes') #milli-10**-3\n", + "show()\n", + "#we use the equation V_ss=R*i_D+V_D\n", + "#at point B\n", + "i_D=V_ss/R# #as V_D=0\n", + "#at point A\n", + "V_D=V_ss# #as i_D=0\n", + "#now we see intersection of load line with characteristic and we get following at operating point\n", + "V_DQ=0.7# #voltage\n", + "I_DQ=1.3*10**-3# #current\n", + "#diode characteristic cannot be plotted\n", + "print 'diode voltage at operating point = %0.2f volts'%V_DQ\n", + "print I_DQ*10**3,'current at opeating point = %0.2f milli-amperes'%(I_DQ*10**3) #milli-10**-3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 446 Ex: 10.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHNBJREFUeJzt3Xu0XGWd5vHvkwvdhCRADILhFi8YCXLXgEA3R2HwNELT\ngzZ07B4bUTqjgzI9oAwCQxClRQcFpW25KKCM3DS6gAVNNHAwjQgGkpAr3QyEAUKDEgQCNCThN3/s\n9ySVyrnsqlO7alfV81mrVqp27V37rVqV+p1nv+9+tyICMzOz4YxqdQPMzKw9uGCYmVkuLhhmZpaL\nC4aZmeXigmFmZrm4YJiZWS4uGNb2JK2SdEQBrztb0o8Gea5H0pMVj5dK+tNGt2E4kt6U9I5m79e6\nkwuGdYJItyJeN9+KEe+NiF8V0IaGkHSSpPmtboe1NxcMMzPLxQXDOoqkP5J0iaSn0+1bkrZKz20n\n6TZJz0laI+lWSTtXbPt2SfdIeknSXGByDftdJelD6f5sSTdJuja91lJJB1asO0XST1M7HpP0uSFe\n9xpJ35M0N71Wn6TdBll3W0k/TK+7StLZyuwJ/BPwAUkvS1qT932ZVXLBsE5zNjAD2DfdZgDnpOdG\nAd8Hdku314DLKrb9MfBb4C3ABcDfkv+wVPV6xwLXA9sCt/TvR9Io4FZgITAFOAL475KOGuK1Pw58\nmayALQL+zyDrfQeYALwdOBz4BPDJiFgB/FfgvoiYEBGTcr4ns824YFin+Tjw5Yj4fUT8Hjgf+C8A\nEbEmIn4WEf8REWuBC8l+WEl/tb8PODci1kXEfLIfdtXZjvkR8c+RTdZ2HVnxAng/MDkivhIR6yPi\nceAq4K+GeK3bIuJfIuINsoL4gcpklNo/GjgROCsiXomIJ4CL+9/7CN6H2UZjWt0AswabAjxR8fj/\npWVIGgd8C/gwsH16frwkpXVeiIjXKrZ9Ati1znY8W3H/VeCPU7rYHZgi6YWK50cDg3WYB/DUxgcR\nr6RDSlOApyvWmwyMZcv3vllhMRsJJwzrNKuBqRWPd2PTD+vpwLuBGRGxLVm6ULo9A2yfikq/3Wn8\n6KsngccjYvuK28SIOGaQ9UVF0ZI0HphE9j4r/R5Yx5bvvb/YeFpqGzEXDOs01wPnSJosaTLwv8gO\nCQGMJ+u3eFHSJOC8/o3SIZwFwPmSxko6DBjsR3wkHgBelvRFSVtLGi3pvZLeN8Q2R0s6NHXeX0DW\nF1GZLoiIDcBNwFcljZe0O/D3bHrvzwK7SBrb+Ldk3cIFwzrNV8h++B9OtwVpGcAlwNZkf43/GriD\nzf/y/jhwELCGrNBcO8y+BvurfaDzQgI2/rAfA+wHPAb8DrgCmDjEa/2YrLg9D+wP/M0gbfgc8Ep6\n3flkneNXp+fmAcuAf5f03DDvy2xAKvICSpJ+AHwEeC4i9h5knW8Df0Z2nPekiFiYlveS/QcfDVwV\nERcV1lCzkpJ0NfBURJzb6raYFZ0wrgZ6B3tS0tHAuyJiD+DvyMaK94/4uCxtOx2YmcaSm3Ubj26y\n0ii0YKShiS8Mscqfk2J/RNwPbCdpJ7Kx849GxKqIWAfcABxXZFvNSqqoaU/MatbqYbU7k40a6fdU\nWjZlgOUHNbFdZqUQEZ9sdRvM+pWh09uR28ysDbQ6YTzN5idG7UKWJsZWLd+VipOX+klyVDczq0NE\n1PzHeqsTxi1k890g6WDgDxHxLNlQyD0kTU1jz09M625h1argyCOD978/WLYsiPCt3tt5553X8jZ0\n0s2fpz/Lst7qVWjBkHQ92Xj3aZKelHSypFmSZgFExO3AY5IeBS4HPpuWrwdOBe4ElgM3RjaB2hZ2\n3x3mzoVPfQoOPxy+9jVYv77Id2Vm1p0KPSQVETNzrHPqIMvvIDuxalgSzJoFvb3w6U/DnDlwzTUw\nfXpt7TUzs8G1+pBUQzltjExPT0+rm9BR/Hk2jj/Lcij0TO+iSYrB2v/EE1naePFFpw0zs0qSiDbs\n9C6M04aZWWN1bMKo5LRhZraJE8YQnDbMzEauKxJGJacNM+t2Thg5OW2YmdWn6xJGJacNM+tGThh1\ncNowM8uvqxNGJacNM+sWThgj5LRhZjY0J4wBOG2YWSdzwmggpw0zsy05YQzDacPMOo0TRkGcNszM\nMk4YNXDaMLNO4ITRBE4bZtbNnDDq5LRhZu3KCaPJnDbMrNs4YTSA04aZtRMnjBZy2jCzbuCE0WBO\nG2ZWdk4YJeG0YWadygmjQE4bZlZGThgl5LRhZp3ECaNJnDbMrCycMErOacPM2p0TRgs4bZhZKzlh\ntBGnDTNrR04YLea0YWbN5oTRppw2zKxdOGGUiNOGmTWDE0YHcNowszJzwigppw0zK4oTRodx2jCz\nsnHCaANOG2bWSE4YHcxpw8zKwAmjzThtmNlIOWF0CacNM2sVJ4w25rRhZvVwwuhCThtm1kxOGB3C\nacPM8nLC6HJOG2ZWNCeMDuS0YWZDccKwjZw2zKwIThgdzmnDzKo5YdiAnDbMrFEKLRiSeiWtlPRv\nks4c4PntJf1M0mJJ90vaq+K5VZIelrRQ0gNFtrPTSTBrFixYAPPmwSGHwPLlrW6VmbWbmgqGpEmS\n9sm57mjgMqAXmA7MlLRn1WpfAh6KiH2BTwCXVjwXQE9E7B8RM2pppw3MacPMRmLYgiHpHkkTJU0C\nHgSukvStHK89A3g0IlZFxDrgBuC4qnX2BO4GiIhHgKmSdqjcfZ43Yfk5bZhZvfIkjG0j4iXgeOCH\n6a/9I3NstzPwZMXjp9KySovT6yJpBrA7sEt6LoBfSlog6ZQc+7MaOG2YWa3G5FhntKS3AScA56Rl\neYYm5Vnna8ClkhYCS4CFwIb03GERsToljl9IWhkR86tfYPbs2Rvv9/T00NPTk2O3BpvSRm9vNpJq\nzhyPpDLrRH19ffT19Y34dYYdVivpL4FzgXsj4jOS3gl8PSI+Osx2BwOzI6I3PT4LeDMiLhpim8eB\nvSNibdXy84C1EXFx1XIPq22QCLjiCjjnHDj9dDjjDBiT588JM2s79Q6rLew8DEljgEeAI4DVwAPA\nzIhYUbHOtsBrEfFGOux0aEScJGkcMDoiXpa0DTAXOD8i5lbtwwWjwXzehlnnK+w8DEnTJM2TtCw9\n3kfSOcNtFxHrgVOBO4HlwI0RsULSLEmz0mrTgSWSVgIfBk5Ly3cE5ktaBNwP3FZdLKwY7tsws8Hk\nOST1K+ALwPciYn9JApZGxF5DbtgEThjFctow60xFnuk9LiLu73+QfqHX1bojaz9OG2ZWKU/B+J2k\nd/U/kPQx4JnimmRl4vM2zKxfnoJxKnA5ME3SauDvgc8U2iorHacNMxuyDyNN73FRRJwhaTwwKp3E\nVwruw2gN922YtbdC+jAiYgNwmLJf5rVlKhbWOk4bZt0pzyip7wFTgJuBV9PiiIg5BbdtWE4Yree0\nYdZ+ihwl9cfAGuBDwDHpdmytO7LO5LRh1j18xT1rGKcNs/ZQujO9rfs4bZh1tjyHpK4ku9DRG+nx\nEmBmYS2ytubzNsw6l8/0tkI4bZh1Hp/pbYVx2jDrLLWc6f0en+lt9XDaMOsMuUdJpetSjIqIl4tt\nUn4eJdV+PJLKrPWKHCU1WdJ3gH8B7pF0qaS31NNIM6cNs/aV55DUDcBzwPHAx4DfATcW2SjrbO7b\nMGtPeaYGWRoR761atiQi9i60ZTn4kFT787XEzZqvyKlB5kqaKWlUup1Ido1tsxFz2jBrH3kSxlpg\nHPBmWjQKeCXdj4iYWFzzhuaE0VmcNsyao96E4bmkrHQ8ksqsWIUWDEn7AFOBjX/veXpzK5LThllx\nCisYkq4G9gaWsemwFBHxyVp31mguGJ3PacOs8YosGMuBvcr4y+yC0R2cNswaq8hRUr8F/HedtYxH\nUpmVQ56CcTVwn6R/lbQk3R4uumFm1XyWuFlr5Tkk9X/JJhxcyuZ9GKsKbVkOPiTVvdy3YVa/Ig9J\nPRcRt0TEYxGxqv9WexPNGsdpw6z58iSM7wLbAbey6ap74WG1VhZOG2a1KTJhjANeB44Cjkm3Y2vd\nkVlRnDbMmsNneltHcdowG16R52FsDXyKbGjt1kAARMTJdbSzoVwwbCA+b8NsaEUekvoRsCPQC/QB\nuwJra92RWbP4vA2zYuQpGO+KiHOBtRFxLXA0cFCxzTIbOfdtmDVWnoLRPzLqRUl7k42Y2qG4Jpk1\njtOGWePkKRhXSpoEnAPcAiwHvl5oq8wazGnDbOQ8Ssq6jkdSWbcrstO7cie31boDs7Jx2jCrT00F\nA9i5kFaYNZn7NsxqV2vBWFRIK8xaxGnDLD/3YZgl7tuwbtHwPgxJN6d/lwxw8/UwrOM4bZgNbdCE\nIWlKRKyWNHWg58swxbkThhXFacM6WWFzSZWZC4YVyXNSWadqeMGQtJY00eAAIiIm1rqzRnPBsGZw\n2rBO0/A+jIgYHxETBrm1vFiYNYv7NswyQyWMSUNtGBFrCmlRDZwwrNmcNqwTFHFIahWDH5IiIt5e\n684azQXDWsF9G9buStnpLakXuAQYDVwVERdVPb898APgHcB/ACdHxLI826Z1XDCsZZw2rF0VkTDe\nExErJR0w0PMR8dAwDRoNPAIcCTwN/BaYGRErKtb5BvBSRFwgaRrwjxFxZJ5t0/YuGNZSThvWjoqY\nfPD09O83gYsHuA1nBvBoRKyKiHXADcBxVevsCdwNEBGPAFMlvTXntmYt5zmprJsMNUrqlPRvT0R8\nsPqW47V3Bp6sePwUW05euBg4HkDSDGB3YJec25qVhkdSWTcYNjxLGgN8BJhK1p8gsvMwvjnMpnmO\nFX0NuFTSQmAJsBDYkHNbAGbPnr3xfk9PDz09PXk3NWuo/rTR25v1bcyZ474NK4e+vj76+vpG/DrD\ndnpLugN4jewH/c3+5RFx/jDbHQzMjoje9Pgs4M2BOq8rtnkc2Bt4b55t3YdhZeW+DSuzwkZJSXo4\nIvapo0FjyDqujwBWAw+wZaf3tsBrEfGGpFOAQyPipDzbpu1dMKzUPJLKyqjIK+7NlfThWl84ItYD\npwJ3kl0H/MaIWCFplqRZabXpwBJJK4EPA6cNtW2tbTBrNfdtWCfJkzCOB64jKy7r0mLPJWVWI6cN\nK4siE8Y3gYOBcZ5Lyqx+ThvW7vIkjF8BH4yIDc1pUn5OGNaunDaslYrs9L4WeDtwB/BGWpxnWG3h\nXDCsnXkklbVKkYekHgfuArYCxqfbhFp3ZGab81ni1m58xT2zEnDasGYq5Wy1RXPBsE7jvg1rhiIP\nSZlZk3gklZWZE4ZZSTltWFGKHCX1VuAUsskH+4+qRkScXOvOGs0Fwzqd+zasCEUWjPuAXwEPsmny\nwYiIn9bcygZzwbBu4bRhjVRkwVgUEfvV3bICuWBYN3HasEYpstP7NkkfqaNNZtZAPm/DWi1PwlgL\njCM7y9uTD5qVgNOGjYTPwzDrQu7bsHo0vGBI2jNdv+KAgZ6PiIdq3VmjuWCYOW1Y7YooGFdGxCmS\n+hjgGtsR8cGaW9lgLhhmmzhtWF4+JGVmThuWiwuGmW3ktGFD8VxSZraR56SyIjhhmHU4pw2rVljC\nkDQvzzIzKyenDWuUQQuGpK0lvQXYQdKkittUYOdmNdDMRs5niVsjDJUwZgELgGlkEw/2324BLiu+\naWbWaE4bNhJ5pgb5fER8u0ntqYn7MMzq576N7lXosFpJh7D59TCIiB/WurNGc8EwGxmft9Gdipze\n/DrgHcAiYEP/8oj4XK07azQXDLPGcNroLkUWjBXA9DL+MrtgmDWO00b3KPLEvaXA22pvkpm1E4+k\nsuHkKRg7AMslzZV0a7rdUnTDzKw1PJLKBpPnkFRPuhtAf4SJiLinwHbl4kNSZsVy30ZnKuyQVET0\nAauAsen+A8DCWndkZu3HacMq5Zka5O+Am4HL06JdgJ8V2SgzKw/3bVi/PH0Y/w04DHgJICL+FXhr\nkY0ys/Jx2rA8BeP1iHi9/4GkMQxwBT4z63xOG90tT8G4R9LZwDhJ/4ns8NStxTbLzMrMaaM75Rkl\nNQr4NHBUWnQncFUZhid5lJRZ63kkVfsp5EzvdPhpaUS8ZySNK4oLhlk5+Czx9lLIsNqIWA88Imn3\nultmZh3PfRvdIU8fxiRgmaS7fKa3mQ3FfRudLU8fxuFsOsO7n8/0NrMhuW+jvIrsw1gWEdNG0rii\nuGCYlZv7NsqpyD6Mle7DMLN6uG+js7gPw8wK576NzlDLbLWbSRMRtpQPSZm1H/dttF6h1/QuKxcM\ns/bkvo3WKvISrWvZNHfUVsBYYG1ETKy5lQ3mgmHW3pw2WqPI62GMj4gJETEB2Bo4HvhuHW00M9uM\n+zbaS12HpCQtioj9cqzXC1wCjCabf+qiqucnA9cBOwFjgP8dEdek51aRTam+AVgXETMGeH0nDLMO\n4bTRPEUekvpoxcNRwIHA4RHxgWG2Gw08AhwJPA38FpgZESsq1pkN/FFEnJWKxyPAjhGxXtLjwIER\nsWaIfbhgmHUQ9200R2GHpIBjgWPS7SjgZeC4HNvNAB6NiFURsQ64YYDtngH6+0ImAs+ncz/61fyG\nzKx9+byNchu2dkfESXW+9s7AkxWPnwIOqlrnSuAuSauBCcAJlbsGfilpA3B5RFxZZzvMrM30921c\ncUXWt+G0UQ7DfvySrgVOi4g/pMfbAxdHxMnDbJrnWNGXgEUR0SPpncAvJO0bES8Dh0bEM5J2SMtX\nRsT86heYPXv2xvs9PT309PTk2K2ZlV1/2ujtzfo25sxx30a9+vr66OvrG/Hr5OnD2KKDO0+nt6SD\ngdkR0ZsenwW8WdnxLel24KsRcW96PA84MyIWVL3WeWRDeS+uWu4+DLMu4L6NxiqyD0OSJlU8mEQ2\n6mk4C4A9JE2VtBVwIlA9pchKsk5xJO0ITAMekzRO0oS0fBuyvpMlOfZpZh3IfRvlkKdgXAzcJ+kC\nSV8B7gO+MdxGqfP6VLJLui4HboyIFZJmSZqVVrsQeJ+kxcAvgS+mUVE7AfMlLQLuB26LiLm1vjkz\n6yw+b6O1cp2HIWkv4ENk/RJ3RUQparsPSZl1L5+3UT/PJWVmXcd9G/VxwTCzruW0UZsiO73NzErN\nfRvN4YRhZh3FaWN4ThhmZjhtFMkJw8w6ltPGwJwwzMyqOG00lhOGmXUFp41NnDDMzIbgtDFyThhm\n1nW6PW04YZiZ5eS0UR8nDDPrat2YNpwwzMzq4LSRnxOGmVnSLWnDCcPMbIScNobmhGFmNoBOThtO\nGGZmDeS0sSUnDDOzYXRa2nDCMDMriNNGxgnDzKwGnZA2nDDMzJqgm9OGE4aZWZ3aNW04YZiZNVm3\npQ0nDDOzBmintOGEYWbWQt2QNpwwzMwarOxpwwnDzKwkOjVtOGGYmRWojGnDCcPMrIQ6KW04YZiZ\nNUlZ0oYThplZybV72nDCMDNrgVamDScMM7M20o5pwwnDzKzFmp02nDDMzNpUu6QNJwwzsxJpRtpw\nwjAz6wBlThtOGGZmJVVU2nDCMDPrMGVLG04YZmZtoJFpwwnDzKyDlSFtOGGYmbWZkaYNJwwzsy7R\nqrThhGFm1sbqSRtOGGZmXaiZacMJw8ysQ+RNG6VMGJJ6Ja2U9G+Szhzg+cmS/lnSIklLJZ2Ud1sz\nM9tc0WmjsIIhaTRwGdALTAdmStqzarVTgYURsR/QA1wsaUzOba3B+vr6Wt2EjuLPs3H8WeYnwaxZ\nsGABzJsHhxwCy5c35rWLTBgzgEcjYlVErANuAI6rWucZYGK6PxF4PiLW59zWGsz/KRvLn2fj+LOs\nXRFpo8iCsTPwZMXjp9KySlcCe0laDSwGTqthWzMzG0Kj00aRBSNPb/SXgEURMQXYD/hHSRMKbJOZ\nWdepThv1KmyUlKSDgdkR0ZsenwW8GREXVaxzO/DViLg3PZ4HnAmMGW7btNxDpMzM6lDPKKkxRTQk\nWQDsIWkqsBo4EZhZtc5K4EjgXkk7AtOAx4CXcmxb1xs2M7P6FFYwImK9pFOBO4HRwPcjYoWkWen5\ny4ELgaslLSY7PPbFiFgDMNC2RbXVzMyG19Yn7pmZWfO0xdQgeU7ik/Tt9PxiSfs3u43tJMcJlT2S\nXpS0MN3OaUU724GkH0h6VtKSIdbxdzOH4T5Lfy9rI2lXSXdLWpZOjP78IOvl/35GRKlvZIekHgWm\nAmOBRcCeVescDdye7h8E/KbV7S7rLefn2QPc0uq2tsMN+BNgf2DJIM/7u9m4z9Lfy9o+z52A/dL9\n8cAjI/3tbIeEkeckvj8HrgWIiPuB7VInum0p70mRHlCQQ0TMB14YYhV/N3PK8VmCv5e5RcS/R8Si\ndH8tsAKYUrVaTd/PdigYeU7iG2idXQpuV7vK83kGcEiKqLdLatCl57uSv5uN4+9lndKI0/2B+6ue\nqun7WeSw2kbJ2ytf/ZeHe/MHludzeQjYNSJelfRnwM+BdxfbrI7m72Zj+HtZB0njgZ8Ap6WkscUq\nVY8H/X62Q8J4Gti14vGuZFVwqHV2SctsS8N+nhHxckS8mu7fAYyVNKl5Tewo/m42iL+XtZM0Fvgp\ncF1E/HyAVWr6frZDwdh4AqCkrchO4rulap1bgE/AxjPM/xARzza3mW1j2M9T0o6SlO7PIBt+vab5\nTe0I/m42iL+XtUmf1feB5RFxySCr1fT9LP0hqchxAmBE3C7paEmPAq8An2xhk0stz+cJfAz4jKT1\nwKvAX7WswSUn6XrgcGCypCeB88hGn/m7WaPhPkv8vazVocDfAA9LWpiWfQnYDer7fvrEPTMzy6Ud\nDkmZmVkJuGCYmVkuLhhmZpaLC4aZmeXigmFmZrm4YJiZWS4uGNZ10kmLS9L9fdM0E0Xv83xJRxT4\n+idJ+k66/xeS9ixqX9a9XDCs2+1PNsVzoSLivIiYV+QuKu7/BeCJ+azhXDCs7Un6B0mfrXg8W9Lp\n6f43JC2R9LCkE6q2Gwt8GTgxXZDnBEnvl/RrSQ9JulfSu9O64yTdlC5GM0fSbyQdmJ47Km3zYFpn\nmwHaeI2kj6b7q1IbH0ztmjbA+vdVzsYqqU/SAZImSfp5mrH1Pkl7V233AeBY4BvpPbxD0udTuxen\ns6nN6uKCYZ3gRqCyGPwlcEP6gd4X2Ac4kuxHdONc/+l6IOcCN0TE/hFxE7AS+JOIOIBsaooL0+qf\nBZ6PiL3SNgcCIWkycDZwREQcCDwI/I8B2hhsSgEB/C6t/0/AGUO9J0lvA3aKiIeA84EHI2Jfsmke\nfpjWV3pP95HND3RGRBwQEY8BZ5JdSGdfYNYQn6PZkFwwrO2li8S8VdLbJO0LvBARTwOHAT+OzHPA\nPWQXkKokNp/eeTvgJ6mP45tsOrRzKNnFpoiIZcDDafnBaZ1fp/l6PkGaq2cYc9K/D5Fd/bDaTWRz\nJ0FWOG6uaMePUjvuBt4iacIA21e+p4eBH0v6a2BDjraZDaj0kw+a5XQz2Q/sTqQfdrK/5Gu9FsUF\nwLyI+M/pojN3VzxX/Vr9j38RER+vsb2vp383MMD/w4hYLen5dMjpBDZPBnneU+WyjwB/Snao6mxJ\ne0eEC4fVzAnDOsWNwEyyotH/1/h8sv6JUZJ2IPvRfKBqu5eAyr/QJwKr0/2TKpbfy6ZDRNOBvcl+\nlH8DHCrpnem5bSTt0cD3dCYwMSKWVrynv0776iE7tFV9UZyX0/von+J6t4joA/4nsC2wRR+LWR4u\nGNYRImI52YXun+qfzz8ifkZ2OGYxMA/4Qjo0BZv+Ar8bmN7f6Q18HfgHSQ+RTf/ev953gR0kLSNL\nIcuAFyPi92SF5XpJi4FfA1t0Yg/VdAZPPT8hu17JTRXLZgMHpn1dCPztAK9zA/AFSQ8CewA/kvQw\n2eGvSyPipRraZ7aRpzc3y0HSKGBsRLye0sQvgHdHxPoWN82sadyHYZbPNsBdaSiugM+4WFi3ccIw\nM7Nc3IdhZma5uGCYmVkuLhhmZpaLC4aZmeXigmFmZrm4YJiZWS7/H6UcX0Ap0RjzAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f78d99a3910>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diode voltage at operating point = 0.68 volts\n", + "current at opeating point = 0.93 milli-amperes\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show\n", + "V_ss=10#\n", + "R=10*10**3#\n", + "V_D=arange(0,2+0.001,0.001)\n", + "I_D=[]\n", + "for x in V_D:\n", + " I_D.append(10**3*(V_ss-x)/R)\n", + "plot(V_D,I_D) \n", + "title('load line plot')\n", + "xlabel('voltage in volts')\n", + "ylabel('current in milli-amperes') #milli-10**-3\n", + "show()\n", + "\n", + "#we use the equation V_ss=R*i_D+V_D\n", + "#at point C\n", + "i_D=V_ss/R# #as V_D=0\n", + "#now if we take i_D=0, we get V_D=10 which plots at a point far off the page\n", + "#so we take the value on the right-hand edge of V-axis i.e.,V_D=2\n", + "#at point D\n", + "V_D=2#\n", + "i_D=(V_ss-V_D)/R#\n", + "#from the intersection of load line with characteristic\n", + "V_DQ=0.68#\n", + "I_DQ=0.93*10**-3#\n", + "#diode characteristic cannot be plotted\n", + "print 'diode voltage at operating point = %0.2f volts'%V_DQ\n", + "print 'current at opeating point = %0.2f milli-amperes'%(I_DQ*10**3) #milli-10**-3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 448 Ex: 10.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output voltage for Vss=15 = 10.00 volts\n", + "output voltage for Vss=20 = 10.50 volts\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "R=1*10**3#\n", + "#diode characteristic cannot be plotted\n", + "#case a)V_ss=15\n", + "V_ss=15#\n", + "V_D=arange(-15,0+0.001,0.001)\n", + "#from the intersection of load line and diode characteristic\n", + "V_o=10#\n", + "print 'output voltage for Vss=15 = %0.2f volts'%V_o\n", + "#case b)V_ss=20\n", + "V_ss=20#\n", + "V_D=arange(-20,0+0.001,0.001)\n", + "#from the intersection of load line and diode characteristic\n", + "V_o=10.5#\n", + "print 'output voltage for Vss=20 = %0.2f volts'%V_o" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 449 Ex: 10.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "load voltage = 10.00 volts\n", + "source current = 0.01 amperes\n" + ] + } + ], + "source": [ + "V_ss=24#\n", + "R=1.2*10**3#\n", + "R_L=6*10**3#\n", + "#by grouping linear elements together on left side of diode\n", + "V_T=V_ss*R_L/(R+R_L)# #thevenin voltage\n", + "#zeroing sources \n", + "R_T=1/((1/R)+(1/R_L))# #thevenin resistance\n", + "#load-line equation is V_T+R_T*i_D+V_D=0\n", + "#locating the operating point\n", + "V_D=-10#\n", + "V_L=-V_D# #load voltage\n", + "I_s=(V_ss-V_L)/R# #source current\n", + "#diode characteristic cannot be plotted\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'load voltage = %0.2f volts'%V_L\n", + "print 'source current = %0.2f amperes'%I_s #milli-10**-3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 451 Ex: 10.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "correct assumption is D2 off and D1 on\n" + ] + } + ], + "source": [ + "V_1=10#\n", + "V_2=3#\n", + "R_1=4*10**3#\n", + "R_2=6*10**3#\n", + "#1)analysis by assuming D1 off and D2 on\n", + "I_D_2=V_2/R_2# #ohm's law\n", + "#applying KVL\n", + "V_D_1=7# #contradiction to 'D1 is off'\n", + "#this assumption is not correct\n", + "\n", + "#2)analysis by assuming D1 on and D2 off\n", + "I_D_1=V_1/R_1# #ohm's law\n", + "#applying KVL\n", + "V_D_2=-V_1+V_2+I_D_1*R_1#\n", + "#we get V_D_2 which is consistent\n", + "print 'correct assumption is D2 off and D1 on'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 453 Ex: 10.7" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current in the circuit = 80.00 milli-amperes\n" + ] + } + ], + "source": [ + "V_1=3#\n", + "R_1=20#\n", + "#As given voltage source results in forward bias, we assume operating point is on line segment A\n", + "#replacing diode with the equivalent circuit\n", + "V_2=0.6#\n", + "R_2=10#\n", + "i_D=(V_1-V_2)/(R_1+R_2)# #KVL around the circuit\n", + "print 'current in the circuit = %0.2f milli-amperes'%(i_D*10**3) #milli-10**-3" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter11_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter11_1.ipynb new file mode 100644 index 00000000..1e88e5ed --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter11_1.ipynb @@ -0,0 +1,610 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11 : Amplifiers Specifications and eternal characterstics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 516 Ex: 11.1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "Voltage gain Av = 8000.00 \n", + "Voltage gain Avs = 5333.33 \n", + "Current gain = 2.00e+09 \n", + "Power gain = 1.60e+13 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=1*10**-3#\n", + "R_s=1*10**6#\n", + "A_voc=10**4# #open-circuit voltage gain\n", + "R_i=2*10**6# #input resistance\n", + "R_o=2# #output resistance\n", + "R_L=8# #load resistance\n", + "V_i=V_s*(R_i/(R_i+R_s))# #input voltage(voltage-divider principle)\n", + "V_vcs=A_voc*V_i# #voltage controlled source voltage\n", + "V_o=V_vcs*(R_L/(R_L+R_o))# #output voltage(voltage-divider principle)\n", + "A_v=V_o/V_i#\n", + "A_vs=V_o/V_s#\n", + "A_i=A_v*R_i/R_L# #current gain\n", + "G=A_v*A_i# #power gain\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print 'Voltage gain Av = %0.2f '%A_v\n", + "print 'Voltage gain Avs = %0.2f '%A_vs\n", + "print 'Current gain = %0.2e '%A_i\n", + "print 'Power gain = %0.2e '%G" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 517 Ex: 11.2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current gain of first stage = 100000.00\n", + "Current gain of second stage = 750.00 \n", + "Voltage gain of first stage = 150.00 \n", + "Voltage gain of second stage = 50.00 \n", + "Power gain of first stage = 1.50e+07 \n", + "Power gain of second stage = 37500.00 \n", + "Overall power gain = 5.62e+11 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R_i_1=10**6#\n", + "R_o_1=500#\n", + "R_i_2=1500#\n", + "R_o_2=100#\n", + "R_L=100#\n", + "A_voc_1=200#\n", + "A_voc_2=100#\n", + "#voltage gain of the first stage...A_v_1=(V_o_1/V_i_1)=(V_i_2/V_i_2)=A_voc_1(R_i_2/(R_i_2+R_o_1))\n", + "A_v_1=A_voc_1*(R_i_2/(R_i_2+R_o_1))#\n", + "A_v_2=A_voc_2*(R_L/(R_L+R_o_2))#\n", + "A_i_1=A_v_1*R_i_1/R_i_2#\n", + "A_i_2=A_v_2*R_i_2/R_L#\n", + "A_i=A_i_1*A_i_2#\n", + "G_1=A_v_1*A_i_1#\n", + "G_2=A_v_2*A_i_2#\n", + "G=G_1*G_2#\n", + "print 'Current gain of first stage = %0.2f'%A_i_1\n", + "print 'Current gain of second stage = %0.2f '%A_i_2\n", + "print 'Voltage gain of first stage = %0.2f '%A_v_1\n", + "print 'Voltage gain of second stage = %0.2f '%A_v_2\n", + "print 'Power gain of first stage = %0.2e '%G_1\n", + "print 'Power gain of second stage = %0.2f '%G_2\n", + "print 'Overall power gain = %0.2e '%G" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 518 Ex: 11.3" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hence the simplified model for the cascade is with an:\n", + "Input resistance = 1.00e+06 ohms\n", + "Input resistance = 100.00 ohms\n", + "Overall open-circuit voltage gain = 15000.00\n" + ] + } + ], + "source": [ + "R_i_1=10**6#\n", + "R_o_1=500#\n", + "R_i_2=1500#\n", + "R_o_2=100#\n", + "R_L=100#\n", + "A_voc_1=200#\n", + "A_voc_2=100#\n", + "A_v_1=A_voc_1*(R_i_2/(R_i_2+R_o_1))# #Voltage gain of first stage\n", + "A_v_2=A_voc_2# #Voltage gain of second stage with open-circuit load\n", + "A_voc=A_v_1*A_v_2# #overall open-circuit voltage gain\n", + "R_i=R_i_1# #input resistance of cascading amplifier\n", + "R_o=R_o_2# #output resistance\n", + "print 'Hence the simplified model for the cascade is with an:'\n", + "print 'Input resistance = %0.2e ohms'%R_i\n", + "print 'Input resistance = %0.2f ohms'%R_o\n", + "print 'Overall open-circuit voltage gain = %0.2f'%A_voc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 519 Ex: 11.4" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "\n", + "Input power = 10.00 pW\n", + "Output power = 8.00 watts\n", + "Supply power = 22.50 watts\n", + "Dissipated power = 14.50 watts\n", + "Efficiency of the amplifier = 35.56\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_AA=15#\n", + "V_BB=15#\n", + "V_i=1*10**-3#\n", + "I_A=1#\n", + "I_B=0.5#\n", + "R_L=8#\n", + "R_o=2#\n", + "R_i=100*10**3#\n", + "A_voc=10**4#\n", + "P_i=V_i**2/R_i#\n", + "V_o=A_voc*V_i*(R_L/(R_L+R_o))#\n", + "P_o=V_o**2/R_L#\n", + "P_s=V_AA*I_A+V_BB*I_B#\n", + "P_d=P_s+P_i-P_o#\n", + "n=P_o*100/P_s#\n", + "print \"All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print '\\nInput power = %.2f pW'%(P_i*10**12)\n", + "print 'Output power = %.2f watts'%P_o\n", + "print 'Supply power = %.2f watts'%P_s\n", + "print 'Dissipated power = %.2f watts'%P_d\n", + "print 'Efficiency of the amplifier = %.2f'%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 520 Ex: 11.5" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resulting current-amplifier is with an:\n", + "input resitance = 1000.00 ohms\n", + "output resistance = 100.00 ohms\n", + "and a short-cut current gain of: 1000.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R_i=1*10**3#\n", + "R_o=100#\n", + "A_voc=100#\n", + "#I_i=V_i/R_i, I_osc=A_voc*V_i/R_o from these two we get A_isc=(i_osc/I_i)=(A_voc(R_i/R_o))\n", + "A_isc=A_voc*(R_i/R_o)#\n", + "print 'The resulting current-amplifier is with an:'\n", + "\n", + "print 'input resitance = %0.2f ohms'%R_i\n", + "print 'output resistance = %0.2f ohms'%R_o\n", + "print 'and a short-cut current gain of: %0.2f'%A_isc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 521 Ex: 11.6" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resulting transconductance model is with an:\n", + "input resitance = 1000.00 ohms\n", + "output resistance = 100.00 ohms\n", + "and transconductance = 1.00 siemens\n" + ] + } + ], + "source": [ + "from __future__ import division \n", + "R_i=1*10**3#\n", + "R_o=100#\n", + "A_voc=100#\n", + "#i_osc=A_voc*V_i/R_o and G_msc=i_osc/V_i gives G_msc=A_voc/R_o\n", + "G_msc=A_voc/R_o#\n", + "print 'The resulting transconductance model is with an:'\n", + "print 'input resitance = %0.2f ohms'%R_i\n", + "print 'output resistance = %0.2f ohms'%R_o\n", + "print 'and transconductance = %0.2f siemens'%G_msc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 522 Ex: 11.7" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resulting transconductance model is with an:\n", + "input resitance = 1000.00 ohms\n", + "output resistance = 100.00 ohms\n", + "and transresistance = 100000.00 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R_i=1*10**3#\n", + "R_o=100#\n", + "A_voc=100#\n", + "#V_ooc=A_voc*V_i and I_i=V_i/R_i gives R_moc=V_ooc/I_i\n", + "R_moc=A_voc*R_i#\n", + "print 'The resulting transconductance model is with an:'\n", + "print 'input resitance = %0.2f ohms'%R_i\n", + "print 'output resistance = %0.2f ohms'%R_o\n", + "print 'and transresistance = %0.2f ohms'%R_moc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 523 Ex: 11.8" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "The complex voltage gain is with\n", + "a peak value of : 100.00\n", + "a phase angle = 0.79 degrees\n", + "and the decibel gain is 40.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import cos,sin,sqrt,atan,log,pi\n", + "V_i=complex(0.1*cos(-pi/6),0.1*sin(-pi/6))#\n", + "V_o=complex(10*cos(pi/12),10*sin(pi/12))#\n", + "A_v=V_o/V_i#\n", + "A_v_max=sqrt(((A_v.real)**2)+((A_v.imag)**2))\n", + "phi=atan((A_v.imag)/(A_v.real))#\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print 'The complex voltage gain is with'\n", + "print 'a peak value of : %0.2f'%A_v_max\n", + "print 'a phase angle = %0.2f degrees'%phi\n", + "print 'and the decibel gain is %0.2f'%(20*log(A_v_max)/2.30258) #2.30258 is for base 10" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 524 Ex: 11.9" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXecVNXZ+L8PvS1NQJCqIE1FlCjWuEoSG2oSY0liIrz5\nRaNGfRON6RHja0lITDWm2YIlgqYo0cRKFBtSVBClKb33hWWBhef3x7nDzu5OuTNzy5m95/v5zGfv\nvTP3nvPMnjnPeco5R1QVh8PhcDiaxV0Bh8PhcNiBUwgOh8PhAJxCcDgcDoeHUwgOh8PhAJxCcDgc\nDoeHUwgOh8PhAJxCsBIRGScir8RdjzARkadF5Etx18NhByIyTUS+Enc9wkJE+olIlYhI3HXJRZNT\nCCKyVETGRFDOBBGZFHY5Xln7ReSwKMoKg0zflaqeo6qRfH/lijcwmCsiO0VkjYj8TkQ6FXD/UhE5\nI8D6BPq8Bqj3ahIDoobflaouV9UKtXziV5NTCKQ1rCaG1SMLR7CIyA3AncANQEfgBKA/8JyItPT5\nGCXYdhP085oy5fldqWqTegEfAWd4x+OA6cBEYDPwIXBW2menAXcAbwLbgH8AXbz3KoEVDZ69FBgD\nnAXsBvYAVcCcDPW4BHirwbVvAP/0jjsBfwHWe8/9PiBp9X7FO34Z2A/s8Mq6COgMTPXu3Qw8BfRO\nK+dQ777twHPA3cCktPdPAF4DtgBvA6dl+S6/DUxpcO1XwK/S6rnEK+dD4AsZnpHxu/K++6+kPedV\n4C6vTouBk4DxwHJgHfDltGe2Bn4GLAPWAvcAbeJuewG24Y7ed/W5Btfbe//z8d75A8Ctae8faLPA\nJGAfUO0960ZggNeWvgqsAlYDN6TdX9DzMtT7GeCaBtfeAT7tHZ8EvAVsBWYAJ6Z97iXgf4ChQA1Q\n65Wz2Xv/XGAO5ne6HLi5QTlf9trDRuAHeL9V7z0BvuO1q43AY3i/8wwyvA+cm3beAtgAjATaAA95\nz9jiydAjwzNyfffN0tr/rV67rwKeBLoBD3syzgD6pz1zKOa3vAn4ALgolLYXd+MP4cfUUCHsAb7i\nNYqvAavSPjsNWAkMB9oBj+N1nGRWCOnPvhn4S456tMV0lIPSrr0FXOwd/wX4O+ZH3h9YAPxPWr1f\nSbtvP3BY2nlX4DNeA+0ATAb+nvb+68BPvcZ8stfA/uK919tr0Gd555/wzrtlkKEfsBPo4J03x3Qi\nx3v13gYc7r13MDA8y3fR6LvC6wDS5N0LXO79n271/i+/AVoCn/S+y3be53+BUd6dPfmfBG6Pu+0F\n2IbP8r6PZhneewB4xDu+H/hx2nv12mx6e/XOB3ht6WGvfR6JUTBjinlehrp9CZiedj4c03G29Nrs\nFuCLGM/EpZjBTGoAlt4eLk9v/96104AjvOOjMAOBC9LKqcIonJaYAeAe6n6r12MGQId47/8+9R1m\nkOGHwENp5+cC73nHV3ptrY3XTo8BKrI8J9t3n64QFmIGbx2B94BFwBmY39mDwH3eZ9sDK7zvpRlG\nOW0AhgXd9pqiy6ghy1T1XjXf7F+AXiLSw3tPMR3VfFWtxjSGi30GfoQcJqGq7gL+CXweQEQOB4YA\nT4pIc4wF8V1V3amqy4CfY35QeVHVzar6d1WtUdUdwO2YHwwi0g/4GPAjVa1V1VcxjTjFZcDTqvpv\n71nPAzOBczKUsxyYjVE+YBprtarO8M73A0eJSFtVXaeq87NUOed35fGRqj7o/Z8mY368P1bVvar6\nHOYHPsj733wV+KaqbvXkvwPTwTQVugEbVXV/hvfWAgelnRfjlrhFVXep6jyMEvh8ic9L8Q9gpIj0\n9c6/CDyhqnsxHesCVX1YVfer6l8xI93zMzynUR1U9b+q+p53PBf4K16bBz4HPKmqr3ll/Yj6buMr\ngR+o6mrv/VuAz4lIpv7vEeB8EWnjnX8BeNQ73oP57g9XwxxVrcr7rWRGgftV9SNV3Y6xrhaq6ouq\nug+YglE4AGOp+33sV9W3gb9hvAWBkgSFsDZ14HX6YEaVKVakHS/HjCC6FVqIiJzqZRFUichc7/Ij\n1P3YvoAZxdd4z2+JMXHTy+7ts6x2IvIHL3C1Dfgv0MnrLA/BmNk1abespO5H1h+4SES2pF4YK6Jn\nluIayvAwgKruxCi1rwGrRWSqiAzxU/8srEs73uWVsaHBtQ5Ad4w1Nyut/s9QxP/MYjYC3bJ0WL28\n90uhYZs/pJiHiMjv09r8d7zO8V/UtZdL8dqLV8byBo9Y5rdsERktIi+JyHoR2Yrp5FOK8RBMGwcO\nDMY2pd0+APh7WnuZj3FJHdywHFVdgnEbnS8i7YDzML8BMK6g/wB/FZFVIvITEWnhp/5ZSG/zNRhr\nLf081U/1B0Y3+M1+IVP9SyUJCiEf/Roc78X84HZiOh4AvFF997TP1gtcq+orarIIKlT1KO/y80B3\nETka8+NINayNXjkDGpS9En/cAAwGjlfVTpiRUmoUvgboKiJt0z7fN62+yzFusS5prwpV/WmWsh4H\nKkWkN/DpNBlQ1WdV9VMYZfIB8Kcsz8g00i2WjRjlMDyt/p1VtWOAZcTN65i4y4XpF0WkA8ad9IJ3\nqV4bpbFSz5Zc0bDNryrmear6tbQ2f6d3+VHg8yJyIiau85J3fRWmY0unf1rZ+er9CMYC6aOqnTFu\nn9QgZzXQJ/VBr+2nW1HLMS7S9DbfTlXXZCjngAzABRh30YeevLWq+mNVPQLjnhqLiV1kotDEllyf\nXw78N8Nv9poCy8hL0hWCAJeJyDBvNPBjTBBVMf69NiJyjpfV8QNMMDPFWmBALveSZ55OwQRAu2CC\nQngm4WTgNhHpICL9MQHnh7I8ah0wMO28A6ZT3CYiXTE++lSZyzAuoAki0tL7YY5Nu/ch4DwR+ZSI\nNBeRNiKS6vAzybAB4+98APhQVRcAiEgPEblARNpjlNtOTCAtW/1zfld+8dwofwJ+KSLdvbr0FpFP\nlfpsW1DVbRi3xm9E5Ezv/zgA02ZWYEaqYBICzhGRLiLSE/jfBo9q2G5S/EBE2orIEZj4zWMlPi+d\npzEd/S0Yt0769cEi8nkRaSEil2ACpVMzPGMd0KdBNlUHYIuq7hGR4zEj5BRPYNr0iSLSCphAfbfT\n74HbPXcqItJdRDK5qlL8FTgTY/0eGAB5v5OjvMFhFabd52rz+b4ryXLckH9hvrvLvLbQUkSOE5Gh\neZ5fME1dISiNNa82OJ6E6ezWAK2A6+DAj/Jq4M+YkfsO6pvaU7y/m0RkZo46PILJTJrSwCd8LaYT\n/RB4BWNa35+l3hOABz1z8XPALzFBwY2YYNkzDT7/ReBEjNl8K+YHv8eTayVm5PM9jIm6HGNx5GoL\nKRkeSbvWDKPEVnnlnApcleX+fN9Vvv9TQ76NyRh5w3OZPYexmJoMqjoR8z/6GSZ4/wbGxTLGG2iA\nabvvYDJq/o3pyNK/tzswnf8WEflm2vX/Yr6/54GJXhyplOel13sPxr9dr72o6mbMwOQGTLu9ERjr\nXW/IC5gg61oRSblRrgZ+LCLbMbG+lBLDiy1c69V3NaazXo+xssBkxj0JPOvd/zomMSIjqroW87s6\nMb0cjMU0BfP/mI8ZKGWbS5Ppu8rXF2V833PFfQrjZViF6avuwPRXgZJKc4wNT9vOBFaq6nkRl/0S\nxn1yX5TlRo2IPAbMV9Vb4q5LU8ILPP4XYzm2wqQUf9ez2h7DjJSXYjLLtsZWUQ/PyvgQaJElYN0k\n8FxrWzAZfsvyfd5Rhw0WwvUYbRuXZiq/ySN5EJGPichAEWkmImdjMjn+EXe9mhpe4P50VR0JjABO\nF5FTMDnvz6nqYMxo9zsxVjMRiMh5XrJFe4xV9a5TBoUTq0IQkT6YdMc/E1/HHK+JFA49MXndVZic\n/a+p6jvxVqlpkpa51gqTP74Fo4Af9K4/iAnG20JTbO9gvvNV3msgTSsNOTJidRmJyBRMDn1HzMzH\nSF1GDkepeKmhszGd0D2qepOIbFHVLt77gkkD7hJnPR0OP8RmIYjIWGC9qs6hCbptHMnAmyg0EpP2\n+HEROb3B+5mChQ6HlZQyqaJUTsJM/jgHMxW8o4j8RVUP5PWKiPshOUJFVQMZjKjqNhH5FzAKWCci\nPVV1rYj0ov6EI8C1bUf4FNO2Y7MQVPV7qtpXVQ/F+PteTFcGaZ+L5XXzzTcnqtwkylwqItJNRDp7\nx20xay7NwaQ4Xu597HKyBPST9F0nsX3FWXaxxGkhNMSNmBzlRi/M/JBmmMHVJFV9QUTmAJPFbPiy\nFLg4xjo6HL6xQiGo6n8x+dwOR9mgZpG1YzNc34xZRdbhKCtsmIdgJZWVlYkqN86y45Q5abj2lZyy\niyH2mcq5EBG1uX6O8kZE0ICCykWU7dq2IzSKbdvOQnA4HA4H4BSCw+FwODzKWiHcdRf88Idx18If\n//oXXHYZ1NaW9pxvfxv+8Idg6hQ2994L3/hG3LVwOBx+KdsYwo4dcNBBsGcPrF0LBwe+d1CwfOxj\nMGsWPPUUjB2b//OZWLQIBg+GDh1g0yZoFfjit8Gxfz906wZbtsDcuXDkkXHXqDEuhuBoqiQuhjBt\nGpxyCpx/PrzySty1yc22bfDBBzBhArz4YvHPef55uPxyOPRQePfdwKoXCvPnQ9eucMUV8NJL+T/v\ncDjip2wVwjvvwKhRcNxx8NZbcdcmN7NmwTHHQGUlvP568c95/XWjBI87Dmbm2pLHAt58E046ybxK\nkdnhcERH2SqEd9+FESNg6FBYuDDu2uRm0SIYMgSOOALefx+K9RR88AEMH16eMjscDvspW4Uwd65R\nCAMHwpIlcdcmN4sWwaBBxqfeogWsW1f4M1SNQhg6tDxkXrzYyDxkiFFe+5vs/lwOR9OhLBWCKnz0\nkekYU52jzfG5VOcIpoNcsKDwZ6xZA23bGr/8oEHloxAqKqBzZ1ixIv89SeXll02ywKmnmgSJcub3\nv4feveGSS0zsLBv33QcDBsB558HOnZFVLxRuvhl69YJrroHdu/N/3mbKUiFs2ADt25tXx47QujVs\n3Bh3rbKzbJkJBINRYB9+WPgzPvwQDjvMHA8YAEuXBlW7cAhC5iTw7LPwuc+ZFOoTT4Srr467RsUz\nd67pHKdONdbwaaeZ32pD7r4bfvxjePxxM2D40Y+ir2tQTJ0Kjz5qEj7WroVzzjEZkOVKWSqEZcug\nf/+68169zAjaVtauhZ49zXHfvsWNlleuNPeC+RGpQlVVcHUMkpoaqK6GLt4eYcXK3NT55z/N3JS/\n/92kIt9yC0yfblyM5cjPfgY33GASKH77Wzj3XDjjDFifthvEr38NEyeazLOPfcwownvvtbct52Pi\nRLj1VhMrmzzZ9EtnnpnbOrKZslQIy5dDv35157162Wtq79tnrJcePcx5KQqhTx9zLGK3zOvWmXkh\n4mVB9+1r6u+oz1VXwdNPw8knm/O2bY2r5fHH461XMezZY+bYXHaZOReB//s/uPBC+PjH4YEH4Ktf\nNQph2rQ667FnT+Mq++c/46p58axda5JbPvtZc968Ofz5z3DssUYRTp5cfu6wslQIy5Y1Vgi2Wggb\nNxofesuW5jwIhQDmh2SrzOkWETgLIRszZphRcjrnnWfcEOXGK6+YOMghh9RdEzFzb269FZ55xgwS\n3nrLuDzTGTsWnnsuytoGw9NPwyc/WffbBmjWzCi9r30NHnnEWMrlhBX7IRTK8uX1XUY9e9o7Ws7U\nORYzWl650uT0p7DZQsgk8zPPxFcfW0lX8ClOPRXeftu43dq0ib5OxTJ9uplnk4mLLjKvbJx+Otx2\nm3GDShntrv7SS0YhNETEWENf/Wr0dSqVsrQQVqyo/2Oy2UJYty6Y0bKzEJJB27YmE23OnLhrUhhv\nvgknnFDcvYcfbhTgqlXB1ilsZs6E44+PuxbBUpYKYf36+msXlZOF0Lmz8bcW6lvMpBDKReZDDrFX\nednI6NGmgy0XVE19R48u7n4RE4h+++1g6xUm27cbT8URR8Rdk2ApS4WwcaNJa0tx0EGweXN89clF\nw85RxCizQian1dYaJdirV921bt3KR+bUInelrvSaFI45xizNUi6sXGn86Onts1BGjiwvhTBnDhx9\ntJlo2pSITSGISBsReVNE3haR+SJyh997N2yA7t3rzm1WCBs21FdeYDKOClEIDQPTYCaolYvMzZub\nFFSb54rYxLBh5bXcxwcfmDqXQrkphPffb3rWAcSoEFS1BjhdVUcCI4DTReSUfPft2wdbtxolkKJr\nV7MctI1s2VKXj5/i4IPr52bno6EChKYvc5JJKQSbZ9+nk1pSpRTKYX2udBYuNFlVTY1YXUaqmkrK\nagU0B/KOeTdtMqPl5s3rrtk8Ws7WORZiIWRTCE1Z5iTTrZvZ66Jc4i5BKITUcizlsubVggUm+N/U\niFUhiEgzEXkbWAe8pKrz892TqXPs2NEEaffuDaeepeAUgsEphMIYNsx0tOVAEAqhosK8ykUJOgsh\nBFR1v+cy6gN8XEQq892zcWPjzrFZM2M1bN0aSjVLIiiFkJrpnKLcFEKhcZOkc9hh9q9XlWLhwmBG\ny4MGmUURbWfPHpNGnVpbrClhRYxcVbeJyL+AjwHT0t+bMGHCgePKyko2bqxsFKSFug6yobKIm2wK\noZBd3jJZCB06mIa5e7dZ3M8W9u0z69J06lT/ug0WwrRp05g2bVq8lfBJOSxgCMYqX7cu8yS7Qjn8\ncLOO02mnlf6sMFm61KzoavMWtsUSm0IQkW5ArapuFZG2wCeBWxp+Ll0hANxzT+ZO39YRcxAB1vXr\nG+9JLGJk3rKlfopn3GzbZkz/9BgPGJnjdoFUVlZSmTad9pZbGjU3axgwoLTtVqNi1Srzvw0i/bIc\n9vkAYx2kL53TlIjTZdQLeNGLIbwJPKWqL+S7KdNoGexUCPv2maVwG46WC3WflJPMmRQgOJdRofTv\nb9bssp2GC02WQrksgrhiRd3Kw02N2CwEVZ0LHFvofRs21G02k46NaZhbt5qAd7MGajeIoDLYK3Mm\nhWCDy6icKBeXUZCj5T59ykchBOEis5Gym6mcrXPs3Nm+NcizjZa7dDGWg9+sqKYgc48emTdLKWdE\npK+IvCQi74nIPBG5zrveVUSeE5GFIvKsiHQu9Nl9+piMGxsz59IJ2kIohzWvmrKFUHYKIVOWEZiR\n+Pbt0dcnF9k6x2bNzMQ6vzN3M2UZQXnJ3L27kaNcJlv5ZC/wDVU9AjgBuEZEhgHfAZ5T1cHAC955\nQbRsaf7ntq5XlSJIhdCnj4lJ2N5GnEKwiExLQUB5dY5gOkg/geVMM7NTlJPMbduawGO57oyVCVVd\nq6pve8c7gPeB3sD5wIPexx4EPl3M83v1gtWrg6hpeASpENq1My/blzhxCsEisrlPyqlzBP8ulE2b\nTFC6YdYOGJnLxWUETdNtlEJEBgDHYBIkDlbVVMRkHXBwlttyYvOy7imWLw+2cyyHOIJTCJagmt1l\n1KmTfQph27bGGUYp/FoI2RQg2KkEg5C53BCRDsATwPWqWs8GUlUFinKClMOy4WvW1N8lrVT69LE7\njrB9u1m1N9ugp9yxYmKaX7ZtM7tIZZqIZeNouarK5ORnwu9oOZdC6NTJvsydqqrs8yKaooUgIi0x\nymCSqv7Du7xORHqq6loR6QVkVIMNJ11WNthyzHaX0d695jeXyZ1ZLLYrwZQCtG1nt6AmXZaVQii3\n0XIuhVCIhZApoAxNV+ZyQUQEuBeYr6q/THvrSeBy4Cfe339kuL3RpMuG9Opl9l22lfXrTTwvkzuz\nWGxPT163rv7mXLYQ1KTLsnIZZXMXQfl1jkFYCE1V5jLiZOAyzNLtc7zXWcCdwCdFZCFwhndeMLaP\nlsPoHG1XCA13a2xqNBkLwcYYQlWVWZ8lE4VYCJmyqqD83GTdu9sfMCwEVZ1O9kHVJ0p9vu0uo7AU\nwn//G+wzg2TduuwWe1OgrCyEfJ2jjQqh1NFyEq0ih8H2LKMkWgi2uoyCouwUQrbOsaLCdI42TWrJ\nN1r2qxCaihL0K7PD0KOH+f/v2xd3TTKTRIWwfr2zEKwhl0Jo3drMAK6pibZOucg3WvbjMsqlEGx1\nk5Uqs8PQooX5H2/ZEndNMrN2bfAr7dquEJyFYBG5FALY10Hm6hw7d4bqarOnQS7yWQjlFkNwFkJh\n2PydhdE5du5sBnU2DezSaepB5bJSCLn86WCfCyVX5yhiOvp8P/ZcCqFtW5MLnk+pRIWqP4Vgk1vP\ndvy0kbgIQyGI2L1UugsqW0Q+C6GcFALkH/2lZmZnUwgiRmZb1gfavdu47bLtJJWaVGjT/8h2kmYh\ngN1uI+cysohcWUZQF1i2hXwKIZ9PvbradPrt2mX/jE0y55MXXByhULp3t3ext6QphOpqY5F37Bh3\nTcKj7BRCLguhQwfYuTO6+uRi3z7YtQvat8/+mXyjv1zWQQqbZPajEGwe8dqIrS6jfftMsDvIZStS\ndOtmpxJMZRjZtmxFkJSNQqiuNo2wQ4fsn+nQwWw8YwM7dhhl0HC3tHTyTU7zqxBskdmvQnAWgn9s\nVaCpvbOD2Eu5IQcdZN9OgND0U06hjBRCyjrIpZ3bty+v0XK+iVp+FEJTk9lRH1tHy5s2hWMdgL0K\nYfPm8GS2hVgVQrYtCDORL8MImt5o2VkIDlsthCQqhDBltoW4LYRsWxA2Il/8AMqvcwzCQii3GIKz\nEArDZoXQtWs4z7ZVIWzeHJ7MtlCQQhCR5iISWIw9yxaEGbfbyJdhBOXnPgkiqNy+fXkpQVs7OFux\nNagcpvvEVoXgLARARB4VkY4i0h6YC7wvIjcFXZEGWxA2oqlaCElzGbm008JIpZ3aNpkviS6jJFgI\nfnIEhqvqdhH5IvAM8B1gNvDToCrhbUH4OGYLwnrdW2oTkeefh6FDK4HKrM9paqPlphhUjtNCCGpX\nqShp185sQLNjR/7vNkqSqBA2bYLjj4+7FuHix2XUwtsm8NPAU6q6lyL3iM1E2haED6VtQXiACRMm\nMGHCBIYMmcAJJ1TmfFa5+dM7dTJzFXbvzvx+uVkI27fbaSFMnjyZ7du3U1lZSfPmzXnnnXc4//zz\no61ECXTtakanNhGFQrDNKkqCheBHIfwBWAp0AF72XDuBLKmWYwvCRvjJAbapc9yxI/ecCTAptLlG\nzJs2lZdC8CNzKo0yyh/7rbfeSseOHZk+fTovvPACX/nKV7jqqquiq0CJdO1q34qnYQaV27Y18xts\nGdylcDEEw1RV7a2qZ6vqfmAZ8JWAys+2BWEj/MQQbHIZ7dyZv3OE3CPmcnMZVVfnl7l1a+MG2bo1\nmjoBNPc2/Z06dSpf/epXGTt2LHtsWRHQB1262GchhJ2Tb6PbyFkIhsfTT1RVgUeDKFxVp6tqM1Ud\nqarHeK9/Z/qsXwvBps4x1xpEKbJZCKmF7fL96GyyEHbuLE3msOjduzdXXHEFjz32GOeeey41NTXs\n378/ugqUiK0WQtIUQqItBBEZJiIXAp1F5LMicqH3dxzQJrIaepSjhZBrHaMU2SyE7dvNaLp169z3\n22YhlCJzWEyZMoUzzzyTZ599ls6dO7NlyxYmTpwYXQVKxEYLIWkKYd8+Exfs1CnumoRLriyjIcB5\nQCfvb4oq4KthVqohu3aZVQbzBSxtGi2XaiH4XTfFJplttRCuvPJKJk2adOC8V69e3HRT4JnToeEs\nhPjZutUoA8/72GTJqhC8jJ9/iMiJqvp6hHVqhJ91jMAul5FfCyFb57hunb/tCW1SCH4thKgVwrx5\n8+qd19bWMmvWrOgqUCJdutilEHbvNpsy+YmRFYttCiHMILpNZFUIIvKbtOMvNHhbVTXrukNB43e0\nbJPLyK+F0KMHLFnS+Pratf7WmrfJZeTXQojKZXT77bdzxx13sGvXLirSzMuWLVtyxRVX8P7774df\niQDo0gWWLYu7FnWkgqthLgNtm0JIwsJ2kDuoPAuY6b1mZXhFxoYN/hRCq1amkdqQQOIshOxEZSF8\n73vfo6qqihtvvJGqqqoDr82bN3PnnXeGX4GAsM1lFEVwtXPnaDPR8pF4C0FVH0g/F5EKc1kj737W\nr88fUE6RshLi/ucVYiFkGi03dQvhzYwLlATL7NmzAbjooosOHJcjtgWVo1AIXbrAe++FW0YhJMVC\nyLt0hYgcBfwFOMg73wBcrqrzct4YIH4tBKgbMcetEIKwEEaNyn9/SgGqxr+Tk20Wwje/+U0k7i8l\nAGyzELZsMR12mDgLIR78rGX0R+CbqvoSgIhUetdOCrFe9Vizxp/7BOwJLEdlIbRsaV41NWaGZ1zs\n32+ywfzUIaoYQr51i8pFWdhmIWzdGo1CsEkJJmFSGvhTCO1SygBAVad5K59GxurV/kbLYE9g2a+F\nUFFhYh4NO1O/MQSocxvFqRBqaqBNm9xbhqaIOstoz5493HPPPbz88ssAVFZW8rWvfS26CpSIbRbC\n1q2mww6TLl3sshC2bIHDD4+7FuHjRyF8JCI/BCYBAnwR+DDUWjVg1So4JOMuCY2xJcjq10IQqds0\npl+/uuvr1vmzEKBO5nzLXISJ3/gB1K1ntH+/PwVSKldddRW1tbVcc801qCqTJk0qq7WMOnUy/999\n++zIg0/l5IeJbRbCtm3hK0Eb8KMQ/ge4Bfibd/6Kdy0yVq2C3r39fdYGl5Gqf4UAdSPmlEJQLVwh\nxC2z3/gBmGywDh1MxxKFGf7WW2/x7rvvHjgfM2YMI0aMKPm5InIfcC6wXlWP8q51BR4D+mMWhbxY\nVUsa6zZrBh07mu/LhsDmtm31By9hYFsMIQolaAN+xmcDVPVaVT3We12vqpHpblXjMvJrIdjgMqqp\nMZ2e39FcQ5/6pk1GmfhVKDbIXIiFANEuX9GiRQsWL1584HzJkiW0aOFnLJSX+4GGizF+B3hOVQcD\nL3jnJWPT5LQoXEYpq8iWJaechVDHXSLSE5gCPBZldhGYYE7r1v5Hn+3amdFqnPiNH6Ro6FNfvhz6\n9vV/vw0yF2IhQJ3MQ4eGV6cUEydO5IwzzuDQQw8FYOnSpdx///2MGTOmpOeq6ivecvDpnA+c5h0/\nCEwjAKUTsqgtAAAgAElEQVRg054IUSiEZs2MFbltW/gBbD8kxULIqxBUtVJEegEXA3/w9lSerKq3\nhl47CnMXgT2dY6Gj5XSFsGJFYSa5DTIXYyFEFVgeM2YMCxcuZMGCBQAMGTKENm1CW5/xYFVd5x2v\nA3w6/nKTNAsB6txGNiiEbducQjiAqq4BfiUiLwLfBn4EOIWQhUIthEMOMUogxfLl5acQCrUQGsoc\nJiNGjODSSy/lkksuYeDAgdEUipnFKSJZtwJKbQ8LJvOpsrIy67NssxCi6BxtyjSy3WUU1Pawfiam\nDcdYB58DNmECZt8suWSffPghHHaY/8/b0jkWMloeOBDS/5eFKoT27eOXuVALYeDAzGs4hcGTTz7J\nY489xsUXX4yIcOmll3LxxReHVdw6Eempqms9yzprpCRdIeSjUyfTKdlAVJ2jLZlG+/eb5eg7doy7\nJtlpOKC45ZZbinqOn6DyvcBW4FOqepqq/k5VI1vNfvFiGDTI/+dt6RwLGS0PGlS/c1y2rOlbCA1l\nDpMBAwbw7W9/m1mzZvHoo4/y7rvvHognhMCTwOXe8eVAo33Ci8EmhRCVy8gWC2HHDtO2bUj5DZu8\nCkFVT1TVX6rq6igq1JDFi81o0i+2dI6FjJYPOww++sjkmQMsWABDhvi/3waZC7UQBg0y/9uoWLp0\nKT/5yU+49NJL+eCDD/jpT39a8jNF5FHgNWCIiKwQkfHAncAnRWQhcIZ3XjKdO9uhEKIcLduSepqU\ngDL4jCHEyZIlhVkItnSOhYyW27UzPuJUvGTRIhg8uLD7y2keAsChhxpLKIrJVqNHj2bPnj1cfPHF\nTJkyhcM8H+SNN95Y0nNV9fNZ3vpESQ/OQKdOsHJl0E8tnB07THsLJms3N7a4jGyPHwRJrAoh08Se\nhixdWtiUcRsUQqEWAhgF8P77UFtrUjILVShxjx4LtRDatDFLcyxZUpjyK4YHH3yQoVHkt4aILRZC\nlKNlW1xGSbIQIlg4ICeZJvbUY/Bg03n4xYbRcqEWAsDxx8OMGTB7NhQ6idYWJViszGFT7soATIdk\nQ+cY5WjZFpdRUlJOwYdCEJEhIvInEXlORF7yXi8GUbiqvgLkNAqPO66wZ9rSORZqIYweDa+/DtOn\nw8knF3avDTIXaiFAncyO/NgSVI4qoAzOZRQHflxGU4B7gD8DXtiTrLnVQTN2bGGft6VzLHS0fMYZ\ncPnl8Mor8Oqrhd1rg8zFWAjnnAOnnw433QT9+4dTr6aCTS6jqDpH5zKKHj8KYa+q3hN6TbIwa9YE\n5swxx/km74A9nWPaFr6+6NwZbrvNxEwKdRnZkmpbqIUwbBh8+cvwzDMQ9mrUr776Kk8//TTvedtw\nlcteCClscRlFbSHYILOzEOrzlIhcg1ntdHfqoqpGMm/yxz+eUNDnbVAIO3f638sgneuuK648G2Qu\nxkIACCD7My+XXXYZH374ISNHjqRvIYtEWYRNLqOoRsu2uIxsWWU2CvwohHEYF1HDHL3QZvaUgg2j\n5WJiCKVgg0IoxkKIilmzZjF//vxGVsFvf/vbmGpUOBUV5n8c954IUY6WbXEZbdtW2FyocsbPxLQB\nqnpow1cQhadN7BmcNrGnJGzpHIsZLReLDZlVxVoIUXDkkUeyZs2auKtREqnVP7dvj7ceSQ0qJz6G\nICJjVPUFEbmQDEFkVf1bhtsKIsfEnqKxQSE4C8EuNmzYwPDhwzn++ONp3bo1UH4xBKhzG8W5+ufW\nrdEsWQ6mPe3da7aYbdUqmjIz4YLKho9jNvg4j8xZRSUrhDBo1cpM7qqtjWY2ZSbisBDiVgg2WwjZ\nFpF76qmnoq1IidiQaRSlhSBSpwS7d4+mzEy4oDKgqjd7f8dFVpsAEKnrIONandBZCHaRLzOtXLAh\n0yjq0XJKCcapEJJkIcQ9UzkU4u4go7YQbAmk22YhnOzN8OvQoQMVFRX1Xh1tXss4CzZYCFGPlm1I\nPXUWQpkTt0KI2kJo0wZ27zYrUTaLQcWr2mkhvOrN8NuRZcPpcosj2JB6GqXLCOxQCM5CKHPiVghR\nWwgi0LYt7NoVXZnp7N1rFFHLlvGUnxRscRlFqRDilnnvXvOybbATFn7WMmovIj8UkT9554eLSIEL\nSkRL3AohagsB4k09jUPeJBK3y0g1vhhCXKRSTsvMmCwaPxbC/cAe4CTvfDVwW2g1CoC4fepRWwgQ\nrxKMQ94kEvdoubraWIFRpoDG7TJKkrsI/CmEgar6E4xSQFVjngKVnzg7x717zUgqavdJnDKXg4Ww\ndOlSnn/+eQCqq6vZHvcMryKIO4YQR3A1boWQpIAy+FMIu0WkbepERAaStqaRjdgwWo7axLRBZlv5\n4x//yEUXXcSVV14JwMqVK/nMZz4Tc60KJ273SdTxA4jfKnIWQmMmAP8G+ojII8CLwLfDrFSpJHG0\nnESZ/XL33Xczffr0A6mmgwcPZv369THXqnBs6BzjsBCSZhXFSd60U1V9VkRmAyd4l65T1Y3hVqs0\n4gywxjVajjNuYruF0Lp16wNLVgDU1taWXcopxO8yikshxO0ychZCGiIyCuiHCSavAfqJyEARsXYO\nQxJHy0mU2S+nnXYat912G9XV1Tz33HNcdNFFnHfeeXFXq2DiHi3H4T6JWyE4l1Fj7gbeBP4E/BF4\nA3gcWCgiZ4ZYt6JJoj89iTL75c4776R79+4cddRR/OEPf+Ccc87h//7v/+KuVsHE7TKKY7Rsg8zO\nZVSf1cBXVPU9ABEZDtwK3IRZ4O4/4VWvONq1g6qqeMqO00Jw8xAy07x5c6644gquuOKKuKtSEnG7\njOJQCDZYRUna3tWPQhiSUgYAqjpfRIaq6hIRiWxv5UJo1w7WrYunbGch2MdRRx2FiKBa11w7eT2b\niBykqpviqlshtG1rNsjZvRvSQiKREZdCcBZCdPhRCO+JyD3AXwEBLgbmi0hrYG+YlSuWOAOsLoZg\nH2eddRYtWrTgC1/4AqrKX//6V6qrq1NrHT2AWeLdetKXg+7RI/ryt22DPn2iLbOiwgw44topLmkx\nBL9baF4N/K93/ipmO829wBnhVKs04h4tJ00h2LiwXTrPP/88c+bMOXA+YsQIjjnmmNTpgDjqVCwp\nF0pcCiHqzjF9p7g4NgZyWUYNUNVqVf2Zqn7Ge/3Mu7ZfVWPy1Ocm7tFy0tJObVz6Op19+/bx5ptv\nHjifMWMG+/fvT53WxlKpIokzyBpX5xhnHMG5jBogIoOB24HhQGrGsqrqYWFWrBSSqBDiltlmC+He\ne+9l/PjxB5bBrqio4N5772X06NEAd8RauQKJM7Acp0KISwk6l1Fj7gduBu4CTse4kALx5onIWcAv\nvef92VszqWSSmHETt0Kw2UI47rjjmDdvHlu3bkVEDgSUAVR1chhlhtW24x4tx9E5xm0VOQuhPm1V\n9XkREVVdCkzwZi7/sJSCRaQ58FvgE8Aq4C0ReVJV3y/luRB/59izZ/Tlxi2zzRYCwNSpU5k/fz41\nNTWhlxVm246zc4xrtByXhaDqYgiZqPEa+GIR+bqIfBYIYjx4PLBYVZeq6l5MFtMFATw3kZ1jEq0i\nv1x55ZVMnjyZX//616gqkydPZtmyZWEWGVrbTqKFEJfM1dVmqe8kbfzkRyFcD7QDrgM+BlwGXB5A\n2b2BFWnnK71rJZNUheCyjDLz2muv8Ze//IWuXbty880388Ybb7BgwYIwiwytbccVQ9i/H3bsgDi2\noo7LQkiadQD+XEaHqupbQBUmfoCIXIxZwqIUfE1qmzBhwoHjyspKKisr896TxM4xiUrQL23bmlyI\n2tpavvnNb9KuXTvmz58fZpGhte1OneCjj4qtVvFUVZk4URxzAeJyk5VTQHnatGlMmzat5Of4UQjf\nBRoG3jJdK5RVQN+0876YkVQ90n80fok7BdMpBLsYO3YsW7Zs4dZbb+Waa64B4JprrglzPaPQ2nZc\n7pM4R8udO8PKRt9e+JRTQLnhgOKWW24p6jlZFYKInA2cA/QWkV9jZikDVBDMDOWZwOEiMgCzXtIl\nwOcDeC5t2kBNjTFzm/lxigVIXJ1jEpWgX2666SbatGnDhRdeyLnnnktNTQ1t2rQJUyGE1rbjGi3H\nrRDmzYu+3HKyEIIiV3e5GpgF1Hh/U68ngZJXOVXVWuDrmMXx5gOPBZGFAUYJpJRC1Lh5CPZx0kkn\nHThu06YNnTt3rnctaMJs20m1EOJSguViIQRFVgtBVd8B3hGRh71MicBR1WeAZ8J4dqqDjLqjci4j\ne1izZg2rV6+murqa2bNno6qICNu3b6c65C8rrLadRAvBxRCiI5fLaG7accO3VVVHhFWpIEilYXbr\nFm25cXWObduaslWj3c9Z1V6F8J///IcHHniAVatWccMNNxy4XlFRwe23386FF14YY+2KI64so7gt\nhKTJHBe5gsplsQJkNuLKy4+rc2ze3ORM79oVbfm7d5s87TiyT/Ixbtw4xo0bxxNPPFGWnX8mktg5\nOpdRdORyGS1NHYvIwZjJNgrMUFXrdyhv1850jlET52g5JXOU5dtqHQD8/Oc/P7APwl133XXgesp1\nVI507Gg6qqgtwSQqhK1boXcgs0fKBz+L210MTAT+6136rYh8S1WnhFqzEmnfPlkWAtTJfNBB0ZVp\ns0KoqqrK2PGXs0Jo2dIkTOzcaZaFjoo4FUISlWBc+JmH8APguJRVICLdgRcAqxVCHEHWPXvM37im\nuschs80KIV+efzHzAGwgFWSNWiFEvTlOijiVYNJcRn6y9AXYkHa+ibo5CdYSh4UQ96qfcclsq0JI\nsWLFCj7zmc/QvXt3unfvzoUXXsjKOGY6BUQccYS4R8txuI2SmGXkRyH8G/iPiIwTkfHA04SUKhok\nSRwtJ1FmP4wfP57zzz+f1atXs3r1as477zzGjx8fd7WKJo5MoyQqBGchZEBVvwX8ATgaOAr4g6re\nFHbFSiWJo+UkyuyHDRs2MH78eFq2bEnLli0ZN24c69dbnxeRlTjy8uNWCEmUOQ7yKgQRuQF4Q1W/\noarfVNW/R1CvkoljKYe4O8ckyuyHgw46iEmTJrFv3z5qa2t56KGH6Bb1BJUAicNlFLf7JIkyx4Ef\nl1EF8KyITPf2Qzg47EoFQRzzEOLuHOOQeedOu3dLA7jvvvuYPHkyPXv2pFevXkyZMoX7778/7moV\nTRJHy1G7jPbtM7/nioroyrSBvFlGqjoBs0va0cDFwMsislJVx4RduVJo3x62b4+2zLgVgrMQMtO+\nfXueeuqpuKsRGC6oHD7bt5uMpqgXx4ybQsRdD6zFZBl1D6c6weEshGiIW2Y/nHTSSXzqU5/i3nvv\nZcuWLXFXp2SithDi3BwnRdQyx60A48JPDOFqEZmGmXvQDfh/tq9jBMkcLSdRZj8sWrSIW2+9lXnz\n5jFq1CjGjh3LpEmT4q5W0USdZVRVZf7HcS5PErVVlMQMI/BnIfQF/ldVh6vqzaoa6lZTQZFEf7qz\nELIzevRofvGLXzBjxgy6dOnC5ZcHsQtsPMTROcY9Wo7aZZTEgDL4Szv9rqq+DSAifwy/SsGQxNFy\nEmX2w7Zt23jggQc4++yzOfHEE+nVqxdvvfVW3NUqmiS6T6JWCDbIHAd+lq5I57hQahECSRwtJ1Fm\nP4wcOZILLriAH/3oR5xwwgllu45RiiRaCHEowSS6jApVCGUzmyeJk7TisBB27rRfISxZsoRmTShd\nJKkWQpRK0LmMfKCqJW+dGRVJXMbBWQiZaUrKAJJpITiXUTTk2jEtV+K2qur5IdQnMOKyEOJaERLi\niyHYPjGtqRF1lpENnWMcVlGPHtGVZwu5XEY/D6tQEbkImAAMxSytPTvoMpyFEA1xy+yH6dOnc8op\np9S79uqrr8ZUm9Lp0MFshFRbCy0KdfoWgQ0KIY4so8MPj648W8i1Y9q0EMudC3wGs2heKCR1+euk\nKUE/XHvttcyZM6feta9//esx1aZ0RMwkse3boWvX8MuzIcDapo2Ru6bGHIeNDTLHgZ8d0wYDtwNH\nAKl/harqYcUWqqofeM8u9hF5cRZCNMQtcy5ef/11XnvtNTZs2MBdd92FqgJmJ7X9+/fHXLvSSLlQ\nolIIcbpCU6SshJ49wy/LBZWzcz/we2AvUAk8CDwcYp0CoVUr8ze1i5lfVOGZZ8zszEKJO+OmWAuh\nthaeeqrw7wrsVgh79uyhqqqKffv2UVVVxY4dO9ixYwcdO3bk8ccfj7t6JRFlYNkGlxFEG0ewReao\n8eOBbKuqz4uIqOoyzEJ3s4Ef5rpJRJ4DMuny76mq75XG0rc5rKyspLKy0u+tB6yElHLww9SpcP75\ncPXVcPfd/u+D+DvHYi2Ee+6B666DiRPhxhsLuzdumXNx2mmncdpppzF+/Hj69+/PtGnTmDZtGtu3\nb+fhh60f0+QkiZ1j1ErQuYwyUyMizYHFIvJ1YDWQ11Ouqp8stXJQ2r63qThCIf/Yhx6CH/0Ifvtb\n+M1vClvtMO7OsVgLYdIkI/PDDxeuEOK2ivwwbty4RtfKfXJalJlGtrhPogws2yJz1PhRCP8LtAOu\nA24FOgJBLgQT2i+zmDjCa6/B7bfDI4/A++/DEUf4vzduhdCypVmZcu9ec+yHXbtg3jx4/nn4+c9N\noLKQVS3jltkPEydOPHBcU1PDE088QYsWLXjppZdirFVpJNFlFKVCsEXmqPGzH8IM77AKGBdEoSLy\nGeDXmNVT/yUic1T17CCenU6hmUarV5sshsMOg9GjYcaM8lIIInVWgt/GPHs2DB9ulMDRR8OsWXD6\n6f7u3bvX/C3EJRcHH/vYx+qdn3LKKRx3XNmswpKRKF1GW7ZAly7RlJWLqGTevdtskNO2bfhl2Yaf\nLKMhwI3AgLTPq6qeUWyh3jacoW/FWaiFMG8ejBhhOtbhw42FUAhxKwSoiyP4VQjz5hlFAEbmDz7w\nrxBskNcPmzdvPnC8f/9+Zs6cyfaod08KmCgtBFsUQlQyp6yDMvcqFoUfl9EU4B7gz8A+75qGVqMA\nKdRCWLy4bjLKsGFQ6C6Lcc9DgMLjCA1l/uAD//eWi0I49thjD8QMWrRowYABA7j33ns59dRTi35m\nrsmVIvJd4H8wv5frVPXZEqqfkU6dYNWqoJ/amD17zKtDh/DLykdULqOkuovAn0LYq6r3hF6TECjU\nQli8GAYONMdDhxZmIezbZ1wocbtPCs00WrwYjj/eHA8dCv/+t/97y0UhLF26NIzHZpxcKSLDgUuA\n4UBv4HkRGayqgU586NwZ5kewM8nWraYsG0bLnTvDypXhl5PUDCPwpxCeEpFrgL8Bu1MXVXVz9lvs\noFALYckSSA0aBwyA5ctNkNZPptGuXaZzjPuHU6iFsGQJDBpkjg87DArpO8tFIezatYvf/e53TJ8+\nHRHh1FNP5aqrrirpmTkmV14APKqqe4GlIrIYOB54o6QCGxBVltGWLfZ0jlHFEJKaYQT+FMI4jIso\nPSFRgaJnKkdFMRZCqnNs29b8ENatg1698t9rS/plITKrGoWQsor69oUVK8x1P4rNFpnz8eUvf5mO\nHTty3XXXoao88sgjfOlLXwqruEOo3/mvxFgKgRJV52hL/ACijyEkkZwKQUSaAd9W1cciqk+gFGoh\nLFtmLIMU/foZK8GPQrBltFyIzBs3mnVhUmmm7dub14YN/lZ6tEXmfLz33nvMT/OvnHHGGQwfPjzv\nfUFNriRLzK2USZdRdY62KYSkKUG/pCZdlkpOhaCq+0XkJqAsFUIho+WdO00cID141revUQijR+e/\n35bOsRCZ169v3PGnZG5KCuHYY4/l9ddf58QTTwTgjTfeYNSoUbyfJ0hU5OTKVZh9yFP08a41opRJ\nl1G6T2zpHJ1CyE7DAcUtt9xS1HP8zMN9TkRuFJG+ItI19SqqtIgpZLScGhWnu0r69TMuFD/Y0jkW\nInMmhVCOMudj5syZnHzyyfTv358BAwZw0kknMXPmTABE5N0Aikh3sD0JXCoirUTkUOBwYEbm24on\niRZCVEpw8+ZoFg20ET8xhEsxJu81Da4fGnx1gqVdO9Og/bBhA3TvXv9aarTsB1v86YVYCE1F5nz8\n5z//ObDSaQoRYYDxDxa10VO2yZWqOl9EJgPzgVrgam1YeACkOke/8Z5isSmoHKUS7Ncv/HJsxM9M\n5QER1CMUSh0t9+oFb73l7/6dO6GiorD6hUEQMq9d6+9+W2TOxw9+8AMmTZpU71oqqKyqS4t5Zq7J\nlap6O2bJ+NBo3dpkv9XUhDujdssWe3YOa9/ezCIuZGmWYtiyJbkWQl6XkYi0F5EfisifvPPDRWRs\n+FUrnVJHyz17+u8cd+yIf1IaJFPmfMybN6/eeW1tLbNmzYqpNsERxYjZphiCSDTptps32yNz1Pjd\nD2EPcJJ3vhq4LbQaBUipo+WDDzZpp37YscOO2ZxJlDkbt99+OxUVFcydO5eKiooDrx49enD++VZv\nCe6Lzp39u0SLxaYYAkQTR3AWQm4GqupPMEoBVY14T67iiXK0vHOnHaPlqGW2WSF873vfo6qqihtv\nvJGqqqoDr82bN3PnnXfGXb2S6do1eQohCqsoyRaCn6DybhE54KUUkYGkzVi2mUJHyw1XNu3Sxdy/\ne7fx2ebCltFyMZlV6fTsWZiFYIMSzMfZZ5/Nyy+/HHc1AqdrV9i0KdwybAoqQzSpp7YpwSjxoxAm\nAP8G+ojII8DJBLQMdtiUOlpu1sxcW7cuf9aBLQqh0HkIDWXu0cNc97Nkh+0WQoqJEyceWGKipqaG\nGTNmMGrUqJhrVToHHWRGs2FiUwwBwncZ7dtnts91M5WzoKrPeltmnuBdul5VN4RbrWAo1EJo2DlC\n3Yg5n0LYudP43+OmUAuhocytWpmZy5s3Q7duue+3RQnmY+rUqfXOV6xYwfXXXx9TbYIjKgvBJoUQ\ntoWwbZvJnGvePLwybMZPltELqrpRVad6rw0i8kIUlSuVQi2ETOl1Bx/sz6duS+foV+baWvPDOuig\nxu8VInM5uIwa0qdPn7yzlMuBsC2EffvM/9im0XLYMYQkB5Qhh4XgxQ3aAd0bzEzuSAiLdYWB39Gy\naubRMvj3qdvSOfqVedMmM/LLNBJKyXzkkbmfUS4uo2uvvfbA8f79+3n77bcZNWoUHxSy+YOFdO0K\nc+eG9/zUaLmQfcXDJmwLIckBZcjtMroSuB6zemN60nYV8NswKxUUfkfLO3fWbT/ZEL+jZVs6R78y\nZ0o5TdHULIRRo0YdiCE0b96cL3zhC5x88sk8/PDDMdesNMK2EFJ7IdhEp05mhd6wsM1FFjVZFYKq\n/hL4pYhcp6q/jrBOgdG2bd3+qLl8gtmsAzDX/aztY4vLyK+FkE9mP75pW2TOxyWXXMLixYsREQYN\nGkSbNm3irlIghB1DsLFzjMJCcC6jHKjqr0XkJOrvqYyq/qWUgkVkIjAWM79hCTBeVQP1DooYpbBr\nV+6OK9douVs3mDMnf1m2jJb9Wgi5lrju1s0sjZ0PW6yibOzdu5fvf//73HffffTzsgKWL1/O+PHj\nuf32UFeWiISwLYSNG/MnFkRNFDEE25RglPgJKj8E/Aw4BTgu7VUqzwJHqOrRwELguwE8sxF+Rsy5\nRsvl1jn6tRCyZVWBf5ltUYLZ+Na3vsXmzZv56KOPmD17NrNnz+bDDz9k69at3HjjjfkfYDlhWwib\nNtmpEJyFEB5+5iGMAoYHvWKjqj6XdvomcGGQz0/Rvr3puHKlhOazEMqpcyzETVaKzLW1ZpExm70v\nU6dOZeHChTRLi4p27NiR3//+9wwZMiTGmgVDFBZCpiy0OAl7HsKWLXakj8eFn/yBeYCPPcNK4n+A\np8N4cEWFmWiSiyAsBFv86ang+I4duT+Xy0I46KD8Mqcsorj3kM5Fs2bN6imDFM2bN894vdzo0MEo\n/z17wnm+rS6jsBVCkl1GfiyE7sB8EZlB3ZIVqqp5VwfzswWhiHwf2KOqj2R6RinbDII/hbB+ffZt\nMsvNZQR1MufKHy/VQrDFIsrFsGHDePDBB7n88suBum0G33nnnQNZR+WMiHFvbN5sUoWDZtMmGDYs\n+OeWQtgL+m3YYJ8SjBK/S1cURb4tCEVkHHAOMCZr4SVsMwj+LYQRI7Lfv3u3WXc+m3tkzx4zl6FV\nq5KqGhh+lWApVpFNCjAbd999N5/97Ge57777DixVMWvWLKqrq3nhhRfo27dvnifYTyqOEIZCsNFC\n6NTJJIn4WV+sGDZuzP67SAJ+soymhVGwiJwFfAs4TVVrwigDSu8cRcyPYtMm6J1lOp4t7qIUpbrJ\nUi6jXLtx2SZzJvr06cObb77Jiy++yHvvvYeIcO655zJmTNbxR9mRshDCwMagcur3uHFj9t9jKeT6\nXSSBXDOVd2C2zsyEqmrHEsv+DdAKs2czwOuqenWJz2yE384x165Q+RqgLUtfp/CrBLPJ3KaNGX1V\nVZl1jTJhm8zZEBHGjBnTpJRAOgcdFF6mkY1BZTAd9oYNTiGEQa6JaaGO/1T18DCfn6Jjx9IsBMjv\nQrFttJxPIezdC9u3506vS8mcTSHYJnNSCdNCsNFlBHUKIWj27DEDHZvWboqa8k+1yEO+zjHXOkYp\n8ikE2/zp+WTetMmM/HIl2pSbEkwqYVkIqnXtxDbCUgh+fhdNnSYver7OcccOaNHCzPDNhp/O0Sb3\nST6Z81lE4E8J2iRzUunWLZzOsbra+Otz/S7iIiyFkHR3ETiFkNOXnqLcRsv5ZM4XM4HykzmpHHyw\nacNBY6u7CMJVCLbKHBWJVwh+RgXl1jlGYSHYJnNS6dHD/5anhWCruwichRAmiVcIQVgI27fbFYiK\nwkKwTeakcvDB4SgEWzOMIDyFkPQ5COAUQiAWwrZt2bNx4iAKC8E2mZNKWC6jdevCmewWBM5CCI/E\nK4QgOsft2+3qHKNQgrbJnFS6dzdtONilJ80GSUlUCC6G0MSJyn1iU+dYUWHqlI2mKHNSadPGZAIF\nvdgGLlkAABEwSURBVOBbUhWCsxCaOEFaCNlGYbZ1jkm0ipJMGIHldevsXQa6a1fjsqytDfa5fuKJ\nTZ3EKwQ/o+V27UxOdraNZ2zrHIOyinKNwmyTOWpEZKKIvC8i74jI30SkU9p73xWRRSLygYh8Kuy6\nhBFYttlCaN7cKAU/qxAXwpo12Vc9TgpNXiF06GAm2ezfn/l9P6NlyD1itq1zDMJC6NrVLDOc7Xuz\nTeYYyLjjn4gMBy4BhgNnAb8TkVB/Z2EElm1WCGA67jVrgn2mUwgJUAjNmpldxLKN7v2MliG333Lb\nNrtSMHMphD17zByCfJuAtGxpOvxs6+TYJnPUqOpzqppSl28CfbzjC4BHVXWvqi4FFgPHh1mXMFxG\ntiuE3r1h1argnldVZQY/CR/kNH2FANk7SD/rGKXo0SO7QrBttJxLIaTyy/2s11JOMsdM+o5/hwAr\n095bCYSwLmcdQbuM9uwx/19b5yEAHHJIsAohZR00gX2TSiLRCmH7drPMs599gXNZCLZ1jq1bG2W3\ne3fj9/xaRJBd5t27zWgqjA1KbEJEnhORuRle56V9JueOfx4BJ4XW5+CDzYg+KFIuRZsXeevdG1av\nDu55a9YYJZN0/OyYVvZ07Jg5DbOQNLNUvncmbFMIInUyN5TPb8wEssuc2iehqY+mitzxbxWQvhVb\nH+9aI0rdHjZF377wz38WdWtGbJ6UluKQQ+Ctt4J73urV5R0/SG0PWyqJUAjZNuYuJM0s22h53z6z\npZ9tK3+mZG7Y+QdhIdimAOMgx45/TwKPiMhdGFfR4cCMTM8odXvYFH36wIoVgTwKMK4Y2zvH3r2D\nVYLlHlBuOKC45ZZbinpOIhRCly6ZN+Yu1EJYsKDx9aoqk8lkm3kdlMxOIWQl445/qjpfRCYD84Fa\n4GrVoOcR16dv32AVwooV0K9fcM8LgzBiCM5llHCFUKj7JFPnaGu2TVAyL17c+LqtMkdJrh3/VPV2\n4Pao6tKli5mkFZSiXr7cfoUQdAxh1SoYMSK455UrsYxrReRWb0LP2yLygoj0zX9X8eQaLft1n2TL\nuNm2zQStbSOJMicVkWCthHJQCN27m3aYKXGiGJYtgwEDgnlWOROXo+Onqnq0qo4E/gHcHGZhYVoI\nW7bk3ps4LpIoc5IJWiH0DXWIVjrNmpnAd1BuI6cQDLEoBFVNTwLtAAQ8Cb0+2TrHQtZryZZxs3mz\nnfnaSZQ5ySTNQgA49FD48MPSn7N7txn4uBhCjDEEEbkN+BJQDZwQZllBdI4VFbB3r8koatu27vrm\nzXaOlrt0ybzURqEKIZOFYKvMSSYohbB3r2kj5dA5DhwYjEJYscLEJJo3L/1Z5U5oFkK+ST2q+n1V\n7Qc8APwirHpAMApBJHMHaWvnGITM3bqZrRQbrmdkq8xJ5tBD4aOPSn/OypWmfbRsWfqzwmbgQFiy\npPTnLF3q3EUpQrMQ8k3qSeMR6qb9NyKIyTu5/OmFLPGbUgjp5rStnWMmmXfsMDOY/e6F3KqVmV+x\ndWt9GW2VOR9BTd6xkcGD4Xe/K/05ixaZZ5UDgwbBlCmlP2fpUujfv/TnNAVicRmJyOGqusg7vQCY\nk+2zQUzeydQ51taajq4QX3imrJtNm+wcXWSSOWUdFDLDOCVzugLYtKk8FUJQk3dsZMgQWLjQKPxS\nZpAvXFg+CiEoC2HBgvKROWziyjK6w3MfvQ1UAjeEWVimznHDBqMMCvEbZgqy2jpaziRzoRYRlJfM\nSSbVlkvdSWzBAqNcyoGUQih12t/778OwYcHUqdyJxUJQ1c9FWV6nTnXL26ZmFK9bV/juSOUUQ0jt\nZ5BOU5c56QwebDr0Unb9WrgQzj47uDqFSZcuZoHFUmcZO4VQh2ULLoRD8+YmSyi9gyxmtNyjR/mM\nlrt2Na6ddIrZFjGbzC7t1D6GDIEPPijtGe+/D0OHBlOfKDj6aHjnneLv37XLzHgeODC4OpUziVAI\nYCaxpK8ZX0znmGlTDlsVQseOJoWwurruWhAy19aa4LRby8g+Ro6EOVmjcfnZsMFY0oceGlydwmbk\nSHj77eLvnz/fBKdbJGIRn/wkRiE03ERk7drCO8c+fUxaXgpVezfmFmmsBIOQORV7sW0xPwccd1xp\nS0LPng3HHFNey5qXqhBmzDDfm8OQmJ91z571NxFZsaLw6fl9+tQfLW/dajbXSZ+oZhNByZyuEMp9\nmeCmzMiR8N57xa/vM3MmjBoVbJ3C5phjTL2LZcYMGD06uPqUO04hFEDv3qZzTGU12N45hqEQ1q61\nW+Yk0769CY7OyLj7glm5dto0qKnJ/P5LL8HHPx5a9UJh2DDjwly6NPP78+bBK68YV2cmXn0VTgh1\nnYTyIrEKYeXKwjvH9u2NRZDaeH7NGrt3lgpC5kwWgs0yJ52zz4Z//avx9TvugJNOgu9+1wSNG46q\nq6vhzTehyE3bYqNZMxgzBp5/vv71mhq49FLzfVx7LRx7bONlLhYuhJ073bLX6SRWIRQzWob6HaTt\no+X0uEl1tRlJ+V3pNEUqeJzagtR2qyjpnHce/O1vdcuNqMIPfgCTJhlf++uvw113wTnn1I83/P3v\ncPLJ5bms+QUXwKOP1p3X1MBnP2u+g0WLTKD9iivg1FONSy3F44/D2LHlFTMJm0QqhN27TQpqMcHg\ndIVg+2g5XeaVK43Lq9DGL1JeMied4483nXpKKXzjG8Zi+O9/63L1P/tZuPde0xnOnGm2gb3rLrjy\nynjrXiyf/rTp6GfONL/tiy4yy7M88oix6EXg61+Hn/4UPvEJoyCqquDuu+Gqq+KuvV0kJtmqd++6\n1SCXLy9+dcN+/cza6VCcCyZKeveGqVPNcSnrtfTrZ+4fPtzIfMYZQdXQETQi8KtfmU7yttuMhffi\ni2YSVzrnnQd/+hOceaZZeqV7d3NPOdK6Nfzyl0amTp1McH3SpMappF/8olEQZ55pBoNjx5rPOupI\njEI47DCzGuT+/aVNz0+f/LNkid0+10GD6tZ6KVXmBQuMm2HJEvNch72ccgq89poZ+Jx+evaBz/nn\nm9HyvHnGD1/OrpNLLzWxke3bjWsomywXXghHHmm+mzFjoq1jOZAYhdC+vZlAtnKl6dCL7RyHDYN/\n/9scL15s9wzHww4zI/vaWtOhFzsDdehQ439WNYG5ww4LtJqOEBg82N+Cbf36lcdmOH7wO9ofMqR8\n1muKmsTEEMCMbBctKk0hDB1qpvfv22c6W5s7xzZtTGB5+fLSZf7gAzPFv6KiPAOPDocjP4lSCEcd\nZUzkt94qfgJO//4mIPXSS2Zk1b59sHUMmqOOglmzzOvYY4t7xogR8O67Jr/d+VwdjqZLohTCxz8O\nTzxh3B7HHFPcM5o1g9NOgwkTymOG48c/boKM3bsXv8RGt25GEd51l5vE43A0ZRKlED75SXjjDZOW\nVsoWgZddZmY4XnZZcHULi09/2tT1y18u7TmXXQbTp8MllwRTL4fDYR+ipe4uESIiokHXb8MG6Ny5\n9D1jy2mC1tq1xjooZUE6Vfsn4hWKiKCqseTWhNG2HY4UxbbtxCkEhyOFUwiOpkqxbTtRLiOHw+Fw\nZMcpBIfD4XAAMSsEEblBRPaLiIV7jjkc2RGRW0XkHRF5W0ReEJG+ae99V0QWicgHIvKpOOvpcBRC\nbArB+wF9ElgWVx1yMW3atESVG2fZccpcAj9V1aNVdSTwD+BmABEZDlwCDAfOAn4nItZY4q59Jafs\nYoizod4F3BRj+Tlxjbfpl1sKqlqVdtoB2OgdXwA8qqp7VXUpsBg4PuLqZcW1r+SUXQyxrGUkIhcA\nK1X1XSnnFbUciUZEbgO+BOyirtM/BHgj7WMrgd4RV83hKIrQFIKIPAdkWjn/+8B3gXTfqtMKDuvI\n0Ya/p6pPqer3ge+LyHeAXwLjszzK5Zc6yoLI5yGIyJHAC0C1d6kPsAo4XlXXN/is+yE5QiWIeQgi\n0g94WlWP9JQDqnqn996/gZtV9c0G97i27QiVspyYJiIfAaNUdXOsFXE4CkBEDlfVRd7xtZgBzZe8\noPIjGBdSb+B5YJCbheYoB2zYD8H9UBzlyB0iMgTYBywBrgJQ1fkiMhmYD9QCVztl4CgXYrcQHA6H\nw2EHVuRHi8hZ3iSeRSLy7Syf+bX3/jsiUuTi1YWVKyKVIrJNROZ4rx8EVO59IrJORObm+Ezg8vop\nO0SZ+4rISyLynojME5HrsnwuULn9lBuWzN6zXdtu/Jkw5E1Uu/ZbdsFyq2qsL6A5Jld7ANASeBsY\n1uAz52CCdgCjgTciKrcSeDIEmU8FjgHmZnk/cHkLKDssmXsCI73jDsCCiP7PfsoNS2bXthu/H0rb\nTlq7LqDsguS2wUI4HlisqktVdS/wV8zknnTOBx4EUJOt0VlEDo6gXAghJVZVXwG25PhIGPL6LRvC\nkXmtqr7tHe8A3sfk7KcTuNw+y4VwUp9d225MKG07ae26gLKhALltUAi9gRVp55km8mT6TJ8IylXg\nJM/Me9rLIImCMOT1S+gyi8gAzGjuzQZvhSp3jnLDktm1bX91i6JtN9l2nafsguQupyyjhlqu1Gi4\nn/tnA31VtVpEzsasWTO4xHL9ErS8fglVZhHpADwOXO+Nahp9pMF5IHLnKTcsmV3bzkwcbbtJtmsf\nZRcktw0Wwiqgb9p5X4wGzfWZ1GS2UMtV1SpVrfaOnwFaSjQrs4Yhry/ClFlEWgJPAA+p6j8yfCQU\nufOVG6LMrm3nr1skbbsptms/ZRcqtw0KYSZwuIgMEJFWmJUin2zwmSeBLwOIyAnAVlVdF3a5InKw\niFlsSUSOx6TpRjGBLgx5fRGWzN4z7wXmq+ovs3wscLn9lBvi/9m17cbE0rabWrv2W3ahcsfuMlLV\nWhH5OvAfTHbEvar6vohc6b3/B1V9WkTOEZHFwE6yrxkTaLnA54CrRKQWs9TGpaWWCyAijwKnAd1E\nZAVm6eSWqXLDkNdv2YQkM3AycBnwrojM8a59D+iXKjskufOWS0gyu7YdXdtOYLv2VTYFyu0mpjkc\nDocDsMNl5HA4HA4LcArB4XA4HIBTCA6Hw+HwcArB4XA4HIBTCA6Hw+HwcArB4XA4HIBTCJEgIp1E\n5Kq080NEZEoI5ZwnWZZYdjjCwLXtpoWbhxAB3sJTT6nqUTFXxeEIFNe2mxbOQoiGO4GBYjao+ImI\n9BdvIw8RGSci/xCRZ0XkIxH5uojcKCKzReR1EenifW6giDwjIjNF5GUx2zfWw3vWb7zjB0TkVyLy\nqogsEZELM3x+gJhNVO4XkQUi8rCIfMq7Z6GIHOd97jSp22BjtpjFtBwOcG27aeF34wT3Kmkji/6k\nbdyB2bhkrnc8DlgEtAe6AduAK7z37sKsYAjwAmazdjCbbLyQoZzLgd94xw8Aj3nHw4BFGT4/ANgL\nHIFZjXEmZpkDMGu4/907fhI40TtuBzSP+zt1Lzterm03rVfsaxklhHwbVLykqjuBnSKyFXjKuz4X\nGCEi7YGTgCkiBx7VKs8zFbPULWrWscm2IcdHqvoegIi8BzzvXZ+H+VEBvAr8QkQeBv6mqpGsvOoo\nC1zbbkI4hWAHu9OO96ed78f8j5oBW1S10L1Y96QdZ/vhNix7T9pxCwBV/YmITAXOBV4VkTNVdUGB\ndXEkE9e2ywgXQ4iGKqCiiPsEzJrmwEci8jkwy96KyIhsnw8aERmoqu+p6k+Bt4BGPl5HYnFtuwnh\nFEIEqOomzOhjroj8BGPyptK70o/JcJw6/yLwFRF5G2Pynp+pqDzPyli9HOep4+u9ur+DGWU9k+VZ\njoTh2nbTwqWdOhwOhwNwFoLD4XA4PJxCcDgcDgfgFILD4XA4PJxCcDgcDgfgFILD4XA4PJxCcDgc\nDgfgFILD4XA4PJxCcDgcDgcA/x+ge3TAy+gQOwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f89fd6f7810>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange,pi,cos\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,show,subplot,xlabel,ylabel\n", + "from __future__ import division\n", + "t=arange(0,0.002+0.000001,0.000001)\n", + "V_i=[]\n", + "for x in t:\n", + " V_i.append(3*cos(2000*pi*x)-2*cos(6000*pi*x))\n", + "#let A_1000 and A_3000 be the gains\n", + "A_1000_peak=10#\n", + "A_1000_phi=0#\n", + "A_3000_peak=2.5#\n", + "A_3000_phi=0#\n", + "#multiplying by respective gains\n", + "V_o=[]\n", + "for x in t:\n", + " V_o.append(A_1000_peak*3*cos(2000*pi*x+A_1000_phi)-A_3000_peak*2*cos(6000*pi*x+A_3000_phi))\n", + "subplot(121)\n", + "title('Input-voltage vs time')\n", + "xlabel('time in ms')\n", + "ylabel('Internal-voltage in volts')\n", + "plot(t*10**3,V_i)\n", + "subplot(122)\n", + "title('Output-voltage vs time')\n", + "xlabel('time in ms')\n", + "ylabel('Output voltage in volts')\n", + "plot(t*10**3,V_o)\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 525 Ex: 11.10" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VoA(t)=30cos(2000pit)-10cos(6000pit)\n", + "VoB(t)=30cos(2000pit-pi/4)-10cos(6000pit-3pi/4)\n", + "VoC(t)=30cos(2000pit-pi/4)-10cos(6000pit-pi/4)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAE4CAYAAABFfLRuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWeYFFXWgN8DoqiAKEhUwCwoKuYsC6uiBLOCGTGtgpgF\nE0HWhIqLrukTUVFRFNSVoCjJhBmUIElJgoAkAUkzzPl+nGrpabqnq7urumem7/s89UxXuvdMdfU9\nN5wgqorD4XA4HImokGsBHA6Hw1G6cYrC4XA4HCXiFIXD4XA4SsQpCofD4XCUiFMUDofD4SgRpygc\nDofDUSJOUTgcDoejRJIqChG5WUR2EWOAiEwSkdOzIZzD4XA4co+fEcVVqvoncBqwG3AZ8HCoUjkc\nDoej1OBHUYj3tzUwSFWnhiiPw+FwOEoZfhTF9yIyGjgT+FBEqgFF4YrlcDgcjtKCJIv1JCIVgGbA\nL6q6WkRqAPVV9adsCOhwOByO3OJnRPGxqn6vqqsBVHUF0C9csRwOh8NRWtgu0QkR2RHYCdhdRHaL\nOlUNqB+2YA6Hw+EoHSRUFMB1QFegHvB91PG1wNNhCuVwOByO0oOfNYouqvpUluRxOBwORykjoaIQ\nkfMAxcxjt7lIVYeFK5rD4XA4SgMlTT21JY6CiMIpCofD4cgDkk49ORwOhyO/8RPrqbqI9BOR773t\ncRHZJRvCORwOhyP3+PGjeAlYA1wAXIhZPQ0MUyiHw+FwlB78WD39qKqHJjvmcDgcjvKJnxHFBhE5\nKbIjIicC68MTyeFwOBylCT8jisOAV4HIusQq4ApV/TFk2RwOh8NRCvCjKCqq6pbIAraXm8LhcDgc\neYKfqae5IvICcCS2qO1wOByOPMKPomgMjAE6A/NE5OnoNQuHw+FwlG9ScrgTkV2B/sDFqloxNKkc\nDofDUWrwM6JARJqLyLPAD8AOmD+Fw+FwOPIAP57Z84CbgU+Bpqp6oaoODVswhyMMRGS8iHTKtRxh\nISINRGStiEjyqzOuq7aIfCoia0Skb9j1OXKHnxHFoap6tqoOVtV1oUvkyDoicqWITBGRv0TkdxF5\nJpUwLSIyT0RaBChPoOXFoN4W+b8/C6merBD7rFR1gapW1ewEcbsWWKaq1VT1jqAK9WYwikTkzqDK\ndGRGUkXhzGHLNyJyG/AwcBuWvfBYoCHwsYhU8llMJBx9UARdXnkml8+qIfBzOjeKSEmRq68ApgKX\np1O2IwRU1W15umGKYS1wfszxnYFlQEdv/2XggajzzYGF3udBwBbMW38tcDvQCCgCrgEWAYuB26Lu\nT6m8OHKPAm6MOfYjcLb3+XjgW2A18A1wXNR144CrgAOBjUChV89K73xrYBLwJ7AA6BFTz+XAfGA5\ncC8wD2jpnROgGzDHO/8WsGuCZ/8z0DpqfzvgD+AwoDLwmlfGKu9/qBWnjJKefQXvmvHAA8AX3jX/\nA2oCr3v/4zdAw6gyDwQ+BlYAM4ALEsj/MrAZ2OSV2wLYHnjS+84XAf2A7aO+49+AO4HfgVcSlLsz\nZoZ/vPf3iFz/TtymTlHk8wa0AgoijUrMuZeBN7zPA4HeUeea4zXs3v5coEXUfqSxeh3YETgYUzwt\n0ykvjmyXAZ9H7TfxGtRKwG7e50uwEXN7YGWkwcZTFN7nK4DPYso+BTjI+9wUWAKcFVXPWq8RqwT0\n9RrLFt75rsCXWPrgSsBzkWcY53+4D3gtar81MM37fJ3XoFfGlE8zoGqCchI9+2hFMQvYC+sYTANm\new17ReAV4CXv2p2Bhd5zqYAprT+Axgnqjv0ee3v/f01v+yJy3vuOC4CHvGdTuYTvdrb3+XWgf65/\nJ25TX4vZlUXkEhG5R0R6eNv9ye5zlAlqAstVtSjOuSVAjaj9dKY3eqnqBlWdijUqHTIsL8J7wGEi\nsqe3fwkwVFULsAZ3pqq+rqpFqvom1jNuF6ecbWRQ1QmqOs37PAV4E1MeAOcD/1PVL7267qd4cq/r\ngHtVdbF3vhdwvojE+529AbQTkcre/sXAYO/zZuzZ76fGJFVdm/SpxEeBgao6V1XXYKOxWao6VlW3\nAG9jigigDTBXVV/xnt1kLEHZBSWUH/0ML8YUw3JVXY79/5dFnS/CRmgFqroxQXlXeDLh/W2fZJrK\nkQX8LGa/j/3ICoB13vZXmEI5ssZyoGaChqyudz4TFkZ9XoD1tFNGRJ7zLHnWikg3r9EcwVbF0x7r\nfeLVsSCmiPl+6xaRY0RknIgsE5HVWOMfUZj1sOkTAFR1AzZFE6ER8K6IrBKRVcB0bGqrdmw9qvoL\nNv3UTkR2wjJKvuGdHgR8BLwpIotE5JEMG8ulUZ83YqO76P0q3ueGwDER+b3/4eJ48iegHvasI8R+\n53+o6uZEN3uKvzlbFcWH2Kiqtc/6HSHh5+Wrr6qnhy6JIxdMxOaYz2PrjxMRqYJNS3X3Dv0F7BR1\nX52YchJZ2DQAZkZ9XpROeap6PXB9zDWDgR6e1VJlVR3nHV8EnBtzbUOsJx1LPLnfwJxKT1fVzSLS\nj62KYjFwQORCEdmR4qOuBdi6zsQ45cZjMKbsKmLTTr8CqGohNo3TW0QaAiOx5/iSz/+hJEq6fgEw\nQVVPS7HMCIsxZRlZ4G7gHfNTN9joowIwMsq6tzI2yng/TZkcAeBnRPGliBwSuiSOrKNm0dYLeEpE\nTheRSiLSCBiCjQYGeZdOBs4UkV1FpA7mVxPNUmCfOFXcKyI7ishBwJXY4m4m5UUzElMAvbDpoejj\n+4tIBxHZTkQuwhZoh8cpYymwR4x1VxVglackjsZ61BGGAm1F5DgR2R7oSfGpl+eAB0WkAYCI7C4i\n8aa8IrwJnI4pwchoImIe2lREKmJrIgXYonU8/DwrSfA5lhHYs7vUexcqichRInKgj3LBFN+9IlJT\nRGpiU3ODtr0tIVdgz/TQqO087F3ZLYVyHEGTbBED6x0UYAtiU7ztp1wvrrgtuA2zApqCWc8sAZ4F\ndok6vwPWqP2JNfI3AwuizrfDphxWAbeydUH1aqyH/ztR1kuplleC3C9iDegRMcdPAL7DrJ6+BY6P\nOhe9mF0JUyArMH8AsIZpHmZx8wE2ung16v4rKG719BtwgndOgFuwNZE1mPVTnyTP/hNsTaJW1LH2\nXhnrvO/jSeIYHJTw7LewdTH77//X238Ab/Ha2/8ntmYR2d/feybLvP/xE+CQBHXHLmbvAPwHG0Us\n9uSOtnpaUMJzONZ7/2rEOTcVuCHXv5N83vyEGW8U77iqzivxRp94vabvgN9Uta3Xc3gL6y3OAy5U\n1dVB1OXIDt478yuwncZfKC8XeFN0q4B9VXV+susdjrJKwqknEanmfVyTYAuKrtiiX0RjdQM+VtX9\nsai13QKsy+HICBFpKyI7icjOwGPY6NopCUe5pqQ1ioip3g/A9zHbd0FULiJ7AGdiUwiR+c52mG03\n3t+zg6jLkXWyEUIiF7Rjq0PZPtg0kcNRrkkpzHjglYu8DTyIOQLd7k09rVLVXb3zgnnM7pozIR0O\nhyPPyZkji4i0wRYQJ4lI83jXqKqKyDaaLN4xh8PhcCRHVVN2dvWVjyIkjsecjeZi01wtRGQQsNQz\nmURE6lLcOehvcm0FUFq2Hj165FyG0rK5Z+GehXsWJW/pkrMRhareDdwNICKnYFNPl4nIo5gJ4iPe\n3/fCqH/DBnj5ZRg7FipXhvPOg7POgvCj+DsKC2HQIPjwQ6hYEdq0gQsvhO1KQaCGtWvh//4PvvgC\nqlWDDh3gtHTdzxwpsWkTDBgA48bBjjvCuedCu3ZQIZfdWQeQ4ohCRKqIyGUiMiIEWSLq7mHgVBGZ\nhQUuezjoiqZOhWbNYNQoOOccOPlk6NHDlMXGRBFoHIGwfDmcdBK88gq0bm2N8H//a9/BokXJ7w+T\nr7+Ggw6C776DCy6Ao46Czp2hUycoKMitbOWdhQvhyCNhxAhTECeeCL17wxlnwMqVuZbO4WeosgMW\nEuFtzCz2ZaBtAEOgysDXmMPVdOAh7/huWJjjWcBooHqcezVdJk9WrV1b9ZVXih/ftEn1wgtV27VT\n3bIl7eKzzrhx43Itgm/++kv1sMNUu3VTLSraenzLFtXevVX33Vd10aL0y8/kWXz5peruu6u+917x\n4+vWqZ52mmrHjsVlLu2Upfdi5Ur77vv2Lf6MCwpUu3a1d2bFivTLL0vPImy8tjP19jrhCQst8DIW\n/+VVLGjZvHQqKaGOnby/2wFfAScCjwJ3esfvAh6Oc19aD2npUtUGDVQHD45/fvNm1eOOU3388bSK\ndyShUyfVDh0SN7gPPKB61FGqGzdmV65ff1WtVUt11Kj459euVT34YNWXXsquXPlAUZHq2Wer3nRT\n4vM33aR66qmmOByZEYaiKMJi4teLOjY3nUqSCmEB4r4FDsJCF9T2jtcBZsS5PuUHVFSk+s9/qt59\nd8nX/fqrao0aqr/8knIVjhKYMEF1zz2t0U1EUZHqeeepXn999uTatEn16KNVn3ii5OsmTbIRx++/\nZ0eufGHoUFPCJXUOCgrst3vvvdmTq7wShqI4DFtQno2F++1ECbFa0qrc1kgmY4HPHvWOrYo6L9H7\nUcdTfkCvvaZ6+OGqhYXJr+3TR/Xcc1OuwpGAwkLVQw5RHTIk+bV//qnasKHqRx+FLpaqqt5/v2qb\nNv6mlW69NbtKrLyzYYPqXnupjhmT/NrFi23U9+234ctVnklXUfiJ9SSYKWsHLGDaZOBdVX2hxBtT\nQER2weLvdweGaZSDnYisVNXdYq7XHj16/L3fvHlzmjdvnrD8P/+Exo3h3XfhmGOSy7NhA+y3H/zv\nf3D44an+N45YhgyBfv3gyy/9WZV99BFcd50ZHVSpkvz6dPnlF3sfJk+GPfZIfv3y5XDAAbbYvdde\n4cmVLzz9NIwebb8zP7zxBvz73/DDD7DDDuHKVl4YP34848eP/3u/V69eaBp+FCl5ZnsB/FoC7VX1\nqlQrS1L2fcAGLOJoc1Vd4vlRjFPVA2Ou1VTkvuUWWLfOzB798sQT8NVX1sg50kfVLMweeADatvV/\n3xVXQM2a8Pjj4cnWrh2ccALcdZf/e+67D5YuhRcC6yblJwUF1hl780049lh/96jaO3TyyXDnneHK\nV14RkbQUReDrDX43LA1nde/zjsCnmBJ6FLjLO96NDBezf/zRhqx//OH7FlW1ufTdd1edPTu1+xzF\nGTVKtWnT1C3JliyxtaKffw5HruHDVfffP/WF86VLVatXV12+PBy58oXXXlNt3jz1+2bPtvciE+u4\nfIY0p55y6cpSFxgrIpMxM9kPVHUMAfpRqMKNN5o9ds2aqd1bpQpceaXrOWbKs8/CTTel7jRVuzZ0\n726jwRQGj77YuBG6doX+/VOfwqhVy0YiAwYEK1O+8d//wq23pn7fvvvCNdekNgp0ZE4uFcVqLHFN\nJU+OTVHnAmkaXnvNGoWrr07v/muuMcewTZuSX+vYlsWL4bPPoH2a8VW7dIG5c80JK0ieeAKaNoXT\n00zw26ULPPMMFJXbTBvhMm0azJ9vznTpcM89MH68ec87skOJisJLJTmzpGsyoAC4RVUPwrJb3Sgi\njQkoH8Xq1dbreOYZCxORDvvtBwcfDO+7bL1pMXCgeTinuyC9/fa2CH7LLcEp6wULTFE88UT6ZRx5\nJFSvDhMmBCNTvjFgAHTsmH7IlipV4NFHzWt+S6IEsY5AKVFRqCV5n+EleA8UVV2iqpO9z+uwlKv1\nCSgfRY8etvB11FGZyXnNNW6aIR2Kiuy5XXttZuWccYZZrPXrF4xct99uDUymVkuXXw6vvhqMTPnE\npk020r8qQ1OY9u0tFlcqBiqO9PFjHvsZ0Az4BvjLO6yqWlLS+NSEsNSZE4CDMV+NEvNRJLN6+vFH\niyE0fTrUqJGZbOvXQ716MGuWzU87/PHll6Zkp03LvKyIGeukSbDnnumXM2aMTUNOn25B5zLh99+h\nSROLT7XTTpmVlU+89x48+aRNHWVKkL/zfCFdqyc/axT3AW2AXljqx8e9LRC8vMNDga6qujb6XGSV\nPpXyiorghhvMHDOIl2ennSx43TvvZF5WPjFkCFx0UTBl7bOPfae3355+GZs2mWHDf/6TuZIAqFvX\nzDrfCyW2cfllyJD016xiOfRQm9q8775gynMkxpcfhZcf4iis0f5GVePmiEi5cpFKwHBglKo+6R2b\ngQ8/ikQOdy+8YOHDP/88uPDEH3wAffvCp58GU155p6jIev5jxsCBBya/3g/r11sP/qWXoEWL1O9/\n8EGLDhvketOgQdaBcGtY/tiwwRRskKPzlSvtvRg1yvx1HMUJyuHOj7/DhcB8LDDgq8A84IJ0bHFj\nyhWvvH4xx9P2o1iyxHwffvrJr1WxPzZuVN1tN9WFC4Mtt7wyYYKF7AiaYcNUGze20A+p8MsvZns/\nd26w8qxapVq1quqaNcGWW14ZOlS1Zcvgy33hBQvm6Sc8T75DiH4U9wJHqerlqno5NrIIYrB3AnAp\n8A8RmeRtrUjTj0LVwj506mSmj0Gyww6W1Ojtt4Mtt7zy1lvBTTtFc/bZ1nu85x7/9xQW2sLz3XdD\no0bBylO9unl2jxwZbLnllSFDLEFV0HTqZL/Rvn2DL9th+FEUAvwRtb/CO5YRqvo5Fsa8LrCdqjZT\n1Q8jp1Mt75ln4LffoFevTCWLzznnuCkGPxQVwbBhNnccNCLw/POmiD75xN89Dz1kjcjNNwcvD1iS\nnWHDwim7PLF+/dZEYUFToYL5Oz3xBHz/ffDlO/wpig+Bj0TkShHpCIwERgVU/0CgVcyxlP0oJkww\nBTF4sNneh8E//2lWNytWhFN+eeH772HXXc0HJQxq1DCz1Esvtbnuknj/fXjuOWtEwkqnefbZFsRw\nw4Zwyi8vjB1rATZ33z2c8hs0sCgA55yT+0yJ5ZGEPx8RqQygqncAzwOHAE2B51U1kJBcqvoZsCrm\ncEp+FBMnWu918ODwGicwS5kWLYL3Ei5vDB9uObDDpEUL6NMHWrWCOXPiX/PRR2YK++67/iLDpsvu\nu9si6ujR4dVRHsjGe3HeeWYd16qVUxaBk2jxAvjB+zsoncUPvxvQCJgSte8rH8WGDar9+tni9YgR\ngazzJGXgQJenIhmHH26L2dnghRcsre2gQVsXMteuVe3VywJBfv55duTo18+y9zniU1SkWr++6owZ\n2anr4YdV99hD9d13y1Za42xA0PkoRGQa8CDwABBtwS5eZYHMzHrOdh+oalNvf5X6yEdRvbpy/PE2\nL3nAAUFIkpzly82mf+lSqFw5O3WWJRYtMkOCZcvSD8+QKl99ZSE+5syB+vUtNtRpp5knd5gjiWhm\nz4ZTTrE1srCmuMoykyfbqH/WLH/5SIJgzBi47Tb7rR50kP81rfJOug53Jf2crwcuAXbB8mXHEtYS\n3lIRqaNb/Sji+mxcfXVPdt7ZppySJS4Kipo1zcln7Fg488zQqytzjBxpw/5sKQkwp7eJE62RXroU\n9t7b1kiyyX77QdWqtoZ1xBHZrbssEJl2ypaSAGjZ0hTUvHnwxx9JLy+3xPpRpIufEB5Xq+qLGdeU\nuPxGFB9RPAqsUNVHRKQblrOiW8w9mkzusHjsMetBPv98Tqov1Zx1lpnFXnxxriXJPrfeauay99+f\na0lKH8ccYw6PLVvmWhJHuiOKlDLcBY2IDAZOwZIYLQXuB94HhgANMOe+C1V1dcx9OVMUM2faYupv\nv2W3h1Ta2bDBckjMmwe77Zb08nLH2LGWP+Prr3MtSeli6VLzzl+6NDyLRId/wph6Ch1V7ZDg1D+z\nKkgKHHAA7LyzTTO4fNpbGT8eDjssP5UEwIknWidi6VJTmA5j5Eg49VSnJMo6pXLpTURaicgMEZkt\nIqUul1Xbthb/ybGVbJg/lma23958bUYF5WFUTsj396K8kFRRiEgFEblMRO739huIyNFhCSQiFYGn\nMUe8JkAHL6FRqcEpiuKougYB7P93fjZb2bTJrI3SzWTnKD34GVE8AxwHRJYo13nHwuJoYI6qzlPV\nAuBN4KwQ60uZE06AX3+1VJ8OmDrVsgg2LlXqPPuccYY1jJs351qS0sGnn5ppalje2I7s4UdRHKOq\nNwAbAFR1JZbnOizqAwuj9n/zjpUaKlWyfMvDh+daktJBLswfSyO1a8P++1uIe4cbZZYn/Cxmb/am\ngwAQkd2BMNPK+zJn6tmz59+fs+VHEU3btvDmm5mn+iwPDB9uqWcdW6ef0smZUZ5QtelZl9gpt2TT\nj+JSLCfFEVjspfOBe1V1SMa1x6/vWKCnqrby9rsDRar6SNQ1OTOPjbBqFTRsaFYuQWRMK6tEvNWX\nLbMorfnOpEnmS5IsYGF55+efzUN+wQI30ixNhJYKVVVfA+4CHgIWA2eFpSQ8vgP2E5FGIrI9cBHw\nvxDrS4tddzXz2DFjci1Jbhk1yqx9nJIwDjsM/vrLKYoRI9x0ZHnCj9XTbpgz3BvAYCzERmhrFKpa\nCHQGPgKmA2+p6s9h1ZcJbdo46yc3D10cEXse+b5+NWKE5Zp3lA/8LGb/ACwHZgOzvM/zReQHEUkr\nso2IXCAi00Rki4gcHnOuO9AfW6u4QVUfSqeObNC2rTUIOZ4FyxkFBRZe28W9Kk6+K4rVqy0vSb6v\n05Qn/CiKj4EzVLWGqtbA/BuGAzcCz6ZZ7xTgHODT6IMi0gSbamri1fOMiJRKp0Ao7qWdj3z+uVn5\nOE/k4rRsCd99Zw1mPjJ6NJx0Euy0U64lcQSFn0b4OFX9KLKjqqO9YxOBtBzzVXWGqsabxT0LGKyq\nBao6D5iD+VWUWvLZ+c5NO8Vnp52soczXZEbuvSh/+FEUv4vIXSLS0FtgvhNbp6hI8Gay9TC/iQil\nzocillytUxQUwBdfwDvv2DC/KEyD5QR88IFrEBKRqw7E5s0Wd+vtt2HKlOxPi27ZAh9+6NYnyht+\n/CguBnoAEYvoL4AOQEXMbDYuIvIxUCfOqbtVNZWfUNxXPdd+FBFOPHGrl3a9etmp8733LKz1LrtY\n/oUpU6wX++yzcNxx2ZFh1iyz7jnssOzUV9Zo3RruvdcazooVk1+fKarw2mtw552WP7pePZsSrVsX\nXnjBEkplg2+/hTp1TAZH7gnKjyK0FKd+NmAccHjUfjegW9T+h5hn+DapUEsT7durPv98durq0UO1\nUSPV8eO3HisqUh0yxNJ/vvJKduR4/HHVa6/NTl1llUMPzU461i1bVLt2VW3cWPWbb4off/FF1Zo1\nVf/3v/DlUFW95x7Vbt2yU5cjdUgzFaof89g2IvIfERkpItNFZKGIfJG5itpaRdTn/wHtRWR7EdkL\n2A/4JsC6QiFi/RQ2Dz1kUwrffGOpNyOIWKrJCROgWzcYEqaXi8fw4W56IRnZsn666y7ryX/xBRx1\n1NbjFSpAp04W6vvqq7Pj8/Pee9CuXfj1OLJMMk0CrAWuBuZiJrITgQXpaKWoMs/B4jltAJYAo6LO\n3Y0tYs8ATk9wfzjqNk1WrFCtWlV1/frw6hg+3BLGL15c8nWTJ1sP8scfw5Nl2TLVXXYJ9/8tD0yc\nqHrQQeHW8eKLqvvvb+9gSYwfbyPO2bPDk2XGDNV69Wwk4yidENaIAqiolgp1R+ARVT0OqJGhfjoe\ni0I7C/gSaB91Ttm6LlEmPBR22w2aNQuvx7ZwIVx1lcWWqlu35GsPPRSefBLOO8/WEMLg/fctKGI+\nhy7xw1FHwYoV4Xlpz5plI8j33kueMOqUU+Cee+DSS80QIgyGDYNzzrGRjKN84ecrLRSRu4GqwEYR\nOZLMM+ONBg5S1UMxZdEdyp4fRTRhWrnccgv8618W3twPl1xieYrvvTcced55xxSRo2QqVoTzz7fp\nwqApLLRGv2dP/+HdO3e2vN4PPhi8PABDh7r3otySbMgBXIpNB10BjMec5fqlM3xJUP45wGve5+7A\nXVHnPgSOjXNP0COyjIkMu4uKgi139GjVvfdOfZpn+XLVOnVUv/giWHki02xr1wZbbnnl009VmzYN\nvtwnn1Rt0SL19+2332xqcsaMYOWZN8/KLSgItlxHsBDi1FMrVX1QVV9R1eaq2hSoFaCuugoY6X0u\nc34UEQ44AKpWha+/Dq7MzZuhSxebSkp1mqdGDbvvX/+y3mdQ/O9/FgSwSpXgyizPnHCCTT/9HGC0\nsmXLoE8fePrp1IPu1a9vU1A33hisj8XQobaIvV2mcw2OUomfr/Vcn8eK4cePQkTuATar6hslFFWq\n/SiiueQSs2U/9thgyuvXD/bd16a10uHCC8234v/+zxRGEAwZYlMeDn9UqLB1+un++4Mps3t3uPzy\n9DMKdu4MAwfamleHDsHI9Prr8OijwZTlCI7Q/SiAR4HfMe/r36O21cCqdIYvMeVfiTnvVY46Vib9\nKCL8+qsNvzdtyryshQtVa9RQnTMns3J+/NGsXZJZxfhh8WKzdlq3LvOy8okvvjAfhyCmJb/+WrVu\nXdU//8xcpvr1VdesyVymqVOtrMLCzMtyhAshTD2NB94CNmHhxd/0tsfIMP6SiLQC7sByW2yMOlUm\n/Sgi7LUXHHighTDIlNtugxtusKRAmXDIIdajDaI3+/rrcO65FgjR4Z/jjjNLo0ynJYuKbDTw0ENQ\nrVpmZR1/vE0h9umTWTkAgwbZKDMbHuiO3JAww52XhwJgT4rnsAb+zp2dXqUis7GAgpEyJqrl5caz\nsLoKKAS6alRAwqj7NZHcueaFF+DjjzOzdBkzxhykpk0LJgLnihU2TfHJJ6Y40kHV7n366eLOfg5/\nPPIIzJ4NL76YfhkDBtj9X3wRjAnqkiUW2uOzz6yDkw5btlimx48+goMOylwmR7iEkeHuN2+bGPU5\nsm2jOFLkTWwKSzBlEZ1zosz5UURz4YXWIC9Zkt79kQXsfv2CC9Ncowb06mXlpqtfv/nG/DJOOikY\nmfKNK66wBd+1a9O7f/VqW4R+6qng/BTq1IG774abbkr/vRg1yuJKOSVRvinplTszyZYJj6rqoap6\nGBZssAeUbT+KCNWrQ/v28Pzz6d3fv7/10M46K1i5rr0W1qyxBcx05brxRudMlS516thILN3n37On\nWRUdeWRgMRIZAAAgAElEQVSgYtG5MyxaZE576dC/v3VAHOUcPwsZwHnAK8BA4Ox0FkNKKLs78HDU\n5zLpRxHNtGnmw7BxY2r3LVhgC9izZoUj1+ef26Jjqj4Qixap7rqr6qpV4ciVL4wdq3rAAamHuJgy\nxYwkli0LR64xY1QbNlT966/U7ps+XbV27dTfc0fuIMSggG8ArwHHYqE3BovIa5kqKBH5t4gswKyf\nIlNPZdaPIpomTeDgg23xNxVuusl6Z/vtF45cJ5xg6SlTXcDs39/MKKtXD0eufKF5c1uEfv99//eo\n2ntx//2w++7hyNWihXnyP/JIavf17QvXXw877BCOXI5SRDJNggXuaxy1fyCwwcd9H2Ne3LFb25jr\nugEDvc9PAZdEnXsRODdO2SHp2+D47DPrpfntbb3/vgV3C7t3tnhxakEDf/9ddbfdbLTjyJyhQ1WP\nOML/qOL551WPPDJ8j+fIaPaXX/xdP3OmvUdulFm2IM0RhV8/ymVRn//wqYBO9Vn2G2z1zF6EWVlF\n2MM7tg2l0eEumhNPtAW+556Drl1LvnbZMuuZDR4cfu+sbl147DFzDvz2W6hcueTre/e2hdg99yz5\nOoc/zj7bHNMGDbLnWhLz59sC9oQJ4Xs877mnJT266iqzuktm6nrvvfZeu1Fm6SZriYswf4q12HrB\nR97ncelopagy94v63AUY5H1uAkzGTGf3An7BM+GNuT8MZRs406dbr2v+/MTXFBaqtmql2r179uQq\nKlI97zzVzp1Lvu6LL8y5a/ny7MiVL3z1VfLnumGD6tFHqz76aPbkKiy0+FH331/ydcOHq+6zjwsz\nXxYhzRGFn0Z9B6AXZib7JXA/sEM6lUWV+Q42DTUZGArUijpX5vJRlMSDD6qeeGL8KaWiItUuXVT/\n8Q/VzZuzK9fKlaoHHqjav3/888uXW2PwzjvZlStfuO021TZt4k9BFRaqXnqp6vnnBx9kMhmLF5vB\nw+uvxz+/cKEFvxwzJrtyOYIhTEXxLXA5sHM6FSQp+zYsRMhuUce6YwmSZgCnJbgv8AcYFlu2WO/9\nnHOKW5Vs2qR6/fWWLjNX87xz51oypIcfLt5gLV1qvdk77siNXPnApk2qp5yi2rFj8ZAv69apduig\n2rx57kKlTJ1q1kzPPVdcUS1YoNqkieojj+RGLkfmpKso/FjFrwD+CywVkc9F5EIRSTKznRwR2RM4\nFZgfdazM+1HEUqGCBQqsWtUsoXr2hB49bP1i6VL49NPM5nkzmX9s1AgmTjQb+qOOgn//29JqNm0K\np50GDz+cvly5IJC52Cyx/faWJnXlSks29cADth5x4IF2bsSIzEKlZPIsDjrI3stnnoGTT7b34NZb\n4fDDLbXqnXemL1cuKEvvRWklaSOsqq2wjHaXYXGfBgJrAqj7CSD2lTsLGKyqBao6D5uCyiiuVGmg\ncmV45RVbwNy82cJ+v/SSZQTLNGZPpj+CPfawkBC9e5tD3k472WLmAw+UPee6stYgVKkC775r3tZ/\n/WXP+9134eWXM/fKz/RZ7L8//PAD3HwzLF9u3v1ffmkKo6xR1t6L0ohfW4qKWCrUyEhiSyaVishZ\nwG+q+pMUD6hfD/gqar9M+lEk4oQT/GepyyYVKkDr1rY5souIBef75z9zLcm2VKxoGetc1jqHH4e7\nTzGT2OexPNcXYmlRk933sYhMibO1w9YhekRfXkJRZS7ek6P00rx5cwYMGJBrMUJjwYIFVK1aNbKW\nFypLly7l5JNPplq1atxxxx2h1+fIHQmjx/59gch4oD8wUouHBE+vQpGDgTHAeu9QxFfiGKAjgKo+\n7F37IdBDVb+OKcMpD4fD4UgDTSN6bKpWSj3TWTFPUuZcPKsnfPpRuC3Q538bsAQ4DZtibAiMwPKA\nVErhO2wZ8DsRWHkxZY8DrvI+Xwl8luvvoLQ+Kx91vwg8kOa928U5diXwadT+Ydh66GG5fs75vqX6\n5U4KXAD4leLmsUn9KNwW2LOvhjlQnh9zfGfMG7+jt/9ydIMANAcWep8HYWtW672ybgcaYWbP12Cj\nxcXAbVH3p1ReHLlHATfGHPsRL2AlFpPsWyyU/TfAcVHXjcPynRwIbMTynqwFVnrnWwOTgD+BBdiI\nNrqeyzFLveXAvcC8SEONTaF2897f5Vjir10TPPufgdZR+9thU7yHYWuBr3llrPL+h1pxyijp2Vfw\nrhkPPIBlk1yLJQerCbzu/Y/fAA2jyjwQC7+zwvsNXpBA/peBzZiBy1qgBdbBe9L7zhcB/YDto77j\n3zADlt+BV+KUeSUxihv4Gmif699Kvm+pXRyConBbDr98M0EuiDQqMedeBt7wPg8Eekeda47XsHv7\nc4EWUfuRxup1zAjiYEzxtEynvDiyXQZ8HrXfxGtQKwG7eZ8vwdbg2mM5T3b1ro0eUVwRp2E6BTjI\n+9wUG22dFVXPWkwRVQL6eo1lC+98V8wptZ53/rnIM4zzP9wHvBa13xqY5n2+zmvQK2PKpxlQNUE5\niZ59tKKYhY3QqwHTMD+lFtgI8hXgJe/anbFcM1d4z+4wTHk1TlB37PfY2/v/a3rbF5Hz3ndcgAUA\nrURUCuSo+6+M/j4wi8dVwL65/q3k++ZnMftEEakvIicAt4jIKSJyQ7L7gkBEWonIDBGZLSJ3Jbim\nv3f+RxFplg25ckGyZyEizUXkTxGZ5G33+ii2JrBcVYvinFuCmUX/XUUaYvdS1Q2qOhVrVDpkWB4i\n8hLwOHCc54sDphSGqmoB1uBuBHpiI4OZWM+4XbziYg+o6gRVneZ9noIl2TrFO30+8D9V/dKr636K\nG1tcB9yrqou9872A8xP4Ar0BtIvySboYSzkMpnxqYKFuVFUnqeo2KY+8Z9EAmwLa9p8TaQ6cCFQB\nhgE3YaOxWao6VlW3AG9jigigDTBXVV9R1SJVnezdd0G88iPVRH2+GFMMy1V1uff/XxZ1vggboRVo\n4vXOY0VklYiswSwgX1XVOSXUH/lf9xSRcSIyTUSmishNCa4r9+2Fn2eRanvhx1J+KNYzuAebz76d\n4hnpQkFEKgJPY73eJkAHEWkcc82ZWG9jP+Ba4Nmw5coFfp6FxwRVbeZtfoKJLwdqJmjI6nrnMyE6\nE+ICrKedMiLynIisFZG1WCN6Otazjyie9tjoBeAfADHvxHy/dYvIMd6PbJmIrMYa/4jCLBYGX1U3\nYFM0ERoB73oN3SpgOja1VTu2HlX9BZt+aiciOwFtMeUBNqX0EfCmiCwSkUdEJJ4p+0BMoZfEakx5\nRd6JjRQP8rkRUyRg61PHROT3/oeL48mfgHpEOdCy7Xf+h6puTlLGV6q6q6pWA+oAB4vIgz7qLgBu\nUdWDsJQIN+Zre4GPZ+Hhu71IqChE5DgRuQ0byv8Xs1QaD3yPzcuGzdHAHFWd5/XO3sQc8qJphw2d\nUbOMqi4ifl/qsoSfZwGp99InYnPMxSzlRaQKppTGeIf+AqJdwOrElJPICq1BzOdIJOCUylPV61W1\nqrddj01H/IkpzOOwaYxx3uUNMTPuv98JYF/iRyGOJ/cbWNbFPVS1OjZ9FHmuizErPQBEZEeKj7oW\nAK28hi6y7aSqv8epB2wE0QH7Lqep6q+e3IWq2tv7oR+P9fQv30Z41c9I3aepJIvBBVjjES1/VVW9\n0WfZizFlGaGBd8xP3dsKqroMG9G09XHtEm8EhKquw5RwbOcgL9oLn88CUmgvShpRbI/5S2zBfmxV\nvG0NNgQPm/oU75HGc76Ld80elD/8PAsFjveG1CO9cCgloqp/YtMDT4nI6SJSSUQaAUO8+gZ5l04G\nzhSRXUWkDnBzTFFLgX3iVHGviOwoIgdh889vZVheNGsxpdALU5wRCoDaItLB64UXAPsDw+OUsRTY\nQ0QqRR2rAqxS1c0icjTWo44wFGjrdaK2x6a3on9szwEPikgDABHZ3fMbSsSb2OjoeraOJiLTAk29\nkeRa739IpBCWY7/VeCiwC9Ar6p0oqXEYAewvIpd670IlETlKRA5McH1sWYOx77ymiNTEpuYGbXub\nP0SkBnAOMDXF+xph02lfx5zKl/bib0p4Fim1FwkVhTdX2xNb/GuPPeSa2KJYNrLk+u19xL6s5dHH\nws//9AOwp6oeiiWA8pUFWVX7YpZmj2G99K+w6YOW3ugF7Mf+IzaS/BBr4KJleghrIFaJSHSQhwmY\nBdAnQF9V/STD8oqJjvU2WxLVyGKN6p3YNOlyrFfbVVVXxiljDLa4u0REItMxNwC9vTny+9iq3PDW\nLrp48i7GGvFl2KgM4D/YIvRo7/6JlBCCRlWXYIu/x0XXg42w3sa+j+nYSD5Rg/sMUCvmWUWe5Q9e\n+T3Y+k4o275PkUibazEz6fbYCOx37LsoSRFFl9UH+A74ydu+844Vq6cEFFt7ikwzTseUue/2xhsN\nv4N95+viXRKnznJJkmeRWnuRbLUbG7bEbtODWk3HLC8mAR94+7th5nkLsB96de94sXza3rHniDKd\nwxYtawclW2nZsHnGD6P2t3kWce6ZS5TZcZblbUSU5U1I5U9JcC5r7wQ2+iggyrw0R8867rMoTe9E\nlp5FJWxt5+Zcvxu53pI9i1TfDT+L2ZdFbddgPcARPu7zS1es5xDR7N0wRbE3pv0f8ob5F2G9tWj+\nhzd3KyLHAqtVdWmAspUWvgP2E5FGiZ6FiNQWscBZ3pSJaPxedHkn1HdCRNqKyE4isjM2CvtJVecn\nuy8X5NM74f2fA7BO7JMJLsuL9sLPs0j13UgYFFBE3lbVCzDLilj2ATIO7iIiewBnAv8GIsPmdsAp\nqlooIl28+k8FBqjqzyJyHYCqPq+qI0XkTBGZgy2QdsxUptKI9yw6Yz2EisR5Fti60b9EpBBzwGqf\nM4GNUIb0IjIYM1etKSILsWmVSpC1d6Id8CrWifmWHD7nZM+C0vdOhMkJwKXATyIyyTt2N55BRT61\nF/h4FqT4biSM9SQi9VR1sYgcGnW4AnAIcL+qJltsTIqIvA08iDkC3a6qbUVklaru6p0XzGN210zr\ncjgcDkd6JBxRqGrErO19tvYOC7EFyCsyrVhE2gDLVHWSmGNQPBlU4gQAjHfM4XA4HMnRNIIC+klc\n1EhV9/K2/VT1VFX9PD0Ri3E85mw0FzOrayEig7BMenUARKQuxZ2DouVymyo9evTIuQylZXPPwj0L\n9yxK3tLFTwiPHUXkNhF5V0SGicgtEkAqVFW9W1X3VNW9sPmxsap6GbbgFBmxXIFPM89cMHq0pQyt\nXdvSRD73HBTFC4bhCJxvvrFES7VrW+rWxx6DLRml0woGVctSd8opUKsWHHOMpcLN4DfqSIHx4y0J\nVO3acMQRls7V/SYzx4/V06tY2Ij+WBiJg8jAiaYEIj+lh4FTRWQWFrgsbubmefNCkMAnRUVw++1w\n3XXQsSNMmgRPPGHpTi+4wNKdOsLjpZegXTs45xx79s8/bw3EgAGWhzxXFBRYTul77oFbboEff7SU\nsn37wjXXlA5FVp557DG49FK46iqYPNn2hwyBV191v8mMKWGIsj8WQXQFsCcWTOwvzFHq1wCGQJUx\nb8HJmHnsQ97xiB/FLGA0nh9FzL3aoIHqb79p1ikqUu3SRfWEE1RXrCh+buNG1bZtVTt2tOuywbhx\n47JTUSlh+HDVevVUZ84sfryoSPWKK8Zp48aqy5dnX64tW1QvuUT1jDNU164tfm7tWtVTTlG9887s\nyZNv78Urr6jus8+2bUJhoepjj43LiUylEWvy02ivE56wQIDXYh58f2ApUHfEvCSXp1NZnDp28v5u\nh3kEnwg8CtzpHb8LeDjOffrvf6seeaTq+vUhPdEEPP206sEHq65aFf/8unWqjRurvvlmduXKBxYt\nUq1dW/WzzxJfc+utqqeeqlpQkD25VFV797bOQ6L3cfly1QYNVEePzq5c+cDMmao1a6r+9FOuJSn9\nhKEoJnt/Z2DTQvMxi6ciLOLkFMzZKBCFgdmkH0SUtyQWymBGnOu1qEj1ggtUu3YN6YnGYcoUeyHn\nzCn5uq++sgZt5crsyJUvXHaZ6l13lXxNQYFqy5aqDzyQHZlUVcePV61TxxRZSYwcqbr33tnv3JR3\nWrVSfeyxXEtRNghDUUzy/jbE4uE0itqmRj6nU2lUHRW8qae1wKPesVVR5yV6P+q4qtrUT716qmPH\nhvFIi7Npk2rTpqovveTv+k6dVO++O1yZ8omvv7bves2a5NcuXKi6++6qP/4Yvlzr16s2aqQ6YoS/\n688+W/Xxx8OVKZ8YMUJ1//3t9+lITrqKoiSHuw1YQLc9gB2w/NURGqtqQh+MVBGRXTCv4+7AMI1y\nsBORlaq6W8z12qNHDwBmzYLx45vz66/NqZyxLVZi+vaFceNgxAgQH1bICxZAs2YwfbpZYDgyo3Vr\naNsWrr/e3/UvvQRPP23WUdsF9qZuS69eMHUqvP22v+unTDGrnF9+gSpVkl/vSIyqWZXddRecd17y\n6/OR8ePHM378+L/3e/XqhabhR1GSomjkfRyBZQ2LUBELULdfqpWVKIjIfcAG4Gqguaou8fwoxqnq\ngTHXarTc555rjfJ99wUp0VYWL4ZDDoGJE2G/FP7rG26AGjXM8sWRPj/9BK1awa+/4rszoAotWpgV\n2g0h5WOcOxeOPNIsrxo0SH59hAsvhOOOM8soR/qMGwf/+pd1xir4sd90ICKBK4q7sR7+jlgDHqEA\neEFVu6UjaFT5NYFCVV0tlgDmIyy3wOnAClV9RES6YVZP3WLuLaYo5s0zm+nvv4dGjTKRKj6XXQZ7\n7AEPpZjXb+ZMOPlkmD/ffwPn2JbLLoODD7aeYypMmQItW8LPP5vCDppzzjFFcc89qd03caKZcc6a\nBRUrBi9XvtCqlXUEOnXKtSRlh3QVhZ91hG2sjoLYsMT1P2BrFD8Bd3jHd8PyF5RoHhtL7942/xs0\nn3+uWr/+tiaPfjnjDNUBA4KVKZ9Yvlx1l13SNwzo0kX1+uuDlUlVddQoM8fcsCH1e4uKVI84QvWD\nD4KXK1/45RczLEnn+eczpLlG4WfANkpETo7dUtZI27IaS8xSCVvU3hR1LmU/1jvusB7k6NEBSOax\nZQt07gyPPpr+fHLnzvDCC8HJlG+89hq0aQO7phkWslcv85SeNCn5tX7ZtAluugn+85/0Rooi0KUL\nPFteMzZngZdegksucSP1bJFw6gnASyU5D0ssBOYkdzTwvaq2yKhii+dUR1Une5mYvgfOxkL/LlfV\nR0XkLmBXTTL1FOGDD0xh/PQTbJ8oJ1cKPPccvPEGTJjgbwE7HoWFNn89diwcmCihpCMuqrY29NRT\n0Lx5+uX83/+Z1/xnn6X/PUbzyCPw+ef2vqXLX3/ZdObPP0Od2IzhjhIpLISGDeHDDy18i8M/6U49\nlTiiUNVItNjzVbWtqp4KHIyNBjJC4ycAr09UAnTv79l+y2zTBvbeG/r3z1Q6WLECevSwsjJpXLbb\nzuajX3kl+bWO4nzzDWzcaHGTMuGqq6yc11/PXKbffjMLuCcTpcbxyc47w1lnweDBmcuUb3z4Iey5\np1MS2aTEEQWAF9H1QCxY33rv8J2qGpjRp2dhNQFTQgs0ST6KRCMKsAXC44+3aai6ddOX6V//soXG\np59Ov4wI06ZZ8MAFC9ziZSp07WqL0Pffn3lZX31lJpQzZkDVqumX07497Lsv9OmT/NpkjB0Lt90W\n7LRYPnDxxXDSSfYbdaRG4FZPUQV/Hb2LeUuvUkvKnTHetNME4AFVfS86cZF3vkQ/CoDmzZvTPGpu\nols3M2l99dX0ZPrhBzjzTJsWSHduPJZmzaBfv8ymUPKJoiKbmglyyq5jR9h9d1tzSoePP4ZrrzXF\nv9NOmctTVGRWeiNHmlWXIzkbNlgHcNYsi87rKJnQ/Sj+vkDkSmxxuTKwBfhZVb9ItaIEZVcChgOj\n1MvtKiIzSNGPIpZ166xxeestOOGE1GQqKoITTzSTuyDN7h580JRXECOUfOCzz8wQ4Mcfgytz6VJr\nkD//HA44ILV7N22yqY4nnrApzqC4/XZTOr17B1dmeWbYMAsd/sknuZakbBLKGoXHVKAb0BO4H+gv\nIhn3f0pIAJ5xPooqVWwe+cYbUw8v/PTTtibRMeBsuuefby+5i43vjyFDzDEtSGrXNp+H669P/Xt4\n6CFo0iRYJQE2HTZsWLBllmfCeC8cPkhkN4uZrT6KOdjNwnwelgNvAhPTscWNKf9ELMDgZMyqahLQ\nijT9KGIpKrKQ3926Jb30b2bMMNvs2bP935MKTZuaX4ajZAoLLchebCjxoMo+4YTU4i199ZVqrVrh\nhLXfskW1bl179xwls26darVqqsuW5VqSsgsh+FH09RrtGaq6v6oeDuyNBfDbNwAF9TmW76IusJ2q\nNlPVDyOnMy1fBF580ayNxo5Nfv369dChA/TsaYuVYXD++fDOO+GUXZ744gvr/e+/f/BlV6wIgwbZ\nCOGHH5Jfv3q1Wa39979Qv37w8lSoYB7eblSRnA8/hKOPtnUmR3YpSVG0wfJR/CIi93mWSTWABVhY\njyAYiI0ioukGfKyq+wNjvP20qFXLGoUOHWxhOhFFRTbVdPDB4cUFAptmGDrUpcVMxgcfwNm+jaJT\nZ6+9LCveWWeZuWsiCgosRMQZZ5iSDws3/eSPDz6w78yRfUpSFEWqWgRcBdQChgFDgZrAkiAqV9XP\ngFUxh9P2o4hHy5Zm5XLaafEXRjdtgiuvtIXOF14IxiErEU2awA47BLtAWx4ZPjz4tYBYzj3XgvL9\n4x8WyTWW9evtmp13Nmu1MDn5ZAswOH9+uPWUZbZsMeuwsN8LR3xKUhQ7isgVwOWq2kVVD/emn77D\nUpeGRW1VjWQ+Xgpk7K9xxRXw+OMW3rlPH+tFrltnL96xx279HHY4ABF70YcPD7eessycOTbdc/jh\n4dd1661mdXTssaYMliyBtWutd3/YYTbF8fbb4fu+bLedmWOPGBFuPWWZb7+16cgwgn46klOSotgA\n3Az0EZFnvO0L4Bbg7mwIF1l8CaKsCy80p6vZs82noWZNC/995502HRSEXbwfnKIomREjLPdEtsJG\nX3cdjB9v70aTJtYY/ec/8NhjFk+oUqXsyNG6tVMUJZGNUaYjMSWFGb8J+BewD7aADbAZS4Oqqrp3\nIALY2scHqtrU2/flR1GSw11pZvNmWzuZOdMlNIrHqaeaWXOYaxSlkdWrLSzF0qXZ67SUJQ47zAwK\nUvWLyney6XD3nKr6zCuWOnEUxaOkmI+irHHBBdaDvPLKXEtSulizxryxFy/Oz+xvzZvbVJjrORdn\n4UKbBVi61IXAyZTQHO5CVhKDgS+BA0RkoYh0BB4GThWRWUALb79c4aaf4jN6tPUY81FJgL0Xbvpp\nW4YPN8szpyRyR04TCKpqB1Wtp6rbq+qeqjpQVVcCj2HOeHsB1+VSxjA44wwLQZCq13h5J9/noVu3\ntmdQhgfLoZDv70VpoNRlmhWRisDTmH9FE6CDiDTOrVTBUqsWNG4Mn36aa0lKDxHzx9atk19bXjnw\nQFs8nzIl15KUHv76y34np5+ea0nyG1+KQkQaicg/vc87iUi1EGU6GpijqvNUtQALGVLu3GzatMks\n8U15w5k/OvPpeIwda3nJq1fPtST5TVJFISLXAm8Dz3uH9gDeDVGm+sDCqP3fvGPlikiD4KYZDDe9\nYDgz2eIMHw5t2+ZaCoefEcWNWAC/NQCqOgvz1A6LvGg6DznE1ihmzsy1JKUDpyiMU06BqVNh+fJc\nS5J7VO29yOfpyNLCdj6u2aSqm8SLbeHl0Q6zMV8E7Bm1vyc2qihGz549//5clvwoIkRPM+R7Lu2F\nC81b/thjcy1J7qlcGVq0sAB4l16aa2lyy+TJ5lOSau4Qx1Zi/SjSxY8fRV8sR/blQGfgBiyHxD0Z\n1x6/vu2AmUBLYDHwDdBBVX+OuqZM+1FEGDHC8mYE8D2WaZ5/3pIJDRqUa0lKBwMGmKnwW2/lWpLc\n0qeP5a4PO9ZWPhFm4qJuwB/AFMxUdSRwb6oV+UVVCzGF9BEWU+qtaCVRnmjRwkJdr4oNi5hnuOmF\n4px5pimKgoJcS5Jb3HtRekg6oiiNlJcRBdhC3SWXQPv2uZYkN2zYYNZO8+cHl5+8PHDUURb1+B//\nyLUkuWHZMthvP/jjD9h++1xLU34IbUQhIlNE5Cfvb2T7XET6iUiNNIW9QESmicgWETk85lx3EZkt\nIjNE5LR0yi9L5Ls55LhxFp7BKYnitG2b3+/FqFEW7dkpidKBn6mnD4ERwMXAJcAHWKjxpViGunSY\nApwDFHM5E5EmwEWYo10r4BkRKXVOgUHSurX9KAoLcy1JbohEi3UUJ987EO69KF34sXr6p6o2i9r/\nSUQmqWozEUnLh1RVZ4ANg2I4CxjsOdrNE5E5mAPeV+nUUxbYYw9o0MDCXJ94Yq6lyS6q1iCMHJlr\nSUofzZpZnpRZs8JJCVuaKSiAjz+G/v1zLYkjgh9FUVFEjlHVrwFE5Gi2jkSC7gfXo7hSKJfOdrFE\neo/ZVBSqMHEifPSRZXM7/HDL3Rx28qZopk0zM+HG5SpASzCIbI39dOut2atX1aYDx461BvuYY2wa\nLFt5OcAs4PbdF+rUyV6djpLxoyg6AQNFJBLTcy3QSUR2Bh5KdJOIfAzE+6rvVtVUglfEXbUu634U\n0bRpA506wcNZipO7bBlcdRXMmGEJnWrUgIEDoXt3ePllC3edDSLTC2Gmny3LtGkDTz6ZPUWxYAFc\nfrktIJ9/vvkwPPkk3H23mS4fdVR25HDTTsERlB8FquprA6oDu/i93meZ44DDo/a7Ad2i9j8Ejolz\nn5YntmxRrVVL9ddfw6/r119V99lHtXt31U2bip8bOVK1dm3VwYPDl0NV9cQTrU5HfP76S7VqVdVV\nq8Kva8oU1fr1VR9+WLWwsPi5N99U3X337H1XBxyg+s032akr3/DaztTb6qQXWPiO84E7gaFY/ojH\n0xMqbL4AACAASURBVKksTtnjgCOi9psAk4HtsRDjv+CZ8MbcF8pDzCVXXqn61FPh1rFihf0I+/dP\nfM2UKaYsRo8OV5bff1etXl1148Zw6ynrnHmm6ltvhVvHb7+p7rmn6muvJb7myy9NWXz9dbiyTJum\nusce1nlyBE+6isKPRdH7QDvgNuB4oBFmAZU2InKOiCwEjgVGiMgor/WfDgzBHO1GATd4/1y5J2wr\nl6IiuOgiq6dLl8TXHXwwDBlivh3z5oUnz/vvW16OHXYIr47yQNhRhjdvtrSzN9xg33kijjsOXnwR\nzj3Xpi7DYtgwWyvLVs50hz/8fB07qerl2FrBfcD+QNUM6z0eWAfMwkYo0e5mytZ1ibxQEgCnnQZf\nfmm5k8PgP/+xRWs/6yAnnwx33gmXXWZ5IsJg6FA477xwyi5PnHWWzdlv2hRO+b162aLxXXclv7Zd\nO4s/dc014UU9HjbMvRelET+KokBE7gZ2wfwnioBMbSBGAwep6qGYsugO+elHEaFqVQvp8d57wZc9\nfTo8+KAtSG7nx3wBW0Ddfnt47LHg5Vm5Er7+Glq1Cr7s8ka9ejbK+/jj4Mv+8kt46SUbKfg1KOjd\n24I4DhwYvDy//mrBIfPNTLws4KcRfg4Q4N/Y4vI8bFoobVT1Y1Ut8na/xnJcQJQfharOAyJ+FHnB\nRRcFHwhOFW68EXr0gL339n9fhQrwf/9nQQvnzw9Wpg8+gJYtYeedgy23vHLhhTYdGCRbtth0U79+\nFkLFL9tvb0ELu3cPPhT6u+/aNJjLjV368KMoKqjqv1W1D7Y+sT+2yBwUV2GBBsH8KKJDiueFH0WE\ntm2tl7diRXBlDhliQQevvz71e/feG26+Gbp2DU4egHfesbluhz/OO8+U68aNwZX5/PMWNuWii1K/\nt1kzi03WvXtw8oB7L0ozfsKMr1fVnWKObVDVHZPcl9SPQkTuwcxjz/P2nwK+UtXXvf0XgZGqOiym\nbO3Ro8ff+2XdjyKaCy6w9Yprrsm8rHXrzJlt8OD0h/ObNkHTpvD448FkGlu2zDyNf/sNqlRJfr3D\naN7cpgPbtcu8rOXLoUkTGDPGvtt0WLPG3q2334bjj89cptmz4aST7L3wOz3qSE6sH0WvXr3SCgqY\nUFGIyF3A1cA+FB9BVAV2VNVdUq0spvwrgWuAlqq60TvWDUBVH/b2PwR6qOcVHnVvuTWGeucdePZZ\n+xFnSrdusGhR5nkeRo+2Ecn06Zl7bvfvb/mxXe6J1Hj2WctbEsTU5PXX2xRSpiEyBg+2qclvv818\nuuj++2HtWpd7ImzSjR5bko/Dv7BwGgWYZdJEbxsFnJuOLW5U2a2AaUDNmON560cRYcMG1Ro1Mne+\nmznTylm8OBi5zj1XtXfvzMs58kjVjz7KvJx8Y+VK1V12UV2+PLNyvv/e/GRWrsxcpqIi1ZNPVn32\n2czK2bJFtVEj1R9+yFwmR8mQph9FSSOK3byPbbGIsbEKZmXKWmlr2bM9ZRApY6Kq3uCduxtbtygE\nuqrqR3Hu10RylwduvtmmZfr0Sb+M1q0tl8Httwcj0/z5Fg/q+++hUaP0ypg+HU491UJFuAXL1Ln0\nUgujke6akapNQV51lYWMCYKffrLvdPp0CwWTDhMmQOfOVpYL5xIuYeSjmAPMBp7w/sZumfAmll5V\nMGURHTMqL/0oornmGjM/TDf0+MiRMGcO3HRTcDI1bGgK7Lbb0i/j2WfhyiudkkiXq682U9Z0+0iv\nvWYOdh07BifTIYfYwvY9GSRGfvZZU1xOSZReShpR9CR+Qy3Y8KVX2pWKVFXVtd7nLsChqnq150fx\nBnAUZu30CbC/bjWljdxfrkcUYAuEd95p5oKpsHmzLVD262cpNYNk40Y46CD7YZ+WYkqpNWtsJPLT\nTxZa3ZE6qmYIMHBg6sYJkcXnYcMsImyQrF5tZQ8fDkcckdq9ixbZ+zp3LuyS0aqnww+BjyhUtaeq\n9vIUwmSgGraQ/X0mSsIre23UbhUgYpGd134U0XTtaqkwU9WH/ftbiOaglQTYQvaTT9pIZfPm1O59\n+WWbonBKIn1E4JZb7L1IlT59TLkHrSQAqlc3h87OnS1UTCo89xxcfLFTEqWeZIsYwH+BZVh48bVY\nZrun01kQiSn338ACYCZeVFrgKeCSqGteBM6Lc29mKzplgMJC1X33VR0/3v89c+faAvbMmaGJpUVF\nFqiub1//92zYYEHnvvoqPLnyhfXrbTF6yhT/90ydqlqzpuqSJeHJtWWL6jHHqA4c6P+eVatMrlmz\nQhPLEQNBL2ZHEJF1wE1AxKDxUqC/qpYY78lvPgrPJPYAVe3o/CiKM2AAvP66mcomm79VhdNPtwXs\noB2hYpk924LE/fgj1PfhDvnUU5YgKZ9TewbJQw/BDz+YD0MyCgvtu7r22mB8c0riu+/M12b6dH85\n0Hv0MMOGMMKBOIyg/Cj89Pw3ADWi9msAG9LRSgnKbwBM9T7nZT6KRBQUqB58sOo77yS/9rnnVJs1\nU928OXy5VFV79lRt0WLb3AWxrFihWqeOM30Mkr/+Um3QwN9os08f1dNOs5FgNujcWfWCC5LXt2CB\njX5/+SU7cjkMQsxHMRVbQ3gFeBX4I9Kwp7sB+0V97gIM8j7nvR9FLOPGWaNQkt37t9/aEP7nn7Mm\nlhYWqp5yimqvXiVf17GjapcuWREprxgyRLVxY1Maifj4Y5umWrAge3Jt2KB66KGqzzyT+JqiItW2\nbZO/O47gCVNRNMKivf7pbR8CDdKpLKrMd4ApnlIYCtSKOnc3tog9Azg9wf3hPMVSyk03qbZpE7/3\nPnu2JXrxM+oImkWLTIm99FL88wMHqu63n+qaNVkVKy8oKlK95BLVK66I33ufNMmyJo4dm3XRdNYs\nG0W+91788337qh5+uEtalQvCVBQfYYmKdk6ngiRl34aFLd8t6lh3zE9jBnBagvsCf4ClmU2bVE89\nVfW884qnxfzkE9V69VRfeCF3ss2YYTL06rU1tWpRkfUoa9dWnT49d7KVd9asUT32WNVOnbaOLIqK\nVN9915RELjoPEb791mR48smtHZzCQtUHHzTDhvnzcydbPhOmovgNWOhNP72PpUWtnE5lMeXu6Y1O\n5kYURdTUUyVvJDMHi16b14pC1Yb0119v87pnnaV61FGqDRuqPvLIuFyLposWqbZqZTmXzznHpkSO\nOCJc66t4jBs3LrsVlgL+/NNGFrVq2bNv2jSS7nZcrkXTOXMsL/pee1kImL33Vj3pJNWFC7MrRz6+\nF4lIV1EkDTOuqnt4yuE1zKehP7Aq2X0+eALLwx2N86NIQOXK5uj2/fcWyuGRR8z6aP368bkWjXr1\nYNQoCx7YoYNZsXzzjTmHZZNo6458oVo187j+/HN79s88Y1ZHK1aMz7Vo7LMPfPqpOfm1b29WWhMm\nZN+XJh/fi6Dxmz3uJywg4HeY411GMURF5CzgN1X9KeZUXuej8EPDhnD++WYGWynTPIMB06SJhUk/\n5pjSm/O4efPmDBgwINdiBM5++9mzb9BgAbvsUjUy8g6VpUuXcvLJJ1OtWjXuuOOOuNeIwGGHmWyH\nH+7CdJRVkv6cReRdbOqpL9AMeAY40sd9H4vIlDhbO2wdokf05SUUVb5jdZQCXn75ZZo2bcrOO+9M\n3bp1ueGGG/jzzz9939+oUSPGjh0bmDxBlxeNiCBea/Xyyy9z0kknhVJPtoh9Vg0aNGDt2rV//49h\n8sILL1CrVi3WrFlD3759Aynz999/p1OnTtSrV49q1arRuHFjevbsyfr16wMp35EefhzulgBvYYH8\nvtIMuyoicjAwBoh883sAi4BjgI7gLx9FJjI4HA5HvqIhOdxts5gc5Eb8xewS/SjcFtizr4aFZTk/\n5vjOWNiWjt7+y8ADUeebAwu9z4OALZjiXwvcjhkiFGGJqRYBi4Hbou5Pqbw4co8Cbow59iNwtvf5\neOBbLELxN8BxUdeNw8LYHwhsxMLZrwVWeudbA5MwU/AFWEclup7LgfmYcce9WA75lt45wZxG53jn\n34L/b++8w6Wqrj78LhE/bBER7Ag2bKBgwS6ImhijEnuLn2hiLNEYg/nEFsSCvZIYSwCxoIIagwoq\nKCggFhTpGCwoBFEEVECRcn/fH+uMdxhm5p5pd+beu9/nOc89c8ree/bse9bZa6/Cxhn6fjrwq6TP\na+M+Su1x1e5jURmLou+waZoysvX9WtE1o4DrgbHRNUOA5sDj0Xd8B2iVVObOwHBgAW55eFKG9j8M\nLAd+jMrtgv/f3h395v8F7gLWSfqN5+Drkl8AA9KUeQMwsdz/F2FL83uXvQHwCaubx9boRxG2ovX9\nkXhiqnSWZQ8DA6P9/sB1Sec6Ez3Yo8+fAl2SPiceVo8D6wJtccFzWD7lpWnbmcCYpM+7Rg/UxkCz\naP8MXLV6Kh7KfuPo2pHAOdH+WcDolLI7AbtF++2AeUDXpHoW44KoMa6OXZ5oK3AJnuRry+j8/Yk+\nTPMdrgEeS/r8K2BqtH8e/kBvggufDsCGGcrJ1PfJguI/+IvXz/CEYTPxB3sj3JG2X3Tt+ria+ayo\n79rjwmuXDHWn/o7XRd+/ebSNTZyPfuMVeEqBxqSxnMQTpfUs9/9F2Nbcyr7kKGk7JSVBktRb0g6S\ndlaapEWBotIc+FopYdwj5uHhWhLko/TuJekHSVPwh8ppBZaX4DmgvZm1jD6fATwjaQX+wP1Q0uOS\nqiQ9ib90pMs2vUYbJL0uaWq0PxlXuXaKTp8IDJH0ZlTXX1l9De084GpJc6PzvYATzSzd/9lA4Fgz\nSxiGnA48Ee0vx/t+RzkTtHrE5VwQ0F/Sp5K+w2dj/5H0mqRVwGBcEAEcDXwqaUDUdx8AzwInZSk/\nuQ9PxwXD15K+xr//mUnnq3BBsEJR+uMUmuGzjUCFEWcx+yAz28rMDjSzQ8ysk5ldWBuNM7MjzWyG\nmc2Mcninu+be6PxEM+uQ7pr6QE19YWadzexbM5sQbVfHKPZroHmGB9kWVId/z5fZSfuf42/aOWNm\n95vZ4mh7F59xrqRa8JyKz16I6tgkZUx8FrduM9vXzEaa2Vdm9g3+8E8IzNWs8iT9gKtoErQG/mVm\ni8xsETAtaudmqfVI+hhXPx1rZuvhmSQHRqcfxR1dnzSz/5rZLWa2dpq29sNjpf0zw3fpDBwMnJ80\nJpbhs7sEy/BQ/wCtgH0T7Y++w+np2p+BLfG+TpD6m8+XlC1A/QLyHyMto99tqplNMbO0absawvMi\nTl/k+rxYY/Cl4Rk8MOA0XB8KcAhu/VQyzKwR8DfgcFzf+a6ZDZE0Pemao4AdJO1oZvsC/wD2K2W7\nykGcvoh4XVK6N+dMjMN1zCfgb5aJ+jbA1VKJOLRLgfWS7kuNCpzJuGAbPIx8Yv+/+ZQn6Xzg/Kht\nBwNL8FnFaWY2GldjjIwubw60kNQ0aUxU4W/SqaRr90DcV+gXkpab2V1UC4q5wE6JC81sXVafdX2O\nr+uMS1NuOp7AhV0jXO30SfR9V+JqnOvMrBUwFO/Hfin39wdqSiH1DT6z6xe1+fos136Oj6Ec01L9\nxFxcWCbG5TbRsQQ1GaGMAI4zs16ScjVYWQFcKumDaPy+Z2bDG+Lzghh9ERH7eZFxRmFm+5tZd3w6\n+HfcUmkU8B6+gFdqOgIfSZoVTeOfxB3ykjkW17Eit4xqamZx337qEnH6AnJU50j6FlcP9DGzX5hZ\nYzNrDQzCZwOJ0PIfAEeZ2cZmtjnwp5SivgS2T1PF1Wa2rpntBnTDF3cLKQ9Jo/E1iMX4G3AvvD8S\nNAfWNrPT8LHaEtgFSBfk/EtgazNL9kjZAFgUCYmO+Bt1gmeAY6L/jXWAa1m9z+8HepvZNgBm1iIy\nB8/Ek8AvcCGYmE0k3vbaRS8Ii/F//FWpN0d98RW+iJwNy7CfyotAGzP7TTQWGpvZPma2c4xywQXf\n1WbW3Mya46q5R9e8LSN34usoA5L6cCszu8PM2mW7UdK8SFWGpCW4sEqdnTSI50XMvoAcnhfZVE/r\n4BntVgFN8X+gDYDvcF1tqdmK1VUX6Zzv0l1TH3OoxekLAQdEU+qh5mlla0TSbbgBwe24FcxbuPrg\nsEgogf+zT8RfEF7CH3DJb3w34Q+IRWb256Tjr+NqohHAbZJGFFhe6vd9FjiMpIcsLii6R9vX+Jj9\nc/I6WBKv4ou788wsoY65EH+T/w5fcE4IN6K1i4uj9s7FH+Jf4bMygHvwRehXovvHkSWygKR5+OLv\n/sn14DOswfjvMQ1/Qcv0wL0P2DSlr5T0dyOgZ9KYEGu+2Sfi4izGZyin4rO/L/DfIpMgSi3rBtwp\nd1K0jY+OrVZPJiQtwg0FVgBvR304Ap8VfZTt3mSil50OwNsppxrK8+InsvRFbs+Lmla78Sn7x8CD\neAa6PnjiooJX0nEB9DQu8abhvhTNcPO8ufgP2TS69jdAn5T7nwcOTPo8AtizGG2rpA1XDT2U9Dld\nX2wIrBft/xJfsCxXe1uTZHlTovInZzhXa2MCF0IrSDIvLVNfZ+qLihkTtdgfG+AC6tflHBuVsNXQ\nFzmNjThWT61xK4yDcR15YisG9+AZ7HYBdsetU3rgguJ4XJfdI7q2JauH9wB/62mZ9DnhvFffSP2e\na/SFpMWSvo/2hwGNzaxZ7TWxYijpmDCzY8xsPTNbH5+FTZL0WU33lYOGNiYiFeIzuNnxc2kuaSjP\nixr7ItexEUdQnJm0nYurCl7Mo+2rYWYbAQcrWmSTtFKuM0/oEccD/wOcFOmDT8Gn9ckMwR2gMLP9\ngG8kfVlo2yqQ8cCOZtY6U1+Y2WZmHrch0q2b0qtbaotyec+XekwcS7VD2fa4mqYiqcAxUTKi79kX\nmCbp7gyXNYjnRZy+yHVsZLR6MrPBkk7CLStS2R5IHwUsPtsC882sP7AHvvD4J2CzxI9nZhfgi5DT\ngL6SppvZeQCSHpA01MyOMrOP8NnH2QW2qSKRtNLMLsJNJhuRpi/wdaMLzGwl7qlbtgeYPPJvo1KU\nbWZP4H4Nzc1sNh4zrHFUb8nHhKRz8RemslNTX1BBY6IWOBBXyU4yswnRsStxy6sG9bwgRl+Q49jI\nGOvJzLaUNNfM9kg6vBauIvqrpLRWKXExs73xxb4DJL1rZnfji4MXSdo46bqFkurtdDkQCAQqnYwz\nCkkJ++d/U61GWIlbqpxVhLrn4KHG340+P43b7c8zs80lzTOzLVjdOQgIQQEDgUAgX5RHUMA4iYta\nS9o22naUdISkMfk1cbVy5wGzzSyR3uZw3FTxeaoF0Vm4Y1W6+8Mm0bNnz7K3oVK20BehL0JfZN/y\npUbP7Mj79ELgIHxmMRr4h9LHasmVi4HHowXaj3GdYSNgkJn9Fp+9nFyEegKBQCCQJ9kWszcFWuDe\np9/hYQ0MFxqdSe8ZnBOSJgL7pDlVLPPbQCAQCBRIthlFH9zrczdJP3ntRavkz5e6YYF4dO7cudxN\nqBhCX1QT+qKa0BeFk83q6T1Je5nZY8DfFQU6i+yPX5LUtBbbmdo2FaJvCwQCgYaImaE8FrOzzSg2\njP7uDYyN7LSF2+KuMLPJgCTtnnNrk4gCn43HLaCOibwDn8IDvs0CTpb0TSF15MrKlTBmDEycCOuv\nD126wHbb1WYLApXI8uUwciRMnw4bbQRHHAFb1+tIQYGAk83q6SMz+xUe3XI73LGnM55G8k08fn4u\nIa0zcQnuUJeYIvQAhktqgwdt65HpxlIwbBjssgt07w4zZ8Ibb8C++8KZZ8LCeunTGojDoEGwww7Q\nqxd88gkMHw677w5/+AMsWVLu1gUCpSWb6qkN7hXdCM+Da8BeeHTHaZIKXsw2s63xlJs34hE+jzGz\nGUAnSV9GIahHSdo55b6iq54kuP56eOgh6NsXfp4UkX/pUujRA15+2R8QrVoVtepABVNV5S8NL7wA\nAwbAAQdUn1u0CP74R5g61V8wNqt3AasD9Y18VU8ZZxSS/oN7Ya+NBwZshYeNbg/smF8z1+AuPBRI\ncirOn0J44PkCauXfr2dPePppGD9+dSEBrn7q0wcuuAAOPxwWLEhfRqB+IcHFF8O77/qWLCQANt4Y\nHnkEjjrKtzCzCNRXsiUuuhJPrL4V8PtouweP554anC9nzOxo4CtJE8iQQCOaNpR81fqBB2DwYHj1\n1exvhZdeCr/+NZx8sr9pBuo3N9zgAmLoUGiawXTDzGei7dvD2We7cAkE6hsZVU8/XWB2s6SirxOY\nWW88Iu1KoAme2epZ3K+is6pDeIxMp3rq2bPnT587d+6ctwncm2/6w3/sWNgxxjxp1So49FC/58+Z\nUuoE6jzDhsG557qg2GKLmq9ftgw6dnQ11VnFCHATCBSBUaNGMWrUqJ8+9+rVKy/VUxxB0Yk0b/WS\n3si1shrquCxao7gVWCDpFjPrgScu6pFyfVHWKBYu9AXJ+++Ho4+Of98nn/gC95gxsNNONV8fqFvM\nng177w3PPAMHHRT/vkmT4LDD/G8c4RII1Db5rlFkFRRmtjZuopoIVdsET+34nqQuebQzUz2dgO6S\njo3MYwfhZrizSGMeWyxBccYZsMkmcO+9ud97xx2uqho6tOBmBCoIydcbDjgArrkm9/t79IAvvvCF\n70Cg0iiJoIgKHoPnT/4x+twSuEfS8Xm1tAgUQ1A8+6z/U3/wAay3Xu73L18O7drBXXf5gyVQP+jf\n3w0X3n4bGjfO/f7Fi928evBg2H//4rcvECiEUgqKR4Gd8QXs76PD/yepbMaAhQqK+fNd5fTMM2ta\nsuTCiy/CZZfBlCnQqCRpegK1yZw5sOeeMGKEj498eeQRePBBGD3aF7sDgUqh6OaxSbTBzVePxlNw\nXgLMy7WiSuIPf3AHukKEBPhMonlzePLJ4rQrUD4kOO88uOiiwoQEuEpz4UJ45ZXitC0QKDdxZhTd\n8MXsJsAqYLqksQVX7CqsR4BNo/IflHRvnBAehcwonn0WrrjCw3M0aVLIN3BGjvQHzLRpsHaNQdsD\nlcqAAXD33fDOO/mpnFIZNAhuv91VWGFWEagUSql62ht4FGgKrMB9K86SNCWfhiaVuzmwuaQPzGwD\nPGf2r/GcFF9LutXMLgc2LpbV06JF0LYtPPVUbtYsNXHooW4S2a1b8coM1B5z57ofxCuv+N9iUFXl\nZd14IxxzTHHKDAQKpeiCwswa46E1LgU+BZbglkgjgFaSirpUZ2bPAX+LtpKE8DjnHF+4/tvfitLk\nnxg1qnpWEdYqCmPJEn+r//ZbD5XSvj2sFUdBmicSdO0KHTp4HKdiMniwGzuMHRtmFYXy7bc+LpYu\n9QCd7dqFPs2HUqxR3AY0A2ZIaiNpTzw44GJgh/yamR4zaw10AN6mRCE8XnkFXnsNbrqpGKWtTqdO\nHs5hSMH+6g2XRYt8fWDLLeGvf3XrozPOgJYt4eab4fvvay4jHwYOhFmz4Kqril/28cfDV1+5oAjk\nx7x5/oLXsqV7yvft6/263XZunfbjj+VuYcMgm6A4Gg/b8bGZXRM9zDcBPgfWLVYDIrXTM8AlkhYn\nnytWCI9vv4Xf/94d6zbcsObrc8UM/u//4JZbQgiHfJg0Cfbay73eP/rIHRmHDPFw3i+/DO+9B7vt\n5seLybx57l3fvz+ss05xywafXV52mY+LQO68+aaPixYt4PPP4fXX4fnnParz4MHuPb/nnjBhQs1l\nBQojm+rpP5LaRIvLvYADo1OjgV9JKnhWEam3XgCGSbo7OjaDIofwOOMM+NnP4B//KLTFmVm1yu3n\n+/aFgw8uXT31jSlTPK/DHXfA6adnvm7IEFfvXXop/OUvhasdqqp87aBDB39TLRU//ADbbusmt23b\nlq6e+sa4cXDssW5kkMlPSfIZ4aWXQu/e8Lvf1W4b6wLFCuGBpLQbHvzvLOBPKcfPBIZkui/uhgcC\nfAS4K+X4rcDl0X4P4OY09youjz4q7bKLtHRp7Fvy5oEHpKOPLn099YX586WWLaXHHot3/ezZUvv2\nUrdu0rJlhdV9++3SfvtJy5cXVk4cbrhBOuus0tdTX/jsM2mzzaQXX4x3/YcfSjvuKP35z9LKlaVt\nW10nenbm/LzOOqMAluIhxR+JDu+Bq53+V4VbPR0EvAFMolq9dAXwDkUK4TFhgocMHzEC9tijkNbG\nY9kyf3scPjy8PdZEVZW/Ke6+O9x6a/z7li51H5j58+Ff/3I/llwZM8b13O+8A61b535/rixaBNtv\n7ybZLVuWvr66zPLlcMghcMIJPnOMy6JFcNJJbvI+cKBrEAJrUgqrpz8CFwDb4wvYAMuBZbhUKlty\n0DiC4osvPHDfHXf4AKoteveGDz8MsX5q4r774LHHXO+cq99CVZUvPg8a5DrrXXeNf+/Mma4aHDAA\nfvGL3OothO7dXVVy5521V2ddpFcvF+AvvJC7enHFCs8fMnasj4vaeAmoa+QrKOKoiO7PZ6pSyo0a\nVE9z50o77yzddFONM7Gis3Ch1KyZT58D6Zk7V2reXJo6tbByHn5YatFCGjYs3vUzZ0qtW0sPPVRY\nvfkwe7a08cbSggW1X3dd4cMPfVx8/nn+ZVRVSXffLW2+uTRmTPHaVl8gT9VT2R/6eTU6i6AYP94f\nBr1759qFxaN7d+lPfypf/ZXOKadIV15ZnLJGj5a22ML7/PvvM183cqS05ZbSgw8Wp9586NZNuv76\n8tVfyVRVSV26SHfdVZzyhg71l4hevWpnHaquUK8EBXAkMAOYSbSwnXJet9xS/eZRVSXNmCFdfLG/\nkQwaVKRezZM5c/zt8euvy9uOSuTtt6WttiquccFXX0knnyxts410773SvHl+vKpKmjhROuccf8Mc\nOrR4debDtGnSppvWjmFFXePFF93oZMWK4pU5e7Z01FHSHnsEYZEgX0FRQp/X/DCzRrh39pHArsBp\nZrZL6nXTprkNddOmvnXp4rbw06bV7ppEOrbaCo47Dv7+9/K2o9KQPLR7z575hXbPRIsWHpZlTrh0\nEAAAFGJJREFU0CDXT7dpA82auc9M167+e0ybBr/8ZfHqzIdddvHQ4/37l7cdlUZVlcdfu/HG4sZL\n23prX+sYOLA48bsaMjXGeoKfPKd3kDTCzNYD1pb0XUkaZLY/0FPSkdHnHgCSbk66RpKoqoJvInuo\nZs1K0Zr8mTHDPbY/+QTWX7/crakMhg937+upU0sbQFGCBQv84fCzn1VWqIdx49xfZObMEEQywcCB\ncM898NZblfVb1UdKFmbczH4PDAYeiA5tDfwr14pyYCvchyPBnOjYGqy1lguIShMSADvvDAceCP36\nlbsllYHklkrXX1/6B6SZm81utFHlPXj2399NZAcPLndLKoOVKz1ky003Vd5vFagmzr/sH/D0p28B\nSPqPmW1awjbFCoJx7bXX/rRfk2d2ubj8cjjlFDj//DD1ffVVD/h34onlbkn56dEDrrwSTj01PByf\nfho239xVx4Hik+qZnS9xwoy/I6mjmU2Q1CHKo/2+pALTu2Ssbz/g2iTV0xVAlaRbkq5RHJVZJXDY\nYa5q+O1vy92S8nLEEd4PZ59d7paUH6k6Wm3XruVuTflI9MP114dQ7LVFKTPcvW5mVwHrmdkRuBrq\n+VwryoHxwI5m1trM1sGz6tXZuKw33ugPhB9+KG09q1bBf/8LX37pi4OVxHvv+ZrNGWeUuyWVgZmP\ni6uu8t+tlKxc6Sle58+vvICVr7zi7fvVr8rdkkBNxBEUPfBkRZOB84ChwNWlapCklcBFwMvANOAp\nSdNLVV+p2W8/j4B5332lKX/cOLfy2nhjr6dtWw/V3b27R0etBG691QO3lSJCa13lqKP8N3v88eKX\nLXlI/WOPdYvAjh1hp508v8fVV3ua1krglls86nIp840EikQ+NrXl3sghKGAlMGWKO/98803xykz4\nDrRqJf397/45wcyZ0iWXuM1+uX1KZs5035bvvitvOyqR0aP99ys0wGEys2dLv/yl1KaN1LevRwqQ\n3Kdk6lTpd79zB8WXXipenfnwzjseEDL4N9QulMrhDp9JTIr+JrYxwF3AJvlUWuhW1wSFJJ17rjsE\nFoOxY/2f/bLLsnsjv/uue6nfemtx6s2H886TrrqqfPVXOscdJ113XXHKGjbMX0iuuy77A3jUKB8/\nffsWp958OOGE4nlhB+JTSkFxG3AT0A7YHegN3I2rpJ7Pp9JCt7ooKBYs8NDJ77xTWDmPPOIPg7he\nxrNnSzvt5GG1a5svvnAP9S+/rP266wqffy5tsonHOcqXqir3SM8lvtGHH7one//++debL4mYTosX\n137dDZ1SCooJmY4Bk/Oq1IXPdGAi8CywUdK5K/DQHTOAn2e4vwRdWHoefVRq10764Yfc7121Srri\nCmnbbV2VlQuffy5tvbU0eHDu9RbCFVdIF15Yu3XWRe68UzrkkPzCVyxfLp1/vrTbbtKnn+Z27/Tp\nrp4cMSL3egvh3HOlv/61dusMOKUUFJOAfZM+dwQmKoMQiVUpHAGsFe3fTJScCA/Z8QHQGGgNfJS4\nLuX+0vRiiamq8nWF3/8+t/uWLHEVxYEHrr4WkQvvv+9vcdOm5Xd/rnz7rb8pf/xx7dRXl1m5Ujrs\nsNxVdAsXSocf7msS336bX92jRvlMd/bs/O7PlblzfZaZ7zgOFEa+giKOvcFvgb5mNsvMZgF9gXPN\nbP1IJZUzkoZLShhxvo17ewN0BZ6QtELSrEhQdMynjkrEDB56CEaNim8FNWeO50/YcEN3WmvRIr+6\nO3Rw79dTTim9qS749zziCNiubFlL6g6NGnkYi4cf9phVcZg50y3q2rb13Av5Jurp1AkuuQROO81N\nVUvNvfe6mXS+4zhQJuJKFKApSSqiYm24T8bp0X4f4Iykc/8ETkhzTxFlbO3z8cdu8XHffdmv+/e/\nXe98880+GymUqirptNOkiy4qvKxs/PijR4h9//3S1lPfmDjR3+6feCLzNVVVnjq2RQtPvVsMVq2S\njjhCuvba4pSXicQs85NPSltPIDPkOaOIFXXHzI7G1UJNLIo5IOm6Gu4ZDmye5tSVkp6PrrkKWC5p\nYDZZlu5gXQjhkYnttqu2cx871t/0k1NkTprk3qrjx3tE1IMPLk69Zh7Rtl07D6XRqVNxyk3l8cc9\n61yHDqUpv76y++7w8svw61/7rLNXL9hsMz8nwbvveuTdzz7z64rVv2ut5RFtO3TwukuVNviBBzw1\n8bbblqb8wJoUK4RHnDf+B/Cc2XOAnsAUoG8+Uiml3G7AWKBJ0rEeQI+kzy+RtD6SdLzokrYcLFki\n9eghbbSRtNde0s9/Lu2wgy8833xz6fIWDBkibbed119sVq3yvAK1vUBan1i40E2pN9xQ6tjR3/Zb\ntfLfrE8fn7GVgn79pA4dSuPbsGyZJ46aMKH4ZQfiQ54zijixniZLamdmkyTtbmYbAC9JOihf4WRm\nRwJ3AJ0kfZ10fFdgIL4usRUwAg9vrpT7Uw/VaX780cNcfPONzyx226303qq/+Y1HWL377uKWO2SI\nvwmPHx8C3hXK99/7uFiyxPM/77xzaftU8pwdBx3kHtzFpF8/X395+eXilhvIjXxjPeUSFPAt4ARg\nATBF0g75NRXMbCawDpAIJjBO0oXRuSuBc4CVwCWS1hha9U1QlIMFC1wF9dRTxVNtSbDPPp6E5oQT\nilNmoHaZPdsTgr32mo+PYrBihQu5fv1Kp+4MxCNfQRFnjeIFM9sY9314Lzr2UK4VJSNpxyzneuNO\nfYESsskmvl5xzjkwcWJxMs79+99uOXPccYWXFSgPLVtC794e5fett4qTO2TAAF+XCEKi7hJnRtFE\n0rLEPtAEWJY4Vg7CjKJ4nHaaBxG8447Cyqmqgvbt4YYbfJE+UHeRfNG5SxefHRbCjz96atonn/Sk\nTYHyUsow428mdiQtk/RN8rFA3aZPH7fhf7PAX3TQIPif/wl5BeoDZvDPf8Kdd3ra2kJ46CFfcwtC\nom6TUVCY2RZmtheeh2JPM9sr+tsZKIKiAsysu5lVmVmzpGNXmNlMM5thZj8vRj2BzDRvDn/7m6sa\n8nXEW7rUw0XffntYwK4vtGrls8NzzsnfEW/BArjuOg8nHqjbZFQ9mVk33IR1LzyZUILFwMOSni2o\nYrOW+FrHTsBekhYmWT3tQ7XVUxtVe3En7g2qpyJzyimwzTZw222533vNNe4p/OSTxW9XoHxIcPjh\nroa6/PLc77/gAl/j6NOn+G0L5EcprZ5OkPRM3i3LXO5g4Hrg31QLitXSnprZS3ha1LdS7g2CosjM\nn+9rDH37wpFHxr9v6lRfpJwwYXWnwUD9YNYsT3w0ZIiHDInLuHFu1DB9uidoClQGRbd6MrPuuFe0\nmdmfk0/hTht35t7Mn8ruCsyRNMlW11VsCSQLhTn4zCJQYlq08BnBiSf6P3mcGE3Ll7s/RqpneaD+\n0Lq1vzycdJL7xiQ8xbOxeLGPi/vvD0KivpDN+G1D0ofPsAzHV78ocwiPq/BQ4snrD9kkXL0L4VGp\nHHyw53E+5hgPIZEtcJsEF13kD5Lf/a62WhgoB8cc4+FDunaF4cM9QGUmqqp8vatLFw8HEigvxQrh\nUaPqqdiYWVvgVeD76NDWwH+BfYGzASTdHF37EtBT0tspZQTVU4mQXFgMGwYvvZT+DVKCa691dcQb\nb2R/cATqBxKcdx7MmOG/e9Oma15TVQV//CNMngyvvOJWcIHKomTmsWbW0sz+ZWbzo+0ZM9u6pvsy\nIWmKpM0kbStpW1y9tKekL4EhwKlmto6ZbQvsCLyTb12B3DGDG2/0t8d99vF/+GQWLYJu3dy5btiw\nICQaCmauSmrf3tcsxo5d/fy8eXD88e68+dxzQUjUN+IsZo8AHgceiw6dgYcCP6IoDTD7BNhb0sLo\ncwjhUSEMG+a5CtZbzx8OixbBiBGeT+Cmm4KQaKgMGgR/+YvPNvfcE778EkaOdCunnj2hSZNytzCQ\niVJaPU2UtEdNx2qTIChqj1Wr3BlvyhRPjnPooe7JHWjYrFgBo0e7KmqTTeCww9wnJ1DZlFJQvAb0\nx/0bDDgVOFvSYfk0tBgEQREIBAK5U8oQHucAJwPzgC+Ak4gWnQOBQCBQ/4kjKJZKOkZSi2jrKunz\nQis2s4vNbLqZTTGzW5KOhxAeOVCU7FX1hNAX1YS+qCb0ReHECgpoZq+Y2W+jcOMFY2aHAscCu0tq\nC9weHd8VOAVPu3okcJ+ZlTiFT90m/BNUE/qimtAX1YS+KJwaH8JR7ohrgLbAe2b2gpmdWWC9FwA3\nSVoR1TE/Ot4VeELSCkmzgI/wbHeBQCAQKBOx3tYlvS3pUvyhvQgYUGC9OwKHmNlbZjbKzPaOjm+J\n+1UkCCE8AoFAoMzEsXraCDgOVwntAPwLeErSezXcly2Ex43Aa5IuMbN9ovK2M7M+wFuSHo/K+Ccw\nNDVSrZkFk6dAIBDIg1KlQv0Aj/B6Hf4Qj/WQzuaQZ2YXAM9G170b5aRojofySA4vlwjvkVp2yHoQ\nCAQCtUQcQbF9aj6IIvAc0AV43czaAOtI+trMhgADzexOXOUUQngEAoFAmalRUJRASAD0A/qZ2WRg\nOfC/UV3TzGwQMA0P4XFh8KwLBAKB8lLr0WMDgUAgULeIEz32oDTHDixNc9ao58jI8W6mmaVNxmhm\n90bnJ5pZh9poVzmoqS/MrLOZfWtmE6Lt6nK0s9SYWT8z+zKajWa6pqGMiax90VDGBPwU5XqkmU2N\nnHj/mOG6ej824vRFzmNDUtYNmBDnWLE3oBHuR9EaaIwvqu+Scs1RuFUUeD6Lt0rdrnJsMfuiMzCk\n3G2thb44GOgATM5wvkGMiZh90SDGRPRdNwfaR/sbAB824OdFnL7IaWxkS4W6P3AA0CJKhZqwNNqQ\nmP4XBdIR+EjueIeZPYk75E1PuuZYIp8OSW+bWVMz20ye26I+EacvIHumwHqBpNFm1jrLJQ1lTMTp\nC2gAYwJA0jw8Hh2SlpjZdNwvq8E9L2L2BeQwNrI98NfBhUKj6O8G0fYdcGL8ZufNVsDspM/pnO/S\nXZN3UqUKJk5fCDggmlIPjcKhNEQaypiIQ4McE5Hw7AC8nXKqwY2NLH2R09jIOKOQ9Dpuvtpf0mcF\ntjcf4q6yp0rF+rg6H+c7vQ+0lPS9mf0SN0FuU9pmVSwNYUzEocGNCTPbAHgaT3q2JN0lKZ/r7dio\noS9yGhtxVEgPRwsjydtrebc+PqnOdy1ZPbxHumvSOujVA2rsC0mLJX0f7Q8DGptZs9prYsXQUMZE\njTS0MWFmjYFngMckPZfmkgYzNmrqi1zHRhxB8Zek7Rp8ITVr+I4iMR7Y0cxam9k6eAiRISnXDCHy\nwTCz/YBv6pu+MaLGvjCzzczMov2OuOnzwtpvatlpKGOiRhrSmIi+Z19gmqS7M1zWIMZGnL7IdWzE\ncbgbn3JojJm9G7/Z+SFppZldBLyMr5P0lTTdzM6Lzj8gaaiZHWVmHwFLqacJleL0Bb5udIGZrQS+\nxzMR1jvM7AmgE9DczGYDPXFLsAY1JqDmvqCBjImIA4HfAJPMbEJ07EpgG2hwY6PGviDHsREnKGDy\ndGQtYG/gHkk75fMNAoFAIFC3iBPr6X2qF3xWArOA35aqQYFAIBCoLEIIj0AgEAhkpcYZhZmtC1wI\nHITPLEYD/5C0rMRtCwQCgUAFEGeNYjDuZPcYboN8OrCRpJNK37xAIBAIlJs4gmKapF1rOhYIBAKB\n+kkcP4r3o7hPwE/2x7XhRxEIBAKBCiCOoNgbGGtmn5nZLOBNYG8zm2xmk0raukCgiJjZRuZpeBOf\nt4xUq8Wu5xjLEBY/EKiLxFE9tSJ9fBQDSEQ0DQQqnShA2vOS2pW5KYFAnSLOjOIGSbOSt+RjpW1e\nIFBUbga2jxK13GJmrSxK+mNm3czsOTN7xcw+NbOLzOwyM3vfzMaZ2cbRddub2TAzG29mb5jZGo6n\nUVl9ov2HzeweMxtrZh+b2Qlprm9tnpSqv5l9aGaPm9nPo3v+Y2b7RNd1supEM+9HQd8CgZITR1C0\nTf5gZmsDe5WmOYFASbkc+FhSB0mXs+ZMeTfgOGAf4EbgO0l7AuOIYgQBDwIXS9obj392X5p6Uqfp\nm0s6EDgaF1bp2B64HdgZ2Ak4JbrnMjz8AkB3PI98B9xc/Yeav3IgUDjZEhddCVwBrGtmi5NOrcD/\nWQKBukZNiVpGSloKLDWzb4Dno+OTgd3NbH08mdfgKJ4aeN6WbAgP4UwUn2uzDNd9KmkqgJlNBUZE\nx6fgmQ0BxgJ3mdnjwLOS6mXk00DlkXFGIam3pA2B2yVtmLQ1k9SjFtsYCNQWPybtVyV9rsJfqtYC\nFkUzksS2W4xylyftZxJWqXUvT9pfG0DSLXj4nHVxA5MQby1QK8SJ9TTMzA5JPSjpjRK0JxAoJYvx\nbI25kjDcWBytX5wo6ekoTHM7SanWfyVJP2pm20ezjqnRusVOeD7kQKCkxBEUf6Fa59oEz9/8HtCl\nVI0KBEqBpAXRAvFkYCi+vpAY22L1tYXU/cTnM4B/mNnVeEjvJ4BUQVFTWWmbl+VzYv8SMzsUn2VM\nAYZlKCsQKCo5BwU0s5Z4mPHjS9OkQCAQCFQScayeUpkD7FLshgQCgUCgMokTPbZP0se1gPaEEB6B\nQCDQYIjjmd2Nah3pKtyMb2yJ2xUIBAKBCiGOoFgX2AEXFh+FPBSBQCDQsMi4RmFmjc3sVmA2MAB4\nBJhjZreZWePaamAgEAgEyku2xezbgGbAtpL2jEIZbAc0xUMNBAKBQKABkFH1ZGYfAW0kVaUcbwR8\nKGmHWmhfIBAIBMpMthlFVaqQAJC0Cnf4CQQCgUADIJugmG5mZ6UeNLMzgRmla1IgEAgEKolsqqet\ngWfxUMYJv4m9gPWA4yTNqZUWBgKBQKCsZDWPjYKedcHj9AuYJunVWmpbIBAIBCqAnGM9BQKBQKBh\nkU+sp0AgEAg0IIKgCAQCgUBWgqAIBAKBQFaCoAgEAoFAVv4fEVXQD+6FT80AAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f8a0c50a590>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange,pi,cos\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,show,subplot,xlabel,ylabel\n", + "from __future__ import division\n", + "\n", + "t=arange(0,0.002+0.000001,0.000001)\n", + "V_i=[]\n", + "for x in t:\n", + " V_i.append(3*cos(2000*pi*x)-2*cos(6000*pi*x))\n", + "#for A\n", + "A_1000_A_peak=10#\n", + "A_1000_A_phi=0#\n", + "A_3000_A_peak=10#\n", + "A_3000_A_phi=0#\n", + "V_o_A=[]\n", + "for x in t:\n", + " V_o_A.append(A_1000_A_peak*3*cos(2000*pi*x+A_1000_A_phi)-A_3000_A_peak*2*cos(6000*pi*x+A_3000_A_phi))\n", + "#for B\n", + "A_1000_B_peak=10#\n", + "A_1000_B_phi=-pi/4#\n", + "A_3000_B_peak=10#\n", + "A_3000_B_phi=-3*pi/4#\n", + "V_o_B=[]\n", + "for x in t:\n", + " V_o_B.append(A_1000_B_peak*3*cos(2000*pi*x+A_1000_B_phi)-A_3000_B_peak*2*cos(6000*pi*x+A_3000_B_phi))\n", + "#for C\n", + "A_1000_C_peak=10#\n", + "A_1000_C_phi=-pi/4#\n", + "A_3000_C_peak=10#\n", + "A_3000_C_phi=-pi/4#\n", + "V_o_C=[]\n", + "for x in t:\n", + " V_o_C.append(A_1000_C_peak*3*cos(2000*pi*x+A_1000_C_phi)-A_3000_C_peak*2*cos(6000*pi*x+A_3000_C_phi))\n", + "print 'VoA(t)=30cos(2000pit)-10cos(6000pit)'\n", + "print 'VoB(t)=30cos(2000pit-pi/4)-10cos(6000pit-3pi/4)'\n", + "print 'VoC(t)=30cos(2000pit-pi/4)-10cos(6000pit-pi/4)'\n", + "subplot(311)\n", + "title('Output-voltage vs time for A')\n", + "xlabel('time in ms')\n", + "ylabel('Output-voltage for A in volts')\n", + "plot(t*10**3,V_o_A)\n", + "subplot(312)\n", + "title('Output-voltage vs time for B')\n", + "xlabel('time in ms')\n", + "ylabel('Output voltage for B in volts')\n", + "plot(t*10**3,V_o_B)\n", + "subplot(313)\n", + "title('Output-voltage vs time for C')\n", + "xlabel('time in ms')\n", + "ylabel('Output voltage for C in volts')\n", + "plot(t*10**3,V_o_C)\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 526 Ex: 11.11" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "The minimum CMRR = 140.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log\n", + "A_d=1000# #differential gain\n", + "V_d_peak=1*10**-3# #peak value of differential input signal\n", + "V_o_peak=A_d*V_d_peak# #peak output signal\n", + "V_cm=100#\n", + "V_o_cm=0.01*V_o_peak# #common mode contribution is 1% or less\n", + "A_cm=V_o_cm/V_cm# #common mode gain\n", + "CMRR=20*log(A_d/A_cm)/2.30258#\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print 'The minimum CMRR = %0.2f'%CMRR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 527 Ex: 11.12" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vioff = 7 mV \n", + "\n", + " Vvoff = 4.17 mV \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#initialisation of variables\n", + "Rin= 1 #Mohms\n", + "Rs1= 100 #kohms\n", + "Rs2= 100 #kohms\n", + "Ioff= 84 #Amperes\n", + "Voff= 5 #mV\n", + "#CALCULARIONS\n", + "Vioff= Rin*Ioff*10**-3*(Rs1+Rs2)/(2*(Rin+10**-3*(Rs1+Rs2)))\n", + "Vvoff= Voff*Rin/(Rin+10**-3*(Rs1+Rs2))\n", + "#RESULTS\n", + "print 'Vioff = %.f mV '%Vioff\n", + "print '\\n Vvoff = %.2f mV '%Vvoff" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter12_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter12_1.ipynb new file mode 100644 index 00000000..cd2e8f76 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter12_1.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12 : Field effect transistors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 541 Ex12.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iD = 18 V \n", + "\n", + " iD = 8 V \n", + "\n", + " iD = 2 V \n", + "\n", + " iD = 0 V \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#initialisation of variables\n", + "K= 2 \n", + "VGS1= 5 #V\n", + "VGS2= 4 #V\n", + "VGS3= 3 #V\n", + "VGS4= 2 #V\n", + "#CALCULATIONS\n", + "id1= K*(VGS1-2)**2\n", + "id2= K*(VGS2-2)**2\n", + "id3= K*(VGS3-2)**2\n", + "id4= K*(VGS4-2)**2\n", + "#RESULTS\n", + "print 'iD = %.f V '%(id1)\n", + "print '\\n iD = %.f V '%(id2)\n", + "print '\\n iD = %.f V '%(id3)\n", + "print '\\n iD = %.f V '%(id4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 544 Ex12.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VDSQ = 14.3 V \n" + ] + } + ], + "source": [ + "from sympy import symbols,solve\n", + "from __future__ import division\n", + "#initialisation of variables\n", + "KP= 50 #uA/V62\n", + "Vto= 2 #V\n", + "L= 10 #um\n", + "W= 400 #um\n", + "Vdd= 20 #mV\n", + "R2= 1 #kohms\n", + "R1= 3 #ohms\n", + "Rd= 11.5 #Mohms\n", + "Rs= 1 #kohms\n", + "V= 4 #mV\n", + "#CALCULATIONS\n", + "K= W*KP/(2*L*10**3)\n", + "Vg= Vdd*R2/(R1+R2)\n", + "\n", + "x=symbols(\"x\")\n", + "vec=solve(x**2-3.630*x+2.148,x)\n", + "VGSQ= vec[0]\n", + "IDQ= K*(VGSQ-Vto)**2\n", + "VDSQ= Vdd+V+L-(Rd+Rs)*IDQ\n", + "#RESULTS\n", + "print 'VDSQ = %.1f V '%(VDSQ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 548 Ex12.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rd = 7.7e+03 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#initialisation of variables\n", + "VGSQ= 3.5 #V\n", + "VDSQ= 10 #V\n", + "id1= 10.7 #mA\n", + "id2= 4.7 #mA\n", + "dvgs= 1 #V\n", + "id3= 8 #mA\n", + "id4= 6.7 #mA\n", + "vds1= 14 #V\n", + "vds2= 4 #V\n", + "#CALCULATIONS\n", + "gm= (id1-id2)/dvgs\n", + "rd= (vds1-vds2)*10**3/(id3-id4)\n", + "#RESULTS\n", + "print 'rd = %.1e ohms'%(rd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 549 Ex12.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G = 529.7 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "#initialisation of variables\n", + "RL= 1 #kohms\n", + "R1= 2 #Mohms\n", + "R2= 2 #Mohms\n", + "KP= 50 #uA/V**2\n", + "L= 2 #um\n", + "W= 160 #um\n", + "Vto= 1 #V\n", + "IDQ= 10 #mA\n", + "VG= 7.5 #V\n", + "#CALCULATIONS\n", + "K= W*KP/(2*L*10**3)\n", + "VGSQ= sqrt(IDQ/K)+Vto\n", + "VS= VG-VGSQ\n", + "RS= VS*10**3/IDQ\n", + "gm= sqrt(2*KP/10**3)*sqrt(W/L)*sqrt(IDQ)\n", + "RL1= 1/(1/(RS)+(1/(RL*10**3)))\n", + "Av= gm*RL1*10**-3/(1+gm*RL1*10**-3)\n", + "Rin= 1/((1/R1)+(1/R2))\n", + "Ro= 1/(gm*10**-3+(1/RS))\n", + "Ai= Av*Rin/RL\n", + "G= Av*Ai*10**3\n", + "#RESULTS\n", + "print 'G = %.1f '%G" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter13_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter13_1.ipynb new file mode 100644 index 00000000..d3c77172 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter13_1.ipynb @@ -0,0 +1,498 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13 : Bipolar junction transistors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 589 Ex: 13.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of beta B = 100.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_CE=4# #It should be high enough so that collector base junction is reverse-biased\n", + "i_B=30*10**-6# #base current, a value is selected from the graph\n", + "i_C=3*10**-3# #collector current corresponding to values of i_B and V_CE\n", + "B=i_C/i_B# #beta value\n", + "print 'The value of beta B = %0.2f'%B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 589 Ex: 13.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "graphs cannot be shown but the required values are\n", + "maximum value of V_CE = 7.00\n", + "minimum value of V_CE = 3.00 \n", + "Q-point value of V_CE = 5.00 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_CC=10#\n", + "V_BB=1.6#\n", + "R_B=40*10**3#\n", + "R_C=2*10**3#\n", + "V_in_Q=0# #Q point\n", + "V_in_max=0.4#\n", + "V_in_min=-0.4#\n", + "#the following values are found from the intersection of input loadlines with the input characteristic\n", + "i_B_Q=25*10**-3# #for V_in_Q\n", + "i_B_max=35*10**-3# #for V_in_max\n", + "i_B_min=15*10**-3# #for V_in_min\n", + "#the following values are found from the intersection of output loadlines with the output characteristic\n", + "V_CE_Q=5# #corresponding to i_B_Q\n", + "V_CE_max=7# #corresponding to i_B_min\n", + "V_CE_min=3# #corresponding to i_B_max\n", + "print 'graphs cannot be shown but the required values are'\n", + "print 'maximum value of V_CE = %0.2f'%V_CE_max\n", + "print 'minimum value of V_CE = %0.2f '%V_CE_min\n", + "print 'Q-point value of V_CE = %0.2f '%V_CE_Q" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 590 Ex: 13.4" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "collector current = 0.01 amperes\n", + "collector to emitter voltage = 7.85 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_CC=15#\n", + "B=100# #beta value\n", + "R_B=200*10**3#\n", + "R_C=1*10**3#\n", + "#we proceed in such a way that the required values will be displayed according to the satisfied condition of the below three cases\n", + "\n", + "#a)cut-off region\n", + "V_BE=15# #no voltage drop across R_B in cut-off state\n", + "V_CE=15# #no voltage drop across R_C in cut-off state\n", + "i_C=0# #no collector current flows as there is no voltage drop\n", + "i_B=0# #no base current flows as there is no voltage drop\n", + "if(V_BE<0.5): #cut-off condition\n", + " print 'collector current = %0.2f amperes'%i_C\n", + " print 'collector to emitter voltage = %0.2f volts'%V_CE\n", + " \n", + "\n", + "#b)saturation region\n", + "V_BE=0.7# #base to emitter voltage in saturation state\n", + "V_CE=0.2# #collector to emitter voltage in saturation state\n", + "i_C=(V_CC-V_CE)/R_C# #collector current\n", + "i_B=(V_CC-V_BE)/R_B# #base current\n", + "if((B*i_B>i_C) and (i_B>0)): #saturation state conditions\n", + " print 'collector current = %0.2f amperes'%i_C\n", + " print 'collector to emitter voltage = %0.2f volts'%V_CE\n", + "\n", + "#c)active region\n", + "V_BE=0.7# #base to emitter voltage in active state\n", + "i_B=(V_CC-V_BE)/R_B# #base current\n", + "i_C=B*i_B# #collector current in active state\n", + "V_CE=V_CC-i_C*R_C# #collector to emitter voltage\n", + "if((V_CE>0.2) and (i_B>0)) : #active state conditions\n", + " print 'collector current = %0.2f amperes'%i_C\n", + " print 'collector to emitter voltage = %0.2f volts'%V_CE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 591 Ex: 13.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "collector current = 0.01 amperes\n", + "collector to emitter voltage = 0.20 volts\n" + ] + } + ], + "source": [ + "R_B=200*10**3#\n", + "R_C=1*10**3#\n", + "V_CC=15#\n", + "B=300# #beta value\n", + "#we proceed in such a way that the required values will be displayed according to the satisfied condition of the below three cases\n", + "\n", + "#a)active region\n", + "V_BE=0.7# #base to emitter voltage in active state\n", + "i_B=(V_CC-V_BE)/R_B# #base current\n", + "i_C=B*i_B# #collector current in active state\n", + "V_CE=V_CC-i_C*R_C# #collector to emitter voltage\n", + "if((V_CE>0.2) and (i_B>0)): #active state conditions\n", + " print 'collector current = %0.2f amperes'%i_C\n", + " print 'collector to emitter voltage = %0.2f volts'%V_CE\n", + "\n", + "#b)saturation region\n", + "V_BE=0.7# #base to emitter voltage in saturation state\n", + "V_CE=0.2# #collector to emitter voltage in saturation state\n", + "i_C=(V_CC-V_CE)/R_C# #collector current\n", + "i_B=(V_CC-V_BE)/R_B# #base current\n", + "if((B*i_B>i_C) and (i_B>0)): #saturation state conditions\n", + " print 'collector current = %0.2f amperes'%i_C\n", + " print 'collector to emitter voltage = %0.2f volts'%V_CE\n", + "\n", + "#c)cut-off region\n", + "V_BE=15# #no voltage drop across R_B in cut-off state\n", + "V_CE=15# #no voltage drop across R_C in cut-off state\n", + "i_C=0# #no collector current flows as there is no voltage drop\n", + "i_B=0# #no base current flows as there is no voltage drop\n", + "if(V_BE<0.5): #cut-off condition\n", + " print 'collector current = %0.2f amperes'%i_C\n", + " print 'collector to emitter voltage = %0.2f volts'%V_CE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 592 Ex: 13.6" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\n", + "For beta B=100:\n", + "collector current = 2.13e-03 amperes\n", + "collector to emitter voltage = 6.44 volts\n", + "For beta B=300:\n", + "collector current = 2.14e-03 amperes\n", + "collector to emitter voltage = 6.41 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_CC=15#\n", + "V_BB=5#\n", + "V_BE=0.7# #assuming the device is in the active state\n", + "R_C=2*10**3#\n", + "R_E=2*10**3#\n", + "i_E=(V_BB-V_BE)/R_E# #emitter current\n", + "print \" All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\"\n", + "\n", + "#a)B=100\n", + "print 'For beta B=100:'\n", + "B=100# #beta value\n", + "i_B=i_E/(B+1)# #base current\n", + "i_C=B*i_B# #collector current\n", + "V_CE=V_CC-i_C*R_C-i_E*R_E# #collector to emitter voltage\n", + "print 'collector current = %0.2e amperes'%i_C\n", + "print 'collector to emitter voltage = %0.2f volts'%V_CE\n", + "\n", + "#b)B=300\n", + "print 'For beta B=300:'\n", + "B=300# #beta value\n", + "i_B=i_E/(B+1)# #base current\n", + "i_C=B*i_B# #collector current\n", + "V_CE=V_CC-i_C*R_C-i_E*R_E# #collector to emitter voltage\n", + "print 'collector current = %0.2e amperes'%i_C\n", + "print 'collector to emitter voltage = %0.2f volts'%V_CE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 593 Ex: 13.7" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\n", + "For beta B=100:\n", + "collector current = 4.12e-03 amperes\n", + "collector to emitter voltage = 6.72 volts\n", + "For beta B=300:\n", + "collector current = 4.24e-03 amperes\n", + "collector to emitter voltage = 6.51 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_CC=15#\n", + "R_1=10*10**3#\n", + "R_2=5*10**3#\n", + "R_C=1*10**3#\n", + "R_E=1*10**3#\n", + "V_BE=0.7#\n", + "R_B=1/((1/R_1)+(1/R_2))# #thevenin resistance\n", + "V_B=V_CC*R_2/(R_1+R_2)# #thevenin voltage\n", + "print \" All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\"\n", + "\n", + "#a)B=100\n", + "print 'For beta B=100:'\n", + "B=100# #beta value\n", + "i_B=(V_B-V_BE)/(R_B+(B+1)*R_E)# #base current\n", + "i_C=B*i_B# #collector current\n", + "i_E=i_B+i_C# #emitter current\n", + "V_CE=V_CC-i_C*R_C-i_E*R_E# #collector to emitter voltage\n", + "print 'collector current = %0.2e amperes'%i_C\n", + "print 'collector to emitter voltage = %0.2f volts'%V_CE\n", + "#b)B=300\n", + "print 'For beta B=300:'\n", + "B=300# #beta value\n", + "i_B=(V_B-V_BE)/(R_B+(B+1)*R_E)# #base current\n", + "i_C=B*i_B# #collector current\n", + "i_E=i_B+i_C# #emitter current\n", + "V_CE=V_CC-i_C*R_C-i_E*R_E# #collector to emitter voltage\n", + "print 'collector current = %0.2e amperes'%i_C\n", + "print 'collector to emitter voltage = %0.2f volts'%V_CE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 594 Ex: 13.8" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\n", + "voltage gain = -105.64 open circuit voltage gain = -158.46\n", + "input impedance = 530.61 ohms\n", + "current gain = -28.03\n", + "power gain = 2960.82\n", + "output impedance = 1000.00 ohms\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEZCAYAAAA+MZraAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXmYXUW1sP+uTjqBDCRkTndGyEDCEALKpEiLBAFlFJkR\nURx/4FXhiqifRu53cbhXBcQBwY9JQUAQwxAIUwvKJIRAGJIQMneSTqeTkDnpTq/fH7VPcnJyhn32\ncHad3fU+Tz99zt61a9c6u/ZatapWVYmq4nA4HA5HEtQkXQCHw+FwdF6cEXI4HA5HYjgj5HA4HI7E\ncEbI4XA4HInhjJDD4XA4EsMZIYfD4XAkhjNCDgBEZKqI3JV0OeJERN4SkY8lXQ5HsohIh4jsl3Q5\n4kJELhSRJ5Iuh1+cEYoAEVkkIp+owH3iNBQ7J4yJyCjvRa3a+iEit4vIf2UfU9WDVPW5pMqUZqJW\n7JUyFPnqSTWR711V1T+r6ieTLFc5VK2SsQwlS4lXKeLzmMNRiKjri6t//qne30pV3V/IP2AhcLz3\n+fPAP4H/AdYAC4CTstI2Aj8BXgY+AB4C9vXONQBLc/JeBHwCOAnYBmwHNgCv5ynH1cD9OcduAG7w\nPtcB04BW4D3gsqx0U4E7vc9LgA7vPhuAI4H9gWeA1UAL8CegT9b1hwGvA+uB+4B7gf/KOv9pYBaw\nFvgXcHCB3/J3wP/kHPs78M0sGZd595mT+d1z0n/Z+522eeX/e9ZveXyWvPcDd3l5vQmMBa4BmoHF\nwJSsPPsAfwSWe/f/L6Am6boXcT2e4NXPtcBbwKk59faLWd8/DzzvfX7Oqy8bvd/7s15dXub9ni2Y\nd+SCoPnllLM7sA44MOvYQGAzMMD7/iWvjrd69WdoVtoOYL8i9eS7wHyvXrwNnJF1bQ3wC0+mBcDl\nXn415dQTzLu4Ge/d945N9vLtAowB/uHJ2QL8pcAzy35X1wNHZf+WWfJ+zfs91gPXYt7nF738/wLU\nlvuuRlbvkq74afhjTyO0HfgipnXyVaApK22jVzknAj2AvwJ3eeca2NMIZef9IzxDUaAcI4BNQC/v\nexfvZTjC+/4ccBPQDZgErAI+7p2bmlWOkdkvlndsf4wxrAUGeC/Ir7xz3TBK+wrvnmd6L/a13vnJ\nGMX+Ye83+ZwnV7c8MhwLLMn6vq/3sg4Bxnsv3ZAsefcr8Fvclrl/gd9yKrAFmOKV+Q6MkbrG+34Z\nsCDr2r9hDOTeGIX3MvDlpOtehHW4FqN4vwt0BT6OUVhjvfPPAl/ISv959lR0+2V9bwDagP/18v4Y\nxqgEyi9Pef8I/N+s7/8f8Jj3+XiM4j7Uq5s3Av/Il3eBenJ2Vh07xyv3YO/7VzGGqQ7oCzwF7GCX\nEfJdT4Cn2b0h+D/Ab73P9wDXZL1fxxTII9+7mu+3/BvQC6N3tmEalKOAfTx5PlfuuxrVn+uOi4fF\nqvpHNU/1TmCoiAzyzinGkLyjqpuB/wOcIyJ+3GmhiNutqkuAmRgjAOZl3Kyqr4jIcOAY4GpV3a6q\nbwC3YipZvvvk5v2+qj6tqm2quhr4FXCcd/oooIuq/lpVd6jq34BXsi7/MnCzqv5bDXdiXoSj8tz7\nn4CKyLHe97OBF1R1JeZl7w4cKCK1qrpEVRcU+j3yyZHDc6r6pKruwDQG+gM/9b7fC4wSkX1EZDBw\nMvAtVd2iqi3A9cB5JfKvJo4CeqrqT1W1XVWfBR4BLgiZ7//x6sxzwKPAuWEL6nE3u//+F3jHAC4E\n/qiqs1R1O6ZhcbSIjCiQ1271RFX/6tU3VPU+jAdxhHf6HOB6VV2uquswvRoCEKCe3A2c710rmN8m\nI8N2TP2r997XF/yUvQg/V9WNqvoOMBuYrqqLVHU9MB1jfKC8dzUSnBGKh5WZD56hAdMKybA06/MS\ndnkXUbCzYmNezD97n+uANaq6Kefe9X4yFZHBIvIXEVkmIh9gurH6Z+XdlHNJtowjgStFZG3mDxgG\nDM29j2e4/5JPBlWdD3wT48U0i8g9IrJHHmWwKuvzFmC1d//MdzDPbSTmGa3IKv/vMS3dtFDH7s8M\njHdbFyLPtaq6Jev7YvI884A0Aj1E5AgRGYXx7P/mnRvq3QsAr8634r+uf05EXs961gex6/0cyu6/\n07Ksz+XWkwcxxnEIxlPsUNV/eue+gzEwr3hRnZf6KXsRmrM+b8n5vhXomSWDr3c1KpwRSoYROZ/b\nMGMtmzBddACISBd2r8B+gh/+CjSISD1wBrtaVsuBfiKSbQxHsPtLVOw+12E8kYNUtQ9wMbvqzwr2\nfMGzZVwC/Leq7pv110tV7y0gwz3A2SIyEtMCfWBnwVTvUdVjMS+LAj8rkEeUgSJLMa3B/lnl76Oq\nB0d4j6RZDgzP8chHsqtxsYldigpM92gp9hWRHlnfR3r3CZrfTjxv9T5MY+V84OGsBtZyTFcTACLS\nE9Ngym0oQU498ercHzDde/1UdV/M+Fjmd1kBDM+6JPtzWfVEVdcCMzAe0AWYep8516yqX1bVeuAr\nwG8LRAtGUc+z8yj3XQ2NM0KVR4CLRGSC94JeiwkmUGAesJeInCIitcAPMN1PGVZiXPRiXXItmFbi\n7Zgxjbne8aXAC8BPRKS7iBwCfAETYJBLC6Yfef+sY70wimO9Z+D+M+vci8AOEblcRLqKyOmYPuUM\ntwBf9VqtIiI9ReRTOQYxW4ZZGKN8K/C412WAiIwTkeNFpDvmZd+KMYz5aMYMPodGVVdglMUvRaS3\niNSIyP4pm3P0Embs7TsiUisiDZgB6r9452cBZ4nI3iIyBjPmmU0zu9eXDD/28jsW+BQmGCRMftlk\nuuSyu+LAKPNLRWSSV1euA17yuqtzya0nPTFKeTVQ43kgB2Wdvw/4DxGpE5G+mEAZhcD15G7gEuAz\n2TKIyGdFZJj3dZ13j4481+d7V/0gOZ8z38t6V6PAGaHoyReurTmf78IYiRWYQcdvAKjqB8DXMcp3\nGWZANNv1z7zArSLyapEy3I0JIrg75/j5mBbickxXwA9V9ZnccntdiP8N/EtE1ojIEcCPMRFwHwAP\nY7yTTPrtwFkYRbIW0yf/CKZfG1V9DROtdBMmYvA98o9F5cpwfI4M3TF98C2Y324Apr8/H38EJnpd\nCg/mOV/qOeV+/xzmWb3jyXA/ZbbebUZV24BTMWMaLZhndbGqzvOS/ArzPJsxg/l/YvffZypwh/d7\nn+0dW4mpD8sxdf4rIfPLLfMrmHdkKGZcI3P8acxY6wPevUez+7hM9n12qyfemMkvMA2rlRgD9M+s\n9LdgDM2bwGuYca4dqpoxEOXWk2mYSLgVqjo76/iHgJdEZAMmuu8bqrooz2+Q+64eyZ51O5+3lHs+\n8y4HeVfDUSpyIc4/TNjxHE/QqwukudE7/wYwudS1mPDQtzEt5MNy8rrGSz8HODEhmXeLCkrrHyYq\n6JKky1FNf6XeB+AAjHLcClyZc24RRjG+DrxigSwN5ER6pvEPY7QXJV2Oav5LzBPyxjtuwrx4E4Hz\nRWRCTppTgDGqOhYTtfE7H9fOxkSHPZeT10RM3+tE77rfSnIrAlTvxLICiMjHRGSI1x13CaYF+XjS\n5aoW/LwPmMH1KzBhz7ko0KCqk1X1iDznHREgIpnu8q5et/SPML0KjoAk2R13BDBfTZhgG6bv+fSc\nNKdh5m+gqi8Dfb1IkoLXquoc3eXyZ3M6cI+acNFFmDkRSb2sUQ6a28J4dk1w+xZwtqo2F7/EkUXJ\n90FVW1T1VUwgSz5sa9yksZ4LpqtwDWY6xNvAD5MsULXTNcF717NnqOORPtLUs2c4ab5rc6nDDL7m\n5lVRVPXjlb5nJVDVWzD95Y5g+HkfiqHAUyKyAzPPI9FnoaqN7B4hmQrUhJw7TzNCkjRCfltJcbbu\n0thSc1QnYeviR1R1hYgMBJ4UkTmq+nwUBXM44iRJI9TEnvH2uXNWctMM89LU+ri21P2GkWfegIg4\nw+SIFVXN17Dy8z4Uy3OF979FRP6Gaa3vNEKuXjsqQYG6XZQkx4ReBcaKWYq8GyZoYFpOmml44YEi\nchSwzhtn8HMt7O5FTQPOE5FuIjIas1jlK3mu8RXR8d//rXzpS+bzlVcqV1/tPxrkRz/6UUWiTvze\np6FBuf9+paNDOfhg5amn7JLF7z3WrVP69FFWrVKWLjWfN22yS5aQ70O+eo2I9BCR3t7nnsCJmACd\nsut1pZ6V7fdIkyyV+r2CkpgRUtV2zAq0T2Bi6u9V1XdF5Csi8hUvzWPAAhGZD9yMmUNT8FoAETlT\nRJZi1jp6VESme9e8g5lo9g5mTsHXNcQv96c/waXeQhoXXwz33gshnkNiLF0Ks2fDaaeBiJHlL38p\nfZ2NPPggfOITMHAgDBsGH/4wPPpo0qXyh5/3wYs+XIoJ/PiBiCzxJhEOAZ4XkVmY0PhHVHVGMpI4\nHOWRZHccqjqdrElm3rGbc75f7vda7/jf2LWGVO656zCzp0OxbBmsWgVHesPGhxxi/s+ZAxNyg2ot\n56mn4IQToFs38/2MM+DjHzcG1deSqhYxYwZ86lO7vp9xBkyfDp/9bHJlKodS74OaRTWH516HmbB5\naLylczjiwa2YEICnn4bjj4ca79cTMYr72Wf9Xd/Q0BBb2cq9z1NPGe8hw5gx5v/770d3j7D4uUdH\nh3ku2bJ8/OPQ2BjtfRzFsaU+VMt90nKPMEiYvrw0IiIle+kuvdR4QV/96q5jd94JjzwC990XcwEj\npr4ennsO9s9aeeqii6ChAS67LLFilc3bb5suxWzjqQpDhsC//w0jLAkWFhE0wOBtBPcN0/vscJQk\naN12nlAAXnvNjDdkc+SR8Gqx1dwsZOVK2LIF9stZ5rMaZcn3TETgiCOqTxaHozPhjFCZbN0K8+fD\nQQftfnzsWGhpgbVrkylXEF5/HQ47bM+xn8MOg5kzkylTUDKy5FKNsjgcnQlnhMpk9mwYNw66d9/9\neE0NTJoEs2YlU64gzJyZX3FPmmS6t9oKLQ5jIYVkmTzZGCiHw2EnzgiVyeuvG8WWj2prdReSpVcv\nGD7cRPtVAx0dxvjnk6XanonD0dlwRqhM3nzTeAr5OOgg40FUC2mRZckS6N0b+vff89zw4bB5M6xZ\nU/lyORyO0jgjVCbz5sH48fnPjR8Pc+dWtjxBaWszynv/AvsxVpMsxZ6JSHXJ4nB0NpwRKpN588yY\nUD4OOKB6lN3ChSY8O3dsK0M1yVLsmYAzQg6HzTgjVAZbtkBzM4walf/8oEHQ3g6rV1e0WIGYO7ew\n9wDmXLWMCaVJFoejs+GMUBnMnw+jR0OXLvnPV1PXjx/vYd686lgPr5Qs1eTVORydDWeEyqCUsoP0\nGKE+fUyUXNMem13Yh+uOcziqF2eEymDu3NJGaOxY/+uuJUlaZNmyBVasKNxFCmY9vIULTSi3w+Gw\nC2eEymD+fKOYizFqFCxaVInShCMtsixcCCNHQtci68Hvvbfx7JqbK1cuh8PhD2eEymDxYqPwilEN\ninv7drMVRX198XTVIIufZwLVIYvD0RlxRqgM/BqhhQsrUpzALFsGQ4cW9x6gOmQpxwjZLovD0Rlx\nRsgnHR1GeZfaEqCuDlpbzUKntrJkiT/FPXq0/d6DX1mcJ+Rw2IkzQj5pboZ99jHjC8Xo0sUsFbNk\nSWXKFYTFi/3tr1MNijtNsjgcnRFnhHzit9sH7Fd4fmUZNsxEnrW3x1+moLgxIYejunFGyCd+u33A\nfoXnV5Zu3WDwYNMNaSuuO87hqG6cEfJJOZ7QyJF2K7y0yNLWZnaHLRXlB0aOJUuqYwUIh6Mz4YyQ\nT/yOPYDpxrJ5pYG0yNLUZDy12trSaffeG3r2rI51/RyOzoQzQj4ppzuuvt5exa0KS5f6N0I2y1LO\nMwG7ZXE4OivOCPlkyZJ0KO6WFuMR9OzpL73NspTzTMBuWRyOzoozQj5pajJdU36wWdmVIwc4WRwO\nR7w4I+SD7dvhgw9gwAB/6fv0gR07YMOGeMsVhOXLzWoJfrFZcadJFoejs+KMkA9WrjQb1tX4/LVE\n7FV4K1akR3GnSRaHo7PijJAPVqwwy/GUg60Kr1xZ6uqMEbZxG4RyZbH1mTgcnRlnhHxQbrcP2Kvw\nypWlWzfo29esum0baeqOE5GTRGSOiLwnIlfnOX+AiLwoIltF5MpyrrWVG24wGw7+8pdJlyQcW7fC\nJZfAIYdAY2PSpQnH++/DRz8KJ5xgGnmVwBkhHwT1hJYvj6c8YUiLLKrp6Y4TkS7ATcBJwETgfBGZ\nkJOsFbgC+N8A11rHE0/A9dfDLbfAb34Djz6adImC8/3vw/r18OMfwznnmAjUamTHDvjMZ+D00+GI\nI+DCCyszudsZIR90Zk8I7JTlgw/MVhS9evm/ZsAA2LTJ7MZqGUcA81V1kaq2AX8BTs9OoKotqvoq\n0FbutbahCtdcA7/6FXzsY8YYfe971bmaRVMT3H47/P73cOaZcO658POfJ12qYNx7r3mfrroKrr3W\ndMM/9VT893VGyAedeUwI7JQliBwixgDb5tUB9cDSrO/LvGNxX5sIM2fC2rVw2mnm+6c/DZs3w7//\nnWy5gnDnncZ7GDzYfP+P/4A77jARtdXGLbfAN79p3pOuXeEb3zDH4sYZIR8E8R7q6uxT3B0dZkuK\nIUPKu85GWYI8E7BTFiCMD1B1/sOdd8LnP78r2lTEjKncdVeixQrEnXfCpZfu+j5mDBxwgOlurCaW\nLIHZs+HUU3cdO+88ePxx09UYJyX21nRA+WMPYBR9c3M85QnK6tVmT6Ru3cq7bsgQeO21eMoUlCDP\nBOx8LkATMDzr+3CMRxPptVOnTt35uaGhgYaGhnLKGBmPPgoPPLD7sdNPhzPOgBtvNEapGliwwHh0\nRx65+/HTT4fHHttdodvO9Olw8snQvfuuY337wtFHw9NPm67GXBobG2mMIBLDGSEfLF9eftfP4MFG\n2ana81IFkQN2yWITaZIFeBUYKyKjgOXAucD5BdLm1ibf12YboaR4/30zLnfIIbsfP+gg04U1d67x\nJKqBJ56AE0/cc/7gKafAJz9p17tfiieegLPO2vP4KaeYRkM+I5TbkPnxj38c6N6uO64EbW2mtTNw\nYHnX9ehh+lVtWjUhqPdgo+JOkyyq2g5cDjwBvAPcq6rvishXROQrACIyRESWAt8CfiAiS0SkV6Fr\nk5GkNDNmGMWdq5xFzPGnn06mXEGYMcMYm1wOOMAYoPnzK1+mILS3w7PPmt8/l0o8E2eEStDcbFZL\n6NKl/GttU3hBBvPBPjkgXbIAqOp0VR2vqmNU9SfesZtV9Wbv80pVHa6qfVR1X1UdoaobC11rK88/\nD4V6AT/yEXjhhYoWJzCqhWURqS5ZZs8279KgQXueGz/ejAnFOWfIGaESBB0AB/sUXlBZsrsWbSGs\nLI5keOWVPcdQMhxzTPUo7oULYa+9Cm+oWE2yvPxy4WdSU2PGheKUxRmhEgTt9gGj8FaujLY8YQgq\nS8+epjK6rkVHGFavNhM5x4/Pf37cONPqtjCEfg9eftlM6CxEtRmhJGVxRqgEq1btmgNQLrZFYjlZ\n7JOjM/HKK/ChDxXu2q6pMS3yapgvVMx7AJg0yQRhbNxYuTIFpZQsRx1lnl1cOCNUglWryg9KyGBb\nqzstsmzbZlY96NOn/Gsz3qlNXYudhVdeKd7iBqO833ijMuUJQylZamthwgR4663KlSkI69ebOUIH\nHVQ4zaRJ8Oab8S1i7IxQCVpa8g/Y+cEmxQ3pkaWlxRjTIOGvPXualrhNXYudhVmz4LDDiqeZNMmk\ns5mODqOUJ08unu7QQ+2X5c034cADjdEsRP/+Zn7hokXxlMEZoRKsWhVOcds0JpQWWcLIAXYZ1M7E\nW28Vb3GDUdy2e0KLFsG++5rJnMWoBq/OzzOBeGVxRqgEYRW3Lcquvd0s+tmvX7DrbZLFGaHqY/Nm\ns1zSmDHF040daxo7cS8VE4a33/anuKvBoNogizNCJUiLEVq92rTegsx3ArtkCTO2BXbJ0ll4910T\n/Vas2wdM/TzwQNNNZCt+vYdDDol3LCUK3nrL/N6liLOb1BmhEkQxmG/DIHhY78GmqLIwY1tglyyd\nBb+KG4xSfNfaNR/8y9K3r/lburR02qTw6wnF+UycESpCRwe0tpp9aILQq5cJO7UhTDOs4rbJe4ii\nO86W8a3OQjlG6IADzBpytlKOLOPH2yvLqlWmm97PfLv994fFi80yZlGTqBHysy2xiNzonX9DRCaX\nulZE+onIkyIyT0RmiEhf7/goEdkiIq97f78tVb61a6F37/JXnc7GFoWXJsXtxoSqj7ff9tftA0Zx\nz5kTb3mC0t4O8+aZ8Gs/HHCAvbJkjKmfKNPu3WH4cDP3KWoSM0J+tiUWkVOAMao6Fvgy8Dsf134X\neFJVxwFPe98zzFfVyd7f10uVMayyA3sUXprGUdIkS2fhnXdg4kR/aW32hBYsMJ5Djx7+0tvsCb37\nrn9jCvHJkqQn5Gdb4tOAOwBU9WWgr4gMKXHtzmu8/2cELWAURmjgQBMUkDRhZenZ04xtbd4cXZmC\nErZr0ZZn0lnYts140aNG+Uu/335mHGXbtliLFYj5800En19s9oRskSVJI+RnW+JCaeqKXDtYVTPt\n3GYge3GX0V5XXKOIfLRUAcO2uMFc39ISLo8oCGuERNIjiy1ydBYWLoQRI8zWJn7o1g1Gjoyn6ycs\n8+eXDjPPxmZPqFwjFJcsSW5q5zdmzM+8eMmXn6qqiGSOLweGq+paETkMeEhEDlTVPebOZzb/+ve/\noUuXBqDBZ1H3ZMAAO1rdYb0H2CXLyJHRlCkoYY1QJZ9JVLtPVjPlKm7Y1er224VXKcpV3MOHm7Hl\nDRvM+LJNvPdeec/lgAPgttuiL0eSRsjPtsS5aYZ5aWrzHG/yPjeLyBBVXSkiQ4FVAKq6HdjufZ4p\nIu8DY4GZuQXLGKGpU8OHVw8caCbpJU1avLpNm8z/nj2D57Hvvmbibnu7/9Z5UKLafbKaKVfZgb0e\nxHvv5d/8rRA1NcZozZsHhx8eX7nKZccOs/LDfvv5vyaNY0I7tyUWkW6YbYmn5aSZBnwOQESOAtZ5\nXW3Frp0GXOJ9vgR4yLt+gBfQgIjshzFAC4oVMIoxIVs8obTIEoUcXboYQ7RmTTRlchQniCc0Zkw6\nuuPATlmWLjWNyr339n/NwIG7dpqOksSMkJ8tjVX1MWCBiMwHbga+XuxaL+ufAlNEZB5wvPcd4GPA\nGyLyOnA/8BVVXVesjFEp7qS9B4guyCJpWaKQA+yQpbNQbhcWmBb6gqJNxMrT1mZWnB49urzrbJTl\nvffKfyYiRpaFC6MtS5LdcajqdGB6zrGbc75f7vda7/ga4IQ8xx8EHiynfJnVmsNgg7LbutX8Bdn6\nIBsbDGpURsgGWToLQbyH0aOjV3ZhWbLEhGd3717edaNH27eadpBnArueS6nV0MvBrZhQhLR0YYXZ\n+iAbG0Kbo2gYgB2ydAa2bzdjon7DszOMGGF2WI1jhn5QgngPYKcnFNQIxSGLM0JFcF1Yu2OD95Am\nWToDixbBsGGlFy7NpbYW6uqM92ELNinusNhkUJ0RKkBbm1lOPujWBxl69TJRWElO8oxyHCVp7yFN\nsnQG3n/frDsWBNuUd1BZRo6EZcuMHrCFoLI4I1RBVq82OwrWhPyFMpM8k1R4afIe0iRLZ2DRovK7\n4jKMHm2XEQoqS7duZqkoW1bTVg0uSxzPxBmhAqxeHXz17FySHheKSpakjSmkS5bOwOLFwSc3xxGJ\nFYa0yNLaagzjPvuUf+2oUcaY7tgRXXmcESpAa6vxhKIg6XGhqGTp1w/WrYu2ApZLVLI4T6gyhFXc\nNnlCaZEljBx77WXenSgn4DsjVIAojZANnlAUsnTpYjbpSnKSZ1SyOE+oMqRFcW/cCFu2BI/MtEmW\nMM8EopfFGaECRKXsID2eEKRHlqTl6CyEUXg2jQktXmzCxoNOc7BNljBGKGpZnBEqQJo8oTC7w+aS\npCzbt5vWaNhJt7BLDhu2Xk8r27eb37iuLtj1AwaYSdY27EwcVnGPGGFPYIJtsjgjVADnPeQnSVnW\nrDHjUmEn3YJZM6trVzsUXFpZutQYoC5dgl0vYlahtkF5R6G4bZnzZJsszggVIC3eA6THq4tSDkj+\nueQScrv7RSLyprdf1iuVK3VhFi0Kv+2HLco7rOKuqzO7+dowV8gZoSohLd6DanpkidoIJe2hZhNm\nu3sPBRq8reuPqFCxixJW2YE93VhhZamtNXOFli+PrkxBcUaoSkiL97Bpk+kOKWfJ9mIkKUuUwSJg\nnScUdLv77J2DI+iojI4ojNDw4fZ4QkEn3WawQZawUX6wq4s0qvFUZ4QKkBbvIcpJt5C8J5QWWfIQ\nZrt7MJ7QUyLyqoh8KbZSlkFUnlDSihvSI0tGjjDjqr16mflCra3RlCnRrRxsJkoj1K+f2Qhqx47g\ng7RBSdM4SppkyUPY7e4/qqrLRWQg8KSIzFHV57MTZHYMhj13fI2DxYvhoovC5WGD4g4b5ZfBBlmi\nMKZgZHnwwUaWL28MnZczQnnYscOsDLDvvtHkV1tr9pdfuzbalrwf4lDcSXpCUWzjkMGyVROCbnff\nBKCqy73/LSLyN0z3XkEjVAnSMiYUNsovw4gR8O67pdPFSZRGaNCgBr785Yadx4JuXe+64/Kwbp0x\nGl0jNNH9+0fnvpZD1EYoKTnADlk6Ojq46667uPbaawFYsmQJr7wSSTBa4O3uRaSHiPT2jvcETgRm\nR1GooOzYYZZ2GT68dNpiDBtmjEBHRzTlCkJUituGMSEbZXFGKA9RKzsw+SWx3E0cijupZXuiDkwI\nIsvXv/51XnzxRe6++24AevXqxde//vXQZQmz3T0wBHheRGYBLwOPqOqM0IUKwcqVpidhr73C5dOj\nh2kQJumxLlliWv5hsaE7LkpZovJQXXdcHqIeAIf0eEK9e8O2baafvFu36PL1gw2e0Msvv8zrr7/O\n5Mlmik6/fv1oi2j7z6Db3avqAuDQSAoREU1NUJ8bVhGQjMIbPLh02jiIShYbuhajlGXmzPD5gPOE\n8hKXJ5TFhN7+AAAgAElEQVSEEYo6Ok7EBFokZVCjlCXIM+nWrRs7spYRb2lpoSbsplMpJGojlKQH\nEZUs/fqZBtyGDeHzCkqURqhi3XEiUiMiF4vID73vI0TEislwcZEmI+RkKUwQOa644grOPPNMVq1a\nxfe+9z0+8pGPcM0110RXqJTQ1GTGc6Ig6bGUqGRJehkiVTNZNgojFOUz8dMd91ugAzgeuBbY6B37\nUDRFsA+nuIuThCfU0WECRsJut55NRg5V//MmLrroIg4//HCefvppAP7+978zYcKEEld1PpwnlJ+M\nLBMnRpNfOaxdC927Q8+e4fOqqzPjdFF0y/sxQkeq6mQReR1AVdeISG2429pNXIp7dgLxSmkxqB98\nYF6eKCMW997bhN1u2mQm4PlhzZo1DB48mAsuuABVRURoa2ujtjbVr0TZLFsGn/hENHmNGAEvvRRN\nXkFYtiwdBjVKObp2hSFDjIEePTpcXn46s7d761oB4E2GSzBgMn5cdFxxkpAl6si4DOXKcthhhzFg\nwADGjh3LuHHjGDBgACNHjuSwww7jtddei76AVUqU3kN9fbQ7eZZDW5upH1EFRSQpS5TPBKKTxY8R\n+jXwN2CQiFwH/Av4Sfhb20scCi/J7rg0RPrFIQeUL8uUKVOYPn06ra2ttLa28vjjj/PpT3+a3/zm\nN3zta1+LvoBVSlqM0IoVMGhQdCudOCO0JyWNkKr+CbgaY3iWA6er6n3hb20vaenCymwCt88+0eab\nlBGKyxMqR5YXX3yRT37ykzu/n3jiibz44oscffTRbN++PfoCViGq0Sq8ujoz7yiJCau2Ku4g2CqL\nn+i4fkAzcDdwD9DcGcaE0uI9RLUJXDad2QgNHTqUn/3sZyxevJhFixbx85//nMGDB7Njxw4Xqu2x\nfr35H1Xjp1s36NsXVq2KJr9ysFVxB8FWWfy8NTOB1cB7wDzv82IRmSkih4cvgn2kxROKS3EnER1n\niyx33303S5cu5YwzzuDMM89kyZIl3HPPPezYsYP77kt1B4FvMsouysZPUsrbVsUdBFtl8RNr9CTw\nV1V9AkBETgTOBm7DbKqVujlDcSi8nj3NelpbtkS3t08p4vQeOmtgwsCBA7npppvynhszZkxEpapu\nolZ2sEvhHV7hZm/UsgwYYKIxK6kHMlSzETpaVXfuT6KqM0TkF6r6ZW+hxdRRUxN9BcmsNLBmTfQv\naCFs6cKKgtZWOOSQ6PPt37+8yYOrVq3i5z//Oe+88w5btmwBQER45plnoi9clRKnEao0TU1w8MHR\n5ScCQ4eaSaP77x9dvn6w1Qj56Y5bISJXi8hIb4Xf72DGhbqQ0lDtOBR3Jt9KKm9bIsqiwBZZLrzw\nQg444AAWLFjA1KlTGTVqFB/6UGrnbQcibUYoDbJs22bG6qLcCqW+3hjTsDus+jFCF2D2MHkIE6o9\nAjgf6AKcE+72dpImIxTXOMqaNdFt7+sHW7y61tZWLrvsMrp168Zxxx3Hbbfd5rygHNKiuCE9sixf\nbiaXRhk706OH6TEKq9NKdsepagtmifl8zA93eztJixFavdrMcYia7t1NxNKGDdGHfxfClsCEbt4a\nJUOGDOGRRx6hrq6OtWvXRl+wKqapCaZMiTbPJBR31KHmGZKQJcq1/LLJyBKml6KkERKRQcB3gIlA\nZqREVfX44Le1m7QYodZWiGtZs4ws1W6Eyn0mP/jBD1i3bh2/+MUvuOKKK1i/fj2/+tWvoi9YFZMW\nxb1unWls+V3SyS/19WYJnUoSxzOBXc9l0qTgefhxzv4MzAH2A6YCizC7QKaWuLbgrnRUWVyKGyor\ni6o90XF9+/alb9++HHzwwTQ2NjJz5kz6RbmqagqIco2yDEkYoTjkACdLLn6MUH9VvRXYrqr/UNVL\nMStqp5a4FHel59fENZgPlfXqNm82fdk9ekSf9777msVRs7YIKsoVV1zh61hnpa3N1IuoN6Dbd1+z\nAsimTdHmW4y4vYdKYrMsfkK0M2uRrBSRT2OW7tk33G3tJk7v4d1348k7H3F7QpUyQnHK0aWL6VJc\nt674PV588UVeeOEFWlpa+OUvf4l6URkbNmygI4n1ZCwls9ZalKudgwltrqszCm/cuGjzLoTNirtc\nmprgwx+OPt/6egi7bq8fT+j/ikhf4ErgKuBW4Fvhbms3aVDc4IyQX/zIsn37djZs2MCOHTvYsGED\nGzduZOPGjeyzzz789a9/ja9wVUZcihsqr7zjkqWuzhjrSrZdbDaoftor61R1HbAOaAAQkY+Gu63d\npEFxd3SYTaziGq6oZNdi3EbIjyzHHXccxx13HJdeeikjR46MrzBVTtqM0KGHRp/vXnsZ7zuu6NV8\nxPVchg2rjBH6NTDZx7HUkIbB/HXrTFRP1N0iGfr3h4UL48k7l0p4QqWey6mnnlrwnIgwbdq0iEtV\nnaTNCH3qU/HknZGlEkZI1XhedXXR5x2rJyQiRwPHAANF5NtAZjnC3vjrxqta0uAJVUJxv1qhGMm4\nIuMy+HkuV155ZcFzEvUy5VVM3EZowYJ48s5HJQzq5Ao05VevNmtXxrFW3YABZr7g1q3B8yjWTu6G\nMThdvP8Z1mMWME0tcUbHrV1rWiZx6604I+Og8gY1aVkaGhp2ft62bRvz5s1DRBg/frzb2juLpiY4\n6KB48q6vh+eeiyfvfMRthCo1VyhOOWpqdq2FF5SCRkhV/wH8Q0RuU9XFwW9RffTpE0++tbWmNfLB\nB2Z/lDixYTA/Klpbw+9jX4xyZGlsbOSSSy7ZOS60ZMkS7rjjDo477rj4ClhFpKU7bts206UdV3dZ\nJWWJ85lAeFmKdcc9nPU597Sq6mnBb2s3ce5NllF4zgj5p7UV4lwjtH9/mD3bX9pvf/vbzJgxg/Hj\nxwMwb948zjvvPGbOnBlfAauItBihFSuiX2stm/p6eOGFePLOpWqNEPCLIucquHRlusgo77iXcbch\noiwqbJKlvb19pwECGDduHO3t7TGVrLqIa621DEOHmt1Vd+ww87viJK611jJU2hOyWZZi3XGNmc8i\n0h0YhzE+c1W1LfgtOzeVipCLezC/b1/YuBHa2+OLwMtQicAEv8/k8MMP57LLLuOiiy5CVfnzn//s\ntnLwWLfOdDn37l06bRC6dTMrJzQ3xxPplY3t3kM5NDXBkUfGl39YWUo6myLSgNnW+zfAb4H3RMR1\ngAekUt1YcXsPNTXGEFViAWmbuhZ///vfM2HCBG688UZ+/etfc+CBB/K73/0uvsJVEXErbqic8k6b\nEbJZFj89nr8ETlTVj6nqx4ATgUiWDRaRk0Rkjoi8JyJXF0hzo3f+DRGZXOpaEeknIk+KyDwRmeGt\n9pA5d42Xfo63TXnFSYsRgvTIUo4cjz76KJdffjkPPvggDz74IN/61rfo3r176DLE8S5UmrgWycym\nUso7bln69TNhzZs3x3ePDHHLUlcXLjrOjxHqqqpzM19UdR7+JrkWxduZ9SbgJMw2EeeLyIScNKcA\nY1R1LPBl4Hc+rv0u8KSqjgOe9r4jIhOBc730JwG/FZGKz3eq1FhK3GHNUBkj1NZmFq2MM5CjHDmm\nTZvG2LFjufjii3nkkUciGQ+K8V2oKM4T8k/2WnhxUwlPKG4j9JqI3CoiDSLycRG5lWi2cjgCmK+q\ni7wxpr8Ap+ekOQ24A0BVXwb6isiQEtfuvMb7f4b3+XTgHlVtU9VFmA35johAjrKopPcQ9w4DlTCo\na9aYcYA451X17GmMnZ8Jd7fffjvz58/n7LPP5p577mG//fbji1/8YtgixPUuVBRnhMqjErJs2WK8\nrTh7EsLOE/JjhL4KvAt8A7gCeBv4WvBb7qQeWJr1fZl3zE+auiLXDlbVZu9zM5BZVL7OS1fsfrFT\nqcCESnXHxS3LmjXxyyFSnizdunXj5JNP5rzzzuPwww/noYce8nXdvHkFT8X1LlSUtChuSI8sTU3G\n44q7ERemR9pPt9qngJtUtVjIdhD8hnn7+fkkX36qqiJS7D55z02dOnXn54aGht1my4elUp5QJZR3\nJWSphDGFXbKUirp67LHHuO+++3j22WdpaGjgS1/6Evfff3/B9I2NjTQ2NgLw7LMFk0X5LhTkhz+c\nunPeS9T1GozCO+WUSLPcg0ooblXTsk+LEYpLjuy6vf/+EHSqnB8jdBpwvYj8A7gXeFxVo5gY0QQM\nz/o+nN09lXxphnlpavMczzzOZhEZoqorRWQosKpIXnmrQLYRippKKO4tW8wq2nFsApdNGo1QKe66\n6y7OPfdcfv/737PXXnuVTJ+t7Fevhuee+3G+ZFG+C/muBeBrX5vK0KElixyYtHgPra3m3YljrbVs\n6uth0aJ47xHnM8mu21Ongkjeul2Skt1xqvp5YAzwV+B8YIGI/DHQ3XbnVWCsiIwSkW6YoIHcpYin\nAZ8DEJGjMNtKNJe4dhpwiff5EuChrOPniUg3ERkNjAVeiUCOsqik4o57fbrOaITuuecezjjjDF8G\nKJci+cf1LuxGNbe6M0SxdUApKiEHpEuWMPiKclPV7SIyHegAemAG+0ONxqpqu4hcDjyBWST1j6r6\nroh8xTt/s6o+JiKniMh8YBNwabFrvax/CtwnIl8EFgHneNe8IyL3Ae8A7cDXNbM9ZgWplOKOOygB\nnCzlUij/GN+F3Whqim/5o7jXWsvQp49ZMWH9erMnTxxUSnFXqjtuxIh47xGWkkbICw09B/g40Ajc\nAnw2ipur6nRges6xm3O+X+73Wu/4GuCEAtdcB1wXtLxRsM8+prts+3YzAzwObPMewpA2WQoRx7uQ\nS5yrNq9YAYMHx7+cjsgu5Z0GIxT3StpNTXD00fHeIyx+ouMuxnRpjVfVS1T1sYjGhDolIqZlH2dU\nWZoUdyUCLMC/LDfccIOvY/mo5Nbu+Yiz1V3Jbp+4PYhKyTJ0qFmCaMeO+O5RDd1xfsaEzlfVh1Q1\nxLZFjmziVt62Ke4w2GZQb7/99j2O3Xbbbb7ukXYjFOcimdlUwghVQpbMWnirVpVOG5RKPpegxLz0\npCMfcSvvSivuODfps8UI3XPPPdx9990sXLhwt62+N2zYQH8fBdy+3XTDJkkavAeojBE644zS6aIg\nI0scUYsdHbByZfyLvYbFGaEEqIQRijMUN8Pee5uFTDdtgl694rlHJY3Q6tWFzx9zzDEMHTqUlpYW\nrrrqKjIxLb1792bSpEkl81+zxnTDtrREVeLySZMRmju3dLqgJGFQ4wgYaWkxgRxxjT1HhZ/AhP9Q\n1RtKHXP4p5TCC0trKxx4YHz5Z5MxqHEaoUpExw0YULxhMHLkSEaOHMlLL70UKP+MMU2zEZo8uXS6\nKKivh2eeiS//SizEmiFOr66ScoTBT2DC5/McuzTicnQqSim8sFTKe4B4ZVG1b3yrd+/eO/+6d+9O\nTU0N+/gI06rkMylER4cJbY6DtHTHbdliPPu4F//NEKcs1RCUAMW39z4fuAAYnb3VN9AbSHiItbqJ\nu0VcSYUXZ9fi5s2muy/umetgBojXrTOKutiWzhs2bNj5uaOjg2nTpvnyjmwwQnGGNqfFCC1fbrqy\n457onaG+Hp57Lp68q8UIFfOEXsBs8T0H+F/v8y+AK4FPxl+09JKW6DiIV5ZKKu6uXc2OoOvW+b+m\npqaGM844g8cff7xkWpuMUNRUaq21DEOGmEZcHLuqV1pxO0+o+Pbei4HFwFGVK07nIC3RcZAeIwS7\nZCk2BvXAAw/s/NzR0cFrr73G3j5ctTQboTVrYK+94l+rMENtrekuW7ky+vDjtBmhj340nryjxE9g\nwoasr90wCyZuVNWY5iunnzgVd0eH2XJ7333jyT+XOIMsKhWUkCEjy9ixhdM8/PDDiNdX07VrV0aN\nGsXf//73knlX0jstRFwKL4kWd0YWZ4QKU/WeUAZV7Z357O1EehrOOwpFnIr7gw/M/h61tfHkn0v/\n/rBgQTx5V9p78BNkkW+yqh9aW81y90lSXw9z5kSfbxLKLq7FPys9ubNvX9OtuGGD6Q6OkmoxQmVt\nb62qHar6EGYrYUdA0tiFFQeV9h78yPL+++9z6qmnMmDAAAYOHMjpp5/OAh9W2IbuuDgVdxKeUBzr\nrlValuy18KImNUZIRD6T9fdZEfkpkPDc7+qmX79dkVhRY6P3EBQbDeoFF1zAOeecw4oVK1i+fDmf\n/exnOf/880vmbYMRSovihnQp7jhk2bTJrNJRqW75MPjxhE4FPu39nQhsIKE97NNCba3pMvvgg+jz\ntlFxB8VGWbZs2cLFF19MbW0ttbW1XHTRRWzdWnpZRVuMkFPcxUmLLJXY1jsq/IwJfb4C5eh0ZBRe\n1C2VJLqw4gxMOPTQePLOR//+MGtW8TQnn3wyP/nJT3Z6P/feey8nn3wya7xl0fsViKSwwQgNHmzK\n0dYW7ZhhUxNkLadXEeJQ3B0dZkuKSq+1FpcRqoauOPAXHbc/cD1wNKCY+UPfUtWYhqM7BxkjNGZM\ntPkmEVEWpydkmyz33nsvIsIf/vCHvMfzjQ9VcuWHYnTtCgMHmtDm4cNLp/dLWryH1atNcECATXND\nUV8P8+ZFm2eqjBBwN3ATcJb3/VzgHuDIuArVGYjLg6h0i7tPn/g26au04vYzvjVnzpw9tvbeunVr\n0e2+N240v0337lGUMhwZ5R2lEUpijbKMHFGu4J6U4q6vh2efjTbPajJCfsaE9lbVu1S1zfv7E1Dh\ntkL6iMuDqLQREjFdinFs0mfjmNAxxxzj61g2lfboihG1B7F1q1mPbuDA6PL0wz77mOWVohxXTdII\nue644kwXkWsw3g8YT2i6iPSDndtpO8okrqiyJMYeMrIMGRJtvjYZoUw03ObNm5k5cyaqioiwfv16\nNm/eXDRfG8aDMkQdpp1Za63YentxkVHefftGk1/ajNCxx0abZ1z4MULnYsaCvlzg+H5RF6ozkBZP\nCOKRZccO08qtZIhpsU36ZsyYwe23305TUxNXXnnlzuO9e/fmuuuuK5qvTUYo6jDtJFvcGeUd1bYl\nScmSvRZe14h2eEuVJ6SqoypQjk5H//4we3b0+WY2T6skcYxvrVtnBom7dIk232IU26Tvkksu4ZJL\nLuGBBx7gM5/5TFn52maEoqx3SW4fHbUH0dQERx8dXX5+qa019aO5OTrDUQ3bemfwZXdF5BhgVHZ6\nVb0zpjJ1CpwnVJykFHema7HQJn1vvfUWb7/99s7uuAw//OEPC+ZpQ2RchjgUd9KeUFTYIEsU99+x\nwxi0SuyuHAV+QrT/hOlymwXsyDrljFAInBEqTlKKOyPLyJH5z/fs2XOn8dmyZQuPPPIIEydOLJqn\nbZ5QmhT3229Hl1+SO5FG+Vyam01vSKXWjwyLH0/ocGCiqmrchelMxNGFtX27iVaKY9OyYsQhS1KK\nu5RBveqqq3b7/p//+Z+ceOKJRfNsbYXRo6MoXXiiDm1uaoIPfzh8PkEYNgyeeCK6/JI0qMOGRTdW\nV03jQeAvRPstoEocu+ohri6sfv0qv1RHmrrjypVl06ZNNJVowtoUot2rl5mzVM7mfcVYtiwdY0Ib\nN8K2bck9pyhlSfKZBMGPJzQQeEdEXgG2ecdUVU+Lr1jpJ44Q7STHUdLkCRWT5eCDD975uaOjg1Wr\nVhUdDwK7uuNgV4RcFJGHS5bAiBHh8wlClIp76VIzgTeptdbq6+Hdd6PJK8lnEgQ/Rmhq3IXojGR2\nody8ObodKZOIjIN4vbpKU0qWhx9+GAARoWvXrgwaNIjaEp3vNhqhpibIsqeBaG834w+VXmstw+DB\nZgPHKFbrSFpxR2lQk5alXPyEaDdWoBydkozCi8oIVUsXlh/WrIlu/kc5DBgA779f+PyoUaOYNWsW\nzz//PCLCsccey6RJk4rmaVN0HESn8JYvN4YgqQHwLl1g0CCz6GihQBK/LF2aHiO0dCkccUQ0eVWC\ngmNCIvIv7/9GEdmQ87e+ckVML1Er7zQZIVtlueGGG7joootoaWmhubmZiy66iBtvvLFonqVkEZF+\nIvKkiMwTkRkikncNABE5SUTmiMh7InJ11vGpIrJMRF73/opuOhnVIPiSJdGuQReEqJR30rJkB4yE\nJWlZyqWgJ6SqH/H+F5gx4QhL1FFlSSnufv1Mt0hHR3TLt9hqhG699VZefvllevbsCcB3v/tdjjrq\nKL7xjW/kTZ/ZurnE0jLfBZ5U1Z97xuW73t9ORKQLZiHhE4Am4N8iMk1V38WsXPJLVf2lHxlHjICX\nXvKTsjg2dPsMG2Za/mFZsgQ+9rHw+QQlsxbeunXhx+pseC7lkMCKT44MafGE4tikz1YjBFCTZWlr\nSljdtWuNASqR7DTgDu/zHcAZedIcAcxX1UWq2gb8hd03l/Q9pD5yJCxe7Dd1YWxQdk6W3dm+3TRs\nq2WiKvhcMcERD1FHyLW2wtix0eVXDpkIuajWerM1Ou7SSy/lyCOP5KyzzkJVeeihh/jCF75QML1P\nOQararP3uRkYnCdNPZDd5l/G7tupXCEinwNeBa5U1YJB2FEp7qVLYcKE8PmEYdQomDs3fD5JjwnB\nrucSZiPHzI6qlVzuKizOCCVI1J5QS0vll9TPkJElCiOompwspRoG3/72tznuuOP45z//iYhw++23\nM3ny5ILpM3JMmTKFlStXAiAi2au3fT87vaqqiOQbGSg2WvA74Frv838BvwC+mJto6tSpgNlZdfHi\nBjo6GkJ1ny5ZAiXm6cbOyJEwY0a4PDo6jBFKem5NFI2DSo4HNTY20tjYGDofZ4QSpH//aFqkGVav\nNko0CaI0qJs2mfkaUUUNlsM++5TepO/www/n8MMP95VfS4t5Jg899CRgQrtVdbfgaBFpFpEhqrpS\nRIYCq/Jk1QRkq5fhGG8IVd2ZXkRuBR7OV5aMEQK49dbw64ulpQurpcUslptEfcsmKiNUqWfS0NBA\nQ0PDzu8//vGPA+XjxoQSJI2eUBSsXp2cHCIm0CKqTfp8yjINuMT7fAnwUJ40rwJjRWSUiHTDbKUy\nzZRZsk3JmUDJdbKrTeEVIiNHmKgyG+QA07WYhmdSLs4IJUjU0XFp8YQy3kNSJCDLT4EpIjIPON77\njojUicijAKraDlwOPAG8A9zrRcYB/ExE3hSRN4DjgG+VumFYI7RhQ7LL3GTIRB2GWYYos1pC0kTR\nMLBFlnJw3XEJEqWya2sz619VchO4bKI0qEl6QhC9LKWUgrc78Ql5ji8HPpX1fTowPU+6z5VbrrAK\nLzOQn9QyNxlEdskStO7b4j1E5Z1++tPRlKdSOE8oQaI0QpllbpLYZhmi9x6SNkJpkaUQI0YYhRUU\nWxQ3hFfetsgyaJDxMEvsFl8UW2QpB2eEEiTKEO2ku7CilCXJbkVIlyyFSIvihvTIUlNjvOagjQNV\ne2QpB2eEEqRPHxMJ1t4ePi8burDS4j2kSZZChFXcixbZo+xGjjTlCUpaZFm71nRP9ukTaZFixxmh\nBKmpMQOrUURiJe0JRR0d52SJl7BGaOFC2H//6MoThrBRZTbJEua5LFwI++2X/DhduTgjlDBRKTzn\nCUVHmmQpRN++pvsmaFTZggVG4dlAGMW9bp2ZE2ZLQyGMLDY9k3JwRihhotoQLmlPKCNHFKsAJ+09\nRPVMNm82v0fSkyDzkR1VFgSbFF6avIe0PJNycEYoYQYNMgYkLEl7Qj16QNeuJkw8LEl7DwMHRvNM\nMnLYouByGTUq2PjD+vXGwA4aFHWJgjFokKl3mzaVf61titsZIUfFGTgQVuVbpKVMkvaEIDpZkvaE\nBg1Khxyl2H//4hv4FWLhQhg92h7jWlNjDOrCheVfu2CBkcUW9tvPlCkItsniF2eEEiZKhZf02EMU\nsrS3my0hkpp0C9E9k6Q9ulKMGQPz55d/XaYLyybSIkt9vYlyC+LV2SaLX5wRSpgoFV7Sre4oZGlt\nNQYoyaXoe/c2K1Bs2RIuHxueSTGCKm4bu33SIktNjSlPuR5qe7tZxSLsNudJkIgRimA744LXi8g1\nXvo5InJi1vFG71hmC2Qr1EPaPKGwYyk2yCESzbiQDbIUIy2KG5wsy5bB4MHQvXs8ZYqTpDyhzHbG\n44CnydnKGHbbzvgkYCJwvohMKHa9iEzErC480bvutyI7e64VuEBVJ3t/ES4dGpwolJ2qHeMPUYwJ\n2eI9RNE4sEWWQowcaTZB2769vOtsVNxjx8J775V3zY4dZoWBUaNiKVJggshi4zPxS1JGKOx2xoWu\nPx24R1XbVHURMJ/dd5+0ZCh1F1Eouw0bzN43e+0VTZmCEoUstngPaZKlELW1ZpmYcgf0bRwAD+I9\nNDWZOWFJvze5BJHFxmfil6SMUNDtjOtLXF/npcu+pi7r+x1eV9wPwhQ+StLU4nay7I4tshSjXIXX\n1mbCum1ZYSDDiBGwciVs3er/mnnzYNy4+MoUlCBGyFZZ/BDbVg4i8iQwJM+poNsZS55jxa7P5UJV\nXS4ivYAHRORiVb0rX8LsHShzdw+Mmv79zazt9nYzzyYItrS40zImBNGNCS1b1sjUqY2RlCkOxo4t\nT+EtXGgiuGzzHrp2Nd2LCxfChAml0wPMmQMHHBBvuYIQxAjNmQOXXhpPeeImNiOkqlMKnQu4nfEw\n7xhAoesLXuPtzYKqbhSRuzHdfSWNUNx06WKiwVpbzcBiEGxpcUflPdjQtx2VLFOmNDBxYsPOY0G3\nQI6LchXenDkwfnx85QlDxqD6NUJz59opy/DhpgGzZQvsvbe/a2yVxQ9JdceF2s64yPXTgPNEpJuI\njAbGAq+ISJdMNJyI1AKn4mML5EoRttVtk/eQlnGUzjAmBMYIlTMIPneund4DlC+LrZ5Qly4mWMJv\nmPb27WaVBdu6SP2SlBEKu51x3utV9R3gPi/9dODrqqrAXsDj3vbHr2PGmm6phKB+CKvwmpvtWEJl\n4ECjeDs6gudhiyxhn0lbm5l0m/T216UYP94oY7/Y7AmNG1eeLDZ7D+XIsmCB8Z6qMTwbEtreO4Lt\njNx94SQAABKZSURBVPNe7527Drgu59gm4EPhSh0fURihurrS6eKmWzfo1cuMcQVVvs3NwbsloySs\nd9rSYsb7kpx064fRo01ZN2wwk3RLMWcOfK7szcQrw0EHwd13+0u7aZNpMNmyj1AuBx0Eb78NZ59d\nOq2tHp1f3IoJFhCFERqSLwQkAaKQxQYjlBY5StGli1Fg77zjL73N3sOBB8Jbb/lbyX3ePNN9Z2sj\n4aCDjCx+sPmZ+MEZIQtIk8ILI0tbm/GibAiyyIxvBd2awqaGQSn8KryWFhPFaUtdy2XAADOQv2xZ\n6bTvvmu395AxqH6wXZZSOCNkAWG7flautEcxhAlOsKkLq0cPM5lzw4Zg19v0TEpx4IGm66cUb74J\nhxxiz+rZ+ch0Y5UiI4utjB9v5mNt21Y6re2ylMIZIQtImycU1KDaJAeEaxzYJksx/HpCb7wBkybF\nX54w+JVl1iy7Zene3YzXzZ1bPF1bmxkTOuigypQrDpwRsoAwRqi93Z4uLAgni22KO02yFMOvJ2S7\n4obOZ1DnzDHBFTbu3usXZ4QsIIyys6kLC9KluNMkSzFGjDDRYqW8vjfegEMPrUyZgnLwwaacxWhu\nNt1cw4cXT5c0fmSZNcv+Z1IKZ4QsIMw4im3KzslisE2WYojAhz8M//534TTbt5uIsgMPrFy5gjBp\nkunCKrYXVMYLsnlsC0o/E6gOj64UzghZQN++5qXxMwiZi23KLk3eQ5pkKcURR8ArrxQ+P3u2mZHv\ndxmZpNhrL5g4EWbOLJzmtddg8uTKlSkoH/4wvPqq2XKiENUiSzGcEbIAEaOwVq4s/1rborCGDAkm\nB5jrbAprTpMspShlhP71L/jIRypXnjAceWQ6ZOnf37zbhVZOaGszRuqooypbrqhxRsgShg6FFSvK\nv862FndQOSA9spQbLFLGTsP/z1v8d3aQ64uRMUKF5kW98AIcc0y5uSbDEUfAyy/nP9fRAS++CEcf\nXdkyBaWYLG+8YdaY61v207YLZ4Qsoa4Oli8v/zrbJkX26WOU8MaN5V9rmxEK+kxaWsyyRWUEi5Tc\nadjjNsyOwUGvL8jQoWbJpUKt7moyQkcfbbydfAZ13jzYZx87lrnyQ0aWfFTTMymGM0KWkBZPSCQ9\nslRQDj87DaOqzwNrg15fiilTYMaMPY+//77p+hkzJkiulWfsWFMP8xnUZ5+FY4+tfJmCcsIJ5pnk\nM6jVJkshnBGyhLq6dChuCCZLezusXWvPfCfYZYTKXbonwDPxs9NwnNcDcOKJ+Y3QY4/BySfbH02W\nQQQ++Ul44ok9zz32GJxySuXLFJTx46GmxizNk822bfDMM0bOascZIUsYOjR4d5xtRiiILKtXm839\ngu4uGwc9ephoq7X5fI8i5HsmU6ZM4eCDDwZARGZn/Z2Wnc7beiTginXhrv/EJ+D5582coWwefbS6\nFDfASSfB9Jz197dsgX/8wxjbakEkvyzPP28277N9vyo/WPTKd26CekIrVhilbxNBZLFRDtg1LlTO\n1hT5ZHnyyScBEBFU9eDscz53Gi6Gr+tLbVvfrx989KPwt7/BRReZYytXwksvwf33l1mihDnpJLjs\nMvPsMuM/f/+7iZyzfY+nXM49F779bbjyyl3H7r4bPvOZ5MoE0NjYSGNjY+h8nBGyhCDew7ZtsH69\nXV1YEEyWpiaor4+nPGHIdMmVszZXU1PZW5Rndgr+GYV3Gg59vZ9t6z//efjNb+DCC00r/Lbb4Mwz\n/e01ZBM9exolfdtt8P3vm2N/+AN86UvJlisIDQ0m2vLf/zZzh9auNQ2F664reWnM5dq9IRN063rX\nHWcJQbyH5cuNkqyx7CkGkcVWIxQkQi6ALCV3Gva+3wO8AIwTkaUicmmx64Nw5pnG+3n4YdOt+Ktf\nwVVXBc0tWa66Cq6/3sgzfTosWeJvkzjbqKmB73zH/O3YAddea+SwKSo2DM4TsoSBA01rZ/t2s0Op\nH2xV3Gn0hMqhXFnK2Gn4/HKuD0JtLdxyC5x1llkd4fLL7V+qpxAHHADf/CZ86EOwdavpUqytTbpU\nwfjSl+CBB8xqEO3tpos0LTgjZAk1NcYQNTf7X1gxbYrbxpnfQ4fCwoXlXWPrc/HLxz5mlr1ZvRoO\nOyzp0oTj+983kX39+8PIkUmXJji1tfD442ai7aGHmrlOacEZIYvIdGOVY4RsnHSXtu64F17wn37H\nDtOQsDHIohxGjDB/aaDaDWmG2lrTQEgblo0mdG7K7cayVXH37WuCJjZv9n+NrbKU+0xWrTKh5n67\nVB2Ozo4zQhZRrgdhq+IOsmqCrbKk5Zk4HLbijJBF1NUZJeYXmxVeObJs2WK8pv794y1TEDKekN9V\nE2x+Jg6HjTgjZBHDh8PSpf7T26zwypElM7Zl47IwPXuav1K7jmaw+Zk4HDbijJBFjBhh5jL4QdW0\n0G1VeOXIYrviTpMsDodtOCNkESNHwuLF/tK2tpq1zWzd6bIcWWxX3GmSxeGwDWeELGL4cKPEim3n\nm2HJErtDaMtR3NUgi19PyHZZHA7bcEbIIrp3N4sr+tlSetEis6uirZTThWW7LOUYVNtlcThswxkh\ny/Cr8BYutFvZZeTwE1Vmu+IeMcLfM2lvN56s38nGDofDGSHr8KvwFi2C0aNjL05g9tnH7A20Zk3p\ntLbL4rc7bvlyGDTIeLQOh8MfzghZhl9PyHbvAfzJomrS2LyuV5qeicNhG84IWYbfVnc1KDw/sjQ3\nG6+pR4/KlCkIAwea3UZzdxzNpRqeicNhG84IWYaf7jhVo/Bs9h7AnyzVoLhF/AVaVIMsDodtOCNk\nGfvtBwsWFE+zZo0Zb+nbtzJlCoofWapFcadJFofDJpwRsoz99zeRb+3thdMsWFAdym7cOJg7t3ia\n9993sjgcnRlnhCxj773NopmLFhVOM3cujB9fsSIFZvx4mDeveJpqkWXcuPTI4nDYhDNCFlJK4c2Z\nY7Yutp1Ro0zY8rZthdPMnVsdspQyqB98YAIX3JI9Dkd5OCNkIaWMULW0uGtrTfDE++/nP69aPbL4\neSbjxtm5ErjDYTPOCFnI+PHFxx+qRXFDcVmam02AhY37COUybJgJCNm4Mf/5OXOq55k4HDbhjJCF\nFGt1d3TA/PkmTTVQTJZqMqY1NTBmDLz3Xv7z1SSLw2ETzghZyIQJ8Pbb+c8tWmQ8h169KlqkwEyY\nAG+9lf/cu+9Wx3hQhjTJ4nDYgjNCFjJsmNnOYcWKPc+9/jpMnlz5MgXlsMNMmfPhZHE4HM4IWYiI\nUWgzZ+55rtqU3YEHmnlNmzfvea7aZJk8Ob8RWrvWbDI4Zkzly+RwVDvOCFlKoVb3zJnmXLXQrZvp\nppo9e/fjbW2ma2vSpGTKFYSMEero2P34668bOWrc2+RwlI17bSxl8mR47bXdj6maY9XkPUB+Wd55\nx6zHVi1jW2AWMu3de8/le6rxmTgctuCMkKUccwz885+7t7rnzoW99qq+TdOOOQaef373Y//4Bxx7\nbDLlCUOaZHE4bCARIyQi/UTkSRGZJyIzRCTvUpwicpKIzBGR90Tk6lLXe8efFZENIvLrnLwOF5HZ\nXl43xCtheIYPN1t9v/nmrmONjdDQUH0TIk84AZ55ZneDmpGl2jjhBHj66V3f29tNY+G444LnWcb7\n8P9EpFlEZuccnyoiy0Tkde/vpOClcTgqS1Ke0HeBJ1V1HPC09303RKQLcBNwEjAROF9EJpS4fivw\nA+CqPPf8HfBFVR0LjE3yRW1sbPSV7hOfgBkzdn1//HFzLOr7hMHPPUaONN1YGYO6bZsxQh//eHT3\niAI/9/nEJ+Cpp3YZ1JdfNt2KgwaFunXJ98HjNsz7kIsCv1TVyd7f46FKEwJb6ly13Cct9whDUkbo\nNOAO7/MdwBl50hwBzFfVRaraBvwFOL3Y9aq6WVX/Bey2WpmIDAV6q+or3qE7C9yzIvitFGedBXff\nbcaCPvgAnn0WTjst+vuEwe89PvMZIwsYw3rggVBXF+09wuLnPvvtZxaYfeYZ8/3ee+Gznw19az/v\nA6r6PLC2QB5W+Mc21blquE9a7hGGpIzQYFVt9j43A4PzpKkHlmZ9X+Yd83O95slrWdb3pqy8rOX4\n42H9ejPm8Nvfwqc+Zf8eQoX4whfgjjtg3Tr45S/hi19MukTBuewyuP56WL0a/vxnuPji0Fn6eR9K\ncYWIvCEifyzUnedw2EjXuDIWkSeBIXlOfT/7i6qqiOQaDdjTkEieY8Wur3pqaozCzrS0X3gh2fKE\nYfx4OOccs+pAfT1ceGHSJQrOZZfBzTfDwQcbY+pnD6EpU6awcuVKAHLGdPy+D8X4HXCt9/m/gF8A\nVWzmHZ0KVa34HzAHGOJ9HgrMyZPmKODxrO/XAFf7uR64BPh11vehwLtZ388Hfl+gbOr+3F+cf0He\nh6y0o4DZ5Z5PWmb31zn+gtiD2DyhEkzDGIqfef8fypPmVUwAwShgOXAuxnj4uX63/nFVXSEi60Xk\nSOAV4GLgxnwFU1Ur+tYdnQo/70NBRGSoqmYWeToTmJ2bxtVrh62I10qq7E1F+gH3ASOARcA5qrpO\nROqAW1T1U166k4HrgS7AH1X1J8Wu984tAnoD3YB1wBRVnSMihwO3A3sDj6nqNyoirMNRgjLeh3uA\n44D+wCrgh6p6m4jcCRyKaY0uBL6SNcbkcFhNIkbI4XA4HA7oxCsmFJoIm5PmRu/8GyJS9sIspe4h\nIg0i8kHWJMMfBLhH3gmMEctR9B4RyTHcm2j8toi8JSJ5PdUwsvi5R0Sy7CUiL4vILBF5R0R+ErUs\nRe4de732c5+wv2Ml6rWf+7i6vdv18dTrJAITkv7DdO/Nxwzi1gKzgAk5aU7BdNsBHAm8FMM9GoBp\nIWU5FphMgcHqsHL4vEcUcgwBDvU+9wLmxvBM/NwjtCxePj28/12Bl4CPRv1ckqjXZdwn1O9YiXrt\n8z6ubsdcrzurJ1RsImyGnRMIVfVloK+IlDN/w889IOQkQy0+gRHCy+HnHhBejpWqOsv7vBF4F8id\nzhpKFp/3gAgmfqpqZvOKbhilvSYnSejnkodK1Gu/94EQv2Ml6rXP+4Cr29n3ibxed1YjVGwibLE0\nwyK+hwLHeG7rYyIysYz8w5SjHDn8EKkcYiIiJwMv55yKTJYi94hEFhGpEZFZmMmnz6rqOzlJ4ngu\nlajXfu8Td92uRL0GV7dz8468XicVop00fqMxclsN5URx+Ek7ExiuqpvFRAI+BIwr4x5+CSOHHyKT\nQ0R6AX8F/sNr0e2RJOd72bKUuEcksqhqB3CoiPQBnhCRBlVtzC1K7mXl3ifg9WHva0vdjrteg6vb\nuxcohnrdWT2hJiB7Q4Th7L6sT740w7xjkd1DVTdk3FtVnQ7UignXjZKwcpQkKjlEpBZ4APiTquab\nKxNallL3iPqZqOoHwKPAh3JOxfFcKlGvfd2nAnU79noNrm4XIsp63VmN0M6JsCLSDTMRdlpOmmnA\n5wBE5ChgnZY396LkPURksIjZmEFEjsCEzOf2sYYlrBwliUIO7/o/Au+o6vUFkoWSxc89IpJlgOza\nXmRvYAqQu09uHM+lEvXa130qULdjr9de3q5u77o+lnrdKbvjVLVdRC4HnmDXRNh3ReQr3vmbVfUx\nETlFROYDm4BLo74HcDbwNRFpBzYD55Uri+yawDhARJYCP8JELEUih597RCEH8BHgIuBNEclU7O9h\nJnBGJUvJe0Qky1DgDhGpwTT07lLVp6OsX/moRL32ex9C/o6VqNd+7hNWDo+01O1Y6rWbrOpwOByO\nxOis3XEOh8PhsABnhBwOh8ORGM4IORwOhyMxnBFyOBwOR2I4I+RwOByOxHBGyOFwOByJ4YyQYw9E\npI+IfM37PFRE7k+6TA5HFLi6bR9unpBjD8QsgPiwqh6ccFEcjkhxdds+OuWKCY6S/BTY35t5/R5m\nX5KDReTzwBlAD2As8AtgL+ACYBtwiqquFZH9gZuAgZiZ2V9S1bmVF8Ph2ANXty3Ddcc58nE18L6q\nTgb+M+fcgcCZwIeB/wbWq+phwIt4a0YBfwCuUNUPedf/tiKldjhK4+q2ZThPyJEPKfAZzB4im4BN\nIrIOeNg7Phs4RER6AscA93trJYLZAMvhsAFXty3DGSFHuWzL+tyR9b0DU59qgLVeS9PhqCZc3U4A\n1x3nyMcGoHeZ1wiYPUuAhSJyNpgl5kXkkIjL53AExdVty3BGyLEHqtoK/EtEZgM/Z9fOiJr1mTyf\nM98vBL4oZhvgtzD7zjsciePqtn24EG2Hw+FwJIbzhBwOh8ORGM4IORwOhyMxnBFyOBwOR2I4I+Rw\nOByOxHBGyOFwOByJ4YyQw+FwOBLDGSGHw+FwJIYzQg6Hw+FIjP8fhapHi3BShlQAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fa277c15dd0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "from numpy import arange,sin,pi\n", + "from __future__ import division\n", + "V_CC=15#\n", + "V_BE=0.7#\n", + "B=100# #beta value\n", + "R_1=10*10**3#\n", + "R_2=5*10**3#\n", + "R_L_1=2*10**3# #R_L is taken as R_L_1\n", + "R_C=1*10**3#\n", + "R_E=1*10**3#\n", + "V_T=26*10**-3# #thermal voltage\n", + "#from the analysis of the previous example we have the the values of i_C_Q and V_CE\n", + "i_C_Q=4.12*10**-3#\n", + "V_CE=6.72#\n", + "r_pi=(B*V_T)/i_C_Q#\n", + "R_B=1/((1/R_1)+(1/R_2))# #thevenin resistance\n", + "R_L_2=1/((1/R_L_1)+(1/R_C))# #R_L' is taken as R_L_2\n", + "A_v=-(R_L_2*B)/r_pi# #voltage gain\n", + "A_voc=-(R_C*B)/r_pi# #open circuit voltage gain\n", + "Z_in=1/((1/R_B)+(1/r_pi))# #input impedance\n", + "A_i=(A_v*Z_in)/R_L_1# #current gain\n", + "G=A_i*A_v# #power gain\n", + "Z_o=R_C #output impedance\n", + "#assume f=1hz\n", + "f=1#\n", + "tt=arange(0,3+0.0005,0.0005)\n", + "V_in=[];V_o=[]\n", + "for t in tt:\n", + " V_in.append(0.001*sin(2*pi*f*t))\n", + " V_o.append(-((0.001*sin(2*pi*f*t))*R_L_2*B)/r_pi)\n", + "subplot(121)\n", + "title('Input voltage vs time')\n", + "xlabel('time')\n", + "ylabel('input voltage')\n", + "plot(tt,V_in)\n", + "subplot(122)\n", + "title('output voltage vs time')\n", + "xlabel('time')\n", + "ylabel('output voltage')\n", + "plot(tt,V_o)\n", + "#In the graph, notice the phase inversion between input and output voltages\n", + "print \" All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\"\n", + "print 'voltage gain = %0.2f'%A_v,\n", + "print 'open circuit voltage gain = %0.2f'%A_voc\n", + "print 'input impedance = %0.2f ohms'%Z_in\n", + "print 'current gain = %0.2f'%A_i\n", + "print 'power gain = %0.2f'%G\n", + "print 'output impedance = %0.2f ohms'%Z_o" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 595 Ex: 13.9" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\n", + "voltage gain = 0.99\n", + "input impedance = 36505.72 ohms\n", + "current gain = 36.16\n", + "power gain = 35.83\n", + "output impedance = 46.63 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_CC=20#\n", + "V_BE_Q=0.7#\n", + "V_T=26*10**-3# #thermal voltage\n", + "B=200# #beta value\n", + "R_S_1=10*10**3# #R_S is taken as R_S_1\n", + "R_1=100*10**3#\n", + "R_2=100*10**3#\n", + "R_L_1=1*10**3# #R_L is taken as R_L_1\n", + "R_E=2*10**3#\n", + "V_B=V_CC*R_2/(R_1+R_2)# #thevenin voltage\n", + "R_B=1/((1/R_1)+(1/R_2))# #thevenin resistance\n", + "R_L_2=1/((1/R_L_1)+(1/R_E))# #R_L' is taken as R_L_2\n", + "i_B_Q=(V_B-V_BE_Q)/(R_B+R_E*(1+B))\n", + "i_C_Q=B*i_B_Q#\n", + "i_E_Q=i_B_Q+i_C_Q#\n", + "V_CE_Q=V_CC-i_E_Q*R_E#\n", + "#we can verify that the device is in active region as we get V_CE>0.2 and i_BQ>0\n", + "r_pi=B*V_T/i_C_Q#\n", + "A_v=(1+B)*R_L_2/(r_pi+(1+B)*R_L_2)# #voltage gain\n", + "Z_it=r_pi+(1+B)*R_L_2# #input impedance of base of transistor\n", + "Z_i=1/((1/R_B)+(1/Z_it))# #input impedance of emitter-follower\n", + "R_S_2=1/((1/R_S_1)+(1/R_1)+(1/R_2))# #R_S' is taken as R_S_2\n", + "Z_o=1/(((1+B)/(R_S_2+r_pi))+(1/R_E))# #output impedance\n", + "A_i=A_v*Z_i/R_L_1# #current gain\n", + "G=A_v*A_i# #power gain\n", + "print \" All the values in the textbook are Approximated hence the values in this code differ from those of Textbook\"\n", + "print 'voltage gain = %0.2f'%A_v\n", + "print 'input impedance = %0.2f ohms'%Z_i\n", + "print 'current gain = %0.2f'%A_i\n", + "print 'power gain = %0.2f'%G\n", + "print 'output impedance = %0.2f ohms'%Z_o" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter14_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter14_1.ipynb new file mode 100644 index 00000000..e13c2f5c --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter14_1.ipynb @@ -0,0 +1,162 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14 : Operational Amlifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 632 Ex14.5" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A0CL = 20 dB \n", + "\n", + " frequency = 400 kHz \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import log,log10\n", + "#initialisation of variables\n", + "ADOL= 10**5\n", + "ADOL1= 10\n", + "dc= 20\n", + "dc1= 10\n", + "f= 40 #kHz\n", + "#CALCULATIONS\n", + "ADOL2= dc*log(ADOL)\n", + "ADOL3= dc*log10(ADOL1)\n", + "f1= ADOL1*f\n", + "#RESULTS\n", + "print 'A0CL = %.f dB '%(ADOL3)\n", + "print '\\n frequency = %.f kHz '%(f1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 633 Ex14.5" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "full power = 6.63 kHz \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "#initialisation of variables\n", + "SR= 0.5 #V/us\n", + "Vcon= 12 #V\n", + "#CALCULATIONS\n", + "f= SR*1000/(2*pi*Vcon)\n", + "#RESULTS\n", + "print 'full power = %.2f kHz '%f" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 634 Ex: 14.7" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum output voltage = 34.00 milli-volts\n", + "Minimum output voltage = -24.00 milli-volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_in=0#\n", + "I_B_max=100*10**-9# #maximum bias current\n", + "I_os_max=40*10**-9# #maximum offset current magnitude\n", + "V_os_max=2*10**-3# #maximum offset voltage\n", + "R_1=10*10**3#\n", + "R_2=100*10**3#\n", + "#we approach in such a way to calculate output voltage due to each of dc sources and using superposition\n", + "#1)OFFSET-VOLTAGE\n", + "#As we place offset voltage at noninverting input\n", + "V_o_osV_max=-(1+(R_2/R_1))*(-V_os_max)#\n", + "V_o_osV_min=-(1+(R_2/R_1))*V_os_max#\n", + "#2)BIAS-CURRENT SOURCES\n", + "#assuming ideal opamp conditions\n", + "V_i=0#\n", + "I_1=0#\n", + "I_2=-I_B_max#\n", + "V_o_bias_max=-R_2*I_2-R_1*I_1#\n", + "V_o_bias_min=0# #no minimum value of I_B is specified\n", + "#3)OFFSET-CURRENT SOURCE\n", + "#by analysis as in bias-current sources\n", + "V_o_osI_max=R_2*I_os_max/2#\n", + "V_o_osI_min=-R_2*I_os_max/2#\n", + "\n", + "V_o_max=V_o_osV_max+V_o_bias_max+V_o_osI_max# #maximum output volage\n", + "V_o_min=V_o_osV_min+V_o_bias_min+V_o_osI_min# #minimum output voltage\n", + "print 'Maximum output voltage = %0.2f milli-volts'%(V_o_max*10**3)\n", + "print 'Minimum output voltage = %0.2f milli-volts'%(V_o_min*10**3)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter15_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter15_1.ipynb new file mode 100644 index 00000000..7ddde654 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter15_1.ipynb @@ -0,0 +1,539 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15 : Magnetic circuits and transformers " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 668 Ex: 15.3" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "In the below two values,i represents sin(200*pi*t)\n", + "flux = j*2.513e-03 webers\n", + "flux linkages = j*0.25 weber turns\n", + "In the below answer, i represents cos(200*pi*t)\n", + "Voltage induced in the coil = 0.00+j*157.91 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "M_r=5000# #relative permeability\n", + "R=10*10**-2#\n", + "r=2*10**-2#\n", + "N=100# #number of turns\n", + "#complex number 'i' is used as a symbol here\n", + "I=2*1J# #here 'i' represents sin(200*pi*t), not as a complex number\n", + "M_o=4*pi*10**-7# #permeability of free space\n", + "M=M_r*M_o# #permeability of the core material\n", + "phi=M*N*I*r**2/(2*R)# #flux\n", + "FL=N*phi# #flux linkages\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'In the below two values,i represents sin(200*pi*t)' #t-time\n", + "print 'flux = j*{:0.3e} webers'.format(phi.imag)\n", + "print 'flux linkages = j*{:.2f} weber turns'.format(FL.imag)\n", + "#differentiating 'λ' with respect to t\n", + "print 'In the below answer, i represents cos(200*pi*t)'\n", + "print 'Voltage induced in the coil = {0:.2f}+j*{1:0.2f} volts'.format((FL*200*pi).real,(FL*200*pi).imag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 670 Ex: 15.5" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Current value = 2.01 amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "M_r=6000# #relative permeability\n", + "M_o=4*pi*10**-7# #permeability of free space\n", + "w_r=3*10**-2# #width of rectangular cross-section\n", + "d_r=2*10**-2# #depth of rectangular cross-section\n", + "N=500# #number of turns of coil\n", + "B_gap=0.25# #flux density\n", + "gap=0.5*10**-2# #air gap\n", + "#centerline of the flux path is a square of side 6cm\n", + "l_s=6*10**-2# #side of square\n", + "l_core=4*l_s-gap# #mean length of the iron core\n", + "A_core=w_r*d_r# #cross-sectional area of the core\n", + "M_core=M_r*M_o# #permeability of core\n", + "R_core=l_core/(M_core*A_core)# #reluctance of the core\n", + "A_gap=(d_r+gap)*(w_r+gap)# #effective area of gap\n", + "M_gap=M_o# #permeability of air(gap)\n", + "R_gap=gap/(M_gap*A_gap)# #reluctance of gap\n", + "R=R_gap+R_core# #total reluctance\n", + "phi=B_gap*A_gap# #flux\n", + "F=phi*R# #magnetomotive force\n", + "i=F/N# #current\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Current value = %0.2f amperes'%i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 672 Ex: 15.6" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "flux density in gap a = 0.11 tesla\n", + "flux density in gap b = 0.22 tesla\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "w_core=2*10**-2# #width\n", + "d_core=2*10**-2# #depth\n", + "A_core=w_core*d_core# #area of core\n", + "M_r=1000# #relative permeability\n", + "M_o=4*pi*10**-7# #permeability of free space\n", + "gap_a=1*10**-2#\n", + "gap_b=0.5*10**-2#\n", + "N=500# #number of turns of coil\n", + "i=2# #current in the coil\n", + "l_c=10*10**-2# #length for center path\n", + "R_c=l_c/(M_r*M_o*A_core)# #reluctance of center path\n", + "#For left side\n", + "#taking fringing ino account\n", + "A_gap_a=(w_core+gap_a)*(d_core+gap_a)# #area of gap a\n", + "R_gap_a=gap_a/(M_o*A_gap_a)# #reluctance of gap a\n", + "l_s=10*10**-2# #side of square\n", + "l_core_l=3*l_s-gap_a# #mean length on left side\n", + "R_core_l=l_core_l/(M_r*M_o*A_core)# #reluctance of core\n", + "R_L=R_core_l+R_gap_a# #total reluctance on left side\n", + "#For right side\n", + "#taking fringing ino account\n", + "A_gap_b=(w_core+gap_b)*(d_core+gap_b)# #area of gap b\n", + "R_gap_b=gap_b/(M_o*A_gap_b)# #reluctance of gap b\n", + "l_s=10*10**-2# #side of square\n", + "l_core_r=3*l_s-gap_b# #mean length on right side\n", + "R_core_r=l_core_r/(M_r*M_o*A_core)# #reluctance of core\n", + "R_R=R_core_r+R_gap_b# #total reluctance on right side\n", + "R_T=R_c+1/((1/R_L)+(1/(R_R)))# #total reluctance\n", + "phi_c=N*i/(R_T)# #flux in the center leg of coil\n", + "#by current-division principle\n", + "phi_L=phi_c*R_R/(R_L+R_R)# #left side\n", + "phi_R=phi_c*R_L/(R_L+R_R)# #right side\n", + "B_L=phi_L/A_gap_a# #flux density in gap a\n", + "B_R=phi_R/A_gap_b# #flux density in gap b\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'flux density in gap a = %0.2f tesla'%B_L\n", + "print 'flux density in gap b = %0.2f tesla'%B_R" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 673 Ex: 15.7" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Inductance of the given coil = 54.35 milli-henry\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "N=500# #number of turns of coil\n", + "R=4.6*10**6# #reluctance of the magnetic path from ex15.5\n", + "L=N**2/R# #inductance\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Inductance of the given coil = %0.2f milli-henry'%(L*10**3) #milli-10**-3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 674 Ex: 15.8" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "self-inductance of coil 1 = 1.0 milli henry\n", + "self-inductance of coil 2 = 4.0 in milli henry\n", + "mutual inductance of the coils = (2+0j) milli henry\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R=10**7# #reluctance of core\n", + "N_1=100# #turns for coil 1\n", + "N_2=200# #turns for coil 2\n", + "L_1=N_1**2/R# #self-inductance of coil 1\n", + "L_2=N_2**2/R# #self-inductance of coil 2\n", + "#here, complex number i represents i_1 in textbook\n", + "phi_1=N_1*1J/R# #flux produced by i(i_1)\n", + "L_21=N_2*phi_1# #flux linkages of coil 2 from current in coil 1\n", + "M=L_21/1J# #mutual inductance\n", + "#milli-(10**-3)\n", + "print 'self-inductance of coil 1 =',L_1*10**3,'milli henry'\n", + "print 'self-inductance of coil 2 =',L_2*10**3,'in milli henry'\n", + "print 'mutual inductance of the coils =',M*10**3, 'milli henry'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 675 Ex: 15.9" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "The required turns ratio N1/N2 = 21.364\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s_rms=4700# #for source\n", + "V_L_rms=220# #load voltage\n", + "tr=V_s_rms/V_L_rms# #turns ratio\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'The required turns ratio N1/N2 = %0.3f'%tr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 676 Ex: 15.10" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OPEN switch\n", + "Primary voltage = 110.00 volts\n", + "Secondary voltage = 22.00 volts\n", + "Current in primary and secondary windings = 0 in amperes\n", + "CLOSED switch\n", + "Primary voltage = 110.00 volts\n", + "Secondary voltage = 22.00 volts\n", + "Current in primary winding = 0.44 amperes\n", + "Current in secondary winding = 2.20 amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_1_rms=110#\n", + "R_L=10#\n", + "tr=5# #turns ratio(N1/N2)\n", + "V_2_rms=V_1_rms/tr# #primary and secondary voltage relation\n", + "#a)open switch\n", + "print 'OPEN switch'\n", + "print 'Primary voltage = %0.2f volts'%V_1_rms\n", + "print 'Secondary voltage = %0.2f volts'%V_2_rms\n", + "#As switch is open, current in second winding is 0 which implies the current in primary coil to be 0 (ideal transformer condition)\n", + "print 'Current in primary and secondary windings =',0,'in amperes'\n", + "#b)closed switch\n", + "print 'CLOSED switch'\n", + "I_2_rms=V_2_rms/R_L# #ohm's law\n", + "I_1_rms=I_2_rms/tr# #ideal transformer condition\n", + "print 'Primary voltage = %0.2f volts'%V_1_rms\n", + "print 'Secondary voltage = %0.2f volts'%V_2_rms\n", + "print 'Current in primary winding = %0.2f amperes'%I_1_rms\n", + "print 'Current in secondary winding = %0.2f amperes'%I_2_rms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 677 Ex: 15.11" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "PRIMARY CURRENT:\n", + "peak value = 0.35 amperes\n", + "phase angle = -45.00 degrees\n", + "PRIMARY VOLTAGE:\n", + "peak value = 790.57 amperes\n", + "phase angle = 18.43 degrees\n", + "SECONDARY CURRENT\n", + "peak value = 3.54 amperes\n", + "phase angle = -45.00 degrees\n", + "SECONDARY VOLTAGE\n", + "peak value = 79.06 amperes\n", + "phase angle = 18.43 degrees\n", + "power delivered to load = 62.50 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from cmath import sin,cos,polar,phase,sqrt\n", + "V_s=1000*complex(cos(0),sin(0))# #source voltage phasor\n", + "R_1=10**3#\n", + "R_L=10#\n", + "Z_L_1=R_L+1J*20# #impedance\n", + "tr=10# #turns ratio(N1/N2)\n", + "Z_L_2=(tr**2)*Z_L_1# #reflecting Z_L_1 onto primary side\n", + "Z_s=R_1+Z_L_2# #total impedance seen by the source \n", + "\n", + "Z_s_max = abs(Z_s)\n", + "Z_s_phi=phase(Z_s)\n", + "#primary quantities\n", + "I_1=V_s/Z_s#\n", + "I_1_max = abs(I_1)\n", + "I_1_phi = phase(I_1)\n", + "V_1=I_1*Z_L_2#\n", + "V_1_max=abs(V_1)\n", + "V_1_phi=phase(V_1)\n", + "#using turns ratio to find secondary quantities\n", + "I_2=tr*I_1#\n", + "I_2_max=abs(I_2)\n", + "I_2_phi=phase(I_2)\n", + "V_2=V_1/tr#\n", + "V_2_max=abs(V_2)\n", + "V_2_phi=phase(V_2)\n", + "I_2_rms=I_2_max/sqrt(2)#\n", + "P_L=(I_2_rms**2)*R_L# #power to load\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "#we take real parts of angles to take out neglegible and unnecessary imaginary parts(if any are there)\n", + "print 'PRIMARY CURRENT:'\n", + "print 'peak value = %0.2f amperes'%I_1_max\n", + "print 'phase angle = %0.2f degrees'%((I_1_phi*180/pi).real)\n", + "print 'PRIMARY VOLTAGE:'\n", + "print 'peak value = %0.2f amperes'%(V_1_max)\n", + "print 'phase angle = %0.2f degrees'%((V_1_phi*180/pi).real)\n", + "print 'SECONDARY CURRENT'\n", + "print 'peak value = %0.2f amperes'%I_2_max\n", + "print 'phase angle = %0.2f degrees'%((I_2_phi*180/pi).real)\n", + "print 'SECONDARY VOLTAGE'\n", + "print 'peak value = %0.2f amperes'%(V_2_max)\n", + "print 'phase angle = %0.2f degrees'%((V_2_phi*180/pi).real)\n", + "print 'power delivered to load = %0.2f watts'%abs(P_L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 678 Ex: 15.12" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reflected voltage:\n", + "Peak value = 100.00 volts\n", + "phase angle = 0.00 degrees\n", + "Reflected resistance = 10.00 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from cmath import polar,pi,sin,cos\n", + "V_s=1000*complex(cos(0),sin(0))# #source voltage phasor\n", + "R_1=10**3#\n", + "tr=10# #turns ratio(N1/N2)\n", + "V_S=V_s/tr# #reflected voltage\n", + "V_S_max=polar(V_S)[0]\n", + "V_S_phi=polar(V_S)[1]\n", + "R1=R_1/(tr**2)# #reflected resistance\n", + "#we take real parts of angles to take out neglegible and unnecessary imaginary parts(if any are there)\n", + "print 'Reflected voltage:'\n", + "print 'Peak value = %0.2f volts'%V_S_max\n", + "print 'phase angle = %0.2f degrees'%(V_S_phi*180/pi)\n", + "print 'Reflected resistance = %0.2f ohms'%R1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 679 Ex: 15.13" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percent regulation = 4.51\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from cmath import polar,pi,sin,cos,acos\n", + "\n", + "V_L_max=240#\n", + "V_L=V_L_max*complex(cos(0),sin(0))# #load voltage\n", + "R_1=3#\n", + "R_2=0.03#\n", + "R_c=100*10**3# #core-loss resistance\n", + "tr=10# #turns ratio(N1/N2)\n", + "#leakage reactances\n", + "Z_1=1J*6.5#\n", + "Z_2=1J*0.07#\n", + "Z_m=1J*15*10**3#\n", + "P_R=20*10**3# #rated power\n", + "I_2_max=P_R/(V_L.real)#\n", + "PF=0.8# #power factor\n", + "phi=-acos(PF)# #-ve for lagging power\n", + "I_2=complex(I_2_max*cos(phi),I_2_max*sin(phi))# #phasor\n", + "I_1=I_2/tr# #primary current\n", + "I_1_max=polar(I_1)[0]\n", + "I_1_phi =polar(I_1)[1]\n", + "V_2=V_L+(R_2+Z_2)*I_2# #KVL equation\n", + "V_1=tr*V_2#\n", + "V_s=V_1+(R_1+Z_1)*I_1# #KVL equation\n", + "V_s_max = polar(V_s)[0]\n", + "V_s_phi =polar(V_s)[1]#\n", + "P_loss=((V_s_max**2)/R_c)+((I_1_max**2)*R_1)+((I_2_max**2)*R_2)# #power loss in transformer\n", + "P_L=V_L*I_2*PF# #power to load\n", + "P_in=P_L+P_loss# #input power\n", + "P_eff=(1-(P_loss/P_in))*100#\n", + "#under no-load condtions\n", + "I_1=0#\n", + "I_2=0#\n", + "V_1=V_s_max#\n", + "V_no_load=V_1/tr#\n", + "PR=((V_no_load-V_L_max)/V_L_max)*100#\n", + "print 'Percent regulation = %0.2f'%PR" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter16_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter16_1.ipynb new file mode 100644 index 00000000..ee8ef876 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter16_1.ipynb @@ -0,0 +1,393 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16 : DC Machines" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 719 Ex: 16.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Power loss with full-load = 312.19 watts\n", + "Efficiency with full-load = 92.28\n", + "Input power with no-load = 274.36 watts\n", + "speed regulation percentage for the motor : 3.91\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "V_rms=440#\n", + "P_o_fl=5*746# #full-load rated output power\n", + "I_rms_fl=6.8# #full-load line current\n", + "PF_fl=0.78# #full-load power factor\n", + "n_fl=1150# #full-load speed in rpm\n", + "I_rms_nl=1.2# #no-load line current\n", + "PF_nl=0.3# #no-load power factor\n", + "n_nl=1195# #no-load speed in rpm\n", + "P_in_fl=sqrt(3)*V_rms*I_rms_fl*PF_fl# #full-load input power\n", + "P_loss_fl=P_in_fl-P_o_fl# #full-load power loss\n", + "eff_fl=(P_o_fl/P_in_fl)*100# #full-load efficiency\n", + "P_in_nl=sqrt(3)*V_rms*I_rms_nl*PF_nl# #no-load input power\n", + "P_o_nl=0# #no-load output power\n", + "eff_nl=0# #no-load efficiency('0' as P_o_nl=0)\n", + "SR=(n_nl-n_fl)*100/n_fl# #speed regulation\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Power loss with full-load = %0.2f watts'%P_loss_fl\n", + "print 'Efficiency with full-load = %0.2f'%eff_fl\n", + "print 'Input power with no-load = %0.2f watts'%P_in_nl\n", + "print 'speed regulation percentage for the motor : %0.2f'%SR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 720 Ex: 16.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "CASE a:\n", + "initial current = 40.00 amperes\n", + "initial force on the bar = 12.00 newtons\n", + "steady-state final speed = 6.67 m/s\n", + "CASE b:\n", + "steady-state speed = 4.44 m/s\n", + "power delivered by V_t = 26.67 watts\n", + "power delivered to mechanical load = 17.78 watts\n", + "power lost to heat in the resistance = 8.89 watts\n", + "effciency of converting electrical power to mechanical power : 66.67\n", + "CASE c:\n", + "steady-state speed = 7.78 m/s\n", + "power taken from mechanical source = 15.56 watts\n", + "power delivered to the battery = 13.33 watts\n", + "power lost to heat in the resistance = 2.22 watts\n", + "efficiency of converting mechanical power to electrical power : 85.71\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "\n", + "B=1# #magnetic flux density\n", + "l=0.3#\n", + "V_T=2#\n", + "R_A=0.05#\n", + "#CASE a\n", + "#bar is stationary at t=0\n", + "u_ini=0# #initial velocity of bar is 0\n", + "e_A=B*l*u_ini# #induced voltage\n", + "i_A_ini=(V_T-e_A)/R_A# #initial current\n", + "F_ini=B*l*i_A_ini# #initial force on the bar\n", + "#steady state condition with no-load e_A=B*l*u=V_T\n", + "u=V_T/(B*l)# #from steady state condition with no-load\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'CASE a:'\n", + "print 'initial current = %0.2f amperes'%i_A_ini\n", + "print 'initial force on the bar = %0.2f newtons'%F_ini\n", + "print 'steady-state final speed = %0.2f m/s'%u\n", + "#CASE b\n", + "F_load=4# #mechanical load\n", + "#steady state condition F=B*l*i_A=F_load\n", + "i_A=F_load/(B*l)# #from steady state condition\n", + "e_A=V_T-R_A*i_A# #induced voltage\n", + "u=e_A/(B*l)# #steady-state speed\n", + "P_m=F_load*u# #mechanical power\n", + "P_t=V_T*i_A# #power taken from battery\n", + "P_R=i_A**2*R_A# #power dissipated in the resistance\n", + "eff=P_m*100/P_t# #efficiency\n", + "print 'CASE b:'\n", + "print 'steady-state speed = %0.2f m/s'%u\n", + "print 'power delivered by V_t = %0.2f watts'%P_t\n", + "print 'power delivered to mechanical load = %0.2f watts'%P_m\n", + "print 'power lost to heat in the resistance = %0.2f watts'%P_R\n", + "print 'effciency of converting electrical power to mechanical power : %0.2f'%eff\n", + "#CASE c\n", + "#with the pulling force acting to the right, machine operates as a generator\n", + "F_pull=2# #pulling force\n", + "#steady-state condition F=B*l*i_A=F_pull\n", + "i_A=F_pull/(B*l)# #from steady-state condition\n", + "e_A=V_T+R_A*i_A# #induced voltage\n", + "u=e_A/(B*l)# #steady-state speed\n", + "P_m=F_pull*u# #mechanical power\n", + "P_t=V_T*i_A# #power taken by battery\n", + "P_R=i_A**2*R_A# #power dissipated in the resistance\n", + "eff=P_t*100/P_m# #efficiency\n", + "print 'CASE c:'\n", + "print 'steady-state speed = %0.2f m/s'%u\n", + "print 'power taken from mechanical source = %0.2f watts'%P_m\n", + "print 'power delivered to the battery = %0.2f watts'%P_t\n", + "print 'power lost to heat in the resistance = %0.2f watts'%P_R\n", + "print 'efficiency of converting mechanical power to electrical power : %0.2f'%eff" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 721 Ex: 16.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Voltage applied to field circuit = 125.00 volts\n", + "Voltage applied to armature 105.67 volts\n", + "Developed torque = 34.62 Nm\n", + "Developed power = 2900.00 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "n_2=800# #speed in rpm\n", + "I_A=30# #armature current\n", + "I_F=2.5# #field current\n", + "R_A=0.3# #armature resistance\n", + "R_F=50# #field resistance\n", + "V_F=I_F*R_F# #field coil voltage\n", + "#E_A1 and n_1 from magnetization curve\n", + "E_A1=145# #induced voltage\n", + "n_1=1200# #speed in rpm\n", + "E_A2=n_2*E_A1/n_1#\n", + "W_m=n_2*2*pi/60# #speed in radians per second\n", + "K=E_A2/W_m# #K*phi is taken as K, machine constant\n", + "T_dev=K*I_A# #developed torque\n", + "P_dev=W_m*T_dev# #developed power\n", + "V_T=R_A*I_A+E_A2# #voltage applied to armature\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Voltage applied to field circuit = %0.2f volts'%V_F\n", + "print 'Voltage applied to armature %0.2f volts'%V_T\n", + "print 'Developed torque = %0.2f Nm'%T_dev #Nm-newton meter\n", + "print 'Developed power = %0.2f watts'%P_dev" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 722 Ex: 16.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Motor speed = 995.87 rpm\n", + "Efficiency of the motor : 85.28\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi\n", + "V_T=240# #dc supply voltage\n", + "R_A=0.065# #armature resistance\n", + "R_F=10# #field resistance\n", + "R_adj=14# #adjustable resistance\n", + "n=1200# #speed in rpm\n", + "P_rot=1450# #rotational power loss\n", + "T_out=250# #hoist torque\n", + "I_F=V_T/(R_F+R_adj)# #field current\n", + "#E_A at I_F and n from magnetization curve \n", + "E_A_1=280# #armature voltage\n", + "W_m_1=n*2*pi/60# #speed in radians per second\n", + "K=E_A_1/W_m_1# #machine constant\n", + "T_rot=P_rot/W_m_1# #rotational loss-torque\n", + "T_dev=T_rot+T_out# #developed torque\n", + "I_A=T_dev/K# #armature current\n", + "E_A_2=V_T-R_A*I_A# #applying KVL\n", + "W_m_2=E_A_2/K# #speed in radians per second\n", + "n_m=W_m_2*60/(2*pi)# #speed in rpm\n", + "P_out=T_out*W_m_2# #output power\n", + "I_L=I_F+I_A# #line current\n", + "P_in=V_T*I_L# #input power\n", + "eff=P_out*100/P_in# #efficiency\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Motor speed = %0.2f rpm'%n_m\n", + "print 'Efficiency of the motor : %0.2f'%eff" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 723 Ex: 16.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Output power for load torque=12 = 1507.96 watts\n", + "speed for torque=24 = 848.53 rpm\n", + "Output power for load torque=24 = 2132.58 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt\n", + "n_m_1=1200# #speed in rpm\n", + "T_out_1=12# #motor torque\n", + "W_m_1=n_m_1*2*pi/60# #angular speed\n", + "#As we are neglecting losses, the output torque and power are equal to the developed torque and power respectively\n", + "P_out_1=W_m_1*T_out_1# #output power\n", + "#For Torque=24\n", + "T_out_2=24#\n", + "T_dev_2=T_out_2#\n", + "#T_dev=K*K_F*V_T**2/(R_A+R_F+K*K_F*W_m**2)\n", + "#neglecting resistances and with the above equation for T_dev, we get inverse relation between torque and square of speed\n", + "W_m_2=W_m_1*sqrt(T_out_1)/sqrt(T_dev_2)#\n", + "n_m_2=W_m_2*60/(2*pi)#\n", + "P_out_2=T_dev_2*W_m_2#\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Output power for load torque=12 = %0.2f watts'%P_out_1\n", + "print 'speed for torque=24 = %0.2f rpm'%n_m_2\n", + "print 'Output power for load torque=24 = %0.2f watts'%P_out_2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 724 Ex: 16.6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Field current = 10.00 amperes\n", + "no-load voltage = 233.33 volts\n", + "full-load voltage = 220.33 volts\n", + "percentage voltage regulation : 5.90\n", + "input torque = 495.07 Nm\n", + "developed torque = 445.63 Nm\n", + "all types of power losses combined = 5176.47 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt\n", + "V_F=140# #field voltage\n", + "R_F=10# #field resistance\n", + "R_adj=4# #adjusting resistance\n", + "R_A=0.065# #armature resistance\n", + "n_A=1000# #armature speed in rpm\n", + "I_fl=200# #full-load current\n", + "eff=0.85# #efficiency not including power supplied to field circuit\n", + "I_F=V_F/(R_adj+R_F)# #field current\n", + "#E, voltage from magnetization curve for speed of n=1200\n", + "n=1200#\n", + "E=280# #voltage of armature\n", + "#E_A is no-load voltage\n", + "E_A=E*n_A/n# #E_A is proportional to speed\n", + "V_FL=E_A-R_A*I_fl# #full-load voltage\n", + "VR=(E_A-V_FL)*100/V_FL# #voltage regulation\n", + "P_out=I_fl*V_FL# #output power\n", + "P_dev=P_out+(I_fl**2)*R_A# #developed power\n", + "W_m=n_A*2*pi/60# #angular speed\n", + "P_in=P_out/eff# #input power\n", + "P_loss=P_in-P_dev# #all power losses combined\n", + "T_in=P_in/W_m# #input torque\n", + "T_dev=P_dev/W_m# #developed torque\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Field current = %0.2f amperes'%I_F\n", + "print 'no-load voltage = %0.2f volts'%E_A\n", + "print 'full-load voltage = %0.2f volts'%V_FL\n", + "print 'percentage voltage regulation : %0.2f'%VR\n", + "print 'input torque = %0.2f Nm'%T_in\n", + "print 'developed torque = %0.2f Nm'%T_dev\n", + "print 'all types of power losses combined = %0.2f watts'%P_loss" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter17_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter17_1.ipynb new file mode 100644 index 00000000..8315b9a3 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter17_1.ipynb @@ -0,0 +1,354 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17 : AC Machines" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 774 Ex: 17.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Power factor : 0.89\n", + "line current = 37.58 amperes\n", + "output power = 26494.77 watts\n", + "output torque = 144.91 Nm\n", + "efficiency percentage : 88.50\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from cmath import polar\n", + "from math import sin,cos,pi,sqrt\n", + "P_rot=900# #rotational losses\n", + "V_L=440*complex(cos(0),sin(0))#\n", + "R_s=1.2#\n", + "X_s=1J*2#\n", + "X_m=1J*50#\n", + "R_r_1=0.6#\n", + "R_r_2=19.4#\n", + "X_r=1J*0.8#\n", + "n_m=1746# #machine operating speed in rpm\n", + "W_m=n_m*2*pi/60# #speed in radians per second\n", + "n_s=1800# #synchronous speed for a four-pole monitor\n", + "s=(n_s-n_m)/n_s# #slip\n", + "Z_s=R_s+X_s+(X_m*(R_r_1+R_r_2+X_r))/(X_m+R_r_1+R_r_2+X_r)# #impedance seen by the source\n", + "Z_s_max=polar(Z_s)[0]\n", + "phi=polar(Z_s)[1]\n", + "Z_s_phi=(phi.real)# #removing negligible imaginary part(if any is there)\n", + "PF=cos(Z_s_phi)# #power factor\n", + "V_s=V_L# #phase voltage\n", + "I_s=V_s/Z_s# #phase current\n", + "I_s_max=polar(I_s)[0]\n", + "I_s_phi=polar(I_s)[1]\n", + "I_L=I_s_max*sqrt(3)# #line current\n", + "P_in=3*I_s*V_s*PF# #input power\n", + "V_x=I_s*(X_m*(R_r_1+R_r_2+X_r))/(X_m+R_r_1+R_r_2+X_r)#\n", + "I_r=V_x/(X_r+R_r_1+R_r_2)#\n", + "I_r_max=polar(I_s)[0]\n", + "I_r_phi=polar(I_r)[1]#\n", + "P_s=3*R_s*I_s_max**2# #copper loss in stator\n", + "P_r=3*R_r_1*I_r_max**2# #copper loss in rotor\n", + "P_dev=3*(1-s)*R_r_1*I_r_max**2/s# #developed power\n", + "#we may verify that P_in=P_dev+P_s+P_r to within rounding error\n", + "P_in=P_dev+P_s+P_r# #input power\n", + "P_o=P_dev-P_rot# #output power\n", + "T_o=P_o/W_m# #output torque\n", + "eff=P_o*100/P_in# #efficiency\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Power factor : %0.2f'%PF\n", + "print 'line current = %0.2f amperes'%I_L\n", + "print 'output power = %0.2f watts'%P_o\n", + "print 'output torque = %0.2f Nm'%T_o\n", + "print 'efficiency percentage : %0.2f'%eff" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 775 Ex: 17.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Starting line current = 229.99 A\n", + "Torque = 163.08 Nm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from cmath import polar\n", + "from math import sin,cos,pi,sqrt\n", + "s=1# #slip for starting\n", + "V_L=440*complex(cos(0),sin(0))#\n", + "f=60#\n", + "R_s=1.2#\n", + "X_s=1J*2#\n", + "X_m=1J*50#\n", + "R_r_1=0.6#\n", + "R_r_2=19.4#\n", + "X_r=1J*0.8#\n", + "Z_eq=X_m*(R_r_1+X_r)/(X_m+R_r_1+X_r)# #equivalent impedance to the right in the figure in textbook\n", + "Z_s=R_s+X_s+Z_eq#\n", + "I_s=V_s/Z_s# #starting phase current\n", + "I_s_max=polar(I_s)[0]\n", + "phi=polar(I_s)[1]\n", + "I_L=sqrt(3)*I_s_max# #starting line current\n", + "#I_L here is almost six times larger than in previous example. It is a typical characteristic of induction motors.\n", + "P_ag=3*(Z_eq.real)*I_s_max**2# #power crossing air gap\n", + "W_s=2*pi*(60)#\n", + "T_dev=P_ag/(W_s/2)#\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Starting line current = %0.2f A'%I_L\n", + "print 'Torque = %0.2f Nm'%T_dev" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 776 Ex: 17.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Power crossing the air gap = 8708.08 watts\n", + "developed power = 8558.08 watts\n", + "output power = 8058.08 watts\n", + "effciency percentage : 88.47\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt\n", + "V_L=220#\n", + "V_s=V_L/sqrt(3)# #phase voltage\n", + "I_s=31.87#\n", + "P_s=400# #total stator copper losses\n", + "P_r=150# #total rotoe copper losses\n", + "P_rot=500# #rotational losses\n", + "PF=0.75# #power factor\n", + "P_in=3*V_s*I_s*PF# #input power\n", + "P_ag=P_in-P_s# #air-gap power\n", + "P_dev=P_in-P_s-P_r# #developed power\n", + "P_o=P_dev-P_rot# #output power\n", + "eff=P_o*100/P_in# #efficiency\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Power crossing the air gap = %0.2f watts'%P_ag\n", + "print 'developed power = %0.2f watts'%P_dev\n", + "print 'output power = %0.2f watts'%P_o\n", + "print 'effciency percentage : %0.2f'%eff #this value is given wrong in the textbook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 777 Ex: 17.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "CASE a:\n", + "speed = 900.00 rpm\n", + "developed torque = 395.77 Nm\n", + "CASE b:\n", + "Phase current:\n", + "peak value = 28.78 amperes\n", + "phase angle = 25.84 degrees\n", + "Voltage induced by rotor:\n", + "peak value = 498.88 volts\n", + "phase angle = -4.17 degrees\n", + "torque angle = 4.17 degrees\n", + "CASE c:\n", + "Phase current:\n", + "peak value = 52.71 amperes\n", + "phase angle = 10.61 degrees\n", + "Voltage induced by rotor:\n", + "peak value = 498.88 volts\n", + "phase angle = -8.36 degrees\n", + "torque angle = 8.36 degrees\n", + "power factor : 0.98\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,acos,sin,cos,atan,asin\n", + "\n", + "P_dev_1=50*746# #developed power\n", + "V_L=480# #line voltage\n", + "PF=0.9# #power factor\n", + "f=60# #frequency\n", + "P=8# #number of poles\n", + "X_s=1.4# #synchronous reactance\n", + "#CASE a\n", + "n_s=120*f/P# #speed of machine in rpm\n", + "W_s=n_s*2*pi/60# #speed in radians per second\n", + "T_dev=P_dev_1/W_s# #developed torque\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'CASE a:'\n", + "print 'speed = %0.2f rpm'%n_s\n", + "print 'developed torque = %0.2f Nm'%T_dev\n", + "#CASE b\n", + "V_a=V_L# #phase voltage\n", + "I_a_max=P_dev_1/(3*V_a*PF)# #phase current\n", + "phi=acos(PF)#\n", + "I_a=I_a_max*complex(cos(phi),sin(phi))#\n", + "E_r=V_a-1J*X_s*I_a# #voltage induced by rotor\n", + "E_r_max=sqrt(((E_r.real)**2)+((E_r.imag)**2))#\n", + "E_r_phi=atan((E_r.imag)/(E_r.real))#\n", + "TA=-E_r_phi# #torque angle\n", + "print 'CASE b:'\n", + "print 'Phase current:'\n", + "print 'peak value = %0.2f amperes'%I_a_max\n", + "print 'phase angle = %0.2f degrees'%(phi*180/pi)\n", + "print 'Voltage induced by rotor:'\n", + "print 'peak value = %0.2f volts'%E_r_max\n", + "print 'phase angle = %0.2f degrees'%(E_r_phi*180/pi)\n", + "print 'torque angle = %0.2f degrees'%(TA*180/pi)\n", + "#CASE c\n", + "#excitation constant means the values of I_f, B_r and E_r are constant\n", + "P_dev_2=100*746#\n", + "sin_t=P_dev_2*sin(TA)/P_dev_1# #developed power is proportional to sin_t\n", + "t=asin(sin_t)#\n", + "E_r=E_r_max*complex(cos(-t),sin(-t))# #E_r is constant in magnitude\n", + "I_a=(V_a-E_r)/(1J*X_s)# #new phase current\n", + "I_a_max=sqrt(((I_a.real)**2)+((I_a.imag)**2))#\n", + "I_a_phi=atan((I_a.imag)/(I_a.real))#\n", + "PF=cos(I_a_phi)#\n", + "print 'CASE c:'\n", + "print 'Phase current:'\n", + "print 'peak value = %0.2f amperes'%I_a_max\n", + "print 'phase angle = %0.2f degrees'%(I_a_phi*180/pi)\n", + "print 'Voltage induced by rotor:'\n", + "print 'peak value = %0.2f volts'%E_r_max\n", + "print 'phase angle = %0.2f degrees'%(-t*180/pi)\n", + "print 'torque angle = %0.2f degrees'%(t*180/pi)\n", + "print 'power factor : %0.2f'%(PF)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 778 Ex: 17.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "The new field current to achieve 100% power factor = 12.05 amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,acos,sin,cos,atan,asin\n", + "from cmath import polar\n", + "V_a=480# #phase voltage\n", + "f=60# #frequency\n", + "P_dev=200*746# #developed power\n", + "PF=0.85# #power factor\n", + "I_f_1=10# #field current\n", + "X_s=1.4# #synchronous resistance\n", + "phi=acos(PF)#\n", + "I_a_1_max=P_dev/(3*V_a*PF)# #phase current\n", + "I_a_1_phi=-phi#\n", + "I_a_1=I_a_1_max*complex(cos(-phi),sin(-phi))#\n", + "E_r_1=V_a-1J*X_s*I_a_1# #rotor induced voltage\n", + "E_r_1_max=polar(E_r_1)[0]\n", + "E_r_1_phi=polar(E_r_1)[1]\n", + "#to achieve 100 percent power factor, increase I_a until it is in phase with V_a\n", + "I_a_2=P_dev/(3*V_a*cos(0))#\n", + "E_r_2=V_a-1J*X_s*I_a_2#\n", + "E_r_2_max=polar(E_r_2)[0]\n", + "E_r_2_phi=polar(E_r_2)[1]\n", + "I_f_2=I_f_1*E_r_2_max/E_r_1_max# #magnitude of E_r proportional to field current\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'The new field current to achieve 100%% power factor = %0.2f amperes'%I_f_2" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter1_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter1_1.ipynb new file mode 100644 index 00000000..a61ed1a0 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter1_1.ipynb @@ -0,0 +1,334 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 : Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 45 Ex: 1.1 " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecU2XWwPHfgaFIExClKAIiUlW6sIoMVmyIIqyuuoqu\noKvi+1rWsu6Ka1v1taK4AhZULKCosPbCIBaQrvQiVRGRoQwCwjDn/eO5g2GckmRyc3OT8/188pmb\n5ObJgXkyJ/epoqoYY4wxFYIOwBhjTGqwhGCMMQawhGCMMcZjCcEYYwxgCcEYY4zHEoIxxhjAEkK5\niMilIjIl6DiSSURuFZGRQcdhjB8yvX5bQjAlEpFsEVkT+Ziq3qeqVwQVk0l/xdW7ZL1PptdvSwgp\nQkSygo7BmFiJp8hjVpdDyhJCFESksYiMF5GfRORnERlW5PkHRSRXRL4Tkd4Rjw8UkQUislVElovI\noIjnskVkrYj8TUTWAc+ISFURGe2VtcB7bk3EaxqJyBteHN+JyLUlxHuMiKyL/KCKyDkiMtc77ioi\nM0Rki4j8KCIPFVNGdeA9oJGI5Hn/hoYiMlREXvTOaSoiBV7T2WoR2SgiV4pIFxH5RkQ2FfN/dZn3\nb8sVkfdF5NAYfx0mQUqq15G/Y+9+4e+5gnc/R0TuFpEvgG3AYd7zfxWRpcBi77wzRWSOVw++EJEj\nI8pcKSI3iMhcEdksIq+KSJUS6l2DInFb/faLqtqtlBtQEZgLPATsB1QB/uA9dymwC7gcEOBK4PuI\n154ONPOOjwd+ATp497OB3cB9QCWgKvBvYBKwP3Aw8A2w2ju/AjATuB3IApoBy4FTSoh7GXBSxP1x\nwN+846+AC73jasAxJZTRE1hT5LE7gBe946ZAATAcqAycDPwKvAnUAxoB64HjvfPPBpYCLb1/z9+B\nL4L+HWfirYx6vfd3XOT3XMG7nwOsBFp7v8dK3vMfALW9sjp4v/su3mfjz8AKoJJXxgpgKtAAqAMs\nAAaXVO+sfifnZlcIZesKNARuUtUdqvqrqn4Z8fwqVX1GXY14AWgoIgcBqOq7qrrCO/4M+BDoEfHa\nAuAOVd2tqjuB/sC9qrpFVb8HHsN9mMB9sOqp6t2qmu+VOwo4v4S4XwEuABCRmsBp3mPgklgLEamn\nqttVdVoJZUiUj92lqrtU9SMgD3hZVX9W1R+AKUB777wrgftUdbGqFuCSYXsRaVzC+xv/lFavi/sd\nR1LgeVVdqKoFqrrbe/w+Vd2sqr8Cg4CnVXW6Oi/g/ph2iyjncVX9UVU3ARP5rZ6U9f5g9dsXlhDK\n1hj3R7+ghOd/LDxQ1e3eYQ0AETlNRKZ6l5qbcFcMB0S8doOq7oq43wiI7ORaG3HcBHd5u6nwBtwK\nHFRCXC8D54pIZeBcYKaqFpZ9OXAEsFBEvhaRM0ooI1rrI453FHO/RsS/4bGI+Dd6jx9czvc3sSur\nXpeluE7fyMeaADcUqa+H4Op4oR8jjiPrSTSsfvvAOn/KtgY4VEQqquqeaF8kIlWAN4CLgLdVdY+I\nvMm+30CKLjW7DvdBXeTdj/xmsQZYoapHRPP+qrpQRFbhvjn9CfcBKnxumfcYItIPeF1E6qrqjqLF\nFFd0NO9fgtW4b1uvlHmm8Vtp9XobrqmlUAN+r6y6sRq4R1XvjSO2MuuY1W9/2BVC2abh/lD/W0Sq\niev4/UMUr6vs3X4GCkTkNOCUMl4zFrhVRGqLyMHANfxWQb8G8sR1NO8nIhVFpJ2IdC6lvJeB/8E1\nU40rfFBELhKRA727W7z3KO6b4nrgABGpFfFYNJfzRRW+5j/AbSLSxotjfxHpH0d5pvxKq9dzgOO9\nTuf9cVeiRZVVD0YCV3odvCIi1UXkDBGJ5iqguHpXHKvfCWYJoQzeJfVZwOG4bwBrgAGFT/P7bxTq\nvS4PGIL7I5+La+98u7hzI/wL10y0AtffMA7XHor3Le5MXHvld8AGYARQ2ofmFVxn9ieqmhvx+KnA\nPBHJAx4BzvfafYv+2xd5ZXznjZpoWMy/OZpvVIX/J28B9wOvisgW4FsvFpNkpdVrVf0YeA03qGE6\nrn2/2Hpe0n1VnQlcATyBq/9LcR3LJdWXvfWqmHpX3BUKWP1OOPF6xxNfsOtIeQHXxq3ACFV9vJjz\nHsdd9m0HLlXV2b4EFEIichUwQFV7BR1LpiupPotIXdwfzya4kTcDVHWz95pbgcuAPcAQVf0wiNiN\niZafVwi7gf9V1ba4kQVXi0jryBNE5HTgcFVtgRuV8JSP8aQ8EWkgIseKSAURaQlcjxviZoJXUn2+\nBfjI69v5xLuP12zwR6AN0BsYLt44fmNSlW8V1BtONsc73gYsZN8RBgB9gNHeOdOA2iJS36+YQqAy\nrh1yK+6Py1u4MdAmYCXU54OJqMPez77e8dnAK96Q4pW4cfNdkxq0MTFKyigjEWmKm6hSdDzwwfx+\nmOUh7DusK2Oo6mrgyDJPNIEqUp/rq2phfV0PFH6haYSbeFVoLSEafmgyk++XsN6ogteB67xvVr87\npch9fzo1jEkArz6/gavPeZHPeZMTS6u/VrdNSvP1CkFEKuE+PC95PfBFfc++Y+0P8R4rWo59kIyv\nVLXM4YYR9fnFiPq8XkQaqOqP3iiVn7zHy6zbVq9NMkRTtwv5doUgIgI8AyxQ1UdLOG0CbigaItIN\n2Bxx+b2PWNbjKO52xx13pEUZqRBDupVRzvo8AbjEO74E1+9T+Pj5IlJZRJoBLXBzSfaRkxP8v9/K\nSN8yYuXnFcKxuFm634hI4VDS24BDAVT1aVV9V0ROF5FluIXfBvoYjzHlUVx9vhW3IOFYEbkcb9gp\ngKouEJGxuEXb8oG/ajGf0IULoWfPJERvTBR8Swiq+jlRXIGo6jV+xWDSx5YtsHw5LFv228/vvoM4\nvgTFpYz6fFIJr7kXKHXphkWLSnvWmOTKmLWMsrOz06KMVIjBrzJUYfVqmD8f5s1zPxcvdglgxw5o\n3hwOP9z9POYYuOAC2LSp/HEEaeHC8r0+VX+XVkZqlBEr32YqJ5KIFHe1bUJs50745huYMQNmzXIJ\nYMECqFkT2raFdu3cz1atXAKoXx8knlVmoiAiaAwdbwl8Xz30UGXVqmS/s8kUsdZtSwjGd6rum/AX\nX7gEMGOGu9+yJXTuDJ06/ZYA6tRJfnxBJoSqVZUNG6BGLAs/GxOlWOt2xjQZmeTZswe+/RYmT4bP\nPnO3mjXhuOOgSxcYOBCOPhr22y/oSIPXogUsWQIdOwYdiTGWEEyCrF8P778P770HH30EBx0Exx8P\n554Ljz4KjUOzZ1RytW7tOpYtIZhUYAnBxEUV5syB8ePh3XfdiJ+TToLTToOHH4ZGRVetMsVq1ar8\nHcvGJIolBBM1VdcBPG4cvP66u9+vHzzyCHTvDpUqBR1h+LRuDW+8EXQUxjiWEEyZVq+G0aPdTQT6\n94exY6FDB/9G/mQKu0IwqcRGGZli7dzpmoOee85dFZx/vusM7tQp/ZJAkKOMfvlFOeAAyMuDLPt6\nZhLMRhmZcvnhBxg+HEaMgPbt4fLLYeJEqFo16MjSU7Vq0KABrFjhRhwZEyTbwckAbm7An/7k5gNs\n3gxTpsCHH7orA0sG/mrVypawMKnBEkKG++IL6N3bDQ/t3NmNFnriCTdpzCRH4dBTY4JmTUYZ6rPP\n4M47XQK47TaYMAEqVw46qszUqhVMnVr2ecb4za4QMszChXDWWXDppXDxxW6W7BVXWDIIUuvWbh0n\nY4JmCSFDrF8PV13lZg/36uUSw6WX2tyBVNC2rUsINpDOBM0SQprbs8f1CbRr59YOWrwYrr8eqlQJ\nOjJTqG5dt9bT6tVBR2IynfUhpLFZs+DKK90oocmToU2boCMyJWnXzi0B3qRJ0JGYTGZXCGlo5064\n6Sa3rtBVV1kyCIPChGBMkOwKIc3MmeM6i1u2dH9gDjww6IhMNNq1g08/DToKk+nsCiFN7NkD990H\np5wCf/ubW4DOkkF42BWCSQV2hZAGNmxws4x373Yzjg89NOiITKxat3Yd/nv2QMWKQUdjMpVdIYTc\nl1+6zVW6dIGPP7ZkEFY1arg1jZYvDzoSk8ksIYSUKgwbBuecA089Bffea6tlhp01G5mgWUIIofx8\nuPpqtyLp1Klw5plBR2QSwRKCCZp9pwyZLVtgwACoUMEtTFerVtARmURp1w7eeivoKEwmsyuEEFm7\nFo49Fpo3d3sUWDJIL3aFYIJmCSEkli2DHj3gz3+GJ5+0/oJ01LKl2yjn11+DjsRkKksIIfDtt9Cz\nJ9x6q5tjkG5bWBqnShVo1swNPzUmCJYQUtz06XDyyfDQQzBoUNDRGL9Zs5EJkjU8pLA5c9wIopEj\noU+foKMxydCunbsiNCYIdoWQoubPd4vTDR9uySCTHH00fPNN0FGYTGUJIQUtXQqnnuqaifr1Czoa\nk0xHH+2uDI0JgiWEFLNunVug7s473fpEJrM0aQK//OLWpzIm2SwhpJBt21yfweWXu5vJPCLQvj3M\nnRt0JCYTWUJIEfn5bgZyx47w978HHY0JkjUbmaBYQkgBqm5tIlXXiWzzDDJb+/aWEEwwLCGkgKee\ncstYjx0LlSoFHY0JmjUZmaCIqgYdQ5lERMMQZzymTIHzznMJoXnzoKPJTCKCqib9uqykev3rr1C7\nNmzaBFWrJjsqk05irdt2hRCgtWvhj3+E0aMtGZjfVKkCLVq4uSjGJJMlhIDs2uXmGFx7LfTuHXQ0\nJtVYs5EJgiWEgNx2m9sy8ZZbgo7EpCIbaWSCYGsZBeC99+C119wH3kYUmeK0bw9vvx10FCbTWKdy\nkq1b5+YavPqqW9LaBC/VOpUBfv4ZDj/cdSzblwYTL+tUTmEFBW6Dm0GDLBmY0tWrBzVqwMqVQUdi\nMoklhCQaPtytU/OPfwQdiQkDm6Bmks0SQpIsXw5Dh8Jzz9n2lyY6nTrBzJlBR2EyiSWEJCgocIvV\n3Xqr2zfXmGh07gwzZgQdhckkviYEEXlWRNaLSLF7QIlItohsEZHZ3u12P+MJylNPwe7d8D//E3Qk\nJl7F1WURGSoiayPq72kRz90qIktFZJGInBLPe3bq5BJCmoynMCHg6ygjEekBbANeUNUji3k+G7he\nVUvdEyzMo4xWrXLf9D7/3K4OUlU0IzGKq8sicgeQp6oPFzm3DfAy0AU4GPgYOEJVC4qcV2a9btQI\nvvrK7ZNgTKxSapSRqk4BNpVxWloPqrvuOndlYMkg3Eqpy8XV37OBV1R1t6quBJYBXeN5X2s2MskU\ndB+CAn8Qkbki8q73zSptTJwICxfCjTcGHYnx0bVe/X1GRGp7jzUC1kacsxZ3pRAzSwgmmYIe7zIL\naKyq273217eAI4o7cejQoXuPs7Ozyc7OTkZ8cdu+HYYMgZEj3WJlJnXk5OSQk5OTiKKeAv7lHd8F\nPASUtNddsW1DZdXrzp3hkUfKGaXJGOWt277PVBaRpsDE4voQijl3BdBJVXOLPB66PoTbb3dDTV95\nJehITFmibWctrS5HPicitwCo6r+9594H7lDVaUVeU2a9Xr8eWreGjRttxrKJXUr1IZRFROqLuGou\nIl1xCSq3jJelvKVL4T//gYceCjoS4ycRaRhx9xygcATSBOB8EaksIs2AFsDX8bxH/fpQvTqsWFG+\nWI2Jhq9NRiLyCtATqCcia4A7gEoAqvo0cB5wlYjkA9uB8/2MJ1luvtn1GzRqFHQkJlFKqMvZItIe\n1xy0AhgMoKoLRGQssADIB/5ankvcwn6Eww4r77/CmNLZ4nYJ9tlncPHFsGgR7Ldf0NGYaKTi4naR\n7rkHtmyBBx5IQlAmrYSqySjdFBS4K4N777VkYBLHRhqZZLGEkECvvupmlV5wQdCRmHTSqRPMmuW+\ncBjjJ0sICbJzp9sF7eGHoYL9r5oEqlcPatd2gxWM8VOZf7pEpIaIVPSOW4pIHxGp5H9o4TJiBBx5\nJPToEXQkJh116wbTppV9njHlEc132c+AKiJyMPABcDHwvJ9Bhc327fDvf8O//lX2ucbEo1s3mDo1\n6ChMuosmIYiqbgfOBYaran+gnb9hhcvw4dC9O3ToEHQkpizLli1j586dAEyaNInHH3884Iii0727\nJQTjv6hau0WkO3Ah8E4sr8sE27bBgw/CnXcGHYmJRr9+/cjKymLZsmUMHjyYNWvWBB1SVNq3h8WL\n3Y57xvglmj/s/wPcCrypqvNFpDkwyd+wwmPYMDjhBGhn10yhUKFCBbKyshg/fjzXXnstDz74YNAh\nRaVKFTjqKBt+avxV5kxlVZ0MTBaR/UWkpqouB4b4H1rqy8tzC49NmRJ0JCZalStX5uWXX+aFF15g\n4sSJQYcTk8J+hJ49g47EpKtoRhl18XaJ+gaY5y3129n/0FLfiBFw4om210GYPPvss0ydOpW///3v\nNGvWjBUhWiSoe3e3WY4xfilz6QovGfzV2yAEETkO17l8VBLiK4wh5Zau+PVXt7bMO++49l0THtu3\nb2f16tW0atUKSP2lKwqtXg1du8K6dbbyqYmOH0tX5BcmAwBV/Ry3YFdGe/FF16ZrySBcJkyYQIcO\nHejduzcAs2fPDjii6DVu7CY9rloVdCQmXZWYEESkk4h0wvUfPC0i2d7tKWBy8kJMPXv2uIXGbrkl\n6EhMrIYOHcq0adOoU6cOAB1CNFZYxIafGn+V1qn8EL/t8iS45X4Lj1Or/SbJ3nwTDjgAjj8+6EhM\nrCpVqkTt2rXLPjFFdevm+hHOT4uF4k2qKTEhqGp2EuMIDVU3K/kf/7B23DBq27YtY8aMIT8/n6VL\nl4ZmYlqhbt1sj27jn2hGGdURketE5BERGebdwvUpSqAvvoCtW+Gss4KOxMTjiSeeYP78+VSpUoUL\nLriAWrVqBR1STDp1gvnz3XIpxiRaNKOMvgK+wm0PWIDXZKSqo/0Pb28MKTPKaMAAt4DdtdcGHYmJ\nVX5+PieffDKTJu07rzIso4wKde8O990H2dmJj8mkl1jrdjRbaFZR1evLEVPaWLMGPv4YRo0KOhIT\nj6ysLCpUqMDmzZtD3Y/Qo4fbmc8Sgkm0aBLCyyIyCJgI/Fr4oKrm+hZVinrqKbc9ZshaGUyE6tWr\nc+SRR3LyySdTvXr1oMOJS48eELKuDxMS0TQZXQPcA2zGNRmBazJK2pbfqdBktGMHNGni+hBatAg0\nFFMOzz//POAupQFUlYEDB4aqySg3F5o2dT+zovlKZzJWrE1G0SSEFUAXVf25vMHFKxUSwrPPwvjx\n8N//BhqGSYCwzlSOdNRR8Mwz0KVLgoMyacWPmcpLgR3xhxR+qm5VU+tIDr8wz1SO1KOHLapoEi+a\nhLAdmCMiIzJ12OmMGbBlC5x8ctCRmPIK80zlSIUdy8YkUjQtkG95t8hZy6kxBjRJRo6Ev/zFrSNj\nwi3sM5UL9egB11wDBQVWL03iRLMfwvMiUgU4wntokaru9jes1JGXB+PGwYIFQUdiEiHsM5ULHXyw\nG+22aBG0aRN0NCZdRDNTORtYAjzp3ZaKSMZs0fHqq268d8OGQUdiEmHYsGGhnqkc6fjjrR/BJFY0\no4xmAReo6mLv/hHAq6raMQnxFcYQ2Cijrl1h6FA4/fRA3t74ZMuWLYgItWrVCuUoI3CjjD79FMaM\nSWBQJq34MVM5qzAZAKjqEhHJiNHPc+bAjz/CqacGHYlJlOnTp3PZZZexdetWgFD3J/TsCXfc4UbB\n2UKLJhGi6Y6aKSKjvL0QeonIKCAjtvoeNQouuwwqVgw6EpMol112GcOHD2fVqlWsWrWKJ598MuiQ\n4ta8uetQXrIk6EhMuoimyagqcDVwrPfQFNwWmr+W/KrECqLJaNcuaNTIDTlt2jSpb2181KFDh9/N\nPQhrkxHAwIGuWfOqqxIUlEkrCW8yUtWduM1yHipPYGHz7rtu9IYlg/TSs2dPBg8ezAUXXADAa6+9\nBoCIdARQ1VnBRRe7E06At9+2hGASo8QrBBH5tpTXqaoe5U9IxcaS9CuEfv2gd2+44oqkvq3xWXZ2\n9t51jMCtZTR58mSAHO9+r2TFkoh6/f33bhmLDRtsPoL5vYStZSQiTUt7oaqujCWw8kh2Qti0yV0Z\nrFoFIe5zNFEKc5MRQKtWbnh0+/YJCMqklYQ1GSXzD36qGTcOTjnFkkE62rRpEy+88AIrV64kPz8/\n6HAS4oQT4JNPLCGY8otmYto2Ecnzbr+KSIGIbE1GcEF58UW374FJP6effjqrVq3iqKOOonPnznTq\n1CnokMrtxBPdfARjyqvMUUb7nCxSAegDdFPVW3yL6vfvm7QmoxUr4JhjYO1aqFw5KW9pkqhjx47M\nmrVvv3HYm4w2boTDDoOff4ZKlRIQmEkbfix/vZeqFqjqW0DvmCMLiTFj4I9/tGSQrv70pz8xYsQI\n1q1bR25uLrm54d/474ADXEKYPj3oSEzYlTnsVET6RdytAHQijfdHeO01+M9/go7C+KVq1arcdNNN\n3HPPPVRIo2E5J57o+hH+8IegIzFhFs3EtOf5bbnrfGAlMFJVf/I1sn1jSEqT0cKFbs+D1attCF+6\natasGdOnT6devXp7Hwt7kxHABx/A3XfbYndmX35MTLu0XBGFyLhxcN55lgzSWYsWLdhvv/2CDiPh\njj8e5s6FzZttdJyJXzRNRo2Bx4HjvIc+A65T1bV+BhaEceOsuSjdVatWjfbt29OrVy+qVKkSdDgJ\ns99+cNxx8PHH7kuNMfGIZtXS54AxwADv/oXeY2m1oeTChW5CWvfuQUdi/NS3b1/69u0bdBi+6N0b\n3n/fEoKJXzR9CHNV9eiyHvNTMvoQ/vUvyM2FRx/19W1MCkqHPgRwq56ecAKsWWPLYRvHj2GnG0Xk\nYhGpKCJZInIR8HP8IaamsWNhwICyzzPhtmTJEs477zzatGlDs2bNaNasWdAhJUyLFlClCsyfH3Qk\nJqyiSQiX4ZqLfgTWAf2BgX4GlWwLF7rOuG7dgo7E+G3gwIFceeWVZGVlkZOTwyWXXBJ0SAkj4pqN\n3nsv6EhMWJWZEFR1paqepaoHerezVXV1MoJLljfecKub2uii9Ldjxw5OOukkVJUmTZowdOjQoENK\nqMJ+BGPiEc1aRi+ISO2I+3VE5Fl/w0quCRPg7LODjsIkQ9WqVdmzZw+HH344TzzxBOPHjw86pITq\n1Qu+/hq2bQs6EhNG0XwnPkpVNxfeUdVNQMdoCheRZ0VkfWl7K4jI4yKyVETmikiHaMpNpB9+gOXL\noUePZL+zCcKjjz7K9u3befzxx5kxYwYvvfRSVK8rri6LSF0R+UhElojIh0W+ON3q1etFInKKD/+U\nYtWo4dbissXuTDyiSQgiInUj7tQFot1l+DlKWfdIRE4HDlfVFsAg4Kkoy02YCRPgtNNsUbBM0bVr\nV2rWrEnjxo15/vnnY7lCKK4u3wJ8pKpHAJ949xGRNsAfgTbea4Z7C0MmxRlnwMSJyXo3k06iqaQP\nAV+JyF0icjfwFfBgNIWr6hRgUymn9AFGe+dOA2qLSP1oyk6UCROgT59kvqMJoxLq8t766/0snOBw\nNvCKqu729hVZBnRNRpzg6vPEiVBQkKx3NOkimk7lF4BzgZ9wI43O8R5LhIOBNRH31wKHJKjsMuXl\nweefu444Y+JQX1XXe8frgcIvM41wdbnQWlxdT4rmzaFePdeXYEwsopmpjKrOB/wa3Vx00kSxM3Ui\nR4NkZ2eTnZ1d7jf+4AM3M7lWrXIXZUIkJyeHnJychJapqioipc0yS1q9BneVMGGCDaXONOWt21El\nBB99DzSOuH+I99jv+DE80EYXZZ6ffvqJL774gu+//z4RW2iuF5EGqvqjiDTEXUVDwPUaXL2+7DK4\n915fijcpquiXijvvvDOm1wc98n4C8GcAEekGbI64BPdVfj68+y6cdVYy3s2kirPPPputW7dy8skn\nc8YZZ3DGGWeUp7gJQOHMtkuAtyIeP19EKotIM6AFkNQGnC5d3FIsy5Yl811N2Pl6hSAirwA9gXoi\nsga4A6gEoKpPq+q7InK6iCwDfiGJM6C//BIOPRQaNy77XJM+duzYwf333x/z64qpy/8E/g2MFZHL\ncfuEDABQ1QUiMhZYgNtD5K9J2wPWU6GC+7IzYQJcf30y39mEWTSL2/XDVfz6/Nber6qatJZ3Pxa3\nu+0296G5++6EFmtS3O2330737t33uTJIl8XtinrnHXjgAZg82be3MCku1rodTUJYDpypqgvLG1y8\n/PjgdOgAw4a5NeRN5qhRowbbt2+ncuXKVPImn2zbti0tE8KOHdCggZt4GbFBnMkgfqx2+mOQycAP\n69bBypU2AiMTbdu2jYKCAnbu3EleXh55eXlBh+Sb/faDk05yzUbGRCOaPoQZIvIarsNsl/eYqmpo\nF4H58EO3KXlW0GOsTNIsXLiQ1q1bM2vWrKBDSar+/WH0aDfiyJiyRPMncX9gB1B0PZbQJoT333fL\nVZjM8fDDDzNy5Eiuv/56JIN2jznzTBg82I04qlu37PNNZiuzDyEVJLKtdc8eqF8f5syBQ5I2J9qk\nsnTtVC7Ur59b38iuEjJPrHW7xCsEEblZVe8XkWHFPK2qOiSuCAM2fTo0bGjJwGSOAQPg+ectIZiy\nldZktMD7OZN9p90LJUzDDwNrLjKZ5owzYNAgazYyZcu4JqNu3dx0/hNOSEhxJg2ke5MRwHnnwemn\n21VCpvFj2GnayM2FBQvg2GODjsQE5cQTTww6hED07w9jxwYdhUl1GTXwMifHJYMqVYKOxCTbjh07\n2L59Oxs2bCA3N3fv41u3bg0wquQpbDb6+WebpGZKllEJ4ZNP3PwDk3mefvppHnvsMX744Qc6deq0\n9/GaNWsGGFXy1Kjh+s7GjoW//jXoaEyqimbpipbAcKCBqrYVkaOAPqqatFWAEtXW2ro1jBkDHaPa\nEdqko8cff5whQ/YdIJcJfQjgVve96y746qukvaUJmB9rGX0G3AT8R1U7iJvVM09V25Yv1Ogl4oPz\n/fdw1FGwYYNb1M5kri+//JKVK1fu3Q/hkksuyYiEkJ/vhltPmQItWiTtbU2AEjYPIUI1VZ1WOLvT\n2xlqd7wL3+4tAAAW4UlEQVQBBmXSJMjOtmSQ6S666CK+++472rdvT8WKFYMOJ6mysuD88+GllyDG\nfVNMhogmIWwQkcML74jIecA6/0Lyxyef2FBTAzNnzmTBggX7LF/xxBNPBBhRcl18sZuoNnQoZNAK\nHiZK0XxfvgZ4GmglIj8A/wtc5WtUCaYKn35qHcoG2rVrx7p1ofs+kzAdO7pRdl9+GXQkJhWVeYWg\nqsuBE0WkOlBBVUO3XvDy5bB7N7RsGXQkJmgbNmygTZs2dO3alSoZOP5YxF0lvPiizccxvxdNp/IN\n/H6pii3ATFWd41dgRWIoV+fbiBGuI+3FFxMYlAmlnJwcYG9nGwC9evXKiE7lQqtXuw2ivv8eqlZN\n+tubJPJjpnIn4ErgYOAQYDBwGjBSRG6OK8oks/4DUyg7O5umTZuye/dusrOz6dq1a9AhJd2hh0Ln\nzvDGG0FHYlJNNAmhMdBRVW9Q1etxCeIg3Ibjl/oYW0KouhnKvXoFHYlJBSNGjKB///4MHjwYgLVr\n1wYcUTCuuAJGjgw6CpNqokkIB/LbTmkAu4H6qrod2OlLVAm0ZInrRGvaNOhITCp48skn+fzzz6lV\nqxYARxxxRMARBaNPH1i40H0+jCkUTUIYA0wTkTtEZCjwJfCy18m8oNRXpoApU+D444OOwqSKKlWq\n7NOZXDg5LdNUrgyXXgqjRgUdiUklpSYEb1byaGAQriN5EzBYVe9U1V9U9cIkxFguU6ZAjx5BR2FS\nRc+ePbnnnnvYvn07H330Ef379w86pMD85S9uv+Vdu8o+12SGUkcZeQnhW1Vtl7yQio0j7tEYzZrB\nO+9AmzYJDsqEUkFBAaNGjeLDDz8E4NRTT2XQoEEZNcooUq9ecPXVbr8Ek378WMtoNPCkqn5d3uDi\nFe8HZ+1aaN/erV9kszJNfn4+7dq1Y9GiRfs8nimL2xXn5Zfhuefgo48CDcP4xI9hp92Ar0TkOxH5\n1rt9E3+IyTNlChx3nCUD42RlZdGyZUtWrVoVdCgpo18/+PZbKJIjTYaKZi2jU32PwifWf2CKys3N\npW3btnTt2pXq1asHHU7gqlRxG+c88YS7mcwW9Z7KInIQsHdeo6qu9iuoYt47rkvrI4+EZ5+FLl18\nCMqE0uTJkylalzJtpnJRP/wA7drBd99B7dpBR2MSyY8+hD7AQ0Aj4CegCbAw1fdDyM11cw9yc92y\nv8bk5+fTtm1bFi9evM/jmdyHUOjCC93s5f/936AjMYnkRx/C3UB3YImqNgNOBKbFGV/SfP45HHOM\nJQPzm6ysLFq1amV9CMUYMsQ1Ge3ZE3QkJkjR/Lncrao/i0gFEamoqpNE5DHfIysn6z8wxbE+hOId\ncwzUq+eGaPfpE3Q0JijRJIRNIlITmAKMEZGfgG3+hlV+X37p9o81JtJdxVSK//73vwFEknqGDIFH\nH7WEkMmi6UOoAezANS9dCNQCxqjqRv/D2xtDTG2tu3ZBnTrw449Qs6aPgZm0YH0Izu7dcPjhMG4c\nZOAisGkp4Z3KqSDWD87XX7vVHOfO9TEoE0o1atTYu33mrl272L17N6pqCcEzbJhbHdiWxk4PCe9U\nFpF+IrJURLaKSJ5321q+MP01dSp06xZ0FCYVbdu2jby8PPLy8tixYwfjx48POqSUcvnlbkCGTVTL\nTNGMMnoA6KOqtVS1pner5Xdg5WEJwUSjQoUK9O3bN+gwUkq1anDNNfDAA0FHYoIQTafyj6q60PdI\nEmjqVPjnP4OOwqSiNyLaQgoKCpg5c2aA0aSmq692fQl33gmNGwcdjUmmEhOCiPTzDmeIyGvAW/y2\nUY6qakpea69fD5s2QYbue2LKMHHixL19CFlZWTS1nZN+p25dGDgQHnrIjToymaPETmUReR4ofFIi\njgFQ1YG+RrZvLFF3vr39Njz1FLz/vs9BmbRho4x+b906aNsW5s2DRo2CjsbEK9a6XeIVgqpempCI\nkmzqVOjePegoTKq65JJLeOyxx6jtLdqzadOmgCNKTQ0buquEe++1Re8ySTSjjEaLSO2I+3VE5Fl/\nw4qfdSib0sydO3dvMgCoU6dOgNGktptvhldegdVJW8bSBC2aUUZHq+rmwjuqugno6F9I8cvPhxkz\nbFKNKZmqkpubu/d+5LHZ10EHuaWx77kn6EhMskQzykhEpK6q5np36gIV/Q0rPvPnwyGHuFnKxhTn\nhhtuoHv37gwYMABVZdy4cUGHlNJuvBFatnRXC4cdFnQ0xm/RXCE8hNsx7S4RuRv4CnjQ37Di89VX\n1n9gSvfnP/+Z8ePHc9BBB9GgQQPefPPNoENKaQcc4Iah3nFH0JGYZIhq6QoRaQucgBtp9KmqLvA7\nsCLvH9VojMsvd2u6X3VVEoIyacNGGZUuL88N4/7vf6FTp6CjMbHI6LWMjj4annnGJQVjomUJoWwj\nRsDLL8OkSbZHeZj4sUFOKOzYAUuXum0zjTGJddll8PPPMHFi0JEYP/maEESkt4gs8hbHu7mY57NF\nZIuIzPZut8f7XnPnQuvWbtNwY5JJRFaKyDdeHf7ae6yuiHwkIktE5MPIodthlJUFDz4IN93klsk2\n6cm3hCAiFYEngN5AG+ACEWldzKmTVbWDd7s73vebMcOaikxgFMj26nDhoOdbgI9U9QjgE+9+qPXu\nDU2auJUATHry8wqhK7BMVVeq6m7gVeDsYs5LSIukJQQTsKL1uA8w2jseDYR+WVURt7bRXXe5zadM\n+vEzIRwMrIm4v9Z7LJICfxCRuSLyroi0iffNLCGYACnwsYjMEJErvMfqq+p673g9UD+Y0BKrTRvX\nn3DTTUFHYvwQzcS0eEUzfGIW0FhVt4vIabgVVYtdp3To0KF7j7Ozs8nOzt57f9s2+O47txiXMWXJ\nyckhJycnkUUeq6rrRORA4CMR2Wd7GVVVESn281BavU5V//iH+6zl5EAIws0o5a3bvg07FZFuwFBV\n7e3dvxUoUNX7S3nNCqBT4azoiMdLHZ73+edw/fVu60xjYpXIYacicgewDbgC16/wo4g0BCapaqsi\n54Zm2GlRb74Jf/87zJkDlSsHHY0pSSoNO50BtBCRpiJSGfgjMCHyBBGpL97i9CLSFZegYl5cxpqL\nTFBEpJqI1PSOqwOnAN/i6vol3mmX4K5+00bfvtCsGfzf/wUdiUkk35qMVDVfRK4BPsCtffSMqi4U\nkcHe808D5wFXiUg+sB04P573mjkTevVKUODGxKY+8Kb3vSYLGKOqH4rIDGCsiFwOrAQGBBdi4onA\n8OHui1jfvq5vwYRfWsxUbt0aXn3VzVQ2JlY2Uzl+Tz/tVgf48ks3V8GkllRqMkqKrVvdeu32DcWY\n5Bs0CGrVctttmvALfUKYPdstV1GpUtCRGJN5RGDUKNeXsCCpS14aP6RFQuiYktv1GJMZmjZ1m+hc\ndBH8+mvQ0ZjyCH1CmDsX2rcPOgpjMtsVV7jEcEvoF+jIbKFPCHPmWEIwJmiFTUfjx8M77wQdjYlX\nqEcZ7doF++8PGzdCtWoBBGbSgo0ySpwpU6B/f5g1Cxo1Cjoak1GjjBYtcpeplgyMSQ09ergtN88/\n35bJDqNQJwRrLjIm9dx2G9SsCTfcEHQkJlahTghz59pkNGNSTcWKMGYMvPcejB5d9vkmdYQ6IdgV\ngjGpqXZteOstuPFGt9aYCYfQJgRVSwjGpLK2bd3SFuecA2vXBh2NiUZoVx/5/ns3O7lBg6AjMcaU\n5NxzYflyOO00t0z9/vsHHZEpTWivEObMsf4DY8LgxhuhZ0/o188NFTepK9QJwZqLjEl9IvDYY1C9\nOvzlL1BQEHREpiShTQi2ZIUx4VGxIrzyitvqdsgQ1wdoUk9oE4I1GRkTLtWquWUtpk2Dv/3NkkIq\nCuXSFXl5rjN5yxbblMOUny1dkVy5uW6Hw7PPhn/9K+ho0lusdTuUf04XLIBWrSwZGBNGdevCRx9B\ndjbs2QN33+36GUzwQtlkNG8etGsXdBTGmHgddBBMnuxmMw8ZYh3NqcISgjEmEAceCJMmuf7AgQMh\nPz/oiIwlBGNMYPbfHz74AH76Cfr2df2DJjiWEIwxgapWDSZMgIYN3fLZa9YEHVHmCl1C+Pln2L4d\nDjkk6EiMMYlSqRKMGAEXXgjdu8PMmUFHlJlClxDmz3dXBzYqwZj0IgI33QTDhkHv3rZ0dhBClxDm\nzXOrKBpj0tM557jO5vvug0GDYOfOoCPKHKFLCIVXCMaY9NWuHUyfDps3w7HHuhVTjf9ClxCsQ9mY\nzFCzJrz2Glx6KXTrBqNG2XIXfgvV0hWqcMABsGiRm9hiTCLY0hWpb/58uOgiaNwYRo6E+vWDjigc\nYq3bobpCWLfOLVdhycCYzNK2rVsU78gj3aKWL75oVwt+CFVCsOYiYzJX5cpwzz0wcSI88gicdBIs\nXhx0VOnFEoIxJlS6dIGvv4Y+feC44+Cf/4Rt24KOKj2ELiHYkFNjTFYWXHedWwdp+XJo2dJ1Ou/Z\nE3Rk4Ra6hGBXCMaYQgcfDGPGwNtvu36Fo492m/BY/0J8QjPKqKBAqVULVq+GOnWCjsikExtllB5U\nXf/CbbfBfvvBP/4BZ52V2asaxFq3Q5MQ1qxROneGH38MOhqTbiwhpJeCAnjrrd92Y7v9djf7uWLF\nYOMKQtoOO124EFq3DjoKY0yqq1ABzj0XZs92SeGhh6B5c/i//3Mzn03JQpMQFi1y22YaY0w0RNxI\npK++grFjXYJo1gyuvhq++Sbo6FJTaBKCXSEYY+LVtavrfJ4/H+rVgzPPhE6d4MknITc36OhSR2gS\ngl0hGGPKq1EjuPNOWLHCrab6+edw2GHQvz+MGwe//BJ0hMEKTadyw4bK1Klw6KFBR2PSjXUqZ7ZN\nm+D1191t6lQ4+WSXIM44A2rUCDq68knbUUbVqytbt7oOI2MSyRKCKbRxoxuhNG4cfPEFHHMMnHaa\nu7VuHb4hrGmbEDp2VNtWz/jCEoIpTl4efPopvPeeuwGceipkZ8Pxx4djG9+0TQgXXqi89FLQkZh0\nZAnBlEXVDWz58EP47DN3q1ULevZ0yaF7dzjiiNRrwUjbhHDXXcrttwcdiUlHlhBMrAoK3ECXzz6D\nyZPd0twbN0LHjtC5s1uAr3NnN8w1yGamtE0Ir7+u9OsXdCQmHVlCMImwcSPMmOFu06e727ZtbkHO\ndu32/Vm/fnISRdomhHnz1FY6Nb6whGD8snGjm/swb567FR6LwOGHu1vz5vv+PPDAxCWLlEoIItIb\neBSoCIxS1fuLOedx4DRgO3Cpqs4u5hzduVOpUsW3UE0G8yshlFX/LSFkJlX46SdYtszdli93t8Lj\nXbugaVM3ke7II8v3XjHXbbdXceJvuA/BMqApUAmYA7Qucs7pwLve8THA1BLK0vKaNGlSWpSRCjGk\nWxle/Qqi/pc79lT5P7QyElfGpk2qs2ervvtu+eOItW772SfeFVimqitVdTfwKnB2kXP6AKO9T8Y0\noLaI+LJ9dk5OTlqUkQoxpFsZPomm/pdbqvwfWhmJK6N2bWjfHqZNK38csfIzIRwMrIm4v9Z7rKxz\nQjC615gyRVP/jUkpfiaEaBtHi7ZvWaOqSQdWj03o+NapLCLdgKGq2tu7fytQoBEdayLyHyBHVV/1\n7i8Ceqrq+iJl2YfL+EoT3KkcZf23em18F0vdzvIxjhlACxFpCvwA/BG4oMg5E4BrgFe9D9DmoskA\nEv9hNSYJyqz/Vq9NqvEtIahqvohcA3yAG3HxjKouFJHB3vNPq+q7InK6iCwDfgEG+hWPMclUUv0P\nOCxjShWKiWnGGGP8l2JLMe1LRHqLyCIRWSoiN8dZxkoR+UZEZovI11G+5lkRWS8i30Y8VldEPhKR\nJSLyoYjUjqOMoSKy1otltjdxqbQyGovIJBGZLyLzRGRIrLGUUkbUsYhIVRGZJiJzRGSBiNwXRxwl\nlRHr/0lF77yJscZQShkxxZAImVy3rV6XWFbwdTuWSQvJvBHFxJ4oy1kB1I3xNT2ADsC3EY89APzN\nO74Z+HccZdwBXB9DHA2A9t5xDWAx0DqWWEopI9ZYqnk/s4CpwHFx/J8UV0ascVwPjAEmxPN7KaGM\nmGKwul2+um31OnXrdipfISRyYk9MnXeqOgXYVOThvZPovJ994ygjplhU9UdVneMdbwMW4sayRx1L\nKWXEGst277Ay7g/apljiKKWMqOMQkUNws9tHRbwmphhKKEOijSFBMrpuW73+vVSp26mcEBI1sUeB\nj0VkhohcUY546utvI6DWA/HOqL5WROaKyDPRXAIWEjdapQMwLd5YIsqYGmssIlJBROZ47zdJVefH\nGkcJZcQSxyPATUBBxGOx/l8UV4bGEEMiWN32WL3eKyXqdionhET1dh+rqh1wC+hdLSI9ylugumux\neOJ7CmgGtAfWAQ9F8yIRqQG8AVynqnnxxOKV8bpXxrZYY1HVAlVtj5tJfryI9Io1jmLKyI42DhE5\nE/hJ3eKHxX7jKSuGUsqI6/dSDla3sXod8W9Imbqdygnhe6BxxP3GuG9SMVHVdd7PDcCbuMv1eKwX\nkQYAItIQ+CmOWH5SD+6yrsxYRKQS7kPzoqq+FU8sEWW8VFhGPLF4r9sCvAN0ijWOYsroHEMcfwD6\niMgK4BXgBBF5McYYiivjhXj/L8oh4+u21et9pEzdTuWEsHdij4hUxk3smRBLASJSTURqesfVgVOA\nb0t/VYkmAJd4x5cAb5VybknxNIy4e05ZsYiIAM8AC1T10XhiKamMWGIRkXqFl5oish9wMjA7xjiK\nLaOwwpcVh6repqqNVbUZcD7wqapeHEsMJZTx51h/LwmQ0XXb6vW+Uqpua4wjG5J5w10KL8aNyLg1\njtc3w43gmAPMi7YMXIb9AdiFa+sdCNQFPgaWAB8CtWMs4zLgBeAbYK73y61fRhnH4doD5+Aq6myg\ndyyxlFDGabHEAhwJzPLK+Aa4yXs8ljhKKiOm/xPvNT35bRRFTL+XiDKyI8p4MdYYrG7HX7etXqdu\n3baJacYYY4DUbjIyxhiTRJYQjDHGAJYQjDHGeCwhGGOMASwhGGOM8VhCMMYYA1hCSCoR2V9Eroq4\n30hExvnwPmdJnEsqGxMrq9fpw+YhJJG3CNdEVT0y4FCMSRir1+nDrhCS699Ac3EbVdwvIk3E22RE\nRC4VkbfEbYSxQkSuEZEbRWSWiHwlInW885qLyHviVrj8TERaFn0Tr6xh3vHzIvKYiHwhIstFpF8x\n5zcVt1nLcyKyWETGiMgp3muWiEgX77ye8ttGG7O8hcWMsXqdLvyeom+3faaUN2HfTUWaFt4HLgWW\nAtWBesAWYJD33MO41RwBPgEO946PAT4p5n0uAYZ5x88Dr3nHrYGlxZzfFNgNtMWtlDgDtwcwuDXZ\n3/SOJwDdveNqQMWg/0/tFvzN6nX63LJKSxYm4craqGKSqv4C/CIim4GJ3uPfAkd5i5j9ARjn1vYC\n3KYcpVG8RbFUdaGIlLSm+gr11nEXkfm4NVTArZPT1Dv+AnhERMYA41X1+zLe22QGq9dpwhJCavk1\n4rgg4n4B7ndVAdikbg38WOyKOC7pw1v0vXdFHGcBqOr9IvJf4AzgCxE5VVUXxxiLyTxWr0PC+hCS\nKw+oGcfrBEDdJiIrROQ8cEsAi8hRJZ2faCLSXFXnq+oDwHTgd+28JiNZvU4TlhCSSFU34r6BfCsi\n9+MuewuHeRXdEanoceH9C4HLxW3ZNw/XFvq7tyqjrGLDK+V+4fF1Xuxzcd+03iuhLJNBrF6nDxt2\naowxBrArBGOMMR5LCMYYYwBLCMYYYzyWEIwxxgCWEIwxxngsIRhjjAEsIRhjjPFYQjDGGAPA/wMo\nN+WJLN7kewAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f3ff2a1f110>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,show,subplot,title,xlabel,ylabel\n", + "from numpy import arange,exp\n", + "#As both q and i are 0 when t<0, graph coincides with x-axis till t=0 and we here,show the part where t>0\n", + "t=arange(0,0.04+0.000001,0.000001)\n", + "q=[];i=[]\n", + "for time in t:\n", + " q.append(2*(1-exp(-100*time)))\n", + " #current i=dq/dt=200*e**(-100*t)\n", + " i.append(200*exp(-100*time))\n", + "subplot(121)\n", + "title('charge vs time')\n", + "xlabel('time in ms')\n", + "ylabel('charge in coulombs')\n", + "#ms-milli second(10**-3)\n", + "plot(t*10**3,q)\n", + "subplot(122)\n", + "title('current vs time')\n", + "xlabel('time in ms')\n", + "ylabel('current in amperes') #ms-milli second(10**-3)\n", + "plot(t*10**3,i)\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 46 Ex: 1.2" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ELEMENT A :\n", + "Power for element A in watts is 24\n", + "As a battery, element A is being charged\n", + "ELEMENT B\n", + "Power for element B in watts is -12\n", + "As a battery, element B is being discharged\n", + "ELEMENT C\n", + "Power for element C in watts is -36\n", + "As a battery, element C is being discharged\n" + ] + } + ], + "source": [ + "#element A\n", + "print 'ELEMENT A :'\n", + "V_a=12#\n", + "i_a=2#\n", + "P_a=V_a*i_a# #passive reference configuration (current enters through +ve polarity)\n", + "if(P_a>0): #absorption of power\n", + " print 'Power for element A in watts is',P_a\n", + " print 'As a battery, element A is being charged'\n", + "elif(P_a<0) : #supplying of power\n", + " print 'Power for element A in watts is',P_a\n", + " print 'As a battery, element A is being discharged'\n", + "\n", + "\n", + "#element B\n", + "print 'ELEMENT B'\n", + "V_b=12#\n", + "i_b=1#\n", + "P_b=-V_b*i_b# #opposite to passive reference configuration (current enters through -ve polarity)\n", + "if(P_b>0): #absorption of power\n", + " print 'Power for element B in watts is',P_b\n", + " print 'As a battery, element B is being charged'\n", + "elif(P_b<0) : #supplying of power\n", + " print 'Power for element B in watts is',P_b\n", + " print 'As a battery, element B is being discharged'\n", + "\n", + "\n", + "#element C\n", + "print 'ELEMENT C'\n", + "V_c=12#\n", + "i_c=-3#\n", + "P_c=V_c*i_c# #passive reference configuration (current enters through +ve polarity)\n", + "if(P_c>0): #absorption of power\n", + " print 'Power for element C in watts is',P_c\n", + " print 'As a battery, element C is being charged'\n", + "elif(P_c<0): #supplying of power\n", + " print 'Power for element C in watts is',P_c\n", + " print 'As a battery, element C is being discharged'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 47 Ex: 1.3" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Density of Fluid = 937.8 N sec**2/m**4\n", + "\n", + " New Specific Weight = 9195 N/m**3\n" + ] + } + ], + "source": [ + "# initialisation of variables\n", + "G= 9200 # N/m**2\n", + "g1= 9.81 # m/sec**2\n", + "g2= 9.805 #m/sec**2\n", + "# Calculations\n", + "rho= G/g1\n", + "G2= rho*g2\n", + "# Results\n", + "print 'Density of Fluid = %.1f N sec**2/m**4'%(rho)\n", + "print '\\n New Specific Weight = %.f N/m**3'%(G2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 47 Ex: 1.4" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of textbook\n", + "Resistance of copper wire = 0.05 ohms\n" + ] + } + ], + "source": [ + "from numpy import pi\n", + "d=2.05*10**-3# #diameter of wire\n", + "l=10# #length of wire\n", + "P=1.72*10**-8# #resistivity of copper\n", + "A=pi*d**2/4# #area of wire\n", + "R=P*l/A# #resistance of the copper wire\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of textbook\"\n", + "print 'Resistance of copper wire = %0.2f ohms'%R" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 47 Ex: 1.5 " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistance of heater element = 9.00 ohms\n", + "operating current = 13.00 amperes\n" + ] + } + ], + "source": [ + "P=1500# #power of heater\n", + "V=120# #operating voltage\n", + "R=V**2/P# #resistance of heater element\n", + "i=V/R# #operating current\n", + "print 'resistance of heater element = %0.2f ohms'%R\n", + "print 'operating current = %0.2f amperes'%i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 48 Ex: 1.6" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage across resistance = -10.00 volts\n", + "current through resistance = 2.00 amperes\n", + "current through source = -2.00 amperes\n", + "power for voltage source = -20.00 watts\n", + "power for resistance = 20.00 watts\n", + "Results are in agreement with those previously found in the textbook\n" + ] + } + ], + "source": [ + "V_s=10# #source voltage\n", + "R=5#\n", + "V_x=-V_s# #Voltage across R(applying KVL)\n", + "#the actual polarity is opposite to the reference, so we take polarity to be +ve at the top end of resistance\n", + "i_x=-V_x/R# #ohm's law(-ve sign as V_x and i_x have references opposite to passive configuration)\n", + "i_y=-i_x# #current through source\n", + "P_s=V_s*i_y# #power for voltage source\n", + "P_R=-V_x*i_x# #power for resistance(-ve sign as V_x and i_x have references opposite to passive configuration)\n", + "print 'voltage across resistance = %0.2f volts'%V_x\n", + "print 'current through resistance = %0.2f amperes'%i_x\n", + "print 'current through source = %0.2f amperes'%i_y\n", + "print 'power for voltage source = %0.2f watts'%P_s\n", + "print 'power for resistance = %0.2f watts'%P_R\n", + "if(V_x==-10 and i_x==2 and i_y==-2 and P_s==-20 and P_R==20):\n", + " print 'Results are in agreement with those previously found in the textbook'\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 48 Ex: 1.7" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Source voltage for given circuit = 35.00 volts\n" + ] + } + ], + "source": [ + "R_1=10#\n", + "R_2=5#\n", + "V_R_2=15# #voltage across R_2\n", + "a=0.5#\n", + "i_y=V_R_2/R_2# #current across R_2\n", + "i_x=i_y*2/3# #current across R_1, by applying KCL at the top end of the controlled source \n", + "V_x=i_x*R_1# #ohm's law\n", + "V_s=V_x+V_R_2# #KVL around the periphery of the circuit\n", + "print 'Source voltage for given circuit = %0.2f volts'%V_s" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter2_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter2_1.ipynb new file mode 100644 index 00000000..108edcf1 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter2_1.ipynb @@ -0,0 +1,785 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 : Resistive Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 74 Ex: 2.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Equivalent resistance = 20.00 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R_1=10#\n", + "R_2=20#\n", + "R_3=5#\n", + "R_4=15#\n", + "#We proceed through various combinations of resistances in series or parallel while we replace them with equivalent resistances We start with R_3 and R_4.\n", + "R_eq_1=R_3+R_4# #R_3 and R_4 in series\n", + "R_eq_2=1/((1/R_eq_1)+(1/R_2))# #R_eq_1 and R_2 in parallel\n", + "R_eq=R_1+R_eq_2# #R_1 and R_eq_2 in series\n", + "print 'Equivalent resistance = %0.2f ohms'%R_eq" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 74 Ex: 2.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FOR SOURCE\n", + "current = 3 amperes\n", + "power = -270.00 watts\n", + "FOR R1\n", + "current = 3.00 amperes\n", + "voltage = 30.00 volts\n", + "power = 90.00 watts\n", + "FOR R2\n", + "2.0 current in amperes\n", + "current = 2.00 amperes\n", + "voltage = 60.00 volts\n", + "power = 120.00 watts\n", + "FOR R3\n", + "current = 1.00 amperes\n", + "voltage = 60.00 volts\n", + "power = 60.00 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=90# #source voltage\n", + "R_1=10#\n", + "R_2=30#\n", + "R_3=60#\n", + "R_eq_1=1/((1/R_2)+(1/R_3))# #R_2 and R_3 in parallel\n", + "R_eq=R_1+R_eq_1# #R_1 and R_eq_1 in series\n", + "i_1=V_s/R_eq# #ohm's law\n", + "#i_1 flows clockwise through V_s,R_1 and R_eq_1\n", + "V_2=R_eq_1*i_1# #voltage across R_eq_1\n", + "#As R_eq_1 is equivalent of parallel combination of R_2 and R_3, V_2 appears across both of them\n", + "i_2=V_2/R_2# #ohm's law\n", + "i_3=V_2/R_3# #ohm's law\n", + "#we can verify KCL, i_1=i_2+i_3\n", + "V_1=i_1*R_1# #ohm's law\n", + "#we can verify KVL, V_s=V_1+V_2\n", + "P_s=-V_s*i_1# #source power(-ve sign as V_s and i_1 have references opposite to passive configuration)\n", + "P_1=i_1**2*R_1# #power for R_1\n", + "P_2=V_2**2/R_2# #power for R_2\n", + "P_3=V_2**2/R_3# #power for R_3\n", + "print 'FOR SOURCE'\n", + "print 'current = %0.2g amperes'%i_1\n", + "print 'power = %0.2f watts'%P_s\n", + "print 'FOR R1'\n", + "print 'current = %0.2f amperes'%i_1\n", + "print 'voltage = %0.2f volts'%V_1\n", + "print 'power = %0.2f watts'%P_1\n", + "print 'FOR R2'\n", + "print i_2,'current in amperes'\n", + "print 'current = %0.2f amperes'%i_2\n", + "print 'voltage = %0.2f volts'%V_2\n", + "print 'power = %0.2f watts'%P_2\n", + "print 'FOR R3'\n", + "print 'current = %0.2f amperes'%i_3\n", + "print 'voltage = %0.2f volts'%V_2\n", + "print 'power = %0.2f watts'%P_3\n", + "#we may verify that P_s+P_1+P_2+P_3=0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 75 Ex: 2.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage across R_1 : 1.50 V\n", + "voltage across R_4 : 9.00 V\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_total=15#\n", + "R_1=1*10**3#\n", + "R_2=1*10**3#\n", + "R_3=2*10**3#\n", + "R_4=6*10**3#\n", + "#By voltage-division priciple\n", + "V_1=R_1*V_total/(R_1+R_2+R_3+R_4)# #voltage across R_1\n", + "V_4=R_4*V_total/(R_1+R_2+R_3+R_4)# #voltage across R_4\n", + "print 'voltage across R_1 : %0.2f V'%V_1\n", + "print 'voltage across R_4 : %0.2f V'%V_4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 75 Ex: 2.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "voltage across R2 or R3 = 25.00 volts\n", + "source current = 1.25 amperes\n", + "current through R3 = 0.42 amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=100# #source current\n", + "R_1=60#\n", + "R_2=30#\n", + "R_3=60#\n", + "R_x=1/((1/R_2)+(1/R_3))# #R_2 and R_3 parallel\n", + "V_x=R_x*V_s/(R_1+R_x)# #voltage across R_x(voltage-division principle)\n", + "i_s=V_s/(R_1+R_x)# #ohm's law\n", + "i_3=R_2*i_s/(R_2+R_3)# #current through R_3(current-division principle)\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print 'voltage across R2 or R3 = %0.2f volts'%V_x\n", + "print 'source current = %0.2f amperes'%i_s\n", + "print 'current through R3 = %0.2f amperes'%i_3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 76 Ex: 2.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current through R1 = 10.00 amperes from resistance method\n", + "current through R1 = 10.00 amperes from conductance method\n", + "We get the same alue in both methods\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "i_s=15# #source current\n", + "R_1=10#\n", + "R_2=30#\n", + "R_3=60#\n", + "R_eq=1/((1/R_2)+(1/R_3))# #R_2 and R_3 in parallel\n", + "i_1=R_eq*i_s/(R_1+R_eq)# #current through R_1(current-division principle)\n", + "print 'current through R1 = %0.2f amperes from resistance method'%i_1\n", + "#we can also do the above calculations using conductances as shown below.\n", + "#Conductances of respective resistances\n", + "G_1=1/R_1#\n", + "G_2=1/R_2#\n", + "G_3=1/R_3#\n", + "i_1=G_1*i_s/(G_1+G_2+G_3)#\n", + "print 'current through R1 = %0.2f amperes from conductance method'%i_1\n", + "print 'We get the same alue in both methods'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 76 Ex: 2.7" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The matrix form is\n", + "G*V=I\n", + "where\n", + "G=\n", + "[[ 0.45 -0.25 0. ]\n", + " [-0.25 0.85 -0.2 ]\n", + " [ 0. -0.2 0.3 ]]\n", + "V=\n", + "transpose of [V_1,V_2,V_3]\n", + "and\n", + "I=\n", + "[[-3.5]\n", + " [ 3.5]\n", + " [ 2. ]]\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "print 'The matrix form is'\n", + "print 'G*V=I'\n", + "print 'where'\n", + "G=mat([[0.45,-0.25,0],[-0.25,0.85,-0.20],[0,-0.20,0.30]])\n", + "print 'G=\\n',G\n", + "print 'V='\n", + "print 'transpose of [V_1,V_2,V_3]'\n", + "print 'and'\n", + "I=mat([[-3.5],[3.5],[2]])\n", + "print 'I=\\n',I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 77 Ex: 2.8" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated,hence the values in this code differ from those of textbook\n", + "voltage at node1 = 45.45 volts\n", + "voltage at node2 = 72.73 volts\n", + "voltage at node3 = 27.27 volts\n", + "value of current ix = 0.91 amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat\n", + "from numpy.linalg import solve\n", + "R=20#\n", + "G=mat([[0.35,-0.2,-0.05],[-0.2,0.3,-0.1],[-0.05,-0.1,0.35]]) #coefficient matrix\n", + "I=mat([[0],[10],[0]]) #current matrix\n", + "V=solve(G,I)# #voltage matrix(from G=V*I)\n", + "i_x=(V[0]-V[2])/R#\n", + "print \"All the values in the textbook are approximated,hence the values in this code differ from those of textbook\"\n", + "print 'voltage at node1 = %0.2f volts'%V[0,0]\n", + "print 'voltage at node2 = %0.2f volts'%V[1,0]\n", + "print 'voltage at node3 = %0.2f volts'%V[2,0]\n", + "print 'value of current ix = %0.2f amperes'%i_x[0,0]\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 80 Ex: 2.13" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current in mesh1, i1= 4.0 A\n", + "current in mesh2, i2= 1.0 A\n", + "current in mesh3, i3= 2.0 A\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat\n", + "from numpy.linalg import solve\n", + "R=mat([[30, -10, -20],[-10, 22, -12],[-20 ,-12, 46]]) #coefficient matrix\n", + "V=mat([[70],[-42],[0]]) #voltage matrix\n", + "I=solve(R,V)# #current matrix(from R*I=V)\n", + "print 'current in mesh1, i1=',I[0,0],\"A\"\n", + "print 'current in mesh2, i2=',I[1,0],\"A\"\n", + "print 'current in mesh3, i3=',I[2,0],\"A\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 81 Ex: 2.15" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of i1 = 1.0 amperes\n", + "Value of i2 = 2.0 amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat\n", + "from numpy.linalg import solve\n", + "\n", + "#KVL over the supermesh, we get eqn-1 -20+4(i1)+8(i2)=0\n", + "#Vx=2(i2) ohm's law\n", + "#writing an expression for the source current in terms of mesh currents and substituting Vx from above, we get eqn-2 (1/2)i2=i2-i1\n", + "#Putting eqn-1 and eqn-2 in standard form 4(i1)+8(i2)=20 and i1-(1/2)i2=0\n", + "#solving for currents in matrix method(Ax=b)\n", + "A=mat([[4,8],[1,-1/2]]) #coeffcient matrix\n", + "b=mat([[20],[0]])# #constant matrix\n", + "x=solve(A,b)# #solution\n", + "print 'Value of i1 =',x[0,0],'amperes'\n", + "print 'Value of i2 =',x[1,0],'amperes'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 81 Ex: 2.16" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of textbook\n", + "Thevenin voltage for given circuit = 5.00 volts\n", + "Thevenin voltage for given circuit = 33.33 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=15# #source voltage\n", + "R_1=100#\n", + "R_2=50#\n", + "#Analysis with an open circuit to find V_t\n", + "i_1=V_s/(R_1+R_2)# #closed circuit with R_1 and R_2 in series\n", + "V_oc=R_2*i_1# #open-circuit voltage across R_2\n", + "V_t=V_oc# #thevenin voltage\n", + "#Analysis with a short-circuit to find i_sc\n", + "i_sc=V_s/R_1# #R_2 is short-circuited\n", + "R_t=V_oc/i_sc# #thevenin resistance\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of textbook\"\n", + "print 'Thevenin voltage for given circuit = %0.2f volts'%V_t\n", + "print 'Thevenin voltage for given circuit = %0.2f ohms'%R_t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 82 Ex: 2.17" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "short-circuit current = 6.00 amperes\n", + "thevenin resistance = 4.00 ohms\n", + "thevenin voltage = 24.00 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=20# #source voltage\n", + "i_s=2# #source current\n", + "R_1=5#\n", + "R_2=20#\n", + "#after zeroing the sources which includes replacing voltage source with short circuit and current source with open circuit, we get R_t\n", + "R_eq=1/((1/R_1)+(1/R_2))# #R_1 and R_2 are in parallel combination\n", + "R_t=R_eq# #Thevenin resistance\n", + "#short-circuit analysis to find i_sc\n", + "i_2=0# #voltage across R_2 is 0\n", + "i_1=V_s/R_1#\n", + "i_sc=i_1+2-i_2# #short-circuit current(KCL at junction of R_2 and I_s)\n", + "V_t=R_t*i_sc# #thevenin voltage\n", + "print 'short-circuit current = %0.2f amperes'%i_sc\n", + "print 'thevenin resistance = %0.2f ohms'%R_t\n", + "print 'thevenin voltage = %0.2f volts'%V_t\n", + "#thevenin equivalent can be made of V_t and R_t." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 82 Ex: 2.18" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of textbook\n", + "Thevenin voltage = 8.57 volts\n", + "Thevenin resistance = 1.43 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V=10#\n", + "R_1=5#\n", + "R_2=10#\n", + "#Open-circuit anlaysis\n", + "#let V_oc be the open circuit voltage\n", + "#Current equation at node1 3(i_x)=(1/10)V_oc\n", + "#i_x=(10-V_oc)/5 ix in terms of V_oc\n", + "V_oc=2/((1/5)+(1/30))# #open-circuit voltage(from above two equations)\n", + "V_t=V_oc# #thevenin voltage\n", + "#short-circuit analysis\n", + "i_x=V/R_1#\n", + "i_sc=3*i_x# #short-circuit current\n", + "R_t=V_oc/i_sc#\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of textbook\"\n", + "print 'Thevenin voltage = %0.2f volts'%V_t\n", + "print 'Thevenin resistance = %0.2f ohms'%R_t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 83 Ex: 2.19" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rf = 6.15 ohms\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R1= 20 #Ohms\n", + "R2= 15 #ohms\n", + "vs= 15 #V\n", + "R3= 5 #Ohms\n", + "k= 0.25\n", + "#/CALCULATIONS\n", + "voc= (R2/R1)/((1/R1)+(1/(R2+R3))+(k/4))\n", + "isc= vs/R1\n", + "Rf= voc/isc\n", + "#RESULTS\n", + "print 'Rf = %.2f ohms'%Rf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 83 Ex: 2.20" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "By current source to voltage source transformation:\n", + "current i1 = 0.67 amperes\n", + "current i2 = 1.67 amperes\n", + "By voltage source to current source transformation:\n", + "current i1 = 0.67 amperes\n", + "current i2 = 1.67 amperes\n", + "In any method we get the same answers.\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s_1=20# #voltage source\n", + "R_1=5#\n", + "R_2=10#\n", + "i_s_1=1# #current source\n", + "#Method 1: To transform current source and R_2 into a voltage source in series with R_2\n", + "V_s_2=i_s_1*R_2# #source transformation\n", + "i_1=(V_s_1-V_s_2)/(R_1+R_2)# #clockwise KVL\n", + "i_2=i_1+i_s_1# #KCL at top node of original circuit\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'By current source to voltage source transformation:'\n", + "print 'current i1 = %0.2f amperes'%i_1\n", + "print 'current i2 = %0.2f amperes'%i_2\n", + "#Method 2: To transform voltage source and R_1 into a current source in parallel with R_1\n", + "i_s_2=V_s_1/R_1# #source transformation\n", + "i_t=i_s_2+i_s_1# #total current\n", + "i_2=R_1*i_t/(R_1+R_2) #current-division principle\n", + "i_1=i_2-i_s_1# #KCL at top node of original circuit\n", + "print 'By voltage source to current source transformation:'\n", + "print 'current i1 = %0.2f amperes'%i_1\n", + "print 'current i2 = %0.2f amperes'%i_2\n", + "print 'In any method we get the same answers.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 84 Ex: 2.21" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "load resistance for maximum power transfer = 4.00 ohms\n", + "maximum power = 6.25 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=50#\n", + "R_1=20#\n", + "R_2=5#\n", + "#Zeroing the voltage source\n", + "R_eq=1/((1/R_1)+(1/R_2))# #R_1 and R_2 in parallel\n", + "R_t=R_eq# #thevenin resistance\n", + "#open-circuit analysis\n", + "V_oc=V_s*R_2/(R_1+R_2)# #open-circuit voltage\n", + "V_t=V_oc# #thevenin voltage\n", + "R_L=R_t#\n", + "P_L_max=V_t**2/(4*R_t)\n", + "print 'load resistance for maximum power transfer = %0.2f ohms'%R_L\n", + "print 'maximum power = %0.2f watts'%P_L_max" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 85 Ex: 2.22" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "VT i.e., voltage across R2 = 11.67 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=15# #voltage source\n", + "R_1=10#\n", + "R_2=5#\n", + "i_s=2# #current source\n", + "#Analysis with only voltage source active\n", + "V_1=R_2*V_s/(R_1+R_2)# #voltage-division principle\n", + "#Analysis with only current source active\n", + "R_eq=1/((1/R_1)+(1/R_2))# #R_1 and R_2 in parallel\n", + "V_2=i_s*R_eq# #ohm's law\n", + "V_T=V_1+V_2# #total response\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'VT i.e., voltage across R2 = %0.2f volts'%V_T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 85 Ex: 2.23" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "case a:\n", + "Value of Rx = 7320.00 ohms\n", + "case b:\n", + "Maximum value of Rx = 1100000.00 ohms\n", + "case c:\n", + "Increment between values of Rx = 1000.00 ohms for the bridge to be balanced\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "R_1=1*10**3#\n", + "#case (a)\n", + "print 'case a:'\n", + "R_2=10*10**3#\n", + "R_3=732#\n", + "R_x=R_2*R_3/R_1# #wheatstone bridge condition\n", + "print 'Value of Rx = %0.2f ohms'%R_x\n", + "#case (b)\n", + "print 'case b:'\n", + "#R_x is maximum when both R_2 and R_3 are maximum\n", + "R_2_max=1*10**6#\n", + "R_3_max=1100#\n", + "R_x_max=R_2_max*R_3_max/R_1# #wheatstone bridge condition\n", + "print 'Maximum value of Rx = %0.2f ohms'%R_x_max\n", + "#case(c)\n", + "print 'case c:'\n", + "#increment in R_x is scale factor times increment in R_3\n", + "R_2=1*10**6#\n", + "R_3_inc=1# #increment in R_3\n", + "R_x_inc=R_2*R_3_inc/R_1# #increment in R_x from bride balance condition\n", + "print 'Increment between values of Rx = %0.2f ohms for the bridge to be balanced'%R_x_inc" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter3_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter3_1.ipynb new file mode 100644 index 00000000..0c3c67b8 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter3_1.ipynb @@ -0,0 +1,499 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3 - Inductance and Capacitance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 109 Ex: 3.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEZCAYAAAB/6SUgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVNWZ//HPt2kBWRSNieASGzuuCIoLUVxooyTGfRkz\nmhhjyKhJxi06iVF/Rpyo0RgNYuKM+xY1GddAjEmjgjugLG6gAi4sohARGwS1gef3x72FRdtLdXfd\nOvdWPe/Xq1/Urbp9z9P0qadPnXsWmRnOOecqS1XoAJxzzpWeJ3/nnKtAnvydc64CefJ3zrkK5Mnf\nOecqkCd/55yrQJ78O0DSSZKeCh1HKUk6T9KNoeNwLgmVWL89+bsvkFQnaV7+c2b2GzM7OVRMrvw1\nV+9KVU4l1m9P/oFJqg4dg3PtpViT57wuZ4gn/1ZI2lLSA5IWSfqXpGubvH6lpCWS3pR0UN7zP5Q0\nQ1KDpDmSTsl7rU7SfEm/kLQQuFlSd0m3x9eaEb82L+97NpN0fxzHm5JObyHer0tamP+mlHSUpBfj\nx0MkvSDpI0nvSbqqmWv0BB4BNpO0LP4Z+kkaKenO+JwaSWvi7q+5kj6Q9GNJe0h6SdKHzfxfjYh/\ntiWS/iHpq+38dbgiaale5/+O4+Pc77kqPp4g6RJJzwDLga3j138qaRbwenzeoZKmx/XgGUkD8675\ntqRzJL0oaamkP0vq1kK969skbq/fxWRm/tXMF9AFeBG4Clgf6AYMjV87CfgM+BEg4MfAgrzvPRjo\nHz/eD/gYGBwf1wGNwG+A9YDuwOXAeGBDYHPgJWBufH4VMAX4f0A10B+YA3yzhbhnAwfmHd8L/CJ+\n/BzwvfhxD+DrLVxjGDCvyXMXAXfGj2uANcB1QFdgOPAp8CCwCbAZ8D6wX3z+EcAsYLv457kAeCb0\n77gSv9qo12t/x01+z1Xx8QTgbWCH+Pe4Xvz6P4E+8bUGx7/7PeL3xonAW8B68TXeAiYCfYGNgBnA\nqS3VO6/fyX15y79lQ4B+wM/NbKWZfWpmz+a9/o6Z3WzRb/8OoJ+krwCY2d/N7K348ZNAPbBv3veu\nAS4ys0Yz+wQ4FrjMzD4yswXANURvHIjeRJuY2SVmtiq+7k3AcS3EfQ9wPICk3sC34+cg+oO1jaRN\nzGyFmU1q4Roq8Llfm9lnZjYOWAbcbWb/MrN3gaeAXeLzfgz8xsxeN7M1RH/4dpG0ZQvlu+S0Vq+b\n+x3nM+A2M5tpZmvMrDF+/jdmttTMPgVOAa43s+ctcgdR4twz7zqjzew9M/sQGMvn9aSt8sHrd9F4\n8m/ZlkQJfk0Lr7+Xe2BmK+KHvQAkfVvSxPjj4odEnwS+lPe9i83ss7zjzYD8G1Dz8x5vRfQR9cPc\nF3Ae8JUW4robOFpSV+BoYIqZ5a79I2BbYKakyZIOaeEahXo/7/HKZo575f0M1+TF/0H8/OadLN+1\nX1v1ui3N3ZDNf24r4Jwm9XULojqe817e4/x6Ugiv30XiN2haNg/4qqQuZra60G+S1A24HzgB+KuZ\nrZb0IOu2LJoupbqQ6E35Wnyc32KYB7xlZtsWUr6ZzZT0DlGL6LtEb5bca7Pj55B0DHCfpI3NbGXT\nyzR36ULKb8FcolbUPW2e6ZLWWr1eTtRdktOXL2qrbswFLjWzyzoQW5t1zOt38XjLv2WTiJLy5ZJ6\nKLopO7SA7+saf/0LWCPp28A32/ie/wPOk9RH0ubAaXxeGScDyxTdBF5fUhdJO0navZXr3Q2cRdTV\ndG/uSUknSPpyfPhRXEZzLcD3gS9J2iDvuUI+kjeV+57/Bc6XtGMcx4aSju3A9VzntVavpwP7xTeE\nNyT6hNlUW/XgRuDH8c1XSeop6RBJhbTum6t3zfH6XQSe/FsQfyw+DPga0V/2ecB3ci/zxZaCxd+3\nDDiDKKEvIeqf/Gtz5+b5b6KunreI7g/cS9R/Sdw6O5Sof/FNYDFwA9DaG+QeohvNj5nZkrznvwW8\nImkZ8HvguLiftunP/lp8jTfj0Qv9mvmZC2kp5f5PHgKuAP4s6SPg5TgWV2Kt1WszexT4C9GAg+eJ\n+uObrectHZvZFOBk4A9E9X8W0U3flurL2nrVTL1r7pMHeP0uCsV3q5MrQLoFOARYZGYD4+c2Jqpk\nWxGNHviOmS1NNJAMkfQTov+T/UPH4tpPUh+im/IDiBLECDObGDYq59ZVipb/rcBBTZ77JTAu7sd+\nLD6uWJL6StpbUpWk7YCziYaVuWy6Bvi7me0ADAJmBo7HuS9IvOUP0aQJYGxey/81YJiZvR9/tJtg\nZtsnHkhKxRNCHiYaw7+U6CPpeWa2Kmhgrt3ivvJpZrZ16Fica02o0T6bmllu2NT7wKaB4kgFM5sL\nDGzzRJcF/YHFkm4FdiaaoHdm3nBg51Ih+A3feJKU7yLvykU1sCtwnZntSjS7u6K7NV06hWr5vy+p\nr5m9F99pX9TcSZL8j4JLlJl1ZIhfa+YD883s+fj4Ppokf6/XrhTaqtuhWv5jgB/Ej38APNTSicVe\nz6Lp10UXXZTo9W++2TjuuOTLKcXPsnq1UV19EcuWJb/uSCn+v5JgZu8B8yTlJuUdCLxa6npdqv/D\nUpRRTj9Lqf6/CpF48pd0D/AssJ2keZJ+SLSQ2XBJbwDfiI/LUn09fLOtKV4ZUVUFffrAm2+GjiT1\nTgfuUrTa5CCgI7NdnUtU4t0+ZnZ8Cy8dmHTZoa1eDY8+Cr/7Hdx0U+hoimPjjWHOHBg0KHQk6WVm\nLxItyOdcagW/4RtaXV1dYteeNg023RS22CLZcnJKUcbAgXXMmZN4MSX5WcpdudS5UpVTLmUUqiTj\n/DtKkqU5vrZcdhksXgy//33oSIrn2mthxgz4n/8JHUnnScKKf8O3kHIzXa9d+hVStyu+5Z+kcurv\nz6mtpSQtf+dcsjz5J2TZMpgyBfbbL3QkxVVb6zd8nSsHnvwT8sQTMGQI9OwZOpLiqqmBefNglS88\n4VymefJPSDl2+QB06wZ9+8LcuaEjcc51hif/hJRr8gfv93euHHjyT8A778CSJbDzzqEjSYYnf+ey\nz5N/AsaNg+HDoxmx5ciTv3PZ5xu4J6C+Hg45JHQUyamthcmTQ0eRbb17h46gOEaMgGuuCR2F6whP\n/kW2ejU89hiMGhU6kuR4y7/z3n03dASd99BD8Nemu1O7zPDkX2RTpsBmm0Vf5SqX/M1AJZ8fWx7K\noeW//vpRHXDZVKa90uGU8yifnA03jIZ8Lmp2FwbnXBZ48i+ySkj+4F0/LvrU5y3/7PLkX0QNDdFK\nnvvuGzqS5PkyD85lmyf/IpowAfbcE3r0CB1J8rzl7/x+T7Z58i+iSunyAU/+LuLdPtnlyb+I6uuj\nyV2VwJO/85Z/tnnyL5K33oKPPqqc7Q09+Tvwln+WefIvknJf0qGpfv2iG9zLl4eOJJ0kdZE0TdLY\n0LEkxVv+2VYhqSp5ldTfD9Efuf79fcRPK84EZgBl3Tb2ln92efIvgtWr4fHHK6e/P8e7fponaQvg\nYOAmoGzbx97yzzZP/kXwwguwxRZRV0gl8eTfot8DPwfWhA4kad7yzy5P/kVQaV0+OVtv7cm/KUmH\nAovMbBpl3Op32ecLuxVBfT1ceGHoKEqvthbGlu3tzA4bChwu6WCgO7CBpDvM7MT8k0aOHLn2cV1d\nHXV1daWMsSh8eYf0mDBhAhMmTGjX98hS/NuTZGmOD6IRL5tvHi1ytv76oaMprddfj/YtmD07dCQd\nIwkzS6x1LmkY8F9mdliT51NfrwsxZgzceKM3ANKokLrt3T6dNH487LVX5SV+gJoamDcPVq0KHUmq\nZT/Lt8Bb/tnmyb+TKrW/H6Jlnfv2hblzQ0eSTmb2hJkdHjoO55oTNPlLOk/Sq5JelnS3pG4h4+mI\nSk7+4CN+KpkP9cy2YMlfUg1wMrCrmQ0EugDHhYqnI958E5Ytg4EDQ0cSjif/yubdPtkVcrRPA9AI\n9JC0GugBLAgYT7uNGxe1+iu5BeTJv3JVcr0vB8Fa/ma2BLgKmAu8Cyw1s0dDxdMRld7lA578K523\n/LMrZLdPLXAWUANsBvSS9L1Q8bTXqlXRkg4HHhg6krA8+Vcub/lnW8hun92BZ83sAwBJDxBNkLkr\n/6S0ToZ5/nnYaqtotEslyyV/s/Qng45MhHGt85Z/dgWb5CVpZ6JEvwfwCXAbMNnM/ph3Tmonw1x8\nMXz8Mfz2t6EjCe9LX4IZM2DTTUNH0j5JT/JqpdzU1uv2eOQRGD06+telS6oneZnZi8AdwAvAS/HT\nN4SKp728v/9z3vVTucrgb1jFCjrO38x+a2YDzGygmf3AzBpDxlOopUvhpZdgn31CR5IOtbW+rr9z\nWeMzfDtg/HjYe2/o3j10JOngLf/K5Ms7ZJsn/w7wLp91efJ3Lns8+XeAJ/91efKvTN7yzzZP/u00\nZw6sXAkDBoSOJD08+TuXPZ7826m+PtqrN+1j2kupX79oX4Ply0NH4krJ3wPZ5sm/nbzL54uqqqB/\nfx/xU4m82ye7PPm3Q2NjNNKn0pd0aI53/VQeb/lnmyf/dpg8OWrhZm0mayn4Zu6VyVv+2eXJvx28\ny6dl3vKvPN7yzzZP/u2QW7/ffZEn/8rkLf/s8uRfoKVL4ZVXopm97ot8iYfPSdpS0vh4i9JXJJ0R\nOqYkeMs/20Iu6Zwpjz/uSzq0pqYG5s2L9jmo9lrVCPzMzKZL6gVMkTTOzGaGDqzYvOWfXd7yL5D3\n97euW7dob4O5c0NHEp6ZvWdm0+PHy4GZRBsWOZcanvwLYAb//Kcn/7Z4v/8XSaoBBgOTwkZSfL68\nQ7b5B/QCzJkDn30GO+4YOpJ0yyX/4cNDR5IOcZfPfcCZ8SeAtdK6Q53Lpo7sUhdsJ69CpGXHo+uu\ni7ZtvPXW0JGk2+WXwwcfwJVXho6kMEnu5CVpPeBvwCNmNqrJa6mo1501fny0o53vjJk+qd7JK0u8\nv78w3u0TkSTgZmBG08TvXFp48m9DY2PUsvElHdrmyX+tvYETgP0lTYu/DgodVLF5n3+2eZ9/GyZN\nipLal78cOpL0yy3xYFbZY8DN7Gm8YeVSzitoG7zLp3B9+kRDPhctCh2JK4VK/gNfDjz5t8GTf/t4\n109l8W6f7PLk34olS2DGDBg6NHQk2eHJv3J4yz/bPPm34vHHYd99o64MVxhf46eyeMs/uzz5t8K7\nfNrPW/6Vw1v+2ebJvwVmnvw7Im3Jf/bs2XzyyScAjB8/ntGjR7N06dLAUZUPb/lnlyf/FsyaBatX\nw/bbh44kW9KW/I855hiqq6uZPXs2p556KvPmzeO73/1u6LDKgrf8s82Tfwvq66M1aryCt0+/ftDQ\nAMuXt31uKVRVVVFdXc0DDzzA6aefzpVXXsnChQtDh1U2vOWfXZ78W+BdPh1TVRXtc5yWm75du3bl\n7rvv5o477uDQQw8FoLGxMXBUzoXnyb8Zn30GTzzhSzp0VJq6fm655RYmTpzIBRdcQP/+/Xnrrbf4\n/ve/HzqssuDLO2Rb0OQvqY+k+yTNlDRD0p4h48mZOBG22QY22SR0JNmUW+YhDQYMGMDll1/O4MGD\nAejfvz/nnntu4KicCy90y/8a4O9mtgMwiGjHo+C8y6dz0tTyHzNmDIMHD+agg6J11aZNm8bhhx8e\nOKry4C3/bAuW/CVtCOxrZrcAmNkqM/soVDz5PPl3TpqS/8iRI5k0aRIbbbQRAIMHD+bNtNyQcC6g\nkC3//sBiSbdKmirpRkk9AsYDRJuRvPYa7LVX6EiyK03Jf7311qNPnz7rPFdVFfoDb3nwkXDZFnJJ\n52pgV+A0M3te0ijgl8Cv8k8q9XZ3jz0G++3nSzp0Rk0NzJ8Pq1ZBdeBFwwcMGMBdd93FqlWr+NOf\n/sTo0aPp2rXrOvXKdZx3+2RXsG0cJfUFnjOz/vHxPsAvzezQvHNKvt3dySfDwIFwxhklLbbsbLVV\ntM3f1luHjWPFihVccskl1NfXA/Ctb32LCy+8kO7duye6jWNrymUbx4kT4ayzon9duhRSt4O1y8zs\nPUnzJG1rZm8ABwKvhooniinq7z/nnJBRlIdc10/I5L9q1SoOOeQQxo8fz2WXXRYukDJWBn/DKlbo\nzs/TgbskvUg02ifoO/SNN6LKvN12IaMoD2no96+urqaqqsrX8kmI9/lnW9AeWTN7EdgjZAz5cqN8\nvFJ3XhqSP0DPnj0ZOHAgw4cPp2fPnkD0kXj06NGBIysP3vLPLt/DN099Pfjkz+KorYXJk0NHAUcf\nfTRHH300iv+im9nax0mJN2sfBXQBbjKzKxItMBBvJGWbJ//YZ5/Bk0/CbbeFjqQ8pKXlf9JJJ7Fi\nxQrmzp3L9iVYolVSF+APRPewFgDPSxpjZqmYwFhs3vLPrjb7/CUdLalP3nEfSUcmG1bpPfdc1Nf/\npS+FjqQ85JZ4CJ0cAszwHQLMNrO3zawR+DNwRJIFOtcRhbT8LzKzB3IHZrZU0kjgocSiCsBn9RZX\nnz7RXIlFi2DTTcPFkZvhu//++wMlmeG7OTAv73g+8PUkCwxFgo8/hilTQkdSHDvuCOuvHzqK0ikk\n+TfXs9el2IGEVl8PV10VOorykuv6CZn8A8zwLeizTqknLyahXz/o3RtOOSV0JJ03dy78+tfw4x+H\njqRjJkyYwIQJE9r1PYUk/ymSrgb+SPSH4D+BMvlbH/nXv6JhnnumYk3R8pFL/kOHhoshf4bvrFmz\nGD16NEOTDWgBsGXe8ZZErf91lMMM4y22gEmTQkdRHKedFs1Iz6qmDYiLL764ze8ppAl0OtAI/IWo\n//IToj8AZeOxx2DYMOjaNXQk5aW2NvymLtdeey2vvvoq3bp14/jjj2eDDTZg1KhRSRb5ArCNpBpJ\nXYF/B8YkWaBzHdFmy9/MlgNlvQC69/cno7Y2WuIhpJ49e3LZZZdx7rnnIokNNtgg0fLMbJWk04B/\nEnWP3lyuI31ctrWY/CWNJeq/bK7P38ysLBZFzy3p4Pt7FF9tLdx0U9gYnn/+eUaMGEFDQwMAffr0\n4eabb2b33XdPrEwzewR4JLECnCuC1lr+exL1Vd4D5Hr2cn8IymZ072uvQZcu0c5drrjSMNZ/xIgR\nXHfddey7774APP3004wYMYKXXnopbGDOBdZa8u8HDAeOj78eBu4xs6CLrxWbL+mQnH79oKEBli+H\nXr3CxFBdXb028QPss88+VIdeZ9q5FGjxhm+8s9YjZnYi0aeA2cATcX9m2fD+/uRUVUH//mFv+g4b\nNoxTTz117VC4n/zkJwwbNoypU6eGC8q5FGi1CSSpO3AIcBxQQ7Tn7oPJh1Uan34KTz0Fd94ZOpLy\nlev6GTQoTPnTp09H0tqhb7m1faZPnx4mIOdSorUbvncCA4C/A/9tZi+XLKoSefZZ2GEH2Hjj0JGU\nr9wyD6G0NvEl6QXenEuz1lr+3wM+Bs4EzmzyRjEzS3bMXAl4l0/yamthxoxw5X/44YfccccdvP32\n26yKZ/H4ks7OtZL8zSz0Ri+Jq6+HZOf7uNpaGDs2XPkHH3wwe+21F4MGDaKqqqokSzo7lwUVO+xh\n8WKYPduXdEha6OGen376KVdffXW4AJxLqbJv3bfk0Uehrg7WWy90JOWtpgbmzw+3bsp3v/tdbrjh\nBhYuXMiSJUvWfjlX6Sq25e/9/aXRrRv07RutmhhiM/fu3bvz85//nEsvvXTtap6Skl7W2bnUq8jk\nn1vS4fzzQ0dSGXJdPyGS/1VXXcWcOXPYZJNNSl+4cylWyE5ex0iaJalB0rL4q6EUwSVlxoxoBc+v\nfS10JJUhZL//Nttsw/qVtEOHcwUqpOX/W+DQclqZcNw4X9KhlEIm/x49erDLLruw//77061bN8CH\nejoHhSX/98op8UPU5fOjH4WOonLU1sLkyWHKPvLIIznyyHW3nPahns4VlvxfkPQXoj17P4ufs/x9\nfbPk00/h6afhrrtCR1I5Qrb8TzrppDAFO5dyhST/DYGVQNOxMZlM/s88AwMGwEYbhY6kcuSWeDAr\nfVfbG2+8wfnnn8+MGTNYuXIl4KN9nIPCdvI6qQRxlIwP8Sy9Pn2iIZ+LFpV+M/cf/vCHXHzxxZx9\n9tlMmDCBW2+9ldWrV5c2COdSqMXRPpLOjf+9tpmvzN4t8+QfRqiun5UrV3LggQdiZmy11VaMHDmS\nhx9+uPSBOJcyrbX8c8txTWHdnbtERnfyWrQoWlt+yJDQkVSeXPIfOrS05Xbv3p3Vq1fzta99jT/8\n4Q9sttlmfPzxx6UNwrkUam1ht7Hxv7clGYCkLsALwHwzOyzJsh59FPbf35d0CCFUy3/UqFGsWLGC\n0aNHc+GFF9LQ0MDtt9+eWHmSrgQOJRocMQf4oZl9lFiBznVQGmb4nkn0KaN30gV5l084tbUwfnzp\nyx0Sf8zr3bs3t912WymKrAfONbM1ki4HzgN+WYqCnWuPoAu7SdoCOBi4ic83h09EbkkHT/5hhF7d\ns1TMbJyZrYkPJwFbhIzHuZaEXtXz98DPgTVtndhZr74K668fJSFXepWS/JsYQbQTnnOp02a3j6Tt\ngOuAvmY2QNIg4HAzu6QzBUs6FFhkZtMk1bV03siRI9c+rquro66uxVNb5a3+sPr1g4YGWL4cevUK\nE0NuE/fOkjQO6NvMS+fn7pVJugD4zMzubu4axarXzkHH6rbMWh+4I+lJotb5/5rZYEVz418xswEd\nDTS+7mXA94FVQHdgA+B+Mzsx7xxrK75CHXQQnHoqHHVUUS7nOmDAALjnntJu5r5o0SJuvPHGL2zj\neMsttyAJMyt6d6Okk4CTgQPM7JNmXi9avXbFcdppsP320b/loJC6XcgN3x5mNim3HoqZmaTGzgZn\nZucD58eBDgP+Kz/xF9Mnn0Qze//85ySu7gqVm+lbyuR/xBFHsN9++zF8+PB11vNPiqSDiBpLw5pL\n/M6lRSHJf7GktYsfS/o3YGECsSTWFHr6aRg4MJpp6sIJ0e+/cuVKrrjiilIWeS3QFRgX/5F5zsx+\nWsoAnCtEIcn/NOAGYHtJ7wJvAd8rZhBm9gTwRDGvmc/7+9OhtjbaS6GUDj30UB5++GEOOeSQkpRn\nZtuUpCDnOqnN0T5mNsfMDgA2AbYzs73N7O3EIysiT/7pEKLlP2rUKA477DC6d+9O79696d27Nxts\nsEFpg3AuhQoZ7XMOeV0y8UfZj4ApZjY9udCK47334O23fUmHNAiR/JcvX17aAp3LiEK6fXYDdgfG\nEk3EOgR4GfixpPvMrKQdqu316KPwjW9AdRrmMle4mhqYPx8aG5NfYmPmzJnssMMOTJ06tdnXd911\n12QDcC7lCkmJWwK7mtlyAEm/Ipq4Moxo0bdUJ3/v8kmPbt2gb1+YNy/5zdyvvvpqbrzxRs4+++xm\nR/eMD7HWhHMpUkjy/zKf7+AF0AhsamYrJKV6KFtuSYe8+TQusFzXT9LJ/8YbbwQoyqQu58pRIcn/\nLmCSpIeIun0OA+6W1JPPl31OpZdfjmaTJp1oXOFyyX/48NCROFfZWk3+8Wze24F/AHsT3fg91cxe\niE8p6pDPYvMun/Sp0DV+nEudQlr+fzeznYDnkw6m2Orr4ac+vSZVamth8uTQUTjnWh3nHy9AMkVS\n5gZKrlwJzz0Xbd7i0iO3xEOpHHDAAQU951ylKaTlvydwgqR3gNz+d2ZmJVyhpf2efhp23hk23DB0\nJC5frtvHDBJcYoeVK1eyYsUKFi9ezJIlS9Y+39DQwIIFC5Ir2LmMKCT5fyvxKBLg/f3p1KdPNORz\n0SLYdNPkyrn++uu55pprePfdd9ltt93WPt+7d29OK5elG53rhDaTf24pB0lfIVp6ORPq6+H660NH\n4ZqTa/0nmfzPOusszjrrLEaPHs0ZZ5yRXEHOZVQhyzscDlwFbAYsArYCZgKdWs8/SQsXRhOJdt89\ndCSuObnkP3Ro8mWdccYZPPvss+us5w9w4omJrB7uXGYU0u1zCbAXMC7ezGV/ok1YUsuXdEi3Ug73\nPOGEE3jzzTfZZZdd6NKly9rnPfm7SldIemw0s39JqpLUxczGS7om8cg6wfv70622Fkq1usKUKVOY\nMWNGohu4OJdFhWzg/qGk3sBTwF2SRgOpXSpxzRoYN85nkKZZKVv+O+20EwsXJrH3kHPZVkjL/0hg\nJfAzohm9GwAXJxlUZ7z8MmywAfTvHzoS15JSJv/Fixez4447MmTIELp16wZEy5KPGTOmNAE4l1KF\njPbJtfJXA7clGk0ReJdP+vXrBw0NsHx5tPZSkkbGq/rFG1qvfexcpWuz20fSMZJmSWqQtCz+aihF\ncB3hyT/9qqqiT2Zvvpl8WXV1ddTU1NDY2EhdXR1Dhgxh8ODByRfsXMoV0uf/W+BwM9vAzHrHX6nc\nB2/FCpg4EerqQkfi2lKqZR5uuOEGjj32WE499VQA5s+fz1FHHZVomZLOkbRG0saJFuRcJxSS/N8z\ns5mJR1IETz0FgwdHff4u3UrV7//HP/6Rp59+eu2+vdtuuy2LFi1KrDxJWwLDgXcSK8S5Imixz1/S\nMfHDFyT9BXiIzzd1MTN7IOng2su7fLKjthZmlGA3iG7duq290QuwatWqpPv8rwZ+Afw1yUKc66zW\nbvgexucbt68EmqbVVCb/m24KHYUrRG0tjB2bfDnDhg3j0ksvZcWKFYwbN47rrruOww47LJGyJB0B\nzDezl/ymsku7FpO/mZ1Uwjg67d13YcECX9IhK0rV7XPFFVdw0003MXDgQK6//noOPvhg/uM//qPD\n15M0DujbzEsXAOexbiOpxb8AI/P2Fq2rq6POb1S5TpgwYUK7tyxVbvhbiydItwNnmtnS+Hgj4Coz\nG9HBOAsPTrK24su5/Xb429/g3nsTDsoVxaefRvdmli+H9dZLpoxVq1ax00478dprrzX7ejz8syhN\ndEk7AY8BK+KntgAWAEPMbFGTcwuu1640TjsNtt8++rccFFK3C7nhu3Mu8QOY2YfArp0Nrti8vz9b\nunWDvn2jBfiSUl1dzXbbbcc77yR/79XMXjGzTc2sv5n1B+YDuzZN/M6lRSEzfCVpYzNbEh9sDHRp\n43tKKrfYC2THAAAOz0lEQVSkw6WXho7EtUeu62frrZMrY8mSJQwYMIAhQ4bQs2dPoGQzfL1p71Kt\nkOR/FfCcpP8j6sM8FkhVmn3xRdhoI6ipCR2Ja49c8k9yHaZLLrmEpl0spbgZa2YJ/klzrvMKWd7h\nDklTgG8QtWaOMrNOD9KLx0PfAXwlvu4NZja6I9fyLp9sSvqm76pVqzjllFN4/fXXkyvEuYwqaMV7\nM3sVeLXIZTcCPzOz6ZJ6EW0UP64jE8rq6+Gss4ocnUtcbS1Mnpzc9aurq9l+++1555132GqrrZIr\nyLkMCrbdiZm9B7wXP14uaSbRbmHtSv4ffwyTJvmSDllUiiUeAvb5O5dqqdjrSlINMBiY1N7vffJJ\n2G036N272FG5pOW6fcwgqW74X//618lc2LmMC5784y6f+4jmEnxhk5i2JsN4f3929ekTDflctCi5\nzdzz60v+RJj2TohxrtwETf6S1gPuB/5kZg81d05+8m/OuHFw663Fj82VRq71n1Ty79Wr19rRPZ99\n9hmNjY306tWLhoYGLr44tXsSOZe4YMlf0TvyZmCGmY3qyDUWLICFC2HX1E05c4XKJf+hQ5O5/vLl\nn3+YXLNmDWPGjGHixInJFOZchhQywzcpewMnAPtLmhZ/HdSeC4wbBwceCF1SNeXMtUcpt3Ssqqri\nyCOP5B//+EdpCnQuxUKO9nmaTv7x8f7+7KuthfHjk7v+/fffv/bxmjVrmDJlCuuvv35yBTqXEcFv\n+HZUbkmHyy8PHYnrjNraZJfhHjt27No+/+rqampqavjrX32pfecym/ynT4dNNoGvfjV0JK4zku72\nue2225K7uHMZFrLPv1O8y6c89OsHDQ3R0s5J+MEPfsDSpWsXpeXDDz9kxIjEVyN3LvU8+bugqqqg\nf394881krv/iiy/Sp0+ftccbbbQRU6dOTaYw5zIkk8n/44/h+edh2LDQkbhiSHKZBzNjyZIla4+X\nLFnC6tWrkynMuQzJZJ//E09E2zX26hU6ElcMSfb7n3POOey111585zvfwcy49957ueCCC5IpzLkM\nyWTy9y6f8lJbCzM6vUh480488UR22203Hn/8cSTx4IMPsuOOOyZTmHMZktnkf+edoaNwxVJbC2PH\nJnf9AQMGMGDAgOQKcC6DMtfnP29etBDY4MGhI3HFUspZvs65SOaSf25Jh6rMRe5aUlMD8+dDY2Po\nSJyrHJlLod7fX366dYO+fWHu3NCRdJ6k0yXNlPSKpCtCx+NcSzKV/FevhkcfTXbDbxdGbW1yY/1L\nRdL+wOHAIDPbCfhd4JCca1Gmkv+0afCVr8CWW4aOxBVbmfT7/wT4jZk1ApjZ4sDxONeiTCV/7/Ip\nX2WS/LcB9pM0UdIESbuHDsi5lmRqqGd9PfziF6GjcEmorYXJk0NH0TZJ44C+zbx0AdH7aSMz21PS\nHsD/AVs3d522tid1rj3ytygtlMwsmWiKQJLl4lu2LFoE7P33oWfPwIG5opsyBUaMgBdfLF2ZkjCz\nom0dL+kR4HIzeyI+ng183cw+aHKepfl9V4lOOw223z76txwUUrcz0+3zxBMwZIgn/nKV6/bJeE58\nCPgGgKRtga5NE79zaZGZ5O/9/eWtT59oyOeiRaEj6ZRbgK0lvQzcA5wYOB7nWpSZPv/6erj77tBR\nuCTlWv+bbho6ko6JR/l8P3QczhUiEy3/d96BDz6AXXYJHYlLUpmM+HEuEzKR/MeNiyZ2+ZIO5c2T\nv3Olk4l0Om6c9/dXAk/+zpVO6pO/L+lQOcphiQfnsiL1yX/q1Gh8/+abh47EJc1b/s6VTuqTvw/x\nrBz9+kFDAyxfHjoS58qfJ3+XGlVV0L+/d/04VwqpT/5Tp8J++4WOwpXK1lt7149zpZD65P/1r0OP\nHqGjcKXi/f7OlUbQ5C/pIEmvSZol6dzmzvEun8riyd+50giW/CV1Af4AHATsCBwvaYem53nyryye\n/J0rjZAt/yHAbDN7O14T5c/AEU1PGjSo5HG5gDz5O1caIZP/5sC8vOP58XPr8CUdKktNDcyfD42N\noSNxrryFTK3ZXrndJaJbN+jbF+bODR2Jc+Ut5JLOC4D8rdi3JGr9r8O3u6s8kyfDJpsU/7od2erO\nuXIVbBtHSdXA68ABwLvAZOB4M5uZd45vd+cSU+xtHNtRrtfrlKnEbRyDtfzNbJWk04B/Al2Am/MT\nv3POueQE3cnLzB4BHgkZg3POVSIfS+NcEUkaImmypGmSnpe0R+iYnGuOJ3/niuu3wIVmNhj4VXzs\nXOp48neuuBYCG8aP+xCNanMudYL2+TtXhn4JPC3pd0SNq70Cx+Ncszz5O9dOksYBfZt56QLgDOAM\nM3tQ0rHALYBvQupSx5O/c+1kZi0mc0l/MrMD48P7gJuaO88nL7pi6sgExmCTvArhk2FckpKY5CVp\nKvAzM3tC0gHA5Wa2R5NzvF6njE/ycs511inAHyV1A1bGx86ljid/54rIzF4Avh46Dufa4kM9nXOu\nAnnyd865CuTJ3znnKpAnf+ecq0Ce/J1zrgJ58nfOuQrkyd855yqQJ3/nnKtAnvydc64CefJ3zrkK\n5MnfOecqkCd/55yrQJ78nXOuAnnyd865CuTJ3znnKpAnf+ecq0Ce/J1zrgJ58nfOuQrkyd855ypQ\nkOQv6UpJMyW9KOkBSRuGiMO5jpB0rKRXJa2WtGuT186TNEvSa5K+GSpG59oSquVfDwwws52BN4Dz\nAsXBhAkTyqaccimjlOV00MvAUcCT+U9K2hH4d2BH4CDgOknBPl17fWifWbOSLyNN9TpIxTSzcWa2\nJj6cBGwRIg4or8pbLmWUspyOMLPXzOyNZl46ArjHzBrN7G1gNjCkpMHl8frQPp78S28E8PfQQThX\nBJsB8/OO5wObB4rFuVZVJ3VhSeOAvs28dL6ZjY3PuQD4zMzuTioO5zqikPpbICtSSC5BEjz6KBx2\nWLLlLFkCI0cmW0ahZBambko6CTgZOMDMPmnhHH/juESZmTr6vZLGA+eY2dT4+JfxNS+Pj/8BXGRm\nk5p8n9drl7i26nZiLf/WSDoI+DkwrKXED517YzpXIvl1dAxwt6Sribp7tgEmN/0Gr9cuDYK0/CXN\nAroCS+KnnjOzn5Y8EOc6QNJRwGhgE+AjYJqZfTt+7Xyi+1irgDPN7J/BAnWuFcG6fZxzzoWThtE+\nXyDpoHiSzCxJ5yZUxi2S3pf0chLXj8vYUtL4eELQK5LOSKic7pImSZouaYak3yRRTlxWF0nTJLXn\npmd7rv+2pJfiMr7QZVLEcvpIui+ebDhD0p5JldWkXK/bhZdRNvU6LiPxut2uem1mqfoCuhCNj64B\n1gOmAzskUM6+wGDg5QR/lr7ALvHjXsDrSfws8fV7xP9WAxOBfRIq52zgLmBMQtd/C9g4qd9JXjm3\nAyPy/s82LEGZXrfbX05Z1Ou4jMTrdnvqdRpb/kOA2Wb2tpk1An8mmjxTVGb2FPBhsa/bpIz3zGx6\n/Hg5MJNoLHgSZa2IH3YlSjJLWjm9QyRtARwM3MS6NzqLXlSC1yZeTmRfM7sFwMxWmdlHSZYZ87rd\n/nLKqV6T5PXbW6/TmPw3B+blHZfFRBlJNUStsUmtn9nh61dJmg68D4w3sxkJFPN7olFaa9o6sRMM\neFTSC5JOTqiM/sBiSbdKmirpRkk9Eiorn9ft9l+7XOo1JF+321Wv05j8y+4OtKRewH1Eoz+WJ1GG\nma0xs12IlsrYT1JdMa8v6VBgkZlNI9nW0d5mNhj4NvCfkvZNoIxqYFfgOjPbFfgY+GUC5TTldbud\nyqheQ/J1u131Oo3JfwGwZd7xlqw7ZT5TJK0H3A/8ycweSrq8+GPew8DuRb70UOBwSW8B9wDfkHRH\nkcvAzBbG/y4GHiSZtXHmA/PN7Pn4+D6iN03SvG53UNbrNZSkbrerXqcx+b8AbCOpRlJXolUSxwSO\nqUMkCbgZmGFmoxIsZxNJfeLH6wPDgWnFLMPMzjezLc2sP3Ac8LiZnVjMMiT1kNQ7ftwT+CbRCppF\nZWbvAfMkbRs/dSDwarHLaYbX7faVURb1GkpTt9tbr4PM8G2Nma2SdBrwT6IbPDeb2cxilyPpHmAY\n8CVJ84BfmdmtRS5mb+AE4CVJuUp7npn9o8jl9ANuV7R8cBVwp5k9VuQymkqiC2NT4MEor1AN3GVm\n9QmUA3A6cFechOcAP0yonLW8brdbudRrKF3dLrhe+yQv55yrQGns9nHOOZcwT/7OOVeBPPk751wF\n8uTvnHMVyJO/c85VIE/+zjlXgTz5l4CkDSX9JO94M0n3JlDOYe1dJljSGkl35h1XS1qc5NK2rnx4\n3c4uH+dfAvHCV2PNbGDgUL5A0jJgFjDUzD6R9G3gMmCemR0eNjqXdl63s8tb/qVxOVAbb+JwhaSt\nchttSDpJ0kOS6iW9Jek0Sf8Vr8r3nKSN4vNqJT0Srwj4pKTtmhYSX+va+PFtkq6R9IykOZKOaSW+\nvwOHxI+PJ1rjRPF1hsVxT4tj6lW8/xZXBrxuZ5Qn/9I4F5hjZoPN7Fy+uHrgAOAoYA/gUqAhXpXv\nOSC3zsgNwOlmtjvR8rPXNVNO049xfc1sb+BQojdpS/4CHCepGzCQdZfmPQf4abwa4T7AylZ/Uldp\nvG5nVOrW9ilTbS0VO97MPgY+lrQUyPVJvgwMiheCGgrcG68NAtHmFq0x4CEAM5spadMWTzR7Of74\nfjzRyon5ngF+L+ku4AEzW9BGua6yeN3OKE/+6fBp3uM1ecdriH5HVcCHcQulPT7Le9zWm3QM8Dui\nBcG+nHvSzK6Q9Deij87PSPqWmb3ezjhc5fK6nVLe7VMay4DeHfg+AZjZMuAtSf8G0XK6kga1dH4H\n3QKMNLN1loCVVGtmr5rZb4HngS/0x7qK5nU7ozz5l4CZfUDUsnhZ0hVEH1tzfZj5j2nmce74e8CP\nFG1p9wrQ3GiFtq7VbHhxjAvM7A/NXOfMOO4XiVpbj7RwHVeBvG5nlw/1dM65CuQtf+ecq0Ce/J1z\nrgJ58nfOuQrkyd855yqQJ3/nnKtAnvydc64CefJ3zrkK5MnfOecq0P8HSmLOm/Y4hicAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f6b0b604a50>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,array\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "\n", + "C=1*10**-6#\n", + "#t in micro seconds\n", + "t_1=[];t_2=[];t_3=[]\n", + "for x in arange(0,2+0.001,0.001):\n", + " t_1.append(x)\n", + "for x in arange(2.001,4+0.001,0.001):\n", + " t_2.append(x)\n", + "for x in arange(4.001,5+0.001,0.001):\n", + " t_3.append(x)\n", + "tt=t_1+t_2+t_3\n", + "\n", + "#t=array(t)\n", + "#corresponding voltage variations\n", + "V_1=[]\n", + "for t in t_1:\n", + " V_1.append(5*t)\n", + " \n", + "V_2=[]\n", + "for t in t_2:\n", + " V_2.append(0*t+10)\n", + "V_3=[]\n", + "for t in t_3:\n", + " V_3.append(-10*t+50)\n", + "\n", + "\n", + "#charge q=C*V\n", + "q_1=[]\n", + "for v in V_1:\n", + " q_1.append(C*v*10**6)\n", + "\n", + "q_2=[]\n", + "for v in V_2:\n", + " q_2.append(C*v*10**6)\n", + "\n", + "q_3=[]\n", + "for v in V_3:\n", + " q_3.append(C*v*10**6)\n", + "q=q_1+q_2+q_3\n", + "\n", + "\n", + "subplot(121)\n", + "plot(tt,q)\n", + "title('charge vs time')\n", + "xlabel('time in Ms')\n", + "ylabel('charge in Mc') #M-micro(10**-6)\n", + "#current i=C*dV/dt*10**6, for above equations we get\n", + "i_1=[];i_2=[];i_3=[]\n", + "for t in t_1:\n", + " i_1.append(10**6*(0*t+C*(5)))\n", + "for t in t_2:\n", + " i_2.append(10**6*0*t)\n", + "for t in t_3:\n", + " i_3.append(10**6*(0*t+C*(-10)))\n", + "i=i_1+i_2+i_3\n", + "subplot(122)\n", + "plot(tt,i)\n", + "title('current vs time')\n", + "xlabel('time in Ms')\n", + "ylabel('current in amperes') #M-micro(10**-6) \n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 110 Ex: 3.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEZCAYAAACuIuMVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeclNX1/98HBBWkiKiIoogiYEFABQVFwAYqYAVrYonl\nG40xzZr8XGNsSYyKxsQe1FgWsQekKKuICKIgSJOOVKUISy97fn+cO8ywzO7Ozs5O2T3v1+t5zTNP\nuc+Zu88+n+fee+45oqo4juM4TmVRI9MGOI7jOFUbFxrHcRynUnGhcRzHcSoVFxrHcRynUnGhcRzH\ncSoVFxrHcRynUnGhcaoEInKViIzOtB3pRETuFJFnM22H45TFbpk2wHGcshGRbsDLqtossk1VH8yc\nRY6TON6icZxiiIi/gDlOCnGhcXIKEWkmIm+JyA8iskJEnii2/28iskpE5opIz5jtV4vINBFZKyJz\nROT6mH3dRGSRiNwmIkuB50VkDxEZGMqaFvZ9H3NOUxEZHOyYKyK/KsHeTiKyVEQkZtv5IvJNWO8o\nIhNEZI2ILBORR+KUURcYCjQVkcLwGw4QkTwReTkc01xEikIX4kIRWSkiN4rICSIyWURWx6mra8Jv\nWyUiH4rIweX8czhOQrjQODmDiNQEPgDmAYcABwKvxRzSCZgB7AP8FXg+Zt9y4BxVrQ9cDTwqIu1j\n9u8P7A0cDNwA5IX1Q4EzgCsADXbUAN4HJgJNgdOAW0XkzOI2q+o4YH04JsJlwH/D+uPAo6raAGgB\n5McpYz3QE1iiqvVUtb6qLo3YU4yOwOHAJaHsu4AewFFAPxHpGn5DX+BO4HygMTCanevScVKGC42T\nS3QEDgD+oKobVXWzqn4es3+Bqj6vFsDvJeAAEdkPQFWHqOq8sP4pMBw4JebcIuAeVd2qqpuAi4EH\nVHWNqi7GHtqRVskJQGNV/YuqbgvlPoc93OPxGnApgIjUA3oRfahvAVqKSGNV3RCEKR6S4Lb7VHWL\nqo4ACoFXVXWFqi7BxKRdOO5G4EFVnamqRcCDQDsRaRanTMepEC40Ti7RDBOTohL2L4usqOqGsLoX\ngIj0EpEvQpfSauBsrOUT4UdV3RLzvSnwfcz3RTHrh2DdWKsjC9Y62K8Eu14FLhCR2sAFwFeqGin7\nWuAIYLqIjBeRc0ooI1GWx6xvjPN9r5jf8HiM/SvD9gMreH3H2QUf9HRyie+Bg0WkpqpuT/QkEdkd\nGIx1f72rqttF5G12bhEU74ZaignbjPA99k3/e2Ceqh6RyPVVdbqILMBaMpdhwhPZNztsQ0QuBN4U\nkUaqurF4MfGKTuT6JbAQa/14d5lT6XiLxsklxmEC8JCI1AkD9p0TOK92WFYARSLSC9hlPKUY+cCd\nItJQRA4Ebib6YB8PFAYHgT1FpKaIHC0ix5dS3qvArVh33aDIRhG5QkT2DV/XhGvEa7EtB/YRkfox\n2+J1nZVF5Jx/A3eJyJHBjgYicnES5TlOmbjQODlD6DLrjQ12L8RaFv0iu9n1DV/DeYXALZh4rMLG\nS96Nd2wMf8a6y+Zh4zmDsPEUQmvqXGy8Yy7wI/AMUJ+SeQ3oCnykqqtitp8FfCsihcCjwCWqujnO\nb58RypgbvMQOiPObE2nhROrkHeBh4HURWQNMCbY4TsqRdCY+E5EXgHOAH1T1mLCtEfAG1mc8H+in\nqj+FfXcC1wDbgVtUdXjajHWcGETk/7B7s3umbXGcXCPdLZoXMTfNWO4ARoT+7o/Cd0KTvj9wZDjn\nqeBW6jiVjog0EZEuIlJDRFoBvwXezrRdjpOLpPXBraqjgdXFNvcBBob1gcB5Yb0v8FpwN50PzMbc\nWx0nHdTGxjHWYi9A7wBPZdQix8lRssHrbH9VjbhgLscmzoG5l34Rc9wi3PXSSROquhA4JtN2OE5V\nIKu6osJEu9IGjdI3oOQ4juOkhGxo0SwXkSaquix40vwQti9m57kLB4VtuyAiLkCO4zjlRFWTcZEv\nN9nQonkP+HlY/znWFx7ZfomI1BaRQ4GW2PyFuKhqTi733HNPxm1w+zNvh9ufmmX7dmXhQmXUKOX5\n55W77lL691c6dlSaNlVq1VIOOEA5/nilb1/lppuUBx5QXnpJGTZM+fpr5fvvlQ0bqn7dp5OkWjQi\ncgHwsUbdkBsC3dR880s77zXgVKBxiIT7/4CHgHwRuZbg3gygqtNEJB+YBmwDfqnprh3HcbKSlSth\n2jSYPt0+Z82COXNg/nxo1AgOOwxatLDP3r1t/aCDoEkTqFUr09ZXP5LtOrtHVd+KfFHVn0Qkj2hr\nJC6qemkJu04v4fgHgAeStNFxnBxn5UqYPNnEJHbZtAnatIEjj7TP7t2j4lKnTqatdoqTrNDE69er\nWRFDqivdunXLtAkVwu3PLFXFflVYsAAmTrRl0iT7XLsW2raFo44yQTnvPBOXpk1B0jK6ULbtTtkk\nFRlARF7E5sP8ExOdm4C9VfWqlFqXuD3eq+Y4OYKqdXGNGwfjx0eFpU4daN8e2rWzz/btoXlzqJEN\nI8lVEBFB0+QMkKzQ7AX8iWgypxHAX9QSNKUdFxrHyV7WrDFBGTcuKi41a0KnTtCxIxx3nInLfiUl\nWXAqhawXmmzDhcZxsgNVmDsXRo+25fPP4fvvrXVy4okmLp062cB8pru+qjtZKzQi8j42aTKecaqq\nfZI2xAJoXoGFSJ+CpdutSwkBN4ud60LjOBmgqAi+/TYqLJ9+attPOQW6doXOneHoo93TKxvJZqH5\nEQsF8xqWGwSioqOq+klSRog0Bz4G2qjqZhF5AxiC5Tlfoap/FZHbsXGgO+Kc70LjOGlg+3YbU/n4\nYxOWzz6Dxo1NVE45xZYWLby1kgtks9DsBpyB5fM4BvgfFvhyaoWMsFQBY4ETsTznbwMDgCeAU1V1\nuYg0AQpUtXWc811oHKcSULU5Kh99BCNHQkEB7L8/9OgBp54KJ58MBxyQaSudZMhaodnpREuPeynw\ndyBPVZ+skCEi1wOPYHnNh6nqlSKyWlX3DvsFWBX5XuxcFxrHSRFLl1qLZeRIE5iiIjj9dDjtNBOY\nAz20bZUgnUJT7nk0IrIHlrzsEqA58DgVzNMhIodhaW6bY+lsB4nIFbHHqKp6TDPHST2bNtnYytCh\nMGIELF5sEyBPOw3uuAOOOMK7wpyKUS6hEZGXsXGTIcCfVXVKiuw4HvhcVVeG67wFnAQsKyHg5i7k\n5eXtWO/WrZtPpnKcUpg3z4Rl6FD45BM45hjo1QteeMHcjWv69OsqR0FBAQUFBRm5dnnHaIqAkubK\nqKqWljO9tHKPBf4LnABsAv6DBdA8BFipqg+LyB1AQ3cGcJzys3lztNUydCisWgU9e5q4nHmmxQdz\nqhc5MUaTakTkNix6cxHwNfALoB6QDxyMuzc7TrlYtgzef9+WTz6xMC69esHZZ9u8Fp9xX72plkJT\nEVxoHMc8xKZNg/feg3ffhZkzrdXSuzecdRbss0+mLXSyCReacuJC41RXtm2DMWNMWN57D7Zuhb59\noU8fm9tSu3amLXSylaz2OnMcJ7MUFsKwYSYsQ4ZY4Mk+fWDwYIt07B5iTrbhLRrHyQHWrLFWS36+\nDep37mwtl969LW6Y45SXrO86E5ELscyY+7NzCJqkvM4qiguNUxVZu9ZaLfn5Npjfowf06wfnnAP1\nM/Kf5lQlckFo5gDnqur0lBli6aCfw+bpKBZUcxYeVNOpRhQWmpdYfj6MGmVhXvr3t5aLi4uTSnJB\naMaoapeUGiIyEPhEVV8IMdXqAnfjQTWdKs66dfC//5m4jBxpgSn79bNxl4YNM22dU1XJBaF5HGgC\nvANsCZtVVd9KygiRBsBEVW1RbPsMPKimUwVZv94G8vPzYfhw6NLFxKVvX9h7l2h+jpN6csHrrAEW\n/PLMYtuTEhrgUODHkCL6WOArLPbZ/qq6PByzHBsTcpycZMMGm5Wfnw8ffmiJwPr3h6ef9pn5TtUm\nK7zOROR4LE1AZ1X9UkQew9IF3BwbrVlEVqnqLv+S3qJxspWNG01U8vNNZE44wVou559veVwcJ1Nk\nbYtGRG4PcceeiLNbVfWWJO1YBCxS1S/D9zeBO/Ggmk4OsmmTdYfl59vYS4cOJi4DBsC++2baOqe6\nkktBNXur6vsichXmGbZjFyY0A5M2RORT4Beq+p2I5AF1wi4PqulkPZs3W4j9/HzzGmvXzsTlggss\nUZjjZBtZ7wxQGYQIzs8BtYE5mHtzTTyoppOlbNliXmL5+Tbf5eijTVwuvNCzTjrZT7UUmorgQuOk\ni61bLetkfr7N1G/TJiounnnSySVcaMqJC41TmWzbZqmN8/PhnXcs42S/fnDRRR7+xcldXGjKiQuN\nk2q2bbOwL/n58NZbcNhhUXE5+OBMW+c4FSdrvc4iiEgr4CmgiaoeJSJtgT6q+peUWuc4aWT7dgtY\nGRGXgw82cfnyS4uQ7DhOciQbGeBT4A/Av1W1vYgI8K2qHpVqAxO0x1s0TlJs3w6ffWbiMniwjbP0\n6wcXXwwtWpR9vuPkKlnfogHqqOo4CYkvVFVFZGvqzHKcyqOoCD7/HN54A958E5o0MXH57DM4/PBM\nW+c4VY9kheZHEdnxLykiFwFLK2qMiNQEJmCTN3uLSCMSiN7sOGVRVARffGEtl0GDLK1xv35QUACt\nWmXaOsep2iTbdXYY8AzQGVgNzAMuV9X5FTJG5LfAcUA9Ve0jIn/Fozc7SaIK48ZFxaVBg2i3WJs2\nmbbOcTJLznidiUhdoIaqFlbYEJGDgP8A9wO/DS0aj97slAtVGD/ehGXQIKhTxwJXXnwxHJWREUTH\nyU6yfoxGRH5HTAiaMFazBvhKVSclacujmINBbHonj97slEmk5TJokI257LmnCcv//mfiImn5V3Ic\npySSHaM5DjgeeB+Lc3YOMAW4UUTeVNWHy1OYiJwL/KCqE0WkW7xjgsNBic0WD6pZvSgq2llc6tY1\ncfngAwsF4+LiODuTM0E1d5wkMhroparrwve9gCFAT6xVU64ecBF5ALgS2AbsgbVq3gJOALrFRG8e\n5V1n1ZfIgH5EXOrVM3GJdIu5uDhO4mR91xmwL9HMmgBbsW6uDSKyqbyFqepdwF0AInIq8HtVvTI4\nA/wceDh8vpOkvU6OUlQEY8eauAweDPXrm7B8+KGPuThOrpCs0PwXGCci72BdZ72BV4NzwLQU2BVp\nnjwE5IvItQT35hSU7WQ527fbPJfBg63l0rChicuwYXDkkZm2znGc8lLurrMQBaAZNjDfBROFMao6\nIfXmJWyTd53lOJs3W8j9t9+2kPsHHmhZKN0V2XEqh6x2bw5CM0VVj64ck8qPC01usnYtDBli4jJs\nGLRta+Jy3nlw6KGZts5xqjZZPUYTvL++EpGOqjq+Moxyqi7Ll1uL5e23LeTLySebuAwY4JkoHaeq\nkqzX2UzgcGABsD5sVlVtm0LbymOPt2iymO++s/TG77wDU6bAWWeZuJx9tg3uO46TfrK66wxARJrH\n217REDTJ4kKTXWzdaq2VDz4wgVm3Ds49F/r2hdNOgz32yLSFjuNkvdDsOFlkP2zeCwCqujDJcpoB\nLwH7Yc4Fz6jqgESDarrQZJ4VK2DoUBOX4cOhZUsTl3PPhfbtfY6L42QbWS80ItIHeARoCvyACcH0\nZPPRhDhmTVR1Upj8+RVwHnA1HlQzK1GFqVNNWD74wLrEevSA3r2tS6xJk0xb6DhOaeSC0EwGegAj\nQuKz7sCVqnpNSoyy+TlPhsWDamYJq1aZC/KwYdZqqVnThOXcc+HUU71LzHFyiaz2OgtsVdUVIlJD\nRGqq6igReTwVBoXxn/bAODyoZkbZts3iiQ0bZsv06dC1K5x5Jtx2GxxxhHeJOY5TNskKzWoRqQeM\nBv4rIj8A6ypqTOg2Gwz8WlULJeYp5kE108O8edZaGTYMRo2C5s3NS+yhh6BzZ9h990xb6DhOMuRi\nUM29gI1ADeByLAjmf1V1ZdKGiNQCPgCGqupjYdsMPKhmpbJwoQlKQYF9btoEZ5xh4nLGGT63xXGq\nKlk/RpNyI6zpMhBYqaq/idn+17DtYRG5A2jozgAVY/HiqKiMGgWFhdCtG3TvbkurVt4d5jjVgawX\nGhG5EAt4uT8WVBOsdyup6XcicjLwKTCZaEDNO4HxQD5wMO7eXG5UbbLkmDEWpPLTT21A/9RTo+Li\n4fUdp3qSC0IzBzhXVaen3qTy40JjbNwIEyZEheXzz2GvvaBLFxtfOflkOOYYqFEj05Y6jpNpckFo\nxqhql0qwJymqo9AUFcGcOSYsX35pojJlirVQIsLSubNFQXYcxylO1gpN6DID6Ao0wRKRRRKgqaq+\nlVrzErarSguNKixYYIIyYYItX31leVqOP96Wk06CE06AOnUyba3jOLlANgvNf4iOoUjMOgCqenXK\nLCsHVUloNm60+SqTJ1sLZfJkmDjRJkNGROX44+G442DffTNtreM4uUrWCk22kotCs3UrzJ0LM2ZE\nBWXKFJg/3+KEtW1r4ylt20K7dnDAAZm22HGcqkQ6hSapYWERGSgiDWO+7y0iL6TOrF2u11NEZojI\nrBDzLCdQhWXL4JNP4Jln4Pe/t5AtRxwB9epZTLAHHihg3TqLbJyfD2vWmOi88grcfjv06pXdIpOp\nCWCpwu3PLLlsfy7bnm6SjQxwbKybsaquFpEOKbJpJ0SkJhbz7HRgMfCliLyXDR5vqpbIa8ECa4ks\nWLDr+h57mLC0amVLly72edhhNss+L6+AvLxuGf4lyVNQUJDTURjc/sySy/bnsu3pJlmhERFppKqr\nwpdGQM3UmbUTHYHZkVw3IvI60BeoFKEpKrIUw6tXw8qVJiRLl1rLZNmyndeXLDH34UMOsVAthxxi\nInLWWbZ+yCE2YO84jlOdSVZoHgHGikg+5hRwMXB/yqzamQOB72O+LwI6FT/oww8tCOT27fYZWd+y\nBdavhw0b4n+uWWOismqVfa5ZA3Xrwt57Q6NGFu6+SRPrvmrVyiY7Rr4fcIAd6ziZYvTo0Vx33XU8\n++yzmTbFcUqkTGcAETkcWKSqm0I6gGOwJGUHYqkCFPhYVadVioHmUt1TVa8L368AOqnqr2KOyS1P\nAMdxnCwgm9IEDAaOC4LzNPAu8Kqqng1MrUzjAouBZjHfm2Gtmh2kq7Kc3CfE1SPWTVFEdlPVbRUo\nsxvwsqo2K+vYipCu6zhOqknE66wo/BNeADyhqn8A0ukHNQFoKSLNRaQ20B94L43Xd7IEEWkmIm+J\nyA8iskJEngjb80Tk5ZjjmotIkYjUCN8LROQvIjIGS2fRIuz/pYjMAmaG484VkUkislpExojIMTFl\nzheR34nINyLyk4i8LiK7i0hdYCjQVEQKRWRtSNIXa3cnEVkaEbmw7XwR+SasdxSRCSKyRkSWicgj\ncX57vOscEPvbY373VSKyUERWisiNInKCiEwOv+uJYuVeIyLTRGSViHwoIgdX6I/kOHFIRGi2iMhl\nwM+wMP4AtSrPpJ0JInczMAyYBryRDR5nTnoJ3ocfAPOw1OEHAq+F3Yl0nV4B/AKoBywM2/oCJwBH\nikh74HngOqAR1np/L6SviFzjYuAs4FCgLXCVqq4HegJLVLWeqtZX1WWxF1bVccB64LSYzZcB/w3r\njwOPqmoDoAUWSHYnSrjO0hJ+e0fgcOCSUPZdWDf3UUA/EekKICJ9seC15wONsfxSr8Upz3EqRCJC\ncw1wInC/qs4TkUOBl8s4J6Wo6lBVbaWqh6vqg+m8tpM1dMRa0n9Q1Y2qullVPw/7yuo6VeA/qjpd\nVYtUdWvY/qCq/qSqm4HrgadV9Us1XgI2Y/d+hAGqukxVVwPvA+0SvD7YA/xSALGkgb2IPtS3YK32\nxqq6IQhTPOJdJ962+1R1i6qOAAqxru4VqroEE5OI3TdidTBTVYuAB4F2IuJdc05KKVNoVHUqcAcw\nMXyfp6oPV+SiiUzAFJEBYf834W2z1HNFpJGIjBCR70RkeLEJpXeG42eIyJkx248TkSlhX8KpqLPI\n/oKwbWJYGmeb/WH7qNDdU7zbpjz13wxYoKpFidiPPYBnhu6pvQiei5Fzw/5eMccfDtwtIttFZKuI\n/AQchAnAKKwVdXHM8RuB80NZzwL7l1H/rwIXiHX/3oP9730c7L8WOAKYLiLjReSckuof2KOk+sde\nAAUYGHP/FAH3ha6zCViSwr3CvlbAs+E3bwIiiQtLDcWa5vvnDLFuxcnhs3vMOeW+/9Nse8cY2yaL\nSP+Yc7L+2VOG/eWre1UtdQH6YH3Y88P39sB7ZZ1XSnk1gdlAc6wLbhLQptgxZwNDwnon4IuyzgX+\nCtwW1m8HHgrrR4bjaoXzZhP1thsPdAzrQzDvtlyyfxTQIcvrvw7QBbgBG+OLvU7C9Q+cBCwP1y1u\nw1+BwTHH/gZrxdQI9q/BWuax9hdhXbER+ydh2V1Lsn8F8HbMNfKAZUAH4FTg+wTqfhLWTbUB687a\npf6BC7GW1Idx6r87sLXYb38CE5i/Yi2SIuzFMGL/MuC8sH4U1oV3V/j+E/DHLL//2wFNYuxfFHOd\nct3/GbB9T6BGWG8S7qGaOfTsKc3+ctV9Il1necHg1QCqOhHrR06WHRMw1bowIhMwY+mDZdyM9G83\nFBtgLe3cHeeEz/PCel/gNVXdqjbpczbQSSw1dD1VHR+OeynmnKy3P+Za5fW4S6v9al1BY7CHZ9To\n8tf/OGAp8B9gLvYAPSHY0AjoKuYs0AC4hTB2EezfDWhAscm/2JhPxP4GwDEi0jHYf76InIP9o42h\n5HEgwQRwHxEpK/Hfq8Afgd2Bf8fU4T0iEgmRugYTyJdj7I/U//5h36qYc9uE8/pgHqKw8/2zFVgV\n1qeFuqgZ6r8Q6C8iR2L1309EYltt8Uj3/TNJo2Ne04A9JTpuBuW7/9Nt+0a1Lkmwh/YaVd2eK8+e\nkuyPuVbCdZ+I0GzVXbNaFsU9MjHiTcAs3lQv6ZimpZy7v6ouD+vLsX9KwjmL4pxTfPviOHZkq/1N\nY74PDE3XPyZgeybsj1D8QX0g5aj/cMP3xrq4ugY7+oUyNgJvYBlavwTWFrveZqBhMfsVE67INRti\nXVhPYlEnWmIOMCUJTGT7QGysZRowV8x7q0kJ57yGvaEv0hBVI9jfDvhWRAqBR7Fu6nkx50XqeSsw\nK3IdzIOuXrBlf+yNU4lf/2CtpZXA9lDeDOBh7KHzHOY8cFYJtkfI1P0Tsf8rjY6xQfnu/7TbHrqf\npmJTQX4bc41cePaUZH+EhOs+EaGZKiKXA7uJSEuxfvbPyzqpFGLnL/TEmm1XxulvFBHpJiJrMDX+\nL3aj7XQMcR4Eam27yprEmWi5iah9Re2/XFWPBk4BThGRKxM4J5vsLxeq+j12v7ysqvuq6q0x+25W\n1b1V9QjMq6xrzNvY1xRziVfVmkQfzJFtw1S1o6ruDfykqv3VvL0Afk/Mw0FV78W6DiL1vxL4jao2\n0mJeZ8Xs7wcML7ZrhKrur+ZNdgz2z15S/Y9W1caq2ghr/YxT1Z+F8ueras3wuyMtumaq+qmIHIWl\nX++iqg/E2PSKqrbFxqs+UtVflHDdHaeUsT9CSu+fGPtviNlc3vs/7bar6nhVPQrrYn08tLiTJZvs\nL1fdJyI0N2N9o5uxN7K1wK2lnlE6i4FmEg2W+TL2VnWpiLSJPSasfwIswfrBB7Dz5M2DwrEAyyNv\nkqFp+kOcsiLnLArbDyqhrDLtj/m+ywTSMq6ZCvsXA6h5EaGq67BumY5ZaH9pduRC/ZdIrtS/iBwE\nvAVcqaqRllLO1H8J9idT/xm7d1R1BjAHa5EvIkfqvgT7y1/3Wvrg027AqNKOKe8SypyDDYoOIwxK\nYQOYd2jMgBbQDXPH/KLYuc2B2uw6oHV7WI8dDI0MptfG5j/MITqYPg4b7xASH5Ar0YaYY2IH5E6s\nDPuxwb3G4ZhawJvA9dlmf0yZV7GrM0DW139J9udK/WNdgt8QHAJyrf5Lsj+Z+s+A7c2B3cL6IVhL\nu34O1X1c+5Oq+wR+3EdAw7KOK8+CNdMXY03/O8O257GYaZFjnsSUeBvwXfhjHBnOnYkNit8Zc3wj\nYGQ4dniszZiHz2ysT/qsmO3HAVPCvgHltH8nG7Am/Q3F7J+N/ZN0KO3cZOwH6mJRE74BvsX69iVL\n7Z+PdS0VYv3ErXOs/nexH/NGy/r6x5wP1mHjPpEl8pDI+vovyX6SvP/TbPsVwbaJmJdZz5hzcqHu\n49qfTN0nElTzPcyleQTmGgnWlXdLqSeWgSQWLLMesF1VN4hIL+BxtT744mWV/iMcx3GcXdAsCqr5\nVlgiD/O4g0hJkEiwzMKY9aEi8pTE5MEpdmwKTEo/eXl55OXlZdqMpEm3/YWFMHOmpcCeORPmzYsm\nmVu2DPbbDw4+2FI57Lffzss++0D9+pbdNLI88kge995bPvs3bzY7Isu6dZZi4scf4YcfbPnxR8tl\ntHix2aZqdh1yiH1GkuG1bm25jGommc3J75/Mkcu2A4ikRWOABIRGVf8jInWAg9UGhFLFjmCZ2GB/\nf0KIjggisj/wg6pqmN8g8UTGqXps3GgprSdOhClTosKyerU9pFu3tgf1mWdGH94HHQS1yhmFL5n/\ntd13t6VxQnEYjDVrTHAWLrQMrLNmwbBh9rt++MEyrrZuDW3aQLt20KGDCVAanwWOU2mUKTQi0gf4\nGzbJrHkIaXCvqvapyIVVdZuIRIJl1gSeV9XpInJD2P80cBHwfyKyDZtNfUlFrulkJ+vXw1dfwddf\nR5e5c+3B26EDHHMM9O1rwtKsGdRIxFcyy2jQANq2taU469eb8MyYAdOmwX/+A7fcYsn52rePLiec\nYCLr4uPkGol0neVh3hGjwCIDiEhFIgPsQFWHYqHPY7c9HbP+T+CfqbhWtpLrOceTsX/JEhgzJrpM\nmwZHHw3HH28ZTG+9FY46yloNlU021H/dutaKaddu5+3Ll1uLbuJEePdduPtuE5/OnaFLF/vs3Llb\nRmxOFdlQ/8mSy7anm0ScAcapaicRmaiq7cO2yWqTvLICEdFcHaOpDixeDB99BCNHwujRsHZt9GHZ\npYsJzJ6sydRkAAAgAElEQVR7ZtrK3GDRIhPnzz+3z+nT4dhjoXt3OP10q9d0CLST+4hI2pwBEhGa\nFzAX5zuw5Ge3ALVU9cbKNy8xXGiyi8JCKCgwYRkxwt7Me/SA006Drl2tSywXu7+ykXXrYNw4GDXK\n6nvaNBOb00+3pW1br2snPtkmNHWBu4FIePphWL6LTRW+uIWgeQwbo3lOS0g/ICInAGOBfqr6Vpz9\nLjQZZuZMeP99W77+Gjp1ij7s2rdP3qvKKR+rV0dFfuRI+3722dC7tzlO1KuXaQudbCGrhGbHgRbj\nRlV1bUoubCFoZgKnY67OXwKXarHsmeG4EZgzwIuqOjhOWS40aWbbNvjss6i4bNgA555rD7Tu3aFO\nnUxb6IB5uH3wgf2NPv/cuip797a/1SGHZNo6J5NkldCE1sQLWOgBsBwW16rqhApdWOQk4B5V7Rm+\n3wGgqg8VO+5WLAPhCcAHLjSZY8sWe0seNAjee8/cb/v0sQdX+/buDZXtrF0Lw4eb6AwZYu7gF19s\nS8uWmbbOSTfpFJpEvM5eAH6pqqMBROTksK2izgDxwlnH5llBRA7Ecib0wITG1STNbN1qA/n5+eb5\n1KaNPZjuu88eVE7uUL8+XHSRLdu3W4t00CA45RQ44ADo18/+tocfnmlLnapGIkKzLSIyAKr6WZjX\nUlESEY3HsECbKjaNtUT1jZ2h261bN3c9rABFReYd9vLL8M47NnejXz/4859dXKoKNWuaK/mpp8Lj\nj5vo5OfDySdD06Zw6aVw+eW27lQNCgoKKCgoyMi1E+k6ewzLrvZa2NQf2EQ0A+DXSV1Y5EQgL6br\n7E6gKNYhQETmEhWXxtg4zXWq+l6xsrzrLAXMmmXi8vLLNmj8s59B//42SdKpHmzfDp9+Cv/9L7z1\nlk0SvfJKOP98m+/jVB2ybYymgJ1bHzvFOlPV7kldWGQ3zBngNCwEzXjiOAPEHP8i8L57naWW1avt\nTXbgQJuNf9llJjDHHutjLtWdjRttLO6ll8yRoE8fuze6d3eX6apAVglNpV7cIjJH3JufV9UHi4Wg\niT3WhSZFqNq8i6eftnhbZ51lD5Azzyx/rDCnerB8Obz2moXHWbsWrrsOrr7agpc6uUlWCY2I7I3l\nTm9OdEynwmkCUokLTWKsWGEPimeesdnjN9xg/fB7751py5xcQRUmTLB76M03rXVz/fVwxhk+VyrX\nyDahGYtNlpwCFBG6zlR1YOWblxguNCWjan3uTz9tLq19+5rAnHSSd405FaOw0Fo5zzxjLzG/+AVc\nc407EOQK2SY0X6tqh3QYkywuNLtSWGjjLv/8pwnKDTfYoG6jRpm2zKmKfPUVPPssvPGGdcX++tdw\n4on+MpPNpFNoEhnSe1VErheRA0SkUWRJxcVFpKeIzBCRWSJye5z9fUXkGxGZKCJfiUiPVFy3KjN3\nLvz2tzaZsqDAWjJTp9o/vouMU1kcdxz8+98WieDEE+GKK6BjR/Ng3Lw509Y5mSaRFs3NwP1YRICi\nsFlVtUKpAhIJQSMidVV1fVg/BnhbVXeZTlbdWzSqJiqR+RDXXAM33eQhRpzMsX07DB0KAwZYArsb\nboAbb7SJoU52kG0tmt8Bh6nqIap6aFhSkY+mIzBbVeer6lbgdSwKwA4iIhPYC1iRgutWGTZvhhde\nsDwmN90EPXtaFse//tVFxsksNWtaPLXhw83DccUKOPJI826cMiXT1jnpJhGhmQVsrIRrxwtBc2Dx\ng0TkPBGZjiVIyxpPt0yyZo2JSYsWNgfmb3+z7rEbb/RJdU720aaNjRXOnWtic9ZZ0KuXCVA17oio\nViQSgmYDMElERgGR3tZUuDcndIup6jvAOyJyChaNoFW846pDCJqlS+Gxx+C556z1MmSITax0nFxg\n773hjjvgN7+BV16B//s/2GsvuO02uOAC2C2Rp5GTNNkeguaqOJsr7N6cSAiaOOfMATqq6spi26v0\nGM3MmfD3v8PgwTbIGhnsd5xcpqjIIkn/7W/2EvXb39okUE8xkR6yyr250i6cQAgaETkMmBuCanYA\nBqnqYXHKqpJC8+WX8OCDNsD/y1/CzTdD48aZtspxUs+YMSY4Y8eah+TNN1u0aafyyCpnABE5QkTe\nFJFpIjIvLHMremFV3QbcjGXsnAa8oarTReSGSBga4EJgiohMBB4HLqnodXOBsWOtD/uCC6BbN5g3\nD/LyXGScqkuXLhYpfNQoG2887DC4916LxefkPol0nY0B7gH+AfQGrgZqquqfKt+8xKgqLZrPPrNQ\n/N99B3feCVddZaFiHKe6MWsWPPCABfW88UYb1/EXrdSSVS0aYE9VHYmJ0gJVzQPOqVyzqheffAI9\nekTD8n/3nc07cJFxqistW8KLL1pctRUrLCfSH/4Ay5Zl2jInGRIRmk1hcuVsEblZRC4A3Im2gqha\n5spTT7UYUT/7mQ36X3st1K6daescJzs49FCLbvHNN7Bpk7lH/+Y3Fk3ayR0SEZpbgTrYHJbjgSuA\nn6fi4gmEoLk8hKCZLCJjRKSi6aOzglGjLH3uTTdZuPXp062bzEP0O058mjWDJ56w8ZuiIhOcO+6A\nlSvLPtfJPJn0OkskBM1JwDRVXSMiPTF36BPjlJUTYzTjxsHdd1s8qHvvhUsu8dDqjpMM338P999v\nqQpuuslcoxs0yLRVuUW2jdFUFomEoBmrqmvC13FATmasnzzZwvNffLGNwUyfbnlgXGQcJzmaNbMg\nnuPHW9ilww+3qQDr1mXaMicemRSahELQxHAtMKRSLUox330Hl15qmSt79LDv113nXWSOkypatLBk\nfp99Zi90hx8O//iHpaF2sodMBn1IuK9LRLoD1wBdSjomm0LQLFxobsrvvmsDl88+a6E2HMepHFq1\nsiRsU6bAPffAI4/A//t/FsncX+yMbA9Bsx9wHbumcr6mQhdOMARNcAB4C+ipqrNLKCsrxmiWLzff\n/1deMd//3//e0yQ7TiaYMAFuvx0WLbL/yQsu8CRsxcmqEDQhlfOnwFfsnI9mcIUunFgImoOBj4Er\nVPWLUsrKqNCsW2dvUAMGWBbLO++E/ffPmDmO42BTCEaMMO+0WrXg4Yct0oZjZJvQTFLVdpVycZFe\nwGNATeB5VX0wEn5GVZ8WkeeA84GF4ZStqtoxTjkZEZqtW+H5562brEcP+MtfPNil42QbRUWWYvru\nu6F1a3Ma8Kjn2Sc0fwHGqur/0mFQMqRbaFQtLtMdd5j3y8MPWypbx3Gyly1b4Jln7IXwjDPgvvuq\n94thtgnNOmzC5hZga9isqpo1sVXTKTRjxlj+jHXrLPnYmWd636/j5BKFheaZFunqvvtu2HffTFuV\nfrJqHo2q7qWqNVR1D1WtF5asEZl0MWMGnH++uStffz18/bVlCnSRcZzcol4980ybPh22b7coAw8/\nbCFunMqhRKERkTbhs0O8JRUXTyAETWsRGSsim0Tkd6m4ZnlZutQ8yE45BTp3tnhkP/+5T7Z0nFxn\nv/0srM3nn1vUjtat4dVXbUzHSS0ldp2JyLOqep2IFBBnzouqdq/QhRMLQbMvcAhwHrBaVR8poayU\nd52tW2eJmJ580rL+3XUXNGqU0ks4jpNFfPop/O531kvxyCP2clmVSWfXWYkTNlX1uvDZrZKuvSME\nDYCIRELQ7BAaVf0R+FFE0paWoKgIBg6EP/7RIit/9VX1HjB0nOpC167Wsnn9dUuZftxx1qXWsmWm\nLct9cikETaXzySdw/PHmmTJ4sDWjXWQcp/pQowZcdpmNyXbsCCedBLfe6lGiK0pOhKBJhIqEoJkz\nxzzJJkywN5j+/X2Q33GqM3vuadMXrrnGIq23bm3fb745dxMSZnUImkq7cIIhaMK+e4B1qR6jWbPG\nfOpffNHCjP/mN3aDOY7jxDJ9ur2MTp0KDz1kkdhz/WU0q9ybReSjRLYlwQSgpYg0F5HaQH/gvZLM\nSMH1drBtG/zrXxaIb/Vq+PZbG+x3kXEcJx5t2sD778Nzz1lkgS5dbDzHSYwSu85EZE9soua+IhLr\nb1WfFIylqOo2EbkZGEY0BM30YiFommDeaPWBIhH5NXCkqiaddWLYMPMs2W8/+PBDaFcpwXUcx6mK\n9OhhDkIvvWSBOrt3N+Fp1izTlmU3pbk33wr8GmiKBb2MUAg8o6pPVr55iZFI19n06SYws2bB3/8O\nffrkftPXcZzMsW6djek+9RT86lfwhz9A3bqZtipxsqLrTFUfU9VDgT+o6qExS9tsEpmyWLHCBvC6\ndrX4RlOnWrZLFxnHcSrCXntZvLSvv7aJ3K1bW4oQn/C5Kwk5A4hIZ3bOR4OqvlR5ZpWPeC2aLVts\nsuWDD8Ill1jIicaNM2Sg4zhVns8/N1doEXjsMXONzmayokUTY8wrwN+Bk4ETYpYKU1YImnDMgLD/\nGxFpX1aZkcjKRx0FH31ks32feMJFxnGcyqVzZ/jiC+tG69fP4iIuWJBpq7KDRKI3T8cG4FPqB51g\nCJqzgZtV9WwR6QQ8rqonxilLVZVJk8xN+YcfLDrrmWem0mLHcZzEWL/eQlg98QT88peW7TPb0rln\nVYsG+BY4oBKuvSMEjapuBSIhaGLpAwwEUNVxQEMRiZu78tproWdPe5OYNMlFxnGczFG3LuTl2bNo\n3jybSjFwYPUdv0kkMsC+wDQRGQ9sDttUVftU8NrxQtB0SuCYg4DlxQvbZx8bkGvQoIJWOY7jpIhm\nzcxBYNw4G7954gkbvzn55Exbll4SEZq88KlEJ06mohst0TKKN+3inlenTh6PPmrr5Q1B4ziOU5l0\n6mTOAq+/brHUnnzSplikk6wPQSMizYHDVXWkiNQBdlPVtRW6cAIhaETk30CBqr4evs8ATlXV5cXK\nSmsqZ8dxnGTZsAF22w1q186sHVk1RiMi1wODgKfDpoOAt1Nw7URC0LwH/CzYcSLwU3GRcRzHySXq\n1Mm8yKSbRLrObsIG7r8AUNXvRGS/il44kRA0qjpERM4WkdnAeuDqil7XcRzHSS+JuDePV9WOIjJR\nVduLyG7A16raNj0mlo13nTmO45SPrOo6Az4RkbuBOiJyBtaN9n7lmuU4juNUFRJp0dQAfgFEZqYM\nA57LpiaEt2gcx3HKR9a0aEI32TRVfUZVLwrLsxV9qotIIxEZISLfichwEWlYwnEviMhyEZlSketl\nM5lyN0wVbn9mcfszRy7bnm5KFRpV3QbMFJFDUnzdO4ARqnoE8FH4Ho8XgZ4pvnZWkes3q9ufWdz+\nzJHLtqebRLzOGgFTQ2SA9WFbRSMD9AFODesDgQLiiI2qjg5zeBzHcZwcJRGh+SMJzs4vB/vHzIdZ\nDsSNX+Y4FSUvL485c+bw8ssvZ9qUSuPoo4/mqaeeomvXrpk2xXHiUqozQBijmaqqrcpdsMgIoEmc\nXXcDA1V175hjV6lqozjHRqISvK+qx5RyLfcEcBzHKSfpcgYotUUTJlXOEJFDVLVcmRVU9YyS9oUB\n/iaqukxEDgB+KE/Zca7l+TKduIhIHnCYql4ZXlrmArVUdXsm7UoWEfkP8L2q/inTtjhOoiQyjyYy\nRvOxiLwfluKhYsrLe8DPw/rPgXcqWJ5ThRGR20VkULFtj4vI42G9qYi8JyIrQ5K8XxQrItLi/TR8\n/iQihSLSSUQOC/f2ChH5UUReEZEGMdfpICITRWStiOSLyBsicl/M/nNFZJKIrBaRMSISt+UtIv8S\nkb8V2/auiNwa8xsXhevMEJEeccq4HrgMuC3Y/27YPj9yvIjkicggEXk5lDVZRFqKyJ3hBW9BmA8X\nKbOBiDwvIkvC9e8LUxocJ3WoaqkL0C3eUtZ5ZZTZCBgJfAcMBxqG7U2B/8Uc9xqwBEtP8D1wdQnl\nvYCN9UxJ4NqHYJ5u3wCjgAMr8lt8qfwFOBhzRNkrfK8Z7ouO4funwJNAbeBYrIXcPezLA16O+dsX\nATViyj4MOA2oBTQGPgEeDftqAwuAX4Vrnh/uxT+H/e3DfXcCNo75M2AeUDvObzgFWBjzfW9gA9a9\n3ApYCDSJ+b0tSqiLFyPXj9k2D+gR83s3AmcEmwcC84E7w/dfAHNjzn0b+BewJ5YSZBxwfab/5r5U\nrSXjBqTkR9g/cfsEhWYQcGVY7w68lGn7fUnobzw65u92BpY0D6AZsA2oG3PsA8CLYT1WaJoXF5o4\n1zkPC7EE0BVYFMeOiND8K85DfwbQNU65EkTrlPD9OmBkWD88CNZpWLdeafXwInBfsW3FhWZYzL7e\nQCHR8dh6oQ7qY044m4A9Yo6/FPg4039vX6rWUvYBsC7cqIXY21wRsLZCF7W5MTOAWcDtJRwzIOz/\nBmhf1rnYm2wh0VZSO2AoFiV6XnirmxE+DwznHAdsD2U9nmH7GwEjKNbKC/vuDMfPAM6M2V4Qtk0M\nS+Nssz9sHxX+Nk8Uu8ZxwJRE6h/4P2BIWB8OrAjnPQn8UOzYG7GH+ixgGfBB2N483L877Mcetq9j\n6cS3hv0bgYbAJeH+2WE/8CpRoVkZjt8Wlp+w/5f+JfyGh4GnQh2ux8Tl9rDvUkzEVmEt+edKqP/Y\n3x45dx6WnXZEsGlJTP3fhv3fTg6/5bRgc1OsBabY/8AmYDWwhjJe2NJ8/5wR7I7Y370i93+abe8Y\nY9vk2PuCctz7WWp/ueq+vAJRA3vje6g85xUroyYwG/unrwVMAtoUO+Zsog+VTsAXZZ0L/BtYGtZv\nxwTlcODIUIEfh/MKgVvCcbOwf7q9gSFAzwza/1fgthj7HwrrR4bjaoXzZhN9Ox0FdMiS+i/J/jpA\nF+AGdhWa8US7v0qtf6xbZwPWgtkO9Ag2TMUe8nvFHPsGNmAO8CzwY1g/FHuwHhpj/5vAf4HHsYfy\neZhgPITN9Vocaz/wGVGhWQw8WY66b4d1680Pv6VR8frHWhwFhJZUnPpfiz1IdtQ/JjSvB/vzgK9j\n6v8GQpcdcBSWpTYiNBMxgalRVv1n8P5pR7RL8ShiWpiU8/7PgO17ElrPWBfpCqBmee/9LLW/XHVf\nrkE/VS1S1Xeo2Gz9jli3x3xV3Yr9g/QtdkwfrG8ZVR0HNBSRJmWcewb2gADrHjs4fI4E6mJzd+Zj\nb0Xni8hkYB/sYbEdeAl7yGTK/h3nhM+ILX2B11R1a7B/NjunvC6vx11a7VfVDao6hmgacDPavA3r\nqer4sKnU+lfVH7EH8GBgnap+HGx4GRu/e1BEdheRtlh30Yvh1MVA7WD/IZjQ7BZjf0usdXEWFsfv\nD+H7ecBYTMTaY62dQ7HxmAhLgAtFpKMYdUXkHBHZq4TfMCmUvRcwVFVXBRuuFZEeIrJ7qKcm2EtQ\nvPr/EdgnTv13Jlr/c2Lqcg52fwNMwx4eAPsBewAfAv8A8oHzgnNEaRNy0n3/TFLVZbH2i0itmGuV\n5/5Pt+0bVbUobN8TWKOq28t772eb/THXSrjuE0l8dmHMcrGIPIR1LSTLgdiDIcKisC2RY5qWcm5j\n7KEApryoanvswXSbqh4V9s3BuluuxlQdtWyhi+PYkU77S5rE2jQcF3tO05jvA4NX1B8TsD0T9kfQ\nONeI/V2J1P+rwPHA9GI2jMLe1JYAb2EP6Q9jrrshlL0P9hY/RkRWYYP9U4AO2ID8i9j9sj38ni3A\nBcC1wD/DMR8AW0LZ6zBhGBWuMYuQqK8UvsBaMq/G2N8UeBATkaVYt90jxX5jpP4nAEeKyGrgQqJ1\ntneof8X+P2PrP1L3F2KtHcXEbFGwtzbWrXct9nIWb/5bhEzdPxH7vwoPygjluf/Tbnt4CZmKtbx/\nG3ON8t772WR/hITrPpEWTW/g3LCciXU9FVfRiFE1RaR+GeVpOPYFEVmO/YOVUJwMEJFZ2Bt8vEmj\nwq4PsIhwbBeRi2IKi+TP2Z2oEjcHni/D3rj2J0Aial+S/ZrgdS5X1aMxZ4hTROTKBM7JJvvLhaq+\nAlyMiUMs61W1t6ruo6qHYx5cEs65F/snifC1qu6nNkF4HrBKVY/Hsrd2UNV/qOrBEftV9avwwnIj\nJl4HEf2HvVxVm2P/mJ9i/d79VXVdKT/jTSzJ3+CYbStVtZOq1lfVfYAvsfGSeKxV1fZqE54HmIl6\nKOElS1XvVdXI2AuqOlJVW4jIUVh34PWqWpPoy9haVf0lcBHwYaiD/FLsz8j9E2P/DTGby3v/p912\nVR0fXnI7AI/Hus4nQTbZX666L1NoVPUqVb06LNep6v2qumOCpYi8JiL1RaQu9gCYLiK3lVLkYqyf\n/UWsC64WO6t75JjewOGq2hIb4PxdzLkRDgIWi8hr2FhAKxH5PsxNWIi9oV2IdQ1EYrMdHb6/gY3N\n3B9bVln1EceGZiXYX9zORSXZH9aXhyZupFspUsclnqOqS8LnOuwNuWMW2l+aHQeVUFbW2C8iXcP2\nGkBr7P75EHKn/kXkIKyld6Wqzou5RtbXfyn2J1P/Gbv3VXUG1ptyeCgvJ+q+BPvLX/da9gDUQHb2\ngNobeCHm+zfh83KsuV+LUrxWsGgEc7DWREusmR9vQGsB0B84EetumIE1/yLn1mbXAa2IF84d7DqY\nXhvrY59DdDB9HNZaEhIfkNutJBuK2R8ZkDuR6IBcieeW135scK9xOKYW9qZc5vyHdNsfU+ZV7OoM\nkAv1fx3mubYR69rqpdHB1ayvf6wb7hvgvDi25EL9x7U/mfrPgO3NsfFAsPHBhUD9HKr7uPYnVfcJ\n/LhJpW3DuiVqYX273cK2yWWU2QuYiXnfLAvbbgBuiDlmHqbE32DNtpGYS2Dk3NnAnTHHx50EGvbd\nFY6fAZwVsz3iYjgbGFBWXcSxf4cNcex/Muz/hhjvjFTZjzk4TAjlfws8ShDQLLR/PtYqLcS6nVrn\nWP3vYj/Wgs76+seC4q4j6oa6wxU1F+q/JPtJ8v5Ps+1XBNsmYl5mPWPOyYW6j2t/MnWfyA/7BmhU\nzKgpMd9vwZpgQ7HuhebA6AQrrTkltH6wdNFdYr6PpAR3OqxP0RdffPHFl3IsiQpcRZdE0gQ8AowV\nkXysmXcx0XENsMlwAyJfRGQBNjZSUUrrU9yFIDg5R15eHnl5eZk2I2nc/szi9pdOUREsXQrz5sGi\nRbB4cfQzsixdCvXrw/77w7772tK48c7LPvtAw4Z2XL16tjzySB5//nPl2V7ZiKQvFnGZQqOqL4nI\nV9gEOQXOV9VpMYe8iXVtRY7XMDh/XAVtew+4GXhdRE7EvIKWl3GO4zjVjC1bTEjmzIkuc+fa57x5\nJgotWsBBB8GBB9pnx47R702bwh57lP+6NTz0aMIk0qJBVSN+1DsQkTbYQHVDEbmAqLtcfWwiWKkE\nMToVaCwi3wP3YGM9qOrTqjpERM4WkdnYJLerE/5VjuNUOTZsgJkzYdq06DJ9Osyfb6Jx2GG2tGgB\np55q64ceakLjZJaEhKYEWmEuyA3CZ4RCzFOnVFT10gSOuTlp63KEbt26ZdqECuH2Z5aqaH9RkbVI\nJk6ESZNg8mQTlSVLoGVLaNMGjjwSLrvMPlu2hNq1s8N2Jz6lZthMqACRk1R1bIrsSdYGzdUxGsep\nzmzZAlOnRkVl4kT45hvYe29o3x7atYNjj4WjjrKWym4VeTV2dkJE0DQljUxaaETkiVJ2q6rekpxJ\nSdniQuM4WY4qzJ4N48ZFl2+/NQFp186EpX17E5Z99sm0tVWfdApNRd4PvsLGZGDXkAf+1Hecas7q\n1fDFF1FRGT8e6taFTp1s6dcPOnSwbU7VpsJdZzsKEqmHtWRKi/NUKXiLxnEyz5IlMHo0fPqpfc6f\nD8cfHxWWTp3ggAMybaUTISe6znYUYDnSX8Ii44KF6fi5qn6bwLk9gcewkAbPqerDxfY3Bl7Bosnu\nBvxdVf8TpxwXGsdJI5FusIiojB4Na9bAySfDKadA167WHVarVtllOZkh14RmLHCXqo4K37sBD6hq\n5zLOq4mFQzgdm4j5JXCpqk6POSYP2F1V7wyiMxMLab2tWFkuNI5TySxYAB99BCNHwqhRJiKnnBIV\nltatfW5JLpErYzQR6kREBkBVC0Ik57LYkYgHQEQiiXhic40sBSLh/etj4dR3EhnHcSqHlStNUEaO\nNIFZswZOOw1OPx3uv9/mqDhOIqRCaOaJyJ+wTIeCRXGem8B58RL0dCp2zLPAxyKyBEtx26/i5jqO\nE48NG+Czz6LCMnu2dYWdfjr88pdw9NHeYnGSIxVCcw1wL5YvAmB02FYWifR13YVFiu4mIocBI0Tk\nWFUtLH5gbLykbt26+WQqxykDVZg1C4YOtWXMGHMtPv10ePxxC9OSiYmQTuVQUFBAQUFBRq6dijGa\nDqr6dRLnnQjkqWrP8P1OoCjWIUBEhgD3q+WcR0Q+wvImTChWlo/ROE4CbNgABQUmLEOGwKZN0KuX\nLaefDg0qkv/RySlybYzmHyE72yDgjUS8zQITgJYi0hzL9d4fKB6WZgbmLDBGRPbHwt4k0i3nOE4g\n0moZMsRaLR06mLC89Ra0bQtpDOLrVFNSMo8mpP/sF5b6QL6q3pfAeb2Iujc/r6oPisgNYIE1g6fZ\ni8DBWK6bB1X11TjleIvGcQLbt9tEyffeg3fftUH8s8+OtloaNsy0hU42kFPuzTsVZnNqbgf6q2ra\nPOhdaJzqzoYNMGKECcsHH0CTJtCnD/TtC8cd54P4zq7klNCIyJFYS+YiLN3tG8CbqvpDxc1L2AYX\nGqfasXw5vP++tVwKCuCEE0xc+vRx12OnbHJNaMZi4pKvqktSYlX5bXChcaoFM2fC229by2X6dDjr\nLGu19OplEY8dJ1FySmiyARcapyozaxbk59vy449w/vkmLt26ufuxkzwuNOXEhcapasyZExWXZcvg\nooss2nGXLj7e4qSGaiM0ZQXVDMd0Ax7F0jyvUNVucY5xoXFynnnzYNAgE5fvv4cLL4T+/W12fs2a\nmbbOqWpUC6FJMKhmQ2AMcJaqLhKRxqq6Ik5ZLjROTrJgQVRc5s+HCy6wlkvXrp5N0qlccmrCpoi0\nAi6RBWEAABHuSURBVH4PNI8pT1W1RxmnJhJU8zJgsKouCoXuIjKOk2t8/31UXGbPNnF54AEbc3Fx\ncaoiqbitBwH/Ap4DtodtiTQvEgmq2RKoJSKjsKCaj6vqyxUz13HSz+LFUXGZORPOOw/uvRd69PCc\nLU7VJxVCs1VV/5XEeYmIUS2gA3AaUAcYKyJfqOqs4gd6UE0n21iyBAYPNnGZOtU8xf70Jwu1795i\nTrrJ9aCaeVhWzbeAzZHtqrqqjPMSCap5O7CnquaF788BH6rqm8XK8jEaJytYtiwqLpMn2+TJfv3g\njDNcXJzsIqecAURkPnFaJ6pa6txkEdkNcwY4DQuqOZ5dnQFaA08CZwG7A+Ow8DbTipXlQuNkjB9+\niIrLpElw7rkmLmeeCbvvnmnrHCc+OeUMoKrNkzxvm4jcDAwjGlRzemxQTVWdISIfApOBIuDZ4iLj\nOJngxx9thn5+PkyYYEErf/1r6NkT9tgj09Y5TnaRdItGRE5T1Y9E5ELit2jeinNapeAtGicdrFwZ\nFZdx4yzsS79+9rnnnpm2znHKR660aLoCHwG9iT+wnzahcZzKYtUqeOcdE5exYy222PXX27Y6dTJt\nnePkBh6CxnGK8dNPFrTyjTcsUdjpp1vL5ZxzYK+9Mm2d46SGnHIGyAZcaJyKsmaNhdvPz4dPP7X5\nLf362cB+vXqZts5xUo8LTTlxoXGSYe1ay+eSn2/5XLp1M3Hp3Rvq18+0dY5TuaRTaDIaB1ZEeorI\nDBGZFebMlHTcCSKyTUQuSKd9TtWjsBBee81C7R90kK1fdBEsXGjdZZdf7iLjOKkmFfNo6gK/BQ5W\n1etEpCXQSlU/KOO8MoNqxhw3AtgAvKiqg+OU5S0ap0TWr4f//c9aLiNGWKj9fv1spr4nC3OqK7ni\ndRbhReAroHP4vgR4EyhVaEgsqCbAr0J5J6TAVqeasGEDDBli4jJsGJx0konLM89Ao0aZts5xqhep\nEJrDVLWfiFwCoKrrRRISyTKDaorIgZj49MCExpstTolExGXQIBOXjh1NXJ56Cho3zrR1jlN9SYXQ\nbBaRHdPVROQwYmKelUIiovEYcIeqqph6paWZ5+QO69fvKi4XXwxPPgn77ptp6xzHgdQITR7wIXCQ\niLwKdAGuSuC8xUCzmO/NsFZNLMcBr4cWUmOgl4hsVdX3djHCozdXGyJjLoMGwfDh0KmTiYu3XByn\nZHI6ejOAiDQGTgxfv0gkQVkiQTWLHf8i8H680DbuDFD1WbcuKi4jRsCJJ5q4nHeei4vjJENOOQOI\nyHFYN9gSrGvrYBFpACxQ1W0lnZdIUM2K2ubkNoWF8MEHJi4jR0LnziYuTz8N++yTaescx0mUVLg3\nf4F1cU0Om44BpgINgP9T1WEVukBiNniLpoqwcqVNonznHRg1Kiou553n3mKOk0pyqkWDtWSuVdWp\nACJyJHAfcBsWWLPShcbJbRYtMmF5+2348kuLLXbhhfDCCy4ujlMVSIXQtIqIDICqThOR1qo6R0S8\nmeHEZcYME5a334Y5cyym2K9+ZcnCPCqy41QtUiE0U0XkX8Dr2BhNP2CaiOwObE1B+U4VQNUShEXE\npbDQusMefBC6doVatTJtoeM4lUUqxmjqAL/E3JoBxgBPAZuAuqpaWKELJGaDj9FkIRs2wMcf24D+\nBx9A3boWY+yCC+D446FGRiPtOU71ptpEbxaRntikzJrAc6r6cLH9l2NjPQIUYs4Fk+OU40KTJSxa\nZG7I779v4fY7dLBusXPPhVatILGgEY7jVDY5JTQicgTwAHAkEIkQoKraoozzygyqKSInAdNUdU0Q\npTxVPTFOWS40GaKoyAbwI62WhQsttfG551o2Sg9a6TjZSa55nb0I3AP8A+iORQWomcB5ZQbVVNWx\nMcePAw5Kgb1OBVm1yua1DB1q4V8aNzZhGTDAglfuloq7ynGcKkMqHgl7qupIsWbFfCBPRL4G/lTG\neWUG1SzGtcCQClnqJMW2bfDFFxbuZdgwmD4dTjnFWix/+hO0KLXt6jhOdScVQrMpdIPNDjP9lwB1\nEzgv4b4uEekOXEPU4cCpZObNM1EZPtwG9Js3N2F58EHL57L77pm20HGcXCEVQvNroA5wCzZRsz7w\n8wTOSySoJiLSFngW6Kmqq0sqzINqVowVK+CTT2w2/vDhsGaNzWk5/3wLVtmkSaYtdBynIuR0UE0R\n6aeq+WVti3NemUE1ReRg4GPgClX9opSy3BmgnKxeHRWWUaNg/nw4+WTo1g3OOAOOPdbdjx2nKpNr\nXmcTVbV9WdtKOLcXUffm51X1wdigmiLyHHA+sDCcslX1/7d3rjFSVmcc//1VtiJFkMpFLtm1KBWU\nrStBVKpiGiulsdpgJMYSbZpI2pja1lpLY1qb+AHU1KD90DRpokathlatd63EtQotVFx2V5BrQAMI\ntLgosggKTz+cM8zLMtdlZmdeeX7JyZz3zLn859ndefY957zPsfNz9OOOpghdXfDmm1nHsn59iCN2\n2WXBuUya5A9NOs6xRCocTXQSM4BZZKMCAAwEJuRyCNXCHc3hmAVHsmQJLF4c0vvvh3NbMo5l8mRo\naKi1UsdxakVatjdvBZYTtiQvJ+toPgZ+dpS6nDLYtw+WL886lSVL4MQTwx3L1KkwZ06YCvNtx47j\n1IJKTJ31M7OaxjQ7lu5oPvsMVq0KccMyadUqOOus4FSmTg0OZsyY4n05jnPskpaps84Cb5uZNfdO\nUq+0fCEdzf79IcpxW1vWqXR0QGNjiBWWSeee6xGPHccpj7Q4mqZC72ee+O8L0u5ozGDLluBEOjvD\na0dHWGdpagqOZPLk4FRaWmDgwFordhwn7aTC0RzWiTScEFLGgGVmtqPEdgWDasY69wPfBrqBG82s\nLUedVDiazz8PD0KuWQNr14bX1auDc2logOZmmDgxpOZmGD8e+vcv3q/jOE65pMrRSLoWuAd4PRZd\nAtxmZguLtCslqOYM4GYzmyFpCrCg3oNq7t0bdni9915Ia9dmncqmTTByZIhiPG5ceN27t5XZs6cx\nbFitlfeO1tbWVD8c6/prS5r1p1k7pGfXWYY7gMmZuxhJQ4FFQEFHQwlBNYHvAg8BmNlSSYMlDTez\n7RXQXTaffgrbt8O2bSFt3px1KJs2hdddu8JCfGNjSGeeCTfcEJzK2LFhN1iSO+9sZdiwabX4OBUh\n7X9srr+2pFl/mrX3NZVwNAL+m7jeSXarcyFKCaqZq85ooNeOxiwssnd3w549IdRKV1eISPzhh9l8\nVxfs3Jl1LB98EOqPGJFNo0YFZ9LSEtZSGhtDuT9R7ziOk6USjuYl4GVJjxEczCzgxRLalTrX1dNp\n5Wx3+eVw4EBYB0m+7t8fHETGsXR3B0cwYEDYqTVoEAwZEs5NOeWUbH7cuJDPOJXTTgvl7kQcx3HK\no1KbAWYC3yA4gTfM7KkS2lxAOMhseryeCxxMbgiQ9Eeg1cwej9ergUt7Tp1Jqo8FGsdxnBSRmjUa\nSbcCj5vZ38ps+hZwZtwmvZVwJ3RdjzrPADcDj0fHtCvX+kxfGctxHMcpn0pMnQ0EXpHURYh5trCU\nxXoz+zyeX/My2aCa7yaDaprZC5JmSFoP7AF+UAG9juM4Th9SkakzAElfB64FrgE2m9k3K9Kx4ziO\nk2oqubS9A9hG2HU2tFBFSdMlrZa0TtLteercH99vl9RSrK2kIZL+IWmtpFckDU68NzfWXy3pW4ny\nSZI643sLSv2gdaS/NZa1xXRqvemP5a9J2i3pgR5j1L39i+hPg/0vl/SWpI74elmiTRrsX0h/2fbv\nY+3nJ7R1SJqVaJMG2xfSX57tzeyoEvBjoBVYBfyOcERAofrHA+uBJqAfsAIY36PODOCFmJ8C/LtY\nW+Bu4JcxfzswL+YnxHr9Yrv1ZO/klgHnx/wLhFM8i33eetL/GnBemT+vvtZ/EuEI7jnAAz3GSYP9\nC+lPg/3PBUbE/NmE2YY02b+Q/rLsXwPt/YHjYn4E8D/g+BTZvpD+smxfiTuaMcBPzWyCmf3WzFYV\nqX/oQU0LUZ8zD2omOexBTWCwpBFF2h5qE1+vjvmrgL+Y2WcWHg5dD0yRdBow0MyWxXoPJ9rUvf7E\nWOVuhOhT/WbWbWaLgX3JAdJi/3z6kx+lBM211L/CzLbF8lVAf0n9UmT/nPoTY5Vj/77WvtfMDsby\n/sBHZnYgRbbPqT8xVsm2P2pHY2ZzzWxFGU1yPYQ5qsQ6Iwu0TUYM2A4Mj/mRsV6uvpLlW3LoqFf9\nIxPXD8Vb1ztK0F4L/Rl6LgaOIh32z6c/Q1rsDzATWB6/aNJm/576M5Rj/z7XHqefVgIrgZ8nxkiF\n7fPoz1Cy7Wvx+GFvH9TMV+eI/izc21Xr2Zp60n+9mZ0DXAxcLGl2CW3qSX9vqCf9qbG/pLOBeYQp\nwKOhnvSXa/8+125my8zsbOA8YIGkQSVqyEU96S/L9rVwNFsI020ZxnC4d89VZ3Ssk6t8S8xvj7eI\nmWmZTATpQn2NztNXvevfAmBmW+PrJ8BjhNvjetNfSEca7J+XtNhf0mjgSWC2mW1MjJEK++fR3xv7\n1+x3x8xWAxuAM8iG0srVVxr0l2/7UhdzKpUIz+5sICxKNVB8QesCsgtaedsSFrRuj/lfceRiegNw\nemyfWUxfSljvEKUvyNWFfsLi3qmxTj/gr8BN9aY/0eeNHLmYXvf2z6c/LfYHBgPtwNU5tNS9/fPp\n7439a6C9CTgh5huB94GTU2T7nPp7ZftiH64aiXC+zBrCwvbcWDYHmJOo84f4fjuJ3Q252sbyIcCr\nwFrgFWBw4r1fx/qrgSsS5ZOAzvje/WnSDwwgRFdoB94B7iM60DrUv4mw7X03YZ74rJTZ/wj9hN1o\ndW9/QnT1T4C2RMp8SdS9/fPpp5e//32s/ftRWxthl9n0RJs02D6n/t7YvmIPbDqO4zhOLjwWseM4\njlNV3NE4juM4VcUdjeM4jlNV3NE4juM4VcUdjeM4jlNV3NE4juM4VcUdjZN6JA2S9KPE9UhJC6sw\nzpX5QrPXK5KmSXq21jqcYxt/jsZJPQrHgT9rZhNrLKXukDQNuNXMrqy1FufYxe9onC8C84CxMZLs\nfEmNkjoBJN0o6el4oNNGSTdL+oWktyX9S9Ipsd5YSS8qHK71T0lf6zlI7OuBmH9Q0gJJiyVtkDQz\nR/0Bkp6XtCIecnVtLJ8UD456S9JLiThTZ0h6NdZfLun0WH5PbN+R6GNa7GOhpHclPZIYd3osWw58\nL1F+aeKgqrclfblyPwLHKUCpoQ88earXRIjD1Jm4bspcE2KUrSOEzTgV+IgYlwn4PXBLzC8Czoj5\nKcCiHOPcQIx3BjwIPBHz44F1OerPBP6UuD6ZEBtqCfCVWDYL+HPMLwWuivkGwhkgMwlhQQQMA94j\nHEI1DdhFCP+u2OdFwImEmFRjYz9PAM/E/DPAhTF/EvEQK0+eqp1O6J17cpy6olhY9NfMbA+wR9Iu\nILNm0Qk0SxpA+JJeKB3qqqFInwY8DWBm70rKdX5KB3CvpHnAc2b2pqRzCCdFvhrHOh7YGu8uRprZ\n32Of+wEkTQUeMzMDdkh6HZgMfAwssxhFV9IKQtDVbmCjmW2IGh4Bbor5xcB9kh4FnjSzUiIGO85R\n447GORZIno55MHF9kPA3cBzQZWYtPRsWYX8if4SzM7N1Cme2fwe4S9Ii4ClgpZldlKwraWCBcXr2\nnVlYTX6uA4TP0nPR9VBbM5sv6bmoZ7GkK8xsTYFxHaci+BqN80VgN1DoizofAjCz3cBGSdcAKNCc\nr37JnYezPT41s0eBe4EWQvTcoZIuiHX6SZoQNWyWdFUs/5Kk/sAbwCxJx0kaClxCiKSbS4sRInw3\nSfpqLLsuoWesma00s7uB/wBHrEM5TjVwR+OkHjPbSfgPvVPSfMIXbuY/+2SeHPnM9fXAD+MU1DuE\nc9SPGKpIXz2ZCCyV1Ab8BrjLwjHE1wDz41htwIWx/mzgJ5LaCdNcw83sKcIUXDthHek2M9uRQ0vG\nFvsIU2XPx80A2xP1bok2aifcjb2YQ7PjVBzf3uw4juNUFb+jcRzHcaqKOxrHcRynqrijcRzHcaqK\nOxrHcRynqrijcRzHcaqKOxrHcRynqrijcRzHcaqKOxrHcRynqvwfhnHb3NorkhIAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f6b087d7b90>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,array\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "from math import pi,sin,cos\n", + "C=0.1*10**-6#\n", + "#symbolic integration cannot be done in scilab\n", + "t=arange(0,pi*10**-4+0.001*10**-3,0.001*10**-3)\n", + "i=[]\n", + "for tt in t:\n", + " i.append(0.5*sin((10**4)*tt))\n", + "#on integrating 'i' w.r.t t\n", + "q=[]\n", + "for tt in t:\n", + " q.append(0.5*10**-4*(1-cos(10**4*tt))*10**6)\n", + "C=10**-7#\n", + "V=[]\n", + "for qq in q:\n", + " V.append(qq/C)\n", + "subplot(311)\n", + "plot(t,q)\n", + "title('charge vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('charge in Mc') #Mc=micro coulombs(10**-6)\n", + "subplot(312)\n", + "plot(t,i)\n", + "title('current vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('current in amperes') #Mc=micro coulombs(10**-6)\n", + "subplot(313)\n", + "title('voltage vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('voltage in volts')\n", + "plot(t,V)\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 111 Ex: 3.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEZCAYAAAB/6SUgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXeYlNX1xz9fEEQQJXZUFOwN7MZYV2NLrLH3FjXWaKL+\nEjRGkthLxJbEGsRK7GjUWFexAII0BY0aEBQFFUQUC+X8/rh33Jdldnd25519Z2bP53neZ95y33vP\nfXf2zH3PPfccmRmO4zhO26Jd1gI4juM4rY8rf8dxnDaIK3/HcZw2iCt/x3GcNogrf8dxnDaIK3/H\ncZw2iCt/xylTJPWVdEvWcjjVidzP33EaRlINcKeZ9aiGdhwnh4/8napBkXrnFstKHscpZ1z5O2WB\npB6SHpI0XdJnkq6P5/tJujNRrqekBZLaxeNaSRdJegX4ClgjXj9V0rvAO7HcXpJGS5op6RVJvRN1\nTpJ0tqQxkr6QdJ+kxSV1AZ4EVpY0W9KXklaqJ/ePJX2c/NGR9AtJY+L+VpJGSJol6RNJV+fpe752\nuif7nuj3sZImS/pc0smStpQ0Nvbr+nr1Hi9pvKQZkp6StFpRfySnqnDl72SOpPbA48BEYHVgFeDe\neLkQu+SRwAlAV2ByPLcvsCWwgaRNgduAE4FlgJuAwZI6JNo4CNgd6AX0AY41s6+BPYCpZtbVzJYy\ns0+SDZvZMOBr4KeJ04cDd8f9a4FrzGxpYA3gX/WFb6Cdjxvo+1bAWsChse7zgJ2BDYGDJe0AIGlf\noC/wC2A5YAh1z9RxXPk7ZcFWQHfgXDP7xsy+M7NX4zU1ch8EBTnAzCaY2QIzmxvPX2pmX5jZd8BJ\nwE1m9roFBgLfAVsn6rnOzD4xs5nAY8AmBbYPQakeBiCpK/Az6hTt98DakpYzsznxxyIf+drJd+4v\nZva9mT0DzAbuMbPPzGwqQcHn5D6Z8AzeMbMFwKXAJpJ8TsEBXPk75UEP4IOopFrClCbOrQ6cHU0j\nMyXNBFYFVk6USY7ovwGWbEb79wD7S+oI7A+MNLNc+78E1gEmSBouac9m1JuPafXkrH+ck3t14NpE\nfz+P51cpsn2nSvDJMKccmAKsJqm9mc2vd+0roHPieCUWJZ95JHluMnCxmV3SAtmaNDuZ2QRJHxBG\n/IcTfgxy196L55B0APCApGXM7JsC2inGFW8y4S3BTT1OXnzk75QDw4CPgcskdZbUSdI28dpoYIc4\nIbw0wY5dn6ZMM7cAJ8fJV0nqImlPSYWM7qcBy0paqoly9wBnAdsD9/8gmHSkpOXj4SyCQs/3hpOv\nnUJMTvXJ3fMP4DxJG0Q5lpZ0UAvqc6oUV/5O5kRzz96EiczJhDeBg+O1Z4FBwFjgdYI9vv6IuNFj\nMxtJmOy9AZgBvAscnee+5P0W732bYL//X/SayffmQSyzA/Ccmc1InN8deFPSbOAa4NA4D7Fwg4u2\n0z0pRwP9bEh2zOwR4HLgPkmzgHFRFscBWmGRl6TbgT2B6WbWO55bhvAPvTowCTjYzL4oqSCO4zjO\nD7TGyP+fBDe2JL8HnjGzdYDn4rHjOI7TSrRKeAdJPYHHEiP/t4EdzWxafI2uNbP1Si6I4ziOA2Rn\n81/RzHIuatOAFTOSw3Ecp02S+YSvhVcPjy7nOI7TijTLz1/SWoSVjIea2YZFtDtN0kpm9kn0apje\nQHv+o+A4jtMCzKxRV+EmR/6SVpH0W0mvA28C7QlxRYphMHBM3D8GeKShgmZWldtf/mJst92FmctR\nyu3CC71/lbpVc9/aQv8KoUHlL+lXkmqBZ4BuwPHAx2bWz8zGFajkkXQv8CqwrqQpko4DLgN2lfRf\nQlCqywqtr1pQS5bvOI7jpERjZp8bgKeAM80sF5622Q2Y2WENXNpFUl9CRMYhksYBx1meBTDViCt/\nx3GypDGzT3fgCeA6SRMk/QXo0Ej5ZhHdP08ENrPgApqGOami6NGjJmsRSkpNTU3WIpSUau5fNfcN\nqr9/hVCQn38MA3sIYbK3C/CQmZ1XVMNhle9rhLC6s4GHgWstLOfPlbFC7VeVxqWXwqxZcFmbM3g5\njlNqJGHFTvgCmNkUM7vKzDYH9gG+LVY4C/FPribEcpkKfJFU/NWOm30cx8mSJl09FXKg7gn0JJhm\nRMhcVBSS1iREQexJiHZ4v6QjzOzuRm+sIqr0pcZxnAqgED//xwhJIsaRPxRtS9kCeNXMPgeQ9BCw\nDXXp7wDo16/fD/s1NTVVY6uTXPk7jpMOtbW11NbWNuueJm3+ksaaWZ8i5Gqo3o0Jin5LghlpADDc\nzG5MlKlam/8VV8Bnn4VPx3GcNEnL5v+0pNTjgEf30YHACEKsdoCb026nXPGRv+M4WVKI2edV4GFJ\n7YBccmwzs6YyGzWJmV0BtNmxryt/x3GyopCR/18J7pidzaxr3IpW/ACSukl6IK4jGC9p6zTqrQR8\n5O84TpYUMvKfDLxlIdVe2lwLPGFmB0avoi4laKMscVdPx3GypBDlPxF4QdKTwPfxnJnZX4tpOCbj\n3t7MjokVziO4fLYZfOTvOE5WFKr8JwId45YWvYBPJf0T2BgYSYgjNCfFNsoWN/s4jpMlTSp/M+tX\nwrY3A043s9cl9Sfk8v1jslA1+/k7juOkQUn8/EtFzN37mpn1isfbAb83s70SZarWz79/f5g0KXw6\njuOkSWqxfUqBmX0CTJG0Tjy1C/BWVvJkQZX+rjmOUwE0K41jCTgDuFtSR+B94LiM5Wk13OzjOE6W\nFBLYbQVC3P2eifJmZscX27iZjYm+/SOADmbWZrx9fMLXcZwsKWTk/yjwEiGdY87XP021dSYwHuia\nYp0VgSt/x3GyohDlv4SZ/a4UjUtaFfg5cDHw21K0Ua74yN9xnCwpZML3cUl7lqj9a4BzSTdUdEXg\nNn/HcbKkkJH/WcB5kr4nxcBukvYCppvZKEk1DZWrZj9/H/k7jpMGlebnfwlwFDAP6AQsBTxoZkcn\nylStn/+NN8Jbb8Hf/pa1JI7jVBuF+Pk3OPKXtL6ZTZC0Wb7rZvZGMcLFBPDnxbZ2BM5JKv5qx80+\njuNkSWNmn98SXDz/Sn7vnp1SlqU6h/gN4GYfx3GypEHlb2Ynxs+aUjUuqQchm9cKgEn6tZldV6r2\nyg1X/o7jZEXWK3znAr8xs9GSlgRGSnrGzCZkLFfJcbOP4zhZkllsHwjxfcxsdNz/CpgArJylTK2F\nm30cx8mSTJV/Ekk9gU2BYdlK0jq48nccJ0sKie3znJn9tKlzxRBNPg8Qkrl8lbxWrX7+4MrfcZx0\nSNXPX9ISQGfgBaAmcWkp4CkzW69FUi7aTgfgceBJM+tf71rV+vnfcgsMHx4+Hcdx0qQoP3/gV4Sg\naysTUizmmA3cULx4IEnAbcD4+oq/2nGzj+M4WdKYq2d/oH+J3S+3BY4ExkoaFc/1NbOnStReWeHK\n33GcrCgkh+91krZh4Xj+mNnAFNpfEvgv0AW41cwuT6HOisBdPR3HyZJCJnzvAtYARgPzE5eKUv6S\n2hPMR7sAHwGvSxrcFnz8wc0+juNkSyGLvDYHNijBzOtWwHtmNglA0n3AvgRf/6rHlb/jOFlSiJ//\nm0D3ErS9CjAlcfxhPOc4juOUmEJG/ssD4yUNB76L58zM9imy7TY97u3UCe6/H5rpmuuUCYsvDkOH\nQrduWUviOC2jEOXfL34aoMR+sXwE9Egc9yCM/hduvEoXeR1yCGy9ddZSOC1l221h1ixX/k55ULJk\nLjH0wlpm9qykzsBiZvZlC2RM1rkY8A7wU2AqMBw4LDnhW82LvJzKZvXV4cUXoWfPrCVxnEUpZJFX\nkzZ/SScB9wM3xVOrAg8XK5yZzQNOB/4DjAcGtRVPH6fyadcOFrS5zNNONVGI2ec0gmfOUAAz+6+k\nFYptWNKVwF7At8D7gCc0dCoG99ZyKp1CvH2+M7PcRG/OXJPG1/5pYEMz25iw0KtvCnU6Tqvgyt+p\ndApR/i9KOh/oLGlXggnosWIbNrNnzCz34jyMYE5ynIrAzT5OpVOI8v8d8CkwjhDs7QngDynLcXys\n13EqAh/5O5VOozb/aOJ5M4Zvvrm5lUt6Blgpz6XzzOyxWOZ84Hszu6e59TtOVrRr58rfqWwaVf5m\nNk/SO5JWN7MPmlu5me3a2HVJxwI/J7h75qVa/fydykZys49TPpTEz1/SEEJ6xeHA1/F00St8Je0B\nXA3saGafNVDG/fydsmSDDcIK7Q03zFoSx1mUYpO55PgDdSt7c6Shka8HOgLPhJwuvGZmp6ZQr+OU\nHDf7OJVOITb/m81s3bQbNrO1067TcVoLN/s4lU6j3j5xFe7bklYvReOSzpa0QNIypajfcUqFj/yd\nSqcQs88ywFsxqmeaNv8ewK5AsyeSHSdrfOTvVDqFKP8LStT2X4H/Ax4tUf2OUzLcz9+pdArJ4Vub\ndqOS9gU+NLOx8mS2TgXiZh+n0ikkh+9X1Hn3dAQ6AF+Z2VJN3NfQAq/zCXF8dksWb6ge9/N3yhE3\n+zjlRMni+f9QWGoH7ANsbWa/b1ZLdXVsBDwHzImnViUkdtnKzKbXK+t+/k5ZsuWWcOONsNVWWUvi\nOIuSSjz/JGa2wMweAfZoqVBm9qaZrWhmvcysFyF712b1Fb/jlDNu9nEqnULMPgckDtsBmwPfpCiD\n/ws5FYcETz4J772XtSROS1huOdh996ylyJZCvH32pk5BzwMmAfsW27CkM4BTCeaf38WtTVFbW1vV\ncxjV3L/DD4fBg2t5992arEUpCdOm1bLiijVZi1EyOnSoZffda7IWI1MK8fY5Nu1GJe1EmDvoY2Zz\nJS2fdhuVQDUrR6ju/v361zBjRi39+tVkLUpJ6NevevsGoX9Qk7EU2VJIDt87JHVLHP9I0u1FtnsK\ncKmZzQUws0+LrM9xHMdpBoVM+G5sZl/kDsxsJrBZke2uDewgaaikWklbFFmf4wBw7LHHcsEFha1L\n7NmzJ88//zwAl1xyCSeeeGIpRSuI2tpaevTo0ertbrTRRrz00kut3q6THYWEdB4D7GRmM+LxMsCL\nZta7ifsa8/O/GHjezM6UtCUwyMzWyFOHTwY7juO0gDRCOl8NvCbpX4TFWAcRlHdTDTeYyEXSKcBD\nsdzrMbjbsmb2eXOEd9oOikvBm1r4IemfhNXjTQ7/JU0Efmlmz6cjZd422iVyVRdSvga408xKNvyX\nNACYUsgzcqqXJs0+ZjYQ2B+YDnwC/CKeK4ZHgJ0BJK0DdKyv+J3skTRJ0u8lvSVphqTbJS2euH6i\npHclfS7pUUnd4/k/Sbou7neQ9LWkK+LxEpK+zc0jSdpa0quSZkoaLWnHRP21ki6S9AohqGCvPDJu\nKukNSV9Kug/oVO/6XrHemZJekZT3jVVSP0l3xv0nJZ1W7/oYSfvF/fUkPRP7/bakgxLlBkj6u6Qn\n4ur4GkkrS3pQ0nRJ/4uebrnyS8R7Zkh6C9iykb/H3yVdWe/co5LOivu/k/RhfBZvS9o5Tx0nAYcD\n/ydptqRH4/lJufLxWdwv6c5Y11hJa0vqK2mapA8k7Zqoc2lJt0maGtv/S1wQ6pQzZtbqGyFExJ2E\npPAjgZos5PCtyb/TJGAssArwI+Bl4C/x2s7Ap8AmhLAf1xHMgQA7AWPj/jbAe8DQxH2j4v4qwGfA\nHvF4l3i8bDyujTKsTxioLFZPvo6EqLBnAu2BA4DvgT/H65sC0wgKVcDRwESgQ7w+Edg57l8IDIz7\nRwEvJ9rZAJgZv7ddgCnAMVGmTeJzWD+WHQB8AfwkHi8Rv+N/ILxp9wLeB3aL1y8DXgS6EVa7vwlM\nbuDvsX3yWvybzCGYV9cFJgMrxWurAWs0UM8/c88ocS75LPoR1vLsGp/rHfHv0DcenwD8L3Hvw8Df\nY1+XB4YBJ2X9/fWt8S2TX2czm2tmR5lZbzPb3EoQPM5JBQNuMLOPLEz0XwwcFq8dAdxmZqPN7HuC\nYviJpNWAocDacX5oe+A2YBVJXYAdCcoO4EjgCTN7CsDMngVGAHsm2h9gZhMsrC6fV0++rQk/CNea\n2XwzexB4PXH9JOAmM3vdAgOB7+J99RF1MaYeATZRCDue6+uDFrzT9gImmtkdUabRBBPmQYm6HjGz\n1+J+H2A5M7vIzOaZ2UTgVuDQeP0g4GIz+8LMPgSuTchRn5cBk7R9PD4QeNXMPgHmA4sDG0rqYGaT\nzex/DdST629jvGRmz5jZfOABYFngsng8COgpaSlJKwI/A35jZt9Y8Nzrn+ifU6aU7auZpD3iq+u7\nkqpqAVg0n0yTNC5rWQpgSmJ/MrBy3O9OIheDmX0NfE4YzS9HULKjCSPeFYBXgW2BHahT/qsDB0WT\nzExJM2OZpKNAsv36rEyIC5UkmR9ideDsevWvmuhDXsxsNvBv6n7oDgXujvtrAttJmidpvqRvCGaU\nFXO3E0KWJGVYuZ4MfQnPJNeH+s+4IbkMuC8h1+E5uczsPeAswqh9mqR7c2a4FvKppFGSHiO8BXwW\n24e6Ff5Lxv51AD5O9O8fhDeAsiSauMbG/g3PWp60kdRN0gOSJkgaLynfYKc8lb+k9sANhBhCGwCH\nSVo/W6lS5Z8UER+plVmt3n5O2U4FeuYuxFH9svH6XOB+YDDwFfBz4B1Cn7cCcj6FkwmTmz9KbF3N\n7IpEm41N8H5M+LFJksw6N5kwqk7Wv6SZDWqq08C9hO/dT4BOZvZCPP8/gqfaYoSR9hjgZ2aWnCNI\nyjyZ8KaQlGEpM9sr0Yf6z7gpuQ5UyK63FfDgD42a3Wtm28dnYMDlDdRRiBfdesD4AspOIfzQL5vo\n39LWhDdgxhjB1LypmVVjaL5rCW/U6xPePCfkK1SWyp/wpX7PzCbFV+37SCGkRLlgZkMINuRyR8Cp\nklaJJpzzCa/8EJTQcZI2VpgEvoRg158czRD/ItjY3yR8+SZRZyvOTe7fBewtaTdJ7SV1klQjKanQ\nGzNPvArMk/RrhYnl/Vl4wvQW4GRJWynQRdKekpYsoO9PEJTonwjfvxyPA2tJOhLoTLDjryxpvQbk\nHQ7MlvR/cXK3vaSNVLe25V9A3zhaWxU4g0aIZqbPCKajp8zsSwiOE5J2jn+L74BvCaagfEwDFnGt\nTrAU4Uf11jz9qS/Px8DTwF8ldZXUTtKaknZo7L4yoCo9CSUtDWxvZrdDSMVrZrPylS1X5b8KC78K\nf8iiIzyn9BhwD+Gf+33gXeAiADN7jpDl7UHCW0AvFrbzvkbwvBlLmHj9F8Fc8MNKomjj3hc4j+BN\nNhk4m4X/MRscecaBwf7AsQST08EsPBIeCZxIeIucEeU/uoE6LXk+zmM8BPw0PoPc+a+A3YEbCRO7\nGxDmFjo2UM8CwjzBJoS3hk+BmwkKFsKPyweECdengIGN9TlyD2Hi/J7EucWBS2P9HxNMb30buP82\nYINopnkoz/XdCXMvSRfV+jIlj48m9H884TnfT/41PuWCAc9KGiEp+5V96dKLYLL7p4IX3C2SOuct\nWeoZZeB2wkhjXOLcMsAzwH8JiqVbvXsOAG5JHB8JXF9qWVtzI5hMxmUtRxMy/uAB0sL7lyQokf2y\n7kuJns/ShMntmqxlSbFPewE3xv0a4LGsZSpBH7vHz+UJ81LbZy1Tin3bgmB23TIe96eeZ1dua42R\nfz779u+BZ8xsHUJil/qJYT4CkotcerDwJJpT5kjqQBiF32UhB0TVYeF1+t+Ef7hqYRtgH4UFcPcC\nO0sqdl1PWWHBVIUFz6SHCWbmauFDwiLHnNfbAzQQjqeQwG5nxUUcigs5RkkqOBK25bdv70PwHSZ+\n7lfv+giCq2BPSR2BQwiTh04FIEkE08J4M+uftTxpImk51S1QW4LgCz8qW6nSw8zOM7MeFhItHUqY\n3D46a7nSQlJnSV3jfhdCOtlK8LorCAvzbVMUFs9CWDvzVr6yhYz8j48jnN0I5pqjCAtTimFFM5sW\n96dR5yYHhEkK4HTgPwQ74iAzyztjXYlIupcwWbmOpCmSjstapnxYyLbWktAH2xJMdTvFwcIoSZXi\n3dQU3YHnJY0mLGZ6zML8R7VSbfG1VgSGJP5+j5vZ0xnLlDZnAHcrxGXrQ3DGWIRCAruNM7PeCsv1\na83sIUmjzGzTQiWR1JPwT9I7Hs80sx8lrs8ws2Xy3FdtXzzHcZxWwVLI4TtS0tMEX+2nJC3Fwl4A\nLWGapJUA4kKUBvP3Zj2Bkua2YIFx003GcssZ22xjbLfdhZnLVMrtwgu9f5W6VXPf2kL/CqEgsw/B\nZWwLM5tDWM1XrJliMCE2CvGzKicEk3zxBRxyCNx4IwwZAj//edYSOY7TlilE+T9jZiMtJnSxsEDn\nmkIbSNi3103Yty8DdpX0X4K/crFzCGXNsGGw2Waw/PIwdCist15IAO44jpMVDcbzj54MnYHl4+rO\nHLnVfwVhZoc1cGkXSX0JE4NDFOLcHGdm3xVad7mzYAFcfTVceSX84x+w//4LX+/RoyYTuVqLas3f\nm6Oa+1fNfYPq718hNDjhqxAj/ExC4KmpiUuzgZvN7IaiGg6TwM8TQuF+J2kQIR7FHYkyVqj9qtyY\nPh2OOQZmzYJ774XVV1/4+qWXwpdfhk/HcZw0kYS1dMLXzPpb8PU914LLX27rQ4j5USxfElaidZa0\nGOEto36Exorkuedg003D9uKLiyp+CGafCv1dcxynCijE5p9vcvfVYhu2kBP4akI8l6nAFxbiuVcs\n8+bBH/4ARx0FAwbAJZdAhw4Nl3fl7zhOVjRm8+9OMPksIWkzQrAtI9j88wcKagaS1iTEH+8JzALu\nl3SEmd3d6I1lyuTJcPjh0KULjBoFK67YeHmf8HUcJ0saS+C+GyFa4iqEEXqO2YQojMWyBSEL0ecA\nMbrgNtQlzQCgX79+P+zX1NSU5UTNI4/Ar34FZ58N55wD7Qp4n3Kzj+M4aVFbW0ttbW2z7ilkhe+B\nZvZAEXI1VO/GBEW/JSH2+ABguJndmChT1hO+334L554Ljz8eJnW3zpsvJz9XXhkmha+8sumyjuM4\nzaGQCd/GRv4AmNkDkvYixC3vlDj/52KEM7MxMVpgLm74G4Q45xXBO+/AoYfCmmsGM0+3bs2vo4x/\n1xzHqXIKiep5EyFJxq8Jdv+DWThVXjHcTMjytBjhDWDzlOotKQMHwnbbwcknw/33t0zxu83fcZws\naXLkD2xjIbDbWDP7k6SrCRmH0iCXa/LA6O7ZJaV6S8Ls2XDaaTBiBDz/PPQuIkup2/wdx8mSQlw9\nv4mfc2Ju1XmkkKKtObkmy4FRo2DzzaFjR3j99eIUfw5X/o7jZEUhyv9xST8CrgRGEhJx35tC24Xn\nmswQM7juOthtN/jTn+DWW4M7Z7G42cdxnCwpZMI3N7H7oKR/A51yQd5SaHsz4HQze11Sf0I6xz+m\nUHcqfP45HH88fPQRvPYarLVWenW72cdxnCxpUvlLehl4ERgCvJKS4of8uSbr5/LNzM9/yBA44gg4\n6KAwqduxY/ptuPJ3HCcNSuXnvwawPbAd8BOCT/7LZnZWy8RcqO6XgBPM7L+S+gFLmNnvEtdb3c9/\n/vwQbO2GG+C222DPPUvTTv/+MGlS+HQcx0mTtPz8/yfpW+A7QiC2nYD10xHxh1yTHYH3KT5JTFFM\nnQpHHhlCMY8cCasUHLi6+bjZx3GcLCnEz/994GFC4uPbgA3NbPc0GjezMWa2pZltbGb7Z+nt8+ST\nwZunpiZE5Syl4gdX/o7jZEshfv7XEcw+hxEmaF+U9JKZvZeGAJLaE1b5fmhme6dRZ3P4/ns47zwY\nNAjuuw923LG1JXAcx2l9CjH7XAtcK2lJglmmHyHYW/uUZDgTGA90Tam+gvnf/0KIhhVXDH78yy3X\nem37yN9xnCwpxOxztaThwHBgY+ACYJ00Gpe0KvBzQnKYVvV8HzQIfvzj4NEzeHDrKn5w5e84TrYU\nYvYZClxhZtNK0P41wLmEHAGtwpw5cNZZ8MIL8NRTwc6fFa78HcfJikLMPveXouEYKXS6mY2SVNNQ\nuTT9/N98Ew45JKRXfOMN6NrqhqY6fIWv4zhpURI//1Ih6RLgKEKsoE6E0f+DZnZ0okwqfv5mISzD\neeeF+PnHHJO98v3b38KP0d/+lq0cjuNUH6n4+ZcKMzuPmBFM0o7AOUnFnxazZsFJJ8Hbb4dVu+ut\nl3YLLcfNPo7jZEUhgd2Q1F7SypJWy20lkCV1VThsWDDxLLccDB1aXoo/6zcPx3HaNoXE9jkDuBCY\nDsxPXCo6qLGkHsBAYAXAJP3azK4rtt4FC+Dqq4OJ5x//gP33L7bG9HFvH8dxsqQQs89ZwLq5ROsp\nMxf4jZmNjusIRkp6xswmtLTC6dODTX/WrBB3f/W0co6ljCt/x3GypBCzz2Tgy1I0bmafmNnouP8V\nIaXjyi2t77nngpln003hxRfLV/E7juNkTSEj/4nACzGW//fxnJnZX9MURFJPYFNgWHPvnTcP+vWD\n22+HO+6AXXdNU7LS4CN/x3GypBDlPzluHeMmUp6cjSafB4Az4xvADzTl5z95Mhx+eMiuNWpUCNVQ\nCbjydxwnLSrKz/8HAaQOwOPAk2bWv961Rv38H3kEfvUrOPtsOOccaFeQ71J5cMstMHx4+HQcx0mT\novz8JV1rZmdKeizPZTOzfVIQUIQw0ePrK/7G+PZbOPdcePxxePRR2HrrYiVpfXzk7zhOljRm9hkY\nP6/Ocy0ttbUtcCQwVtKoeK6vmT3V0A3vvBMica65ZjDzdOuWkiStjCt/x3GypEHlb2Yj42dtCdtf\nEvgv0AW41cwub6zwwIHBxHPRRWHVbqUvlHLl7zhOVmQW3iEmcbkB2AX4CHhd0uB8Pv5ffQWnngoj\nRsDzz0PvopeXZU+l/3A5jlPZZDlFuhXwnplNMrO5wH3AvvULjRoVwi537BgWbVWD4gc3+ziOky2N\njvzj6PxyMzunBG2vAkxJHH8I/Lh+od13h2uvhcMOK4EEGSLBl1/C++9nLYnTEhZfHFZdNWspnJYw\nfz589lnluIWXikaVv5nNl7Sd0oqtXK/6Qgodemg/3nknLOIqNp5/ObH66jB6NOy2W9aSOC3hgw/g\nww9hpZVULUcZAAAeU0lEQVSylsRpjFmzYMyYhbfx42GXXYKnYLVQEj9/Sf8ghFy4H5gTT5uZPdQC\nGZP1bg30M7M94nFfYEFy0rc0vzmOUzyrrRZChHsIkfJgwQKYOHFhJT96dBjhb7QRbLxx3da7NyzV\narkDsyGteP6dgBnAzvXOF6X8gRHA2jGsw1TgEKDKjDuO46TN11/DuHELK/px44Lbd07BH3EEXHFF\ncAlv3z5ricuTQtI4HluKhs1snqTTgf8A7YHbionm6TitiU/Ylx4zmDJlUbPNhx/C+uvXKfqDD4Y+\nfWCZZbKWuLIoJJ7/usDfgJXMbENJfYB9zOyiYhqWdCWwF/At8H5sw3EqAlf+6fLtt8EWnzPXjBkD\nY8cGL7+ckt9vP7jwQlh3XejQIWuJK59CbP4vAecC/zCzTWNIhjfNbMOiGpZ2BZ4zswWSLgMws9/X\nK+M2f6cs6dkTXngBevXKWpLK45NPFh3Nv/8+rLXWwrb5jTd2j5yWkpbNv7OZDVNclWRmJmluscKZ\n2TOJw2HAAcXW6TithY/8m2bu3JA7u76inzevTrnvumsIyrjBBsF91mk9ClH+n0paK3cg6UDg45Tl\nOB64N+U6HadkuPJfmBkzFjbZjBkT4nD16FGn6H/9a9hkE1hlFV/hXg4UovxPB24G1pM0lZDc5YhC\nKpf0DJDPE/o8M3ssljkf+N7M7ilMZMdxsmL+fHjvvUVH87NmhUnXjTeGbbaBU04JLpZdumQtsdMQ\nhXj7vA/8VFIXoL2ZFZzS0cwazakl6Vjg58BPGyrTVDIXx8mCtjDy//LLMOmaVPJvvQUrrFA3mv/l\nL8Nnz56VlU+j2ijVIq/3gaHAEGCImb3VUgHr1bsHIVz0jmb2WQNlfMLXKUvWWguefBLWXjtrSYrH\nbNEFUmPGwLRpsOGGQblvskndAqmll85aYqcpCpnwLUT5dyLE3NkubusA48xsvyKFe5eQFnJGPPWa\nmZ1ar4wrf6csWXtteOKJylP+c+bAm28urOTHjoWuXRf1tFl7bV8gVamk5e0zD5gLzAcWAJ8C04oV\nzszWlnQ2cCWwnJnNaOoexyknynlcYgYffbToaH7y5OAnn1Pw++8fPpddNmuJndamEOX/JTAO+Csh\n4UpeE01zkdQD2BX4II36HKc1KSeb/3ff1S2QSm7t29eZbPbeG/7wB1hvPV8g5QQKUf6HAdsDpwIn\nSnoVeMnMni2y7b8C/wdUUWw9p62Qlavi9OmLKvl334U11qgbze++e/hcaSV3qXQaphBvn0eBRyWt\nR/DMOYugtDu1tFFJ+wIfmtlY+bfTqVBKOfKfNy/4yddX9N9+W6fkd9oJzjorTMp2avF/o9NWKSS2\nz4PAJoT4Oy8BRwHDC7ivIR//84G+QDKSvf8COBVFmmafmTMXVfITJoRkMTlFf9pp4bNHDx/NO+lQ\niNnnMuANM5vfnIob8vGXtBHQCxgTR/2rAiMlbWVm0+uXdz9/pxxpifJfsCDEsEnGmx8zJij/3r2D\nct9qKzjxxHC85JKlkd2pPkrl598ROAXYIdcOIchb0fF9Yv0Tgc3zefu4q6dTrqy/Pjz4YIhJk4/Z\nsxeNOf/mm8Grpr5L5Rpr+AIpJ13ScvX8eyx3I8E8c1Q8d0LREgZcuzsVR27kbxZSOtY323z8cfhh\nyCn4ww8P4Q+6dctacscJFDLyH2tmfZo6Vwp85O+UK8svH1wm58yBzp3rlHxuJezaa8NihQytHKcE\nFDLyL+Rlc169qJ5rEhZ+FSvcGZImSHpT0uVN31F9NNdGV2lUc/8GDYKzz67l3Xdh6tQQ6uGyy+DQ\nQ4NJqNIVfzX/7aD6+1cIhSj/c4HnJb0o6UXgeeCcYhqVtBOwD9DHzDYCriqmvkql2r+A1dy/nXeG\n2bNrWX75rCUpDdX8t4Pq718hFOLn/5ykdQgxfQDeMbPvimz3FODS3KSxmX1aZH2O4zhOM2hy5C9p\nCeA04E9AP+DUGOytGNYGdpA0VFKtpC2KrM9xKooBAwaw/fbbt3q7Xbt2ZdKkSa3erlN+FDLhez8h\nvs9dBG+fw4GlzeygJu5rbJHXxcDzZnampC2BQWa2Rp46fLbXcRynBaQR0nm8mW3Q1LnmIOlJ4DIz\nezEevwf82Mw+b2mdTnUiqX1zFxi2sJ0XgLvM7LYW3CsI+a2bcc+xwC/NrGTD/2L65FQ/hUz4viHp\nJ7kDSVsDI4ts9xFg51jfOkBHV/yVhaSVJT0oabqk/0k6I3Gtn6R/SbpD0pfRo2vzZtz7gKQ7Jc0C\njpHUS9JLsa5nJN0o6c5Y/t+STq8n29gYP6q+zJ0k3SXpM0kzJQ2XtIKkiwnBC2+QNFvSdbH8NpJe\nl/RFLJv8P6iVdJGkV4CvgV6S1ovyfS7pbUkHJcovK2mwpFmShgFrNvJsn5R0Wr1zYyTtF/evkTQt\n1jVW0oZ56mioTwskrRH3B0j6m6QnYpkhklaSdG18PhMkbVLI382pQMys0Q14mxDH/wNgUtyfQAjz\nPLap+xuoswNwZ6xjJFDTknp8y2YjDBpGAn8gOA30IsR+2i1e7wd8A+xBMBVeQkjWU+i93wP7xONO\nwGvAFbH8tsAsYGC8fhAwNCHbxsBnwGJ55P4VMDjWKWBToGu89gJwfKLsMsBMQr7qdsChhMRDP4rX\na+P/w/rx+tLAFOCYeLwJIffF+rH8fXFbAtgQ+JAQHTff8z0KeDlxvEGUpQOwOzACWCpeWxdYqYF6\nFupTPLcAWCPuD4gybgosDjwX+3RkfD5/IZhnm/y7+VZ5W9MFoGdjW9Yd8K31N0Jmtw/qnesL3B73\n+wFPJ65tAMxpxr21iWurEZIJdUqcuxO4M+53ikp5zXh8FXBDA3IfB7wC9M5z7QWCGSZ3fBSJH5V4\n7lXgmET5folrh9RX5sBNwB+B9oQftHUS1y4mpEXNJ2dX4CugR6LsrXF/Z+Cd+BzbNfF3WqhP8VxS\n+f8TuClx7XTgrcRxb2BmIX833ypvK8TVc1JTZUqBQo7f/oR/nFvNrGoWgkm6HdgTmG5mvbOWpwWs\nDqwsaWbiXHtC1FeApYA+kt4ihO94AOgkqV0B90IYFedYGZhhZt8mzk0BegCY2beS/gUcJelPhBH6\nAQ3IfWe87z5J3QhODOebWW7RYtJmvzIwud79HwCrRbPNBsC6khY3s76xXz+u16/FgIHAcnF/SuJa\n/bp/wMxmS/o3IZfGFbFPJ8Rrz0u6gRBuZXVJDwHnmNnshqprqJ1IMpjit7ljSe0Jbyq5jL2F/N0q\nAkmTCE4s84G5ZrZVthKlS/xu30p4wzTC29/Q+uXKMpxU/OLdQDAbbAAcJmn9bKVKlX8S+lapTAYm\nmtmPEttSZrZXvD4fGGFmGwJbE0bROaY0ca+xsML6GFhGweU4x2r15LmDYJ7ZhfCGMSyf0GY2z8z+\nHOXaBtgLODrRbpKPCAovyeqEH4CdCKaXPwI7SdouPpMX6/Wrq5mdRjBDzasnd/0+1Odewvf+J4S3\nnhcS/bjezLYg/G+sQ1iImbfLTbTRGGcC7yWOm/q7VRJGMDVvWm2KP3It8ISZrQ/0IZjpF6EslT+w\nFfCemU2ysBDsPmCRCbxKxcyGEGy4lcpwYLak/5O0hKT2kjZS3XqNr4n9M7OvCLbhQu9dyD3NzD4g\nKNp+kjpEZbgXCcVmZq/F46sII+28SKqR1DsOLmZTl5saQl7q5CTsE8A6kg6TtJikQ4D1gMfNbE4s\n04Ew+p0BPB7LHxnl7CBpS0nrWfBWeij2YQlJGxDmBhpTzk8Qfmz+RPj+5/qwhaQfS+oAzCGM1hvy\nhqrfp0UeSd6T0qqExE3/Spxu6u9WaVRlVgRJSwPbm9nt8MOAZ1a+suWq/Fdh4VfkD+M5pwwwswUE\nBbwJ8D/CpOHNBHMPJEbvknoSRqgW751f6L0JjgB+AnxOmIQcRLChJxlIsFHf1YjoKwH3EyaMxxMm\nbe+M164FDpQ0Q1J/CyHG9wLOJozczwH2MrMZ0Xy1BSEV6QtmNj7+yO1GMNF8RHhjuRToGOs/HVgS\n+AS4PW4NYmbfE34wfgrck7i0FOF5zSBMzn4GXNlANQv1KV8zLPysc8fXEN4mkj+wTf3dKgkDnpU0\nQtKJWQuTMr2ATyX9U9Ibkm6R1DlvyawnHQhf4LHAKGB4PHcAcEuizJHA9VnLmnK/ewLjspajxH1c\nkjBq3y/legcBF9Y7dxQNeM+UsH9LA0OpIm81goK/Me7XAI9lLVMJ+tg9fi4PjCaMlDOXK6W+bUF4\no90yHvcH/pyvbDmM/PPZ3z4iTuhFerDwJKBT5kSzxIOERUaPFFnXFpLWlNRO0s8IQQEfSVzvTAhB\ncnMx7TQXC6/T/yb8w1UL2wD7KCRZuhfYWVKDprRKxMw+jp+fAg8TzMzVwoeE/Oivx+MHgM3yFSwH\n5Q+L2t9GAGtL6qmQSewQgn+2UwFIEnAbMN7M8pkbmstKBLfF2QSTxMlmNia2tTvBQ+VjFjaPlARJ\ny0Vvilzcq10Jb61VgZmdZ2Y9zKwXwYT1vJkd3dR9lYKkzpK6xv0uBFPduGylSg8z+wSYorB4FoIT\nxFv5ypZD1PGc/W0+wef4FjObp7Bq8z+ECbXbzCzvjHUlIuleYEdgWUlTgD+a2T8zFitNtiWY6sZK\nyinGvmb2VEsqM7PHCROq+a79h2Beai26A3dEu387wnqD51qx/dam2uJrrQg8HMYnLAbcbWZPZytS\n6pwB3B0Hzu8T1rcsQpOxfZpCIdHLhxb8rXciTLoNNLMvCry/u5l9LGl54BngDAveMB7YzXEcp4VY\nCpm8muJB6rJ93USwzxf8+t2U/S3rCZSst9mzje7djRNOuDBzWcplu/BCfxb+LPxZNLYVQhrKf4GF\nFZL7EzxyziW8GjdJtdvf0uCqq2CnnWAVd3R1HCdF0rD5fy/pcMJKyb3juQ4F3tsW7G8tZupUuP56\nGDkSBgzIWhrHcaqJNJT/8YRoiReb2URJvahbONMoZjaRsGjEycMf/wgnnAA9e0JNTU3W4pQN/izq\n8GdRhz+L5lH0hC/84Ge9mpm9XbxIC9VrachXiYwdC7vuCv/9Lyy9dNPlHcdxckjCSj3hK2kfgp/z\nU/F4U0nuk18k554Lf/iDK37HcUpDGhO+/QixvnOBvEYBi+TjdQrn6adh4kQ4+eSsJXEcp1pJQ/nP\ntUV9+hekUG+bZP78MOq/7DLoUOi0ueM4TjNJQ/m/JekIYDFJa0u6npDxqCBiaNhRkh5LQZaKZ+BA\n6NoVfvGLrCVxHKeaSUP5n0HIGPMdIRDUl8BZzbj/TEJ43bY5s5tgzhy44ILg26+qjDbuOE65kIq3\nT4sbD0kjBhBylP7WzPaud71NeftcdBGMGweDBmUtieM4lUwh3j4t9vNvwkxjZrZPAdXkkkZUYkKI\nVJk2Dfr3h+HDs5bEcZy2QDGLvK4upmFJexESmI+SVNNQuX79+v2wX1NTU7ULOS64AI4+GtZwPynH\ncZpJbW0ttbW1zbonM7OPpEsI2ZfmAZ0Io/8HLRE7vK2YfUaMgL33hrffdr9+x3GKpxCzTxohnSfm\nOW1mVvAYVtKOwDlt0ea/YAFsuy2ceCIcf3zW0jiOUw2U1OafYMvEfifgQGDZFtRT3Vq+Ae68M/wA\nHHts1pI4jtOWKInZR9IbZpY3b2Qz66nqkf+sWbD++vDII7BVNWURdRwnU1pl5C9pc+pG7e0Iyazb\nF1tvW+Avf4Gf/cwVv+M4rU8aZp+rqVP+84BJwMEp1FvVjB8Pd9wBb+VNrew4jlNaMl3k1RTVavZZ\nsAB23BEOPRROOy1raRzHqTZaK6RzN0nXSBoZt6slucNiI9x2G8ybB6eckrUkjuO0VdJw9XyIkHf3\nDkAE3/0+ZrZ/E/d1Al4EFgc6Ao+aWd96Zapu5P/JJ9CnDzz3HPTunbU0juNUI63l5z/GzDZu6lwD\n93Y2szmSFgNeJvj6v5y4XnXK/9BDwyreSy7JWhLHcaqVVjH7AN9I2j7R6HbAnEJuNLNcuY4ED6EZ\nKchTtjzxRFjNe8EFWUviOE5bJw1vn5OBgQk7/0zgmEJulNQOeANYE/i7mY1PQZ6yZPZsOPVUuPVW\nWGKJrKVxHKetU7TyN7PRQB9JS8XjL5tx7wJgk/jD8R9JNWZWmyxTLYHdzjkHfvpT2GWXrCVxHKfa\naNXAbpKOMrM7JZ1N/tAMnwODzWxmgfVdAHxjZlclzlWFzf8//4GTToKxYz1wm+M4pafUNv/O8bNr\nA9sWwJONCLecpG5xfwlgV2BUEfKUJV98ASecENw7XfE7jlMulHSRl6S/mFne6U1JvQnuoe3idqeZ\nXVmvTMWP/I85BpZcEm68MWtJHMdpK7SKq2cpqXTlP3gw/Pa3MHp0+AFwHMdpDVorpLOTh6lTg53/\ngQdc8TuOU36k4efv1GP+fDjqqBC+YbvtspbGcRxnUdII6dwJOADomajPzOzPxdZdqVx5JcydC+ef\nn7UkjuM4+UnD7PMo8AUwEvg2hfoqmqFD4Zprwkrexdyo5jhOmZKGelrFzHZvyY2SegADgRUIawVu\nNrPrUpApE774Ag4/HP7xD+jRI2tpHMdxGiYNm/+rkvq08N65wG/MbENga+A0SeunIFOrs2BBsPPv\nuSf84hdZS+M4jtM4aYz8tweOkzQR+C6eMzNr8gfBzD4BPon7X0maAKwMTEhBrlbl4oth5kx48MGs\nJXEcx2maNJT/z1KoA0k9gU2BYWnU15o88QTcdBO8/jp07Ji1NI7jOE3TYuUvaakYxK3gQG6N1LUk\n8ABwppl9VWx9rcn778Nxx8FDD0H37llL4ziOUxjFjPzvBfYkhGSuvwzXgDUKqURSB+BB4C4ze6T+\n9XKO6jlrFuy3X4jPv+22WUvjOE5bpVWjeqaBJBHi+3xuZr/Jc71swzvMmwd77QVrrgk33ABqdCG1\n4zhO61H2sX1i1q+XgLHUvT30NbOn4vWyVP5mITHLpEnw2GPuz+84TnlR9rF9Yr7eigsx0b8/vPIK\nvPyyK37HcSoTV13N5N574eqr4dVXYamlspbGcRynZRQ96pb0yzznLi+23nLkiSfgrLPgqadgtdWy\nlsZxHKflpDHyP1DSd2Z2F4CkG4GqS1E+ZAgce2yI0b/RRllL4ziOUxxpKP/9gcGS5hMWfM00s+NT\nqLdsGDECDjwQ7rkHtt46a2kcx3GKp8VmH0nLSFqGMMo/AfgdYcHXn+L5Quq4XdI0SeNaKkepGToU\nfv5zuOUW2GWXrKVxHMdJhxa7ekqaxMKLu5Q4NjNrcpGXpO2Br4CBZtY7z/VMXT1ffhn23x8GDAg/\nAI7jOJVASV09zaynpPbA1mb2SgvrGBJj+pQdL7wABx8Md98Nu+2WtTSO4zjpUpS3j5nNB25MSZay\n4b774JBD4F//csXvOE51ksYCq2clHRhDNVQ0ZnDVVXDuufDss7DTTllL5DiOUxrS8PY5GfgtMF9S\nLo2jmVkqS6BaK7Db3Lnwm99AbW1YwOWZuBzHqRQqLrAb/BDH/7EsJ3ynTYODDgordu+6C7p1K3mT\njuM4JaOQCd9U4upI2lfS1ZKukrR3M+67F3gVWEfSFEnHpSFPcxg6FLbYIph4Bg92xe84Ttug6JG/\npMuALYG7Ce6ehwIjzKxv0cKVcOQ/bx5cdhlcf33w4d9nn5I04ziO0+q0SkjnuEBrk+j5Q3T/HJ3P\njNOCukui/CdODMnWF18c7rgDVl019SYcx3Eyo7XMPgYkjSXdWDSzV1kwdy5ceSVsuSX84hfwzDOu\n+B3HaZuk4e1zKfCGpNp4vCPw+xTqTZWXXw4JWLp3D3b+tdbKWiLHcZzsSMXbR9LKBLu/Aa+b2cdF\nV0o6Zp9x4+D882HMGLj88rB4q/JXJDiO4zRMq5h9JN1FSOT+jpkNbo7il7SHpLclvSvpd8XKkmTE\nCDj00BCMbeed4Z13wrErfsdxnHRs/rcDKwPXS5oo6UFJZzV1U5wYvgHYA9gAOEzS+sUI8s03MGgQ\n7LADHHAAbLUVvPtuSMDSqVMxNWdPcxdwVDP+LOrwZ1GHP4vmUbTyN7PngYuBC4BbCOafUwq4dSvg\nPTObZGZzgfuAfZvb/tdfw+OPwy9/CausArfdBqedBu+/D7/9bfWkWvQvdh3+LOrwZ1GHP4vmUfSE\nr6TngC7Aa8DLwBZmNr2AW1cBpiSOPwR+3NgN8+bBlCkwejSMHBkmbocNC4u09twT/vzn8APgOI7j\nNE4a3j5jgS2AjQjJXGZKes3MvmnivoJmcnfcEebMCSEYPvkEVlwR+vSBzTeHM88M16tldO84jtNa\npBbbR1JX4FjgHGAlM1u8ifJbA/3MbI943BdYYGaXJ8qU5XoBx3GccqdkyVxySDoD2B7YHJhImAAe\nUsCtI4C1Y2C3qcAhwGHJAk0J7ziO47SMNMw+nYCrgTfixG1BmNk8SacD/wHaA7eZ2YQU5HEcx3Ga\nIPOQzo7jOE7rk0pI51JQygVglYSk2yVNiwH02jSSekh6QdJbkt6U9OusZcoKSZ0kDZM0WtJ4SZdm\nLVOWSGovaZSkx7KWJWskTZI0Nj6P4Q2WK8eRf1wA9g6wC/AR8DpwWFs0C0naHvgKGJhGpNRKRtJK\nBGeC0ZKWBEYC+7XF7wWApM5mNkfSYgQ363PM7OWs5coCSb8lzDt2NbM2HaBd0kRgczOb0Vi5ch35\np7IArBowsyHAzKzlKAfM7BMzGx33vwImEFaXt0nMbE7c7UiYN2v0n71akbQq8HPgVkJOEaeA51Cu\nyj/fAjBfvuX8QPQS2xQYlq0k2SGpnaTRwDTgBTMbn7VMGXENcC6wIGtBygQDnpU0QtKJDRUqV+Vf\nfrYop2yIJp8HgDPjG0CbxMwWmNkmwKrADpJqMhap1ZG0FzDdzEbho/4c25rZpsDPgNOi6XgRylX5\nfwT0SBz3IIz+nTaOpA7Ag8BdZvZI1vKUA2Y2C/g3YaV9W2MbYJ9o574X2FnSwIxlypRcZGUz+xR4\nmGBGX4RyVf4/LACT1JGwAGxwxjI5GSNJwG3AeDPrn7U8WSJpOUnd4v4SwK7AqGylan3M7Dwz62Fm\nvQj5w583s6OzlisrJHWO0RaQ1AXYDcjrKViWyt/M5gG5BWDjgUFt2KPjXuBVYB1JUyQdl7VMGbIt\ncCSwU3RjGyVpj6yFyojuwPPR5j8MeMzMnstYpnKgrZuMVwSGJL4Xj5vZ0/kKlqWrp+M4jlNaynLk\n7ziO45QWV/6O4zhtEFf+juM4bRBX/o7jOG0QV/6O4zhtEFf+juM4bRBX/k7ZImlpSackjleWdH8J\n2tm70sKGS6rx8MVOMbifv1O2xOBtj7X1UNb5iHF8zjazvbOWxalMfOTvlDOXAWvGlbyXS1o9l9RG\n0rGSHpH0tKSJkk6XdI6kNyS9JulHsdyakp6MEQ5fkrRu/UZiXdfH/QGSrpX0iqT3JR2Qp3wXSf+O\niVTGSTo4nt9cUm1s66mYfwBJa0l6NpYfKalXPH9lvH9soo6aWMf9kiZIuivR7h7x3EjgF4nzOyZW\nPL8RA985TuOYmW++leUGrA6MSxz3zB0DxwLvAl2A5YBZwEnx2l8JET8BngPWivs/Bp7L084xwPVx\nfwAhnAjA+sC7ecofANycOF4K6EAIw7FsPHcIIS81hGX2+8b9jsASsY6nCZEoVwA+AFYCaoAvCHkK\nFOvchpArezKwZqxnEDA47g8GfhL3OwPts/7b+Vb+WxoJ3B2nVDQVovcFM/sa+FrSF0DOBj4O6BMD\nW20D3B9iwgFB+TaGAY8AmNkESSvmKTMWuErSZYTYKS9L2gjYkBBHHUJylalxFL6ymT0a6/weQNK2\nwD1mZsB0SS8CWwJfAsPNbGosNxroBcwBJprZ+1GGu4CT4v4rwDWS7gYeMrOPmuij47jydyqa7xL7\nCxLHCwjf7XbATAuxzZvD94n9RX6AzOxdSZsCewIXSXqOEDr3LTPbJlk2F2GxAerXnZuAS/ZrPqEv\n9SfnfrjXzC6X9HiU5xVJu5vZO4206zhu83fKmtlAY8qzIQRgZrOBiZIOhBASWlKfhsoXXLnUHfjW\nzO4GriJkFHsHWF7S1rFMB0kbRBk+lLRvPL94DME8BDgkZuNaHtgBGN6ALAa8DfSUtEY8d1hCnjXN\n7C0zu4KQ73qReQ3HqY8rf6dsMbPPCSPZcZIuJyjB3Ag4uU+e/dzxEcAvo/nkTSBfcu+m6qpPb2CY\npFHAH4GLLOSaPhC4PLY1CvhJLH8U8GtJYwgmmhXN7GGC+WgMYV7iXDObnkeW3LP4jmDm+Xec8J2W\nKHdmfEZjCG8tT+aR2XEWwl09Hcdx2iA+8nccx2mDuPJ3HMdpg7jydxzHaYO48nccx2mDuPJ3HMdp\ng7jydxzHaYO48nccx2mDuPJ3HMdpg/w/+OWdVR8ouTUAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f6b2044b150>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,array\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "from math import pi,sin,cos\n", + "C=10*10**-6#\n", + "t_1=arange(0,1+0.001,0.001)\n", + "t_2=arange(1.001,3+0.001,0.001)\n", + "t_3=arange(3.001,5+0.001,0.001)\n", + "t=[]\n", + "for x in t_1:\n", + " t.append(x)\n", + "for x in t_2:\n", + " t.append(x)\n", + "for x in t_3:\n", + " t.append(x)\n", + " #voltage variations\n", + "V_1=[];V_2=[];V_3=[]\n", + "for tt in t_1:\n", + " V_1.append(1000*tt)\n", + "for tt in t_2:\n", + " V_2.append(0*tt+1000)\n", + "for tt in t_3:\n", + " V_3.append(500*(5-tt))\n", + "#current i=C*dv/dt, for above equations we get\n", + "i_1=[];i_2=[];i_3=[]\n", + "for tt in t_1:\n", + " i_1.append(C*(0*tt+1000))\n", + "for tt in t_2:\n", + " i_2.append(C*(0*tt))\n", + "for tt in t_3:\n", + " i_3.append(C*(0*tt-500))\n", + "i=i_1+i_2+i_3\n", + "#power delivered, P=V*i\n", + "P_1=[];P_2=[];P_3=[]\n", + "for tt in t_1:\n", + " P_1.append(C*(10**6*tt))\n", + "for tt in t_2:\n", + " P_2.append(C*(0*tt+1000))\n", + "for tt in t_3:\n", + " P_3.append(C*(-25*10**4*(5-tt)))\n", + "P=P_1+P_2+P_3\n", + "#energy stored, W=(1/2)*C*V**2\n", + "W_1=[];W_2=[];W_3=[]\n", + "for vv in V_1:\n", + " W_1.append((1/2)*C*vv**2)\n", + "for vv in V_2:\n", + " W_2.append((1/2)*C*vv**2)\n", + "for vv in V_2:\n", + " W_3.append((1/2)*C*vv**2)\n", + "W=[]\n", + "for x in W_1:\n", + " W.append(x)\n", + "for x in W_2:\n", + " W.append(x)\n", + "for x in W_3:\n", + " W.append(x)\n", + "subplot(311)\n", + "plot(t,[ii*10**3 for ii in i])\n", + "title('current vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('current in mA') #mA-milli amperes(10**-3)\n", + "subplot(312)\n", + "plot(t,P)\n", + "title('power delivered vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('power in watts')\n", + "subplot(313)\n", + "\n", + "plot(t[:-1],W)\n", + "title('energy stored vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('work in joules')\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 111 Ex: 3.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When the dielectric is air, capacitance = 1770.00 pF\n", + "When the dielectric is mica, capacitance = 12390.00 pF\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "L=10*10**-2# #length\n", + "W=20*10**-2# #width\n", + "d=0.1*10**-3# #distance between plates\n", + "A=L*W# #area\n", + "E_o=8.85*10**-12# #dielectric constant of vacuum\n", + "#dielectric is air\n", + "E_r=1# #relative dielectric constant of air\n", + "E=E_r*E_o# #dielectric constant\n", + "C=E*A/d# #capacitance\n", + "print 'When the dielectric is air, capacitance = %0.2f pF'%(C*10**12) #pF-pico Farad(10**-12)\n", + "#dielectric is mica\n", + "E_r=7# #relative dielectric constant of mica\n", + "E=E_r*E_o# #dielectric constant\n", + "C=E*A/d# #capacitance\n", + "print 'When the dielectric is mica, capacitance = %0.2f pF'%(C*10**12) #pF-pico Farad(10**-12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 112 Ex: 3.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy stored by both the capacitors before switch is closed = 5.00 mJ\n", + "Total energy stored by both the capacitors after switch is closed = 2.50 mJ\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "C_1=1*10**-6#\n", + "C_2=1*10**-6#\n", + "#Before the switch is closed\n", + "V_1=100#\n", + "V_2=0#\n", + "W_1=(1/2)*C_1*V_1**2#\n", + "W_2=0# #V_2=0\n", + "W_t_1=W_1+W_2# #total energy stored by both the capacitors before switch is closed\n", + "q_1=C_1*V_1#\n", + "q_2=0#\n", + "#After the switch is closed\n", + "q_eq=q_1+q_2# #charge on equivalent capacitance\n", + "C_eq=C_1+C_2# #C_1 and C_2 in parallel\n", + "V_eq=q_eq/C_eq#\n", + "V_1=V_eq# #parallel combination\n", + "V_2=V_eq# #parallel combination\n", + "W_1=(1/2)*C_1*V_eq**2#\n", + "W_2=(1/2)*C_2*V_eq**2#\n", + "W_t_2=W_1+W_2# #total energy stored by both the capacitors after switch is closed\n", + "print 'Total energy stored by both the capacitors before switch is closed = %0.2f mJ'%(W_t_1*10**3) #mJ-milli Joules(10**-3)\n", + "print 'Total energy stored by both the capacitors after switch is closed = %0.2f mJ'%(W_t_2*10**3) #mJ-milli Joules(10**-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 113 Ex: 3.6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXecVOX1/98fQEVE7IoSFKyx996wRo1R81OTYI8licYa\nTWxflcTYjbEbe+9dYxfFEruCoqCigmJDUewN5fP747kDwzK7O8vO7J2ZPe/X677m1uc5d3b2nvuc\n5xTZJgiCIAgAuuQtQBAEQVA7hFIIgiAIJhNKIQiCIJhMKIUgCIJgMqEUgiAIgsmEUgiCIAgmE0oh\naDgkDZJ0Zd5yVBNJL0taL285gsajW94CBEEVmBx8I6kf8BbQzfakvARqD5IuA8baPqqwz/Yy+UkU\nNDIxUggaEZW5LwiCJoRSCGoSSYdKurHJvjMknZGtLyDpDkmfSBolac8mTRRGC49mn59J+lLS6pIW\nkfSQpPGSPpZ0laTZivpZSdJQSV9IukHS9ZKOLTq+paRhkiZI+p+kZZu5h/MkndJk3+2SDiy6x3ez\nfl6VtGGJNv4A7AD8LZP/9mz/mML5mbnsRklXZm29JGkxSYdLGifpbUmbFLU5m6SLJb2f9X+spHgW\nBEAohaB2uRbYQlJPAEldge2Bq7Pj1wHvAPMD2wHHS9qg6PrCyGDd7HM227PafjrbPi67dkmgLzAo\n62dG4FbgEmCOTI5tyJSMpBWBi4G9gDmB84E7suuacg3w28kCSXMAmwDXSVoC+DOwiu1ewKbAmKYN\n2L4gu+eTMvm3LhxqcuqWwBWZzEOBB7L9CwDHZnIWuAz4AVgEWDHru6lSDTopoRSCmsT2O8ALwK+z\nXRsC39h+RlJfYC3gUNs/2H4RuAjYpURT05iNbL9pe7DtibbHA/8G1s8OrwF0tX2W7Z9s3wo8U3T5\nH4DzbT/rxBXA99l1TXkcsKSCYtoOeML2h8BPwEzA0pJmsP2O7bda+EpaM389avsB2z8BNwFzASdm\n29cD/ST1kjQfsDlwkO1vbX8MnA78rpX2g05CKIWglrkGGJit78CUUcICwKe2vy469x2gTzmNSppP\n0nWZ6eRz4ErSQ7TQ9ntNLhlbtL4QcHBmOpogaQLwM9KoYyqcsk1eV+oebL8BHEgaoYyTdK2kadpo\nAx8VrX8LjPeUbJffZp89M/lnAD4okv8/wDzt6DtoIEIpBLXMTcAASX1IJpxrsv3vA3MWTEsZCwLv\nlmijVBrg40lv6svYng3YmSn/Cx8wrXJZsGj9HeA423MULT1tX9/MPVwLbCdpIWA14ObJgtnX2l6X\n9KA2cFIzbVQylfFY0shmriL5Z7Ndcl4k6HyEUghqlsy0MYRkA3/L9mvZ/rHAE8AJkmaStBywO3BV\niWY+BiaR7OcFegJfA19kCuevRceeBH6StK+kbpK2BlYtOn4h8CdJqykxi6RfNlFQxfcwDBhPMm/d\na/sLAEmLS9pQ0kykh/R3JEVVinHAws0caxO2PwDuB06TNKukLtnEe8Q8BEAohaD2uQbYiCmjhAID\ngX6kUcMtwNG2H8qOOVuw/Q1pUvl/kj6VtBrwd2Al4HPgTtLbe+H8H4D/B+wBTAB2BP5LmpjF9vOk\nSeazgU+BUZSey2h6Dxs2uYeZgBNISusDYG7g8GauvxhYKjP33FLi+OT7bbKvue1dgBmBEdk93Aj0\nbuUegk6C2lJkJ/MAmaXwttPuzqVLgF8CHxWGr5LmJE2MLUTyxviN7c8q0V8QTA+SngbOtX153rIE\nQbVpdaSQTYD1kjQLMBwYKelvFer/UmCzJvsOAx6wvTgwONsOgg5D0nqSemfmo12BZYB785YrCDqC\ncsxHS2Ujg22Ae0hD9p0r0bntx0hD9GK2AgpvZJdn/QZBR7IEMIz02zwI2M72uHxFCoKOoZzcR90k\nzUB6OJ9je6KkahZ2nq/oH3AcMF8V+wqCabB9IWlCOQg6HeWMFM4n2fZ7Ao9mCcY+r55IU8j8rKup\ngIIgCIIiyhkp/Nf2mYUNSW+TPDOqxThJvW1/mAXzfNT0hCqPVIIgCBoW2y1Gx5czUripSYMmBeRU\nizuAXbP1XYHbSp1ku2GXY445JncZ4v7i/jrj/TXyvdnlvUs3O1KQtCSwFDC7pP9Hyr1ioBfQvfxn\nfPNIupaUc2ZuSWOBo4ETgRsk7UHmklqJvoIgCILWacl8tATwK2C27LPAl6TgnXZje2AzhzauRPtB\nEARB22hWKdi+DbhN0pq2n+xAmTo9AwYMyFuEqhL3V9808v018r2VS7MRzZLOauE6296/OiK1jiRf\nf33MNdcrq60G/frlLUUQdD4k4VYmmlsyHz3PFHfQpo3k/kS+6abWzwlqj1GjYP314fTT85YkCIJS\nlJ37SNKspBHCV9UVqSxZXK7cQW1x5plJMZzV0jg0CIKq0N6RQqGRZUll/ubKtj8GdrX9ckWkbL7f\nMcAXpHTCE22vVs3+go6hSxcIfR4EtUs5wWsXAH+x/TCApAHZvrWqKBckE9UA259WuZ+gA5Fg0qS8\npQiCoDnKCV7rUVAIALaHALNUTaKpaa0ubVBnxEghCGqbcpTCaElHSeonqb+k/wNaKjBeKQw8KOk5\nSRWJiwjyJ0YKQVDblGM+2p1UqapQ8emxbF+1Wdv2B5LmAR6Q9KpTqu2gjpFipBAEtUw5SqGf7f2q\nLkkTnGrJYvtjSbeSip5PVgqDBg2afO6AAQMi6KROCPNREHQcQ4YMYciQIW26plWXVElDSPVbbwSu\nr7bXUdZnD6Cr7S+zim/3A3+3fX92PFxS65SLLoInn4SLL85bkiDofJTjktrqnILtAcAGwHjgfEnD\nJR1VGRGbZT7gMUnDgKdJ6bvvr3KfQQcQI4UgqG3KMR8VTDlnSHoIOJSUzfTYagllezSwQrXaD/Ij\nJpqDoLZpdaQgaSlJgyS9DJwNPAH0qbpkQUMSE81BUNuUM1K4GLge2NT2+1WWJ2hwunSJkUIQ1DKt\nKgXba3aEIEHnIEYKQVDblBO8FgQVI0YKQVDb1KRSkLSZpFcljZJ0aN7yBJUjRgpBUNvUnFKQ1JU0\nob0ZqUb0wKxedNAAhPdRENQ25aTOXgI4BOhXdL5tb1glmVYD3rA9Juv/OmBrYGSV+gs6kIhTCILa\nphzvoxuB84CLSLUNoLqV1/oAY4u23wVWr2J/QQcSI4UgqG3KUQoTbZ9XdUmmEO+RDUzXrvDMM7DT\nTnlLEkwP3brBySfDvPPmLUlQLcpRCndK+jMpS+r3hZ1VLH7zHtC3aLsvabQwFZEQrz7ZZBM44YQw\nIdUrgwbBm2+GUqgXqpUQbwwl3t5t929TT+UKJHUDXgM2At4HngEG2h5ZdE4kxAuCHFhzTTjttPQZ\n1B8VqdFsu1/FJCoD2z9K2he4D+gKXFysEIIgyJd4H2tsmlUKkjayPVjStpQeKdxS4rKKYPse4J5q\ntR8EQRCUpqWRwnrAYOBXlJ78rZpSCIKgNlFUTW94mlUKto/JPnfrMGmCIKh5wnzU2NRcRHMQBLVL\njBQan1AKQRAEwWRCKQRB0CbCfNTYlFN5bRZJR0m6MNteTNKW1RIoq/L2rqSh2bJZtfoKgqBthPmo\n8SlnpHAp8AOwVrb9PnBc1SRKnk6n2V4xW+6tYl9BELSRGCk0NuUohUVsn0RSDNj+uroiARDvI0EQ\nBDlQjlL4XtLMhQ1Ji1CUA6lK7CfpRUkXS5q9yn0FQVAmYT5qfMpJiDcIuBf4maRrgLWB3drTqaQH\ngN4lDh1JStP9j2z7WOBfwB7TCBUJ8YIgF8J8VD9UJSEegKS5gTWyzadsj2+zdNOBpH7AnbaXbbI/\nEuIFQQ6suy4cdxyst17ekgTTQ0US4klamTT5+z7J1r+gpNmAt23/WBFJp+5vftsfZJu/BoZXuo8g\nCKaPMB81PuWYj84BVgZeyraXBV4BZpO0t+37KizTSZJWICmi0cAfK9x+EATtIAbpjU05SuF9YA/b\nrwBIWopk6/8bKSleRZWC7V0q2V4QBJUjRgqNTzneR0sUFAKA7RHAz22/SZTODIIgaCjKGSm8Iuk8\n4DrSnMJvgBGSZgImVlO4IAhqjzAfNTbljBR2A94EDgQOAN4CdiUphA2rJlkQBDVHmI8an3LKcX4D\nnJotTfmy4hIFQRAEuVFOQrzFJd0kaYSk0dnyVns6lbS9pFck/SRppSbHDpc0StKrkjZtTz9BEFSe\nMB81NuUmxPsP8COwAXA5cHU7+x1OikF4tHhn5tn0W2ApYDPgXEmR3jsIaoQwHzU+5TxwZ7b9ICn6\neYztQcAv29Op7Vdtv17i0NbAtbYn2h4DvAGs1p6+giCoLDFSaGzK8T76TlJX4A1J+5LiFmapkjwL\nAE8Vbb8L9KlSX0EQBEETylEKBwA9gP1JQWu9SN5HLdJC0rsjbN/ZBhlLvpdEQrwg6HjCfFRfVCUh\nnqTf2L6htX3Tg6SHgYNtv5BtHwZg+8Rs+17gGNtPN7kuEuIFQQ5suCEceSRstFHekgTTQzkJ8cqZ\nUzi8zH3TS7GAdwC/kzSjpP7AYsAzFewrCIJ2ECOFxqdZ85GkzYEtgD6SzmTKw3tW2hnJLOnXwJnA\n3MBdkoba3tz2CEk3ACNI3k77xJAgCIKg42hpTuF94HmSR9DzTFEKXwAHtadT27cCtzZz7Hjg+Pa0\nHwRB9YjXtMamWaVg+0XgRUlX244cR0EQhPmoE9CS+Wh40XrTw7a9XLWECoIgCPKhJfPRrzpMiiAI\n6oYwHzU2LZmPxhTWJc1Hiiw28Iztj6ovWhAEtUaYjxqfchLi/YbkFro9qZbCM5K2b0+nzSXEk9RP\n0reShmbLue3pp15pa7BJvRH3V98MGzYkbxGqRqP/7cqhnDiF/wNWtb1LVipzVeCodvZbMiFexhu2\nV8yWfdrZT13S6D/MuL/65qWXhuQtQtVo9L9dOZST5kLAx0XbnzB1wFmbsf0qlJzADoKghol/2can\nHKVwL3CfpGtIyuC3wD1VlKm/pKHA58D/2X68in0FQd0x66yzMnz4cPr165dL/x9+CA8/nEvXVWfM\nmLwlyJ9Wcx8BSNoWWIc00fxYFnzW2jWtJsQrkftoRmAW2xOyuYbbgKVtT1XhTVL4PwRBEEwHreU+\nanWkIOlg4DrbN7ex403acn52zQ/AD9n6C5LeJOU/eqHJeTGIDSqOpK62f8pbjmKyF6erbF+ctyxB\n56CcieZZgfslPS5p38w9tZJMfsBLmjur3YCkhUkKoV2lP4P6R9ICkm6W9JGktyTtV3RskKQbJF0u\n6QtJL0tauQ3X3iTpSkmfA7tK6i/p0aytBySdI+nK7Py7spoixbK9JGnrEjLfI+nPTfa9KGmbbP3f\nksZJ+jxrY+kSbRwHrAucLenLLAcZkiZl/x9IukzSuZLuzs55TFJvSWdImiBppKQVyvk+ggAA22Ut\nwPLAccBrwOByr2umrV8DY4FvgQ+Be7L92wIvA0NJ+ZZ+2Z5+Yqn/hfTi8jzJC64b0B94E9g0Oz4o\n+x1tRnrBOB54sg3X/gBslW13B54ETs7OX5s0t3VFdnx74Kki2ZYHxgPdSsi9M/B40fZSwARgBuAX\nwHNAr+zYEkDvZu7/YWD3JvsmAQtn65eRHEFWBGYCBgNjgJ2y7+NY4KFyvo9YYrFd1kihwEekB/gn\nwDxtuG4abN9qu6/tmW33tr15tv9m28s4uaOubPuu9vQTNASrAnPb/qftH22PBi4Cfld0zmO277Vt\n4CrSw7rca5+wfUe2Pi+wCnB0dv7/SOncC6PZO4HFJS2Sbe9MMq3+WELu24AVJPXNtncEbnbKIzaR\nNAJfUlIX26/Z/rCF76Alc6mBW2wPtf09KdHk17avyr6PG0gKo9zvI+jklBO8to+kIaQ3kLmBPZ1j\n3iNJm0l6VdIoSYfmJUc1kHRJZlIY3vrZ9YekvpIezgIXX5a0fxmXLQQskJlCJkiaQKrnMW/ROeOK\n1r8BukvqUua17xatLwB8avu7on1jCyvZ/huAnZX8qX8HFExL3SU9LWmYpBHAEcBdwMDs8t8BV2ft\nPAScDZwDjJN0vqRZW/gOWnOsKM4w8F2T7W+Bntl6Od9Hi0jqmgWWtqV6Yl0gaUxmyhsqqeHquEia\nPTOXjpQ0QtIapc4rxyW1L3Cg7WGVFbHtZPMNZwMbA+8Bz0q6w/bIfCWrGJcCZwFX5C1IlZgIHGR7\nmKSewPOSHmjl7/cOMNr24s0cb+mBObaMa4uv/wCYU9LMtr/N9i3Y5JzLSX+f/wHfOKsKaPs7SRvY\n/kZSN+Bx4HZgoKTHgO62Jzty2j4LOEvSPCRF81fg6DbeX1tp7fsohwNI9U5aUmL1ioEBtj/NW5Aq\ncQZwt+3tst/oLKVOanWkYPvwlhSCpJ5Fk8NLSNpK0gzTK3UrrEaKeB6TDcOvI9V7aAhsP0ayOzck\ntj8s/JZsfwWMJL2dt8QzwJeS/iZp5uxNdRlJq2THWzKttOla22+TbP2DJM0gaU1gS4oezLafzLZP\npYnytv1Ntjoj0BW4m/R2/nfSbzV1Kq0iafXs/+Qb0tt9c15P44BFmjk2zT20QmvfR4tI+hmp8NZF\nbey3nmjI+5I0G7Cu7UsAMvPh56XObcucQnM8CswkqQ9wH8nOelkF2i1FH4qG86Shf58q9RVUEUn9\nSLbup1s6z/Yk0oN5BZIn2sfABUCvwilM+zbt7NqfpuPaHYE1SXNnxwLXk7lJF3EFsCxp/qL4nrpI\nGkZ6kD/sVJPkFmAj4JqiU3tlcnxKmhQeD5zSzFdwBrCdpE8lnV7ieNN7aM/30Rr/Jo1oJpV5fr1h\n4EFJz0naK29hKkx/4GNJl0p6QdKFknqUPLO9M9XA0OxzP+Bv2fqLZVzXl+RZ8QrJ42j/bP8g0sN+\naLZsVnTNtsCFRds7AWdVaxY+jwXoBwzPW44q32NP0hv5NnnLUoas1wPHNNm3M/BoC9fMBjxFMkXk\nfg8V+h62BM7J1gcAd+YtUxXucf7scx5gGOnNOne5KnRvq5DMt6tm26cD/yh1biVGCmTD7B1JE2tQ\n3gikYF9eGlgD+LOkJUna+jRPSYp3b9E175GUSYG+TD1RGNQ4mcnkZlJA1m15y9OUzLSzSPbWvzmw\nFcmTqHC8B/Bn0ht2SZyG5XeR/hEbhbWArSSNBq4FNpTUUHNftj/IPj8meXGtlq9EFeVd4F3bz2bb\nNwErlTqxEkrhQJIHw622X8nc9VrNjOLS9uWCKag5u95zwGJKKbZnJOVhuqOZc4MaI/PYuRgYYbuU\nKaQW6E36/X5JMpf8yckMhKRfkDx7PmBqc1Ah8HL2bH1mYBPSSLchsH2Ekxt5f5In1UNOWZMbAkk9\nCh5gkmYBNiVlc24InFyex0oqOBlsTLLSTENZuY/KQdIstr+ezmv7AY8ASwMHA78nBQ09R8qN9FnR\nuZuThj5dgYttn9A+yWsHSdcC6wNzkR4+R9u+NF+pKoekdUhzUC8xxe59eJPRYF0iaVmSZ1KXbLnS\ndnPzBHWNpPVJ/5db5S1LpZDUnzQ6gOSVeXUjPVsAJC1PchKYkRS0+HuXmGxut1KQtFbW0ay2+yqF\n1P/BZdZCyFwThwD/tH2bpHmZkqr7WJKdb48m10RCvCAIgunAreSOq4T56HRSioHxWYfDSG+7rVLK\nvmz7I2eQlE1Ju17eEzfVXI455pjcZYj7i/vrjPfXyPdml/cuXZGJZtvvNNlVKux/KpqzL0uav+i0\nX9NAdr0gCIJap5yI5tZ4R9LaMLkewv6kSePWWJvkUvqSUlEdSKkBBmYmKAOjgT9WQMYgCIKgDCqh\nFPYmBdj0IbmM3k9y2WsRp4pqpUYq1azqVhcMGDAgbxGqStxffdPI99fI91YuFfM+6kgkuR7lDoIg\nyBNJuL2V11po/KwWDtt2ORkwg07GG2/AeefBpEZNlNDgdO0Khx8Oc82VtyRBtWiP+eh5kt2/lNaJ\n1/hgGl5/HTbcEHbYAX72s7ylCaaHK6+EXr3g6FL5XIOGIMxHQYfw2muw0Ubwj3/A7rvnLU0wvbz+\nOqy9Nrz5ZlIOQX1RjvmoEsFrpVJa2PaGrVzXl5Rtcl7SyOIC22dKmpOUhGwhUgbJ37goojm7NpRC\nHfHqq0khHHcc7LZb3tIE7WXHHWHZZeGww/KWJGgrHaUUipN+dSdlMv3R9l9bua43qS7t5IIrwDak\nFBfjbZ+sVFltDtuHNbk2lEKdUFAIxx8Pu+6atzRBJRgxAjbYAN56C2YpWaYlqFU6RCk00/Gztldt\n4zW3kaqqnQ2sb3tcpjiG2P55k3NDKdQBoRAal+23hzXWgIMPzluSoC101EhhzqLNLqR0wWfYXqIN\nbfQjJcRbBnjH9hzZfpFq5s7R5PxQCjVOKITG5sUXYfPN09zCzDPnLU1QLlV1SS3iBaZ4G/1ImgfY\no9mzm5CZjm4GDrD9ZdIDCduO5Hf1RyiExmf55WG11eCii2C//fKWJqgk7VYKtvtN77VFCfGu9JSC\nK+Mk9bb9YZYH6aNS1w4aNGjy+oABAyISsUYIhdB5OOoo2Hpr2Gsv6N49b2mCUgwZMoQhQ4a06ZpK\nmI9mJKW6WI80YngE+I/tia1cJ1L++U9sH1S0/+Rs30mSDgNmj4nm+mDkSNh441AInYlttoH114eD\nDmr93CB/OmpO4WLSiONyUiDbziTvoz1bua5kwRXgGeAGYEHCJbVuGDoUttgCTjoJdmmYelxBa7z8\ncnoRGDUKZp01b2mC1ugopfCS7eVa21dJQinUFk8+mcwI554L222XtzRBR7PzzrDYYhHlXA+UoxQq\nUU/hR0mLFnW6CGXUUwgag8GDYaut4PLLQyF0VgYNgjPPhE8+yVuSoBJUYqSwEXApqfYBQD9S7c+H\n2idai33GSKEGuOMO2HNPuOkmWG+9vKUJ8mTvvZP56OST85YkaIkOC16T1B1YgjQ38Jrt79vdaMv9\nhVLImWuvTZOLd94Jq7YpTDFoRN57D5ZbDoYPhwUWyFuaoDmqqhQkbWR7sKRtmTpbqrPlU+Bx2z9N\nVwct9x1KIUfOOSd5GN13HyyzTN7SBLXC3/4Gn30GF1yQtyRBc1RbKfzd9jGSLqN0quy5gJltb9JC\nG5cAvwQ+sr1stm8QsCfwcXba4bbvbXJdKIUcsOGII+CWW+Dee6F//7wlCmqJzz6DJZaABx9MCfOC\n2iO33EdFAlxiu9lEyZLWBb4CrihSCscAX9o+rYXrQil0MBMnwh57JNfDO++EuefOW6KgFjn7bLj9\ndrj/flCLj54gDzrK+6hZWlII2fHHgAklDsXPqYb48kvYcsv0Jjh4cCiEoHn++Ed49124++68JQmm\nl6oqhXawn6QXJV0safa8henMfPghDBgACy2UzEY9euQtUVDLzDADnHoqHHJIGl0G9UctKoXzgP7A\nCsAHwL/yFafz8vLLsNZaKTDt/POhWyXSJwYNzxZbQN++6TcT1B8V+TeXtDYpPqHQnm1fMT1t2Z6c\nAE/SRcCdpc6LhHjV5e67U5W0006DnXbKW5qgnpDS72ajjVI97jnnbP2aoDrklRDvKmBhYBgw2f3U\ndlkJdbNaCncWTTTPb/uDbP0gYFXbOzS5Jiaaq4QNZ5yRchjdfHMaKQTB9LDffsmE9J//5C1JUKCj\nch+NBJaanqe0pGuB9YG5gXHAMcAAkunIpCjpP9oe1+S6UApVYOJE2HdfeOKJ5GHUr1/eEgX1zGef\nwVJLwa23wuqr5y1NAB2nFG4kFch5v10Nta3PUAoV5tNPU4nFmWeGa66BXr3ylihoBK6+Gv71L3j2\nWejaNW9pgo5ySZ0HGCHpfkl3ZssdFWg36CCGDYNVVoEVV0w+5qEQgkqxww4w22xw3nl5SxKUSyVG\nCgNK7bc9pF0Nt9xnjBQqxJVXwl/+AmedBb/7Xd7SBI3IyJEpYeJLL8H88+ctTecm94jmahFKof38\n8AMcfHBKV3HLLZGWIKguRxyRouFvvDFvSTo3VTUfSfpf9vmVpC+bLF9Mb7tB9fngg+QuOGZMsvWG\nQgiqzdFHp7iXm27KW5KgNaZbKdheO/vsaXvWJktZVmlJl0gaJ2l40b45JT0g6fVsniIimivIAw/A\nyiunEoq33w6zx7cbdADdu8MllyQ31fHj85YmaIm8I5ovBTZrsu8w4AHbiwODs+2gnUycmIbwu+0G\nV10FxxwDXfL+6wedijXXTBPP+++ftyRBS+Q+p1AieO1VYH3b4yT1BobY/nmTa2JOoQ28/Xb6Z5x1\nVrjiCph33rwlCjor33wDK6yQKrRts03e0nQ+cs+SOp3MVxSsNg6YL09h6p3bboPVVkv/gHffHQoh\nyJcePZIZae+9U7LFoPZot1KQtL+kOSohTFOy4UAMCaaDL75I9ZP/8pc0d/DXv4a5KKgN1lkn/TZ/\n/3uYNClvaYKmVCIh3nzAs5JeAC4B7munbWecpN62P5Q0P/BRqZMiIV7zPPJImjvYeGN48cVkNgqC\nWuLoo1PswhlnpFrfQXXIJSEegKQuwKbAbsAqwA3AxbbfLOPafkw9p3Ay8IntkyQdBsxu+7Am18Sc\nQgm++w7+7/9SmooLLkiFcYKgVnnrrZQT6f77UzR9UH06bE7B9iTgQ9IcwE/AHMBNkk5pRcBrgSeA\nJSSNlfR74ERgE0mvAxtm20ErPPtscjUdMyZFjoZCCGqdhReG00+HgQNTdb+gNqhEmosDgF2AT4CL\ngFttT8xGD6NsL9J+MafpM0YKGV99BUcdBddem3LYDxwYtXGD+mKvvVJG1RtuiN9utemokcKcwP+z\nvantG2xPhMmjh19VoP2gGe65B5ZZJmU4ffnl5HYa/1RBvXHWWclt+tRT85YkgMqMFOZiWg+hLwvK\noRp09pHCRx/BgQfC00+nAiabbJK3REHQPsaOTa7TV12VUrAE1aGjRgrPA+OBUdkyHnhb0guSVq5A\n+0HGxInJW2PppeFnP4Phw0MhBI1B377JQWKnndIEdJAflVAKDwCb257L9lyktBX/Bf4MRBb1CjF4\ncPLQuOsuePTRFBHao0feUgVB5dhgg+Q9t8UWySQa5EMlzEcv216myb7htpeVNMz2CtPZ7hjgC5I3\n00TbqxVf+CeOAAAgAElEQVQd6zTmo7ffTimun38e/v1v2HrrmDcIGpvC7/2++2CmmfKWprHoKPPR\nB5IOlbSQpH6S/kYKQOsKtCde0cAA2ysWK4TOwiefwCGHwEorwXLLwYgRKVVFKISg0TnlFJhrLthj\nD+gk7341RSWUwkCgL3AbcCuwYLavK/Cbdrbd6R6B33wDJ5wAP/85fP118io6+uhUOzkIOgNduqSK\ngG+9lRwqQjF0LO0yH0nqBlxue8fKiTS57beAz0nmo/NtX1h0rOHMRz/8AJddBv/4B6y1Fvzzn7D4\n4nlLFQT58dlnyRNpk03Si1KMkttPOeajduU+sv1jZjaayfb37WmrBGvb/kDSPMADkl61/ViF+8id\n779PWSNPPBGWWCKVxlyt0xnLgmBaZp89pcAYMCCNlI85Jm+JOgeVSIg3Gnhc0h3AN9k+2z6tPY3a\n/iD7/FjSrcBqwGSlUO8J8b79Fi68MHkRrbACXH89rLFG3lIFQW0x11zw4INJMXz/PRx3XIwY2kIu\nCfEkDcpWp2rI9t/b0WYPoKvtLyXNAtwP/N32/dnxujUfffwxnHdeWtZYI7ngrRzRHEHQIh9/DJtv\nDquuCmefDV275i1RfVKO+ahildckzWL76wq11Z80aQ1pNHO17ROKjtedUnjlleRSevPNsN12aQJt\n6aXzlioI6ocvvoCttoLevdP8W/fueUtUf3SIS6qktSSNAF7NtpeXdG572rQ92vYK2bJMsUKoJyZO\nTEpg001TbYOFFoLXX09mo1AIQdA2evWCe+9N3kjrrw/vv5+3RI1JJVxSTydFMY8HsP0isH4F2q1b\nRo2CQw9Noftnngm77JJSWh91FMwzT97SBUH90r07XHddGjGstho880zeEjUelaqn8E6TXT9Wot16\nYsIEuOiiFKq/zjqpzOAjj6Rlp50iMjMIKoUERx6Z5hZ++csU7BZlPStHJZTCO5LWBpA0o6RDgJEV\naLfm+eqrlMRrq62gX78Ulr/vvinj4ymnJBfTIAiqwzbbpOJSt9+eTLTvvZe3RI1BJZTC3qTkd32A\n94AVs+2G5P33U6nLrbaCPn1Sqt/tt0+K4MYbYdttYcYZ85YyCDoH/frBkCFpjmH55VMW4R87nZ2i\nslTM+6gj6Ujvo++/h6eegoceShlK33oLNtsMfvWr9DnHHB0iRhAErfDaa7DPPinD6sknJ+eOiGmY\nmo7yPppX0pGSLpR0abZc0s42N5P0qqRRkg5tr4xt4euv4bHHUpqJjTaCueeGv/4VvvsuVYYaNy6Z\njAYOrJ5CaGuwSb0R91ff1Or9LbFECnQ74gjYb78U8PbQQ23LnVSr99aRVMJ8dDvQi1RX4a6iZbrI\nsqueTfJoWgoYKGnJCsg5DV98MaV62R57pGyk886bUvdOmAAHHQTvvps8HE46Kf3IZpihGpJMTaP/\nMOP+6ptavj8pmXNffhl23z3N8S2zDJxzTso83Bq1fG8dRSXSXMxsu5Jv86sBb9geAyDpOmBrpmPy\n2obx4+Gdd5LNf+xYeOONlIZ65Mj04F9iiZRmYtVVYe+9k2KIOYEgqG+6dYNdd03u4I88kjIIHHFE\ncmP91a+Sh+Byy6XzgqmpxFfyX0m/tD3do4Mm9AHGFm2/C6ze9KRBg1Jm0cLy7bfpIf/pp2mZMCHV\nMu7RAxZcMMUMLLggLLxwmgtYcsm03aUiTrlBUF222GILBg4cyM4775y3KHWFlEb4AwaktPT33Qd3\n3w3nn59eFhdbLD0T+vSBWWaJuAeoTO6jr4AewA/AxGy3bfeazva2BTazvVe2vROwuu39is6pv9nx\nIAiCGqCqqbOzDnq2t40mvEcq2lOgL2m0UNxn+BQEuSIlv5ZquMFlSSYXsR3DgqDDqYT3URdJO0s6\nOtteUFJ7KgI8ByyWlfacEfgtcEd75QzqH0ljJB0m6RVJn0q6RNJMRcf3yjzWPpF0u6T5s/1/l3Rm\ntj6DpK8lnZxtzyzpO0mzZ9trSHpC0gRJwyStX9T+EEn/lPQ/4GugfxP5DpV0Y5N9Z0g6I1vfTdKb\nkr6Q9JakHUrc42bA4cBvJX0paWhR33sUtfM/Sadlcr6R5SD7vaR3JI2TtEtRmzNJOlXS25I+lHSe\npEgnF5TGdrsW4D/AucCr2facwHPtbHNz4DXgDeDw9soYS2MswBjgJdK80xzA48Cx2bENgY+BFYAZ\ngTOBR7JjGwAvZetrZb+rp4quG5qt9yHl8Nos2944254r2x6SybAk6YWqWxP5FiQpi57ZdlfgfZLz\nxCykSoKLZcfmA5Zq5j6PAa5osu9hYPdsfTeSqXZXUsnaY0mj6bOAGYBNgC+AHtn5/yaVy50d6El6\nyTo+779nLLW5VGKadXXb+wDfAtj+NPthTje277G9hO1FXacZUoOqYOBs2+/ZngAcR6oHDrAjcLHt\nYbZ/IL1trylpQeAp0uhzTmBd4GKgT1arY33gkayNnYC7bd8LYPtB0sj1l0X9X2Z7pO1JtqeKnXXK\nAfYC8Ots14bAN7YL05eTgGUlzWx7nO0RzdynaL0++Wjbl9s2cAOwAPAP2xNtP0Ca41s0M3PtBfzF\n9me2vwJOAH7XSvtBJ6USSuGHLLYAgKx8ZtXSU+UZ2FZtMnPIOEnD85alGkjqK+nhzPzzsqT9p6OZ\nYs+0d0gPQ4D5gbcLB5xqe3wC9LH9Lenhvj6wHkkJPAGsXbQNsBCwfWaSmSBpQnZO72b6L7637pKe\nBvoB50o6AdgBuLpInt8CfwLel/RfSe3JjjWuaL3wQvZxk309gXlIjiDPF93TPcDc09OppK6Shkq6\nc/rErl0y8+RL2f01nB+SpNkl3SRppKQRkkrWeqyES+pZpII480o6HtgO+L8KtDsNRYFtG5MmpJ+V\ndIftRknAdynp+7wib0GqxETgINvDJPUkPageaOPfb8Em64U0aO+THshAKvoEzFV0/BFgI1Jurmez\n7c1Ipp1Hs3PeAa60/YcW+i85sWz7O0kbkMxEbwObAosBqxadcz9wfzYPchxwIUkpNaWSL1XjSQpi\nKWclbtvJAcAIYNYKtFVrGBiQWTsakTNII+HtJHUj/Vanod0jBdtXAYeShqTvA1vbvqG97TbD5MA2\n2xOBQmBbQ2D7MWBC3nJUC9sf2h6WrX9FCkhcoOWrpkLAPpL6ZKagI4Hrs2PXAr9XKvI0E3A8ad6g\nkNb9EWAX4JXstzME2BN4y3Yh1vUq4FeSNs3eiLtLGiCpTxMZmru/b7K39UeBRYGxtl+Dyelgts6U\n1UTS3MNPzTQ1DuiXmX7ahe1JJOVzejaKJ/v+Nm1rW5J+BmwBXETr5q16pSHvS9JswLq2LwGw/aPt\nz0udW6l6CiNtn50t1XxrLxXY1qeZc4MaRlI/0lv70224zMA1pJrdbwKjgH8C2B4MHAXcTHo56c/U\ndvMnge5MGRWMJL1BF7ax/S7pJeMI4CPSyOFgpn5QNOuCquSJN4xkpuoFFOcA6wIcRBq5fEKa29i7\nmaYKHkyfSHquxHGXkKMl19hDySbXJX1OSkmzeAvnN8e/gb9SRfNwzhh4UNJzkvbKW5gK0x/4WCk3\n3QtKuep6lDwzrxlu0j/o08Aw0nD0hGz/nKQf7eukf/7Zi67ZFriwaHsn4Ky87qFK30s/YHjeclT5\nHnuSbPzbtPG60cCGectfhpyzkSa3B+QtSwXvaUvgnGx9AHBn3jJV4R7nzz7nyZ5L6+YtUwXvbRXS\nCHXVbPt0kmPCNOfmluTB9nfABrZXAJYDNpC0DnAY8IDtxYHB2XaBVgPbgtpG0gykt/mrbN+WtzzV\nwGlYfhfpH7FRWAvYStJokqluQ0kNNfflbM7FyQR4K8lc3Si8C7xr+9ls+yZgpVIntqoUJB0oaTYl\nLs5m5n9RCSltf5Otzkjy6Z4AbAVcnu2/HNim6JIIbKtjMhv5xcAI26fnLU8lkTS3pgTAzUyKFRia\nr1SVw/YRtvvaLpjlHrK9S2vX1QuSekiaNVufheQo0DBegLY/BMZKKpgNNwZeKXVuOSOF3bM3n01J\npp2dgRMrIWiRDXYc8LDtV4D5bBfc7caRgnyANDkC7AvcRzI5Xe/G8TxC0rUkV8nFJY2V9Pu8Zaow\na5NMfhtkLxdDlSJ4y8J2f9sPVU+8djE/8FD2e36aZF4ZnLNM1aTR8o/NBzxW9Pf7r5O3WCOxH3C1\npBdJ1pnjS53UakI8ScNtL6uUJmCI7VskDbW9YqUkzWbG7yMFHN1ie46iY5/anrPJ+Y32gwyCIOgQ\nXIHKa89Lup/kinavpF5U2PugyAa7MjBOUm8Apdw1HzVzTcMuxxxzTO4yxP3F/XXG+2vke7PLe5cu\ny3xEeoNfxWkOYAag3WaNFmywd5ByupB9NuRkZBAEQS1STkTzA7Y3KmzY/kTSDaTo0PYwP3C5pC4k\n5XSl7cFKWSFvUMoIOQb4TTv7CYIgCMqkWaWQvb33AObJokcL9KIyAWOfkbJGzkuatPq+6FinnjMY\nMGBA3iJUlbi/+qaR76+R761cmp1olnQgKc/JAqQI0QJfAhfYPrtdHad5g94uyoNDcj/9PTDe9slK\nCe/msH1Yk2tdrn0sqB1seO896NUrLUEQdCyScCsTzeV4H+1v+8wm+7o7BZ9VDEm3kZLdnQ2sb7sw\n4TzE9s+bnBtKoYaxYexYeOUVGDEiLYX1H36AffeFU0/NW8og6HxUSilM434q6QXbJaPhpocsD84j\nwDLAO85cUrNgp09d5KKa7Q+lUANMmpSKnxc/9AvLrLPC0kvDUkulZemlYckl4eqrYdQoOOusvKUP\ngs5HOUqhpTmF+Ummo5klrURKCmbSnELpRErTJ2RPUtqDA2x/WZwY0rabi0kYNGjQ5PUBAwaELbCK\nTJoEY8ZM+/AfORJmn33KQ3+ttWCvvdLDf445SrfVpUsaSQRBUH2GDBnCkCFD2nRNS3MKu5LK/q1C\nSi9R4EtS9albpkvKqfuYAfgvcI+ztAeSXiUlEvswU0wPh/moY/jpJxg9elqTz6uvwlxzTXn4F97+\nl1oKZputbX2cc05q99xzq3MPQRA0T7tGCrYvJ7mMbmf7pioI11wenEKcwklEnEJV+OknePPNaR/+\nr70G88475eG/4YbJ/r/kkpWbGI6RQhDUNq3GKdi+SdKWwFKkdNeF/f9oZ9+FPDgvZbEJkILkTiTi\nFCrCjz/CG29M+/AfNQp6957y8N90UzjwwPTw79mzujJJyRwVBEFt0qpSkHQ+MDOpCPmFwPa0rTBK\nSWw/LukyUlH0j2wvm/U3J508TqGtTJyYHv5NvX3eeAP69Jli6tliCzjkEPj5z2GWkoX4qk+MFIKg\ntmlLQryXbC+XTQzfa3uddncurQt8BVxRpBROJuIUSvLDD+ktv+nD/623oG/fqT19lloKllgCelTM\nJaAyXHghPP00XHRR3pIEQeejXXMKRXybfX6T1ar9BOjdXuEg1STO3FGL2YpUzhBSPYUhTF1op+H5\n/nt4/fVpvX1Gj4aFFpry8P/1r+HII2HxxWHmmfOWujxipBAEtU05SuG/kuYATiFFHUMyI1WLZusp\nNBrffZcmd5s+/MeMgf79p7zxb7ddWl98cZhpprylbh8xpxAEtU05E82FCeWbJd0FdLf9WXXFmtx3\ns3EK9cS33ya3zqYP/7FjYeGFpzz8f/e7tL7YYjDjjHlLXR26dAmlEAS1TDkTzY+Too0fA/7XAQph\nnKTeRXEKJesp1GLw2jffpICupt4+770Hiy465eG/005pfdFFYYYZ8pa6Y5HCfBQEHUVFg9cmnyAt\nDKwLrAOsCXwHPG77wOkTc5r2+5FKFxZPNH9i+yRJhwGz19pE81dflX74f/BBMvE0DfJadFHoVo6h\nrhNw5ZVw331w1VV5SxIEnY+KTDTbfkvSd6TU1hOBDYAlKyTgtaRJ5bkljQWOpobiFL78Mj38Cw/9\nwudHHyXPnsLDf8890/rCC8fDvzVipBAEtU055qM3gfHANaQI5H1tV8QqbHtgM32eCpwO9Af+SIpu\nrhqffz71w7+gAD75JPn0Fx7+f/pTWu/fH7p2raZEjUvMKQRBbVPOe+2ZJPPRQGAl4BFJj9p+oxoC\nSepKSp+9MfAe8KykO2yPbG/bn3027WTvK6+k/UsuOcXcs8EG6XOhheLhX2lipBAEtU055qMzgDOy\noLXfA4NIldeq9bhcDXjD9hgASdcBWwNlK4VPP53W3v/KK8kcVJzMbZNN0ueCC6Y32KD6xEghCGqb\ncsxH/yKNFHoCTwBHAY9XUaY+wNii7XeB1UudOH78tA//ESPg66+nnuzdfPP02bdvelMN8iPiFIKg\ntinHfPQUcHJRQFm1Kcu4MN98KfK3+OG/5ZZpvU+fePjXKt26waOPplFaUH9065ZSlPSpRJX2GuPZ\nZ+G44+C666B799bPb1TKMR/d2BGCFPEe0Ldouy9ptDAVO+00iJ4908O/VuIUgtbZfHO45pqYV6hX\n9t8/VdtrJKXw3XcwaBBceimccUb9Zw0opipxCh2NpG7Aa8BGwPvAM8DA4onmvOMUgqCzsuaacNpp\n6bMRePJJ2H13WGYZOPvsZIFoZCqVEK9Dsf2jpH2B+0iT2RdXwvMoCIKgwLffwlFHpZrhZ54J22+f\nt0S1Q1lKIXMTna/4fNvvVEso2/cA91Sr/SAIOi+PP55GByuvDC+9BPPMk7dEtUWrjpiS9iNlK30Q\nuKtomW4kbS/pFUk/SVqpybHDJY2S9KqkTdvTTxAEQYGvv04VBn/zGzjpJLj22lAIpShnpHAgsITt\nTyrY73Dg18D5xTslLQX8llT6sw/woKTFKxVBHQRB5+SRR2CPPWCNNWD4cJhrrrwlql3KUQrvAF9U\nslPbr0Ka9GjC1sC1ticCYyS9QQpme6qS/QdB0Dn46is47DC49VY47zzYaqu8Jap9ylEKo4GHs1oK\nP2T7bPu0KsizAFMrgHdJI4YgCII28dBDKVnleuvByy/DHHPkLVF9UO5I4R1gxmwRZQSYSXqA0mU7\nj7B9ZxtkLNlXLdZTCIIgf774Av72N7jrLjj/fNhii7wlyo+6i1OQ9DBwsO0Xsu3DAGyfmG3fCxxj\n++km10WcQhDkQK3HKdx/P/zhD7DxxvCvf8Fss+UtUW3RrjgFSWfYPkBSqbd6266Uda5YwDuAaySd\nRjIbLUYKXguCIGiWzz+HQw5JSuGCC+AXv8hbovqlJfPRFdnnv0oca9druqRfk1Jyzw3cJWmo7c1t\nj5B0AzAC+BHYJ4YEQRC0xD33wB//mMxEw4dDr155S1TfNKsUbD+ffQ6pQr9rAV8BnwJvklJyT+6a\nKUonFEIQBCWZMAH+8hcYMiTlLdpoo7wlagzyqiJwP7C07eWB14HDYZo4hc2AcyVFpYMgCKbizjth\n2WWhR48UlRwKoXLkkvvI9gNFm08D22brEacQBEGzfPopHHAAPPEEXHUVhNNh5WnxLVxS16xecjXZ\nHbg7W1+AqdNkR5xCEAQA3HZbymY655xpdBAKoTq0OFKw/ZOkdTQdPqDlxClIOhL4wfY1LYlRamfE\nKQRB52D8+FTH4bnn4IYbYJ118paofqhKnIKk/5De4G8Evsl22/Yt0yFjcbu7AXsBG9n+LtsXcQpB\nUMN0dJzCTTfBfvvBDjvAscemOYRg+qlUPYXuJC+hDZvsn26lIGkz4K/A+gWFkBFxCkEQ8NFHsO++\nyUx0882w1lp5S9R5KKcc525V6PcsUsqMB7KkeE/a3ifiFIKgc2MnE9EBB8Cuu8Lll8PMM+ctVeei\nVaUgaQngXKC37aUlLQdsZfuf7ej3OmArUjTzJ8AJRcciTiEIOiEffgj77AOvvQa33w6rr563RJ2T\ncmIALgSOYEqG1OHAwHb2e7Lt5W2vANwGHAMRpxAEnRE7lcVcfnlYckl44YVQCHlSzpxCD9tPF2of\n2Lakie3p1PaXRZs9gfHZesQpBEEn4v334U9/gtGj4e67U4nMIF/KeQv/WNKihQ1J2wEftLdjScdJ\negfYjSnmo4hTCIJOgJ3mC1ZYAVZcEZ5/PhRCrVDOSGFf4ALg55LeJxXd2bG1i1qLU7B9JHBk5oZ6\nOlPnPyom4hSCoIF4992UwO699+C++5JSCKpDVespSJoF6Gq7oqU5JS0I3G17mYhTCILapj1xCjZc\nckkqj7nffulzxhkrL2PQPBWJU5D0Jsmm/1i2vFIBwRazPSrb3BoYmq1HnEIQNCDvvAN77ZWikwcP\nhuWWy1uioDnKmVNYmmQ+mgs4VdKbkm5rZ78nSBouaRgwADgYwPYIoBCncA8RpxAEdY2dSmKuvDKs\nvz489VQohFqnnDmFH4GJwE/AJOBjYFx7OrW9HYCkg4FTSOkuJh8m4hSCoO4ZMwb23DPVTB4yBJZe\nOm+JgnIoZ6TwBfBv0gTzrrbXsP3H9nYsqS+wCfB20b6IUwiCOmfSJDj3XFhlFdh005TmOhRC/VDO\nSGEgsC6wD7CXpCeAR20/2M6+TwP+BtxetC/iFIKgjnnzzTQ6+O47ePxx+PnP85YoaCutvoXbvt32\nIcAfSXUPdgP+255OJW0NvGv7pSaHIk4hCOqQSZPgzDNTJPKWW4ZCqGfK8T66GViBVEv5UWBnyvAI\naiFO4UhS+c1Ni09voamYVwiCGmbUKNh99zSp/MQTsPjieUsUtIdyzEcnAi/Y/qktDdvepNR+ScsA\n/YEXs9QZPwOel7Q68B7Qt+j0n2X7piGC14IgX376Cc44A44/Ho46KqW67to1b6mCYqpVZGdGYG9g\nvUI/wH8yu3+7kTQaWNn2p9lE8zWkeYQ+wIPAok3dUiN4LQjyoRC8NsccaXQwwwxw8cWw6KKtXxvk\nTznBa+V49pwHrAScQ0qhvXK2r1JMfrpHnEIQ1DY//QSnnJJKYu64Izz8cCiERqMc89GqtovDTQZL\najpB3CYkDQL2JMU8fA6sTlICEHEKQVCzjB6dqqI9+yz075+3NEE1KGek8GOTLKmLkALa2oOB02yv\nmC33ZG1HnAK02QZYb8T91S9vvQWXXDKkYRVCI//tyqWcB+5fgYckPSLpEeAh4JAK9F3KrjU5TsH2\nGKAQp9CpaPQfZtxf/TLrrPDoo0PyFqNqNPLfrlzKqdE8WNLiQMHR7DXb31eg7/0k7QI8Bxxs+zNS\nnEJxoFrEKQRBEHQg5cQpzEyKZl6HZPZ5TNJ5tr9r5bqW4hTOA/6RbR8L/AvYo5mmYl4hCIKggyjH\nJfVGUv6jq0gmnx2A2WxvXxEBpH7AnbaXbUs9hUr0HQRB0Nlodz0FYGnbSxVtPyRpRHuEkjS/7UJJ\nz18Dw7P1suoptHZTQRAEwfRRjlJ4QdKatp8EkLQG8Hw7+z1J0gok09BoUl4lbI+QVIhT+JGIUwiC\nIOhQyjEfvUqaZB5LeogvCLxGemi7SQxDEARBUMeUM1LYrOpStAFJmwGnA12Bi2yflLNIFUPSJcAv\ngY9sL5u3PJUmq6FxBTAv6QXjAttn5itVZZDUHXgEmAmYEbjd9uH5SlV5JHUleQy+a/tXectTSSSN\nIc2f/gRMtN1Q7vCSZgcuIlXTNLC77WnKErQ6Uqglsh/ka8DGpER5zwIDbY/MVbAKIWld4CvgigZV\nCr2B3raHSepJMkNu00B/vx62v5HUDXgcOMT243nLVUkk/YWU6mZW21vlLU8lKc7Dlrcs1UDS5cAj\nti/JfqOz2P686Xn1Fi28GvCG7TFZQr7rSAFvDYHtx4AJectRLWx/aHtYtv4VMJIUm9IQ2P4mW52R\nNJJtqIeLpJ8BW5DeNhvV2aMh70vSbMC6ti8BsP1jKYUA9acU+pDmNgpEcFudkrkirwg83fKZ9YOk\nLpKGkWqYP5wleGwk/k3KcDApb0GqhIEHJT0naa9Wz64v+gMfS7pU0guSLpTUo9SJ9aYU6sfWFTRL\nZjq6CTggGzE0BLYn2V6BVAdkPUkDchapYkjakjTXNZQGfZsG1ra9IrA58OfMnNsodCNluz7X9krA\n18BhpU6sN6XQtAhPX6Yu3xnUOJJmAG4GrrJ9W97yVINsWH4XsEreslSQtYCtMrv7tcCGkq7IWaaK\nUoidsv0xcCuNlXftXZJzwLPZ9k0kJTEN9aYUngMWk9QvK/7zW1LAW1AHKJXauxgYYfv0vOWpJJLm\nzrw7CqlhNgGG5itV5bB9hO2+tvsDvwMesr1L3nJVCkk9JM2arc9CKhc8vOWr6gfbHwJjszx2kJx1\nXil1bjkuqTWD7R8l7QvcR5rIu7hRPFcAJF0LrA/MJWkscLTtS3MWq5KsDewEvCSp8MA83Pa9OcpU\nKeYHLs9SvXcBrrQ9OGeZqkmjmXLnA27NSgR3A662fX++IlWc/YCrsxfqN4HflzqprlxSgyAIgupS\nb+ajIAiCoIqEUgiCIAgmE0ohCIIgmEwohSAIgmAyoRSCIAiCyYRSCIIgCCYTSiGoSyTNJmnvou0F\nstKxle7nV5IOrXS71UTSAEl35i1HUJ9EnEJQlxTX9s5ZlJojy7l0cKPVOwg6hhgpBPXKicAikoZK\nOknSQpKGA0jaTdJtku6XNFrSvpIOybJDPilpjuy8RSTdk2XFfFTSEk07ydo6K1u/TNIZkv4n6U1J\n25Y4fxZJd0kaJmm4pN9k+1eWNCTr696stgSSFpX0YHb+85L6Z/tPya5/qaiNAVkbN0oaKemqon43\ny/Y9T6p7Xti/fvYdDc3uv2fl/gRBQ2I7lljqbgEWAoYXbfcrbAO7AaOAWYC5gc+BP2THTiNlZwUY\nDCyara8ODC7Rz67AWdn6ZcD12fqSwKgS529LqihX2O4FzAA8AcyV7fstKUULpNThW2frMwIzZ23c\nT8pGOi/wNtAbGAB8RqpBoazNtYDuwDvAIlk71wN3ZOt3AGtm6z2Arnn/7WKp7aWuch8FQRGtpW9+\n2PbXwNeSPgMKNvbhwHJZ0rO1gBuzfDeQHsotYeA2ANsjJc1X4pyXgFMlnQj81/bjkpYhlUB8MOur\nK5JEhyEAAAHASURBVPB+9ta+gO3bszZ/AJC0NnCNbQMfSXoEWJVUKvIZ2+9n5w0j5cn/Bhht+81M\nhquAP2Tr/wP+Lelq4Bbb77Vyj0EnJ5RC0Kh8X7Q+qWh7Eul33wWY4JQ/vy38ULQ+jWKyPUrSiqRa\n2/+UNJiUhvkV22sVn1vIytkMTdsuTP4V39dPpHtpOjE4+VrbJ0n6bybP/yT9wvZrLfQbdHJiTiGo\nV74EWnqoNocAbH8JjJa0HaS03pKWa+78shuX5ge+s301cCqputxrwDyS1sjOmUHSUpkM70raOts/\nU5Z2+zHgt0qV3OYB1gOeaUYWA68C/SQtnO0bWCTPIrZfsX0yqab5NPMmQVBMKIWgLrH9CenNd7ik\nk0gPx8Ibc/E6JdYL2zsCe2RmmJeBUoXoW2urKcsCT2epwY8G/ulUT3w74KSsr6HAmtn5OwP7S3qR\nZOqZz/atJDPUi6R5j7/a/qiELIXv4nuSueiubKJ5XNF5B2Tf0YukUc49JWQOgsmES2oQBEEwmRgp\nBEEQBJMJpRAEQRBMJpRCEARBMJlQCkEQBMFkQikEQRAEkwmlEARBEEwmlEIQBEEwmVAKQRAEwWT+\nP/4uS6U76zheAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f6b2044b190>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,array\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "\n", + "L=5# #inductance\n", + "t_1=arange(0,2+0.001,0.001)\n", + "t_2=arange(2.001,4+0.001,0.001)\n", + "t_3=arange(4.001,5+0.001,0.001)\n", + "t=[]\n", + "for x in t_1:\n", + " t.append(x)\n", + "for x in t_2:\n", + " t.append(x)\n", + "for x in t_3:\n", + " t.append(x)\n", + "\n", + "#corresponding current variations\n", + "i_1=[];i_2=[];i_3=[]\n", + "for tt in t_1:\n", + " i_1.append((1.5)*tt)\n", + "for tt in t_2:\n", + " i_2.append(0*tt+3)\n", + "for tt in t_3:\n", + " i_3.append((-3*tt)+15)\n", + "#voltage V=L*(di/dt)\n", + "V_1=[];V_2=[];V_3=[]\n", + "for tt in t_1:\n", + " V_1.append(L*(0*tt+(1.5)))\n", + "for tt in t_2:\n", + " V_2.append(L*(0*tt))\n", + "for tt in t_3: \n", + " V_3.append(L*(0*tt-3))\n", + "V=[]\n", + "for x in V_1:\n", + " V.append(x)\n", + "for x in V_2:\n", + " V.append(x)\n", + "for x in V_3:\n", + " V.append(x)\n", + "#stored energy W=1/2*L*i**2\n", + "W_1=[];W_2=[];W_3=[]\n", + "for ii in i_1:\n", + " W_1.append((1/2)*L*ii**2)\n", + "for ii in i_2:\n", + " W_2.append((1/2)*L*ii**2)\n", + "for ii in i_3:\n", + " W_3.append((1/2)*L*ii**2)\n", + "\n", + "W=[]\n", + "for x in W_1:\n", + " W.append(x)\n", + "for x in W_2:\n", + " W.append(x)\n", + "for x in W_3:\n", + " W.append(x)\n", + "\n", + "P_1=[];P_2=[];P_3=[] \n", + "#power P=V*i\n", + "for tt in t_1:\n", + " P_1.append(L*tt*(1.5**2))\n", + "for tt in t_2:\n", + " P_2.append(0*tt)\n", + "for tt in t_3: \n", + " P_3.append(-3*L*(-3*tt+15))\n", + "P=[]\n", + "for x in P_1:\n", + " P.append(x)\n", + "for x in P_2:\n", + " P.append(x)\n", + "for x in P_3:\n", + " P.append(x)\n", + "\n", + " \n", + "subplot(311)\n", + "plot(t,V)\n", + "title('voltage vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('voltage in volts')\n", + "subplot(312)\n", + "plot(t,W)\n", + "title('energy vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('energy in joules')\n", + "subplot(313)\n", + "\n", + "plot(t,P)\n", + "title('power vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('power in watts')\n", + "show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter4_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter4_1.ipynb new file mode 100644 index 00000000..09273b9b --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter4_1.ipynb @@ -0,0 +1,70 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4 : Transients" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 136 Ex: 4.1" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current ix = 1.00 amperes\n", + "voltage Vx = 5.00 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "V_s=10# #source voltage\n", + "R_1=5#\n", + "R_2=5#\n", + "L=1#\n", + "C=1*10**-6#\n", + "#for t>>0, we apply steady state conditions i.e., inductor and capacitor are replaced by short and open circuits respectively\n", + "R_eq=R_1+R_2# #R_1 and R_2 in series\n", + "i_x=V_s/R_eq# #ohm's law\n", + "V_x=R_2*i_x# #voltage across R_2\n", + "print 'current ix = %0.2f amperes'%i_x\n", + "print 'voltage Vx = %0.2f volts'%V_x" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter5_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter5_1.ipynb new file mode 100644 index 00000000..ed8ac6ac --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter5_1.ipynb @@ -0,0 +1,886 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5 - Steady state sinusoidal analaysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 181 Ex:5.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "RMS value of voltage = 70.71 volts\n", + "average power = 100.00 watts\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXe4FFXysN8iKCIYUCQjiICCSAYRhSsqgooBlaCuYFzX\ntLpmPxXUn2HXHNawRlQExZxAELgCokjOGVGyKEEkyAXq+6N6YLjeMKHTzO33efq5Mx1O17nTfeqc\nOlV1RFWJiIiIiIhIhlJBCxARERERkXlEyiMiIiIiImki5RERERERkTSR8oiIiIiISJpIeURERERE\nJE2kPCIiIiIikiZSHhElChHpLyJvBS2Hl4jILBHpELQcEdlNmaAFiIjwmd2BTSJSB1gClFHVXUEJ\nlA4i8gawTFXvie1T1WOCkyiipBCNPCJKGpLgvoiIiCKIlEdExiEit4vIkHz7nhaRp53P1UXkUxH5\nTUQWisgV+YqIjT7GOH83iMgmEWkrIvVEZJSI/Coia0XkbRE5MO4+LURkqoj8LiLvici7IvJA3PEz\nRWSaiKwXkW9FpEkhdXhBRB7Nt+8TEbkxro7LnfvME5FOBZRxFXAhcJsj/yfO/qWx8x0z3RARecsp\na4aI1BeRO0VkjYj8JCKnxpV5oIi8KiIrnfs/ICJROxHxF6KHIiITGQScLiIVAESkNHABMNA5Phj4\nGagGnA88JCInxV0fG2mc6Pw9UFUrquoE5/uDzrVHA7WA/s599gE+Al4DDnbkOAdHGYlIc+BV4Eqg\nEvAS8KlzXX7eAXruFkjkYOBUYLCINASuBVqp6gFAZ2Bp/gJU9X9Onf/tyH927FC+U88E3nRkngqM\ncPZXBx5w5IzxBrAdqAc0d+6dX/lGRETKIyLzUNWfgSnAuc6uTsAWVf1BRGoBxwO3q+p2VZ0OvAJc\nUkBRfzFXqepiVR2pqnmq+ivwJNDROXwcUFpVn1XVnar6EfBD3OVXAS+p6kQ13gT+dK7LzzhARSSm\nwM4HxqvqamAnsC/QWETKqurPqrqkiH9JcWa3Mao6QlV3Au8DhwCPON/fBeqIyAEiUgXoCtykqltV\ndS3wFNCrmPIjSiCR8ojIVN4BejufL2TPqKM6sE5VN8ed+zNQI5FCRaSKiAx2TDYbgbewxjZW9op8\nlyyL+3w4cLNjslovIuuBmtgoZi/UMpIOLqgOqroIuBEb8awRkUEi8pcykuCXuM9bgV91T0bUrc7f\nCo78ZYFVcfK/CFRO494RWUqkPCIylfeBHBGpgZmO3nH2rwQqxUxaDrWB5QWUUVBK6Yewnv8xqnog\n8Df2vCer+KsSqh33+WfgQVU9OG6roKrvFlKHQcD5InI40Ab4YLdgqoNU9USsQVfg34WU4WZa7GXY\nSOmQOPkPVNUC520iSjaR8ojISByTSi5mo1+iqvOd/cuA8cDDIrKviBwLXAa8XUAxa4FdmH0/RgVg\nM/C7o5hujTv2HbBTRK4TkTIicjbQOu74y8DVItJGjP1F5Ix8iiy+DtOAXzGz2jBV/R1ARBqISCcR\n2RdrzLdhCq0g1gBHFHIsKVR1FTAceEJEKopIKceBIIoZifgLkfKIyGTeAU5mz6gjRm+gDjYK+RC4\nV1VHOcfU2VDVLdjk+Lcisk5E2gD3AS2AjcBn2Gggdv52oDtwObAeuAj4HJtgRlUnY5PlzwHrgIUU\nPNeSvw6d8tVhX+BhTLmtAg4F7izk+leBRo6Z6cMCju+ub759hX2/BNgHmOPUYQhQtZg6RJRAJMjF\noETkNeAM4JfY0FhEKmGTeIdjHiY9VHWDc+xOrBe5E7hBVYcHIXdERAwRmQA8r6oDgpYlIsJPgh55\nvA50ybfvDmCEqjYARjrfEZFGmGtjI+ea5yP/8wi/EZEOIlLVMVv1AY4BhgUtV0SE3wTa+KrqWGz4\nH89ZQKwXNwCbDAU4GxjkuFAuBRZhk4wREX7SEJiGPbc3Aeer6ppgRYqI8J8w5raqEvcyrgGqOJ+r\nA9/HnbecBN0vIyLcQlVfxibGIyJKNKE2+zi+6EVNygQ3YRMRERFRggnjyGONiFRV1dVOYFQswGkF\nlioiRk3+GrCFiEQKJSIiIiIFVDXhJKFhHHl8CvRxPvcBPo7b30tE9hGRukB99k4NsRtVRVX58kul\nZk3lwQeVXbt09/5M3vr16xe4DOluX3+tVK5sv8v27QXXbfNm5aab7PebNi14maPfzrYdO5R//ENp\n0ED57rvC6zdjhtK8udK7t7JtW/ByR79f8VuyBKo8RGQQFtDVUESWicilwCPAqSKyAPN/fwRAVecA\n72H+50OBa7SYGnftChMmwJAhcOONkML/J8JlPvoIeve23+Suu6Bs2YLPK18enngCHn8cTj0Vvv++\n4PMi/GPHDujVCxYsgEmT4LiCMnY5NGkC334L27fDGWfAtm3+yRnhD0F7W/VW1eqquo+q1lLV11V1\nnaqeoqoNVLWzOjEezvkPqeqRqnqUqn6VyD2qV4fcXBgzBu6/37OqRCTA2LFw1VUwdCh07Fj8+QA9\nesCAAXD22TB7trfyRRSOKvzjH7BpE3zxBVSsWPw1++0H774LhxxiSmfHDu/ljPCPMJqtXOfAA2HY\nMHjjDXj//aClSY+cnJygRUiJH3+ECy6AgQOhZcuCzymsbl272gjkrLNgw4YCT8kIMvW3A3jsMZg8\n2UaM++5b8DkF1a90aXjrLVM6997rrYxek8m/nxcEGmHuBSJSqDVr0iRriL79Fho08FmwEkxeHpx4\nIvTsCTfdlHo5N9wAP/0EH38MEq395xvff28jv0mToFat4s8viLVrrdPw3/9Ct27uyhfhDiKCZviE\nuWe0agX9+8PFF0dDaD+5914zXdx4Y3rlPPYYrFwJL0dRFr6xcSNceCG89FLqigOgcmUYNAiuvNIU\nSUTmU6JGHmC225NPhtNPh1tu8VGwEsqUKTbamzkTDjss/fJmzYKTTrJy02nMIhLjuutssvuVV9wp\n79ZbYflyUyQR4SLZkUeJUx4AixdD27bmiVWvXpGnRqTBzp3Qrh1cfTVcdpl75d5/P0ycCJ995l6Z\nEX9l4kSbZ5o9GypVcqfMLVugaVN48kk480x3yoxwh8hslQD16sHNN1svKMI7XnoJypWDvn3dLfeO\nO2D+fHOCiPCGnTvh73+HRx91T3GAuWD/978297V9u3vlRvhPiVQeYA/vlCkwenTQkmQnGzfCfffB\nc89BKZefsn32sfmPm2+O5q684q23rKG/6CL3y+7cGRo2tGcjInMpkWarGO+9Bw8/bF4kpUt7LFgJ\n4+67zbb9xhvelK9qwYPdu8M113hzj5LKtm3mjTh4MBx/vDf3mDfPPPDmzLHJ9IjgieY8klAeqmaT\nv+kmcyONcIdVq+CYY2DqVKhdu/jzU2XaNHN8WLzYAtIi3OHxx2HcOMsG4CXXXAMVKsB//uPtfSIS\nw1PlISKlgf3VWWs5jCSjPMDs5v/6l3kDRaMPd7jmGmvMH3/c+3t172492HTiRyL2sHEj1K8P33wD\nRx/t7b2WL4djj7VRiBueeBHp4fqEuYgMEpEDRGR/YCYwV0RuS0fIMHHaaRaBPmRI0JJkBytXmhvm\n7bf7c79+/aznumWLP/fLdl54weYkvFYcADVrWgzJo496f68I9yl25CEi01W1qYhcBLTAloWdos6a\n42Ej2ZEHwFdfWQDbrFnR6CNdbr3VvGieftq/e553HrRvbyPIiNTZuhWOOAJGjDCzox/ERh9z50KV\nKsWfH+EdXrjqlhGRsthysJ+pah5ZtghT586W6C2KG0iPdevgtdf8D768+27LwBu5fqbHa69Bmzb+\nKQ6w0UfPnpHnVSaSiPJ4CVgKVADGiEgdYKN3IvmPiDV4jz0WtCSZzXPPWQ4kvyO/mzc318933/X3\nvtlEXp6Zj+680/9733QTvPgibN7s/70jUicR5fG5qtZQ1a6qugv4CbjcY7l8p3t3WLHCos4jkmfr\nVlMefs115OeWW2yCPsucB33j3Xehbt2i1+jwigYNzOw4YID/945InUSUx15JzJ0JhazLTFOmDPzz\nn/54CGUj77xjJo+GDYO5f5cu1nseNSqY+2c6zzwTrMfaLbdYypKdO4OTISI5ClUeInK0iJwHHCQi\n3UXkPOdvX6CcbxL6yOWXw8iRtvZEROKowrPPwvXXByeDiE2YR6bH5PnhB8t0e8YZwcnQvr2lQfn0\n0+BkiEiOokYeDYFuwIHO3zOdvy2AK70WTESWisgMEZkqIj84+yqJyAgRWSAiw0XkIDfvWbEiXHqp\n2V8jEmfcODNbnXpqsHJcdJEtWLRoUbByZBrPPgvXXhusp6GIeTz+97/ByRCRHIm46rZT1e98kif+\nvj8CLVV1Xdy+/wC/qup/ROR24GBVvSPfdUm76sazcKH1gpYtK3zFtIi96dHDAvWCHHnEuO02GwlF\nsQOJsWYNHHWURem7mQAxFf780zISjB0bLdYWBK5FmIvIs0Vcp6p6Q7LCJYOjPFqp6m9x++YBHVV1\njYhUBXJV9ah816WlPMB60H37epMULtuI+ekvXQoHHBC0NNYIHncc/PxzlLIkER54wDpK//tf0JIY\nd95pSuSJJ4KWpOThpvLoy554jvwFqqp66hshIkswl+CdwEuq+rKIrFfVg53jAqyLfY+7Lm3l8eGH\n9vCOG5dWMSWCe++1+I4w+el36WKRy5dcErQk4WbHDqhTB7780joAYWDpUlvxc9mySPn7TbLKo0xh\nB1T1jXwFV7Td+kfq4iVFe1VdJSKVgRHOqCNePhWRArVE//79d3/OyclJeuH6s84yE8zMmdAklHH0\n4WDnTgssGzo0aEn25h//gEceiZRHcQwdamaisCgOMGXWtq25Dru9DkzE3uTm5pKbm5vy9YnMeTQB\n3gQOcXatBfqo6qyU75okItIP+AObqM9R1dUiUg0Y7YXZCmyt87Vrowm8ovjyS1uzI2yxMTt2WJqN\nTz+FZs2Clia8nHMOdOtmXoZh4vPPzZwWtucq2/EiPcn/gH+pam1VrQ3c7OzzDBEp74x0cBIydsaS\nMn4K9HFO6wN87JUMV15pCf6ihHuF8+qr4Wt4wGJ2rrgCXn45aEnCy6pVljm3R4+gJfkrXbuafDNm\nBC1JRFEkojzKq+ru9fZUNRfY3zOJjCrAWBGZBkzAotyHA48Ap4rIAqCT890TatSw4fOHH3p1h8xm\nzRqLienVK2hJCqZPH1vMaNu2oCUJJ2++aQklK1YMWpK/Urq0mRxffz1oSSKKIhGz1cfAZOAtbOL8\nIsyF9lzvxUset8xWYCsNvvSSNZIRe/PYYzB7drhf8FNOsRFktNDX3qhaJoABA2wxtDCyaJGtYrh8\nuS07HOE9XpitLgMOAz4EPgAqO/uynrPOgunTzQMkYg+q4TVZxXPppeFWbkExdiyULRtMHqtEOfJI\niz/54ougJYkojESURx1VvV5VWzjbP1V1veeShYBy5cws8+abQUsSLsaPNwXSvn3QkhTNueda6o3l\ny4OWJFzEFL8k3McMhkj5h5tEzFa5QFVgCPCun15WqeCm2Qos3cUFF9gwulQiqrYEcPnlZva4LQPW\nk/z73+Hww+Guu4KWJBz8/ru55y5cCJUrBy1N0fzxh6X3nzsXqlYNWprsx3WzlarmACcBvwIvichM\nEbkndREzixYtoEIFGDMmaEnCwdat5kRw8cVBS5IYffta7zVK1W58+CHk5IRfcYC9d+ecA2+/HbQk\nEQWRUF9aVVep6tPA1cB04F5PpQoRInsaoAjzwW/ZEqpXD1qSxDjuOPPe+fbboCUJB2+/nVlpd2Km\nq0j5h49ilYeINBKR/iIyC3gOGA/U8FyyEHHxxfDJJzaMLukMHJg5ow7Yo/yjeStYudLMsGeeGbQk\niXPiieZuPWVK0JJE5CeRkcerwAags6p2VNXnVfUXj+UKFYcdZpPDn3wStCTBsm4djB5tqy5mEhde\nCB98YAn3SjKDB5sTQSbljBKxkdLAgUFLEpGfROY82qnqU6q60g+BwspFF0W21yFD4LTTwpE9Nxlq\n17YcZV9+GbQkwTJwYGaZrGJcdJFle4hWGQwXkf9Qgpx9Nnz3HfxSosZce5OpjQ9Evde5c2H1apss\nzzQaNoSaNaMlhsNGpDwSZP/9LYncu+8GLUkw/PQTzJljeYcykfPPhxEjYMOGoCUJhoEDLWYpyNUC\n06GkK/8wEimPJCjJpqtBg6wBztRUEQcfDCefbHMfJQ1VeOedzHJ0yE+vXjbnGCUqDQ+JeFs1FJGX\nnbXDRztbiRxAnnKKpSpZuDBoSfxFNfNcPAuipPZev/vOsiVkcnr6qlWhTRv47LOgJYmIkcjIYwgw\nBbgbuDVuK3GUKWNJ9t55J2hJ/GXGDHNTDns6kuI44wyYNq3kpSuJKf6wpyMpjpKq/MNKIulJJqtq\nS5/kSRu305Pk54cf7CFesCDzX8ZEue02U5wPPRS0JOlzxRU2AXtrCen+5OVZQOcPP0DdukFLkx6b\nNtnE+eLFcOihQUuTfXiRVfczEblWRKqJSKXYloaMGU3r1vZ34sRg5fCLnTttpJXpJqsYF19csnqv\nX31lyjLTFQfY2iOnn24u4xHBk4jy6AvcgkWWT47bSiQlLWhpzBjr5TVuHLQk7tChA/z2G8wKdXpP\n98hk9+qCKEnvXtgp1mwVNkSkC/AUUBp4RVX/ne+4p2YrsAnzE06AFSvMnJPNXHGFratwyy1BS+Ie\nt91mLqsPPxy0JN6yaZNlpV20KHvMPNlkhgsbrpmtRORk5+95ItI9/+aGsMkiIqWx/FpdgEZAbxE5\n2m856teHOnXg66/9vrO/bNtmWVh79w5aEne5+GIzxe3aFbQk3vLRR5YbKlsUB9giVj16lDynlTBS\nlNmqg/O3WyFbELQBFqnqUlXNAwYDZwchSEkYPn/xhbl31siyNJjHHmspVrI90262maxixOKtMsxo\nknVklNlKRM4HTlPVK53vFwNtVfX6uHM8N1sBrFljE5ErVlj0eTbSvbu5t4Z9udlUeOQR+PFHW6M+\nG1m9Go4+2p7P8uWDlsZdVKFePXj/fVtvJ8IdkjVbZZrFPiGt0L9//92fc3JyyPEgoU+VKtCunUW9\nXnih68UHzvr1MHIkvPZa0JJ4Q+/eti7Js89mbtR8Ubz7Lpx1VvYpDjCnlQsvtJFVpDxSJzc3l9zc\n3JSvz7SRx3FAf1Xt4ny/E9gVP2nu18gDbOg8aJCZd7KNV16BYcOsd5etdOwI//qXJb3MNlq3hgcf\nhM6dg5bEG+bOtXQzy5Zlbr6usOFFnEeYmATUF5E6IrIP0BP4NChhzjnH7OZr1wYlgXdkQzqS4sjW\neasFCyyKvlOnoCXxjqOPhmrVII2Oc0SaJJLban8RuUdEXna+1xeRQNYiU9UdwHXAV8Ac4F1VnRuE\nLGBrLJ9xRvZl2l22DGbOtICsbOb88y2IbuPGoCVxl4EDLY1OtruRl+REpWEgkZHH68B24Hjn+0rg\nQc8kKgZVHaqqDVX1SFUN3FM/G3uvgwbBeefBvvsGLYm3VKoEJ51k7sjZgmrmLRWcKr16wccfw9at\nQUtSMklEedRz5hS2A6jqZm9FyixOPdVy7SxeHLQk7lESTFYxsi1dyYQJNgfQMmOy0aVO9erQqhV8\n/nnQkpRMElEef4rI7lWPRaQeUMJXg95DtgUtzZxpCyadeGLQkvjDmWfClCmwMksWWY6NOkpK0s5s\nHPlnCokoj/7AMKCmiLwDjAJu91KoTOPii7MnaGngQHODLJVprhQpUq6cOT4MGhS0JOmTl2fzb9no\nOl4Y3bvD6NGwbl3QkpQ8im0iVHU4cB5wKfAO0FJVR3stWCbRtq1ln52c4ekid+3Krgy6iZItvdcR\nIyx4rl69oCXxjwMOgNNOizLtBkEi3lYtgdrYRPkqoLaI1BORLPflSJz4oKVMZuxYW661SZOgJfGX\nnBzLGDA3ML89dygpE+X5ybZ5q0whkcWgvgdaAjOcXU2A2cCBwD9U9StPJUwSP4ME45k/3xqhZcsy\n10XyqqvgyCMt62xJ45ZbzIT1f/8XtCSp8ccftlDSwoVQuXLQ0vjL9u02eT55Mhx+eNDSZC5eBAmu\nBJqpaktnRcFmwBLgVOA/qYmZfTRsaC/vqAxd3f3PP+GDD7Ivg26ixExXmTpv9fHHtkxwSVMcYOll\nzj8/e5xWMoVElEdDVZ0d+6Kqc4CjVHUxCeaaKilksu38yy8t22ytWkFLEgzNmsF++8H48UFLkhpv\nv10yTVYxMl35ZyKJKI/ZIvKCiHQUkRwReR6YIyL7Ankey5dR9OoFn34KW7YELUnyZGv67kQRyVzb\n+Zo18P33lgixpNK+vZnuZswo/twId0h0GdrFwI3APzGTVR9McWRx9pzkqVoV2rSBzz4LWpLk2LDB\nPHXOPz9oSYLlwgvNa2f79qAlSY5334Vu3bJ3aYBEKFUqO5xWMolEXHW3qOpjqnqusz3m7Nulqpv8\nEDKTyMR8O++/D6ecAgcdFLQkwVKnjs1dfRUqF5Dieeutkm2yinHRRTbvsXNn0JKUDBJx1W0gIu+L\nyBwR+dHZlvghXCZy7rkwZgz8+mvQkiTO669D375BSxEOMm3eatYsWLXKlH9Jp3FjW3J3zJigJSkZ\nJJoY8UVgB3ASMADIoNfLXypWtGy0770XtCSJMX8+LFkCXbsGLUk46NEDhg6F338PWpLEeP11uOSS\naE2LGLFsDxHek4jy2E9Vv8ZiQpaqan/gDG/Fymz69LGXOhN4/XV74TI1NsVtDjnE1sHIhDT7eXnW\nUEajxj1ceKFlSf7jj6AlyX4SUR7bRKQ0sEhErhOR7kAJnpornlNPNQ+YsHt+7NgBb74Jl14atCTh\n4oor4NVXg5aieL78EurXhwYNgpYkPFSvbkk9o3Ql3pOI8vgnUB64AWgFXIx5W0UUQunS1hsMewM0\nfLjFdTRqFLQk4eK00yxTwOzZxZ8bJK+/Hin+grj88vC/e9lAIsqjrqpuUtVlqtpXVbtjua48QUT6\ni8hyEZnqbF3jjt0pIgtFZJ6IhHp15ksvtYnXbduClqRwosanYMqUCb/y/+UXW4K1R4+gJQkfp59u\n6+tkeq6ysJOI8rgzwX1uocATqtrc2YYCiEgjbM3yRkAX4HkRCW3i8Lp1oXlzSxsRRn77zWI7evUK\nWpJwctll5gL7Z0hXrnn7bTj7bHPQiNibsmVt3vG114KWJLsptPEVka4i8ixQQ0SeEZFnne0NvI8s\nLyg519nAIFXNU9WlwCKgjcdypEWYh88DB1oPraTHdhRGvXpwzDGWMSBsqFrDGI0aC+eyy2w+L9MC\nPjOJonruK4HJwDbnb2z7FDjNY7muF5HpIvKqiMSat+rA8rhzlgM1PJYjLc45B6ZOhR9/DFqSvVGF\nF1+Eq68OWpJwE9aJ83HjLBCuY8egJQkvDRrAUUdFS9R6SaHKQ1Wnq+ob2BrmA1T1DWf7UFXXp3NT\nERkhIjML2M4CXgDqYtl7VwGPF1FUqNOglStnroNhc9v95htL51BSlppNle7dYeJE+PnnoCXZmxde\nMMVfUpaaTZXLL4dXXglaiuyl0PU8RGRmEdepqh7rjUh7yVAH+ExVm4jIHc6NH3GODQP6qeqEfNdo\nv379dn/PyckhJyfHa1ELZfZsc91dutRSR4eBnj1NcVx3XdCShJ8bbrB5hQcfDFoS45dfLIXKjz9G\nJsfi2LIFateGH36AI44IWprwkZubS25u7u7v9913X1LreRSlPOoUdaEz7+A6IlJNVVc5n28CWqvq\nhc6E+TvYPEcN4GvgyPwrPwW1GFRRdOoEV14ZjrUyVq+Go482ZXbggUFLE34WLDBF+9NPNpIMmkce\nsQWfwmhOCyO33mpm2sceC1qS8OPaYlBONPlSR0lsxVYQPAbY4pXicPi3iMwQkelAR+AmR545wHvA\nHGAocE3otEQhXH89PPts0FIYr74KF1wQKY5EadDAvObCEHG+cye89BL84x9BS5I5XHMNvPEGbN4c\ntCTZRyLL0PYAHgW+cXZ1AG5V1VDGcIZx5LFjh3nvfPghtGwZvBwffQQtWgQnR6bxxRfQr5/NfwQ5\nz/DFF9C/v8kRkThnnw1nnGHLLEcUjhfL0N6NmY4uUdVLgNbAPakKWBIpU8Z6QEGPPj74wNZ4jhRH\ncnTtamuefP99sHI88QT885/BypCJxEb+IetTZjyJKA8B1sZ9/42C4zAiiuDyyy1gcO3a4s/1AlV4\n/HG4+eZg7p/JlCoF114brPKfOtUyIPfsGZwMmcrJJ5vJ75tvij83InESUR7DgK9EpK+IXAp8ic05\nRCTBoYdaKomgGqCxY6333K1bMPfPdC67zBaJWro0mPs//riNOsqWDeb+mYwI3HgjPPpo0JJkF8XO\neQCIyHnACVhcxVhV/chrwVIljHMeMRYtgnbtbP0Mv9NKnH22mV+iwMDUufNO2LQJnnvO3/suWwbN\nmtlzEzk6pMa2bTbf98UX9r+M+CvJznkkMmF+MzBYVVekK5wfhFl5gLnrtmwJt9zi3z3nzYMOHazX\nXL68f/fNNtasMTfnuXOhShX/7nvzzWZ2fOIJ/+6ZjTz2GEyaBIMHBy1JOPFCefQHLgDWA4OBIaq6\nJh0hvSTsymP6dBsBLFniX9zAhRdCkybWc45Ij2uvhQMOgIcf9ud+q1dbyvyZM6FGqJPxhJ9NmyxY\ncPx4WwclYm9cVx5xBTcFegDnA8tV9eTURPSWsCsPgDPPNNdBP/z158yBnBxLUR1lYE2fpUtt5Lho\nERx8sPf3u/lmWzHwmWe8v1dJoF8/WL48CrIsCC+VRzVMcfQGKviRniQVMkF5TJxoSRMXLvTejNSr\nl9l477jD2/uUJK68EipVgn//29v7xEYds2bZCnkR6bNunaV3GTfO/kbswQuz1TXYiOMwYAjwrhPt\nHUoyQXmAeV61aOFtoz5jhuXVWrwYKlTw7j4ljRUr4NhjzQRZs6Z397nhBvMUevpp7+5REnnkEZv7\neP/9oCUJF14oj4cxhTEtXeH8IFOUx4IF0L69TWYfcoj75aua4jjnnCgBohfccYctqPXyy96UP38+\nnHCCmR1j9ng5AAAgAElEQVQrV/bmHiWVLVss7cwHH0DbtkFLEx48M1tlCpmiPMDmPPbdF556yv2y\nP/sMbr/desdRbID7rF9vZo+RI80ZwW26dbO5qiio0xteeQUGDIAxY6LU9jG8SE8S4REPPACDBln0\nsJv8+ac1Oo8/HikOrzj4YLj/foub2bXL3bK/+srcgaMRo3dceqnFfgwYELQkmUukPALk0EPN5fPv\nf7f0CW7xwAPQuLG5BEd4x1VXmeJw03Pnjz9MIT33nI1KI7yhdGnLUHzHHfDrr0FLk5lEZquA2bXL\nzBPnngs33ZR+eVOnwmmnmbmqWrX0y4somhkz4JRTYPJkqFUr/fJuuAF+/93SiEd4z403Wr65gQOD\nliR4ojmPDFMeYAGDbdvC8OG2dkSqbN5s5dx2G1xyiXvyRRTNQw+ZqWnUKOvRpspXX1kCzRkzzBU4\nwnu2bIFWrSyA9m9/C1qaYImURwYqD7C5j/79bcnMVPIXqZrCKF3a1kyPJgH9Y+dO82w78US4777U\nyvj5Z2jTBt57z1LJRPjHjBmWeXfsWDjqqKClCY5owjxD6d0bOneG886D7duTv/7RR+0leP75SHH4\nTenSZvYYMADefjv56zdutMSVN98cKY4gOPZYe3/OOMPyl0UkRiDKQ0QuEJHZIrJTRFrkO3aniCwU\nkXki0jluf0sRmekcy8qwqaeesmC+iy8uXIHEL1gf46WX4IUX4MsvMzvxYUF1yxSqVbOMrf/6F3zy\nScHnFFS/TZvgrLMspsPPZJlekMm/X9++ZrY6/fTC19zJ5Pp5QVAjj5nAucCY+J0i0gjoCTQCugDP\ni+zuR78AXK6q9YH6ItLFR3l9oXRpy/i5fbv5+a9b99dz4h/gXbssV8+//w0jRmR+4rxMfzkbNzYF\nfvXV8OKLf125Ln/9VqyAjh0tXuTppzN/xJjpv1+/ftCliynyBQv+ejzT6+c2gSgPVZ2nqgX8PJwN\nDFLVPFVdCiwC2jp5tSqq6g/OeW8C5/gjrb+UK2dpExo3hqZNYciQguMIpk0zL63Ro+G77+DII30X\nNaIAWrWyFeteeAG6d7f8ZfnZvt0i05s3t5UBX3rJViuMCBYRePBBGz22bw9PPglbtwYtVXgpE7QA\n+agOxK8UvRyoAeQ5n2OscPZnJWXK2NoNZ55pfui3327ut7Vq2Qjjq69sgvXOOy1KPR0Pnwj3adDA\nHB8efRSOP94i0I87ztZAv/xyGDrUEh4OGxatJx9G/v53m3u6806Lw+rSxX7TKB5kbzzzthKREUDV\nAg7dpaqfOeeMBm5W1SnO92eB71V1oPP9FWzJ26XAI6p6qrP/ROA2Vf3LoqoiknmuVhEREREhIBlv\nK89GHrGGPklWAPGhVjWxEccK53P8/gJXNkym8hERERERqREGS2t8Y/8p0EtE9hGRukB94AdVXQ38\nLiJtnQn0vwEfByBrRERERATBueqeKyLLgOOAL0RkKICzTsh7wBzMXHVNXMTfNcArwEJgkaoO81/y\niIiIiAjIwgjziIiIiAjvCYPZyhVEpIsTWLhQRG4PWp50EZHXRGSNiMyM21dJREaIyAIRGS4iBwUp\nYzqISC0RGe0Ei84SkRuc/VlRRxEpJyITRGSaiMxxFlXLmvoBiEhpEZkqIjEHmGyq21IRmeHU7wdn\nXzbV7yAReV9E5jrPZ9tk65cVykNESgPPYYGFjYDeInJ0sFKlzetYfeK5Axihqg2Akc73TCUPuElV\nG2Pmy2ud3ywr6qiq24CTVLUZcCxwkoicgAf1E5EvRSSItH7/xEzMMfNFVvx2DgrkqGpzVW3j7Mum\n+j0NfKmqR2PP5zySrZ+qZvwGtAOGxX2/A7gjaLlcqFcdYGbc93lAFedzVWBe0DK6WNePgVOysY5A\neWAi0Djd+gH9gbdCUKeawNfAScBnzr6s+e2AH4FD8u3LivoBBwJLCtifVP2yYuSBBQwui/seCy7M\nNqqoaix12xqgSpDCuIWI1AGaAxPIgjrKHkqJyDSsHqNVdTZZUD+HJ4Fbgfj8B9lSN7CRx9ciMklE\nrnT2ZUv96gJrReR1EZkiIi+LyP4kWb9sUR4lbtZfrXuQ8fUWkQrAB8A/VXVT/LFk6ujYqO9w5lDW\nOXNG+8Ydv9KZD/tNRD5xUt4gIveJyDPO57IisllE/uN8309EtsVsvyJynIiMF5H1zlxGx7jyc0Xk\n/0TkW2AzUFdVd6mZrWpiLui5+cR+CtjPub6viCwWkd9FZImIXFhAHbsAdwI9RWSTiEyNu/flceV8\nKyJPOHIuEpHjReRSEfnZmUe7JK7MfUXkMRH5SURWi8gLIlKumP/1mcAvqjqVvV3td5MFz2d7VW0O\ndMVMqifGH8zw+pUBWgDPq2oL7Hndy0SVSP2yRXnkDy6sxd7pTLKFNSJSFcBp/H4JWJ60EJGymOJ4\nS1VjcTvp1PFCoDNQD2gA3O2U0wl4CLgAqAb8BAx2rskFcpzPrYFVQCwxejtgrqpuEJEawOfA/ap6\nMHAL8IGIHBJ3/4uBK4AKwM+xnaq6EXNBbwf8IiJVnXm6nsBqp9f3NNBFVQ9wzpuWv3Jq7ukPAYNV\ntaLTuIG95PEvehtgOlAJGOTcu4Xzf7kYeE5EYvmXHwGOBJo6f2sA9/71X7sXxwNniciPTvmdROQt\nsuj5VNVVzt+1wEfY/zRb6rccWK6qE53v72PPx+pk6pctymMSlmm3jojsg72UnwYskxd8CvRxPvch\ngwMlRUSAV4E5qvpU3KFU66jAc6q6QlXXAw8CvZ1jFwGvquo0Vd2O9d7biUhtLJdafRGpBJzoyFTD\nadA7At84ZVyMTTAOA1DVr7Hn7oy4+7+hqnNVdRdwUNyIZT+s8ZmPxSn1ATphPcCYEtsFNBGR/VR1\njVrMU4H/Ogrp7cfxo6oOcHqP72E54+5XSzg6AtgOHOn8BlcC/1LVDar6B/Aw0KuowlX1LlWtpap1\nnXNHqerfyJLnU0TKi0hF5/P+WIdkJllSP7Wg62Ui0sDZdQowG/iMJOoXtsSIKaGqO0TkOuAroDTW\nUMwNWKy0EJFBWON1qFhA5b1YL/E9x0SxFOgRnIRp0x5rkGfEzC9Yo55OHePnvX7GGk2w0cak2AFV\n3SwivwE1VPVnEZmE/a87YEqnmSNfB+AZ57LDgQtEJD6fWhlgVCH3rwYMEJFSWCftLeAPoDtwKnAX\n8CuWs22ziPTERjOvOqavm1V1fhJ1jyd+SaOtTp3X5ttXAaiMTeZPlj354IXkO5WxUU+2PJ9VgI+c\n/0kZYKCqDneek2yoH8D1wECns70YuBRrOxOuX1YoDwBVHYpFpWcFqtq7kEOn+CqIR6jqOApvpFKt\nY+18n2P5z1ZinmvA7t7kIXHHvwFOxibtJzrfu2CjhdiaMz9j5rWrirj/btORqs7ETAG7EZHKwONY\n2p1ZwOmqusE5fzgw3JmneRB4mT3ms3gKSNCfMr9iiqRRzEyTLKr6Dc7oTFXXkQXPp6r+iHUg8u/P\nivoBqOp0zEybn4Trly1mq4gIAa4RkRqOCer/Ae86xwYBl4pIU6dxfgjL3hybl/gGuASYrap52DzI\nFZg742/OOW8D3USks1hwXDkRyXHmQuJlKBSn958LvOGUPR9ARA4TkbMdpZaHTWDuLKSYNUAdkfSX\njnLMay8DTzmKDef/17noKyMiIuURkT0o8A4wHBuGLwT+D0BVRwL3YJPzKzFXxXi7/ndAOfaMMuZi\nPfLdK12q6nJssbK7sInEn4Gb2VthJOJ98w42ynknbl8p4CZsJPQbNvfyj0KuH+L8/c0xo+SnIC+Z\nouS6HVt07XsR2QiMwJwNIiKKJLDcViJSC1sR8DDs4f6fqj7j9BrfxWzMS4EesaG9iNwJXIb1ym5w\nhvoRETieP5er6qhiT46IiEibIEceSaWnkILXN49GThEREREBEFjjq6qrVXWa8/kPzFRQAzgLGOCc\nNoA9a5UXtL55GyIiIiIifCcU3laSWHqKwtY3j4jAiTmIiIjwicCVh+RLTxHvRKKqKkWvSf6XY8Wc\nHxERERFRCJrEMt6BzhkkmZ6ioPXNC1zH/IgjlEGDgs9e6ca2ZYtyzDHK//2fsmuX0rdvPw49VJkx\nI3jZ3NgWL1YOO0z59FPl3nv78b//KYcfrvz2W/CyubGNGKFUq6bMnKncc08/rrlG6dRJ2bkzeNnc\n2P7zH6VFC2XNGuWOO/rRqZNyyy3By+XW1qOH0quXsnWr0q9fv8Dl8XJLlsCURwrpKQpc37ygst97\nD264Adav90Z2P3n4YTjqKLjrLhCBww+Hf/8bLrsMdrkZLhYAqnD99fCvf0G3bla/K6+EM86w+mY6\nW7fa7/TGG3DMMVCqFDzzDGzZAq+8ErR06bN4MTzyCHz0ERx2GOy7LwwZAm+/DZMKciLOMD76CKZP\nh9dfh3JFpoosmQQ58oilpzhJbLWuqU7W0EeAU0VkAZb/5xEodn3zvWjZEs4+G/7zHz+q4R1r18Kz\nz8KTT1rDGqNvX2t4P/ggMNFc4ZtvYMECuOmmvfc/8AB8+KEdy2ReeglatIDOcSF3pUvDc8/B/ffD\nn38GJ5sb3HMP3Hgj1I6L669UyeqW6cp/1y64+2546qlIcRRK0EMlD4Zeqqq6dKnqwQerbtqkGUv/\n/qpXXrn3vtGjR6uq6kcfqR53nP8yuUm3bqovvrjne6xuqqp336167bX+y+QWeXmq1aurTp26Z198\n/U4/XfV///NfLrf46SfVSpX2fr9i9du2zeo+ZUowsrnBxx+rtmihumvXnn3xv1824rSdibe1yZyc\nCVtMeaiqnnVW5r6g27erVqmiOmdOwcd37FCtXVt14kR/5XKLRYtUDz1UdfPmgo8vX27Kf+NGf+Vy\ni08+UT3++MKPDx2q2rq1f/K4zT33qF53XeHHH3xQ9aqr/JPHbbp2VX3rraCl8JdklUdWB9ldfTW8\n+mrQUqTGyJFQty4cXchK7KVLwxVXwIABBR8PO++8Az17QvnyBR+vUQNOPNHszpnIK6/Y71MYp54K\nK1fCzJn+yeQWO3fae3X11YWf87e/wfvvw7Zt/snlFqtXw3ffQffuQUsSbrJaeZxyCixaBD/9FLQk\nyTNwIFz4l7Xk9qZnT5ug3FlYCr2QogqDBkHvwvIGO/TuDYMHF31OGFm/HnJz4YILCj+ndGlrYAcO\n9E0s1xg/Hg49FBo3LvycWrWgeXP47DP/5HKLd96Bc88tvGMTYWS18ihbFs45x3pAmcTWrfbS9Shm\ntYAGDayHnpvri1iuMXMmbN4M7doVfV63btYD/PVXf+Ryiy++gE6doEKFos/r3h0+zsDlhD74AM47\nr/jzevY0x4dMY8gQ6FXkclgRkOXKA6z3l2nKIzcXjj0WqhS5/Lxx3nnwySeei+Qqn3xicpcq5unb\nf384+WT48kt/5HKLjz+2TktxtGoFf/wB8+Z5L5NbqJpCSER5nHkmfPUV5OV5L5dbrF0Lc+dCTk7Q\nkoSfrFceOTkwezasWxe0JIkzdCh07ZrYuV272vmZxLBh2Vu/rVthxAhrOItDxJRMJo0+pk0z19VG\njYo/t1o1OPJIGDvWe7ncYuhQ67Dss0/QkoSfrFce++4LHTrA118HLUniJKM8mjWz3uuiRd7K5Bbr\n15vZ6sQTEzu/SxcYPjxz5nXGjoUmTWxOIBFOP91655nCiBFw2ml7xx0VRbdumTXv8fnniSn+iBKg\nPMAe9kx5QRcutPmApk0TO1/EGthhw7yVyy1GjDDFkWjgVc2aNq8zYYK3crnFqFHmqJEoHTrAxIkW\ndZ4JfP11cvXr3Nk8BzOBHTvs+Uy041bSKVHKQzMgZeLw4cn17MDOH54hy2ING2bKLhlOO81e6kxg\n1CibLE+UChXMK2ncOO9kcott28yBIZn5gJYtzdtx7VrPxHKNadOgenWoWjVoSTKDEqE86te3xjgT\nTDtjxkDHjsld07GjNT6ZkOvqm2+Sa1zB6pcJdvMNG2yytW3b5K47+eTM6J2PH285ug48MPFrypSx\nkWYmeAR+803y715JpkQoDxF7gMPeAKmajB06JHddtWpmY581yxu53GLlSmtgCwt8LIz27c1stX27\nN3K5xZgx5n68777JXXfKKZkxJzdypCm6ZDnpJBg92n153CZSHsmRtvIQkRtF5EAxXnUSHJ7mhnBu\ncuKJ4TcNLFliiq5uCssadegQfuU4bpwpguJcdPNz8MFQrx5MmeKNXG4xapQ1lMnSujXMn2+OD2Hm\n228Td3SIp1On8CuPnTvt/YmUR+K4MfK4TFU3Ap2BSsDfcDLhhokTTgh/4zp2rL2cycx3xOjQwXq+\nYSZWv1TIhPqNH59a/fbd17zmfihwgYFwkJdnadaTNcmBxSytXAm//ea+XG4xc6bFVUXzHYnjhvKI\nNXVnYIs6hdJ40rixPbyrVwctSeG40biG2Slg3LjU69exo5kVwsrWrRZP1KJFatcff7wpn7AyfbqN\niA86KPlrS5e20VWYPebGjEneXFzScUN5TBaR4cDpwDAROQAI3dRtqVL2goZ59JGO8jj8cKvjjz+6\nK5NbbNxobsjpNK7ffx9e5Th1qs3lpJoPKezK47vvTMZUOe44KyOsTJiQXv1KIq6YrYA7gVaqugUo\nC1zqQrmuE2uAwkhsVFRUsrmiEIE2bSxmIIx8/72l40g1crdaNWuYlyxxVy63+P57ayBTpV07a1zD\n6jE3fnzxuciKol278L57YCbDNm2CliKzcEN5jFDVyaq6AUBVfwOeTORCEXlNRNaIyMy4ff1FZHnc\n6oJd447dKSILRWSeiHQuuNTCad06vI3rpEnmE1+6dOpltGkTXrv5pEnpv5xhrl+6yqNKFTjkkPDm\nuRo/Pr2eedu29tuFMVPAunXwyy/QsGHQkmQWKSsPEdlPRA4BKotIpbitDlAjwWJeB/KHjCnwhKo2\nd7ahzv0aAT2BRs41z4tIUvK3amXmhTA+wJMmmXzpEObGNdvrl67ygD2jj7CxcqVlPahfP/UyDj3U\n1jmfO9c9udxi4sT0O24lkXRGHn8HJgENgclx26fAc4kUoKpjgfUFHCrI3+hsYJCq5qnqUmARkFRf\n9uCDzZsirA9w69bplRFTjjt2uCOTm0ycmL7yaNs2nJOuK1bYhHm9eumV07IlTJ7sjkxuMmmSPZup\neAHGE1blGJmsUiNl5aGqT6lqXeBWVa0btx0LvJKmXNeLyHQnbiTm31EdWB53znISH+HsJqymKzeU\nx4EH2iI8s2e7I5NbrFpljWsq8SvxtGxpXj9hS/E9YYIptnQb17Aqj+nTE8+1VhStW4ezfpHySA03\n5jwKmhxPx2/kBaAu0AxYBTxexLlJ+96EUXmsXAl//gl16qRfVhhNO5Mn26gj3ca1YkVTQGFbunXq\n1NS9yOJp3tyyBIRNObqlPFq0CF+gp2qkPFKlTKoXikg1bDSwn4i0wExNChwApLyAo6r+EnePV4BY\nQucVQK24U2s6+/5C//79d3/OyckhJy6TW+vW4Vv6MzYfkG7jCvYSTJgAV16Zfllu4YbJKkZMObrR\nWLvFjBlwySXpl1Ohgrlcz5njTmPtFtOnw/33p19O06Z7lGPZsumX5wY//2xzHTWStmFkPrm5ueSm\nkXQsZeWBRZT3xUxH8aODTcBdqRYqItVUdZXz9Vwg1s/8FHhHRJ5w7lkfKLCPHa888tO8ub2cf/6Z\nfA4ir3DDZBWjVSt47TV3ynKLSZPcU2YtWlhPP0xMn25R1G4QM12FRXn88YfN6TRokH5ZYVSOsY6N\nGx23TCN/x/q+++5L6vp05jwGqOpJwKWqelLcdpaqJrRysYgMwkxcDUVkmYhcBvxbRGaIyHSgI3CT\nc785wHvAHGAocI1q8iFj++9vq5uFyfThpvJo0sQcAsJi+lB1x9MqRrNmljo7LGzYYGuspztZHiNs\n8x6zZlnwY5l0uplxhM10NW2adSgjkiftR0JV3xeRMzEX2nJx+4sd6Kpq7wJ2F9pvVtWHgIdSkTOe\nZs2st+hWg5YOqvYytWzpTnnly1vvbu5c93rD6bBsmUW+u2UWiJk+duxwr0FLh5kzLU15sskeC6Nl\nSxg82J2y3MCt+Y4YLVva835pSMKIp08PjyyZhhtZdV8CegA3YPMePYDD0y3XS8LUe12zxqKKq1d3\nr8ww1W/aNJPHLbNAxYr2v5o/353y0sXtxrV5c1NIYRk5ul2/MI48mjULWorMxI3+0vGqegmwTlXv\nA47DYj9CS9Om4WlcZ8wwedy0uTZvHp55AbcbH7D6he33c4sKFaB27fDEIrn9+8VG/WEI1P3tN/j9\nd3e8HEsibiiPrc7fLSJSA9gBhDqxcdOm9tKHIY/QjBnum5fCNPJwu3EFq1+YlKPbv1/s+QyaXbts\nFORm/Q46yAJ1Fyxwr8xUif12bpkcSxpu/Ns+F5GDgUexCPOlwCAXyvWMQw+FAw6ApUuDlsSbxiem\nPMKQgdYL5RiWkcfOnRaQ2aSJu+Uee6w9F0GzdKkFnlaq5G65YTFdRSar9Ehbeajq/aq6XlU/AOoA\nR6nqPWlL5jFh6Z170bgedphNnP/0k7vlJsvmzTZh7nbCuZhZLmjluHgxVK6c3JreiRCWkYcXJkcI\nT/0i5ZEebkyYjxORB0WkC1A2ll037MRsr0GyfbsN3xs1cr/sMCjH2bPhqKPc94qqWtWCzJYvL/5c\nL/HCJAfhGXl4pTyaNAmH8vCqfiUFN8xWlwALgPOA70Rkkog85UK5nhKGSfP5822ybr/93C87DMrD\nC5NcjDA4BXhVv5o1rWOxZo37ZSeDV43rsccGrzz+/NM6bqmunxPhjtlqCTACGAmMAfYHjk63XK8J\nw8jDC5NVjDA0rl71zCEck+ZeNa4i4Whgvarf4Ydb5Pqvv7pfdqLMmWOBnV503EoKbpitFgMfAVWA\nV4HGqnpauuV6zRFH2CIw6wtKCO8TXiqPMIysvBx5HHts8FkCvP79glQev/9uI58jj3S/bBEzXQX5\n+0Umq/Rxw2z1DLAM6I0FCvYVEQ8eOXcpVSp427KXjU+9esEqR1Vv6xd047Nhg8UJuJWWJD9BP5sz\nZ5pJx6sFkoJW/tFkefq4YbZ6WlXPB07BFofqD4Qk/rdomjbNXuVRqpSlzQiq97psmXl8Va7sTfkN\nG1pG1K1biz/XC9xOS5KfoJ9Nr3vmQZvlIuWRPm6YrR4XkR+wDLdNgXsAF3Jwek+QL+ivv5ora+3a\n3t0jyPp5abIC87aqX99s10Hgdf0aN7YJ3e3bvbtHUWSz8oiNiiOzVXq40W/6Huimqo1U9Qon2+5i\nF8r1nCAf4Niow8tU0EEqDz9ezqB/Py/rt99+5ok3b5539ygKr5XHMceYK3cQaUpWrIB99rF4qIjU\nccNsNURVA3YqTI1Y+vIg1vz20mQVI5tHHhDsvIcf9QtKOe7caZmL3Y6cj+eAA6BKFQu09JsZM7yt\nW0mhRGd12X9/SxUeRJ4dP5RHkyZm1glKOXo98ghKefjRuEJwyn/JEkvhc9BB3t4nKOU4c2akPNyg\nRCsPCM6rxQ/lEUtf7rdy3LLFUqO4nZYkP0Epj8WLzeThdlqS/ASlPPxyY42UR2bjivIQkdIiUl1E\nasc2N8r1gyD86XfssBHBMcd4f68gGqDZs01xeL1Odc2aFin8yy/Fn+smfjauQShHv+oXVJoStzMF\nl1Tc8La6HlgDfA18Ebclcu1rIrJGRGbG7askIiNEZIGIDBeRg+KO3SkiC0Vknoh0Tld2CKZxXbTI\nRgQVKnh/ryDq55cnS1DBZn6MGsGU47Zt2a0c/VYeeXne5ZMrabgx8rgRaOh4WzWJbQle+zrQJd++\nO4ARqtoAS3lyB4CINAJ6YsvddgGeF5G05Q/CbOVX4wPBKI/p0/0zCwShPPxqXGNpSrK1fkceaVHs\nmzZ5f68Y8+ebe3yUliR93FAePwO/p3Khqo4F8sdAnwUMcD4PAM5xPp8NDFLVPFVdCiwC2qRy33gO\nP9ziLfzMs+On8ggih5efPvRBNK5+/n5+987Xr7fMBEcc4f29Spe2EcCsWd7fK0Y03+EebiiPH4HR\njknpZmf7VxrlVYlz/V2D5cwCqA7EJ+FeDtRI4z5AMEno/HDzjFG7tkVhr13rz/1U/X1B/babe52W\nJD9+P5teR87nx++RfzTf4R5urLTws7Pt42wCuLJMj6qqiBRVVoHH+vfvv/tzTk4OOTk5Rd4n9gB3\n6pSCkCngZ881phynT4dTTvH+fqtWWY+ySpXiz3WDY44x54OdO73LwxRPEI3rCy/4cy/wP2Gg38px\nxgy4/HL/7hdmcnNzyc3NTfn6tJWHqvZPt4x8rBGRqqq6WkSqAbHpwhVArbjzajr7/kK88kiEpk1h\n/PgUJE2BDRv8MwvEiM17+KE8YgFYXkbOx3PAAZY/a8kSS1fiNX6OGsHSlMybZx56bi+qVRDTp0PL\nlt7fJ0bTpjBkiH/3i8xWe8jfsb7vvvuSuj7l/pOIPO38/ayA7dNUywU+Bfo4n/sAH8ft7yUi+4hI\nXaA+lk8rbfycVPa75wr+189vs4Cf8x5+98wrVPA3kNXv+sUcHvxYUnjjRjM5+tlxy2bS6cu86fx9\nvIBjCT0KIjII6AgcKiLLgHuBR4D3RORyYCnQA0BV54jIe8AcYAdwjao7j1ysd5eX531sgp8mqxhN\nm8Izz/hzrxkz4KST/LlXjNi8R/fu3t9rxgzo06f489wkFovktXtpLP7Iz575IYdYMOtPP1kuLy+Z\nNcv+h3523LKZlJWHqk52/uamUUbvQg4VaGBR1YeAh1K9X2Hsvz/UquXPspRB5NWJz9C6zz7e3mvm\nTPjnP729R36aNPHH9OFXWpL8xOYFevXy9j4LF9r68BUrenuf/MTq57XyCKLjls1EOtjBL9NOEKmg\n99sP6ta1JJBeElQAll+xHn6lJcmPX5PKQaUp96t+0XyHu0TKw8EPl8Fdu4LpuYI/ynHBAhvBlS/v\n7UIIoJwAABW8SURBVH3y06ABLF9uObW8JKilS/1qXLO9fpHycJe0lIeT0+oxt4QJEj8a1yVLoFIl\n77OVFoQfa5oH9XKWLWsKZPZsb+8TlNmjTp09wXteks3Kw+/4o5JAWspDVXcCJ4j45ZjpHX4kSAxy\n9TI/lGOQ6yT4YboKqnEtVSq769ewoU2YezlyXLbMzLdeLYtcEnHDbDUN+ERE/iYi5zmbD34v7lKr\nlveR2EFO2MWUh5cukUFG7/oRaR6k8ve6d/7bb/D775aux2/KljUF4uWSwtGow33cUB7lgHVAJ+BM\nZ+vmQrm+Eh+J7RVBKo9q1ayOK1d6d48gRx7NmnnbuG7YYPnPgooR8Fp5xJ7NoNxYva5fpDzcx40I\n874uyBEKYqYrryKxZ8yAh1x3NE4MkT2jjxppZwT7K0EHYMXmdFS9iW6PRZYH2bgOGFD8eakSlMkq\nhtdm1Zkz4dRTvSu/JOLGeh4NRWSkiMx2vh8rInenL5r/eDny+OMPy/t05JHelJ8IXr6gs2ZZPElQ\njWuVKrDvvmbb9oKgG9cmTcwhYOdOb8oPun5+jawi3MONV/1l4C5gu/N9JlBY8F+o8bpxPfpof/IT\nFYaX9QvDy+ll+vlp06z8oDjwwD05vLxg2jRo3tybshMhpjy8mJPbvt0WYDv6aPfLLsm4oTzKq+qE\n2BcnZUieC+X6TuPGtlhMngfSB92zA2+VRxhsyl66I4fh9/Oqd759uz33fiyLXBhVqljHyos5uTlz\nzJwaLQDlLm4oj7UistsYIyLnA6tcKNd3ypc3b5N589wvOww986OPhqVLzavMbYKcLI/RrJk3yiMv\nz6Lzg66fV2bVuXMtA0HQjatXynHq1GBHjdmKG8rjOuAl4CgRWQncBPzDhXIDwaveeRiUxz77WDCd\n2yu37dpl9Qv6BfXKbDV/vrly77+/+2Ung1eN67RpwY+qwNv6BWmSy1bSVh6qulhVTwYOBY5S1fbO\nMrEZiRfBgqrh6JmDN8px0SLLjnrwwe6Wmyz165tTwu8pLYpcOEHPd8TwsnHN5vpNnRopDy9ww9tq\nsYgMBP7G3os1ZSRemAZ++snWZTj0UHfLTQUvlEdYXs7Spc1u73YDFIb5DjBPvTVrIuWYDLt22e8X\nhvplG26YrRoD/wMOAR5zlMnHxVwTWrK5cQVv6jdlCrRo4W6ZqeKF6SosjWvp0pax2E2zo2p4zFZH\nH22j2D//dK/MH380T7VDDnGvzAjDDeWxA/Ou2gnsAtYCa1woNxBq1jTvkzUu1mDyZH+X9iyKmFnO\nTZfIsClHNyfNVcMz8gD3e+c//2wT5X6tOV8U5cqZV5SbDithUfzZiBvK43fgSeBHoI+qHqeqf0+3\nUBFZKiIzRGSqiPzg7KskIiNEZIGIDBcR1/PTxtKUuPmCTp4cnp555co28fvTT+6Upxou5eG2x9Wq\nVVbH6tXdKzMd3H42w9a4NmtmI1m3CNOzmW24oTx6A2OBa4DBInK/iLiR4EOBHFVtrqptnH13ACNU\ntQEw0vnuOm6adlTDNfIAd+u3YoVFlVer5k556dKkifn179jhTnmxxjUseaPdHlmFbT6gVSt7X9wi\nctP1Dje8rT5R1VuAvwNfAn2Bz9Mt1yH/K3sWEMvwMwA4x6X77IXbjauIN/mkUsXN+k2ZYj27sDSu\nFSvaKGH+fHfKmzjRGrSw0Ly5jTzcUo5TpoSrcW3Vyv7nbhG56XqHG95WH4jIYuAZoDzmdeWG06YC\nX4vIJBG50tlXRVVjsxFrAE8stW6aBmImq7A0ruCu8pg6NTwmuRitWsGkSe6UNXEitG7tTllucOCB\nNi/n1sJXYatf8+bmELB9e/HnFseaNbZGSBBp5ksCbmRaegSY4iwM5SbtVXWViFQGRojIXtNoqqoi\nUuC0b//+/Xd/zsnJIScnJ6kbN25sS6pu326BdekQNpMVmPK426XUlVOnwkUXuVOWW7RpAz/8AH36\npFeOqjWuL7zgjlxu0bq1yZXuJP6KFebZVKeOK2K5QoUKFu0+e3b6I4aYYgxTxy1M5Obmkpubm/L1\nbiiP6cB1ItIhJhPwoqqmlSFKVVc5f9eKyEdAG2CNiFRV1dUiUg34paBr45VHKuy3nz3Ac+em/4JO\nmQKXX55eGW4TC6bbtMnMPKmiao30k0+6J5sbtGkD77yTfjnLl9vfmjXTL8tN2rSxhvGKK9IrZ+JE\nKytsjWvMdJWu8vjhB6tfRMHk71jfd999SV3vxoT5C0AL4L/A80BLZ1/KiEh5EanofN4f6Ixl6/0U\niPUn+wCexZM0b+7OxF2YPK1ilClj8QLpLmu6fLnZ3sPUcwX77WbPhm3b0isnrD3X2MgjXcJmsorR\nurU7ZscJE6Bt2/TLiSgYN5RHa1Xto6qjVHWkszhUuvq+CjBWRKYBE4DPVXU4ZiI7VUQWYCsXPpLm\nfQrluOPg++/TK2PZMlt/oXZtd2RyEzfmPSZMsP9T2BrX8uVtWdN06xfWxrVZM4uFSDfB5Q8/hLN+\nbsxZxUyOYaxftuBKkGC+rLr1sMDBlFHVH1W1mbMdo6oPO/vXqeopqtpAVTur6oY0ZS+Udu3gu+/S\nK+O776ycsDWu4I4/fZh7drF5j3QIa+NTrpxFY6fjsqtqDXQY69e0qSnHdEaOixaZSbZqVffkitgb\nN5THrcAoEflGRL4BRgG3uFBuoDRtaqkNNm5MvYzx4+H4492TyU3cUI7ffx9u5ZGOaWfXLjM5hslN\nN550TVeLFsEBB4Qjsjw/5crBUUelpxyj+Q7vcSPOYyTQALje2Rqo6qh0yw2asmXNdp7OCxobeYSR\npk0tynzdutSuz8szT6sw9lwh/ZHHnDmWyPKww9yTyU3Srd+ECeFuXNu1g2+/Tf36SHl4jxtxHvsB\n1wL3Af2Ba0SkXLrlhoF0eudbt5q/elh7rmXK2MuVav1mzTL/+QMPdFcut2jUyFalS1U5jhsHJ5zg\nrkxu0r69yZgqY8eGu34nnmgypsp334V3VJwtuGG2ehNohAUJPodl2X3LhXIDJx3lMXmyNWDly7sr\nk5uccELqvbtvvw3vqAosA227dqk3QGFXHg0aWAcl1RxlY8daAx1WTjjBfoNUEnhu2mQjx2jk4S2u\npGRX1ctVdbTjcXUFpkAynnbtzK6/a1fy14bZZBWjffvUlcc330DHju7K4zYdO5qcqRB25SECHTqk\nphzXrrUAwbBkCi6ImjVtwjuVDLvjx1tgbrmssH+EFzeUxxQR2d1MishxgIupzYKjalWze6cSD5Gb\nG+6eHZib7eTJyaeCUM1u5bFsGWzebL37MHPiiTBmTPLXjRtnHZvSpd2XyU1SNV2NGWOKNcJb3FAe\nrYBvReQnEVkKjAdaichMEfFgUUl/OflkGDkyuWvy8uwFPekkb2RyiwMOsGjzZH3q58yxXmEY41fi\nad3a0swk6zEXG3WE0cU6ng4dUlMeYTdZxYiZrpIlUh7+4Iby6AIcAXQEcpzPXYFuWBbcjCYV5TFx\noi1qE4ZlZ4vjlFNgxIjkrsmEUQdYXrI2bZJvgL7+Gjp18kYmN2nSBFavti0ZcnMz4/fr0AFGj05u\n3mPrVotfCrvJOBtww1V3aVGbCzIGykknWU8tGdPOqFGZ0fgAnHYaDB+e3DWjR0OSuSYDo2NHkzdR\nVO3/0bmzdzK5RenS9jsk07lZswaWLMkMT6SGDW2tmLlzE79mzBhzsa9QwTu5Igw3Rh5ZzSGHwJFH\nJudTP3KkjVgygRNOsPTzGxKM1c/Ls555JjSuAF27wpdfJn7+3LnWKId9viPG6acnV7/hw+3ZLFvW\nO5ncQsR+v2HDEr9m6FC7JsJ7IuWRAKeemvgDvGGDTUJnglkAzCOlfXsbLSXCt99CvXqZk/ahZUuL\n9ViyJLHzY6OOsM93xOjaFb76ynKoJcKwYTbazBS6dImUR1iJlEcCnHMOfJxg/t6hQ01x7L+/tzK5\nyWmnJd57/eILOPNMb+Vxk1KlrHf+xReJnf/FF9ZgZQq1atnKiYmMjHfsMOWYScrj5JPN7X3z5uLP\nXbLEnCPCtDJiNhMpjwRo29Z6rwsWFH/uJ5/A2Wd7L5ObdO9ucucVswKLKnz2GZxxhj9yucWZZ5rc\nxfHrr9YIZ5LyAFOOidRvzBjzkMuklfUqVjSX8qFDiz/3o4/sty4VtWq+EP2bE6BUKVMIH31U9Hlb\nt5oJIZN65mCNSb16xU8sT5tmK8+FNeVKYXTubErhlwKXDtvDJ59YrzzMWQEKomdPGDSoeK+k996D\nHj38kclNevWy+hXH4MF2boQ/RMojQXr0gIEDi35BP/7YXEMzZT4gnh494N13iz5n4EC48MLMmQ+I\nUaECnHVW8Q3Q4MFw/vn+yOQmzZrZ6pfjxxd+Tl6edX4yUXl0727u5EXF6yxcaMGdmeIFmA1EyiNB\nOnaELVuKti2/8Qb07euXRO7Sq5c1LoW9oHl51viGbb3yRLnkEnjzzcKPL15si0edlYGRSSJw8cXw\nVhEZ5T75xFxf69b1Ty63OPhgm/soqnPz+uv2DJdxY2HtiITIOOUhIl1EZJ6ILBSR2/26b6lScNVV\n8OKLBR+fN89SlJ9zjl8SuUv16mbeeeONgo8PGWKNT6NGvorlGiedZJ5wheXyeukl6NMnc/MhXXqp\nmaV+/bXg4//9L1x7rb8yucn118NTTxU88t+2DV555f+3d/+xXtV1HMefL0AH/pgEblAJXWBIxISw\ntECLKKMQY2u1wLGQFm1WBEtgF9zEdCJRDfyBulX8aI7R0sqgstK6zIlOxSD57aTrJhagmeUYoHFf\n/fE5F77cexEO3HO/93t4P7Y7zvl8z/d7Pm/u937f3/M5nx+1HV9Nsl0zP0BX4CWgDjgH2AwMbXGM\ni/L663bv3vbu3a0fmzbNvv32wk59VENDQ2Gv/dRTdl2dffDg8eVHjtgjRthr1xZ2atvFxmbbDzxg\nX3tt6/L9++1evezGxkJPX3h806fbt97auvzJJ+3+/e3Dhws9faHxNTWd+D147732hAmFnfqoon9/\n1ZZ9dp7y53GtXXlcCbzkNHr9HeDnQIf1berdG2bOhPr6478BbdyYeoPMmFF8HdavX1/Ya48alWZa\nXbr0+PIVK1LX46I7AhQZG6Qmxe3bW48bWLAgNXnU1RV6+sLjmz8fli07fpr2I0dgzhy47bY0XUuR\nioxPgoULYfbs1Gmj2RtvwB13wJ13Fnbqo4r+/dWaWkse7wdeqdjfk5V1mLlzUxPVPfek/b17003k\nJUtS22ytW7IkJY/mKS+efz59KN13X+3dKG+pe/fUPDV9+rFBg2vWpLEdCxdWt27tYeDAlCgmTUpr\nWtgwb17qPTZ1arVrd+YmTEhfbm68MSXFQ4fS396UKTB8eLVrd/aptdtLp7E0TPvq0SPdfBw/PvU+\namyEm25Kb+IyGDgw3ZicPDnNuLtjByxfXp6BV+PGwS23pF5xgwfDnj1pgGTPntWuWfuor09rdQwZ\nkibm7N49JceyjH1YtSp1mx82LCWP0aNh0aJq1+rsJJ/OUl1Vkq0V8j3bn8/25wNNthdXHFM7AYUQ\nQidi+5TbF2oteXQDdgGfAf4BPAtcbzvHvJshhBDOVE01W9n+n6QZwB9JPa+WR+IIIYSOV1NXHiGE\nEDqHktxGq97gwaJIWiFpn6QtFWW9JD0m6UVJf5JUs7d5JfWT1CBpm6StkmZm5aWIUVJ3Sc9I2ixp\nu6RFWXkp4gOQ1FXSJknrsv0yxfaypBey+J7NysoUX09JD0vakb0/P5Y3vlIkD0ldgWWkJXE/BFwv\naWh1a3XGVpLiqTQPeMz2pcCfs/1a9Q7wXdvDgI8D385+Z6WI0fYhYKztDwPDgbGSrqYk8WVmAds5\n1guyTLEZ+JTtkbavzMrKFN/dwO9tDyW9P3eSN748Iwo76w8wCvhDxf48YF6169UOcdUBWyr2dwJ9\nsu2+wM5q17EdY30EuKaMMQLnAc8Bw8oSH3AJ8DgwFliXlZUitqz+jUDvFmWliA+4CPh7G+W54ivF\nlQedYPBgB+lje1+2vQ/oU83KtBdJdcBI4BlKFKOkLpI2k+JosL2N8sS3FJgLNFWUlSU2SFcej0va\nKOkbWVlZ4hsAvCZppaS/SvqJpPPJGV9ZksdZd9ff6etBzcct6QLgl8As229VPlbrMdpucmq2ugT4\npKSxLR6vyfgkXQfst70JaHNcQK3GVuEq2yOB8aQm1U9UPljj8XUDLgfut305cIAWTVSnEl9Zkser\nQL+K/X6kq4+y2SepL4Ck9wInWd6oc5N0DilxPGi7eaHfUsUIYPs/wO+Aj1CO+EYDEyU1AmuAT0t6\nkHLEBoDtf2b/vgb8mjSvXlni2wPssf1ctv8wKZnszRNfWZLHRmCwpDpJ5wKTgLVVrlMR1gI3ZNs3\nkO4T1CRJApYD223fVfFQKWKUdHFzbxVJPYDPApsoQXy2b7bdz/YAYDLwF9tfpQSxAUg6T9KF2fb5\nwDhgCyWJz/Ze4BVJl2ZF1wDbgHXkiK804zwkjQfu4tjgwZqe8UbSGmAMcDGp/XEB8BvgF0B/4GXg\nK7bfrFYdz0TW8+gJ4AWOXR7PJ80aUPMxSroM+BnpC1oX0tXVDyX1ogTxNZM0Bphte2JZYpM0gHS1\nAamJZ7XtRWWJD0DSCOCnwLnAbuBrpM/OU46vNMkjhBBCxylLs1UIIYQOFMkjhBBCbpE8Qggh5BbJ\nI4QQQm6RPEIIIeQWySOEEEJukTzCWU/SRZK+WbH/PkkPFXCeL5RhuYAQIMZ5hNA8MeM625dVuSoh\n1Iy48ggBvg8Myhb+WSzpA82LcEmaJumRbHGcRkkzJM3JZiN9WtJ7suMGSXo0m4X1CUlDWp4ke617\ns+1Vku6WtEHSbklfauP4OqUFzlZK2iVptaRx2XNelHRFdtyYrO6bsnpdUOj/VghE8ggBoB7Y7bTw\nTz2tZ4odBnwRuAJYCPw3m430aWBqdsyPge/Y/ihpqvL72zhPy8v8vravAq4jJbC2DAJ+BHwQGAJM\nyp4zB7g5O2Y28K1sFtirgYMnDzmEM9Ot2hUIoRNoc1rxCg22DwAHJL1JmkAO0mR5w7PJ80YDD6X5\nHoE0Z9C7MdnEc7Z3SDrR2gmN2TogSNpGWoAJYCtpsTCADcBSSauBX9l+9STnDuGMRfII4eQOV2w3\nVew3kf6GugD/zr755/F2xfaJEljLc79dsd0NwPZiSb8FJgAbJH3O9q6cdQkhl2i2CgHeAi48jecJ\nIFvEqlHSlyFNNy9p+ImOb2+SBtneZvsHpOVuW91vCaG9RfIIZz3b/yJ9Y98iaTGpSan5/kTLFdVa\nbjfvTwG+ni07uxWY2NapTvJabVbvXfabt2dldf8b6crk0RO8VgjtJrrqhhBCyC2uPEIIIeQWySOE\nEEJukTxCCCHkFskjhBBCbpE8Qggh5BbJI4QQQm6RPEIIIeQWySOEEEJu/wdMBiXcPVcT4wAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f213e3a7ad0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,cos,pi,sqrt\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "R=50#\n", + "t=arange(0,0.05+0.000001,0.000001)\n", + "V_t=[]\n", + "for tt in t:\n", + " V_t.append(100*cos(100*pi*tt))\n", + "V_m=100# #peak value\n", + "V_rms=V_m/sqrt(2)#\n", + "P_avg=(V_rms**2)/R#\n", + "P_t=[]\n", + "for vv in V_t: \n", + " P_t.append(vv**2/R)\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'RMS value of voltage = %0.2f volts'%V_rms\n", + "print 'average power = %0.2f watts'%P_avg\n", + "subplot(211)\n", + "plot([tt*10**3 for tt in t],V_t)#\n", + "title('voltage vs time')\n", + "xlabel('time in ms')\n", + "ylabel('voltage in volts') #ms-milli seconds(10**-3)\n", + "subplot(212)\n", + "plot([tt*10**3 for tt in t],P_t)\n", + "title('power vs time')\n", + "xlabel('time in ms')\n", + "ylabel('power in watts') #ms-milli seconds(10**-3)\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 182 Ex:5.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHGWd7/HPNySiCZeokCAQHEVkjeJK0IhxCa2uewBX\n8IIgq7K4e4RjjHjLHqJHQvaly4q7r11Bj8iuuEIwJBAVQRPUxYwoatBJwh0PBBFCNFG5SiTcfueP\nqkl6Ot0z3T1dXdVd3/fr1S+6q6urn2k685vn+dbzlCICMzOzYRPyboCZmRWLC4OZmY3gwmBmZiO4\nMJiZ2QguDGZmNoILg5mZjeDCYD1P0mJJS/JuR5Yk3Sxpbt7tsHKYmHcDzDpg+2QcSQPAXcDEiHg6\nrwaNh6SvAvdGxJnD2yLiZfm1yMrGPQbrB2pym5k1wYXBCkHSGZIur9l2rqRz0/v7SrpS0h8k3SHp\nf9YcYrjXcG363wclPSLp1ZIOlPQDSb+X9DtJl0jas+p9ZklaJ+lhSZdJWi7pU1XP/7Wk9ZIekHSd\npEMa/AznS/qXmm3fkvThqp9xY/o+t0t6fZ1jnAr8DfC/0/Z/K91+9/D+6dDZ5ZKWpMe6UdJBkj4u\nabOkX0t6Y9Ux95R0oaRN6ft/SpL/7VtD/nJYUVwKHCNpNwBJuwDvAL6WPr8MuAd4HnA8cLak11W9\nfriHcET63z0jYveIWJM+/qf0tS8BZgCL0/d5BvBN4CvAs9N2vIW00Eg6FLgQeB/wHOAC4Mr0dbWW\nAidub5D0bOCNwDJJBwMfAF4ZEXsAfwXcXXuAiPiP9Gc+J23/ccNP1ez618DFaZvXAd9Pt+8LfCpt\n57CvAo8DBwKHpu9dW1jNtnNhsEKIiHuAtcBb002vB7ZGxPWSZgBzgDMi4vGIuAH4MnBynUPtNIQU\nERsi4pqIeCIifg/8O3Bk+vThwC4R8fmIeCoivglcX/XyU4ELIuLnkbgY2Ja+rtaPgZA0XJyOB34S\nEb8FngJ2BV4qaVJE3BMRd43ykYw1FHZtRHw/Ip4CVgDPBT6TPl4ODEjaQ9J04GjgIxHxp4j4HfA5\n4J1jHN9KzIXBimQpcFJ6/2/Y0VvYF7g/Ih6t2vceYL9mDippuqRl6TDKQ8ASkl+kw8e+r+Yl91bd\nfz7wsXQY6QFJDwD7k/Q+RohkRcpl9X6GiLgT+DBJT2WzpEsl7XSMFmypuv8n4PexY0XMP6X/3S1t\n/yTgN1Xt/xKw9zje2/qcC4MVyQqgImk/kuGcpen2TcBzhoeZUgcAG+sco95ywWeT/MX+sojYE3gP\nO777v2HnAnNA1f17gH+KiGdX3XaLiOUNfoZLgeMlPR+YDXx9e8MiLo2II0h+WQdwToNjdHLJ43tJ\nejjPrWr/nhFRNycxAxcGK5B0mGOQZEz8roj4Zbr9XuAnwD9L2lXSy4G/Ay6pc5jfAU+TjKcP2w14\nFHg4LTr/UPXcT4GnJM2XNFHSccCrqp7/T+B/SZqtxBRJb6opUtU/w3rg9yRDXVdHxMMAkl4s6fWS\ndiX5Rf0YSbGqZzPwwgbPtSQifgN8D/g3SbtLmpCG8Z4TYQ25MFjRLAXewI7ewrCTgAGS3sM3gEUR\n8YP0uUhvRMRWkqD5Okn3S5oN/CMwC3gIuIrkr/jh/R8H3gb8PfAA8C7g2yRhLRExRBI8fwG4H7iD\n+tlG7c/w+pqfYVfgn0kK12+AvYCPN3j9hcDMdOjnG3We3/7z1mxr9Phk4BnArenPcDmwzxg/g5WY\nsrpQj6RnAj8k+QfxDOBbEbHTPwRJ55GEY1uBUyJiXSYNMmuSpDXAFyPiorzbYpaHzHoMEfEY8LqI\neAXwcuB1kv6ieh9JxwAvioiDSM7+OD+r9pg1ImmupH3SoaS/BV4GXJ13u8zykumSGGm3HpIewy4k\n3dhqxwIXpfuukTRV0vSI2Jxlu8xqHAxcBkwBNgDH+ztoZZZpxpAGXetJwrTVEXFrzS77MfLUwI0k\npwKadU1E/GdE7JNOKHtFRKzKu01mecq0METE0+lQ0v7AXEmVOrvVTuTJJvQwM7OmdGV11Yh4SNJ3\ngFeSnI447D6S5QmG7c/Ok42Q5GJhZtaGiGh5QcnMegyS9pI0Nb3/LJI1Y2rPOLqS9NQ/SYcDDzYa\n240I3zp0O+uss3JvQy/fHnssmDUrOO+8YMGCs9hvv2DVqvzb1Q83fzc7e2tXlkNJzwN+kGYMa4Cr\nIuIaSadJOg0gIlYCd0m6k2TRr3kZtsesIxYsgIEBmD8fpkyBpUvhlFNgY7152GY9KLOhpIi4iWRS\nUe32C2oez8+qDWadtmIFrFwJQ0OgtIM+dy6cfjqcdBKsXg0Tffkr63Ge+VxClUol7yb0pA0bYN48\nWL4cpk5Ntg1/lgsXwuTJsGhRfu3rB/5uFkNmM587SVL0Qjutf23bBnPmJENGH/xg/X22bIFZs+DL\nX4ajjupq88zqkkS0ET67MJg14YMfhE2bkqEkjfLP7Npr4YQT4Be/gP09I8dy1m5h8FCS2RiGc4UL\nLxy9KMDIvOHJJ7vTPrNOc4/BbBQbNsBrXpMUhle+srnXPP00HH00HHYYnH12tu0zG42Hksw6rJlc\noRHnDVYELgxmHdZsrtCI8wbLmzMGsw5qJVdoxHmD9Sr3GMxqtJMrNOK8wfLkoSSzDhhPrtCI8wbL\niwuDWQeMN1doxHmD5cEZg9k4dSJXaMR5g/US9xjM6Gyu0IjzBus2DyWZtSmLXKER5w3WTS4MZm3K\nKldoxHmDdYszBrM2ZJkrNOK8wYrOPQYrrW7kCo04b7Bu8FCSWQu6mSs04rzBsubCYNaCbucKjThv\nsCw5YzBrUh65QiPOG6yI3GOwUskzV2jEeYNlxUNJZmMoQq7QiPMGy4ILg9kYipIrNOK8wTrNGYPZ\nKIqUKzTivMGKwj0G63tFzBUacd5gneShJLM6ipwrNOK8wTrFhcGsjqLnCo04b7BOcMZgVqMXcoVG\nnDdYnjIrDJJmSFot6RZJN0s6vc4+FUkPSVqX3j6ZVXusXDZsgHnzYPlymDo179a0Z+FCmDwZFi3K\nuyVWNhMzPPYTwEciYr2k3YAhSd+PiNtq9vthRBybYTusZLZtS4Zhzjyz+GHzaCZMgCVLkrxh7lzn\nDdY9mfUYIuK3EbE+vf9H4DZg3zq79lgn34puwQIYGID58/NuyfhNmwZLlybh+caNebfGyqIrGYOk\nAeBQYE3NUwHMkXSDpJWSZnajPda/ejlXaMR5g3Vb5mclpcNIg8CnI+KKmud2B56KiK2SjgbOjYgX\n1zmGz0qyMfXSfIVWeX6DtaPds5KyzBiQNAn4OnBJbVEAiIhHqu6vkvRFSc+JiPtr9128ePH2+5VK\nhUqlkkmbrTf1S67QiPMGa8bg4CCDg4PjPk5mPQZJAi4C/hARH2mwz3RgS0SEpNnAZRExUGc/9xhs\nVL06X6FVnt9grShij+G1wLuBGyWtS7d9AjgAICIuAI4H3i/pSWAr8M4M22N9ajhXGBrq76IAI/OG\n1athYqZ9fisrz3y2ntbPuUIjzhusWV4Sw0qnF9dB6hSvp2TNcGGw0ilLrtCI8wYbi9dKslLpx/kK\nrfL8BsuKewzWc8qYKzTivMFG46EkK4Uy5wqNOG+wRlwYrBTKnis04rzB6nHGYH3PuUJjzhusk9xj\nsJ7gXGFszhusloeSrG85V2ie8war5sJgfcu5QmucN9gwZwzWl5wrtM55g42XewxWWM4V2ue8wcBD\nSdZnnCuMn/MGc2GwvuJcoTOcN5SbMwbrG84VOsd5g7XDPQYrFOcKnee8obw8lGQ9z7lCdpw3lJML\ng/U85wrZct5QPs4YrKc5V8ie8wZrlnsMljvnCt3jvKFcPJRkPcm5Qvc5bygPFwbrSc4V8uG8oRyc\nMVjPca6QH+cNNhr3GCwXzhXy57yh/3koyXqGc4XicN7Q31wYrGc4VygW5w39yxmD9QTnCsXjvMFq\nucdgXeNcobicN/QnDyVZoTlXKD7nDf2ncENJkmZIWi3pFkk3Szq9wX7nSbpD0g2SDs2qPZavBQtg\nYADmz8+7JdbItGmwdGlSvDduzLs1lqcsM4YngI9ExEuBw4EPSHpJ9Q6SjgFeFBEHAacC52fYHsuJ\nc4Xe4bzBIMPCEBG/jYj16f0/ArcB+9bsdixwUbrPGmCqpOlZtcm6b8MGmDcPli+HqVPzbo01Y+FC\nmDwZFi3KuyWWl66clSRpADgUWFPz1H7AvVWPNwI+Ya5PbNuWnAZ55pkOm3vJhAmwZAlcfDFcfXXe\nrbE8TGxlZ0m7AFMi4uEWXrMbsAL4UNpz2GmXmsd1U+bFixdvv1+pVKhUKs02wXLiXKF3DecNnt/Q\nWwYHBxkcHBz3ccY8K0nSpcBpwFPAz4E9gXMj4rNjHlyaBHwbWBURn6vz/JeAwYhYlj6+HTgyIjbX\n7OezknrMihVwxhkwNOQhpF529tmwahWsXg0TW/oz0oogy7OSZqY9hLcAq4AB4D1NNEjAhcCt9YpC\n6krg5HT/w4EHa4uC9R7nCv3DeUM5NfM3wMT0L/+3AP83Ip6Q1Myf768F3g3cKGlduu0TwAEAEXFB\nRKyUdIykO4FHgfe2/iNYkThX6C/DecOsWckZS57fUA7NDCWdDpwB3Ai8ieQX+5KIOCL75m1vg4eS\neoTXQepPXk+pN2U281nSCyPirqrHAg6KiP/XejPb48LQG5wr9DfnDb0ny8KwNiJm1WwbiojDWn2z\ndrkwFJ/XQep/Xk+p97RbGBrW/XSW8kySSWdvIzmtNIA9gGe221DrP84VysF5Q3mM1iE8GHgzyemp\nb67a/gjwviwbZb3F8xXKw/MbyqGZoaTXRMRPu9SeRm3wUFJBOVcoJ+cNvaHjGYOkz4/yuoiIuqul\nZsGFoZicK5SX84be0PGMARhix/IUTS1bYeXhXKHcnDf0t6Yv1CNpd5KeQr31jjLlHkPxeL6Cgec3\nFF1mS2JIOiSduXwLcKukIUkva6eR1h98fQUb5us39KdmwuefAp+IiNXp4wpwdkTMyb5529vgHkNB\nOFewWs4biivLRfQmDxcFgIgYBKa0+kbW+5wrWD2+fkP/aabHcAVJEL2EJIR+F3BYRLw1++Ztb4N7\nDAXgXMFG47yheLLsMfwdMA34BvB1YO90m5WIcwUbi/OG/tFMj2FWRKztUnsatcE9hhw5V7BmOW8o\nliwX0RsE9gEuB5ZHxM1ttXAcXBjys20bzJkDp5ySDCWZjWXLlmR+w5e/7PkNecusMKQHfx5wQnrb\nA7gsIj7Vcivb5MKQH+cK1g7nDcWQaWGoepNDSC7ac2JETGr1zdrlwpAPr4Nk4+H1lPKX5VDSTJKe\nwvHAH4DlwIqI2NJOQ9vhwtB9zhVsvJw35C/LwvBTkmJwWURsarN94+LC0F3OFaxTnDfkqytDSXlx\nYegu5wrWSc4b8pPlPAYrEc9XsE7z/Ibe4x6DbedcwbLivCEfHkqycXGuYFlz3tB9WYbPBwMLgAF2\nXNgnIuL1rb5Zu1wYsudcwbrBeUN3ZVkYbgTOB9YCT6WbIyKGWm5lm1wYsuX5CtZNnt/QPVkWhqGI\nOKztlnWAC0N2nCtYtzlv6J4sC8Ni4Hckq6tuG94eEfe3+mbtcmHIhnMFy4vzhu7IsjDcDey0U0S8\noNU3a5cLQzacK1ienDdkr5BnJUn6CvAmYEtEHFLn+QrwLeCudNPXI+LTdfZzYegw5wpWBM4bstXx\nwiDpDRFxjaS3U7/H8I0mGnUE8Efg4lEKw0cj4tgxjuPC0EHOFawonDdkq93CMFqNngtcA7yZOoWB\nJHMYVUT8SNLAGLt5EKOLfN1mK5Lh60XPmpXMkHbeUAyZT3BLC8NVDXoMR5IUmI3AfcCCiLi1zn7u\nMXSIcwUrIucN2ciix9ANa4EZEbFV0tHAFcCL6+24ePHi7fcrlQqVSqUb7esrw+sgDQ25KFixVK+n\n5LyhfYODgwwODo77OLn2GOrs+yvgsNpTYd1jGD/nClZ0zhs6rydXV5U0XUr+dpU0m6RQdW1+RFk4\nV7BeMJw3XHwxXH113q0pt2bmMUwBPgocEBHvk3QQcHBEfHvMg0uXAkcCewGbgbOASQARcYGkDwDv\nB54EtpKcofSzOsdxj2EcnCtYL3He0DlZTnC7DBgCTo6Il6aF4icR8eftNbV1Lgzt83wF60We39AZ\nWQ4lHRgR5wCPA0TEo62+ieVjwwaYNw+WL3dRsN6ycCFMngyLFuXdknJqpjBsk/Ss4QeSDqRqzSQr\nJucK1sucN+SrmaGkvwL+DzAT+D7wWuCUiFidffO2t8FDSS1yrmD9wHnD+GS6VpKkvYDD04c/i4jf\nt/pG4+HC0BrnCtZPnDe0L8vw+TB2LImh9P5DwK8joiuX9nZhaJ7nK1i/8fyG9mVZGH4GHAbcmG46\nBLgF2BN4f0R8t9U3bZULQ3N8fQXrV75+Q3uyPCtpE/CKiDgsvZLbK0iWyX4j8NlW39Cys2ABDAzA\n/Pl5t8Sss6ZNg6VLkz96Nm7MuzX9r5nCcHBE3DL8IF3k7s8iYgP1V121HAyvg3ThhQ6brT9Vr6f0\nZFcGscurmcJwi6TzJR0pqSLpi8CtknYFnsi4fdYEz1ewsvD8hu5oJmOYDMwjOU0V4Drgi8BjwJSI\neCTTFuKMYTTOFaxsnDc0r5CX9uwUF4bGPF/BysjzG5qTWfgs6cWSVki6VdKv0ttdY73OsudcwcrK\neUO2mskY/gv4EskKqK8DLgK+lmWjbGzOFazsnDdkp5mMYW1EzJJ00/DFdoa3daWFeCiplnMFs4Tz\nhtFlOY/hMUm7AHdKmi/pbcCUlltoHeP5CmYJz2/IRjM9hlcBtwNTgU8BewCfrXdBnay4x7CD10Ey\n25nXU6ovyx7DCyLikYi4NyJOiYi3AQe03kQbL+cKZvU5b+isZnoM6yLi0LG2Zck9BucKZmNx3rCz\njs9jkHQ0cAxwIrCMZGVVgN2BmRExu822tsyFwfMVzJrh+Q0jtVsYRhuN20Ryrefj0v8OH/xh4CMt\nt9DaNjxfYWjIRcFsNNXzG5w3tK+ZoaRJEZHrmkhl7jH4+gpmrfH1G3bIYijpplFeFxHx8lbfrF1l\nLQzOFcza47whkUVhGBjthRFxd6tv1q6yFgbnCmbtc96Q/TWfpwOzSa6/cH1EbGm9ie0rY2HwfAWz\n8Sv7/IYsF9E7AbgeeAdwAnC9pHe03kRrlucrmHWG5ze0p5nw+UbgL4d7CZL2Bq5xxpAN5wpmnVXm\nvCHLmc8Cflf1+A/sOHXVOszrIJl1ltdTal0zo25XA9+VtJSkIJwIrMq0VSXl+Qpm2fD8htY0Gz6/\nHfgLkvD5RxHxzaYOLn0FeBOwZXjJ7jr7nAccDWwFTomIdXX26fuhJM9XMMtWGec3ZHZWkqSPAcsi\n4r42GnUE8Efg4nqFQdIxwPyIOEbSq4FzI+LwOvv1dWFwrmDWHWXLG7LMGHYHvifpx+n1GKY3e/CI\n+BHwwCi7HEtyRTgiYg0wtZXj9wvnCmbd4byhOWMWhohYHBEvBT4APA+4VtI1HXr//YB7qx5vBEo1\nFcXXbTbrLl8vemytRDBbgN+SnJW0dwfbUPvrsO6Y0eLFi7ffr1QqVCqVDjYhH8PzFVau9HwFs25a\nuBB++MNkfkM/5Q2Dg4MMDg6O+zjNZAzzSCa2TQMuB5ZHxK1Nv0GytMZVDTKGLwGDEbEsfXw7cGRE\nbK7Zr+8yBucKZvkqQ96QZcYwA/hwRMyMiLNaKQpNuBI4GUDS4cCDtUWhXzlXMMuX84bGmjpdte2D\nS5cCRwJ7AZuBs4BJABFxQbrPF4CjgEeB90bE2jrH6aseg9dBMiuOfl5PKdNF9PLWT4XB8xXMiqWf\n5ze4MPQA5wpmxdSveYMLQw/w9RXMiqsfr9+QZfhsHeD5CmbF5vkNO7jH0AXOFcx6Q7/lDR5KKijn\nCma9pZ/yBheGgnKuYNZ7+iVvcMZQQM4VzHpT2fMG9xgy4lzBrLf1Q97goaQCca5g1h96PW9wYSgQ\n5wpm/aOX8wZnDAXhXMGsv5Qxb3CPoYOcK5j1p17NGzyUlDPnCmb9rRfzBheGnDlXMOt/vZY3OGPI\nkXMFs3IoS97gHsM4OVcwK5deyhs8lJQD5wpm5dQreYMLQw6cK5iVVy/kDc4Yusy5glm59XPe4B5D\nG5wrmBkUP2/wUFKXOFcws2pFzhtcGLrEuYKZ1Spq3uCMoQucK5hZPf2WN7jH0CTnCmY2miLmDR5K\nypBzBTNrRtHyBheGDDlXMLNmFSlvcMaQEecKZtaKfsgb3GMYhXMFM2tHUfKGQvYYJB0l6XZJd0g6\no87zFUkPSVqX3j6ZZXtasW1b0h0880wXBTNrzYQJsGQJXHwxXH113q1pXWY9Bkm7AL8E/hK4D/g5\ncFJE3Fa1TwX4aEQcO8axut5jcK5gZuOVd95QxB7DbODOiLg7Ip4AlgHH1dmvcL92nSuYWSf0at6Q\nZWHYD7i36vHGdFu1AOZIukHSSkkzM2xPUzZsgHnzYPlymDo179aYWa9buBAmT4ZFi/JuSfOyLAzN\njP2sBWZExJ8DnweuyLA9Y3KuYGad1ot5w8QMj30fMKPq8QySXsN2EfFI1f1Vkr4o6TkRcX/twRYv\nXrz9fqVSoVKpdLq9LFgAAwMwf37HD21mJTZtGixdmn3eMDg4yODg4LiPk2X4PJEkfH4DsAm4np3D\n5+nAlogISbOByyJioM6xMg+fV6yAM86AoSEPIZlZNs4+G1atgtWrYWKWf5anChc+R8STwHzgu8Ct\nwPKIuE3SaZJOS3c7HrhJ0nrgc8A7s2rPaJwrmFk39EreUPoJbl4Hycy6qZvrKXmtpDZ5voKZdVu3\n5jcUbiipF3i+gpnloejzG0rbY/A6SGaWp26sp+ShpBY4VzCzIsg6b3BhaIFzBTMriizzBmcMTXKu\nYGZFUsS8oVQ9BucKZlZEWeUNHkoag3MFMyuyLPIGF4YxOFcws6LrdN7gjGEUzhXMrBcUJW/o+x6D\ncwUz6yWdzBs8lFSHcwUz60WdyhtcGOpwrmBmvaoTeYMzhhrOFcysl+WZN/Rlj8G5gpn1g/HmDR5K\nSjlXMLN+Mp68wYUh5VzBzPpNu3mDMwacK5hZf+p23tA3PQbnCmbWz9rJG0o9lORcwczKoNW8odSF\nwbmCmZVFK3lDaTMG5wpmVibdyBt6usfgXMHMyqjZvKF0Q0nOFcyszJrJG0pXGJwrmFnZjZU3lCpj\ncK5gZpZd3tBzPQbnCmZmO4yWN5RiKMm5gpnZzhrlDYUcSpJ0lKTbJd0h6YwG+5yXPn+DpENHO96C\nBTAwAPPnZ9JcM7OeNG0aLF2a/NG8ceP4j5dZYZC0C/AF4ChgJnCSpJfU7HMM8KKIOAg4FTi/0fGc\nK3TO4OBg3k3oG/4sO8ufZ/s6mTdk2WOYDdwZEXdHxBPAMuC4mn2OBS4CiIg1wFRJ0+sdbN48WL4c\npk7NsMUl4X98nePPsrP8eY7PwoUweTIsWjS+40zsTHPq2g+4t+rxRuDVTeyzP7C59mBnnumw2cxs\nNBMmwJIlSd4wd277x8myMDSbatcODNV9nXMFM7OxDecNJ5zQ/jEyOytJ0uHA4og4Kn38ceDpiDin\nap8vAYMRsSx9fDtwZERsrjlW8U+dMjMroHbOSsqyx/AL4CBJA8Am4ETgpJp9rgTmA8vSQvJgbVGA\n9n4wMzNrT2aFISKelDQf+C6wC3BhRNwm6bT0+QsiYqWkYyTdCTwKvDer9piZWXN6YoKbmZl1T6HW\nSur0hLgyG+uzlFSR9JCkdentk3m0sxdI+oqkzZJuGmUffy+bNNbn6e9m8yTNkLRa0i2SbpZ0eoP9\nWvt+RkQhbiTDTXcCA8AkYD3wkpp9jgFWpvdfDfws73YX8dbkZ1kBrsy7rb1wA44ADgVuavC8v5ed\n/Tz93Wz+s9wHeEV6fzfgl534vVmkHkNHJ8SVXDOfJex8qrDVERE/Ah4YZRd/L1vQxOcJ/m42JSJ+\nGxHr0/t/BG4D9q3ZreXvZ5EKQ73Jbvs1sc8YVz0tpWY+ywDmpF3LlZJmdq11/cffy87yd7MN6Rmg\nhwJrap5q+fuZ5emqrerohLiSa+YzWQvMiIitko4GrgBenG2z+pq/l53j72aLJO0GrAA+lPYcdtql\n5vGo388i9RjuA2ZUPZ5BUtlG22f/dJuNNOZnGRGPRMTW9P4qYJKk53SviX3F38sO8nezNZImAV8H\nLomIK+rs0vL3s0iFYfuEOEnPIJkQd2XNPlcCJ8P2mdV1J8TZ2J+lpOlSsk6tpNkkpy7f3/2m9gV/\nLzvI383mpZ/ThcCtEfG5Bru1/P0szFBSeEJcxzTzWQLHA++X9CSwFXhnbg0uOEmXAkcCe0m6FziL\n5Gwvfy/bMNbnib+brXgt8G7gRknr0m2fAA6A9r+fnuBmZmYjFGkoyczMCsCFwczMRnBhMDOzEVwY\nzMxsBBcGMzMbwYXBzMxGcGGwwpO0p6T3Vz3eV9LlGbzPmxst915U6RLVV+XdDusvnsdghZcuDnZV\nRBySc1MKR1IF+FhEvDnvtlj/cI/BesFngAPTi7acI+n5wxd5kXSKpCskfU/SryTNl7RA0lpJP5X0\n7HS/AyWtkvQLSddKOrj2TdJjfT69/1VJ50q6TtIGSW+vs/8USd+RtF7STZJOSLcfJmkwfa+rJe2T\nbn+RpP9O9x+S9IJ0+7+kr7+x6hiV9BiXS7pN0iVV73tUum0IeGvV9iOrLm6zNl1Yzax1eV9owjff\nxroBz6fqoi4kFyC6Kb1/CnAHMAXYC3gIODV97t9IVpsEuAZ4UXr/1cA1dd7nb4HPp/e/CixP778E\nuKPO/m8H/qPq8R4kSzv8BHhuuu1EkiVJIFkO+bj0/jOAZ6XH+B7J6pfTgF+TXHylAjxIsra+0mPO\nAZ4J3AMcmB5nOelFbUjWxHlNen8ysEve/+98681bYdZKMhvFWBdtWR0RjwKPSnoQGB5zvwl4uaQp\nJL9UL0/XZoPkF/NogmS5ZyJZZ6rehU1uBP5V0meAb0fEjyW9DHgp8N/pe+0CbEr/et83Ir6VHvNx\nAEmvBZZhVWiNAAABrUlEQVRGRABbJP0QeBXwMHB9RGxK91sPvIBk7aBfRcSGtA2XAKem968D/l3S\n14BvRIRXeLW2uDBYP9hWdf/pqsdPk3zHJwAPRESr12J+vOr+TsUpIu5Qcv3cNwGflnQN8E3gloiY\nU72vpN1HeZ9Ga+VX/1xPkfwstaHg9tdGxDmSvp225zpJ/yMifjnK+5rV5YzBesEjwGi/WBsRJOv7\nA7+SdDwkSxVLenmj/Zs+uPQ84LGI+BrwryRXz/olsHe6vDGSJkmambZho6Tj0u27SnoW8CPgREkT\nJO0NzAWub9CWAG4HBiS9MN12UlV7DoyIWyLis8DPgZ1yFLNmuDBY4UXEH0j+Ar5J0jkkvyCH/3Ku\nvk+d+8OP3wX8fTokczPJdXB3eqsxjlXrEGBNutzxIuDTkVxj+3jgnPS91gGvSfd/D3C6pBtIhn2m\nR8Q3SYakbiDJQf4hIrbUacvwZ7GNZOjoO2n4vLlqvw+ln9ENJL2dVXXabDYmn65qZmYjuMdgZmYj\nuDCYmdkILgxmZjaCC4OZmY3gwmBmZiO4MJiZ2QguDGZmNoILg5mZjfD/AUBSvJhq5AUKAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f215c092610>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "RMS value = 1.73 volts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import arange,cos,pi,sqrt\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n", + "from sympy.mpmath import quad\n", + "\n", + "\n", + "#plot of V and t(already given with the question but to get clarity we plot it)\n", + "t_1=arange(0,1+0.001,0.001)\n", + "t_2=arange(1.001,2+0.001,0.001)\n", + "t=[]\n", + "for tt in t_1:\n", + " t.append(tt)\n", + "for tt in t_2:\n", + " t.append(tt) \n", + "V_1=[];V_2=[]\n", + "for tt in t_1:\n", + " V_1.append(3*tt)\n", + "for tt in t_2:\n", + " V_2.append(6-3*tt)\n", + "V=[]\n", + "for vv in V_1:\n", + " V.append(vv)\n", + "for vv in V_2:\n", + " V.append(vv) \n", + "plot(t,V)\n", + "title('voltage vs time')\n", + "xlabel('time in seconds')\n", + "ylabel('voltage in volts')\n", + "show()\n", + "\n", + "#now find V_rms\n", + "T=2# #from the plot of V vs t\n", + "V_rms=sqrt((1/T)*((quad(lambda t:(3*t)**2,[0,1]))+(quad(lambda t:(6-3*t)**2,[1,2]))))\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'RMS value = %0.2f volts'%V_rms\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 183 Ex:5.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Peak value of resultant voltage = 29.77 volts\n", + "phase of resulting voltage = -40.01 degrees\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,sin,cos,atan\n", + "#V_1 and V_2 are phasors of given voltages\n", + "theta_1=-pi/4# #for V_1\n", + "theta_2=-pi/6# #for V_2 (in cos form)\n", + "V_1=complex(20*cos(theta_1),20*sin(theta_1))#\n", + "V_2=complex(10*cos(theta_2),10*sin(theta_2))#\n", + "V_s=V_1+V_2#\n", + "V=sqrt(((V_s.real)**2)+((V_s.imag)**2))# #peak voltage of resultant summation\n", + "phi=atan((V_s.imag)/(V_s.real))# #phase angle of resultant sum voltage\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Peak value of resultant voltage = %0.2f volts'%V\n", + "print 'phase of resulting voltage = %0.2f degrees'%(phi*180/pi) #converting phi in radians to degrees\n", + "#result : V_t=Vcos(wt+phi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 184 Ex:5.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "For resistance R\n", + "peak value of voltage = 70.71 volts\n", + "phase angle = -15.00 degrees\n", + "For inductance L\n", + "peak value of voltage = 106.07 volts\n", + "phase angle = 75.00 degrees\n", + "For capacitor C\n", + "peak value of voltage = 35.36 volts\n", + "phase angle = 75.00 degrees\n", + "The phasor diagram cannot be plotted\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,sin,cos,atan\n", + "L=0.3#\n", + "C=40*10**-6#\n", + "R=100#\n", + "V_s_max=100# #peak value of given voltage\n", + "W=500# #angular frequency\n", + "V_s_phi=pi/6# #phase angle in degrees\n", + "V_s=complex(V_s_max*cos(V_s_phi),V_s_max*sin(V_s_phi))# #phasor for voltage source\n", + "Z_L=1J*W*L# #complex impedance of inductance\n", + "Z_C=-1J/(W*C)# #complex impedance of capacitance\n", + "Z_eq=R+Z_L+Z_C# #R,Z_L and Z_C in series\n", + "I=V_s/Z_eq# #phasor current\n", + "V_R=R*I#\n", + "V_L=Z_L*I#\n", + "V_C=Z_C*I#\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "#for resistance R\n", + "print 'For resistance R'\n", + "V_R_max=sqrt(((V_R.real)**2)+((V_R.imag)**2))\n", + "V_R_phi=(atan((V_R.imag)/(V_R.real)))*180/pi#\n", + "print 'peak value of voltage = %0.2f volts'%V_R_max\n", + "print 'phase angle = %0.2f degrees'%V_R_phi\n", + "#result : V_R=Vcos(wt+phi) V-peak voltage\n", + "#for inductance L\n", + "print 'For inductance L'\n", + "V_L_max=sqrt(((V_L.real)**2)+((V_L.imag)**2))#\n", + "V_L_phi=(atan((V_L.imag)/(V_L.real)))*180/pi#\n", + "print 'peak value of voltage = %0.2f volts'%V_L_max\n", + "print 'phase angle = %0.2f degrees'%V_L_phi\n", + "#result : V_L=Vcos(wt+phi) V-peak voltage\n", + "#for capacitor C\n", + "print 'For capacitor C'\n", + "V_C_max=sqrt(((V_C.real)**2)+((V_C.imag)**2))#\n", + "V_C_phi=(atan((V_C.imag)/(V_C.real)))*180/pi#\n", + "print 'peak value of voltage = %0.2f volts'%V_C_max\n", + "print 'phase angle = %0.2f degrees'%V_C_phi #cos(t)=cos(t-180) (we get 75 instead of -105 given in textbook)\n", + "#result : V_C=Vcos(wt+phi) V-peak voltage\n", + "print 'The phasor diagram cannot be plotted'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 185 Ex: 5.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak value of Vc = 10.00 volts\n", + "phase angle of Vc = 0 degrees\n", + "current through source and inductor = (0.1+0.1j) amperes\n", + "current through resistance = (0.1+0j) amperes\n", + "current through capacitance = (-0+0.1j) amperes\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,sin,cos,atan\n", + "V_s_max=10# #peak value of source voltage\n", + "phi=-pi/2# #phase of source voltage\n", + "V_s=complex(10*cos(pi/2),10*sin(pi/2))# #phasor of source voltage\n", + "W=1000# #angular frequency\n", + "R=100#\n", + "L=0.1#\n", + "C=10*10**-6#\n", + "Z_L=1J*W*L# #impedance of inductance\n", + "Z_C=-1J/(W*C)# #impedance of capacitance\n", + "Z_RC=1/((1/R)+(1/Z_C))# #R and Z_C in parallel combination\n", + "V_C=V_s*Z_RC/(Z_L+Z_RC)# #voltage division principle\n", + "I=V_s/(Z_L+Z_RC)# #current through source and inductor\n", + "I_R=V_C/R# #current through resistance\n", + "I_C=V_C/Z_C# #current through capacitor\n", + "#cos(t)=cos(180-t)\n", + "print 'peak value of Vc = %0.2f volts'%(sqrt(((V_C.real)**2)+((V_C.imag)**2)),)\n", + "print 'phase angle of Vc = %0.f degrees'%((atan((V_C.imag)/(V_C.real)))*180/pi)\n", + "##result : V_C=Vcos(wt+phi) V-peak voltage\n", + "print 'current through source and inductor =',I,'amperes'\n", + "print 'current through resistance = ',I_R,'amperes'\n", + "print 'current through capacitance = ',I_C,'amperes'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 187 Ex:5.6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "peak value of V1 = 16.12 volts\n", + "phase angle of V1 = 29.74 degrees\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,sin,cos,atan\n", + "from numpy import mat\n", + "\n", + "V_s_max=2# #peak value of source voltage\n", + "V_s_phi=-pi/2# #phase angle of source voltage\n", + "V_s=complex(V_s_max*cos(V_s_phi),V_s_max*sin(V_s_phi))#\n", + "R=10#\n", + "Z_C=-1J*5# #impedance of capacitance\n", + "Z_L=1J*10# #impedance of inductance\n", + "I_s_max=1.5# #peak value of current source\n", + "I_s_phi=0# #phase angle of current source\n", + "I_s=complex(I_s_max*cos(I_s_phi),I_s_max*sin(I_s_phi))#\n", + "#we write the standard equations of V_1 and V_2 in matrix form\n", + "#from node-voltage relation\n", + "A=[[0.1+1J*0.2,-1J*0.2],[-1J*0.2,1J*0.1]] #coefficient matrix\n", + "B=[[-1J*2],[1.5]]# #constant matrix\n", + "#As in A*X=B form\n", + "A=mat(A);B=mat(B)\n", + "V=(A**-1)*B#\n", + "V_1=sqrt(((V[0,0].real))**2+((V[0,0].imag))**2)# #peak value of V_1\n", + "V_1_phi=atan((V[0,0].imag)/(V[0,0].real))# #phase angle of V_1\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'peak value of V1 = %0.2f volts'%V_1\n", + "print 'phase angle of V1 = %0.2f degrees'%(V_1_phi*180/pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 188 Ex:5.7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "power delivered by source = 0.50 watts\n", + "reactive power delivered by source = 0.50 VARs\n", + "Using complex power method:\n", + "power delivered by source = 0.50 watts\n", + "reactive power delivered by source = 0.50 VARs\n", + "we see that, in both the methods answers are the same\n", + "reactive power delivered to inductance = 1.00 VARs\n", + "reactive power delivered to capacitance = 0.50 VARs\n", + "power delivered to resistance = 0.50 watts\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi,sqrt,sin,cos,atan\n", + "from numpy import mat,conj\n", + "\n", + "phi_v=-pi/2# #angle of voltage source\n", + "phi_i=-3*pi/4# #angle of current source\n", + "phi=phi_v-phi_i# #power angle\n", + "V_s_max=10# #peak value of voltage source\n", + "V_s_phi=phi_v# #phase angle of voltage source\n", + "R=100#\n", + "V_s=complex(V_s_max*cos(V_s_phi),V_s_max*sin(V_s_phi))# #phasor of voltage source\n", + "X_L=1J*100#\n", + "X_C=-1J*100#\n", + "I_max=0.1414# #peak value of current\n", + "I_phi=phi_i# #phase angle of current\n", + "I=complex(I_max*cos(I_phi),I_max*sin(I_phi))# #phasor of current\n", + "V_s_rms=V_s_max/sqrt(2)# #rms value of voltage\n", + "I_rms=I_max/sqrt(2)# #rms value of current\n", + "I_R_max=0.1# #peak value\n", + "I_R_phi=-2*pi# #phase angle\n", + "I_R=complex(I_R_max*cos(I_R_phi),I_R_max*sin(I_R_phi))# #phasor of current\n", + "I_R_rms=I_R_max/sqrt(2)# #rms value\n", + "I_C_max=0.1# #peak value\n", + "I_C_phi=-pi/2# #phase angle\n", + "I_C=complex(I_C_max*cos(I_C_phi),I_C_max*sin(I_C_phi))# #phasor current in capacitor\n", + "I_C_rms=I_C_max/sqrt(2)# #rms value\n", + "P=V_s_rms*I_rms*cos(phi)# #power by source\n", + "Q=V_s_rms*I_rms*sin(phi)# #reactive power by source\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'power delivered by source = %0.2f watts'%P\n", + "print 'reactive power delivered by source = %0.2f VARs'%Q\n", + "#using complex power method\n", + "print 'Using complex power method:'\n", + "\n", + "\n", + "S=(1/2)*V_s*conj(I)# #complex power\n", + "P=(S.real)#\n", + "Q=(S.imag)#\n", + "print 'power delivered by source = %0.2f watts'%P\n", + "print 'reactive power delivered by source = %0.2f VARs'%Q\n", + "print 'we see that, in both the methods answers are the same'\n", + "Q_L=I_rms**2*X_L/1J# #reactive power to inductance\n", + "Q_C=I_C_rms**2*X_C/1J# #reactive power to capacitance\n", + "P_R=I_R_rms**2*R# #power to resistance\n", + "print 'reactive power delivered to inductance = %0.2f VARs'%abs(Q_L)\n", + "print 'reactive power delivered to capacitance = %0.2f VARs'%abs(Q_C)\n", + "print 'power delivered to resistance = %0.2f watts'%P_R" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 189 Ex:5.8 " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Phasor Current = 14.966 A\n", + "\n", + " Angle = 49.59 degrees\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees,pi,sqrt,acos,tan,atan,cos\n", + "Vrms = 10**2 #V\n", + "Irms= 10**2 #amp\n", + "pf= 0.5\n", + "pf1= 0.7\n", + "r= 1.41\n", + "#CALCULATIONS\n", + "PA= Vrms*Irms*pf\n", + "QA= -sqrt((Vrms*Irms)**2-PA**2)/1000\n", + "a= acos(pf1)*180/pi\n", + "QB= PA*tan(pi/180*a)/1000\n", + "P= 2*PA/1000\n", + "Q= QA+QB\n", + "o= atan(Q/P)\n", + "pf2= cos(o)\n", + "A= degrees(o)+69.18\n", + "S= sqrt(P**2+Q**2)\n", + "I= S*r\n", + "#RESULTS\n", + "print 'Phasor Current = %.3f A'%I\n", + "print '\\n Angle = %.2f degrees'%A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 190 Ex: 5.9" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "Required capacitance = 1.13 micro-farads\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees,pi,sqrt,acos,tan,atan,cos\n", + "#L is load\n", + "P_L=50*10**3# #power of load\n", + "f=60# #frequency\n", + "V_rms=10*10**3# #rms voltage\n", + "PF_L=0.6# #power factor\n", + "phi_L=acos(PF_L)# #power angle\n", + "Q_L=P_L*tan(phi_L)# #reactive power of load\n", + "#when capacitor is added, power angle changes\n", + "PF_L_new=0.9#\n", + "phi_L_new=acos(PF_L_new)#\n", + "Q_new=P_L*tan(phi_L_new)#\n", + "Q_C=Q_new-Q_L# #reactive power of capacitance\n", + "X_C=-V_rms**2/Q_C# #reactance of capacitor\n", + "W=2*pi*f# #angular frequency\n", + "C=1/(W*abs(X_C))# #capacitance\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'Required capacitance = %0.2f micro-farads'%(C*10**6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 191 Ex: 5.10" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "FOR THEVENIN CIRCUIT:\n", + "thevenin voltage\n", + "peak value of voltage = 100.00 volts\n", + "90.0 phase angle in degrees\n", + "thevenin resistance\n", + "peak value of resistance = 70.71 ohms\n", + "phase angle = -45.00 degrees\n", + "FOR NORTON CIRCUIT:\n", + "norton current\n", + "peak value of norton current = 1.41 amperes\n", + "phase angle = -45.00 degrees\n", + "resistance\n", + "peak value of resistance = 70.71 ohms\n", + "phase angle = -45.00 degrees\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees,pi,sqrt,acos,tan,atan,cos\n", + "R=100#\n", + "V_s_max=100# #peak value of voltage\n", + "V_s_phi=0# #phase angle of voltage\n", + "V_s=complex(V_s_max*cos(V_s_phi),V_s_max*sin(V_s_phi))# #phasor of voltage\n", + "Z_C=-1J*100# #impedance of capacitance\n", + "I_s_max=1# #peak value of current\n", + "I_s_phi=pi/2# #phase angle of current\n", + "I_s=complex(I_s_max*cos(I_s_phi),I_s_max*sin(I_s_phi))# #phasor of current\n", + "#zeroing sources to find Z_t i.e., thevenin impedance\n", + "Z_t=1/((1/R)+(1/Z_C))# #R and Z_C are in parallel combination\n", + "#apply short-circuit to find I_sc i.e., short-circuit current\n", + "I_R=abs(V_s)/R# #ohm's law\n", + "I_sc=I_R-I_s# #applying KCL\n", + "V_t=I_sc*Z_t# #thevenin voltage\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'FOR THEVENIN CIRCUIT:'\n", + "print 'thevenin voltage'\n", + "print 'peak value of voltage = %0.2f volts'%abs(V_t)\n", + "#cos(t)=cos(t-180)\n", + "print atan((V_t.imag)/(V_t.real))*180/pi,'phase angle in degrees'\n", + "print 'thevenin resistance'\n", + "print 'peak value of resistance = %0.2f ohms'%abs(Z_t)\n", + "print 'phase angle = %0.2f degrees'%(atan((Z_t.imag)/(Z_t.real))*180/pi)\n", + "print 'FOR NORTON CIRCUIT:'\n", + "print 'norton current'\n", + "print 'peak value of norton current = %0.2f amperes'%(abs(I_sc))\n", + "print 'phase angle = %0.2f degrees'%(atan((I_sc.imag)/(I_sc.real))*180/pi)\n", + "print 'resistance'\n", + "print 'peak value of resistance = %0.2f ohms'%abs(Z_t)\n", + "print 'phase angle = %0.2f degrees'%(atan((Z_t.imag)/(Z_t.real))*180/pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 192 Ex: 5.11" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "FOR ANY COMPLEX LOAD\n", + "required complex load impedance : 50.00+j*50.00\n", + "power delivered to load = 25.00 watts\n", + "FOR PURE RESISTIVE LOAD\n", + "required pure resistive load : 70.71\n", + "power delivered to load: 20.71\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees,pi,sqrt,acos,tan,atan,cos\n", + "from numpy import conj\n", + "#thevenin voltage\n", + "V_t_max=100#\n", + "V_t_phi=-pi/2#\n", + "V_t=complex(V_t_max*cos(V_t_phi),V_t_max*sin(V_t_phi))#\n", + "#thevenin resistance\n", + "Z_t_max=70.71#\n", + "Z_t_phi=-pi/4#\n", + "Z_t=complex(Z_t_max*cos(Z_t_phi),Z_t_max*sin(Z_t_phi))#\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "#a) Any complex load\n", + "print 'FOR ANY COMPLEX LOAD'\n", + "Z_load=conj(Z_t)#\n", + "I_a=V_t/(Z_t+Z_load)# #ohm's law\n", + "I_a_rms=I_a/sqrt(2)# #rms value\n", + "P_1=abs(I_a_rms)**2*(Z_load.real)# #power\n", + "print 'required complex load impedance : {0:0.2f}+j*{0:0.2f}'.format(Z_load.real,Z_load.imag)\n", + "print 'power delivered to load = %0.2f watts'%P_1\n", + "#b) purely resistive load\n", + "print 'FOR PURE RESISTIVE LOAD'\n", + "R_load=abs(Z_t)#\n", + "I_b=V_t/(Z_t+R_load)#\n", + "I_b_rms=I_b/sqrt(2)#\n", + "P_2=abs(I_b_rms)**2*R_load#\n", + "print 'required pure resistive load : ',R_load\n", + "print 'power delivered to load: %0.2f'%P_2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 193 Ex: 5.12" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "LINE CURRENTS\n", + "IaA= 12.751+j*-9.614\n", + "IbB= -14.702+j*-6.236\n", + "IcC= 1.951+j*15.850\n", + "LINE-LINE VOLTAGES\n", + "Vab= 1500.000+j*866.025\n", + "Vbc= 0.000+j*-1732.051\n", + "Vca= -1500.000+j*866.025\n", + "POWER = 19126.69 WATTS\n", + "REACTIVE POWER = 14421.18 VARs\n", + "the phasor diagram cannot be plotted\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees,pi,sqrt,acos,tan,atan,cos\n", + "V_Y=1000# #line to neutral voltage\n", + "f=60# #frequency\n", + "L=0.1# #inductance\n", + "R=50#\n", + "W=2*pi*f# #angular frequency\n", + "Z=complex(R,W*L)# #complex impedance\n", + "phi=atan((Z.imag)/(Z.real))#\n", + "#Balanced wye-wye calculations\n", + "V_an=complex(1000*cos(0),1000*sin(0))#\n", + "V_bn=complex(1000*cos(-2*pi/3),1000*sin(-2*pi/3))#\n", + "V_cn=complex(1000*cos(2*pi/3),1000*sin(2*pi/3))#\n", + "I_aA=V_an/Z#\n", + "I_bB=V_bn/Z#\n", + "I_cC=V_cn/Z#\n", + "#line-line phasors\n", + "V_ab=V_an*sqrt(3)*complex(cos(pi/6),sin(pi/6))#\n", + "V_bc=V_bn*sqrt(3)*complex(cos(pi/6),sin(pi/6))#\n", + "V_ca=V_cn*sqrt(3)*complex(cos(pi/6),sin(pi/6))#\n", + "I_L=abs(I_aA)#\n", + "P=(3/2)*V_Y*I_L*cos(phi)# #power\n", + "Q=(3/2)*V_Y*I_L*sin(phi)# #reactive power\n", + "print \" All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'LINE CURRENTS'\n", + "print 'IaA= {0:0.3f}+j*{1:0.3f}'.format(I_aA.real,I_aA.imag)\n", + "print 'IbB= {0:0.3f}+j*{1:0.3f}'.format(I_bB.real,I_bB.imag)\n", + "print 'IcC= {0:0.3f}+j*{1:0.3f}'.format(I_cC.real,I_cC.imag)\n", + "print 'LINE-LINE VOLTAGES'\n", + "print 'Vab= {0:0.3f}+j*{1:0.3f}'.format(V_ab.real,V_ab.imag)\n", + "print 'Vbc= {0:0.3f}+j*{1:0.3f}'.format(V_bc.real,V_bc.imag)\n", + "print 'Vca= {0:0.3f}+j*{1:0.3f}'.format(V_ca.real,V_ca.imag)\n", + "print 'POWER = %0.2f WATTS'%P\n", + "print 'REACTIVE POWER = %0.2f VARs'%Q\n", + "print 'the phasor diagram cannot be plotted'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 194 Ex: 5.13" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "LINE CURRENTS\n", + "IaA= 53.167+j*-12.388\n", + "IbB= -14.702+j*-6.236\n", + "IcC= 1.951+j*15.850\n", + "LINE-LINE VOLTAGES\n", + "VAB= 866.025+j*500.000\n", + "VBC= 0.000+j*-1000.000\n", + "VCA= -866.025+j*500.000\n", + "power delivered to load = 44702.73 watts\n", + "total power dissipated in the line = 1341.08 VArs\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees,pi,sqrt,acos,tan,atan,cos\n", + "\n", + "Z_line=complex(0.3,0.4)# #impedance of wire\n", + "Z_d=complex(30,6)# #load impedance\n", + "R=(Z_d.real)#\n", + "R_line=(Z_line.real)#\n", + "#source voltages\n", + "V_ab=complex(1000*cos(pi/6),1000*sin(pi/6))#\n", + "V_bc=complex(1000*cos(-pi/2),1000*sin(-pi/2))#\n", + "V_ca=complex(1000*cos(5*pi/6),1000*sin(5*pi/6))#\n", + "#choosing A phase of wye-equivalent circuit\n", + "V_an=V_ab/(sqrt(3)*complex(cos(pi/6),sin(pi/6)))#\n", + "Z_Y=Z_d/3#\n", + "I_aA=V_an/(Z_line+Z_Y)# #line current\n", + "I_aA_rms=abs(I_aA)/sqrt(2)#\n", + "V_An=I_aA*Z_Y# #line to neutral voltage\n", + "V_AB=V_An*sqrt(3)*complex(cos(pi/6),sin(pi/6))# #line to line voltage at the load\n", + "I_AB=V_AB/Z_d# #current through phase AB\n", + "I_AB_rms=abs(I_AB)/sqrt(2)# #rms value\n", + "P_AB=I_AB_rms**2*R# #power delivered to phase AB\n", + "#power delivered in other two phases is same\n", + "P=3*P_AB# #total power\n", + "P_A=I_aA_rms**2*R_line# #power lost in line A\n", + "#power lost in other two lines is same\n", + "P_line=3*P_A#\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "IbB= I_aA*complex(cos(-2*pi/3),sin(-2*pi/3))\n", + "IcC= I_aA*complex(cos(2*pi/3),sin(2*pi/3))\n", + "print 'LINE CURRENTS'\n", + "print 'IaA= {0:0.3f}+j*{1:0.3f}'.format(I_aA.real,I_aA.imag)\n", + "print 'IbB= {0:0.3f}+j*{1:0.3f}'.format(I_bB.real,I_bB.imag)\n", + "print 'IcC= {0:0.3f}+j*{1:0.3f}'.format(I_cC.real,I_cC.imag)\n", + "VBB=V_AB*complex(cos(-2*pi/3),sin(-2*pi/3)),'VBB='\n", + "VCC=V_AB*complex(cos(2*pi/3),sin(2*pi/3)),'VCC='\n", + "\n", + "print 'LINE-LINE VOLTAGES'\n", + "print 'VAB= {0:0.3f}+j*{1:0.3f}'.format(V_ab.real,V_ab.imag)\n", + "print 'VBC= {0:0.3f}+j*{1:0.3f}'.format(V_bc.real,V_bc.imag)\n", + "print 'VCA= {0:0.3f}+j*{1:0.3f}'.format(V_ca.real,V_ca.imag)\n", + "\n", + "print 'power delivered to load = %0.2f watts'%P\n", + "print 'total power dissipated in the line = %0.2f VArs'%P_line" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 194 Ex: 5.14" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All the values in the textbook are approximated hence the values in this code differ from those of Textbook\n", + "real power supplied by V1 = 27.12 watts\n", + "reactive power supplied by V1 = 2.84 VARs\n" + ] + } + ], + "source": [ + "from numpy import mat,conj\n", + "from __future__ import division\n", + "from math import sqrt,pi,sin,cos\n", + "V_1=10**3*2.2*sqrt(2)*complex(cos(0),sin(0))#\n", + "V_2=10**3*2*sqrt(2)*complex(cos(-pi/18),sin(-pi/18))#\n", + "#writing matrix form of mesh current equaions obtained by KVL\n", + "Z=[[5+3*1J+50*complex(cos(-pi/18),sin(-pi/18)),-50*complex(cos(-pi/18),sin(-pi/18))],[-50*complex(cos(-pi/18),sin(-pi/18)),4+1J+50*complex(cos(-pi/18),sin(-pi/18))]] #coefficient matrix\n", + "V=[[2200*sqrt(2)],[-2000*sqrt(2)*complex(cos(-pi/18),sin(-pi/18))]]# #voltage matrix\n", + "Z=mat(Z);V=mat(V)\n", + "I=Z/V# #current matrix\n", + "S_1=(1/2)*V_1*conj((I[0,0]))# #complex power\n", + "P_1=(S_1.real)# #power\n", + "Q_1=(S_1.imag)# #reactive power\n", + "print \"All the values in the textbook are approximated hence the values in this code differ from those of Textbook\"\n", + "print 'real power supplied by V1 = %0.2f watts'%P_1\n", + "print 'reactive power supplied by V1 = %0.2f VARs'%Q_1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter6_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter6_1.ipynb new file mode 100644 index 00000000..a5f2ee00 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter6_1.ipynb @@ -0,0 +1,547 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-6 : Frequency response, bode plots and resonance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 255 Ex: 6.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak value of Vout = 6.00 volts\n", + "phase angle of Vout = 70.00 degrees\n", + "with frequency equal to = 1000.00\n" + ] + } + ], + "source": [ + "from math import pi, cos, sin, atan, sqrt\n", + "# given V_in(t)=2*cos(2000*pi*t+A), A=40*pi/180\n", + "w=2000*pi# #omega\n", + "f=w/(2*pi)# #frequency\n", + "A=40*pi/180# #40 degrees = %0.2f radians\n", + "#equation of straight line of H_magnitude vs f is x+1000*y-4000=0\n", + "H_max=(4000-f)/1000# #magnitude of H(traansfer function)\n", + "#equation of straight line of H_phase angle vs f is 6000*y=pi*x (phase angle = %0.2f radians)\n", + "H_phi=pi*f/6000# #phase angle of H\n", + "H=H_max*complex(cos(H_phi),sin(H_phi))\n", + "V_in=2*complex(cos(A),sin(A))# #input voltage phasor\n", + "V_out=H*V_in# #output voltage phasor\n", + "V_out_R=(V_out.real)# #real part\n", + "V_out_I=(V_out.imag)# #imaginary part\n", + "V_out_max=sqrt((V_out_R**2)+(V_out_I**2))# #peak value\n", + "V_out_phi=atan(V_out_I/V_out_R)\n", + "print 'peak value of Vout = %0.2f volts'%V_out_max\n", + "print 'phase angle of Vout = %0.2f degrees'%(V_out_phi*180/pi)\n", + "print 'with frequency equal to = %0.2f'%f" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 257 Ex: 6.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output voltage is Vout1+Vout2+Vout3 where\n", + "\n", + "FOR Vout1:\n", + "peak value = 12.00 volts\n", + "phase angle = 0.00 degrees\n", + "with frequency = 0.00 hertz\n", + "\n", + "FOR Vout2:\n", + "peak value = 6.00 volts\n", + "phase angle = 30.00 degrees\n", + "with frequency = 1000.00 hertz\n", + "\n", + "FOR Vout3:\n", + "peak value = 2.00 volts\n", + "phase angle = -10.00 degrees\n", + "with frequency = 2000.00 hertz\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi, cos, sin, atan, sqrt\n", + "\n", + "#given V_in(t)=3+2*cos(2000*pi*t)+cos(4000*pi*t-A), A=70*pi/180\n", + "#the three parts of V_in(t) are V_in_1=3, V_in_2=2*cos(2000*pi*t),V_in_3=cos(4000*pi*t-A)\n", + "\n", + "#first component V_1\n", + "V_in_1=3\n", + "f_1=0# #as omega is zero\n", + "#equation of straight line of H_magnitude vs f is x+1000*y-4000=0\n", + "H_1_max=(4000-f_1)/1000# #magnitude of H(traansfer function)\n", + "#equation of straight line of H_phase angle vs f is 6000*y=pi*x (phase angle = %0.2f radians)\n", + "H_1_phi=pi*f_1/6000# #phase angle of H\n", + "H_1=H_1_max*complex(cos(H_1_phi),sin(H_1_phi))\n", + "V_out_1=H_1*V_in_1\n", + "V_out_1_R=(V_out_1).real# #real part\n", + "V_out_1_I=(V_out_1).imag# #imaginary part\n", + "V_out_1_max=sqrt((V_out_1_R**2)+(V_out_1_I**2))# #peak value\n", + "V_out_1_phi=atan(V_out_1_I/V_out_1_R)# #phase angle\n", + "\n", + "#second component V_in_2\n", + "V_in_2=2*complex(cos(0),sin(0))# #V_in_2 phasor\n", + "w=2000*pi# #omega\n", + "f_2=w/(2*pi)# #frequency\n", + "#equation of straight line of H_magnitude vs f is x+1000*y-4000=0\n", + "H_2_max=(4000-f_2)/1000# #magnitude of H(traansfer function)\n", + "#equation of straight line of H_phase angle vs f is 6000*y=pi*x (phase angle = %0.2f radians)\n", + "H_2_phi=pi*f_2/6000# #phase angle of H\n", + "H_2=H_2_max*complex(cos(H_2_phi),sin(H_2_phi))\n", + "V_out_2=H_2*V_in_2\n", + "V_out_2_R=(V_out_2).real# #real part\n", + "V_out_2_I=(V_out_2).imag# #imaginary part\n", + "V_out_2_max=sqrt((V_out_2_R**2)+(V_out_2_I**2))# #peak value\n", + "V_out_2_phi=atan(V_out_2_I/V_out_2_R)# #phase angle\n", + "\n", + "#third component\n", + "A=-70*pi/180# #-70 degrees = %0.2f radians\n", + "V_in_3=complex(cos(A),sin(A))# #V_in_3 phasor\n", + "w=4000*pi# #omega\n", + "f_3=w/(2*pi)# #frequency\n", + "#equation of straight line of H_magnitude vs f is x+1000*y-4000=0\n", + "H_3_max=(4000-f_3)/1000# #magnitude of H(traansfer function)\n", + "#equation of straight line of H_phase angle vs f is 6000*y=pi*x (phase angle = %0.2f radians)\n", + "H_3_phi=pi*f_3/6000# #phase angle of H\n", + "H_3=H_3_max*complex(cos(H_3_phi),sin(H_3_phi))\n", + "V_out_3=H_3*V_in_3\n", + "V_out_3_R=(V_out_3).real# #real part\n", + "V_out_3_I=(V_out_3).imag# #imaginary part\n", + "V_out_3_max=sqrt((V_out_3_R**2)+(V_out_3_I**2))# #peak value\n", + "V_out_3_phi=atan(V_out_3_I/V_out_3_R)# #phase angle\n", + "\n", + "print 'Output voltage is Vout1+Vout2+Vout3 where'\n", + "print ''\n", + "print 'FOR Vout1:'\n", + "print 'peak value = %0.2f volts'%V_out_1_max\n", + "print 'phase angle = %0.2f degrees'%(V_out_1_phi*180/pi)\n", + "print 'with frequency = %0.2f hertz'%f_1\n", + "print ''\n", + "print 'FOR Vout2:'\n", + "print 'peak value = %0.2f volts'%V_out_2_max\n", + "print 'phase angle = %0.2f degrees'%(V_out_2_phi*180/pi)\n", + "print 'with frequency = %0.2f hertz'%f_2\n", + "print ''\n", + "print 'FOR Vout3:'\n", + "print 'peak value = %0.2f volts'%V_out_3_max\n", + "print 'phase angle = %0.2f degrees'%(V_out_3_phi*180/pi)\n", + "print 'with frequency = %0.2f hertz'%f_3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 258 Ex: 6.3 " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "Output voltage is Vout1+Vout2+Vout3 where\n", + "\n", + "FOR Vout1:\n", + "peak value = 4.98 volts\n", + "phase angle = -5.71 degrees\n", + "with frequency = 10.00 hertz\n", + "\n", + "FOR Vout2:\n", + "peak value = 3.54 volts\n", + "phase angle = -45.00 degrees\n", + "with frequency = 100.00 hertz\n", + "\n", + "FOR Vout3:\n", + "peak value = 0.50 volts\n", + "phase angle = -84.29 degrees\n", + "with frequency = 1000.00 hertz\n" + ] + } + ], + "source": [ + "from math import pi, cos, sin, atan, sqrt\n", + "\n", + "R=1000/(2*pi)# #resistance\n", + "C=10*10**-6# #capacitance\n", + "f_B=1/(2*pi*R*C)# #half-power frequency\n", + "#the three parts of V_in are V_1=5*cos(20*pi*t)+5*cos(200*pi*t)+5*cos(2000*pi*t)\n", + "\n", + "#first component V_in_1\n", + "V_in_1=5*complex(cos(0),sin(0))# #V_in_1 phasor\n", + "w_1=20*pi# #omega\n", + "f_1=w_1/(2*pi)# #frequency\n", + "H_1=1/(1+1J*(f_1/f_B))# #transfer function\n", + "V_out_1=H_1*V_in_1\n", + "V_out_1_R=(V_out_1).real# #real part\n", + "V_out_1_I=(V_out_1).imag# #imaginary part\n", + "V_out_1_max=sqrt((V_out_1_R**2)+(V_out_1_I**2))# #peak value\n", + "V_out_1_phi=atan(V_out_1_I/V_out_1_R)# #phase angle\n", + "\n", + "#second component V_in_2\n", + "V_in_2=5*complex(cos(0),sin(0))# #V_in_2 phasor\n", + "w_2=200*pi# #omega\n", + "f_2=w_2/(2*pi)# #frequency\n", + "H_2=1/(1+1J*(f_2/f_B))# #transfer function\n", + "V_out_2=H_2*V_in_2\n", + "V_out_2_R=(V_out_2).real #real part\n", + "V_out_2_I=(V_out_2).imag #imaginary part\n", + "V_out_2_max=sqrt((V_out_2_R**2)+(V_out_2_I**2))# #peak value\n", + "V_out_2_phi=atan(V_out_2_I/V_out_2_R)# #phase angle\n", + "\n", + "#third component V_in_3\n", + "V_in_3=5*complex(cos(0),sin(0))# #V_in_3 phasor\n", + "w_3=2000*pi# #omega\n", + "f_3=w_3/(2*pi)# #frequency\n", + "H_3=1/(1+1J*(f_3/f_B))# #transfer function\n", + "V_out_3=H_3*V_in_3\n", + "V_out_3_R=(V_out_3).real #real part\n", + "V_out_3_I=(V_out_3).imag #imaginary part\n", + "V_out_3_max=sqrt((V_out_3_R**2)+(V_out_3_I**2))# #peak value\n", + "V_out_3_phi=atan(V_out_3_I/V_out_3_R)# #phase angle\n", + "\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print 'Output voltage is Vout1+Vout2+Vout3 where'\n", + "print ''\n", + "print 'FOR Vout1:'\n", + "print 'peak value = %0.2f volts'%V_out_1_max\n", + "print 'phase angle = %0.2f degrees'%(V_out_1_phi*180/pi)\n", + "print 'with frequency = %0.2f hertz'%f_1\n", + "print ''\n", + "print 'FOR Vout2:'\n", + "print 'peak value = %0.2f volts'%V_out_2_max\n", + "print 'phase angle = %0.2f degrees'%(V_out_2_phi*180/pi)\n", + "print 'with frequency = %0.2f hertz'%f_2\n", + "print ''\n", + "print 'FOR Vout3:'\n", + "print 'peak value = %0.2f volts'%V_out_3_max\n", + "print 'phase angle = %0.2f degrees'%(V_out_3_phi*180/pi)\n", + "print 'with frequency = %0.2f hertz'%f_3\n", + "#we can observe that there is a clear discrimination = %0.2f output signals based on frequencies i.e, lesser the frequency lesser the effect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 261 Ex: 6.4 " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "Break frequency = 1897.37 Hz\n" + ] + } + ], + "source": [ + "H_max=-30# #transfer function magnitude\n", + "f=60\n", + "m=20# #low-frequency asymptote slope rate = %0.2f db/decade\n", + "#f_B must be K higher than f where K is\n", + "K=abs(H_max)/m\n", + "#(base 10)log(f_B/60)=1.5 ==>\n", + "f_B=60*10**1.5\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print 'Break frequency = %0.2f Hz'%f_B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 262 Ex: 6.5 " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Phasor voltage across Resistance\n", + "peak value = 1.00 volts\n", + "phase angle = 0.00 degrees\n", + "\n", + "Phasor voltage across Inductance\n", + "peak value = 10.00 volts\n", + "phase angle = 90.00 degrees\n", + "\n", + "Phasor voltage across Capacitance\n", + "peak value = 10.00 volts\n", + "phase angle = -90.00 degrees\n" + ] + } + ], + "source": [ + "from math import pi, cos, sin, atan, sqrt\n", + "V_s=1*complex(cos(0),sin(0))\n", + "L=159.2*10**-3\n", + "R=100\n", + "C=0.1592*10**-6\n", + "f_o=1/(2*pi*sqrt(L*C))# #resonant frequency\n", + "Q_s=2*pi*f_o*L/R# #quality factor\n", + "B=f_o/Q_s# #Bandwidth\n", + "#Approximate half-power frequencies are\n", + "f_H=f_o+(B/2)\n", + "f_L=f_o-(B/2)\n", + "#At resonance\n", + "Z_L=1J*2*pi*f_o*L# #impedance of inductance\n", + "Z_C=-1J/(2*pi*f_o*C)# #impedance of capacitance\n", + "Z_s=R+Z_L+Z_C\n", + "I=V_s/Z_s# #phasor current\n", + "#voltages across diffrent elements are\n", + "#for resistance\n", + "V_R=R*I\n", + "V_R_R=(V_R).real #real part\n", + "V_R_I=(V_R).imag #imaginary part\n", + "V_R_max=sqrt((V_R_R**2)+(V_R_I**2))# #peak value\n", + "V_R_phi=atan(V_R_I/V_R_R)# #phase angle\n", + "#for inductance\n", + "V_L=Z_L*I\n", + "V_L_R=(V_L).real #real part\n", + "V_L_I=(V_L).imag #imaginary part\n", + "V_L_max=sqrt((V_L_R**2)+(V_L_I**2))# #peak value\n", + "#Z_L is pure imaginary ==> V_L is pure imaginary which means V_L_phi can be +or- pi/2\n", + "if ((V_L/1J)==abs(V_L)):\n", + " V_L_phi=pi/2\n", + "elif ((V_L/1J)==-abs(V_L)):\n", + " V_L_phi=-pi/2\n", + "\n", + "\n", + "#for capacitance\n", + "V_C=Z_C*I\n", + "V_C_R=(V_C).real #real part\n", + "V_C_I=(V_C).imag #imaginary part\n", + "V_C_max=sqrt((V_C_R**2)+(V_C_I**2))# #peak value\n", + "#Z_C is pure imaginary ==> V_C is pure imaginary which means V_C_phi can be +or- pi/2\n", + "if ((V_C/1J)==abs(V_C)) :\n", + " V_C_phi=pi/2\n", + "elif ((V_C/1J)==-abs(V_C)) :\n", + " V_C_phi=-pi/2\n", + "\n", + " \n", + "print 'Phasor voltage across Resistance'\n", + "print 'peak value = %0.2f volts'%V_R_max\n", + "print 'phase angle = %0.2f degrees'%(V_R_phi*180/pi)\n", + "print ''\n", + "print 'Phasor voltage across Inductance'\n", + "print 'peak value = %0.2f volts'%V_L_max\n", + "print 'phase angle = %0.2f degrees'%(V_L_phi*180/pi)\n", + "print ''\n", + "print 'Phasor voltage across Capacitance'\n", + "print 'peak value = %0.2f volts'%V_C_max\n", + "print 'phase angle = %0.2f degrees'%(V_C_phi*180/pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 264 Ex: 6.6 " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current phasor across Resistance\n", + "peak value = 0.001 amperes\n", + "phase angle = 0 degrees\n", + "\n", + "Current phasor across Inductance\n", + "peak value = 0.010 amperes\n", + "phase angle = -90.00 degrees\n", + "\n", + "current phasor across capacitance\n", + "peak value = 0.010 amperes\n", + "phase angle = 90.00 degrees\n" + ] + } + ], + "source": [ + "from math import pi, cos, sin, atan, sqrt\n", + "R=10*10**3\n", + "f_o=1*10**6\n", + "B=100*10**3\n", + "I=10**-3*complex(cos(0),sin(0))\n", + "Q_p=f_o/B# #quality factor\n", + "L=R/(2*pi*f_o*Q_p)\n", + "C=Q_p/(2*pi*f_o*R)\n", + "#At resonance\n", + "V_out=I*R\n", + "Z_L=1J*2*pi*f_o*L\n", + "Z_C=-1J/(2*pi*f_o*C)\n", + "\n", + "#across resistance\n", + "I_R=V_out/R\n", + "I_R_R=(I_R).real# #real part\n", + "I_R_I=(I_R).imag# #imaginary part\n", + "I_R_max=sqrt((I_R_R**2)+(I_R_I**2))# #peak value\n", + "I_R_phi=atan(I_R_I/I_R_R)# #phase angle\n", + "\n", + "#across inductance\n", + "I_L=V_out/Z_L\n", + "I_L_R=(I_L).real #real part\n", + "I_L_I=(I_L).imag# #imaginary part\n", + "I_L_max=sqrt((I_L_R**2)+(I_L_I**2))# #peak value\n", + "#Z_L is pure imaginary ==> V_L is pure imaginary which means V_L_phi can be +or- pi/2\n", + "if ((I_L/1J)==abs(I_L)):\n", + " I_L_phi=pi/2\n", + "elif ((I_L/1J)==-abs(I_L)) :\n", + " I_L_phi=-pi/2\n", + "\n", + "\n", + "#across capacitor\n", + "I_C=V_out/Z_C\n", + "I_C_R=(I_C).real# #real part\n", + "I_C_I=(I_C).imag# #imaginary part\n", + "I_C_max=sqrt((I_C_R**2)+(I_C_I**2))# #peak value\n", + "#Z_C is pure imaginary ==> V_C is pure imaginary which means V_C_phi can be +or- pi/2\n", + "if ((I_C/1J)==abs(I_C)):\n", + " I_C_phi=pi/2\n", + "elif ((I_C/1J)==-abs(I_C)) :\n", + " I_C_phi=-pi/2\n", + "\n", + "\n", + "print 'Current phasor across Resistance'\n", + "print 'peak value = %0.3f amperes'%I_R_max\n", + "print 'phase angle = %0.f degrees'%(I_R_phi*180/pi)\n", + "print ''\n", + "print 'Current phasor across Inductance'\n", + "print 'peak value = %0.3f amperes'%I_L_max\n", + "print 'phase angle = %0.2f degrees'%(I_L_phi*180/pi)\n", + "print ''\n", + "print 'current phasor across capacitance'\n", + "print 'peak value = %0.3f amperes'%I_C_max\n", + "print 'phase angle = %0.2f degrees'%(I_C_phi*180/pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 265 Ex: 6.7 " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\n", + "\n", + "The required second order circuit configuration is\n", + "Inductance = 50.00 KH\n", + "Capacitance = 0.51 mF(micro Farads)\n", + "Resistance = 314.16 ohms\n" + ] + } + ], + "source": [ + "from math import pi\n", + "#We need a high-pass filter\n", + "L=50*10**-3\n", + "#for the transfer function to be approximately constant = %0.2f passband area(from graph given = %0.2f the text), we choose\n", + "Q_s=1\n", + "f_o=1*10**3\n", + "C=1/(((2*pi)**2)*f_o**2*L)\n", + "R=2*pi*f_o*L/Q_s\n", + "print \" All the values in the textbook are approximated, hence the values in this code differ from those of Textbook\"\n", + "print ''\n", + "print 'The required second order circuit configuration is'\n", + "print 'Inductance = %0.2f KH'%(L*10**3)\n", + "print 'Capacitance = %0.2f mF(micro Farads)'%(C*10**6)\n", + "print 'Resistance = %0.2f ohms'%R\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter7_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter7_1.ipynb new file mode 100644 index 00000000..f504ba45 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter7_1.ipynb @@ -0,0 +1,146 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7 : Logic circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 312 Ex: 7.1 " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Binary equivalent of 343 is 101010111\n" + ] + } + ], + "source": [ + "N=343# #decimal integer\n", + "N2=bin(N)[2:]# #binary equivalent of N\n", + "print 'Binary equivalent of 343 is',N2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 313 Ex: 7.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Binary form of 0.392 is 0.0110010\n" + ] + } + ], + "source": [ + "from math import floor\n", + "N=0.392# #decimal\n", + "def float_to_binary(num):\n", + " exponent=0\n", + " shifted_num=num\n", + " while shifted_num != int(shifted_num): \n", + " shifted_num*=2\n", + " exponent+=1\n", + " if exponent==0:\n", + " return '{0:0b}'.format(int(shifted_num))\n", + " binary='{0:0{1}b}'.format(int(shifted_num),exponent+1)\n", + " integer_part=binary[:-exponent]\n", + " fractional_part=binary[-exponent:].rstrip('0')\n", + " return '{0}.{1}'.format(integer_part,fractional_part) \n", + "DP =float_to_binary(N)[0:9] \n", + "print 'Binary form of 0.392 is',DP" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 316 Ex: 7.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binary form of 343.392 : 101010111.101010111\n" + ] + } + ], + "source": [ + "n=343.392#\n", + "n1=n%1 # decimal float part\n", + "n2=int(n-n1) # decimal integer part\n", + "b1=bin(n2)[2:] # binary integer part\n", + "def float_to_binary(num):\n", + " exponent=0\n", + " shifted_num=num\n", + " while shifted_num != int(shifted_num): \n", + " shifted_num*=2\n", + " exponent+=1\n", + " if exponent==0:\n", + " return '{0:0b}'.format(int(shifted_num))\n", + " binary='{0:0{1}b}'.format(int(shifted_num),exponent+1)\n", + " integer_part=binary[:-exponent]\n", + " fractional_part=binary[-exponent:].rstrip('0')\n", + " return '{0}.{1}'.format(integer_part,fractional_part) \n", + "b2 =float_to_binary(n2)[0:9] # binary float part\n", + "#combining these two\n", + "b=str(b1)+'.'+str(b2)\n", + "print 'binary form of 343.392 : ',b" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter9_1.ipynb b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter9_1.ipynb new file mode 100644 index 00000000..010ee883 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/chapter9_1.ipynb @@ -0,0 +1,63 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9 : Computer based instrumentation diodes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pg: 389 Ex: 9.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The minimum value of Rin required = 9985.00 kilo-ohms\n" + ] + } + ], + "source": [ + "P=0.1# #system sensitivity change percent\n", + "R_th_U=15*10**3# #thevenin resistance upper limit\n", + "R_th_L=5*10**3# #thevenin resistance lower limit\n", + "#The required inequality is V_sensor*R_in/(R_th_U+R_in)>=(1-P/100)*V_sensor*R_in/(R_th_L+R_in), cancelling same terms on both sides of inequality and calculating R_in by taking equality we'll get minimum value of R_in ===>R_th_L+R_in=(1-P/100)*(R_th_U+R_in) which gives\n", + "R_in=(((1-P/100)*R_th_U)-R_th_L)*100/P#\n", + "print 'The minimum value of Rin required = %0.2f kilo-ohms'%(R_in/1000)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh11ipNopVStime_1.png b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh11ipNopVStime_1.png Binary files differnew file mode 100644 index 00000000..073c3af2 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh11ipNopVStime_1.png diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh13inANDOpVSTime_1.png b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh13inANDOpVSTime_1.png Binary files differnew file mode 100644 index 00000000..b4d3c53b --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh13inANDOpVSTime_1.png diff --git a/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh1chargeNcurrentVSTime_1.png b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh1chargeNcurrentVSTime_1.png Binary files differnew file mode 100644 index 00000000..350afca6 --- /dev/null +++ b/Electrical_Engineering_-_Principles_And_Applications_by_Allan._R._Hambley/screenshots/zzzCh1chargeNcurrentVSTime_1.png diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch10_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch10_1.ipynb new file mode 100644 index 00000000..0f3b8bbf --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch10_1.ipynb @@ -0,0 +1,239 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-10 : Multistage Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 316 Example 10.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the second stage ZL = RE2 and the current gain of the second stage is\n", + " AI2 = -Ie2 / Ib2 = -hfc / (hoc*RE2) =55.45\n", + "For the second stage,\n", + " Ri2 = hic + (hrc*AI2*RE2) =223.42 kohm\n", + " AV2 = Vo/V2 = (AI2*Re2) / Ri2 = 0.99 \n", + "The First Stage :\n", + " RL1= RC1 || Ri2 =3.93 kohm\n", + "Current gain,\n", + " AI1 = -IC1/Ib1 = -hfe/(1+(hoe*RL1)) =-54.63\n", + "The input impedance of the first stage, which is also the input impedance of the cascaded amplifier is\n", + " Ri1 = hie + hre*AI1*RL1 =1.49 kohm\n", + "The voltage gain of the first stage is\n", + " AV1 = V2/V1 = (AI1*RL1) / Ri1 =-143.83\n", + "The output admittance of the first transistor Q1\n", + " Yo1(uA/V) = hoe - ((hfe*hre) / (hie+RS)) =11.36\n", + "The output impedance of the first stage\n", + " Ro1 = 1 / Yo1 =88.00 kohm\n", + "The output impedance taking RC1 into account is\n", + " Rot1(k-ohm) = Ro1 || RC1 =3.83 kohm\n", + "The output admittance of the second stage\n", + " Yo2 = hoc-((hfc*hrc) / (hic+Rot1)) =0.01 A/V\n", + "Output impedance,\n", + " RO2 = 1 / Yo2 =86.77 ohm\n", + "Hence, Ro2(ohm) = (RO2*RE2) / (RO2+RE2) =85.15 ohm\n", + " Ib2/Ic1 = -Rc1/ Rc1+Ri2 =-0.02\n", + " AI = -AI2*AI1*(Rc1 / Ri2+Rc1) =-53.29\n", + " AV = AV2*AV1 =-142.80\n", + "The overall voltage gain taking the source impedance into account,\n", + " AVs = Vo/Vs = Av(Ri1 / Ri1+Rs) =-101.86\n" + ] + } + ], + "source": [ + "hie=1600.\n", + "hfe=60.\n", + "hre=5*10**-4\n", + "hoe=25*10**-6\n", + "hic=1600.\n", + "hfc=-61.\n", + "hrc=1.\n", + "hoc=25*10**-6\n", + "print \"For the second stage ZL = RE2 and the current gain of the second stage is\"\n", + "RE2=4000.\n", + "AI2=-hfc/(1+(hoc*RE2))\n", + "print \" AI2 = -Ie2 / Ib2 = -hfc / (hoc*RE2) =%0.2f\"%AI2\n", + "print \"For the second stage,\"\n", + "Ri2 = hic + (hrc*AI2*RE2)\n", + "Ri22=Ri2*10**-3\n", + "print \" Ri2 = hic + (hrc*AI2*RE2) =%0.2f kohm\"%Ri22\n", + "Re2=4000.\n", + "AV2=(AI2*Re2)/Ri2\n", + "print \" AV2 = Vo/V2 = (AI2*Re2) / Ri2 = %0.2f \"%AV2\n", + "print \"The First Stage :\"\n", + "RC1=4000.\n", + "RL1=(RC1*Ri2)/(RC1+Ri2)\n", + "RL11=RL1*10**-3\n", + "print \" RL1= RC1 || Ri2 =%0.2f kohm\"%RL11\n", + "print \"Current gain,\"\n", + "AI1= -hfe/(1+(hoe*RL1))\n", + "print \" AI1 = -IC1/Ib1 = -hfe/(1+(hoe*RL1)) =%0.2f\"%AI1\n", + "print \"The input impedance of the first stage, which is also the input impedance of the cascaded amplifier is\"\n", + "Ri1=hie +(hre*AI1*RL1) # answer in textbook is wrong \n", + "Ri11=Ri1*10**-3\n", + "print \" Ri1 = hie + hre*AI1*RL1 =%0.2f kohm\"%Ri11\n", + "print \"The voltage gain of the first stage is\"\n", + "AV1=(AI1*RL1)/Ri1 # answer in textbook is wrong \n", + "print \" AV1 = V2/V1 = (AI1*RL1) / Ri1 =%0.2f\"%AV1\n", + "print \"The output admittance of the first transistor Q1\"\n", + "RS=600.\n", + "Yo1=hoe-((hfe*hre)/(hie+RS))\n", + "Yo0=Yo1*10**6\n", + "print \" Yo1(uA/V) = hoe - ((hfe*hre) / (hie+RS)) =%0.2f\"%Yo0\n", + "print \"The output impedance of the first stage\"\n", + "Ro1=1./Yo1\n", + "Ro0=Ro1*10**-3\n", + "print \" Ro1 = 1 / Yo1 =%0.2f kohm\"%Ro0\n", + "print \"The output impedance taking RC1 into account is\"\n", + "Rot1=(Ro1*RC1)/(Ro1+RC1)\n", + "Rott=Rot1*10**-3\n", + "print \" Rot1(k-ohm) = Ro1 || RC1 =%0.2f kohm\"%Rott\n", + "print \"The output admittance of the second stage\"\n", + "Yo2=hoc-((hfc*hrc)/(hic+Rot1))\n", + "print \" Yo2 = hoc-((hfc*hrc) / (hic+Rot1)) =%0.2f A/V\"%Yo2\n", + "print \"Output impedance,\"\n", + "RO2=1/(11.525*10**-3)\n", + "print \" RO2 = 1 / Yo2 =%0.2f ohm\"%RO2\n", + "Ro2=(87.*4000.)/(87+4000)\n", + "print \"Hence, Ro2(ohm) = (RO2*RE2) / (RO2+RE2) =%0.2f ohm\"%Ro2\n", + "Rc1=4000.\n", + "x=(-Rc1)/ (Rc1+Ri2)\n", + "print \" Ib2/Ic1 = -Rc1/ Rc1+Ri2 =%0.2f\"%x\n", + "AI=-AI2*x*AI1\n", + "print \" AI = -AI2*AI1*(Rc1 / Ri2+Rc1) =%0.2f\"%AI\n", + "AV=AV2*AV1\n", + "print \" AV = AV2*AV1 =%0.2f\"%AV # answer in textbook is wrong\n", + "print \"The overall voltage gain taking the source impedance into account,\"\n", + "AVs=AV*(Ri1/(Ri1+RS))\n", + "print \" AVs = Vo/Vs = Av(Ri1 / Ri1+Rs) =%0.2f\"%AVs # answer in textbook is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 325 Example 10.2." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ro = 1/hoe =33.33 kohm\n", + "RB = R1 || R2 =9.09 kohm\n", + "Ri = hie =1.20 kohm\n", + "RC'' = RC || Ro =4.35 kohm\n", + "Ri'' = RB || Ri =1.06 kohm\n", + "Rci'' = Rc'' || Ri'' =0.85 kohm\n", + "rbe = hfe / gm =1000.00 ohm\n", + "(a) Mid-band current gain,\n", + "AIm = (-hfe*R''C) / (RC''+Ri'') =-39.91\n", + "(b) Mid-band voltage gain,\n", + "AVm = (-hfe) * (Rcid/hie) =-36.25\n", + "(c) Lower 3dB frequency,\n", + "fL = 1 / (2*pi*CC*(R_C+R_i)) =4.87 Hz\n", + "Higher 3dB frequency,\n", + "fH = 1 / (2*pi*C*rbe) =994.72 kHz\n", + "(d) Voltage gain x bandwidth\n", + "|AVmfH| =36.06\n" + ] + } + ], + "source": [ + "from math import pi\n", + "hfe=50.\n", + "hie=1200.\n", + "hoe=30*10**-6\n", + "hre=2.5*10**-4\n", + "RC=5*10**3\n", + "C=160*10**-12\n", + "CC=6*10**-6\n", + "R1=100*10**3\n", + "R2=10*10**3\n", + "gm=50*10**-3\n", + "Ro=1./hoe\n", + "x1=(Ro*10**-3)\n", + "print \"Ro = 1/hoe =%0.2f kohm\"%x1\n", + "RB=(R1*R2)/(R1+R2)\n", + "x2=RB*10**-3\n", + "print \"RB = R1 || R2 =%0.2f kohm\"%x2\n", + "Ri=hie\n", + "x3=Ri*10**-3\n", + "print \"Ri = hie =%0.2f kohm\"%x3\n", + "R_C=(RC*Ro)/(RC+Ro)\n", + "x4=R_C*10**-3\n", + "print \"RC'' = RC || Ro =%0.2f kohm\"%x4\n", + "R_i=(RB*Ri)/(RB+Ri)\n", + "x6=R_i*10**-3\n", + "print \"Ri'' = RB || Ri =%0.2f kohm\"%x6\n", + "R_ci=(R_C*R_i)/(R_C+R_i)\n", + "x7=R_ci*10**-3\n", + "print \"Rci'' = Rc'' || Ri'' =%0.2f kohm\"%x7\n", + "rbe=hfe/gm\n", + "print \"rbe = hfe / gm =%0.2f ohm\"%rbe\n", + "print \"(a) Mid-band current gain,\"\n", + "AIm=(-50*4.35*10**3)/((4.35*10**3)+(1.1*10**3))\n", + "print \"AIm = (-hfe*R''C) / (RC''+Ri'') =%0.2f\"%AIm\n", + "print \"(b) Mid-band voltage gain,\"\n", + "AVm=(-50)*((0.87*10**3)/(1.2*10**3))\n", + "print \"AVm = (-hfe) * (Rcid/hie) =%0.2f\"%AVm\n", + "print \"(c) Lower 3dB frequency,\"\n", + "fL=1./(2*pi*6*10**-6*(5.45*10**3))\n", + "print \"fL = 1 / (2*pi*CC*(R_C+R_i)) =%0.2f Hz\"%fL\n", + "print \"Higher 3dB frequency,\"\n", + "fH=1/(2*pi*C*rbe)\n", + "x8=fH*10**-3\n", + "print \"fH = 1 / (2*pi*C*rbe) =%0.2f kHz\"%x8 # answer in textbook is wrong \n", + "print \"(d) Voltage gain x bandwidth\"\n", + "y=abs(AVm*fH)\n", + "x9=(y*10**-6)\n", + "print \"|AVmfH| =%0.2f\"%x9" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch11_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch11_1.ipynb new file mode 100644 index 00000000..0223a598 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch11_1.ipynb @@ -0,0 +1,230 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-11 : Frequency Response of Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 380 Example 11.2." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BW = 0.35 / tr =35.00 MHz\n" + ] + } + ], + "source": [ + "tr=10*10**-9\n", + "BW=0.35/tr\n", + "x1=BW*10**-6\n", + "print \"BW = 0.35 / tr =%0.2f MHz\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 382 Example 11.3." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AV = (-hfe*RL) / (RS + hie + ((hie*RS)/RB)) =-145.70 MF\n", + "Lower 3-dB point,\n", + "f1 = (1+hfe) / ((RS+hie)*2*pi*CE) =120.42\n" + ] + } + ], + "source": [ + "from math import pi\n", + "hfe=400.\n", + "hie=10*10**3\n", + "Rs=600.\n", + "RL=5*10**3\n", + "RE=1*10**3\n", + "VCC=12.\n", + "R1=15*10**3\n", + "R2=2.2*10**3\n", + "CE=50*10**-6\n", + "RB=(R1*R2)/(R1+R2)\n", + "Av=(-hfe*RL)/(Rs+hie+((hie*Rs)/RB))\n", + "print \"AV = (-hfe*RL) / (RS + hie + ((hie*RS)/RB)) =%0.2f MF\"%Av\n", + "print \"Lower 3-dB point,\"\n", + "f1=(1.+hfe)/((Rs+hie)*2*pi*CE)\n", + "print \"f1 = (1+hfe) / ((RS+hie)*2*pi*CE) =%0.2f\"%f1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 386 Example 11.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The lower 3 dB frequency, f1 = 1 / (2*pi*(RS+R1dash)*CC)\n", + "(a) R1'' = R1 || R2 || hie =500.00 ohm \n", + " CC = 1 / (2*pi*f1*(RS+R1'')) =1.16 uF\n", + "(b) R1''(ohm) = R1 || R2 || [hie+((1+hfe)*RCE)] =716.31 ohm\n", + " CC = 1 / (2*pi*f1*(RS+R1'')) =0.97 uF\n" + ] + } + ], + "source": [ + "from math import pi\n", + "RS=600.\n", + "hie=1*10**3\n", + "hfe=60.\n", + "R1=5*10**3\n", + "R2=1.25*10**3\n", + "RCE=25.\n", + "f1=125.\n", + "print \"The lower 3 dB frequency, f1 = 1 / (2*pi*(RS+R1dash)*CC)\"\n", + "R1dash=(R1*R2*hie)/((R2*hie)+(R1*hie)+(R1*R2))\n", + "CC=1 / (2*pi*f1*(RS+R1dash))\n", + "x1=CC*10**6\n", + "print \"(a) R1'' = R1 || R2 || hie =%0.2f ohm \"%R1dash\n", + "print \" CC = 1 / (2*pi*f1*(RS+R1'')) =%0.2f uF\"%x1\n", + "x2=hie+((1.+hfe)*RCE)\n", + "R1dash=(R1*R2*x2)/((R2*x2)+(R1*x2)+(R1*R2))\n", + "CC=1 / (2*pi*f1*(RS+R1dash))\n", + "x3=CC*10**6\n", + "print \"(b) R1''(ohm) = R1 || R2 || [hie+((1+hfe)*RCE)] =%0.2f ohm\"%R1dash\n", + "print \" CC = 1 / (2*pi*f1*(RS+R1'')) =%0.2f uF\"%x3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 390 Example 11.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " gm = IC(mA)/26mV = 1/26 =38.46 m-mho\n", + " rb''e = hfe / gm =5.82 kohm\n", + " rbb'' = hie - rb''e = 6000-5824 =176.00 ohm\n", + " cb''e(pF) = gm/2*pi*fT - Cb''c =64.51 pF\n" + ] + } + ], + "source": [ + "from math import pi\n", + "gm=1./26 #mho\n", + "x1=gm*10**3 #m-mho\n", + "print \" gm = IC(mA)/26mV = 1/26 =%0.2f m-mho\"%x1\n", + "rbe=224./(38.46*10**-3)\n", + "x2=rbe*10**-3 #k-ohm\n", + "print \" rb''e = hfe / gm =%0.2f kohm\"%x2\n", + "rbb=6000.-5824. #ohm\n", + "print \" rbb'' = hie - rb''e = 6000-5824 =%0.2f ohm\"%rbb\n", + "cbe=((38.46*10**-3)/(2*pi*(80*10**6)))-(12*10**-12) # farad\n", + "x3=cbe*10**12 #pF\n", + "print \" cb''e(pF) = gm/2*pi*fT - Cb''c =%0.2f pF\"%x3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 392 Example 11.6." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " f_alpha = hfe / 2*pi*rb''e*Cb''e =95.91 MHz\n", + " f_beta = 1 / 2*pi*rb''e*(Cb''e+Cb''c) =0.36 MHz\n", + " fT = gm / 2*pi*(Cb''e+Cb''c) =80.64 MHz\n" + ] + } + ], + "source": [ + "from math import pi\n", + "alpha=224./(2*pi*(5.9*10**3)*(63*10**-12)) #Hz\n", + "x1=alpha*10**-6 #MHz\n", + "print \" f_alpha = hfe / 2*pi*rb''e*Cb''e =%0.2f MHz\"%x1\n", + "beta=1/(2*pi*(5.9*10**3)*((63*10**-12)+(12*10**-12)))\n", + "x2=beta*10**-6\n", + "print \" f_beta = 1 / 2*pi*rb''e*(Cb''e+Cb''c) =%0.2f MHz\"%x2\n", + "fT=(38*10**-3)/(2*pi*((63*10**-12)+(12*10**-12)))\n", + "x3=fT*10**-6\n", + "print \" fT = gm / 2*pi*(Cb''e+Cb''c) =%0.2f MHz\"%x3" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch12_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch12_1.ipynb new file mode 100644 index 00000000..bd75f1dd --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch12_1.ipynb @@ -0,0 +1,256 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-12 : Large Signal Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 414 Example 12.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RL'' = (N1/N2)**2 * RL =1.60 kohm\n" + ] + } + ], + "source": [ + "RL=16*10**2 #in ohm\n", + "x1=RL*10**-3 # in k-ohm\n", + "print \"RL'' = (N1/N2)**2 * RL =%0.2f kohm\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 414 Example 12.2." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(N1/N2)**2 = RL''/RL =900.00\n", + "N1/N2 =30.00\n", + "Hence, N1 : N2 = 30 : 1\n" + ] + } + ], + "source": [ + "x1=7200./8\n", + "print \"(N1/N2)**2 = RL''/RL =%0.2f\"%x1\n", + "x2=x1**0.5\n", + "print \"N1/N2 =%0.2f\"%x2\n", + "print \"Hence, N1 : N2 = 30 : 1\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 415 Example 12.3." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) Series-fed load\n", + "Overall efficiency, eta = 25(Vmax-Vmin / Vmax) =23.33 %\n", + "(ii) Transformer-coupled load\n", + "Overall efficiency, eta = 50*(Vmax-Vmin / Vmax+Vmin) =43.75 %\n" + ] + } + ], + "source": [ + "print \"(i) Series-fed load\"\n", + "eta=(25.*14)/15. #in percentage\n", + "print \"Overall efficiency, eta = 25(Vmax-Vmin / Vmax) =%0.2f %%\"%eta\n", + "print \"(ii) Transformer-coupled load\"\n", + "eta=50.*(14./16) #in percentage\n", + "print \"Overall efficiency, eta = 50*(Vmax-Vmin / Vmax+Vmin) =%0.2f %%\"%eta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 415 Example 12.4." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collector circuity efficiency,\n", + " eta = (pi/4)*(1-(VCE/VCC))*100 =68.07 %\n" + ] + } + ], + "source": [ + "from math import pi\n", + "VCE=2.\n", + "VCC=15.\n", + "eta=(pi/4.)*(1-(VCE/VCC))*100.\n", + "print \"Collector circuity efficiency,\"\n", + "print \" eta = (pi/4)*(1-(VCE/VCC))*100 =%0.2f %%\"%eta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 416 Example 12.5." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that, TJ = TA + theta*PD\n", + "Therefore, TJ = 27 degree C + (8 degree C/W)*3W =51.00 degree C\n" + ] + } + ], + "source": [ + "theta=8.\n", + "TA=27.\n", + "PD=3.\n", + "TJ=TA+(theta*PD)\n", + "print \"We know that, TJ = TA + theta*PD\"\n", + "print \"Therefore, TJ = 27 degree C + (8 degree C/W)*3W =%0.2f degree C\"%TJ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 417 Example 12.6." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PD = (TJ-TA)/thetaJ-A = (160-40)/80 =1.50 W\n" + ] + } + ], + "source": [ + "TJ=160.\n", + "TA=40.\n", + "theta=80.\n", + "PD=(TJ-TA)/theta\n", + "print \"PD = (TJ-TA)/thetaJ-A = (160-40)/80 =%0.2f W\"%PD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 418 Example 12.7." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " theta_J-A = theta_J-C + theta_C-A || theta_HS-A =12.31 degree C/w\n", + " PD = TJ-TA / theta_J-A =9.75 W\n" + ] + } + ], + "source": [ + "thetaH=8.\n", + "TA=40.\n", + "TJ=160.\n", + "thetaJ=5.\n", + "thetaC=85.\n", + "x1=(thetaC*thetaH)/(thetaC+thetaH)\n", + "theta=thetaJ+x1\n", + "print \" theta_J-A = theta_J-C + theta_C-A || theta_HS-A =%0.2f degree C/w\"%theta\n", + "PD=(TJ-TA)/theta\n", + "print \" PD = TJ-TA / theta_J-A =%0.2f W\"%PD" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch14_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch14_1.ipynb new file mode 100644 index 00000000..8f68f296 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch14_1.ipynb @@ -0,0 +1,374 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-14 : Feedback Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 452 Example 14.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The percentage change in gain of the amplifier with feedback is\n", + " dAf/Af = dA/A * 1/(1+A*beta) = 0.24 %\n" + ] + } + ], + "source": [ + "A=1000.\n", + "beta=0.04\n", + "dA=10.\n", + "print \"The percentage change in gain of the amplifier with feedback is\"\n", + "dAf=dA*(1/(1+(A*beta)))\n", + "print \" dAf/Af = dA/A * 1/(1+A*beta) = %0.2f %%\"%dAf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 452 Example 14.2." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1 + A*beta) =10.00\n", + "Also, the gain with feedback is\n", + " Af = A / (1+A*beta)\n", + "Therefore, A =1000.00\n", + " 1 + A*beta = 10# i.e. A*beta = 9\n", + "Therefore, beta =0.01\n" + ] + } + ], + "source": [ + "Af=100.\n", + "dAf=0.02\n", + "dA=0.2\n", + "Ab=dA/dAf\n", + "print \"(1 + A*beta) =%0.2f\"%Ab\n", + "print \"Also, the gain with feedback is\"\n", + "print \" Af = A / (1+A*beta)\"\n", + "A=Af*Ab\n", + "print \"Therefore, A =%0.2f\"%A\n", + "print \" 1 + A*beta = 10# i.e. A*beta = 9\"\n", + "beta=9./A\n", + "print \"Therefore, beta =%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 455 Example 14.3." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) We have BWf = (1 + A*beta) * BW\n", + " BWf =1.50 MHz\n", + "Gain with feedback, Af = A / (1+ A*beta) =20.83\n", + "(b) BWf = (1 + A*beta'') * BW\n", + "1*10**6 = (1 + 125*beta'')*250*10**3\n", + "Therefore, beta =0.02\n", + "i.e. beta (in %) =2.40\n" + ] + } + ], + "source": [ + "A=125.\n", + "BW=250*10**3\n", + "beta=0.04\n", + "print \"(a) We have BWf = (1 + A*beta) * BW\"\n", + "BWf = (1 + (A*beta))*BW\n", + "x1=BWf*10**-6\n", + "print \" BWf =%0.2f MHz\"%x1\n", + "Af=A/(1+(A*beta))\n", + "print \"Gain with feedback, Af = A / (1+ A*beta) =%0.2f\"%Af\n", + "print \"(b) BWf = (1 + A*beta'') * BW\"\n", + "print \"1*10**6 = (1 + 125*beta'')*250*10**3\"\n", + "Bd=3./125\n", + "print \"Therefore, beta =%0.2f\"%Bd\n", + "Bd1=Bd*100\n", + "print \"i.e. beta (in %%) =%0.2f\"%Bd1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 456 Example 14.4." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage gain with feedback\n", + " Af = A / (1 + A*beta) =80.00\n", + "New lower 3dB frequency,\n", + " f_1f = f1 / 1+A*beta =10.00 Hz\n", + "New upper 3dB frequency,\n", + " f2f = (1+A*beta)*f2 =1.00 MHz\n", + "Distortion with feedback,\n", + " Df = D / 1+A*beta =2.00 %\n" + ] + } + ], + "source": [ + "A=400.\n", + "f1=50.\n", + "f2=200*10**3\n", + "D=10.\n", + "beta=0.01\n", + "print \"The voltage gain with feedback\"\n", + "Af=A/(1+(A*beta))\n", + "print \" Af = A / (1 + A*beta) =%0.2f\"%Af\n", + "print \"New lower 3dB frequency,\"\n", + "f1f=f1/(1+(A*beta))\n", + "print \" f_1f = f1 / 1+A*beta =%0.2f Hz\"%f1f\n", + "print \"New upper 3dB frequency,\"\n", + "f2f=(1+(A*beta))*f2\n", + "x2=f2f*10**-6\n", + "print \" f2f = (1+A*beta)*f2 =%0.2f MHz\"%x2\n", + "print \"Distortion with feedback,\"\n", + "Df=D/(1+(A*beta))\n", + "print \" Df = D / 1+A*beta =%0.2f %%\"%Df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 458 Example 14.5" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage gain, Af = A / (1+A*beta) =83.33\n", + "Input resistance, Rif = (1+(A*beta))*Ri =18.00 kohm\n", + "Output resistance, Rof = Ro / (1+A*beta) =3.33 kohm\n" + ] + } + ], + "source": [ + "A=500.\n", + "Ri=3*10**3\n", + "Ro=20*10**3\n", + "beta=0.01\n", + "Af=A/(1+(A*beta))\n", + "print \"Voltage gain, Af = A / (1+A*beta) =%0.2f\"%Af\n", + "Rif=(1+(A*beta))*Ri\n", + "x1=Rif*10**-3\n", + "print \"Input resistance, Rif = (1+(A*beta))*Ri =%0.2f kohm\"%x1\n", + "Rof=Ro/(1+(A*beta))\n", + "x2=Rof*10**-3\n", + "print \"Output resistance, Rof = Ro / (1+A*beta) =%0.2f kohm\"%x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 460 Example 14.6." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Ai = 1 + hfe =81.00\n", + " Ri = hie + (1+hfe)*RL =167.00 kohm\n", + " Av = Ai*RL / Ri =0.00\n", + " Ro = hie+Rs / 1+hfe =69.14 ohm\n", + " Rof = Ro || RL =66.82 ohm\n" + ] + } + ], + "source": [ + "Ai=1+80\n", + "print \" Ai = 1 + hfe =%0.2f\"%Ai\n", + "Ri=(5*10**3)+((1+80)*(2*10**3)) #in ohm\n", + "x1=Ri*10**-3 #in k-ohm\n", + "print \" Ri = hie + (1+hfe)*RL =%0.2f kohm\"%x1\n", + "Av=(81*2*10**3)/(167*10**3)\n", + "print \" Av = Ai*RL / Ri =%0.2f\"%Av\n", + "Ro=(5000.+600)/(1.+80) # in ohm\n", + "print \" Ro = hie+Rs / 1+hfe =%0.2f ohm\"%Ro\n", + "Rof=(69.13*2000)/(2069.13) #in ohm\n", + "print \" Rof = Ro || RL =%0.2f ohm\"%Rof" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 461 Example 14.7." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " R''L = RB || RL =1000.00 ohm\n", + " Av = -hfe*R''L / hie =-30.48\n", + " Rif = hie || (RB / 1-Av) =1013.17 ohm\n", + " Avf = Vo/Vs = Av*Rif / RS+Rif =-19.14\n", + " Rof = (RB / RS) * (RS+hie / hfe) =4.67 kohm\n", + " R''of = Rof || RL =1.40 kohm\n" + ] + } + ], + "source": [ + "RL=((40*2)/42)*10**3 #in ohm\n", + "print \" R''L = RB || RL =%0.2f ohm\"%RL\n", + "Av=(-80*1905.)/5000.\n", + "print \" Av = -hfe*R''L / hie =%0.2f\"%Av\n", + "x1=(40000.)/(1+30.48)\n", + "Rif=(x1*5000.)/(x1+5000) #in ohm\n", + "print \" Rif = hie || (RB / 1-Av) =%0.2f ohm\"%Rif\n", + "Avf=(-30.48*1013.172)/(600+1013.172)\n", + "print \" Avf = Vo/Vs = Av*Rif / RS+Rif =%0.2f\"%Avf\n", + "Rof=(40000/600.)*(5600./80) #in ohm\n", + "x2=Rof*10**-3 #in k-ohm\n", + "print \" Rof = (RB / RS) * (RS+hie / hfe) =%0.2f kohm\"%x2\n", + "Roff=(4.666*2)/(6.666) #in k-ohm\n", + "print \" R''of = Rof || RL =%0.2f kohm\"%Roff," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 462 Example 14.8." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) A = -hfe*RL / hie =-40.00\n", + " Ri = hie = 2 k-ohm\n", + "(b) beta = Re / RL =0.10\n", + "(c) Rif = hie + (1+hfe)*Re =10.10 kohm\n", + "(d) Af = -hfe*RL / Rif =-7.92\n", + "(e) Loop gain, beta = -40*0.1 = -4 i.e. 20log4 =12.04 dB\n" + ] + } + ], + "source": [ + "from math import log10\n", + "R1=20.*10**3\n", + "R2=20.*10**3\n", + "hie=2.*10**3\n", + "RL=1.0*10**3\n", + "Re=100.\n", + "hfe=80.\n", + "A=(-hfe*RL)/hie\n", + "print \"(a) A = -hfe*RL / hie =%0.2f\"%A\n", + "print \" Ri = hie = 2 k-ohm\"\n", + "beta=Re/RL\n", + "print \"(b) beta = Re / RL =%0.2f\"%beta\n", + "Rif=hie+((1+hfe)*Re)\n", + "x1=Rif*10**-3\n", + "print \"(c) Rif = hie + (1+hfe)*Re =%0.2f kohm\"%x1\n", + "Af=(-hfe*RL)/Rif\n", + "print \"(d) Af = -hfe*RL / Rif =%0.2f\"%Af\n", + "lg=20.*log10(4)\n", + "print \"(e) Loop gain, beta = -40*0.1 = -4 i.e. 20log4 =%0.2f dB\"%lg" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch15_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch15_1.ipynb new file mode 100644 index 00000000..3e5b1387 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch15_1.ipynb @@ -0,0 +1,462 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-15 : Oscillators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 475 Example 15.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L1 = (1 / 4*pi**2*fo**2*C) - L1 =0.04 mH\n" + ] + } + ], + "source": [ + "from math import pi\n", + "L1=(1./(4*(pi**2)*((120*10**3)**2)*0.004*10**-6))-(0.4*10**-3) #in henry\n", + "x1=L1*10**3 #in mH\n", + "print \"L1 = (1 / 4*pi**2*fo**2*C) - L1 =%0.2f mH\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 475 Example 15.2." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When fo = 950 kHz\n", + " C =13.89 pF\n", + "When fo = 2050 kHz\n", + " C = 2.98 pF\n", + "Hence, the range of capacitance is from 2.98 pF to 13.89 pF\n" + ] + } + ], + "source": [ + "from math import pi\n", + "print \"When fo = 950 kHz\"\n", + "C=1./(4*(pi**2)*((2*10**-3)+(20*10**-6))*((950*10**3)**2)) #farady\n", + "x1=C*10**12 #pF\n", + "print \" C =%0.2f pF\"%x1\n", + "print \"When fo = 2050 kHz\"\n", + "C=1./(4*(pi**2)*((2*10**-3)+(20*10**-6))*((2050*10**3)**2)) #farady\n", + "x1=C*10**12 #pF\n", + "print \" C = %0.2f pF\"%x1\n", + "print \"Hence, the range of capacitance is from 2.98 pF to 13.89 pF\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 476 Example 15.3" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo = 1 / 2*pi*sqrt(50*10**-6*500*10**-12) =1.01 MHz\n", + "Feedback factor, beta = L1 / L2 =3.17\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "L1=38.*10**-6\n", + "L2=12.*10**-6\n", + "C=500.*10**-12\n", + "L=L1+L2\n", + "fo = 1. / (2*pi*sqrt(L*C))\n", + "x1=fo*10**-6\n", + "print \"fo = 1 / 2*pi*sqrt(50*10**-6*500*10**-12) =%0.2f MHz\"%x1\n", + "beta=L1/L2\n", + "print \"Feedback factor, beta = L1 / L2 =%0.2f\"% beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 478 Example 15.4." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L = (C1+C2) / (4*pi**2*fo**2*C1*C2) =13.93 mH\n", + "The voltage gain required to produce oscillation is\n", + " Av > C1/C2 =10.00\n" + ] + } + ], + "source": [ + "from math import pi\n", + "C1=0.2*10**-6\n", + "C2=0.02*10**-6\n", + "fo=10.*10**3\n", + "L=(C1+C2)/(4*pi**2*fo**2*C1*C2)\n", + "x1=L*10**3\n", + "print \"L = (C1+C2) / (4*pi**2*fo**2*C1*C2) =%0.2f mH\"%x1\n", + "print \"The voltage gain required to produce oscillation is\"\n", + "x2=C1/C2\n", + "print \" Av > C1/C2 =%0.2f\"%x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 480 Example 15.5." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) In a Colpitts oscillator, a series combination of C1 and C2 which is in parallel with inductance L and frequency of oscillations is\n", + " fo = 1 / 2pi*sqrt(LCeq) = 1 / 2pi*sqrt(L*C1*C2/C1+C2) =87.17 kHz\n", + "Vf = Vo*C1 / C2 =2.00 V\n", + " Gain = 500*10**-12 / 100*10**-12 =5.00\n", + "C1 = C2 / 10 =50.00 pF\n", + "(v) The frequncy of oscillation is\n", + "fo = 118.03 kHz\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "L=40.*10**-3\n", + "C1=100.*10**-12\n", + "C2=500.*10**-12\n", + "Vo=10.\n", + "print \"(i) In a Colpitts oscillator, a series combination of C1 and C2 which is in parallel with inductance L and frequency of oscillations is\"\n", + "fo=1./ (2*pi*sqrt((L*C1*C2)/(C1+C2)))\n", + "x1=fo*10**-3\n", + "print \" fo = 1 / 2pi*sqrt(LCeq) = 1 / 2pi*sqrt(L*C1*C2/C1+C2) =%0.2f kHz\"%x1\n", + "Vf=(Vo*C1)/C2\n", + "print \"Vf = Vo*C1 / C2 =%0.2f V\"%Vf\n", + "gain=C2/C1\n", + "print \" Gain = 500*10**-12 / 100*10**-12 =%0.2f\"%gain\n", + "x2=C2/10\n", + "x3=x2*10**12\n", + "print \"C1 = C2 / 10 =%0.2f pF\"%x3\n", + "print \"(v) The frequncy of oscillation is\"\n", + "fo=1./ (2*pi*sqrt((40*50*500*10**-27)/((50*10**-12)+(500*10**-12))))\n", + "x4=fo*10**-3\n", + "print \"fo = %0.2f kHz\"% x4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 481 Example 15.6." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When fo = 400 kHz, Cmax(pF) =2638.57\n", + "When fo = 1200 kHz, Cmin = 293.17 pF\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "fo1=400.*10**3\n", + "fo2=1200.*10**3\n", + "Lp=60.*10**-6\n", + "C = 1 / (4*pi**2*fo1**2*Lp)\n", + "x1=C*10**12\n", + "print \"When fo = 400 kHz, Cmax(pF) =%0.2f\"%x1 # answer in textbook is wrong\n", + "C = 1. / (4*pi**2*fo2**2*Lp)\n", + "x2=C*10**12\n", + "print \"When fo = 1200 kHz, Cmin = %0.2f pF\"%x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 482 Example 15.7." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When fo = 540 kHz, Cmax = 86.87 pF\n", + "When fo = 1650 kHz, Cmin = 9.30 pF\n", + "Hence, the capacitor range required is 9.3-86.87 pF\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "fo1=540.*10**3\n", + "fo2=1650.*10**3\n", + "L=1*10.**-3\n", + "Cmax = 1. / (4*pi**2*fo1**2*L)\n", + "x1=Cmax*10**12\n", + "print \"When fo = 540 kHz, Cmax = %0.2f pF\"%x1\n", + "Cmin = 1. / (4*pi**2*fo2**2*L)\n", + "x2=Cmin*10**12\n", + "print \"When fo = 1650 kHz, Cmin = %0.2f pF\"%x2\n", + "print \"Hence, the capacitor range required is 9.3-86.87 pF\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 483 Example 15.8." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " fo =3.25 kHz\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "fo=1./(2*pi*(200*10**3)*(100*10**-12)*sqrt(6)) #in Hz\n", + "x1=fo*10**-3 #in kHz\n", + "print \" fo =%0.2f kHz\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 486 Example 15.9." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fo = 606.69 Hz\n", + "beta =155.70\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "fo=1./(2*3.142*10000*(0.01*10**-6)*sqrt(6+((4*2.2*10**3)/(10000)))) #in Hz\n", + "print \"fo = %0.2f Hz\"%fo\n", + "beta=23.+(29.*(10/2.2))+(4*(2.2/10))\n", + "print \"beta =%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 487 Example 15.10." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " C=0.42 nF\n", + " hfe >=50.68\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "fo=1./(2*pi*(10*10**3)*(7.1*10**3)*sqrt(6+((4*40*10**3)/(7.1*10**3)))) # in Farady\n", + "x1=fo*10**9 # in nF\n", + "print \" C=%0.2f nF\"%x1\n", + "h=23.+(29.*(7.1/40))+(4*(40/7.1))\n", + "print \" hfe >=%0.2f\"% h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 488 Example 15.11." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Therefore, C = 1 / 2*pi*R*fo =159.15 pF\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "C=1./(2*pi*100000*10000) # in farady\n", + "x1=C*10**12 #in pF\n", + "print \"Therefore, C = 1 / 2*pi*R*fo =%0.2f pF\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 489 Example 15.12." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) The series resonant frequencies of the crystal is\n", + " fs = 1 / 2*pi*sqrt(L*Cs) = 918.88 kHz\n", + "Q factor of the crystal at fs = omegaS*L / R = 2*pi*fs*L / R =577.36\n", + "(b) The parallel resonant frequency of the crystal is\n", + " fp = 1/2pi * sqrt((Cs+Cp)/(L*Cs*Cp)) =946.05 kHz\n", + "Q factor of the crystal at fp = omegaS*L / R = 2*pi*fs*L / R =594.39\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "print \"(a) The series resonant frequencies of the crystal is\"\n", + "fs=1./(2*pi*sqrt(0.5*0.06*10**-12)) #in Hz\n", + "x1=fs*10**-3 #in kHz\n", + "print \" fs = 1 / 2*pi*sqrt(L*Cs) = %0.2f kHz\"%x1\n", + "fs=(2.*pi*(918.9*10**3)*0.5)/(5*10**3)\n", + "print \"Q factor of the crystal at fs = omegaS*L / R = 2*pi*fs*L / R =%0.2f\"%fs\n", + "print \"(b) The parallel resonant frequency of the crystal is\"\n", + "fp=(1./(2*pi))*sqrt((1.06*10**-12)/(0.5*(0.06*10**-12)*(1*10**-12))) # in Hz\n", + "x1=fp*10**-3\n", + "print \" fp = 1/2pi * sqrt((Cs+Cp)/(L*Cs*Cp)) =%0.2f kHz\"%x1\n", + "fp=(2.*pi*(946.*10**3)*0.5)/(5.*10**3)\n", + "print \"Q factor of the crystal at fp = omegaS*L / R = 2*pi*fs*L / R =%0.2f\"%fp" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch16_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch16_1.ipynb new file mode 100644 index 00000000..e4790b69 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch16_1.ipynb @@ -0,0 +1,766 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-16 : Wave Shaping and Multivibrator Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 512 Example 16.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given tr = 35 ns\n", + "We know that, tr = 0.35 / BW\n", + "Therefore, BW = 0.35 / tr =10.00 MHz\n" + ] + } + ], + "source": [ + "print \"Given tr = 35 ns\"\n", + "bw=0.35/(35*10**-9) # in Hz\n", + "x1=bw*10**-6 #in MHz\n", + "print \"We know that, tr = 0.35 / BW\"\n", + "print \"Therefore, BW = 0.35 / tr =%0.2f MHz\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 514 Example 16.2." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given ton = 70 ns\n", + " C = ton / 0.1*Rs =1166.67 pF\n", + " tre = 2.3*RB*C =15.46 u-seconds\n", + " f = 1/2T = 1/2tre =33.33 kHz\n" + ] + } + ], + "source": [ + "print \"Given ton = 70 ns\"\n", + "C=(70*10**-9)/(0.1*600) # in faraday\n", + "x1=C*10**12 # in pF\n", + "print \" C = ton / 0.1*Rs =%0.2f pF\"%x1 # approximately 1200 pF\n", + "tre=2.3*(5.6*10**3)*(1200*10**-12) # in seconds\n", + "x2=tre*10**6 #in us\n", + "print \" tre = 2.3*RB*C =%0.2f u-seconds\"%x2\n", + "f=1./(2*(15*10**-6)) #in Hz\n", + "x3=f*10**-3 #in kHz\n", + "print \" f = 1/2T = 1/2tre =%0.2f kHz\"%x3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 514 Example 16.3." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "transition voltage: 3.00\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAACfCAYAAAAVgglsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81eP2wPHPapJEZcxQpCvk8pOpuoZCUUiGKyQRQqWU\nypTIlVCXJvNwUmkUTa6Lq1vJ0KhIZUqupEFpUqQ66/fH+p7aTmfY55y993cP6/16nVd7+A7rbMf6\nPvv5Ps96RFVxzjmXGUqFHYBzzrnE8aTvnHMZxJO+c85lEE/6zjmXQTzpO+dcBvGk75xzGcSTvkt7\nIvK9iJyfBHFcJyLvxviY1UVks4hILI/r0pcn/QwlIjeKyEIR2SIiK0XkWRGpFKNjNxSR5UXc53sR\nOS8W58+DBj+ISC8RGR6n8xQchOoIVb0wxsf8QVX3VZ9w46LkST8DiUhX4HGgK7AfUA84EviPiJQN\nKSwFvLXqXLypqv9k0A+W5DcDf8/1+j7AGqBN8PxV4JGI9xsCyyOefw/cCywCfgGygL2C4/wG7AzO\nswk4tKDjAcOD7bcG+3TLI+4lwMURz8sAPwMnB88vDWJZD0wFjovYdhlwHtAE2Ab8EZxnfvB+G2Bx\nEOtS4NZc574b+An4EbgFyAaODt7bC/gn8D9gFfAcUD6fz/5GYEbE82zgNuDrIO6nC/jvdgYwF9gY\nnOfJ4PWjguOUCp5PA/4BfBj8Pu8CB+RzzOnAFcHjM4PjXBQ8Pz/i86kJ/BdYG3zmrwGVgvfuAV7P\nddyBwMDgcSXglYjP75GcWP0nnB9v6WeevwHlgTcjX1TVLcDbQOOcl4KfgrQELsCSQi3ggeA4TYCf\n1Lod9lPVlQUdT1WvB34ALgn2+Wcem40Ero14fiGwRlUXiEit4P1OwIHB7zFZRMrkOs87QB9gdHCe\nOsFbq7ELyn7YBaC/iNQBEJEmQBcsCR6DXawiPQ78Bfi/4N/DgQfz+8DycDFwGnAS0EJE8uv+GQj0\nV9VKwNHA2AKOeS12gTkYKAd0y2e7aez+fRoA3wHnRDyfFrHto9jF+3igGtAreH0UcJGIVAQQkdLA\nVcCI4P1XsYtsTaAO9vdySwGxuzjzpJ95DgTWqmp2Hu+tAg6IeF5Qd4tiLdMVqroeSwo5STm//UrS\nfTMSuFREygfPW2IJB+Bq4C1VnaKqO7GW997YBS6vGP4Uh6q+rarLgscfAO8BZwdvtwCyVHWJqv4G\nPLTrQHbztC1wl6puUNVfgceAa4rwez2uqptUdTn2DeXkfLb7AzhGRA5U1a2qOiuf7RQYoqrfqurv\n2MUhv2NOx5I72O/7WMTzBsH7qOrS4LPdrqprgf4526nqD8CnwOXBfucBW1V1togcAjQFuqjqb6r6\nMzCAon0+LsY86WeetcCBIpLXf/tDg/ejFXmz9gfgsJIEVhBVXYp18VwqIhWAZtiFACzuHyK21SC2\nw6M5tog0FZGZIrJORNYDF7H74ncof/49f4x4fBBQAZgnIuuDff+NXVijtSri8VagYj7b3Yx9m1oi\nIrNF5OIoj/lbAcecCdQSkYOxC8MwoJqIHACcDnwAICKHiMhoEflRRDZi3XGRjYPIb2Et2d3KPxIo\nC6yM+Hyexz43FxJP+pnnE6xf+8rIF4Ov502AKcFLW7CElqNqHseqnuvxT8HjvLpxCjteNKNPRmHJ\npTmwWFW/C17/CUswwK4WeDVgRR7H+NN5RGQv4A2gL3CwqlbBuodyvg2sDI6VI/LxWiyp1lbVKsFP\n5aCbKKaClntLVT0IeAIYJyJ7l/CYW4F5QGdgoapuBz7GbvB/q6q/BJv2we65/DXoXrqeP+eOcUBD\nETkcuIzdF+Pl2N/aARGfTyVVPbEkcbuS8aSfYVR1I/AwMFhELhSRsiJyFNYNsBxrxQEswPpqq4hI\nVSwxRBKgvYgcLiL7Az2A0cF7q4EDRCQy+RV2vNVYv29BRmN9+bezuzVJEPvFInJeMPqoK/A7lsBy\nWwUcFTGuvVzwsxbIFpGmWL9z5LHbiMhxwTeMnjlvBF1kLwEDROQggODziNy/KPLt/hKRVjnnwG7m\nKnbjtUjHycN0oEPwL1g//h0Rz8G+KWwBNgWJvXvkAYJum2lY//13qvpV8PpKrKvsKRHZV0RKiUhN\nETkHFxpP+hlIVfsB92N93xuxr/n/A84PWntgyf8zbJTOO1jCjWwlK9aiew8b8fIN0Ds4/pdYq/w7\nEfklSPKFHe8x4IGgG+CufOJehSXy+sCYiNe/BloBg7HRJRcDzVR1Rx6HeT34d52IzFXVzdgN4LHY\nKKRrgYkRx34HGIT1t3+NfVMCa8GCjV75FpgZdH38B+uGyfNXYM/PsKD3I10IfCEim7E+9WtUdVvE\nfrmPE80xwZJ7RYKunODffSKegzUSTsH+ViZj34xyH3MkdrN7ZK7XW2MX1cXY5/s6eX9rdAki1v0Z\nhwOLZGH/863J+TonImcAT2P9fDuA9qo6Jy4BuLgSkWXAzar637BjSSQROR5YCJTL52a4c0ktni39\nIVgfcaS+QM9gqNyDwXPnkpqIXC4ie4lIFaw/fZInfJeq4pb0VXUGNuEk0kpssgZAZfK+0eZcsrkV\nu+fwLbAdaBduOM4VX9y6dwCCG4STI7p3jsRmCip2wakfjE92zjmXAGUK3ySmXgE6qep4EbkKm7rf\nOPdGIuLFo5xzrhhUtcDRW4kevXOGqo4PHo/D6onkKez6FCX5eeihh0q0/7ZtyrhxykUXKRUqKKee\nqrRrpwwZoixerGzZomRn/3mf7duVpUuVd99VnnnGtq9WTalVS7n7buWTT5SdOxMTfyg/W7eiJ5+M\nDhqUmvGn+uefBrGnQ/zRSHRL/1sRaaCq07Hp2l8n+PxJbckSeOUVGD4cjjsObr4Zxo6FffYpfN8y\nZeDoo+3ngmCU+DPPwLx5MGGCHWvLFrj7brjpJihfvuDjpZyOHe1Du+MOePjhsKNxLmnFraUvIqOw\nMdXHishyEWmD3RDrKyILsDHdt8br/Knku++gRQs47zwoWxY+/BCmT4fWraNL+PkRgdNOg969YdEi\nGD0a/v1vqFkT+veHrVtj9zuEKisLPv4YXnrJfmnnXL7iOXrnWlU9TFXLqWo1VR2iqnNVta6qnqyq\n9VV1frzOH6aGDRtGtd369dCtG5x+Opx0EixdCo89BsccE5+46tWDyZPhrbfswnL00TB4MOzc+eft\noo0/KcyfD/fcA2+8ARWtxExKxZ+HVI4/lWOH1I8/GnEdvVNcIqLJGFesZGfDs8/CI49A8+bwj39A\n1RDmKH7xBXToANu3W2P5uOMSH0OJbNgAp54KffrA1VeHHY1zoRMRtJAbuZ70E2zlSuu22boVXngB\n/vrXcOPJzobnn4eHHoK77rJvHmXDWjurKLKz4bLLoEYNGDgw7GicSwrRJP149ulnichqEVmY6/WO\nIrJERL4QkSfidf5kNHky1KkDZ51lffZhJ3yAUqWgfXuYOxemTYO6dWHx4rCjikLfvrB2LfTrF3Yk\nzqWUeNbeORv4FRimuydnnYsV+rpIVbeLyEFqFfpy75tWLf3ffrNRM5Mnw2uvWdJPRqrw8svQo4eN\nImrWLOyI8jF1KrRsCXPmwBFHhB2Nc0kjmpZ+3IZsquqMYEZupHbAYxpUcswr4aeblSvhkktsxMz8\n+VClStgR5U8E2ra1m8pXXgmffw73359kA2JWrIDrrrNxrZ7wnSuyRE/OOgY4J1ilaJqInJbg8yfU\n4sVQvz5ccQWMGZPcCT9S3bowezZMmmT3R7dsCTuiwPbtFlCHDtCoUdjROJeSEp30ywBVVLUethBD\nQYs7p7Tp0+Hcc22ETo8eSdZajsJhh9nvsPfe1h3100+F7xN399wDlSvDffeFHYlzKSvRM3J/BN4E\nUNU5IpItIgeo6rrcG/bq1WvX44YNG6bU+NnRo6FTJxg5MrUbpOXLw6uv2ojIBg1gyhSoXr3Q3eJj\n3DibWjx3rt19ds4xbdo0pk2bVqR9El1l8zbgMFV9SERqAe+r6h5pJJVv5D79tA0seest6xtPF/37\nw6BBlviPPjrBJ//qK/u68c47Ni7fOZenUG/kBmUYGmBrpS7HFk3JArKCYZx/YEuppY3nn4d//hNm\nzIAjjyx8+1TSpYu1/Bs2hPffh1r5LQgYa1u22F3lRx/1hO9cDPjkrBjJyoJevWyse8JbwgmUlQU9\ne8J778EJJ8T5ZKpw/fVWTW7IkNS7MeJcgoXa0s8kw4fDgw/a8PF0Tviwu0Jno0Z2ozeuLf7nn4eF\nC+GTTzzhOxcjnvRLaMwYG1Ty/vvxK5SWbFq2tAlnTZrARx/BoYfG4SSzZ1ttiI8+ggoV4nAC5zKT\nJ/0SePttuPNO6+qoXTvsaBLr5ptt4lnTptbir1Sp8H2itnYtXHWVFSfKlCupcwmS8No7wXtdg+Ga\n+8fr/PG2YAHceKONIkynUTpF0aMHnHmmTT7bti1GB925E1q1sklYl18eo4M653LEc8DzEKBJ7hdF\npBq2Lu7/4njuuFqxAi691Famqlcv7GjCI2LDOKtUscqh2dkxOGjv3tZ31KdPDA7mnMstnouozADW\n5/HWU8Dd8TpvvP36qxUia9fOeiAyXenSVkRu9Wro2rWEB3vnHXjxRZvdVsZ7Hp2Lh4RObRSR5sCP\nqvp5Is8bKzt32k3MOnXg3nvDjiZ5lC9v3Vz/+peNrCyW//3P+stGjYrTnWHnHCTwRq6IVMDKKjeO\nfDm/7ZOxDEPXrjZX6I03fARhbpUrw8SJcM45dlO7bt0i7Lxtm31t6tbNDuCci0pSl2EQkROB94Gc\n5biPAFYAZ6jqmlz7Jd3krFdftfVrZ85MnWqZYZg4Ee64w0rdR70EZIcONhTIr6bOlUhSTc5S1YXA\nITnPRWQZcKqq/pKoGIrrs8+ge3ebbesJv2DNm9vIpiuvtMlq5coVssOIETbmde5cT/jOJUA8h2yO\nAj4GaonIchFpk2uT5GrK52PDBktgAwcmoOxAmujZEw4+2CqNFmjRIujc2Vr4MR3o75zLj9feKUB2\ntg0Vr14dBg8OO5rUsnmzDWft3NlW49rDpk1w+uk22L91WtXdcy400XTveNIvwBNPwPjx8MEHUXRT\nuD3kVESeOjXXIvCq0KIF7L+/zbp1zsVENEnfV6PIx9SpMGAAvP66J/ziOvZYKzV99dWwdWvEGwMH\nwrJl9q9zLqHiPXonC7gYWBOxkEo/4BKsnv5SoI2qbsy1X6gt/TVr4OSTYehQaNy48O1d/lSt92bv\nvW3eFR99ZHUbZs2Co44KOzzn0koytPTzKsXwHnCCqv4f8DWQVAueqloxsRtu8IQfCyLw7LM28mnC\nC6ut2Z+V5QnfuZDEdcimqs4IxupHvvafiKezgCvjGUNRPf/87iHjLjb23RdGv7aDLWddy/pb21Dl\n4ovDDsm5jBV2n/5NwNshx7DLkiW2GMqIEd6PH2unTHiQI2uUpumsXvzxR9jROJe5QqtqJSI9gD9U\ndWRe7ye6DMO2bVZXp08fuwHpYmjSJHjtNarNnceBN5Xm4YdtyVvnXMkkXRkG+HMphojXbgTaAuer\n6u957JPwG7ndu8O338Kbb/rE0Jj67jsbsD9xItSvz6pVdpN84sQi1udxzhUqqcow5BCRJkB3oEFe\nCT8MU6ZYcccFCzzhx9Rvv9l05p49oX59wOrxDB5sI3rmz/eVEJ1LtHgP2RwFNAAOBFYDD2GjdcoB\nOTV3PlHV9rn2S1hLf9MmOPFEG0544YUJOWXmuOUWK0s6cuQeV9OWLa1Uw4ABIcXmXBryGblRuO02\nG6b54osJOV3myMqymVmzZ0PFinu8/csvtszk8OFw7rkhxOdcGvKkX4j337cx+QsXwn77xf10mWP+\nfLjgAqtfcfzx+W729tvQvj18/rl//s7Fgif9AmzebN06L7zg3ToxtWEDnHqqDc+55ppCN2/b1r5p\nvfxyAmJzLs2FmvTzKcGwPzAGOBL4Hmihqhvy2DfuSb9dO9i+3ZNNTGVnw2WX2WzbQYOi2sUvvs7F\nTthlGPIqwXAv8B9VrQVMCZ4n3JQptp7rk0+GcfY01rcv/Pyz9eVHad99LeHffrstOu+ci6+ELZcY\nPP8SG6q5WkSqAtNU9bg89otbS3/zZruB+Oyz0LRpXE6RmaZOtSE5c+bAEUcUeffWreHAA+Gpp+IQ\nm3MZIvQ+/TyS/npVrRI8FuCXnOe59otb0u/UyYZpvvpqXA6fmVassAVRhg2DRo2KdYi1a63m/qRJ\ncMYZMY7PuQyRlJOzcqiqiki+mT0eZRjmzIGxY22VPhcj27db5cz27Yud8GF3K/+WW2y5XK995Fzh\nkq4MQz7dOw1VdZWIHApMTVT3zo4d1hjt2hVatYrpoTPbXXfZElmTJ0Opkt0iUoVLLoG//c1WUXTO\nFU3MbuSKSFURaSYil4jIwSWIaRJwQ/D4BmBCCY5VJAMGwEEHwXXXJeqMGWDcOFtPcvjwEid8sEm7\nzz0H/fvDl1/GID7n3B4KbemLSAugHzA9eOkcoLuqvl7IfrlLMDwITATGAtVJ4JDN77+H006zxZpq\n1ozZYTNbzgK477xj4/JjaPBg64abPj0m1xLnMkZMbuSKyOdAI1VdEzw/CJiiqifFLNI9zxmzpK8K\nF18MZ58N9yXVGl0pbMsWK5HZqRPcemvMD79zp3Xx3H47tGkT88M7l7ZilfQXAiflZGERKQV8Flkq\nOdZimfTHjIHeveHTT6Fs2ZgcMrOpwvXXQ+nSNgQqTmVJ582Diy6CxYvhgAPicgrn0k6skn4/4P+A\nkYAAVwOfq+rdsQo0j3PGJOlv2AC1a9vSh0FlX1dSzz1nPzNnxr0ucseOtriNF8NzLjqxSvrdgDXA\nycFLM1R1fGxCzPecMUn6HTvCH3/YjE8XA7Nn2/Cajz6CY46J++k2brSL9rhxftF2LhqxGqdfEWgD\nrMfq5nwcg8DuA1oB2cBCoI2qbivpcSPNn283AxcvjuVRM9i6ddCihV1BE5DwASpVsooO7drZ2P0y\noc0qcS59FDo2QlV7qeoJQAegKvCBiEwp7gmDsfttgVOC+wKlgcLLMRZBdrbNFXr0Ue8PjomdO22s\n61VXweWXJ/TU11xjE7eefjqhp3UubRVlQNwaYBWwDjioBOfcBGwHKohIGaACsKIEx9vDq6/a/cab\nborlUTNY79629OFjjyX81CLwzDMWwoqY/pU4l5mi6dNvD7QADgZeB8aoaok6TUTkVuBJ4DfgXVW9\nPtf7xe7T/+UX6wd++2045ZSSROkAePddu3rOnQuHHhpaGD17wtdf22gs51zeYtWnXw3orKoLYhRU\nTaAzcBSwEXhdRK5T1RGR2xW39k6PHrYWtyf8GPjhB7jhBrs5EmLCB5tjUbu2FfP05RWdM0lXeyfP\nE4pcDTRW1VuC59cD9VS1Q8Q2xWrpz51rg0uWLIEqe9TudEWybRuccw78/e/QvXvY0QA29LZXL7tJ\n7zd1ndtT2Iuo5OdLoJ6I7B2UV24ElHiMTXY2dOgAjz/uCT8m7roLDjsMunULO5JdrrgCqla1tRCc\nc8WT8PaSqn4mIsOAudiQzU+BEk+/GTrU6rS0bl3SIzlGjID33rOvTnGacVscIrYK4znn2Kieg0tS\n+s+5DJUWC6Nv3AjHHWcLcJx+ehwDywSLFkHDhram5ElxK69UIl272mzrV14JOxLnkkvoK2cVV1GT\nvieBGJk50+6CP/FEUi86sGmTXeTHj7e6b845kxFJ/8svrYLmF1/AIYfEObB0Nny4XT2zsuxueJIb\nNswmbM2c6eWXncuRrDdyEZHKIjJORJaIyGIRqVec46hC5842nM8TfjHt3Al3323DYqZOTYmED/ZF\npGxZGDIk7EicSy2htPRFZCgwXVWzglm5+6jqxoj3o2rpT55s+eqzz3xN1WLZtAlatrT6+OPGpVzN\ninnz7Br11Vew335hR+Nc+JKypS8ilYCzVTULQFV3RCb8aG3bBl26wMCBnvCLZelSK11ZvbqN1Emx\nhA+2YFfTplaiwTkXnTC6d2oAP4vIEBH5VEReEpEiF2bv3x9OOAEuuCAOEaa7//4XzjwT7rjDBr2n\n8OoyffrYbYhvvgk7EudSQxjzGssApwB3qOocERkA3IutobtLQWUYVq60krszZyYi3DTz7LPwj3/A\nqFFpUc+galWbMNytG0ycGHY0ziVWqpRhqAp8oqo1gudnAfeq6iUR2xTYp3/TTXDQQTay0EVp+3a4\n805bbXzSpLRaIX7bNvvW99xz0Lhx2NE4F55YFVyLKVVdJSLLRaSWqn6NlWFYFO3+8+bBv/9tN+9c\nlNats1r4++wDn3ySdnc999rLvvl17mw39b0uj3P5C2uEc0dghIh8BpwE9IlmJ1VrrD7ySNrlrfhZ\ntAjOOMOmKk+YkLYfXPPm1tXz/PNhR+JcckupyVljx9qNu3nzoHTpEAJLNW+9ZX1hTz4J119f+PYp\nbuFCOP98q7KagoORnCuxtJqR+9tvcPzxtipWlKX1M5cq9O1r1cnefDOjahW0b2/dO4MGhR2Jc4mX\nVkn/0Ufh00+tprorwO+/Q9u2tiL8xIlwxBFhR5RQP/9si63MmGH1eZzLJEmd9EWkNFZe+UdVbZbr\nvT8l/Z9+ghNPhDlz4OijExxoKlm5Ei67DGrUsMHrFYo8/SEtPPmkVZR4662wI3EusZJyRm6EO7HF\nUwq96tx/P9xyiyf8As2dazdsmzWzMfgZmvABOna00V3vvRd2JM4ln7AKrh0BXAS8DBR4VZo3z9bm\n7tEjIaGlpjFjrB7BoEHwwANJtfBJGMqVg379bPGvHTvCjsa55BJWS78/0B1bOStfqlZf5+GH03ak\nYclkZ1uSv/deeP99uPzysCNKGs2b28paL70UdiTOJZeET2MRkUuANao6X0Qa5rddr169WLzYvqbX\nrNkQyHfTzPTrrzYMc+1amDXL1w7MRQSeegqaNIFrr4XKlcOOyLnYS5UyDH2A64EdQHlgP+ANVW0d\nsY3+/rtSuza8+KKNvXYRvv/emrKnn261dLzMaL7atrWE369f2JE4F39JPXoHQEQaAN3yGr3Tt68y\nY4aViXERZsyAFi2sS6dTp4zvvy/M6tVWl2fmTPjLX8KOxrn4SvbROznyvOo88YTVU3ERXn4Z/v53\nGDrU6lF4wi/UIYfYKpB33x12JC6dbdoUdgTRCzXpq+p0Vb00r/datYJatRIdUZLascOqifXrBx98\n4IsIFFGXLjaxr4hdn85FZflyOPZY2Lw57Eiik7QzctetU/bfP+xIksD69XD11daqHz0aqlQJO6KU\nNGaMfXucM8frNrnYatXK5kM+8kjYkaRO906ePOFjQ5fq1rVO6X/9yxN+CbRoAXvvDcOGhR2JSyez\nZ9vs73vuCTuS6IW1MHo1YBhwMNan/6KqDop4P6qF0dPau+/akMzHH7dKma7EZs2CK66wa2nFimFH\n41KdKpx1llULaNMm7GhMMrf0twNdVPUEoB7QQUSODymW5KJqCwC3aWMVMj3hx0zdulah1Vdcc7Ew\ndqxV/73hhrAjKZqk6NMXkQnAYFWdEjzPzJb+tm3Qrp3ddZw4EY48MuyI0s4PP0CdOjB/PlSvHnY0\nLlX9/rtVcR06FBo0CDua3ZK5pb+LiBwF1AFmhRtJyNassVloGzbAhx96wo+T6tWt5v5994UdiUtl\n/fvDKackV8KPVtiTsyoC04Deqjoh4vXMaukvWGAlkVu3hl69oFTo1+K09uuvNsTujTegXr2wo3Gp\nZtUqG1sxa1byTfhLyoXRc4hIWeAN4LXIhJ+jV69eux43bNiQhum6XNabb8Jtt8Ezz9gQExd3FSva\nojxdusDHH/scN1c0Dzxgt9ySIeGnRO0dABERYCiwTlW75PF++rf0VaF3bysDOX48nHpq2BFllOxs\nK13UrZsVZHMuGgsWwIUX2giwZCzil7S1d0TkLOAD4HN2l2G4T1XfCd5P76S/dSvceKPdVRw/Hg49\nNOyIMtKMGXDddfDllxm95oyLkiqcey5ccw3cfnvY0eQtaW/kquqHqlpKVU9W1TrBzzthxJJwy5fb\n4N7y5a0ugCf80Jx9tvXpP/lk2JG4VDBhAqxbZ+PyU1lSDNnMLW1b+jNnwpVXWh2dbt28MzkJLFsG\np50GCxfCYYeFHY1LVtu2Qe3a8MIL0KhR2NHkL2lb+hlp2DC49FJbIKB7d0/4SaJGDbj1VluH2bn8\nDBoEf/1rcif8aHlLP9527rTa9+PH2+IAtWuHHZHLZdMmm2gzYYKtLe9cpJw1GT75BI45JuxoCpa0\nLX0RaSIiX4rINyKSQqWKorNrCNWmTda6nzfPBvWmSMIv6hCwZFPU+PfbDwYOhGbNbCJ02FL580/l\n2CHv+Hv2tFILyZ7wo5XwpC8ipYGngSZAbeDadKu7M23aNPj2W7tLeNRRVjztgAPCDitq6fg/bmGu\nuspa+p062fj9P/6IfVzRSuXPP5Vjhz3jnzvXvqD37BlOPPEQRkv/DOBbVf1eVbcDo4HmIcQRP8uW\nwZlnWgZ55hkoWzbsiFwU6te3mjzffWcDrJYtCzsiF4ZvvoG+fe3voXFjeOqp5ByTX1xhzMg9HFge\n8fxHoO4eWzVrtsdLKWHnTlvdavJkG9TrUsr++1uLf8AAq8pZd8+/zLj76ivrEUxFqRw72AC7F1+E\n5s3h4YetKmu5cmFHFVsJv5ErIlcCTVS1bfC8FVBXVTtGbJMmd3Gdcy6xkrH2zgqgWsTzalhrf5fC\ngnbOOVc8YfTpzwWOEZGjRKQccDUwKYQ4nHMu4yS8pa+qO0TkDuBdoDTwiqouSXQczjmXiZJycpZz\nzrn4SLoyDKk8cUtEskRktYgsDDuW4hCRaiIyVUQWicgXItIp7JiiJSLlRWSWiCwQkcUi8ljYMRWH\niJQWkfkiMjnsWIpKRL4Xkc+D+GeHHU9RiUhlERknIkuCv6GUWWJHRI4NPvecn435/f+bVC39YOLW\nV0Aj7IbvHODaVOn+EZGzgV+BYap6YtjxFJWIVAWqquqCYFWzecBlKfT5V1DVrSJSBvgQ6KaqH4Yd\nV1GIyF09gJLaAAAC80lEQVTAqcC+qnpp2PEUhYgsA05V1V/CjqU4RGQoMF1Vs4K/oX1UdWPYcRWV\niJTC8ucZqro89/vJ1tJP6YlbqjoDWB92HMWlqqtUdUHw+FdgCZAytSdVdWvwsBx2vyilko+IHAFc\nBLwMpOoItpSMW0QqAWerahbYvcdUTPiBRsDSvBI+JF/Sz2vi1uEhxZLRUnHBehEpJSILgNXAVFVd\nHHZMRdQf6A5khx1IMSnwvojMFZG2YQdTRDWAn0VkiIh8KiIviUiqLq1zDTAyvzeTLeknT19TBgu6\ndsYBdwYt/pSgqtmqejJwBHCOiDQMOaSoicglwBpVnU+KtpaBM1W1DtAU6BB0d6aKMsApwLOqegqw\nBbg33JCKLhgG3wx4Pb9tki3pFzpxy8VXYQvWp4Lga/m/gNPCjqUI/gZcGvSLjwLOE5FhIcdUJKq6\nMvj3Z2A81l2bKn4EflTVOcHzcdhFINU0BeYF/w3ylGxJ3yduhShYsP4VYLGqDgg7nqIQkQNFpHLw\neG+gMTA/3Kiip6r3q2o1Va2BfT3/r6q2DjuuaIlIBRHZN3i8D3ABkDKj2FR1FbBcRGoFLzUCFoUY\nUnFdizUa8hVGGYZ8pfrELREZBTQADhCR5cCDqjok5LCK4kygFfC5iOQkzF0L1ie5Q4GhwciFUsBw\nVZ0SckwlkWpdnYcA463dQBlghKq+F25IRdYRGBE0OJcCbUKOp0iCi20joMD7KUk1ZNM551x8JVv3\njnPOuTjypO+ccxnEk75zzmUQT/rOOZdBPOk751wG8aTvnHMZxJO+c1ESkUoi0i7sOJwrCU/6zkWv\nCtA+7CCcKwlP+s5F73GgZrBIxRNhB+NccfiMXOeiJCJHAm+l4gI5zuXwlr5z0UvVksfO7eJJ3znn\nMognfeeitxnYN+wgnCsJT/rORUlV1wEfichCv5HrUpXfyHXOuQziLX3nnMsgnvSdcy6DeNJ3zrkM\n4knfOecyiCd955zLIJ70nXMug3jSd865DPL/3T7aHbcGpycAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f02396e67d0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAB8CAYAAABkFbdUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFP5JREFUeJzt3XmUnFWdxvHvwxIwASEhG3CQsIOKEBcGJjDkgEjYAp5B\nkMUFAZVdhAPBEYKjMyQoyCjKOQygDrLIMiAkBBMYg0S2AxIJEAxLooEkHZYIYZEA+c0f93ZS3anu\ndHVX1Vupej7n1Omq933rvfd9q/r91b33vfcqIjAzs9a1VtEZMDOzYjkQmJm1OAcCM7MW50BgZtbi\nHAjMzFqcA4GZWYtzILA1kqR5kvZtgHwcI+l3RefDrC8cCJqIpK9KmiXpLUkLJf1c0kZV2vdoSfMr\nfM88SftUI/0yIj+QdKGka2uUTveZiLguIvYvIm2zanEgaBKSzgImAGcBHwZ2B7YEpklat6BsBaCC\n0rYekLR20XmwBhARfqzhD9KFfylweKflA4DFwHH59S+B75esHw3ML3k9DxgHPAW8BlwDrJf38w7w\nQU7nDWDT7vYHXJu3fzu/5+wy+Z4NHFTyeh3gZWDX/HpszssS4PfAjiXbzgX2AcYA7wLLcjqP5/XH\nAU/nvD4PfL1T2ucAC4AXgROA5cDWed16wI+AvwKLgCuA9bs4918F7i95vRz4BjAn5/vybj633YBH\ngddzOpeUrPtSTv8V4Dv5s9mnh5/jOOC5fOxPAYd1yu8fgUvzvv8d6FfB8f4V+GR+fkw+3p3y6+OB\n20qO7cF8DhYAPwXWzeuuAH7Yab+/Bc7MzzcDbiV9d18ATiv6f6zZHy4RNId/BtYH/rd0YUS8BdwF\n7Ne+KD+6czTwOWAbYHvgu3k/Y4AFEbFhRHw4IhZ2t7+I+BLwN+Dg/J4fldnseuCoktf7A4sjYqak\n7fP604HB+TjulLROp3TuBv4TuDGnMzKvaiMFmQ+TgsKPJY0EkDQGOBPYF9iOdCEtNQHYFtgl/90c\nuKCrE1bGQcCngU8AR0jqqurov4AfR8RGwNbATTl/HwV+TrrQbgZskvOw4rDp/nN8DtgzH/v3gF9L\nGlayfjdScBxKOncT6fnxTmfl+do772fvktfT8/P3gTNy3vcgneuT87rrgSPbdyhpIOk7eoOktYA7\ngcfzse8LfEvS57o5XusjB4LmMBh4JSKWl1m3iPTP2K67qpog/YJ9KSKWAP/Bygt1V+/rS9XP9cBY\nSevn10cDN+TnRwKTIuLeiPiA9Iv1Q6SgVy4PHfIREXdFxNz8/A/AVGCvvPoI4JqImB0R7wDjV+xI\nEnAi8O2I+HtEvAlcBHyxguOaEBFvRMR8Uklm1y62WwZsJ2lwRLwdEQ/n5YcDd0bEjIhYBpxP+uXd\n+ZjLiohbImJRfn4T8CzwTyWbLIiIn+Xvy7sVHu99rLzw75m3bX/9L3k9EfGniHgkIpZHxF+BK0u2\nmwGEpPbP43DggZznzwCDI+IHEfF+/gyv6iY/VgUOBM3hFWBw/jXV2aZ5fU+VNgj/jfSrrCYi4nlS\n9dBYSf2BQ0jBAVK+/1aybeS8bd55P+VIOkDSQ5JelbQEOJCVAXFTOh7niyXPhwD9gcckLcnvnUIK\ntj21qOT528AGXWx3PKnUNVvSI5IOKsnfijxFxNvAqz1NXNKXJT1ekv+P0/HHQOmxV3q8fwD2kjQc\nWBu4GRglaUtgo4iYmfOwvaRJ+aaF10k/KjbJxxPAjaz8kXE0cF1+viWwWXtecn7OI5VerEYcCJrD\ng6Rfdv9aulDSBqQqnXvzordI//TthpfZ10c6PV+Qn5eriljd/noytO0NpAvCocDTEfFCXr6AdFEA\nVvxS3wJ4qcw+OqQjaT1SHfPFwNCIGEiqWmr/Fb0w76td6fNXSO0hH42Igfmxca5mqaqIeC4ijo6I\nIaTqmVtyQOyQv7ys9ELe5XnPF+QrgVOAQfnYn6RjCaL0fFV0vBHxHCm4nQbcFxFLSYHv68D9JZte\nQWqj2TZXff0bHa83NwCH5/zuRvq8IAX/uSV5GZirIg8ulx+rDgeCJhARr5Pqgn8qaX9J60oaQapz\nnk9quAWYCRwoaWD+RfetTrsScLKkzSUNIv3z3pjXtQGbSCq9QKxuf22ktobu3EhqG/gmK38VkvN+\nkKR98l1PZwH/AB4os49FwIgcLCA1fvYjXeSWSzqA1O5Ruu/jJO2YL7Lnt6/I1SX/DVwmaQhAPh+9\nraPusgpH0rHtaZAajIPUwH4rcLCkUZL6kRp0S/9XuzvvA/J+XgHWknQcqURQVi+P9z7g1PwXUrtA\n6WtIpaClwNuSdgRO6pTuzJzHq4C7I+KNvOoRYKmkcyR9SNLakj4u6dPd5Mf6yIGgSUTED0l3l/yI\ndFF5iHSHx74R8V7e7Frgz6Q7UO4mXYRLfx0GqWpmKqkR8FngB3n/z5B+xb0g6bV8AVrd/i4CvpuL\n+N/uIt+LSBf3PYDflCyfAxxLutvkZVID7CER8X6Z3dyc/74q6dH8K/V00gX/NVKJ47cl+74b+Amp\n/n4OqUQFqVQFcC6pwfWhXK0xjVSFU/YQWPUcdre+1P7Ak5KWAj8GvhgR70bEU6Rf9NeTSkav0bH6\nqsvzHhFPA5fkY1pECgIzVpOfSo4X0gV/A1I1UbnXAGeTqnzeIJVQOn83yMe3DyurA9sD08GkdpUX\nSJ/9laQ746xGlKrrapiAtAXwP6Q6vgCujIifSLqQdNvey3nT8/I/qBVE0lzg+Ij4v6LzUk+SdgJm\nAf26aHAvXKt+NlYf66x+kz57j3R/8MxcZ/2YpGmkoHBpRFxahzyYdSDp86R2g/6k+vk7GjUImNVa\nzauGImJR+50E+da02ay888O9Tq0oXye1YTxH+rFyUvebmzWvmlcNdUgsNWDeB3yM1Ph3HKk++1Hg\nrIj4e90yY2ZmQB0bi3O10C3AGblkcAWwFalRaCGpgcvMzOqsLiWCfPvfJGBKRFxWZv0IUk/KnTst\nr19xxcysiUREj6vea14iyPd2X03qLHRZyfJNSzb7POmujVX0ZgAlP8o/xo8fX3gemuXhc+nz2ciP\nStXjrqFRpPvBn5D0eF72HeAoSbuS7h6aSxqx0czM6qzmgSAiZlC+5DGl1mmbmdnquWdxCxk9enTR\nWWgaPpfV5fNZrLrePlopSdHI+TMza0SSiAZrLN5C0u8lPSXpSUmn5+WDJE2TNEfSVEkb1zovZma2\nqnqMNTQcGB4lQ0wAh5E6k70SERdLOhcYGBHjOr3XJQIzswpVWiKoe9WQpNuBy/Nj74hoy8FiekTs\n2GnbYgPBe+/B+efDwIGw9daw1Vbp78CBII+OYWaNqdJAUI/bR1fIHcdGAg8DwyKiLa9qA4Z18bbi\nzJgBt94Khx4KDz8Mc+fCC3nelNLAUPp3xAhYf/1ud2tm1kjqViLI1UL3Ad+PiNslLYk0e1L7+tci\nYlCn9xRbIjj7bNhwQxg/fuWyCFiyJAWE9sBQ+nf+fNhkk44BYvfdYcyY4o7DzFpKQ5YI8hATtwLX\nRsTteXGbpOERsSj3Ml5c7r0XXnjhiuejR4+u721mkybBr3/dcZkEgwalx6fLTJr0wQfw0ksdg8Pc\nufXJr5m1pOnTpzN9+vRev78ejcUCfgW8GhFnliy/OC+bKGkcsHFDNRY//zyMGgULFsBa7m5hZmuO\nRiwRlBti4jxgAnCTpONJU+4dUYe89NzkyXDQQQ4CZtb0ihxiAuCzq3v/P/5R3fz01Lp3TOKDE77J\n8oLSt8a01lrQr1/RuTCrrobvWbzeevXP34B4k3nLNmWrfgt4UxvWPX1rXO+/D089BTvsUHROzLrW\niFVDfVJIieD2e+Bnu/PKNAcB62jUKHj5ZQcCay71GGLiGkltkmaVLLtQ0ouSHs+Pxrq3ctKk1D5g\n1smAAfDWW0Xnwqy66tES+gug84U+gEsjYmR+3F2HfPRMBNx1lwOBleVAYM2o5oEgIu4HlpRZ1Zhj\nNDz+eOpEtt12RefEGpADgTWjIu+NPE3SnyVd3VAjj7payLrRv78DgTWfogLBFcBWwK7AQuCSgvKx\nqvb+A2ZluERgzaiQu4YiYsVwEpKuAu7satu6DjHR1gZ/+QvstVft0rA1mgOBNaKGH2ICVow6emdE\n7JxfbxoRC/PzM4HPRMTRZd5X3yEmfvnLVDV0yy31S9PWKBddBK+/DhMmFJ0Ts641XD8CSTcAewOD\nJc0HxgOjJe1KuntoLvCNWuejR1wtZKsxYEAafsqsmdRjiImjyiy+ptbpVmzZMrjnHrj88qJzYg3M\nVUPWjDyiWrsZM9Ito8Mab34caxwOBNaMHAjauVrIesCBwJpRUUNMDJI0TdIcSVMboh/B5Mlw8MFF\n58IanAOBNaMeBQJJwyUdIulgSUMrTKPcEBPjgGkRsT1wb35dnOeeS7eCjBxZaDas8TkQWDNabSCQ\ndARpsvkvkCaPeUTSF3qaQBdDTIwlzVpG/ntYT/dXE5Mnw4EHehIaWy33LLZm1JO7hr5Lus9/MYCk\nIaRf8Tf3Id1hEdGWn7cBxbbQTp4MJ51UaBZszTBgALz9dtG5MKuunvwEFvByyetXqeKAcbnHWHGz\n4yxdCg8+CJ9d7WRpZq4asqbUkxLB3cDvJF1PCgBHAlP6mG6bpOERsUjSpsDirjas+RAT99wDu++e\nRhw1Ww0HAmtENR9iQtLZpAv1rnnR/RFxW0WJrDrExMXAqxExUdI4YOOIWKXBuC5DTJxwAuy8M5xx\nRm3TsaawfDmss06astJNStaoKh1ioidf5Q2Ac4HdSMNBPFBhhm7I79lB0nxJxwETgP0kzQH2ya/r\nb/ly9x+wiqy1Fqy/PrzzTtE5MaueHg86J2kX0l1DhwMvRsS+tcxYTrO2JYLHHoOjj04jjpr10JAh\naQL7oZXeSG1WJ7UoEbRbDCwiNRYPqTRjDcmdyKwX3E5gzaYn/QhOljSddMvoYOCEiPhErTNWF56N\nzHrBgcCaTU/uGtoC+FZEzKx24pLmAW8AHwDvRcRu1U6jS21tMGcO7Lln3ZK05tC/v/sSWHNZbSCI\niPNqmH4AoyPitRqmUd6UKbDfftCvX92TtjWbSwTWbBrhBriqdU6riKuFrJccCKzZFB0IArhH0qOS\nTqxbqu2T0BxwQN2StObhQGDNppDJ60uMioiFefyiaZKeyYPU1daMGbDDDp6ExnrFgcCaTaGBoH0C\n+4h4WdJtpE5rHQJBTYaYcLWQ9YEDgTWamg8xUSuS+gNrR8RSSQOAqcD3ImJqyTa16VC2ww5w/fXw\nqU9Vf9/W9M49FwYOhHHFzqJh1qVKO5QVWSIYBtwmqT0f15UGgZp59tk04qgnobFe8lDU1mwKCwQR\nMZeVA9nVjyehsT4aMAAWLCg6F2bV03pXQw8yZ33kNgJrNq0VCJYuhYce8iQ01ieertKaTaGBQNIY\nSc9IelbSuTVPcNo02GMPT0JjfeISgTWbwgKBpLWBy4ExwEeBoyTtVNNEXS1kVeBAYM2myBLBbsBz\nETEvIt4DbgQOrVlqy5fDXXd52GnrMwcCazZFBoLNgfklr1/My2rjT3+CjTaCbbapWRLWGhwIrNkU\n2Y+gZz3FIkBVGJfO1UJWJRtsAC+8AMceW3ROzKqjyEDwEmmug3ZbkEoFHVy4zTZwyCEwcGDfhpiY\nPBkmTuzde81KbLstXHUVvPtu0TkxS2bPns7s2dN7/f4ih5hYB/gLsC+wAHgEOCoiZpdsEzFxIlx8\nMVxwAZx6au86gi1aBDvtBIsXw7rrVukIzMwaUy3nLK6qiHgfOBX4HfA08JvSILDCOefAAw/AzTfD\nXnvBM89UntiUKanvgIOAmdkqCu1HEBFTImKHiNg2Ii7qcsPtt4f77oOjjkpTS06YAO+/3/OEPEm9\nmVmXCqsa6omyo4/OmwcnngivvQbXXAO77NL9TpYtg6FD0/zEQ4fWLK9mZo1ijaka6rURI2DqVDjl\nlDTn8AUXdN9qd//9adhpBwEzs7IKCQSSLpT0oqTH82NMhTuAr30NZs6EJ56AT34SHn64/LauFjIz\n61ZRJYIALo2Ikflxd6/2stlmcNttqVRw6KFw9tmrDhTv2chW6MsMRtaRz2V1+XwWq8iqoSr0EiOV\nDo48EmbNSoPE77JLaliGNAnNm296EprM/2zV43NZXT6fxSqyQ9lpkr4MPAqcFRF/79PehgxJ00/e\ncQcccwyMHQvDh6fSQDV6JpuZNamalQgkTZM0q8xjLHAFsBVphrKFwCVVS3jsWHjyyXS30PjxrhYy\nM1uNwm8flTQCuDMidi6zrnHvbTUza2ANP3m9pE0jYmF++XlgVrntKjkQMzPrnaLaCCZK2pV099Bc\n4BsF5cPMrOUVXjVkZmbFasiexXWfy7jJSZon6Yncee+RovOzppF0jaQ2SbNKlg3KN0TMkTRV0sZF\n5nFN0sX57Fsn0xYlaQtJv5f0lKQnJZ2el1f0/Wy4QFDIXMbNL4DRufPebkVnZg30C9L3sdQ4YFpE\nbA/cm19bz5Q7n9XpZNp63gPOjIiPAbsDp+TrZUXfz4YLBNR7LuPW4Yb3XoqI+4ElnRaPBX6Vn/8K\nOKyumVqDdXE+wd/RikXEooiYmZ+/CcwmTflb0fezEQNBfecybg0B3CPpUUknFp2ZJjEsItry8zZg\nWJGZaRKnSfqzpKtd1Va5fCv+SOBhKvx+NmIgcOt19Y2KiJHAAaSi415FZ6iZ5LHS/b3tm9p1Mm0B\nkjYAbgXOiIilpet68v1sxEDQo7mMrefa+2xExMvAbaTqN+ubNknDIfWLARYXnJ81WkQsjgy4Cn9H\ne0zSuqQgcG1E3J4XV/T9bMRA8CiwnaQRkvoBRwJ3FJynNZak/pI2zM8HAJ+jiw58VpE7gK/k518B\nbu9mW1uNfLFq12UnU+tIkoCrgacj4rKSVRV9PxuyH4GkA4DLgLWBq7udxtK6JWkrUikAUgfC63w+\nKyPpBmBvYDCpvvUC4LfATcBHgHnAEX0eOLFFlDmf44HRpGqhFZ1MS+q4rQuS9gT+ADzByuqf84BH\nqOD72ZCBwMzM6qcRq4bMzKyOHAjMzFqcA4GZWYtzIDAza3EOBGZmLc6BwMysxTkQmFVI0kaSTio6\nH2bV4kBgVrmBwMlFZ8KsWhwIzCo3AdgmT6AysejMmPWVexabVUjSlsCkiNi56LyYVYNLBGaV8wQq\n1lQcCMzMWpwDgVnllgIbFp0Js2pxIDCrUES8CvxR0iw3FlszcGOxmVmLc4nAzKzFORCYmbU4BwIz\nsxbnQGBm1uIcCMzMWpwDgZlZi3MgMDNrcQ4EZmYt7v8BSNaueyG1CeoAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f0239952290>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange,sin,pi\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,show,ylabel\n", + "amp = 15.\n", + "vi_t=3.# # transition voltage\n", + "t=arange(0,2*pi+0.1,0.1)\n", + "vi=[]\n", + "for x in t:\n", + " vi.append(amp*sin(x))\n", + "vo=[]\n", + "for x in vi:\n", + " vo.append(x+3)# # output voltage\n", + "print 'transition voltage: %0.2f'%vi_t\n", + "for i in range(0,len(t)):\n", + " if(vo[(i)]<=0):\n", + " vo[(i)]=0\n", + "\n", + "subplot(2,1,1)\n", + "plot(t,vo,2,'011','',[0,0,7,18])\n", + "title('Ouptut voltage in sin wave')\n", + "xlabel('t')\n", + "ylabel('vo')\n", + "show()\n", + "\n", + "\n", + "t=arange(0,20+0.1,0.1)\n", + "vo=[]\n", + "for i in range(0,int(len(t)/2)):\n", + " vo.append(15+3)\n", + "\n", + "for i in range(int(len(t)/2-1),len(t)-1):\n", + " vo.append(0)\n", + "subplot(3,1,2)\n", + "\n", + "plot(t,vo,2,'011','',[0,-5,21,20])#\n", + "title('Ouptut voltage in square wave')\n", + "xlabel('t')\n", + "ylabel('vo')#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 515 Example 16.4." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHThJREFUeJzt3XuUXWWZ5/HvkwvBRKiQcG0IkEQYCC2EmdV0RMECJYaG\niI4KxHEMWUJwBpSLQEK3SoS1mlsQGnoBEyHCAHJpCaAOg2BimTALlUtC0kCISKAJUAkUEEyIUFDP\n/LH3JieHU5Vzf/fl91mrFudWZz8pj/Wr5333+25zd0REpJgGhS5ARETCUQiIiBSYQkBEpMAUAiIi\nBaYQEBEpMIWAiEiBKQRE2sjM+sxsXOg6RBIKAcm8Zv9ibdcvajO7ycwuavVxRAaiEJC8sJS/n0gq\nKQQkFcxsfzPrMrM3zezfzWxqyXNdZvatkvsnmdmS+Pbi+OEnzewvZvY1M+s0szVmdr6ZvWZmq83s\n6/W+X1mdw8zsLTM7oOSxnczsHTPbMb5/ipn9ycx6zOw+M9utwr93JvB14Lz4OPfFj882s+fM7G0z\ne8rMvlTyPYPM7Ir43/S8mZ0edy2D4uc7zOxGM3sl/vdflDwn0h99QCQ4MxsK/BJ4ANgJ+A5wm5nt\nE7/E46+PcPfD45sHuvt27v5v8f1dgNHA3wDTgXkNvl/y/LvA3cC0koePB7rc/XUzOxL4Z+BrwG7A\ni8AdFY4zD7gNuDQ+znHxU88Bn3H37YEfAbea2S7xczOBKcBBwH8GvlT277gJeA8YDxwMTAZOrvTv\nFEkoBCQNJgEj3P0Sd3/f3X8L/IroL+VG/MDde919MfB/gBMaLTT2M+DEkvtfjx8D+G/Aje6+zN3f\nA84HPmVme/bzXlsMO7n7z929O759F/An4JD46eOBq9z9FXd/C7g4+f44KI4GznL3Te7+GnBVWZ0i\nHzEkdAEiRH+tv1T22Ivx4/V60903lb3fR4Zl6tQFDDezQ4B1RH+Z3xM/txvwWPJCd99oZj3A7sB/\nbO2NzeybwFnA3vFDHwd2LHnv0p/TmpLbewFDgVfNPsyVQdUcU4pNISBp8AowxszMN29ruxewMr69\nERhR8vpdq3jPHcxsuLu/U/J+yxt4vw+5+wdmdhfRkNA64JfuvrHk37J38lozG0E0LPVypbcqvWNm\newHzgCOBR9zdzWwpm7uFV4ExJd9Sevsl4F1gtLv31fLvkWLTcJCkwe+Bd4gmSYeaWSdwLJvH0pcB\n/9XMPmZmnwC+Vfb9a4nGwcv9KH6/w4BjgGR8v973K5UMCZUOBQHcDswws4PMbBjR/MDv3b3SX+Rr\ngdJTUUcQBcPrwCAzmwH8bcnzdwFnmNnfmNlIYFb8etz9VeBB4Mdmtl08iTzezA5HZAAKAQnO3XuB\nqURj2q8B/wr8d3dfFb/kSqIJz7XAT4Fb2fKv6DnAzfGZRV+NH+sG3iT6y/wW4NQG36+85j8CG4iG\naP5vyeMLgR8QTR6/Aoxly3H50uPcCEyIj7PA3Z8GrgAeiev/W+Dhktf/hOgX/XLgcaJ5jg9K/vL/\nJrAN8DTwBlHo1dTlSPFYqy4qY2ZjgP8N7Ez0wZ/n7leb2SjgTqL2/AXg+HiSS6Qp4k7iFncfs7XX\nZpmZHQ1c5+57h65FsquVnUAv0ZkKBxCd/XGame0PzAYecvd9gYXxfRHZCjPb1sz+wcyGmNnuwAXA\ngtB1Sba1LATcvdvdl8W3NwDPEJ0h8UXg5vhlNxOd6yzSbHm8bqoRDVW9ATwBPAX8MGRBkn0tGw7a\n4iBmewO/Ixrj/A933yF+3IA3kvsiItJeLZ8YNrOPE02SneHufyl9Lj4dMI9/sYmIZEJL1wnE2wHc\nTTRJd2/88Foz29Xdu+M9VdZV+D4Fg4hIHdy9ps0PW9YJxEM9NwJPu/tVJU/9gmgvF+L/3lv+vQDu\nHvbrC1+INph58snwtTT4dcEFFwSvIU9f+nnq55nWr3q0cjjo08A3gCPMbGn8NQW4BDjKzFYRrYy8\npIU11K+nBz7/ebj55q2/VkQko1o2HOTuD9N/yHy+Vcdtmp4euPBCOOkkuOQSGDo0dEUiIk2nFcP9\n6emBT30KPvEJeOCB0NU0pLOzM3QJuaKfZ3Pp5xlWW04RrdWW+4gF0NsLw4fDe+/BDTdEIXD33eHq\nERGpgpnhNU4MKwQq6e6GAw+Edetg/XrYay947jnYccetf6+ISCD1hICGgyrp6dn8C7+jA445Bm6/\nPWxNIiItoBCopKcHRo/efP+kk+Cmm0JVIyLSMgqBSspD4Mgjo6Gh5cv7/x4RkQxSCFRSHgKDB8M3\nv6k1AyKSOwqBSl5/fcsQAJg+HW69NTpzSEQkJxQClZRODCf23TcXawZEREopBCopHw5KaIJYRHJG\nIVBJfyFw/PGwcGE0XCQikgMKgUr6CwGtGRCRnFEIVFJpYjihISERyRGFQCWVJoYTWjMgIjmiECjX\n1wdvvQWjRlV+XmsGRCRHtIFcuTffhLFjoyDoz6pVcNhhsGaNrjMgIqmhDeSaob9J4VJaMyAiOaEQ\nKDfQpHApTRCLSA4oBMoNNClcSmsGRCQHFALlqhkOAq0ZEJFcUAiUqzYEQENCIpJ5CoFytYSA1gyI\nSMYpBMpVOzEMWjMgIpmnEChX7cRwQtcZEJEMUwiUq2U4CLRmQEQyTSFQrtYQAE0Qi0hmKQTK1RMC\nWjMgIhmlECjlXtvEcEJrBkQkoxQCpd55BwYNguHDa/9eDQmJSAYpBErVMxSUOPJIeO01rRkQkUxR\nCJRqJAS0ZkBEMkghUKqREIBozcBtt2nNgIhkhkKgVD2TwqX22UdrBkQkUxQCpWpdLVyJJohFJEMU\nAqUaHQ4C+NrXtGZARDJDIVCqGSHQ0QHHHqs1AyKSCQqBUs0IAdCQkIhkhkKgVKMTw4kjjtCaARHJ\nBIVAqWZMDIPWDIhIZigESjVrOAi0ZkBEMkEhUKqZIbDPPjBlCrz0UnPeT0SkBczdQ9fwEWbmba+r\ntzfaOO6998CsvccWEWkCM8Pda/oFpk4g0dMDO+ygABCRQlEIJJo1KSwikiEKgUQz5wNERDJCIZBQ\nCIhIASkEEgoBESmgloaAmc03s7VmtqLksTlmtsbMlsZfU1pZQ9WatVpYRCRDWt0J/BQo/yXvwI/d\n/eD4Kx2b72tiWEQKqKUh4O5LgDcrPJW+8zA1HCQiBRRqTuA7Zvakmd1oZiMD1bClHIfA+++HrkBE\n0mpIgGNeB1wY374IuAL4VvmL5syZ8+Htzs5OOjs7W1tVTkPgyithxQqYPz90JSLSbF1dXXR1dTX0\nHi3fNsLM9gZ+6e6frPa5INtG7LcfLFgAEya097gttGEDjB0L48fD738fuhoRabVMbBthZruV3P0y\nsKK/17ZVDieGr70W9t1Xe9iJSP9a2gmY2e3AZ4EdgbXABUAnMJHoLKHVwKnuvrbs+9rbCfT1wbBh\nsGkTDAkxQtZ8GzZEHcCDD8Lf/R1s3AhDh4auSkRaqZ5OoKW/8dx9WoWH0zc6vX49jBiRmwCAqAs4\n4gg46CDYeWd45RXYa6/QVYlI2uTnt14jcjYpvGEDXHEFLFoU3R8zJhoSUgiISDltGwG5Wy2cdAEH\nHBDdT0JARKScOgHI1aRweRcACgER6Z86AcjVcFB5FwAKARHpnzoByE0IVOoCAPbcExpcTyIiOaVO\nAHITApW6AFAnICL9UycA0cTwgQeGrqIh/XUBoBAQkf6pE4BcTAz31wVAtE5g/fpoLZyISCl1ApD5\n4aCBugCAQYNg991hzRrYZ5/21iYi6aZOADIfAgN1AQkNCYlIJQoByHQIJF3AD34w8OsOOQTuv789\nNYlIdrR8K+l6tHUDOXf42MfgjTdg+PD2HLOJLrsMnngC7rhj4Ne99FK0j9Bzz8GoUe2pTUTaq54N\n5BQCGzfCTjvBO++053hNlOwUumjRwENBiRkzotd///utr01E2i8T1xNInQwPBVUzF1DqvPPgmmsy\nmXci0iIKgYyGQLVzAaX23x8OPVSXmhSRzRQCGQ2BWruAxKxZMHcu9Pa2pi4RyRaFQAa3ka6nC0hM\nmhRdd/jOO5tfl4hkj0Igg6uF6+0CErNnwyWXRFfVFJFiUwhkbDiokS4gMXlydL1hrRsQEYVAxkKg\n0S4AwGxzNyAixaYQyFAINKMLSHzlK9DdDQ8/3Ph7iUh2KQQyNDHcjC4gMWQInHuuugGRolMIZGRi\nuJldQGL6dHj8cVi+vHnvKSLZohDIyHBQM7uAxLbbwplnRvsPiUgxae+gjg548UUYObI9x6tDrXsE\n1WL9ehg3Dh57LFo/ICLZpb2DatXbG22k09ERupIBtaILSHR0wMyZ0VCTiBRPsTuB7u7o2sLr1rX+\nWHVqZReQ6O6GCRNg5croUpQikk3qBGqVgUnhVnYBiV13hRNOgKuvbt0xRCSdFAIpnhRuxRlB/Tnn\nHLj+enj77dYfS0TSQyGQ4hBoRxeQGD8ejjoK5s1r/bFEJD0UAikNgXZ2AYlZs+DKK+Hdd9t3TBEJ\nq9ghkOLVwu3sAhITJ0bz5Lfc0r5jikhYxQ6BlE4Mh+gCErNnR4vHPvig/ccWkfZTCKSwEwjRBSQO\nPzz6kdxzT/uPLSLtpxBIWQiE7AJgy22mU7iERESaTCGQshAI2QUkpk6NFlIvXBiuBhFpj2KHQMom\nhkN3AYlBg6IzhbTNtEj+FTsEUjYxnIYuIDFtGqxaBY8+GroSEWml4u4d1NcHw4bBpk3RFVYCa8ce\nQbX6l3+BJUvg5z8PXYmIVEN7B9Vi/XoYMSIVAQDp6gISJ58MixfDs8+GrkREWqW4IZCiSeG0zAWU\nGzECTjsNLr88dCUi0irFDYEUTQqnsQtInH46LFgAL78cuhIRaYXihkBKJoXT2gUkRo+OrkV85ZWh\nKxGRVih2CKSgE0hzF5A4+2yYPx/eeCN0JSLSbAqBgNLeBSTGjIHjjosCS0TyRSEQUBa6gMR558E1\n10QriUUkP4obAoEnhrPSBST23x8OPTQaFhKR/GhpCJjZfDNba2YrSh4bZWYPmdkqM3vQzEa2soZ+\nBZ4YzlIXkJg1C+bOhd7e0JWISLNUFQJmdpyZXRF/Ta3h/X8KTCl7bDbwkLvvCyyM77dfwOGgrHUB\niUmTYOxYuPPO0JWISLNsNQTM7BLgu8BTwNPAd83s4mre3N2XAG+WPfxF4Ob49s3Al6qutpkChkAW\nu4BEss10X1/oSkSkGarZM+EYYKK7fwBgZjcBy4Dz6zzmLu6+Nr69FtilzvdpTKAQSLqARYvafuim\nmDwZhg6F+++HY48NXY2INKqaEHBgJNAT3x8ZP9Ywd3czq/hec+bM+fB2Z2cnnZ2dzThkcuBgE8NZ\n7gJgy4vOKAREwurq6qKrq6uh9+h3F1Ezuxb4GbAHcCnwW8CAzwKz3f2Oqg5gtjfwS3f/ZHx/JdDp\n7t1mthvwW3ffr+x7WruL6MaNsNNObT/fMY07hdbj/fdhv/3gppvgM58JXY2IJJq9i+gq4HKiAPgN\n8DxwNzCp2gDoxy+A6fHt6cC9DbxXfQINBWW9C0gMGQLnnquLzojkwVavJxD/JX9i/PUxou7gdndf\ntdU3N7udqHPYkWj8/4fAfcBdwJ7AC8Dx7v5W2fe1thNYuhRmzIBly1p3jDJ56QISf/1rdKbQr38N\nBx4YuhoRgfo6gZouKmNmBxOd9vlJdx9cY321HKe1IfCb38DFF7f1IrqXXQZPPAF3NNJDpcyll8KK\nFXDrraErERGoLwS2OjFsZkOAfyDqBD5HNDdwQV0VpkWbJ4WzfkZQf779bRg3DlavjroCEcmefucE\nzGyymc0HXgZOAX4FjHf3E939vnYV2BJtXi2cl7mAch0dMHNmFHAikk0DnR20CLgduNvd27qJcMuH\ngy68MNr74KKLWneMWN7mAsp1d8OECbByJey8c+hqRIqtqWcHufuR7v6TdgdAW7Tx7KC8dgGJXXeF\nE06Aq68OXYmI1KOYu4i2KQSyukdQrc45B66/Ht5+O3QlIlKrYoZAmyaG894FJMaPh6OOgnnzQlci\nIrUqZgi0YWK4KF1AYtas6DrE774buhIRqUVxQ6DFnUBRuoDExInRorFbbgldiYjUoqbFYu3S8rOD\nOjrgxRdhZGuuZ5P3M4L687vfwSmnwDPPwOCWLSUUkf40e++gfOrtjTaO6+ho2SGK1gUkDj88arDu\nuSd0JSJSreJ1At3d0bjFunUtefuidgGJ++6Lll88+mi07bSItI86gWq0eFK4qF1AYurUqNFq47ZM\nItKAYoZAiyaFi3ZGUCWDBkVnCmmbaZFsUAg0UdG7gMS0abBqVTQkJCLpphBoEnUBm22zDXzve9FW\n0yKSbsULgRatFlYXsKWTT4bFi+HZZ0NXIiIDKV4ItGBiWF3AR40YAaedBpdfHroSERlIMUOgyZ2A\nuoDKTj8dFiyAl18OXYmI9Ech0CB1Af0bPRqmT4/2FBKRdFIINEhdwMDOPhvmz4c38ndVCpFcKF4I\nNHFiWF3A1o0ZA8cdF4WliKRP8UKgiRPD6gKqc955cM010UpiEUmXYu0d1NcHw4bBpk0wZEhDb1X0\nPYJq9eUvw+c+F00Wi0hraO+grVm/Pjp3scEAAHUBtZo1C+bOjTZxFZH0KFYINGlSWHMBtZs0CcaO\nhTvvDF2JiJQqVgg0aVJYXUB9Zs+ONpbr6wtdiYgkihUCTZgUVhdQv8mTYehQuP/+0JWISKJ4IdBg\nJ6AuoH5mm7sBEUkHhUAN1AU07itfiS7u9vDDoSsREVAI1ERdQOOGDIFzz1U3IJIWxQqBBiaG1QU0\nz/Tp8PjjsHx56EpEpFgh0MDEsLqA5tl2WzjzTLjsstCViEjjq6aypM7hoKQLWLSoBTUV1Le/DePG\nwerV0foBEQmjeJ1AHSGgLqD5Ojpg5swoXEUknGLtHbTHHvDII9HWllXSHkGt090NEybAypWw886h\nqxHJPu0dNBD3uiaG1QW0zq67wgknwNVXh65EpLiK0wls3Ag77VTTfsbqAlrvz3+Gv/97eP552H77\n0NWIZJs6gYHUMR+gLqD1xo+Ho46CefNCVyJSTMXpBJYuhRkzYNmyql6uLqB9li2DY46JuoFhw0JX\nI5Jd6gQGUmMnoC6gfSZOhAMPhFtuCV2JSPEUJwRqmBTW6uD2mz07Wjz2wQehKxEpluKEQA2rhdUF\ntN/hh0cZfc89oSsRKZZihUAVnYC6gDBKt5lO4TSVSG4pBMqoCwhn6tToDN6FC0NXIlIcCoES6gLC\nGjQouiC9tpkWaZ/ihEAVE8PqAsKbNg1WrYJHHw1diUgxFCcEtjIxrC4gHbbZBr73Pbj00tCViBRD\nsBAwsxfMbLmZLTWzP7b8gFsZDlIXkB4nnwyLF8Ozz4auRCT/gq0YNrPVwH9x9zcqPNf8FcMdHfDi\nizBy5Eee0urg9PnRj+Cll+CGG0JXIpIdWVwxXFOxdevtjU476eio+LS6gPQ5/XRYsABefjl0JSL5\nFrITeB5YD3wA/C93/0nJc83tBLq7o30J1q37yFPqAtLrrLNg8GCYOzd0JSLZUE8nEPLykp9291fN\nbCfgITNb6e5LkifnzJnz4Qs7Ozvp7Oys/0gDTAqrC0ivs8+Ggw6Cf/xHGDUqdDUi6dPV1UVXV1dD\n75GKXUTN7AJgg7tfEd9vbieweDH80z/BkiVbPKwuIP1mzIj+N/r+90NXIpJ+mZkTMLPhZrZdfHsE\nMBlY0bID9nNmkLqA9DvvPLjmmpquBSQiNQg1MbwLsMTMlgF/AH7l7g+27GgVQkDrArJh//3h0ENh\n/vzQlYjkU5A5AXdfDUxs2wErrBZWF5Ads2bBiSfCqafC0KGhqxHJl9CniLZH2cSwuoBsmTQJxo6F\nO+8MXYlI/hQnBEo6AXUB2ZNsM93XF7oSkXwpXAioC8imyZOjoaD77w9diUi+FC4E1AVkU+lFZ0Sk\neYoRAvHEsLqAbPvqV6PF3w8/HLoSkfwoRgjEE8PqArJt8OBo3YC6AZHmScWK4XJNXTHc1wfDhrHh\ntU2M/09DtDo44/76Vxg3Dh54INoOSkQ2y8yK4bZavx5GjODaeUPUBeTAttvCmWfCZZeFrkQkH/Lf\nCTz3HH2Tv8BuG/+sLiAn3n476gYefTRaPyAiEXUClbz+Omt7R6sLyJHtt4eZM6NJfhFpTO5DYNOa\nHp5at6POCMqZM86An/2s4iUiRKQGuQ+BRf/Ww7DdRqsLyJlddon2E7r66tCViGRbrkNgwwb4w/09\nTDis/wvMS3adcw5cf300RyAi9cl1CFx7LUzcs4fR+yoE8mjcuGg7iXnzQlcikl25DYFkdXDnAR/d\nRlryY9YsuPJKePfd0JWIZFNuQyBZHTzK+7++sGTfQQdFX9ddF7oSkWwKeaH5AS1fXv/3vv9+1AUs\nWgR8p/KlJSU/5s6Fo4+Otog6/vjQ1YhkS2pD4BvfaOz7TzopXhfQz/WFJT8mTIgWjp16auOfG5Gi\nyf+K4T32gEcegTFjmvN+IiIppRXD5dwrXl9YREQi+Q6Bd96BQYNg+PDQlYiIpFK+Q0DzASIiA1II\niIgUmEJARKTA8h0CmhQWERlQvkOgR6uFRUQGkv8QUCcgItIvhYCISIEpBERECizfIaCJYRGRAeU7\nBDQxLCIyoPyHgDoBEZF+KQRERAosvyHQ2xttINfREboSEZHUym8I9PTADjuA1bS1tohIoeQ7BDQp\nLCIyoHyHgOYDREQGpBAQESkwhYCISIHlNwS0WlhEZKvyGwKaGBYR2ap8h4A6ARGRASkEREQKTCEg\nIlJg+Q0BTQyLiGxVfkNAE8MiIlsVJATMbIqZrTSzP5nZrKYfoK8P3noLRo1q+luLiORJ20PAzAYD\n/wpMASYA08xs/6YeZP16GDEChgxp6ttmVVdXV+gSckU/z+bSzzOsEJ3AIcBz7v6Cu/cCdwDHNfUI\nmhTegv5P1lz6eTaXfp5hhQiB3YGXSu6viR9rHk0Ki4hUJcR4iVf1qqlT6z/Ca69pUlhEpArmXt3v\n5KYd0GwSMMfdp8T3zwf63P3Skte0tygRkZxw95qupBUiBIYAzwKfA14B/ghMc/dn2lqIiIi0fzjI\n3d83s9OBXwODgRsVACIiYbS9ExARkfRI3Yrhli8kKxgze8HMlpvZUjP7Y+h6ssTM5pvZWjNbUfLY\nKDN7yMxWmdmDZjYyZI1Z0s/Pc46ZrYk/n0vNbErIGrPEzMaY2W/N7Ckz+3cz+278eE2f0VSFQFsW\nkhWPA53ufrC7HxK6mIz5KdFnsdRs4CF33xdYGN+X6lT6eTrw4/jzebC7PxCgrqzqBc5y9wOAScBp\n8e/Lmj6jqQoB2rGQrJhqOltAIu6+BHiz7OEvAjfHt28GvtTWojKsn58n6PNZF3fvdvdl8e0NwDNE\na65q+oymLQRav5CseBz4jZk9ZmanhC4mB3Zx97Xx7bXALiGLyYnvmNmTZnajhtfqY2Z7AwcDf6DG\nz2jaQkCz1M33aXc/GDiaqF08LHRBeeHRWRX6zDbmOmAsMBF4FbgibDnZY2YfB+4GznD3v5Q+V81n\nNG0h8DIwpuT+GKJuQOrk7q/G/30NuIdoyE3qt9bMdgUws92AdYHryTR3X+cx4Ab0+ayJmQ0lCoBb\n3P3e+OGaPqNpC4HHgH3MbG8z2wY4AfhF4Joyy8yGm9l28e0RwGRgxcDfJVvxC2B6fHs6cO8Ar5Wt\niH9JJb6MPp9VMzMDbgSedverSp6q6TOaunUCZnY0cBWbF5JdHLikzDKzsUR//UO0MPA2/TyrZ2a3\nA58FdiQaW/0hcB9wF7An8AJwvLu/FarGLKnw87wA6CQaCnJgNXBqyXi2DMDMPgMsBpazecjnfKJd\nGKr+jKYuBEREpH3SNhwkIiJtpBAQESkwhYCISIEpBERECkwhICJSYAoBEZECUwiIVMnMOszsf4Su\nQ6SZFAIi1dsB+J+hixBpJoWASPUuAcbHFz+5NHQxIs2gFcMiVTKzvYBfufsnQ9ci0izqBESqp4uf\nSO4oBERECkwhIFK9vwDbhS5CpJkUAiJVcvce4P+Z2QpNDEteaGJYRKTA1AmIiBSYQkBEpMAUAiIi\nBaYQEBEpMIWAiEiBKQRERApMISAiUmAKARGRAvv/vixeuz53rIgAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f0239638290>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,show,ylabel\n", + "\n", + "t= arange(0,20+0.1,0.1)\n", + "x=[]\n", + "for i in range(0,len(t)):\n", + " if(t[(i)]<=5):\n", + " x.append((15.0/5)*t[(i)])\n", + " elif(t[(i)]>=5 and t[(i)]<=15):\n", + " x.append(-3.2*t[(i)]+30)\n", + " elif(t[(i)]>=15 and t[(i)]<=20):\n", + " x.append((15./5)*t[(i)]-60)\n", + "y=[]\n", + "for i in range(0,len(t)):\n", + " if(x[(i)]>3):\n", + " y.append(x[(i)])\n", + " elif(x[i]<=3):\n", + " y.append(3)\n", + "plot(t,y,2,'011','',[0,0,20,16])#\n", + "\n", + "title('output voltage')\n", + "xlabel('t')\n", + "ylabel('Vo')\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 516 Example 16.5." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYE+X6//H3vbD0LoguHaQIeBARUJqhiEgX2AVWmgh6\nUNSvPz2CHTvi8RxsgCIgIr33DqEp1YLSlCIdpPeyyz6/PzKLYc9uyJZkJtn7dV25mGQmM588zObO\nPNPEGINSSimVkgi7AyillHI2LRRKKaV80kKhlFLKJy0USimlfNJCoZRSyictFEoppXzSQpHJicjL\nIjLcx/hHRWRhMDOlloi4RGS/3Tn8JSK/iUiDICznTxFpZA2/4uv/+Sbz+UZE3knjexNEpKw1PFRE\nXkvjfHyupyqwstodQKWOiPwJ3ApcAy4A84G+xpgLaZmfMeYDr3mXBnYDWY0xCdb4scDYdIW2mYgk\nAL8B1Yx14pCIvAsUM8Y8FuBlfwPsN8a8nviaMaZqIJfp5fpJUsaY99M5n3SfcGWM6ZOO9/pcT1Vg\n6RZF6DFAS2NMXuAe4F4gTb/SfJAMnp8T3A508nquZ5qmjhPXiTRlEhH9gZxKWihCmDHmELAAqAog\nIq1FZIuInBKR5SJSKXFaEeknIgdE5KyIbPfqkhggImOsyVZa/562prtPRHqIyCpr2qEi8pF3BhGZ\nKSLPW8NRIjJVRP4Skd0i8kxK2UWkhYj8JCJnRGSfiLzpNa601WXRTUT2isgxEXnFa3xOqzvkpIhs\nAWr60VyDgLdEJEsKee4Tke+ttvtZRB7wGldGRFZabbJYRL7wajNEZLKIHBaR0yKyQkQqW68/AcQC\nL4nIORGZab3+p4g0strroogU9JpXdevzZrGe9xSRrdZnXSAiJX20aVervY57t5c1bkCSzL7Wleoi\n8qP1eScAOZLMq6XVRqdEZI2I3OW76a+/73oXltVdeEBE/mWtL4dEpK2INBeR30XkhIj0TyG/93p6\nTkRq36ytrPXpKRH5A9jhT17lxRijjxB6AHuAxtZwCTxdKm8BFYDzQGMgC/Av4A8gEqgI7ANus95X\nEihrDb8JjLGGSwEJQITX8noAq6zh+sA+r3EFgYvAbXh+dGzCs3WTFSgD7AKapvA5HgCqWMN3AUeA\nNtbz0laOL4HswD+Ay0BFa/xAYAVQAChutcE+H22WANwBbAQet157FxhlDRcDjgPNrOdNrOe3WM9/\nwFNosgJ1gTPAt0naKLfV1v8FfvIaNwp4O5n/w0bW8FKgl9e4j4Ah1nAb6/+wotW+rwJrUviMlYFz\nQD0gG/AxEOe1HO//55TWlazWe/cCz1nj2gNXEz8DUB04iqc4C9DN+jzZfLR92aRtAbisfK9Zy+ll\ntflYqy0r41m3Svm5nvpsK2v6hdY6k93uv+NQe9geQB+p/A+DP60vhFPW8Od4fvG9Dkzwmk6AA0AD\nPF+SR60vhsgk8xvg9QdYOpk/wB78XSjE+hKpbz3vDSyxhmsDe5PM+2VgpJ+fazDwnyQ5orzGrwNi\nrOEbCpCVY7+PeScAZYGHrTaL5MZC0Q+vL37rtQXWl2BJ6wsth9e4MYltlsyyCljLy2s9HwW8k2Qa\n70LxOLDUq333AfWs5/OBnl7vi8CzX6pEMst9Axjn9TwXcMVrOd7/zymtKw9Y68vBJPNew99f8EP5\n38K3HWjgq+2TtgWeQnEREOt5Xmvaml7v3Qi09nM99dlW1vQuu/9+Q/WhXU+hx+D55V3QGFPaGNPX\nGHMZTx/8vusTef469uPZYbsT+D88f2xHRWS8iNye6gV75jkB6Gy9FMvfO7pLAVFWd8QpETmFp1Dc\nmty8RKS21eXxl4icBp4Ebkky2RGv4YtAHms4yvpsifbhB2PMfDxfiE9y4z6KUkB0kux18WwpRQEn\nrTZOdH3ZIpJFRAaKyE4ROYOnCAAU9icTMA24X0Ruw/MlnWCMWe2V6xOvTCes14slM5/brc+W+Fkv\nek2fVBQprCvWfA4mmX6v13Ap4IUkbVXcel9qnbCWDXDJ+veo1/hL/P1/fjP+tFXIHBnnNFoowsch\nPH8sAIiI4OmaOghgjBlvjKlvTWOAD5OZhz87eMcDHUSkFFALmGq9vg/YYxWwxEc+Y0zLFOYzDpgB\nFDfGFACG4f/6eBjPL/1EKfbbJ+NV4BU8v7gT7cPza9U7e15jzCBrWYVEJGeS5SW2VSzQGk93YH48\nXW7w945Wn21qjDkFLAI6WvManyTXE0ly5TbGrE1mVofx/H97Fi6Si/8tvIkOkvy6csCaT9JCVMpr\neB/wXpJMeYwxE319Ti8ZcRBBcvPwp630AIY00kIRPiYBLaydpJHAC3j69b8XkQrW69nxdEdcxnN4\nbVLH8Gyil0tpIcaYn/H0JX8NLDDGnLVGrQfOichL1s7mLCJSVUTuTWFWeYBTxpirIlILz5ekv3/I\nk4CXRaSAiBQHUtxpnkz+FXj2aXT3evk7oJWINLVy57B2thYzxuzF0wUyQEQiReR+wLv45cHTpidF\nJDeQ9DDUo3i6vXwZZ+Vpbw0nGga84rVzPL+IRKcwjylASxGpKyLZgLdJ+e97MimsK8BaIF5EnrU+\nbztuPFhgOPBPEaklHrnFc2CCP7/8hYw5eiq59TQ1baVSSQtFmDDG/A50AT7D84fUAmhljInHs0P4\nA+v1w3i6RV5OfKv1SOyueA9YYx05Upvkj6EfBzTC60vNeI5nbwncjecY92PAV0C+FCI/BbwtImfx\n9Jkn/UXqq2i8hac7ZA+efQnf3mT6pONeAwrx9+c+gGdn6CvAX3h+nb7A338fjwL34+nOeMfKetUa\n962V5SCeAvRDkuWNACpbXSLTUsg3C89+pMPGmF+vhzZmBp4tvwlWt9avwEPJfkBjtgJP4/k/OQSc\n5MauFu//5x2ksK4YY64C7fDsmzoBxPD3ViPGmE149gl9bi3jDzz7clJikgwnfZ7StMnNJ7n19JSI\n1PKjrXRrIh0SdyQ5iogUwPOLtQqe/+CeKWxuKxV0IjIR2GqMecvuLEoFg1O3KD4B5hlj7sRzaOQ2\nm/OoTExE7hWRciISISIP49knMcPuXEoFi+POUBSR/HgOv+wOYHWdnLE3lcrkbsNzdNIteLpz/mmM\n+cXeSEoFj+O6nkTkbjwnWm0FquE5ies5q19SKaVUkDmx6ykrnmsYDTHG3IPnpJn+vt+ilFIqUBzX\n9YTnWO4DxpgN1vMpJCkUIuKszSCllAoRxphUH6LsuC0KY8wRYL+IVLBeagJsSWY6fRjDm2++aXsG\npzy0LbQttC18P9LKiVsU4DmBaqx14tAuIKD3DFBKKZUyRxYK4zmixJ9LRyullAowx3U9qdRxuVx2\nR3AMbYu/aVv8Tdsi/Rx3eKw/RMSEYm6llLKTiGDSsDPbkV1PSqnMyXMhW5URMvLHtBYKpZSjaG9B\n+mV0wdV9FEoppXzSQqGUUsonLRRKKaV80kKhlFLKJy0USikVYBEREezevdux87vp8oK2JKWUysQy\n+miuYB4dFrKFQkQf+tBHuD2cbtu2bbhcLgoWLEjVqlWZPXs24Dn7e8SIEden++abb6hfvz4ADRo0\nAKBatWrkzZuXyZMn43a7KV68OB988AFFihShTJkyjBt3/Rb0qZ5fcjKyfUP2PAo91Fqp8OPkYhEX\nF0erVq3o1asXS5YsYdWqVbRp04aNGzciIqR07sLKlSuJiIhg8+bNlC1bFgC3283Ro0c5ceIEhw4d\n4ocffqB58+bUrFmT8uXLp3p+yUnuOzKt7RuyWxRKqczJrq2XtWvXcuHCBfr370/WrFlp2LAhLVu2\nZPz48UDauoLeeecdIiMjadCgAS1atGDixImpDxYEIbtFoZTKnOzqTTh06BAlSpS44bVSpUpx8OBB\ngBS3AFJSsGBBcubMecO8Dh8+nP6gAaBbFEop5YeoqCj2799/w5bD3r17KVasGLlz5+bChQvXXz9y\n5MhN53fq1CkuXrx4w7yioqIA0jS/QNJCoZRSfrjvvvvIlSsXgwYNIi4uDrfbzZw5c+jcuTN33303\n06ZN49KlS+zcufOGHdEARYsWZdeuXf8zzzfffJO4uDhWrVrF3LlziY6OBkjz/AJFC4VSSvkhMjKS\n2bNnM3/+fIoUKULfvn0ZM2YMFSpU4PnnnydbtmwULVqUxx57jC5dutzQFTVgwAC6d+9OwYIFmTJl\nCgC33XYbBQsWJCoqiq5du/Lll19SoYLnDtBpmV8g6f0olFKOYd0vwe4YAed2u+natSv79+8PyPxT\nase03o9CtyiUUkr55NhCISJZROQnEZltdxallMpooXSTJsd2PYnI/wNqAHmNMa2TjNOuJ6XCUGbp\negq0TNH1JCLFgebA10DolF2llApDjiwUwH+BfwEJdgdRSqnMznGFQkRaAn8ZY35CtyaUUsp2TryE\nRx2gtYg0B3IA+UTkW2NMN++JBgwYcH3Y5XLhcrmCmVEppRzP7XbjdrvTPR/H7swGEJEHgBeNMa2S\nvK47s5UKQ7ozO2Nkip3ZSehao5SyXdWqVVm5cqXdMWzh6C2KlOgWhVLhKbNvUfTo0YMSJUrwzjvv\npGs+mXGLQimllI20UCillB9Kly7N0qVLGTBgADExMXTv3p18+fJRtWpVNm3adMN0AwcOpEqVKhQq\nVIiePXty5coV4MZbmiaKiIhg165dfPXVV4wbN45BgwaRN29e2rRpE9TP54sWCqWU8oP3JTdmz55N\n586dOXPmDK1bt6Zv3743TDtu3DgWLVrErl27+P3333n33XdvOu8nnniCRx99lH79+nHu3DlmzpwZ\nkM+RFk48PFYppVIkb2XM6VXmzbTtCxER6tevT7NmzQDo0qULgwcPvmF83759KVasGACvvvoqzzzz\njN/7HZy4j0YLhVIqpKT1Cz4jFS1a9Ppwrly5uHz5MgkJCUREeDppvG+ZWrJkSQ4dOhT0jBlJu56U\nUiqD7du374Zh71ucet/+NOktTp16RVktFEoplQo36xoyxjBkyBAOHjzIyZMnee+99+jUqRMA1apV\nY8uWLfzyyy9cvnz5hitMgGdLZffu3YGKnmZaKJRSyk8icv2R9HXv4djYWJo2bUq5cuUoX748r732\nGgAVKlTgjTfeoEmTJlSsWJH69evf8N7HH3+crVu3UrBgQdq1axecD+UHPeFOKeUY4XDCXZkyZRgx\nYgSNGjWyLYOecKeUUiqotFAopZTySbuelFKOEQ5dT06gXU9KKaWCSguFUkopn7RQKKWU8kkv4aGU\nchSnnp2cmWmhUEo5hu7IdibtelJKKeWTFgqllFI+ObJQiEgJEVkuIltE5DcRedbuTEoplVk58oQ7\nEbkNuM0Y87OI5AE2AW2NMdus8XrCnVJKpVJYnXBnjDlijPnZGj4PbAOi7E2llFKZkyMLhTcRKQ1U\nB9bZm0QppTInRx8ea3U7TQGes7YsrvO+4YfL5cLlcgU1m1JKOZ3b7cbtdqd7Po7cRwEgIpHAHGC+\nMWZwknG6j0IppVIprfsoHFkoxHNq5mjghDHm+WTGa6FQSqlUCrdCUQ9YCWwGEgO+bIxZYI3XQqGU\nUqkUVoXiZrRQKKVU6oXV4bFKKaWcQwuFUkopn7RQKKWU8kkLhVJKKZ+0UCillPJJC4VSSimftFAo\npZTySQuFUkopn7RQKKWU8kkLhVJKKZ+0UCillPJJC4VSSimftFAopZTySQuFUkopn7RQKKWU8kkL\nhVJKKZ+0UCillPJJC4VSSimftFAopZTyyZGFQkSaich2EflDRPrZnUcppTIzMcbYneEGIpIF2AE0\nAQ4CG4DOxphtXtMYp+VWSimnExGMMZLa9zlxi6IWsNMY86cxJg6YALSxOZNSSmVaTiwUxYD9Xs8P\nWK8ppZRKo/iE+DS/N2sG5sgofvUpdXuuG2ULlgXA5XLhcrkCmUkppUKO2+3G7XYDsHT30jTPx4mF\n4iBQwut5CTxbFTdYXHIxG3pvoHi+4kELppRSoSTxR/Tc3+cyYu4IGJO2+Tix62kjUF5ESotINqAj\nMCvpRM/UeoaOUzoSdy0u6AGVUipU/Hn6T3rO6smE9hPSPA/HFQpjTDzQF1gIbAUmeh/xlKh/vf4U\nzFGQlxa/FOyISikVEq7EXyF6cjT96vajbsm6aZ6P4w6P9Ufi4bEnL52kxlc1GNRkENFVou2OpZRS\njtJ3Xl8OnTvE1JipiEiaD4914j4KvxXKWYjJ0ZN5eOzD/KPoP6hYuKLdkZRSyhHG/zqehbsWsrH3\nRkRSXRtu4Liup9S6N+pe3m34Lu0ntefC1Qt2x1FKKdttO7aNZxc8y+ToyeTPkT/d8wvprqdExhi6\nz+iOwfBt22/TXT2VUipUnb96nlrDa/FinRfpWb3nDePC6czsVBMRhrUcxs9HfuarTV/ZHUcppWxh\njOGfc/5J7eK1/6dIpEdI76PwlisyF1NjplJ3ZF1qRNXg3qh77Y6klFJB9eWmL9l8dDNre63N0PmG\nxRZFogq3VGBoi6FET47m5KWTdsdRSqmg2XhoI68vf50pMVPIFZkrQ+cdVoUCoEPlDrSt2Jau07uS\nYBLsjqOUUgF36tIpYibHMLTFUCrcUiHD5x92hQJg0IODOH35NB+s+sDuKEopFVAJJoGu07vSumJr\nOlTuEJBlhGWhiMwSyaQOk/h8w+fpuhCWUko53cDVAzl9+TQfPfhRwJYRloUCoFi+Ynz3yHd0md6F\ng2cP2h1HKaUy3JLdS/h8/edM7DCRyCyRAVtO2BYKgMZlG9O3Zl+9eKBSKuwcOHuArtO7MrbdWIrl\nC+wte8K6UAC8XP9l8ufIT78leuttpVR4uHrtKtGTo3mu9nM0LNMw4MsL+0IRIRGMeWQM07dPZ8rW\nKXbHUUqpdHtx0YvcmvtWXqobnKtnh32hgL8vHthnbh9+P/G73XGUUirNJvw2gXl/zGN029FESHC+\nwjNFoQDPxQPfafiOXjxQKRWyth7byjPzn2FKzBQK5CgQtOWGxUUB/WWModuMbgjC6Laj9eKBSqmQ\nce7KOWp9XYt+dfvR4+4eaZpHpr4ooL9EhGEthvHj4R8Z/uNwu+MopZRfjDH0mt2LeiXqpblIpEfY\nXBTQX7mz5WZqzFTqjapHjdtrUCOqht2RlFLKp0/XfcrOkztZ03ONLcvPVFsUiSoWrsiQ5kPoMLmD\nXjxQKeVoa/at4f3V7zMlego5suawJYPjCoWIfCQi20TkFxGZJiLpvz1TMqKrRNOmYhu6Te+mFw9U\nSjnSXxf+otPUToxsPZIyBcvYlsOvQiEibUTkY+vRKsCZFgFVjDHVgN+BlwO1oEEPDuLkpZMMXD0w\nUItQSqk0iU+Ip9OUTvSo1oMWFVrYmuWmhUJEBgLPAluArcCzIhKwy7IaYxYbc/0n/jqgeKCWlS1L\nNiZFT+Kz9Z+xbM+yQC1GKaVS7Y3lb5AlIgsDXAPsjnLzw2NF5FfgbmPMNet5FuBnY8xdAQ8nMhsY\nb4wZl+T1NB0em5Ilu5fQbXo31vdeT/F8AatLSinll1k7ZtF3Xl82PbGJIrmLZNh803p4rD9HPRmg\nAHDCel7Aei3NRGQxcFsyo14xxsy2pnkVuJq0SCQaMGDA9WGXy4XL5UpzniZlm/BMrWeInhyNu7ub\n7Fmzp3leSimVHrtO7qLXrF7M6jwr3UXC7XbjdrvTnSnFLQoRGQKMw9P18yGwHBDgAaC/MWZCupee\nUiiRHkBvoLEx5nIy4zN0iwI8xym3n9SeormLMrTl0Aydt1JK+eNi3EXqjKjD49Uf55naz2T4/NO6\nReGrUPwf0BGIApYAe4GfgfXGmCPpyOo7kEgz4GPgAWPM8RSmyfBCAXD2yllqDa/FS3Vfomf1nhk+\nf6WUSokxhq7TuyIifNv224BcOSLDC4XXjEsDnaxHTjxbGeONMQG5up6I/AFkAxJPcPjBGPNUkmkC\nUigAth3bRoNvGjD/0fncG3VvQJahlFJJfbruU0b9PIo1PdeQKzJXQJYRsEKRZCHVgVHAXcaYLKld\nWEYJZKEAmLZtGs8vfJ6NvTdm6I4kpZRKzsq9K4meHM3ax9cG9HyJgF3rSUSyikhrERkHLAC2A+3S\nkDFktLuzHbFVY+k8tTPxCfF2x1FKhbGDZw/SaUonvm37ra0n1fniax9FUzzdTS2A9cB4YJYx5nzw\n4iUv0FsUANcSrtFsbDPuue0ePnzww4AuSymVOV2Jv4JrtIvWFVrzcv2AnVt8XSB2Zi/DUxymGmMc\ndUGkYBQKgOMXj1NzeE0GNRlEdJXogC9PKZW59JnTh6MXjjI1ZmpQbnuQ4edRGGMapS9S6CucqzBT\nY6by0HcPUeXWKlQuUtnuSEqpMDHyp5G497pZ12ud4++N47iLAjrNPbffw78f/DePTHyEM5fP2B1H\nKRUGNhzcQP8l/ZnecTr5suezO85NaaHwQ/e7u9OkTBO6z+iuV5pVSqXLsQvH6DC5A1+2/JJKhSvZ\nHccvWij89N9m/+WvC3/xwaqAXQ9RKRXm4hPi6TS1E13u6sIjdz5idxy/aaHwU7Ys2ZgSM4UhG4ew\nYOcCu+MopULQy0teJjIikrcbvm13lFTRQpEKUXmjmNB+At1ndGf3qd12x1FKhZCJv01k6rapjGs/\njiwRtp2vnCZaKFKpfqn6vFb/NdpOaMv5q7afUqKUCgGbj26m7/y+TOs4jUI5C9kdJ9W0UKRB31p9\nqRlVkx4zeujObaWUT8cvHqfthLZ82uxT7r7tbrvjpIkWijQQEYa0GMLBcwd5b+V7dsdRSjlU3LU4\nYibHEFMlhs53dbY7TpppoUij7FmzMy1mGl/9+BUzt8+0O45SyoFeWPQCOSNz8l6j0P5B6c8d7lQK\nbs97O9NiptFiXAvKFSpH1Vur2h1JKeUQI34cwaJdi1jXa13I7bxOSrco0qlmsZp83PRj2k5oy8lL\njrokllLKJt/v/56Xl77MzE4zyZ8jv91x0k0LRQboWq0rbSu1peOUjnpZcqUyuQNnDxA9OZpv2n5D\nxcIV7Y6TIbRQZJCBTQYSIRG8tPglu6MopWxyKe4Sj0x8hOdqP0fz8s3tjpNhUnWHO6cI1mXGU+vU\npVPU+roWr9V/je53d7c7jlIqiIwxdJvRjWsJ1xjbbqwjrwib4ZcZV6lXMGdBZnaayQPfPEClwpWo\nXby23ZGUUkHy8Q8fs/XYVlY9tsqRRSI9HNn1JCIviEiCiITcKYyVi1RmROsRtJ/UnkPnDtkdRykV\nBAt2LuA/P/yH6R2nkysyl91xMpzjCoWIlAAeBPbanSWtWldsTZ97+9BuYjsuxV2yO45SKoB2HN9B\n9xndmRQ9iZL5S9odJyAcVyiA/wAhv0f4lfqvUKZgGR6f9ThO3J+ilEq/ExdP0HJ8S95v9D71Staz\nO07AOKpQiEgb4IAxZrPdWdJLRBjZeiS7T+3mnZXv2B1HKZXBrl67SofJHWhbsS2P3/O43XECKug7\ns0VkMXBbMqNeBV4GmnpPntJ8BgwYcH3Y5XLhcrkyJmAGyhmZkxmdZlD769pUuKUCnap2sjuSUioD\nGGN4au5T5Muej4FNBtodJ0Vutxu3253u+Tjm8FgRqQosBS5aLxUHDgK1jDF/JZnWkYfHpmTz0c00\n/rYxczrP0SOhlAoDH3//MWM2j2F1z9XkyZbH7jh+S+vhsY4pFEmJyB6ghjHmf66LEWqFAmD2jtn8\nc+4/+eHxH8J2h5dSmUEo/y2ntVA4ah9FEqFVCW6iVcVW/L/7/h+txrfi3JVzdsdRSqXBL0d+oees\nnkyLmRZyRSI9HLtF4UsoblGAp1/zidlPcPTCUaZ3nB7yV5RUKjM5cv4Itb+uzYdNPgzZ/Y3huEUR\ndkSEL1p8wbmr5+i3pJ/dcZRSfroUd4m2E9ry2N2PhWyRSA/dorDByUsnqf11bfrV7Ueve3rZHUcp\n5YMxhthpsQCMazcupC/Podd6CiGFchZiTuc5NPimAWUKlKFx2cZ2R1JKpeD15a+z59QelndfHtJF\nIj2068kmFQtXZGKHiXSe2pnf/vrN7jhKqWR8/ePXjP9tPLM6zyJnZE6749hGC4WNXKVdDG42mBbj\nWnDw7EG74yilvCzcuZDXlr3G/Efnc2vuW+2OYystFDaLvSuWJ2s8SYtxLfSwWaUc4pcjv9Blehem\nxEyhwi0V7I5jO92Z7QDGGJ6c8yT7zuxjdufZRGaJtDuSUpnWgbMHuH/E/Xzc9GNiqsTYHSdD6eGx\nIUxEGNJiCCLCU3Of0qvNKmWTM5fP0Hxsc56t9WzYFYn00ELhEFkjsjKpwyQ2Hd7E+6vetzuOUplO\n3LU4oidHU69kPV6s86LdcRxFC4WD5M2elzmxcxj+43C+2/yd3XGUyjQSu3+zZ83Opw9/mmkPg02J\nnkfhMFF5o5gbO5eGoxtSLG8xGpZpaHckpcLe2yveZvPRzazosYKsEfq1mJRuUThQlVurMLHDRDpO\n6cjmoyF/DyelHG3YxmGM2TyGubFzyZ0tt91xHEkLhUM1LNOQz5t/TvOxzdlzao/dcZQKS1O3TuWd\nle+wsMtCiuYpanccx9JtLAeLqRLDsQvHaPpdU9b0XJPpT/pRKiO5/3TTZ24fFnZZSLlC5eyO42i6\nReFwT9d6ms5VO/Pw2Ic5e+Ws3XGUCgs/H/mZmMkxTOgwgeq3V7c7juPpCXchwBhDn7l9+OPkH8yL\nnUf2rNntjqRUyNp9ajf1R9Vn8EODia4SbXecoAq7W6H6ktkKBcC1hGt0nNIREWFC+wl60yOl0uCv\nC39Rd2Rdnr/veZ6q+ZTdcYJOz8wOc1kisvBdu+84fvE4z8x/Rs/eViqVzl05R/OxzYmtGpspi0R6\n6BZFiDl75Syub1y0rtiaAa4BdsdRKiRcirtEi3EtKF+oPMNaDsu0J9SFzRaFiDwjIttE5DcR+dDu\nPE6TL3s+5j86n7G/jmXw2sF2x1HK8RIvzVE0T9Hr11RTqeOow2NFpCHQGviHMSZORIrYncmJiuYp\nytJuS2kwqgG5I3PTu0ZvuyMp5UjXEq7RdXpXIiSCb9t+q/v20shRhQLoA3xgjIkDMMYcszmPY5XM\nX5Il3ZbmtNtoAAAR1klEQVTg+sZF7my5ib0r1u5ISjlKgkngidlPcPzicebEztHL96eD07qeygMN\nRGStiLhF5F67AznZHYXuYGGXhbyw6AVmbJ9hdxylHMMYw/MLnmf7ie3M6DSDHFlz2B0ppAV9i0JE\nFgO3JTPqVTx5Chpj7hORmsAkoGxy8xkwYMD1YZfLhcvlyvCsoaDKrVWYGzuXh8c+TM6sOXnojofs\njqSU7V5f/jqr9q1iWfdl5MmWx+44tnG73bjd7nTPx1FHPYnIfGCgMWaF9XwnUNsYcyLJdJn2qKeU\nfL//e9pOaMuUmCk0KNXA7jhK2ebD1R8y+pfRrOixgiK5dTent3A56mkG0AhARCoA2ZIWCZW8OiXq\nML79eDpM6sD6g+vtjqOULT5d9ylf/fgVi7su1iKRgZxWKEYCZUXkV2A80M3mPCGlcdnGjGozilbj\nW7Hh4Aa74ygVVJ+t+4z/rv0vy7oto1i+YnbHCSuO6nryl3Y9+TZ7x2x6ze7FnM5zqFmspt1xlAq4\nz9d/zsc/fMzy7sspXaC03XEcK1y6nlQGaFWxFV+3+pqW41vqloUKe1+s/0KLRIBpoQhTicWixbgW\nus9Cha0hG4bw0fcfaZEIMC0UYaxVxVaMaD2CluNaarFQYWfohqEMWjNIi0QQaKEIc1osVDgaumEo\nA9cMZFn3ZZQpWMbuOGFPC0Um4F0s1uxbY3ccpdLl39//+3p3U9mCyZ6PqzKYHvWUiSzcuZAu07sw\nvv14mpRtYnccpVLFGMNbK95iwm8TWNJtCcXzFbc7UsjRO9wpv6zcu5IOkzowvNVw2lRqY3ccpfxi\njOGlxS+xaPciFnVZRNE8Re2OFJLSWiicdvVYFWANSjVgbuxcWo1vxcW4i3S+q7PdkZTyKcEk8PTc\np9l0eBPLuy+nUM5CdkfKdLRQZEI1i9VkSbclPPTdQ1yIu0Cve3rZHUmpZMUnxNNzZk/+PP0nS7ot\nIV/2fHZHypS0UGRSVW+tiru7mwfHPMi5K+d4/v7n7Y6k1A0ux1/m0WmPcv7qeRZ0WUCuyFx2R8q0\n9KinTKz8LeVZ+dhKhm0axitLX0H3+yinOH35NA999xBZI7Iyq9MsLRI200KRyZXMX5I1PdewbM8y\nHpv5GHHX4uyOpDK5Q+cO0WBUA6oVrcb49uPJnjW73ZEyPS0UisK5CrO021KOXTxGmwltOH/1vN2R\nVCa14/gO6o6sS+eqnfmk2SdEiH5FOYH+LygAcmfLzcxOM7k9z+00Gt2IYxf0duUquNYdWIdrtIs3\nGrzBy/VfRiTVR3GqANFCoa7LGpGVr1t/zUPlHqLOyDrsPrXb7kgqk5j7+1xajm/J8FbDeaz6Y3bH\nUUnoCXcqWUM3DOWdle8wNWYq95e43+44KkwZY/hs/WcMXD2QaR2ncV/x++yOFNb0zGyV4eb9MY8e\nM3owuNlgYu+KtTuOCjPxCfE8N/85VuxdwZzYOXoF2CDQQqEC4tejv9JqfCt63N2DNx94U/uNVYY4\ne+UsHad0JMEkMKnDJPLnyG93pEwhbO5wJyK1RGS9iPwkIhtERO/laaO7it7Ful7rWLBzAbHTYrkU\nd8nuSCrE7T29l7oj61KmQBnmxs7VIhECHFcogEHA68aY6sAb1nNlo6J5irK8+3KMMTQc3ZAj54/Y\nHUmFqNX7VnP/iPt5vPrjfNH8C7JG6MUhQoETC8VhIPEnRgHgoI1ZlCVnZE7GtR9HszuaUXN4TdYe\nWGt3JBVCjDEM2TCE9pPaM7LNSP7vvv/TbswQ4rh9FCJSClgNGDyF7H5jzP4k0+g+ChvN3D6TXrN7\n8V6j93iixhN2x1EOdzn+Mk/PfZr1h9YzveN07ih0h92RMq2Q2pktIouB25IZ9SrwLPCFMWa6iEQD\nTxhjHkzyfi0UNttxfAePTHyEeiXr8dnDn+llFlSyDpw9QPtJ7SmZvySj2owiT7Y8dkfK1EKqUPgi\nImeNMfmsYQFOG2PyJ5nGvPnmm9efu1wuXC5XUHMqOHflHI/NfIwDZw8wJWaK3nFM3WDFnyvoPLUz\nz9Z+ln51+2lXkw3cbjdut/v687feeitsCsWPwPPGmBUi0hgYaIypmWQa3aJwCGMMH675kE/WfcKo\nNqNodkczuyMpm11LuMZ7q95j6MahjG47mqblmtodSVnCaYviXuALIDtwCXjKGPNTkmm0UDjMij9X\n0GV6F2KrxvJuo3eJzBJpdyRlgyPnj9BlWhfiE+IZ134cUXmj7I6kvIRNofCHFgpnOn7xOD1m9OD4\nxeNM6DBBz7TNZJbuXkrX6V3pfU9vXn/gdT301YG0UChHSDAJDF47mIGrBzK0xVDaV25vdyQVYHHX\n4nh7xduM+GkEYx4ZQ+Oyje2OpFKghUI5yoaDG+g0tRMPlHqAwc0G672Ow9S2Y9voOr0rt+a+lZFt\nRnJbnuQOZlROETaX8FDhoWaxmvz85M9ERkTyj6H/wP2n2+5IKgMlmAQ+XfcpDb5pQO97ejM3dq4W\niTCmWxQq4Ob9MY/es3sTUzmG9xu/T87InHZHUulw4OwBeszowYW4C3zb9lvK31Le7kjKT7pFoRyr\nefnmbP7nZg6fP8w9X93D9/u/tzuSSoMEk8CwjcOo/mV1XKVdrHpslRaJTEK3KFRQTd4ymecWPEfb\nSm35oPEHeuXQELH9+HZ6z+5NfEI8w1sNp+qtVe2OpNJAtyhUSIiuEs2Wp7ZwLeEaVYZUYdq2aXZH\nUj5cvXaVd1e+S72R9ehYpSOrH1utRSIT0i0KZZtVe1fxxJwnqHhLRQY3G6znXTjMsj3LeHb+s5Qu\nUJqhLYZSIn8JuyOpdNLDY1VIuhJ/hUFrBvHJuk/oc28f+tfrT+5sue2Olan9efpPXlz0IpsOb+I/\nTf9D20pt9TpNYUK7nlRIyp41O68/8Do/PfkTu0/vptIXlRi7eSz6QyD4LsZdZIB7ADW+qkG1otXY\n+tRWHrnzES0SSrcolLOs2beG5xY8R2SWSD568CPqlaxnd6SwF58Qz6ifRvHWireoU6IOHz34EaUK\nlLI7lgoA7XpSYSPBJPDd5u94Y/kbVC5SmXcbvcs9t99jd6ywY4xh2rZpvLrsVaLyRjGwyUBqFatl\ndywVQFooVNi5En+Fr3/8mvdWvUe9kvV4u+HbVCpcye5YIc8Yw/yd83lrxVtcvXaVgY0H0rRcU+1i\nygS0UKiwdeHqBT5f/zn//uHfuEq76F+3PzWiatgdK+QkmASmbZvG+6veJz4hnlfrv0p0lWgiRHdV\nZhZaKFTYO3/1PMM3DefjHz6mcpHK9K/Xn4alG+ov4Zu4En+FiVsmMnD1QPJky8NrDV6jZYWWWiAy\nIS0UKtO4En+Fsb+O5cM1H5InWx6ervk0nap2IldkLrujOcrhc4cZtnEYX276kruK3sVLdV6iSdkm\nWlgzMS0UKtNJMAks2LmAIRuGsPbAWrpX606fmn24o9AddkezjTGG1ftWM3TjUBbsXECnqp3oW6sv\nlYtUtjuacgAtFCpT23NqD8M2DmPUz6OoXKQyXf/RlQ6VO2Saa0ntPb2Xb3/5ltG/jCZ71uz0vqc3\nPe7uQYEcBeyOphxEC4VSeLql5v0xjzGbx7B0z1Ka3dGMzlU707Rc07Drmjp07hDTt01nyrYp/Hr0\nVzpV7USPu3tQ4/Ya2r2kkhVShUJEooEBQCWgpjHmR69xLwM9gWvAs8aYRcm8XwuFuqmTl04yacsk\nJm+dzIaDG2hUphFtK7WlZYWWFM5V2O54qWaMYceJHcz7Yx5Tt01l27FttKjQgnaV2vFw+YfJkTWH\n3RGVw4VaoagEJABfAi8kFgoRqQyMA2oCxYAlQAVjTEKS92uhsLjdblwul90xHMFXW5y8dJK5v89l\n5o6ZLNq1iPK3lKdxmcY0KtOIeiXrkSdbnuCG9dNfF/5i+Z7lLN69mEW7PL+ZHir3EO3ubEfjso3J\nliVbsu/T9eJv2hZ/S2uhyBqIMDdjjNkOJLd53AYYb4yJA/4UkZ1ALWBtcBOGDv0j+JuvtiiUsxBd\nq3Wla7WuXL12lfUH17NszzIGrh7IxkMbqVS4EjWjalKzWE1qRtXkziJ3kjUiuH8e566cY8uxLaw/\nuJ61B9ay9sBaTl46Sb2S9Xio3EP8q86/qHBLBb+6lXS9+Ju2RfrZUih8iOLGonAAz5aFUhkmW5Zs\n1CtZj3ol6/HGA29wKe4SPx35iQ0HN7BszzI+XPMh+87so1zBclQsXJFKt1Siwi0VKJ6vOLfnvZ2o\nvFHkz54/1fsBjDGcuHSC/Wf2s//sfvaf2c+e03vYcmwLW/7awvGLx6lUuBK1itWiabmmvPHAG1S4\npYKe76BsF7BCISKLgeTutv6KMWZ2KmalfUwqoHJG5qROiTrUKVHn+msX4y7yx4k/2H58OztO7GDx\n7sUcOnfo+iM+IZ6COQuSJ1ue64/sWbJjMBhjMBiuJVzj7JWznLlyhjOXz3DmyhnyZMtDiXwlKJG/\nBCXylaB0gdI8de9TVC5SmdIFSpMlIouNLaFU8mw96klElnPjPor+AMaYgdbzBcCbxph1Sd6nxUMp\npdIgZPZRJOEdehYwTkT+g6fLqTywPukb0vJBlVJKpY0tnZ8i8oiI7AfuA+aKyHwAY8xWYBKwFZgP\nPKWHNymllL1C8oQ7pZRSwePowylEpJmIbBeRP0SkXzLjXSJyRkR+sh6v2ZEzGG7WFtY0LqsdfhMR\nd5AjBo0f68WLXuvEryISLyJheS0LP9qisIgsEJGfrfWihw0xg8KPtigoItNF5BcRWSciVezIGWgi\nMlJEjorIrz6m+dRqp19EpPpNZ2qMceQDyALsBEoDkcDPwJ1JpnEBs+zO6pC2KABsAYpbzwvbnduu\ntkgyfUtgid25bVwvBgAfJK4TwAkgq93ZbWqLj4DXreGKYbxe1AeqA7+mML45MM8arg2svdk8nbxF\nUQvYaYz503hOwJuA54S8pDLDjm1/2iIWmGqMOQBgjDke5IzB4u96kSgWGB+UZMHnT1scBvJZw/mA\nE8aY+CBmDBZ/2uJOYDmAMWYHUFpEigQ3ZuAZY1YBp3xM0hoYbU27DiggIkV9zdPJhaIYsN/reXIn\n3xmgjrX5NM+6BEg48qctygOFRGS5iGwUka5BSxdc/rQFACKSC3gImBqEXHbwpy2GA1VE5BDwC/Bc\nkLIFmz9t8QvQDkBEagGlgOJBSecsybWVz3ZwwuGxKfFnL/uPQAljzEUReRiYAVQIbCxb+NMWkcA9\nQGMgF/CDiKw1xvwR0GTBl5qjL1oBq40xpwMVxmb+tMUrwM/GGJeIlAMWi0g1Y8y5AGcLNn/aYiDw\niYj8BPwK/ITn4qOZUdKeGJ/t5+QtioNACa/nJfBUvuuMMeeMMRet4flApIgUCl7EoLlpW+D5hbDI\nGHPJGHMCWAlUC1K+YPKnLRJ1Iny7ncC/tqgDTAYwxuwC9uDpnw83/n5f9DTGVDfGdAOKALuDmNEp\nkrZVceu1FDm5UGwEyotIaRHJBnTEc0LedSJSVKwL7libkmKMORn8qAF307YAZgL1RCSL1eVSG8/5\nKOHGn7ZARPIDDfC0S7jypy22A03A8/eCp0iE45ejP98X+a1xiEhvYIUx5nzwo9puFtANQETuA04b\nY476eoNju56MMfEi0hdYiOeIhhHGmG0i8qQ1/kugA9BHROKBi3h+QYYdf9rCGLPduuTJZjyXcB9u\nPCcwhhU/1wuAtsBCY8wlm6IGnJ9t8T4wSkR+wfPD8KVw/DHlZ1tUBr6xLgH0G/C4bYEDSETGAw8A\nha0Tm9/E0zWd+F0xT0SaW1fnvgA8dtN5WodIKaWUUslycteTUkopB9BCoZRSyictFEoppXzSQqGU\nUsonLRRKKaV80kKhlFLKJy0USmUQ64SuPnbnUCqjaaFQKuMUBJ6yO4RSGU0LhVIZZyBQzrph0od2\nh1Eqo+iZ2UplEBEpBcwxxtxldxalMpJuUSiVcTLDTbRUJqSFQimllE9aKJTKOOeAvHaHUCqjaaFQ\nKoNYN4xaIyK/6s5sFU50Z7ZSSimfdItCKaWUT1oolFJK+aSFQimllE9aKJRSSvmkhUIppZRPWiiU\nUkr5pIVCKaWUT1oolFJK+fT/AQpJK92WHaAZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fa57b0ed350>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "max output voltage is 5V\n", + "min output voltage is -3V\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,show,ylabel,legend\n", + "\n", + "\n", + "#let input wave be V_in=V_p_in*sin(2*pi*f*t) \n", + "f=1.# #Frequency is 1Hz\n", + "T=1./f#\n", + "V_p_in=10# #Peak input voltage\n", + "V_th=0.7# #knee voltage of diode\n", + "#let n be double the number of cycles of output shown in graph\n", + "for n in range(0,2):\n", + " t=arange(T*n/2.,T*(n+1)/2.+0.0005,0.0005) #time for each half cycle\n", + " V_in=[]\n", + " for tt in t:\n", + " V_in.append(V_p_in*sin(2*pi*f*tt))\n", + " Vout=V_in#\n", + " if (n%2)==0: #positive half,D1 conducts till V_in=5V\n", + " a=(Vout<5)# \n", + " b=(Vout>5)# \n", + " y=[]\n", + " for vv in Vout:\n", + " y.append(a*vv+5*b)# #output follows input till 5V then is constant at 5V\n", + " else: #negative half, D2 conducts till V_in=-3V\n", + " a=(Vout<-3)# \n", + " b=(Vout>-3)#\n", + " for vv in Vout:\n", + " y.append(-3*a+b*vv) #output follows input till -3V then stays constant at -3V\n", + " \n", + " plot(t,y[0:1001])\n", + " plot(t,V_in)\n", + "legend(['output','input'])\n", + "title('Positive and Negative diode limiter')\n", + "xlabel('t')\n", + "ylabel('Vo')\n", + "show()\n", + "print 'max output voltage is 5V'\n", + "print 'min output voltage is -3V'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 518 Example 16.8." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V_DC = 10.00 V\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjXUbx/HPZYx9GXuUfV+zhlBjSVKWJ1uWZEulUCJC\n5cletBBK2QspQoqsw4ikGkvW7CT7vs/ye/44R880Dc6Yc87vLNf79ZpXZ7nPfX/nztzXuX73JsYY\nlFJKBa8UtgMopZSySwuBUkoFOS0ESikV5LQQKKVUkNNCoJRSQU4LgVJKBTktBMo6EXldRD69zftt\nReQHL+YpICJxIpLC+fx7EXnaW8v3FQnXgwpcoucRqKQSkQNATiAWuAwsBl4yxlx2w7wLAPuAlMaY\nuOTOz18z+AJdD8FDK726GwZ4whiTEagIVAYGunkZ4ub5+RVxSuY8UrorjwpsWghUshhjjgJLgDIA\nItJYRLaJyFkRWSUiJW5OKyJ9ReSIiFwQkZ0iUsf5+iARmeGcbI3zv+ec01UTkQ4iEumcdoKIvBs/\ng4gsEJFXnI/ziMhcETkhIvtEpPutsotIWhEZLSIHROSciESKSOpEposQkc7Oxx1E5EcRGev8zI6b\nv0e8aYeLyAYROS8i80UkS7z3q4nIOuf62SQiDyf47BAR+RFHp1UwkSwVRSTKuW7miMiXIjLY+V64\nc/2+JiJ/AZNEJExEFjnXxxkR+VZE7nU1r1M7ETkoIidFpP+t1qfyX1oI1N0SABHJCzwG/CYixYCZ\nQA8gO/A98K2IhIpIceBFoLIxJhNQHzjgnFf88clazv9mNsZkMsb8lGC5M4FWf4dwbLQeAWY5x7K/\nBaKAPEBd4GURqX+L32EUUAGoDmQF+iTIcpNJ8PoDwB4gG/AWME9EwuK9/zTQEcgNxABjnFnvBRYB\nbxtjsgC9gbkiki3eZ9sBXYAMwKH4IUQkFfANMBnIAswCmibIlsv5Xj7gORx/45Ocz/MBV4GPEvx+\nieaNpwZQDMf6fDN+cVeBQQuBuhsCzBeRs0AkEAEMx7GBXmSMWWGMicWxoU2LY0MbC6QGSotIqDHm\nkDFmX7z5kcjjxKwFjIjcLBjNgXXGmGNAFSC7MWaIMSbGGLMf+Ax46l+/gKNodAR6GmP+MsbEGWN+\nMsbccOH3P2GM+dAYE2uMmQPsAp5wvmeA6caY7caYK8AbQEvn8toB3xtjlgAYY5YDvwCPx/vsVGPM\nDmeemATLrQaEGGPGOpf9DfBzgmnigLeMMdHGmGvGmDPGmG+cjy8Bw4CH401/q7zx/z/81xhz3Riz\nBdgM3O/COlJ+RMcQ1d0wQBNjzMr4L4pIbuJ9izXGGBE5DNxrjFkjIi8Dg3AUgx+AXsaYv5K0YMc8\nZwOtcRShNsB059v5gTzOAnVTCP8fboovO5AG2JuU5Tv9meD5QRzfpm86HO/xISDUubz8QAsRaRTv\n/ZTAylt8NqE8iSw74fQn4xczEUkHvA88iqNTAMggImL+f6TIrfLedCze4ytA+ttkVH5IOwLlTkdx\nbOwAxw5PIC/OjZcxZpYxppZzGgOMTGQerhzGNgtoLiL5cQzTzHW+fgjYb4zJEu8nkzHmiUTmcQq4\nBhRx7Vf7h3sTPM+P43e/KV+Cx9HASWe+GQnyZTTGvBNv+tv9/n8lsux8CZ4n/PyrOIZ1HjDGZMbR\nDQj/7LwSy3vqNjlUgNFCoNxpDvC4iNQRkVAcG6FrwDoRKeZ8PTVw3fl6bCLzOIljeKPwrRZijNmE\nY0P1GbDEGHPB+dbPwEXnztK0IhIiImVEpHIi84jDMdb+nojkdk5b3TkOfyc5RaSHc99HC6AEjv0h\n4NjAthORks5v428DXzm/fX8ONBKR+s7lpXHu4I2/cb/d0Ng6IFZEXhKRlCLSBMdw2O1kwLFf4LyI\nZMWxTyO+2+W9laA+oisQaSFQbmOM2Y1jHHwsjg3640Aj51h3ahz7EU7i+GabHXj95kedPzjHqYcC\nPzqPcqnKv3fWgmOncR3nf28uPw7HWH15HMe/nwQmApluEbk3sBXYCJx25ru5kbvdhnADUNQ5/8FA\nM2PMzeEoA8wApjp/z1Q4dp5jjDkCNAH6AydwdAiv8s8N6y2Xa4yJBp4EOgNngbY4dj7H36+R8PMf\n4NhPcwpHIVmcYJpb5r1NHj35KMB47IQy59Ek03GceGSAicaYMc5vJV/iaKcPAC2NMec8EkIpNxOR\nDkBn5xBXYu+vwjH8M9lLeTYA440x0+7y817Nq3yTJzuCaOAVY0xpHEc7vCgiJYF+wDJjTDFghfO5\nUoHEY0MnIvKQiNzjHBp6Bsf5G0uSO1s3RFN+zGOFwBhzzDmWi/OwtR04dnQ1Bm5+e5mG4zhopfxF\nYsNUiU3jKcWBTTiGhl4BmhtjjidznjrUE+S8cq0hcVyzZDWOby+HnCfT3Dyq5MzN50oppbzP4zuL\nRSQDjsP7ehpjLsZ/z3lkgn4bUUopizx6QpnzEMK5OHZGzXe+fFxE7jHGHHOegHQikc9pcVBKqbtg\njEnyPh+PdQTOYZ9JwHZjzAfx3loIPON8/AwwP+FnAYwx+mMMb7311j+ex8XFsXTPUhp+0ZCwEWF0\nnN+R73Z/x6Xrl5I879i4WDb+uZE3Vr5BgQ8KUG5COcb9PI4rN65Y/71dWRfB/KPrQtdFYj93y5Md\nQQ0cx5RvEZEo52uvAyOAOeK4muMBoKUHMwQMYwwLdi3g7dVvcz32On0e7MNXLb4iXWi6u55nCklB\n5TyVqZynMoPCB7H6wGo+2PABg9cM5uWqL9O9avdkzV8p5R88VgiMMWu5dcdRz1PLDUS/Hv2VXkt7\ncebqGYbWGcoTxZ4ghZtvGpVCUlC7YG1qF6zN7yd+5+3Vb1PioxIMrzuc1mVbu315SinfoX/dPuzS\njUtsTrOZx2c+TtuybYl6LorGxRt7fKNcJmcZ5rSYw8xmM/lgwwc8PPVh/jj9h0eX6Yrw8HDbEXyG\nrov/03WRfD55q8p/XhgxOK0+sJpOCztRM19NPnj0A7KktXOEbZyJY+yGsQxeM5iBDw2kR9Ue2h0o\n5aNEBHMXO4u1EPiY2LhYhqwZwsTfJvLx4x/TqHijO3/IC/ac2UOH+R3IkCoDnz/5OdnTZb/zh5RS\nXqWFIACcunKKtvPaci3mGrObzSZ3xtx3/pAXxcTFMGDFAGZvm83sZrOpnre67UhKqXjuthBoj+8j\ntp3YRpVPq1A+V3lWtF/hc0UAIGWKlIx8ZCRjHxtLk9lN+HzL57YjKaXcQDsCH7Bq/yqemvsUo+uP\npl25drbjuGTbiW08PvNxOlfozMCHBvLPOxsqpWzQoSE/NXPrTF754RVmN5tN7YK1bcdJkmOXjtFo\nViPK5SzHxEYTCUkRYjuSUkFNC4Efmhw1mTdXvckP7X6gdM7StuPclcs3LtP0y6ZkT5ed6U2nExoS\najuSUkFLC4GfmbBxAsPXDmdF+xUUzVbUdpxkuRZzjWZzmpE6JDWzm88mVYgrd3tUSrmb7iz2I2M3\njOWdde8Q0SHC74sAQJqUaZjXch4GQ7M5zYiOjbYdSSmVBFoIvGz65um8u+5dVj2zikJZCtmO4zap\nU6ZmTvM5CMIz858hNi6x+9IrpXyRFgIvWrhrIa8te40f2v1AgbACtuO4XWhIKF82/5KjF4/y0vcv\nJetqiEop79FC4CURByLosrALi9osomSOkrbjeEza0LQsbL2QX/76hYErB9qOo5RygRYCL9h+cjst\nv2rJ7OazqZynsu04HpcpdSYWt13MnO1z+Oy3z2zHUUrdgUfvUKYcl41oNKsRo+qPok7BOrbjeE32\ndNn5rs131JpSi4JhBalbqK7tSEqpW9COwIOux1znyS+fpFXpVrS/v73tOF5XLFsx5jSfQ5t5bdhx\ncoftOEqpW9DzCDzEGEPHBR25eOMiX7X4Kqgv3Tx101QGrxnMxmc3kjVtVttxlApYeh6Bjxn781i2\nHN/C9KbTg7oIAHQo34EmxZvQbl474kyc7ThKqQSCewvlIesOr2No5FDmtpxL+lTpbcfxCSPrjeTS\njUu8vfpt21GUUgloIXCzE5dP0OrrVkxuPJmCWQrajuMzQkNCmdPCcRTRd7u/sx1HKRWPFgI3io2L\npfXc1rQv157Hiz1uO47PuSfDPXzZ/Es6LezEvrP7bMdRSjlpIXCjtyLeAuDt2jr8cSs18tWgX41+\ntJnbRq9JpJSP0ELgJqsPrGZS1CRmPjlTr8t/Bz2r9SRL2iwMihhkO4pSCi0EbnH26lnaz2/PpMaT\nyJUhl+04Pi+FpGBqk6lM2TSFVftX2Y6jVNDTQpBMxhie/+55mhRvQsOiDW3H8Ru5MuRiatOptJ/f\nntNXTtuOo1RQ00KQTNM3T2fbiW2MrDfSdhS/U79wfVqVbkWXb7volUqVskgLQTLsO7uP3st6M7PZ\nTNKGprUdxy8NqzuMfWf3MWPLDNtRlApaWgjuUpyJo+OCjvSr0Y9yucrZjuO3UoWkYmqTqfRe2ps/\nL/xpO45SQUkLwV2asHEC0bHRvFztZdtR/F6F3BV4scqLOkSklCVaCO7C/rP7eSviLSY3mayHirpJ\n/1r9OX7pOJOjJtuOolTQ0UKQRHEmjs4LO9O3Rl9KZC9hO07ACA0JZVrTafRb0Y+D5w7ajqNUUNFC\nkEQTf53I5ejL9Krey3aUgFM2V1leqfYKzy16ToeIlPIiLQRJcOj8Id5Y9QZTmkzRISEP6fNgH45e\nPMrs32fbjqJU0NBCkATdF3enxwM9KJWjlO0oASs0JJSJjSbSa2kvzlw9YzuOUkFBC4GL5u+cz65T\nu3itxmu2owS8avdVo1nJZvRd1td2FKWCghYCF1y6cYkei3vw8RMfkzplattxgsKwusNYvGcxkQcj\nbUdRKuBpIXDBW6veonbB2oQXCLcdJWhkSp2JMY+NoeuirlyPuW47jlIBTQvBHWw6tokZW2bw7iPv\n2o4SdP5T4j8Uz1acd358x3YUpQKa+OJheiJifCFXbFwsNSbXoEvFLnSp2MV2nKB08NxBKk2sxK9d\nfyV/WH7bcZTyaSKCMUaS+jntCG7js98+IyRFCJ0qdLIdJWjlD8tPz6o9eXXpq7ajKBWwtBDcwtmr\nZ3kz4k3GNRxHCtHVZFOfGn2IOhbFsr3LbEdRKiDpFu4WBkUM4j8l/kP5e8rbjhL00qRMw/uPvk+P\nJT24EXvDdhylAo4WgkRsO7GNmb/PZEidIbajKKdGxRpRMKwgYzaMsR1FqYCjO4sTMMZQ//P6NCrW\niB5Ve1jJoBK3+/RuHpz0IFtf2ErujLltx1HK5+jOYjdZsGsBRy8e5YXKL9iOohIolq0Yz1Z8lr7L\n9YxjpdxJC0E812Ku8erSV/mwwYeEhoTajqMS0b9Wf5bvW84vR3+xHUWpgKGFIJ73179PuVzlqFeo\nnu0o6hYyps7I27XfptcPvfRS1Uq5iUcLgYhMFpHjIrI13muDROSIiEQ5fxp4MoOrjl06xuj1oxld\nf7TtKOoOOpbvyLlr55i/c77tKEoFBE93BFOAhBt6A7xnjKng/Fni4QwuGRQxiA7lO1AoSyHbUdQd\nhKQIYXT90by2/DU9nFQpN/BoITDGRAJnE3kryXu1PWnHyR3M2zGPAbUG2I6iXPRI4UcomrUo4zeO\ntx1FKb9nax9BdxHZLCKTRCTMUoa/9V3el341+5ElbRbbUVQSjKo/imGRw/QGNkolU0oLy5wAvO18\nPBgYDXROONGgQYP+fhweHk54eLhHwqw+sJqtJ7byVYuvPDJ/5TmlcpSiWclmDF49mPcbvG87jlJe\nFxERQURERLLn4/ETykSkAPCtMaasq+9564SyOBNHtc+q8Uq1V2hdtrXHl6fc78TlE5QaV4r1nddT\nNFtR23GUsspvTigTkfinhP4H2HqraT1tzrY5GAytyrSyFUElU870OXm1+qsMXDXQdhSl/JZHOwIR\nmQU8DGQHjgNvAeFAeRxHD+0HnjPGHE/wOY93BNdjrlNyXEkmN5msdx7zc1eir1B0bFEWPrWQSnkq\n2Y6jlDV32xEE7bWG3lv/HqsOrOLb1t96dDnKOz7+5WPm7ZjH0qeX2o6ilDV+MzTkC85dO8eItSMY\nWW+k7SjKTTpX6Mz+c/tZsW+F7ShK+Z2gLASj143miWJPUCpHKdtRlJuEhoQypPYQXl/xul56Qqkk\nCrpCcOLyCcb/Mp63Hn7LdhTlZi1KtyAmLoZ5O+bZjqKUXwm6QjBi7Qjalm2rN0IPQCkkBcPrDmfA\nygHExMXYjqOU3wiqQnD4/GGmbZ5G/1r9bUdRHlK/cH1yZ8zN1E1TbUdRym8E1VFDXb/tSra02Rhe\nb7jb5618x4YjG2j+VXN2v7SbtKFpbcdRymv0qKE7+OP0H8zbMY8+NfrYjqI8rOp9VamSpwrjNo6z\nHUUpvxA0HUGbuW0onaM0Ax7SK4wGg99P/E7d6XXZ22MvGVJlsB1HKa/QjuA2Nh/bzMr9K+lZraft\nKMpLyuQsQ52CdRi7YaztKEr5vKDoCBrPakydgnV4udrLbpun8n07T+2k1pRa7O2xl0ypM9mOo5TH\naUdwCz8d+YlNxzbxfOXnbUdRXlYiewkeK/IYH/z0ge0oSvm0gO8I6k2vR6vSrXi20rNumZ/yL3vO\n7KHaZ9X4o/sfeuMhFfC0I0hE5MFI9p7dS4fyHWxHUZYUyVqEJsWb8N7692xHUcpnBXRHUG96PVqX\naU3niv+6AZoKIvvP7qfyp5XZ/dJusqXLZjuOUh6jHUECN7uB9ve3tx1FWVYwS0FalGrBqHWjbEdR\nyicFbEeg3YCK7/D5w5T/pDw7XtxBzvQ5bcdRyiO0I4hHuwGVUN7MeWlTpg3v/PiO7ShK+ZyA7Ai0\nG1CJOXrxKGUnlOX3F34nd8bcd/6AUn5GOwKnyIOR7Du7T7sB9S95Muahfbn2vLvuXdtRlPIpAdcR\n1JtejzZl29CpQic3p1KB4OjFo5QZX4YdL+4gV4ZctuMo5VbaEfD/buDpck/bjqJ8VJ6MeWhTtg2j\n14+2HUUpnxFQHYF2A8oVh88f5v6P72d3991kT5fddhyl3CboOwLtBpSr8mbOS8vSLXl//fu2oyjl\nEwKmI9BuQCXFgXMHqDSxEn90/4OsabPajqOUWwR1R7D20FrtBlSSFAgrQNPiTfnwpw9tR1HKuoDo\nCB79/FGal2yuVxhVSbL3zF6qflaVPT32EJYmzHYcpZItaDuCjX9uZPvJ7TxT/hnbUZSfKZy1MI8X\ne1zvYqaCnt8XgmFrh9HnwT6kCkllO4ryQ/1r9mfMz2O4cP2C7ShKWePXhWDr8a2sP7yeLhW72I6i\n/FTx7MWpX7g+4zeOtx1FKWv8uhAMXzucV6q9QrrQdLajKD82oNYA3v/pfS7duGQ7ilJW+G0h+OP0\nHyzbt4wXqrxgO4ryc6VylOLh/A/z8S8f246ilBV+WwhGrB3Bi1VeJFPqTLajqAAw8KGBjFo3iivR\nV2xHUcrr/LIQHDp/iPm75tOjag/bUVSAKJerHNXzVufTXz+1HUUpr/PLQvDOj+/QpUIXPSNUudWA\nWgN4d927XI+5bjuKUl7ld4Xg2KVjzNw6k17Ve9mOogJM5TyVKZ2zNDO2zLAdRSmv8rtCMHrdaNqV\na6fXklceMaDWAEasHUFMXIztKEp5jV8VgtNXTjMpahJ9HuxjO4oKULXy1eKeDPcwZ9sc21GU8hq/\nKgRjNozhyZJPkjdzXttRVIASEQbUGsDwtcOJM3G24yjlFX5TCC5cv8C4jePoV7Of7SgqwDUo0oBU\nIan4dte3tqMo5RV+UwjGbxzPo0UepUjWIrajqAAnIvSv2Z+hkUPxxavzKuVuflEIrkRf4YOfPqB/\nzf62o6gg8Z+S/+HijYss37fcdhSlPM4vCsGnv37Kg3kfpHTO0rajqCCRQlLwes3XGbZ2mO0oSnmc\nzxeC6zHXeXfduwyoNcB2FBVkWpdpzYFzB1h3eJ3tKEp5lM8Xgmmbp1E2V1kq5alkO4oKMqEhofSt\n0ZehkUNtR1HKo3y6EMTExTBi7QjtBpQ1Hcp3IOqvKDYd22Q7ilIe49OFYNbWWeTNnJea+WrajqKC\nVJqUaXi1+qsMi9R9BSpw+WwhiDNxDF87nIG1BtqOooLcc5WfI+JABDtP7bQdRSmP8GghEJHJInJc\nRLbGey2riCwTkd0islREwhL77Dc7viFDqgzUK1TPkxGVuqMMqTLw0gMvMfLHkbajKOURLhUCEWki\nIqOdP42SMP8pQIMEr/UDlhljigErnM//ZWjkUAY+NBARScLilPKM7g90Z+GuhRw8d9B2FKXc7o6F\nQERGAD2AbcB2oIeIDHdl5saYSOBsgpcbA9Ocj6cBTRP7bExcDE8Ue8KVxSjlcVnSZuHZis/yzo/v\n2I6ilNvJnU6hdw7rlDfGxDqfhwCbjDFlXVqASAHg25vTi8hZY0wW52MBztx8Hu8zZtbWWTxV5qkk\n/jpKec7xS8cpOa4k27ptI3fG3LbjKPUPl25cImPqjBhjkjyMktKFaQwQBpx2Pg9zvpZsxhgjIonO\na/tX2xn09SAAwsPDCQ8Pd8cilbpruTLkom3Ztrz/0/u884h2Bsq+iIgIIiIiAJJ14uMtOwIRGQ/M\nBO4DRgKrAAEeBvoZY2a7tIB/dwQ7gXBjzDERyQ2sMsaUSPAZoxf7Ur7o0PlDVPikAn90/0Nvlap8\nxrWYaxT6sBB/9f7rrjqC2+0j2A28i6MILAf2AXOBaq4WgVtYCDzjfPwMMD8Z81LKq/JlzkfT4k0Z\ns2GM7ShK/W1K1BQq5q541593ZR9BAeAp509aHF3CLGPM7jvOXGQWjg4iO3AceBNYAMwB8gEHgJbG\nmHMJPqcdgfJZu0/vpsbkGuzrsY+MqTPajqOCXHRsNMU+KsbMJ2fyYL4H76ojuGMh+MfEIhVwHBJa\n1hgTktSFJWE5WgiUT3vq66eolLsSfWrobVOVXdM3T2fqpqmsfGYlIuL2oSEARCSliDQWkZnAEmAn\n8ORd5FUqYPSv1Z/3fnqPq9FXbUdRQezmFRj610revVpuWQhEpL6ITAb+BJ4FFgGFjTFPGWMWJGup\nSvm5crnKUSVPFSZHTbYdRQWxb3Z8Q6bUmahbsG6y5nO7o4ZWArOAucaYM8laSlJD6dCQ8gMbjmyg\nxVct2NNjD6lCUtmOo4KMMYZKEysxKHwQjYs3BnD/0JAxpo4x5lNvFwGl/EXV+6pSInsJZmyeYTuK\nCkJL9iwhOi7aLVdg8NmrjyrlDwY+NJDha4cTExdjO4oKMsPWDqN/zf6kkORvxrUQKJUMD+V/iDwZ\n8zBn2xzbUVQQWXNwDccuHaNl6ZZumZ8WAqWSaUCtAQyNHEqcibMdRQWJoZFD6VejHyEp3HMUvxYC\npZKpfuH6pAtNx/ydepK88rxfjv7C9pPbefr+p902Ty0ESiWTiDCw1kCGrBmCHu2mPG1Y5DD6PNjH\nrUeqaSFQyg0aFW9ETFwMi/csth1FBbDtJ7ez7vA6ulTs4tb5aiFQyg1SSAr61+qvXYHyqOFrh9Oz\nak/ShaZz63y1ECjlJi1KteDUlVNEHIiwHUUFoH1n97H4j8V0q9LN7fPWQqCUm4SkCHF0BZFDbEdR\nAWh45HC6VelG5jSZ3T5vLQRKuVHbsm3Ze2Yv6w+vtx1FBZCD5w4yb+c8Xq72skfmr4VAKTcKDQml\nX81+DI0cajuKCiAjfxxJ14pdPXZXPC0ESrlZh/IdiDoWRdRfUbajqADw54U/+XLbl/Sq3stjy9BC\noJSbpUmZht7Ve2tXoNzi3XXv0uH+DuRIn8Njy0jSHcq8RS9Drfzd5RuXKTSmECvbr6R0ztK24yg/\ndezSMUqNK8W2btvInTH3Haf32B3KlFJJlz5Vel6u+jLD1w63HUX5sdHrRtOuXDuXikByaEeglIec\nv3aewmMKs6HLBgpnLWw7jvIzJy+fpMS4Emx+fjP3ZbrPpc9oR6CUj8mcJjPdqnRjxNoRtqMoP/T+\nT+/TolQLl4tAcmhHoJQHnb5ymqJji7Lp+U3ky5zPdhzlJ85cPUPRsUX5teuvFAgr4PLntCNQygdl\nS5eNLhW78M6P79iOovzImA1jaFq8aZKKQHJoR6CUh524fIISH5VgywtbvNLmK/92/tp5iowtwvrO\n6ymStUiSPqsdgVI+Kmf6nHSu0Fn3FSiXfPTzRzQo0iDJRSA5tCNQygtudgWbn99M3sx5bcdRPurS\njUsU+rAQazquoUT2Ekn+vHYESvmwnOlz0qViF+0K1G2N3zie2gVr31URSA7tCJTykpOXT1L8o+La\nFahEXbx+kSJjiyTrbHTtCJTycTnS5+DZis/q2cYqUR/9/BF1C9a1ckkS7QiU8qKbZ4tGPRel5xWo\nv124foEiY4rc9b6Bm7QjUMoP/N0VRGpXoP5vzIYxPFrkUa/vG7hJOwKlvOzUlVMU/6g4v3X9jfxh\n+W3HUZadu3aOomOLsq7TOopmK5qseWlHoJSfyJ4uO10rdtV9BQqAD376gCeKPZHsIpAc2hEoZYF2\nBQrg7NWzFB1blJ+f/ZlCWQole37aESjlR7Kny85zlZ5jWOQw21GURe+tf4+mJZq6pQgkh3YESlly\n+sppin1ULMlXmFSBwRP//7UjUMrPZEuXjW6Vu/H26rdtR1EWjFo3ihalWvjElwDtCJSy6OYRI2s6\nrKFkjpK24ygv8dT5JNoRKOWHwtKE0bt6b96MeNN2FOVFI9aOoHWZ1j5zUqF2BEpZdiX6CkXGFOHb\n1t9SKU8l23GUhx0+f5jyn5RnW7dt3JPhHrfOWzsCpfxUutB0DHxoIANXDbQdRXnBf1f/l+crPe/2\nIpAcWgiU8gFdKnZh16ldrDm4xnYU5UE7T+1kwa4F9KnRx3aUf9BCoJQPSBWSiv+G/5f+K/qjw6KB\n641Vb9C7em/C0oTZjvIPWgiU8hFtyrbh7LWzLN6z2HYU5QG/HP2FdYfX0b1qd9tR/kULgVI+IiRF\nCENqD2HAygHEmTjbcZSb9V/RnzceeoN0oelsR/kXLQRK+ZCmJZoSmiKUr7d/bTuKcqOV+1ey7+w+\nOlfobDsWvVVyAAAO8UlEQVRKorQQKOVDRIRhdYcxcOVAomOjbcdRbmCM4fUVrzO49mBCQ0Jtx0mU\ntUIgIgdEZIuIRInIz7ZyKOVr6hWqR8EsBfnk109sR1FuMH/nfK7HXKdVmVa2o9yStRPKRGQ/UMkY\ncyaR9/SEMhXUthzfQv0Z9dn10i4yp8lsO466S9Gx0ZSZUIYPG3xIgyINPL48fz2hLMmBlQoG5XKV\no2HRhoz8caTtKCoZJv46kfyZ8/No4UdtR7ktmx3BPuA8EAt8Yoz5NN572hGooPfnhT8p93E5Nj23\nibyZ89qOo5Lo/LXzFPuoGMueXka5XOW8ssy77QhSeiKMi2oYY/4SkRzAMhHZaYyJvPnmoEGD/p4w\nPDyc8PBw7ydUyqJ7M91Lt8rdGLhqINOaTrMdRyXR8LXDeaLoEx4tAhEREURERCR7Pj5x0TkReQu4\nZIwZ7XyuHYFSwMXrFyn2UTEWt11M+XvK246jXHTw3EEqTqzIlue3cG+me722XL/aRyAi6UQko/Nx\neqA+sNVGFqV8WcbUGXnzoTfpvbS3XnrCjwxYOYCXqrzk1SKQHLZ2FucCIkVkE7ABWGSMWWopi1I+\nrUvFLhy5cIQle5bYjqJcsPHPjaw6sMrnLix3Oz4xNJSQDg0p9U8Ldy2k/4r+bHp+EylT2Ny1p27H\nGEP4tHCeLvc0XSp28fry/WpoSCmVNI2KNSJ3xtxM2DjBdhR1G9/s/IYzV8/QsXxH21GSRDsCpfzE\n9pPbCZ8azvYXt5M9XXbbcVQCV6OvUnJcSSY3mUydgnWsZNCOQKkAVypHKdqUbcPAlXonM1/0zo/v\nUOXeKtaKQHJoR6CUHzl37RwlPirB4raLqZC7gu04yunm4aK/df2N/GH5reXQjkCpIBCWJozBtQfT\nY0kPPZzUh7y69FV6Vu1ptQgkhxYCpfxMpwqduBJ9hdm/z7YdRQEr9q3g179+pc+D/nO4aEJaCJTy\nMyEpQhjTYAyvLX+NSzcu2Y4T1KJjo+mxpAfv1X+PtKFpbce5a1oIlPJDNfLVILxAOINXD7YdJaiN\n2ziOPBnz0LREU9tRkkV3Fivlp45fOk7ZCWVZ0X4FZXOVtR0n6By5cITyH5dnbae1lMhewnYcQHcW\nKxV0cmXIxZA6Q+i6qKve7N6CHot78GKVF32mCCSHFgKl/FiXil1IISn49NdP7zyxcpuFuxby+4nf\neb3W67ajuIUODSnl57Ye30rd6XXZ+sJWcmXIZTtOwLt04xKlx5dmSpMpPnfy2N0ODWkhUCoA9F3W\nlyMXj/DFk1/YjhLwXv3hVU5dPeWTNwvSfQRKBbE3H36TdYfXsXSvXs3dk6L+iuLzrZ8z6pFRtqO4\nlRYCpQJA+lTpmfD4BJ5b9BwXr1+0HScgRcdG03lhZ0bUHUGO9Dlsx3ErLQRKBYgGRRpQu0Bt+i7v\naztKQBqxdgS5MuSiQ/kOtqO4ne4jUCqAnLt2jnITyjG16VSf25Hpz7Yc30Ld6XWJei6K+zLdZzvO\nLek+AqUUYWnC+OSJT+i8sLMOEblJdGw0HeZ3YGS9kT5dBJJDC4FSAeaxoo9Ru0Bt+i3vZztKQLg5\nJORvdx1LCh0aUioAnbt2jrITyjK1yVTqFqprO47f2nxsM/Vm1PP5IaGbdGhIKfW3sDRhTG48mQ4L\nOnD6ymnbcfzSlegrtJ7bmvfqv+cXRSA5tCNQKoD1XtqbvWf3Mq/lPESS/EUxqHX7rhvnrp3jiye/\n8Jt1px2BUupfhtYZyoFzB/j0N70WUVIs3LWQxXsWM+HxCX5TBJJDOwKlAtzOUzupObkmkR0jKZmj\npO04Pu/oxaNU/KQic1vOpUa+GrbjJIl2BEqpRJXIXoJhdYfRem5rrsVcsx3Hp8XGxfLM/Gd4vvLz\nflcEkkMLgVJB4NmKz1IsWzF6LO5hO4pP++/q/xIbF8vAhwbajuJVWgiUCgIiwqTGk4g8FMmUqCm2\n4/ik73Z/x+SoycxqNouUKVLajuNVWgiUChIZU2dkXst59F3el6i/omzH8Sn7z+6n08JOfNn8y6C8\np4MWAqWCSMkcJRnXcBzN5jTj7NWztuP4hGsx12j+VXNer/l6UO0XiE+PGlIqCL36w6v8fvJ3vmvz\nXdANg8RnjKHtvLYYDDOfnOn3h4rqUUNKKZeNfGQkIRJC9++7E8xfugavGczes3uZ3Hiy3xeB5NBC\noFQQSpkiJbObz2bt4bV8uOFD23GsmLNtDpOiJrHgqQWkDU1rO45VwdsTKhXkMqXOxKLWi6g+qTqF\nsxSmUfFGtiN5zU9HfuLF719k+dPLuSfDPbbjWKcdgVJBLH9Yfua1mkenhZ1Yf3i97Thesf3kdprO\nbsq0ptO4/577bcfxCVoIlApy1e6rxrSm02j6ZVO2Ht9qO45HHTp/iAafN2BU/VE0LNrQdhyfoYVA\nKUXDog0Z02AMDb5owJ4ze2zH8YiTl09Sf0Z9elXvRbty7WzH8Sm6j0ApBUCrMq04f/08j8x4hIhn\nIsgflt92JLc5cfkEdafXpWXplrxc7WXbcXyOFgKl1N+6VurK9ZjrPDz1YZa3X06RrEVsR0q2Y5eO\nUXd6XZqXbM6g8EG24/gkLQRKqX/oXrU7qVOmJnxqOEufXkqpHKVsR7prf174k7rT69KmbBvefPhN\n23F8lhYCpdS/dK3UlbQp01J3el0WPLWAB+59wHakJNt2YhsNZzakW+Vu9K3Z13Ycn6aXmFBK3dLC\nXQvpvLAzHz/+Mc1KNbMdx2WrD6ym5dctGfXIKJ6+/2nbcbzmbi8xoYVAKXVbvx79lSazm9Czak96\nP9jb5y/FMCVqCn2X92Vms5nUK1TPdhyv0kKglPKYw+cP0/TLphQMK8ikxpPInCaz7Uj/cj3mOj0W\n92D1wdXMazXPr/dt3C296JxSymPyZs7Lj51+JGf6nFSaWMnn7mew69Quak6pyemrp/n52Z+Dsggk\nhxYCpZRL0qRMw/jHxzOkzhDqf16fQRGDuBF7w2qmOBPHmA1jqDG5Bh3Ld+SrFl+RKXUmq5n8kQ4N\nKaWS7MiFIzy/6HkOnT/EJ098QvW81b2eYdOxTXRf3J3YuFimNZ1G0WxFvZ7B1/jV0JCINBCRnSLy\nh4jocV1K+Zn7Mt3Ht62/pV/NfrT4qgUtv2rJ3jN7vbLsoxeP8sKiF3j080d5utzTRHaM1CKQTF4v\nBCISAnwENABKAa1FpKS3c/iLiIgI2xF8hq6L//OFdSEitCnbht3dd3N/rvup+llVOi7oyLYT2zyy\nvIPnDvLS9y9RZnwZ0oamZeeLO+laqSuRayI9srxgYqMjeADYY4w5YIyJBmYDTSzk8Au+8AfvK3Rd\n/J8vrYt0oekY8NAAdnffTdGsRak3ox6PzHiEaZumceH6hWTN+2r0Vb7Z8Q0Nv2hIxYkVSReajh0v\n7uC9R98jS9osgG+tC39l48zie4HD8Z4fAapayKGUcqOsabPSv1Z/elXvxcJdC/li6xf0WNKDavdV\no06BOtTKX4tSOUoRlibslvO4Gn2Vzcc3s/HPjSzbt4yIAxFUylOJjuU78nXLr0kXms6Lv1HwsFEI\ndC+wUgEsTco0tCzdkpalW3L26llWH1zNyv0r6bmkJztO7iBj6ozkSp+LrGmzkjJFSqLjorl04xJH\nLhzh7NWzlM5Zmsq5K/NUmaeY2nQqWdNmtf0rBTyvHzUkItWAQcaYBs7nrwNxxpiR8abRYqGUUnfB\nL84sFpGUwC6gLnAU+BlobYzZ4dUgSimlAAtDQ8aYGBF5CfgBCAEmaRFQSil7fPKEMqWUUt5j9RIT\nrpxYJiJjnO9vFpEK3s7oLXdaFyLS1rkOtojIjyJSzkZOb3D1hEMRqSIiMSLypDfzeZOLfyPhIhIl\nIr+LSISXI3qNC38j2UVkiYhscq6LDhZiepyITBaR4yKy9TbTJG27aYyx8oNjWGgPUAAIBTYBJRNM\n0xD43vm4KvCTrbw+sC6qA5mdjxsE87qIN91KYBHQzHZui/8uwoBtwH3O59lt57a4LgYBw2+uB+A0\nkNJ2dg+si1pABWDrLd5P8nbTZkfgyolljYFpAMaYDUCYiOTybkyvuOO6MMasN8acdz7dANzn5Yze\n4uoJh92Br4GT3gznZa6sizbAXGPMEQBjzCkvZ/QWV9bFX8DNK85lAk4bY2K8mNErjDGRwNnbTJLk\n7abNQpDYiWX3ujBNIG4AXVkX8XUGvvdoInvuuC5E5F4cG4EJzpcCdUeXK/8uigJZRWSViPwiIoF6\nOy5X1sWnQGkROQpsBnp6KZuvSfJ20+Y9i1394014TGwg/tG7/DuJSG2gE1DDc3GscmVdfAD0M8YY\ncdwuy7dvmXX3XFkXoUBFHIdjpwPWi8hPxpg/PJrM+1xZF/2BTcaYcBEpDCwTkfuNMRc9nM0XJWm7\nabMQ/Ankjfc8L47Kdbtp7nO+FmhcWRc4dxB/CjQwxtyuNfRnrqyLSsBs5y0TswOPiUi0MWahdyJ6\njSvr4jBwyhhzFbgqImuA+4FAKwSurIsHgaEAxpi9IrIfKA784pWEviPJ202bQ0O/AEVFpICIpAJa\nAQn/kBcC7eHvM5LPGWOOezemV9xxXYhIPmAe0M4Ys8dCRm+547owxhQyxhQ0xhTEsZ/ghQAsAuDa\n38gCoKaIhIhIOhw7B7d7Oac3uLIudgL1AJxj4sWBfV5N6RuSvN201hGYW5xYJiLPOd//xBjzvYg0\nFJE9wGWgo628nuTKugDeBLIAE5zfhKONMQ/YyuwpLq6LoODi38hOEVkCbAHigE+NMQFXCFz8dzEM\nmCIim3F8yX3NGHPGWmgPEZFZwMNAdhE5DLyFY4jwrrebekKZUkoFOb1nsVJKBTktBEopFeS0ECil\nVJDTQqCUUkFOC4FSSgU5LQRKKRXktBAo5SIRySwiL9jOoZS7aSFQynVZgG62QyjlbloIlHLdCKCw\n8yYwI22HUcpd9MxipVwkIvmBRcaYsrazKOVO2hEo5bpAvdy1CnJaCJRSKshpIVDKdReBjLZDKOVu\nWgiUcpEx5jTwo4hs1Z3FKpDozmKllApy2hEopVSQ00KglFJBTguBUkoFOS0ESikV5LQQKKVUkNNC\noJRSQU4LgVJKBTktBEopFeT+B/lep+7/U3STAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f0239c14410>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange,pi,sin\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,show,ylabel\n", + "#Positive Clamping circuit\n", + "#let input voltage be V_in=V_p_in*sin(2*pi*f*t)\n", + "V_p_in=10.#\n", + "V_DC=(V_p_in)# #DC level added to output\n", + "print 'V_DC = %0.2f V'%V_DC\n", + "for n in range(0,2):\n", + " t=arange(n/2,(n+1)/2+0.0005,0.0005)\n", + " V_in=[]\n", + " for tt in t:\n", + " V_in.append(V_p_in*sin(2*pi*tt))\n", + " Vout=[]\n", + " for vv in V_in:\n", + " Vout.append(V_DC+vv)\n", + " plot(t,Vout)\n", + "\n", + "title('Positive clipper graph')\n", + "xlabel('t')\n", + "ylabel('Vo')\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 519 Example 16.9." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V_DC = -12.00 V\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8FOXWwPHfoQpSI4hUEaV5bfRyUSOKRFRsVBtFQFFe\nfb02iiVXLyooKNaXqlhoURFQUIoEEVGKCBGJyFUUVFBErCgl5/3jGXSJm2ST7O5sOd/PJx93dp6d\nOZPgnH3OM/OMqCrGGGNMcZXwOwBjjDGJwRKKMcaYsLCEYowxJiwsoRhjjAkLSyjGGGPCwhKKMcaY\nsLCEYpKWiMwXkauiuL90EXnee11PRH4WEYnW/mNF4O/BJBZLKCZqRGSriOwUkfIB7w0QkaVR2Pff\nTmKq2kVVo3li+/OmL1X9UlUranLeCJaMx5wULKGYaCsB3OR3ED7xvTciIqXCsI3injd8/z2YyLCE\nYqJJgYeBW0WkcrAGItJERBaJyPciki0i3QPWHSUi80TkRxFZJSL/EZHlAevHiciX3vo1ItLBez8N\nGAb09MpM67z3M0XkGhEpKyJ7ROQfAduqLiK/iUg1b/kCEflQRH4QkRUicnJeByki/wg4hh0iMixI\nm/oiknPo5OzF8oCIvO/F/6qIVM3VdqCIfCUiX4vILQHbEhEZKiJbRGSXiMwM8tn+IvIFsDiPmG/3\ntrvd6zXmiEgDb92zIvK0VyL8BUgVkfNFZJ0X65cick+QYwsaL+7fQRkRmSoiP4nIRyLSIq/fp4kf\nSZtQRKS7iGwUkYMi0jyfdlO8Mk1WrvdPFZGVIrJBROaKSMWAdad46z7y1pctIJYh3skgR0RSin90\nMW0NkAncmnuFiBwJLAJeAKoDvYCnRKSp1+RJ4GegBtAHuJrDyyergFOBqsA0IENEyqjqG8D9wAyv\nzNTMa6+AquofwMtA74Bt9QAyVXWXiDQDJgMDgRRgPDBXRMoEOYaKuJP2fKAmcAKwJMTfzVVAP+9z\nB4DHcq1P9bZ3LnCHiJztvX8j0BU4w/vsD7jfVaAzgCZA5yAxpwE3A2cDDb395NYbuE9VKwArgF+A\nK1W1MnA+MFhELgoxXvHinQ5UBuYCTwTZp4k3qpqUP7j/uRoBS4Hm+bQ7HWgGZOV6fzVwuve6H3Cv\n97oUsB442VuuCpQoIJbTgGOBz4EUv383Efydfw50BP4B7AGqAQOApd76nsDbuT4zHrgbKAnsAxoG\nrLsPWJ7P/nYH/B3SgedzrV8K9Pdenw1sCVi3AnfCBHj60N83YH02cEaQffYG1uYRz58xAPWBnEP/\nNrxY7g9o2xT4A3fyPdS2UcD6UcAk7/UmoGPAupre76pEwGfr5/N7mgKMDFg+3vtMA2/5WeDZAv62\njwJjcx1bXvGmAwsD1p0I/Ob3v0/7Kf5P0vZQVDVbVTeH0G457htfbg29deC+kV7mvT4X2KCqWd7n\nf1DVHAAROVdE3hWRtSIyy/tGjqp+qKpfFPeY4oWqbgReA4ZyeA/jWKCNV1b6QUR+AC7H9Uiq4ZL1\ntoD22wO3KyK3isjHXvnqB9y332ohhpUJlBeR1iJSH9fTmR0Q1y254qqDO3HnVhf4LMR95hZ4bF8C\npTk8/tzrawXENzsgto9xPZwaeXw2t5rk83vF/Y0O+7yItBGRpSLyrYjsAa4FjirgeGoFLO8MeP0b\ncIQUf2zG+Mz+gEW3MaCL3x13IgHX61ERecNLHLcBeLX4EcDZqtoCWAv8K9pBx5B7cCWk2gHvfQks\nU9WqAT8VVfUGYBfuJFk3oP2fr0XkdOA2oLuqVlHVqsCP/DUAnO+VRap6EJiF62H0Buap6q8BcY3M\nFVcFVZ0ZZFNfAg3y2k1+MQD1cr3ejzvuvNZ/FbDPtFzxlVfVb0Lc9zfk8XvNxzTgVaCOqlYB/o+/\nn0/yitckqIROKN7AaFaQnwvDsPn+wPUisgaogCsxgPsW3QH3zboDcImIdATa4rr274obFL6aw/+H\nSyqq+l9gJodf8fU60EhErhSR0t5PKxFp4p3wXwHSRaSciDTBjTkcOlFWxCWcXSJSRkTuBioFbHsH\nUF/kb/d9BC5Pw43bXO69PmQicJ3XexEROdIblK4Q5NBeA2qKyE3iBvsrikjrIPvKTYArRaSpuMuq\n7wUyVDUwEdzpHfs/gL643x+4k/n9IlIP/rygoGs++8ptFtBP3AUR5YG7gsSWWwXgB1Xd5x3f5fw9\naeUVr0lQCZ1QVLWTqp4c5GdeGLb9iap2VtWWwAzgv96qbbhxgN2quhc3OHto0H+Rqjbzfv6hqgOL\nG0ecuxcoj3ciUtWfcSXDXrhvs98ADwCHBr+H4MpYO4CpuEHdQ4n8De9nM7AV2Iv75n5Ihvff770v\nAYcE3huyCjfYXBNYEPD+Wlxv6gncuMynuC8Ef6OqvwCdgAu9+Dfz1yC3cvhJN/fr53HjFd94x3xj\nrs0vA7bgSqwPqeqhK7bG4Qa2F4rIT8BKoHXA5wrqnb2BuwBgqRfvSm/VH3nEDXA9cK+3v7sInizy\nijfY9uzelETg5wAOkIYb3PwUuCOPNo9569cDzQrz2RBjWAq0KKBNff4+KF/d+28J4Dmgr7dcBVfO\nKofrrSwCzsPVwr8AjvfaHUnAALP33ufAUX7+TeLpBzfQ+4zfcYTpWP68QCDIuvoEDOBHIZamuN5e\nkfYX7XjtJ3Z+fOuhiEhJ3De+NFwpqHfA5aGH2nQBTlDVhsAg3NU2IX02hP1fIiLbcKWo10Vkgfd+\nLRF5PaDddOBdXClmm4j081b1FpFPcFfYbFfVZwFUdQ8wFncV2DrcFT8LVHUXrts/XUTWe9ts7O3j\nRi+W2sAGEZlQmGNJFiLS2LskW7wyS3/+GjhPBL7d8Of9/1BW3P0ro4C56l1MYkyoRNWfnqaItAPu\nUdU0b3kogKo+GNDm/3CXlM70lrNx5YPjCvqsSTwi0hJX5qqFu0povKqO8jeq8BA3/czzqjolyLr6\nuJJq6Uid5L0vVO2Ag7gr3q5X1Z35fijvbdUnwvGa2FTsaRiKoTZ/v1SxTQhtauNOKAV91iQYVV2D\nu/Eu4ajqWfms24q7DyeS+z8vjNvaSoTjNbHJz0H5ULtGNu+PMcbEAT97KF/x92vfc99QlbtNHa9N\n6RA+i4jYlSPGGFMEqlroL/N+9lDWAA3FTSRXBjftxtxcbebiXZ4pIm2BPV5dN5TPAok9tcw999zj\newx2fHZ8yXZsyXB8ReVbD0VVD4jIEOBNXL11sqpuEpFrvfXjVXW+iHQRkS3Ar7g5s/L8rD9HYowx\nBvwteaGqCwi4gcx7b3yu5SGhftYYY4x/EvpO+USXmprqdwgRZccXvxL52CDxj6+ofLsPJRpERP+z\n7D9+h2GMSTAnVj+RS5pe4ncYESMiaBEG5X0teUXDR5/8RoO85n41xphCWLl9JUu3LuXBs+0e6mAS\nvodSr56SlQWVKhXc3hhjgsnRHB5+92HGrBzD5K6TuaDRBX6HFFFF7aEkfEIZMEApUQLGjy+4vTHG\n5Pb9b9/T59U+7N67mxndZlCvcuI/daKoCSXhB+UffhgWLIDFiwtua4wxgVZuW0nzCc1pUq0Jy/ou\nS4pkUhwJ30NRVd54A667DrKyoGJFv6MyxsQ6VWXsyrGMfnc0Ey+cSNfGhXleWfyzklcQhxIKwDXX\nQNmy8NRTPgdljIlpP+z9gb5z+rLjlx3M7DaT+lXq+x1S1FnJqwBjxsC8efDWW35HYoyJVau+WkXz\nCc1pUKUBy/stT8pkUhxJ00MBmD8fhgyBDRugQrCngRtjkpKqMu79cdy//H7GXzA+oe8xCYWVvILI\nnVAA+vZ1yeSJJ/yJyRgTW/b8vof+c/rz5Y9fMqv7LBpUtRvXrOQVokcegVdfhWXL/I7EGOO3NV+v\nofn45tSuWJsV/VdYMimmpEsoVavC009D//7w669+R2OM8YOq8sSqJ+jyYhdGdxrN410ep2ypsn6H\nFfeSruR1yFVXQUoKjBsX5aCMMb768fcfGThvIFt2b2FW91mckHKC3yHFHCt5FdK4cZCRAW+/7Xck\nxpho+eCbD2gxoQXVylfj3WvetWQSZkmbUFJSXOnrmmvgt9/8jsYYE0mqytOrn6bzC50Z2XEkT53/\nFEeUOsLvsBJO0pa8DrniCqhRA8aOjVJQxpio+umPnxg0bxDZu7LJ6J5Bw6Ma+h1SzLOSVxE99hhM\nnw4rVvgdiTEm3NbvWE/LCS2pXLYyK69ZackkwpI+oRx1FDz5JPTrB3v3+h2NMSYcVJUJaydwzvPn\ncM+Z9zD+wvGUK13O77ASnm8JRURSRGSRiGwWkYUiUiWPdmkiki0in4rIHQHvdxeRjSJyUESaFyeW\nSy+F5s3hrruKsxVjTCz4Zd8vXDn7Sh5f9TjL+y3nilOu8DukpOFnD2UosEhVGwFLvOXDiEhJ4Akg\nDTgR6C0iTb3VWcAlQFiu03r8cXjxRVi5MhxbM8b4IWtnFi0ntKRcqXK8P+B9mlRr4ndIScXPhNIV\nmOq9ngpcHKRNa2CLqm5V1f3ADOAiAFXNVtXN4QqmenWXVKz0ZUz8UVWmrJtCx+c6Mvz04UzqOony\npcv7HVbS8TOh1FDVnd7rnUCNIG1qA9sClrd770VEt25w8smQnh6pPRhjwu3Xfb/Sd05fxqwcw7K+\ny7j61Kv9DilplYrkxkVkEXBMkFUjAhdUVUUk2PW9Ub+m+ckn4ZRT3LhKmzbR3rsxpjA2fruR7hnd\naV27NasGrOLIMkf6HVJSi2hCUdVOea0TkZ0icoyq7hCRmsC3QZp9BdQNWK6L66WELD2gu5Gamkpq\namq+7Y8+2t1F378/rF0LR9i9T8bEpKkfTuXWRbfyUKeH6HtaX7/DiWuZmZlkZmYWezu+3dgoIqOB\n71V1lIgMBaqo6tBcbUoBnwBnA18Dq4DeqropoM1S4FZVXRtkHwXe2BiMqit/NW4M999f6I8bYyLo\nt/2/MWT+EFZuX0lG9wxOOvokv0NKOPF4Y+ODQCcR2Qx09JYRkVoi8jqAqh4AhgBvAh8DMw8lExG5\nRES2AW2B10VkQbgCE3GPCp48GVavDtdWjTHFtem7TbSe2Jp9B/exeuBqSyYxJumnXsnPtGmuh7J2\nrXsevTHGPy9seIGb37yZB85+gGuaXYNIob9AmxDZExuDKG5CUYVLLnFXft13XxgDM8aEbO/+vdz0\nxk0s+2IZGd0zOKXGKX6HlPDiseQV80TcjMQTJsAHH/gdjTHJZ/P3m2k7uS0/7/uZNQPXWDKJcZZQ\nClCzJjz8sHsW/b59fkdjTPKY8dEM/jnln1zf8nqmXTqNimUr+h2SKYCVvEKgCl27uvm+/v3vMARm\njMnT7wd+5+Y3bmbx54uZ1W0WzWo28zukpGNjKEGEK6EAfP01nHYaLFzo/muMCb8tu7fQPaM7DVMa\nMqnrJCqVreR3SEnJxlAirFYteOghV/rav9/vaIxJPBkbM2g3uR0Dmw9kZreZlkzikPVQCkEVLrjA\nTcly991h26wxSe2PA39wy8JbWLBlAbO6zaJFrRZ+h5T0rOQVRLgTCsD27dCsGSxeDKeeGtZNG5N0\nPvvhM7pndKd+lfpM7jqZKkcEfSySiTIreUVJnTowapSb5t5KX8YU3SubXqHtpLb0ObUPL3V/yZJJ\nArAeShGownnnwemnw4gRBbc3xvxl38F93LbwNuZunsvMbjNpXbu13yGZXKzkFUSkEgrAtm3uMuKl\nS+Ekm07ImJBs3bOVHhk9qFWxFs9c9AxVy1X1OyQThJW8oqxuXTfPV9++cOCA39EYE/vmZM+hzaQ2\n9D6pN7N7zrZkkoCsh1IMqnDuudCxIwwbFrHdGBPX9h3cx9DFQ3ll0yvM6DaDtnXa+h2SKYCVvIKI\ndEIB+OILaNkSli2DE0+M6K6MiTtf7PmCni/1pPqR1Zl68VRSyqX4HZIJgZW8fHLssfCf/7irvqz0\nZcxfXtv8Gq0nteayppcxp9ccSyZJwHooYaAK55wDnTvD7bdHfHfGxLT9B/cz4q0RzPhoBjO6zaB9\n3fZ+h2QKyUpeQUQroQB8/jm0agXLl0PTplHZpTExZ9uP2+j1ci8ql63Mc5c8R7Xy1fwOyRSBlbx8\ndtxxcO+90L8/HDzodzTGRN+CTxfQamIrLmx0Ia9d/polkyRkPZQwysmBs892833dckvUdmuMrw7k\nHOCut+7ihawXmHbpNE4/9nS/QzLFFHclLxFJAWYCxwJbgR6quidIuzTgUaAkMElVR3nvPwRcAOwD\n/gv0U9Ufc302qgkF4LPPoHVrWLECGjeO6q6NibqvfvqK3i/3pnzp8jx/yfNUP7K63yGZMIjHktdQ\nYJGqNgKWeMuHEZGSwBNAGnAi0FtEDo1QLAT+oaqnApuBmLgTpEEDuOceK32ZxPfmljdpObElnY/v\nzPwr5lsyMb4mlK7AVO/1VODiIG1aA1tUdauq7gdmABcBqOoiVc3x2r0P1IlwvCG74QYoWRIee8zv\nSIwJvwM5B7jzrTvpP7c/0y+bzogzRlBCbDjWQCkf911DVXd6r3cCNYK0qQ1sC1jeDrQJ0q4/MD28\n4RVdiRIwZQq0bevGUxo29DsiY8Ljm5+/offLvSlVohQfDPqAGhWC/W9rklVEE4qILAKOCbLqsDl6\nVVVFJNhgR4EDICIyAtinqtOCrU9PT//zdWpqKqmpqQVtMixOOAHuusuVvpYtc0nGmHi25LMlXDX7\nKq5reR0jTh9ByRIl/Q7JhElmZiaZmZnF3o6fg/LZQKqq7hCRmsBSVW2Sq01bIF1V07zlYUBOwMB8\nX2AgcLaq/h5kH1EflA+UkwNnnAE9esCNN/oWhjHFcjDnIPe9fR8T1k7ghUtfoONxHf0OyURYPF7l\nNRr4XlVHichQoIqqDs3VphTwCXA28DWwCuitqpu8q7/GAGeq6q489uFrQgHYvBnat4f334fjj/c1\nFGMKbccvO7jilStQVaZdNo1jKgQrOJhEE49XeT0IdBKRzUBHbxkRqSUirwOo6gFgCPAm8DEwU1U3\neZ9/HKgALBKRdSLyVLQPIBSNGsHw4XDNNa7HYky8WPr5UlpMaEGHuh1YdNUiSyamQHZjYxQcPOie\n7njFFe4KMGNi2cGcg9y//H6eWvMUz138HJ2O7+R3SCbK4q7kFQ2xklAAsrOhQwdYtcrdq2JMLPr2\n12+58pUr+ePgH0y/bDq1KtbyOyTjg3gseSWVJk3gjjus9GVi19tfvE3z8c1pVasVS65eYsnEFJr1\nUKLo4EH45z+hTx8YPNjvaIxxcjSHUe+MYtz743j24mdJOyHN75CMz6zkFUSsJRSATZvcpcSrV0P9\n+n5HY5Ldrt92cdXsq/j5j5+Z0W0GdSrFzIQTxkdW8ooTTZvCrbfCgAHuwVzG+GXFlytoPr45p9Y4\nlaV9lloyMcVmPRQfHDjg7k0ZMAAGDfI7GpNscjSHh999mLErxzK562TOb3S+3yGZGGMlryBiNaEA\nfPQRnHUWrF0L9er5HY1JFt//9j19Xu3D7r27mdFtBvUq2z8+83dW8oozJ50EN98MAwda6ctEx8pt\nK2k+oTlNqzVlWd9llkxM2FkPxUcHDrgZiQcPdpcTGxMJqsrYlWMZ/e5oJl04iQsbX+h3SCbGWckr\niFhPKABZWdCxI3zwAdSt63c0JtH8sPcH+s7py45fdjCz20zqV6nvd0gmDljJK06dfLKbiXjQICt9\nmfBa9dUqmk9oToMqDVjeb7klExNxllBiwNChsGMHTJ1acFtjCqKqPPreo1ww7QLGnjuWR9IeoUzJ\nMn6HZZKAlbxixPr10KkTrFsHtWv7HY2JV3t+30P/Of3Z9tM2ZnWbxXFVj/M7JBOHrOQV5049Fa6/\nHq691kpfpmjWfL2G5uObU6dSHd7p944lExN1llBiyPDhsG0bPP+835GYeKKqPP7+43R5sQujO43m\nsfMeo2ypsn6HZZKQlbxizLp10LmzK4HVrOl3NCbW/fj7jwyYN4DPfviMWd1mcXyKPRbUFJ+VvBJE\ns2Zw3XVW+jIF++CbD2gxoQVHlz+aFf1XWDIxvrOEEoPuvBO2boVp0/yOxMQiVeXp1U/T+YXOjOw4\nkifPf5IjSh3hd1jGWMkrVq1dC126uNLXMfYob+P56Y+fGDRvENm7ssnonkHDoxr6HZJJQHFV8hKR\nFBFZJCKbRWShiFTJo12aiGSLyKcickfA+/eJyHoR+VBElohIwt1j3qKFm4148GArfRln/Y71tJzQ\nksplK7PympWWTEzM8aWHIiKjgV2qOtpLFFVVdWiuNiWBT4BzgK+A1UBvVd0kIhVV9Wev3f8Ap6rq\ngCD7idseCsAff0Dz5nDXXdCrl9/RGL+oKhM/mMiIt0YwLm0cl598ud8hmQRX1B5KqUgEE4KuwJne\n66lAJjA0V5vWwBZV3QogIjOAi4BNh5KJpwKwK5LB+qVsWXj2WbjgAjfVfY0afkdkou2Xfb9w7WvX\nkrUzi3f6vUPjao39DsmYPPk1KF9DVXd6r3cCwU6VtYFtAcvbvfcAEJGRIvIl0Ad4MFKB+q1VK+jX\nz930GMedLVMEWTuzaDmhJeVKleO9Ae9ZMjExL2I9FBFZBAQbTh4RuKCqKiLBTpX5nj5VdQQwQkSG\nAo8A/YK1S09P//N1amoqqamp+cYdi9LT3eXEGRnQo4ff0ZhIU1WmrJvC0CVDGXvuWK469Sq/QzIJ\nLjMzk8zMzGJvx68xlGwgVVV3iEhNYKmqNsnVpi2Qrqpp3vIwIEdVR+VqVw+Yr6onBdlPXI+hBHrv\nPbj4YjfdffXqfkdjIuXXfb8y+PXBrP1mLRndMzix+ol+h2SSUFxd5QXMxZWq8P77apA2a4CGIlJf\nRMoAPb3PISKBl7dcBKyLYKwxoW1buPpqGDLE70hMpGz8diOtJraihJRg1YBVlkxM3PGrh5ICzALq\nAVuBHqq6R0RqARNV9Xyv3XnAo0BJYLKqPuC9/xLQGDgI/BcYrKrfBtlPwvRQAPbuhdNOg5EjoVs3\nv6Mx4TT1w6ncuuhWHur0EH1P6+t3OCbJ2RMbg0i0hALw7rtw2WWu9FWtmt/RmOL6bf9vDJk/hJXb\nV5LRPYOTjv5b5daYqIu3kpcpovbt4fLL3VMeTXzb9N0mWk9szf6c/aweuNqSiYl7llDi0H33wZo1\nMHu235GYonphwwuc8ewZ3Nz2Zp67+DkqlKngd0jGFJuVvOLUO++4S4izsuCoo/yOxoRq7/693Ljg\nRt7+8m0yumdwSo1T/A7JmL+xkleS6dDBJZSbbvI7EhOqT3Z9QptJbfh1/6+sGbjGkolJOJZQ4tjI\nke7+lLlz/Y7EFGR61nQ6PNOBG1rdwIuXvkjFshX9DsmYsLOSV5x7+23o3duVvlJS/I7G5Pb7gd+5\n+Y2bWfz5YmZ1m0Wzms38DsmYAlnJK0mdcYa7jPjmm/2OxOS2ZfcW2k1ux/d7v2ftoLWWTEzCs4SS\nAB54AJYvh9de8zsSc0jGxgzaT27PwOYDmdltJpXKVvI7JGMizkpeCWLpUrjqKvjoI6gS9HFlJhr+\nOPAHtyy8hQVbFjCr2yxa1Grhd0jGFJrdKR9EMiUUgBtucNOzTJnidyTJ6b+7/0uPl3pwXJXjmNx1\nMpWPqOx3SMYUiY2hGEaNcj2VBQv8jiT5vPzxy7Sb3I6+p/Ylo3uGJROTlKyHkmCWLIG+fV3pq7Kd\n0yJu38F93LbwNuZtnsfMbjNpVbuV3yEZU2xW8goiGRMKwHXXwYEDMGmS35Ektq17ttIjowe1Ktbi\nmYueoWq5qn6HZExYWMnL/Gn0aFi8GBYu9DuSxDUnew5tJrWh90m9md1ztiUTY7AeSsJatAgGDHA3\nPFayK1bDZt/BfQxdPJRXNr3CjG4zaFunrd8hGRN2VvIKIpkTCsDAgVCiBIwf73ckieGLPV/Q86We\nHH3k0Tx78bOklLOpCUxispKX+ZuHH3ZXfC1e7Hck8e+1za/RelJrup3YjTm95lgyMSYI66EkuDfe\ngMGDYcMGqGjzERba/oP7Gb5kODM3zmRGtxm0r9ve75CMiTgreQVhCcW55hooWxaeesrvSOLLth+3\n0evlXlQ5ogrPXfwcR5W3B8+Y5BBXJS8RSRGRRSKyWUQWikjQyUJEJE1EskXkUxG5I8j6W0QkR0Ss\n/pCPMWNg3jx46y2/I4kfCz5dQKuJrejaqCvzes+zZGJMCELqoYjIRcAZ3mKmqs4r1k5FRgO7VHW0\nlyiqqurQXG1KAp8A5wBfAauB3qq6yVtfF5gINAZaqOruIPuxHopn/nwYMsSVvirY02bzdCDnAHe9\ndRcvZL3A9Mum06FeB79DMibqItZDEZEHgRuBjcDHwI0i8kDhQzxMV2Cq93oqcHGQNq2BLaq6VVX3\nAzOAiwLWjwVuL2YcSaNLFzfV/dChBbdNVl/99BUdp3Zk3Y51fDDoA0smxhRSKCWv84FzVXWKqk4G\n0oALirnfGqq603u9E6gRpE1tYFvA8nbvvUM9pu2quqGYcSSVRx6BV1+FZcv8jiT2vLnlTVpObEnn\n4zsz/4r5VD+yut8hGRN3SoXQRoEqwPfechXvvXyJyCLgmCCrRhy2cVUVkWDbC7oPESkHDAc6Bb6d\nVxydOqXTvj2IQGpqKqmpqQWFnrCqVoWnn4b+/V3p68gj/Y4odsz5ZA7TL5tOav1Uv0MxJuoyMzPJ\nzMws9nbyHEMRkaeAaUAdYBSwFHfiPhMYqqozirxTkWwgVVV3iEhNYKmqNsnVpi2Qrqpp3vIwIAd4\nHVgC/OY1rYMbY2mtqt/m2oa2a6ekpMDUqXCUjasC7rkpKSkwbpzfkRhjYlEkxlA2Aw/hksli4DPg\nZaBtcZKJZy7Qx3vdB3g1SJs1QEMRqS8iZYCewFxV/UhVa6jqcap6HK4U1jx3Mjlk2TJo0gSaN4f3\n3itm1Ali3DjIyHBPeTTGmHAp8CovEakP9PJ+yuF6LdNVdXORd+ou850F1AO2Aj1UdY+I1AImqur5\nXrvzgEeBksBkVf3bxQAi8hnQsqCrvObMgUGD4Pbb4V//ciWwZDZnDtx6K6xfD+XL+x2NMSaWROXG\nRhFpBjwAM3hIAAAXcElEQVQDnKyqJQu7s2jLfdnw1q3Qsycccww8+6wbU0hmV1wBNWrA2LF+R2KM\niSWRvGy4lIh0FZFpwBtANnBpEWL0Xf36rsxz3HGuBLZqld8R+euxx2D6dFixwu9IjDGJIL9B+XNx\nZa7zgVXAdNwYxi/RC6948ruxcfZsuPZaGD4cbropeUtgr7wCw4bBhx9CuXJ+R2OMiQVhL3mJyFu4\nJPJysPGJeFDQnfKffQY9ekC9ejBlClQJOgFM4uvVC+rWhYce8jsSY0wssMkhgwhl6pU//nCD0/Pn\nw8yZ0LJllIKLId99B6ec4nor7dr5HY0xxm9xNTlkLClbFh5/HB58EM47D554AhI4xwZVvbr7HfTr\nB3v3+h2NMSZeJX0PJdCWLdC9OzRsCBMnQuXKEQwuBnXvDg0awKhRfkdijPGT9VDC4IQTYOVKqFYN\nWrSADz7wO6LoevJJN6PA++/7HYkxJh5ZQsnliCPcg6j+8x/o3NnNfZXAnbjDHH20u4u+f3/4/Xe/\nozHGxBsreeVj82ZXBmraFCZMgEqVwhhcjFKFbt2gcWO4/36/ozHG+MFKXhHQqJGb/6tyZXf11/r1\nfkcUeSKuhzZ5Mqxe7Xc0xph4YgmlAOXKwfjxcM89cM45brA+gTt1gJuO5ZFH3FVff/zhdzTGmHhh\nJa9CyM52JbBTT4X/+7/EfpSuKlxyCZx8Mtx3n9/RGGOiyUpeUdCkibsCqmxZVwLLyvI7osgRcRck\nTJiQfFe7GWOKxhJKIZUv78YXhg+Hjh3dlC2J2smrWRMefhj69oV9+/yOxhgT66zkVQwff+xKYC1b\nuoHsRHykrip07epmZ/73v/2OxhgTDVby8sGJJ/41BX6rVrBxo7/xRIKIuyjh6afdjMTGGJMXSyjF\ndOSR7u7y226D1FT3OtHUquVmIu7bF/bv9zsaY0ysspJXGH30kSuBtWvnJplMpEfrqsIFF0CbNnD3\n3X5HY4yJJCt5xYCTTnI3A+7b50682dl+RxQ+h0pfjz8OGzb4HY0xJhb5klBEJEVEFonIZhFZKCJB\nH20lImkiki0in4rIHQHvp4vIdhFZ5/2kRS/6/FWoAM8/754Cefrp8OKLfkcUPnXquJmI+/Wz0pcx\n5u98KXmJyGhgl6qO9hJFVVUdmqtNSeAT4BzgK2A10FtVN4nIPcDPqjq2gP1EteSV24YNrgR25plu\n0sVEeMSuqntuzOmnw4gRfkdjjImEeCt5dQUODV9PBS4O0qY1sEVVt6rqfmAGcFHA+ph/Cvwpp8Ca\nNfDzz9C2rZtsMt6JuOlnHn3UjRkZY8whfiWUGqq603u9E6gRpE1tYFvA8nbvvUP+R0TWi8jkvEpm\nsaBiRZg2DQYPhn/+E2bM8Dui4qtb181E3LcvHDjgdzTGmFhRKlIbFpFFwDFBVh1WKFFVFZFgdan8\nalVPA/d6r+8DxgDXBGuYnp7+5+vU1FRSU1Pz2WxkiMB117mB+u7dYdkyN/niEUdEPZSwGTAAZs1y\nlxMPG+Z3NMaY4sjMzCQzM7PY2/FrDCUbSFXVHSJSE1iqqk1ytWkLpKtqmrc8DMhR1VG52tUH5qnq\nyUH24+sYSjA//eROxp9+ChkZ7imR8eqLL9wsAcuWuZs8jTGJId7GUOYCfbzXfYBXg7RZAzQUkfoi\nUgbo6X0OLwkdcgkQN9M0VqoEM2e6pNKunUsq8erYY92TLfv1s9KXMca/HkoKMAuoB2wFeqjqHhGp\nBUxU1fO9ducBjwIlgcmq+oD3/nPAabiy2OfAtQFjMoH7ibkeSqC1a6FHD3fV1JgxbhbjeKPqnhPT\nuTPcfrvf0RhjwqGoPRS7U95ne/a4Z7h/+aUbk2jQwO+ICu/zz91cZu+846b4N8bEt3greRlPlSrw\n8stw1VXu0uJXXvE7osI77ji4915X+jp40O9ojDF+sR5KDFm1Cnr2dNPFP/QQlCnjd0Shy8mBs892\n833dcovf0RhjisNKXkHEW0IB+OEH903/669dCax+fb8jCt1nn0Hr1rBiBTRu7Hc0xpiispJXgqha\nFWbPhl693Ml5zhy/IwpdgwZwzz1uTMhKX8YkH+uhxLD33nOJ5dJL4cEH46MElpPjngtz6aXwv//r\ndzTGmKKwklcQ8Z5QAHbvhj594Lvv3P0rxx7rd0QF27LFXWCwciU0bOh3NMaYwrKSV4JKSXFlr8su\ncyWw117zO6KCnXAC3HWXK33l5PgdjTEmWqyHEkdWrIDevV0ZbORIKF3a74jylpMDZ5zhbty88Ua/\nozHGFIaVvIJItIQCsGuXu2flp5/czMV16/odUd42b4b27eH99+H44/2OxhgTKit5JYlq1eD11+HC\nC93d6QsW+B1R3ho1guHD4ZprrPRlTDKwHkocW74cLr8crrwS7rsPSkXsYQRFd/Cge7rjFVfADTf4\nHY0xJhRW8goi0RMKwLffuhLY3r0wfTrUrl3wZ6ItOxs6dHAzAcTjXGXGJBsreSWpo492Za/Ond2z\nSd580++I/q5JE7jjDjdlv5W+jElc1kNJIJmZrrTUrx+kp8dWCezgQfcI5L593dMrjTGxy0peQSRb\nQgHYudMllQMHXAmsZs2CPxMtmza5S4lXr46vOcqMSTZW8jIA1Kjhyl5nnQUtWsCSJX5H9JemTeHW\nW13pK8nyvDFJwXooCWzJEjdgP2iQu3O9ZEm/I3I9p/btXVIZNMjvaIwxwVjJK4hkTygA33zjLi0u\nUQJefBGOOcbviOCjj1wPau1aqFfP72iMMblZycsEVbMmLF7sBsRbtIClS/2OCE46CW6+GQYOtNKX\nMYnEl4QiIikiskhENovIQhGpkke7NBHJFpFPReSOXOv+R0Q2ichHIjIqOpHHp5Il3SN6n3nG9Vbu\nu8//55Xcfjt8/z1MmeJvHMaY8PGl5CUio4FdqjraSxRVVXVorjYlgU+Ac4CvgNVAb1XdJCJnAcOB\nLqq6X0Sqq+p3QfaT9CWv3L7+2k0wWbYsvPCCu4/FL1lZ0LEjrFsHder4F4cx5nDxVvLqCkz1Xk8F\nLg7SpjWwRVW3qup+YAZwkbduMPCA9z7BkokJrlYtN1jfqhU0bw7LlvkXy8knu5mIBw2y0pcxicCv\nhFJDVXd6r3cCNYK0qQ1sC1je7r0H0BA4Q0TeE5FMEWkZuVATT6lSbvr7SZOgZ0+4/37/7mAfOtRd\nODB1asFtjTGxLWL3UovIIiDYNUUjAhdUVUUk2PfT/L6zlsKVydqKSCtgFhB0lqj09PQ/X6emppKa\nmpp/4EkkLQ3WrHHPV1m+HJ5/3s1mHE2lS8Ozz0KnTu4nFuciMybRZWZmkpmZWezt+DWGkg2kquoO\nEakJLFXVJrnatAXSVTXNWx4G5KjqKBFZADyoqsu8dVuANqr6fa5t2BhKCPbvhzvvdHfWT5/urgiL\ntvR0l9zmzQMpdOXWGBNO8TaGMhfo473uA7wapM0aoKGI1BeRMkBP73N47TsCiEgjoEzuZGJCV7o0\njBoFTz0Fl14Ko0dHvwQ2fDhs2+Z6ScaY+ORXDyUFV6aqB2wFeqjqHhGpBUxU1fO9ducBjwIlgcmq\n+oD3fmlgCnAasA+4RVUzg+zHeiiF9OWXrgSWkuLGNY46Knr7XrfOzZq8fn1szUFmTLKxO+WDsIRS\nNPv3w7BhkJHhHjPcrl309n333fDhhzBnjpW+jPFLvJW8TAwrXRoefhgefxwuvhjGjIneZb133glb\nt8K0adHZnzEmfKyHYvK1dau7tLhGDXc1VkpK5Pe5di106eJKX7Ew95gxycZ6KCYi6td3lxQff7y7\nEfL99yO/zxYt3GzEgwfbDY/GxBNLKKZAZcrAI4+4nwsvhEcfjfyJ/u67YfNmmDkzsvsxxoSPlbxM\noXz2GfTo4aadnzIFqgSd1jM8Vq+GCy6ADRtcyc0YEx1W8jJR0aABrFjh7mhv3tzdjBgprVpBv35w\nww2R24cxJnwsoZhCK1vWXQE2erQbPH/88ciVwNLTYeNGdwmzMSa2WcnLFMuWLa4EdvzxbrLJypXD\nv4/33nOXL2dlQfXq4d++MeZwVvIyvjjhBHj3XXeib9ECPvgg/Pto2xauvhqGDAn/to0x4WMJxRTb\nEUe4ecBGjnRTpzz1VPhLYP/+t7uD/qWXwrtdY0z4WMnLhNXmzdC9OzRtChMmQKVK4dv2u+/CZZe5\n0le0p9k3JplYycvEhEaN3JhH5crQsqW72z1c2reHyy93T3k0xsQeSygm7MqVg/Hj4Z574JxzXE8l\nXB3F++5zlyrPnh2e7RljwsdKXiaisrNdCeyUU1ySqVCh+Nt85x13ZVlWVnSn1zcmWVjJy8SkJk3c\n/F/lyrkSWFZW8bfZoYNLKDfdVPxtGWPCxxKKibjy5d09KsOHQ8eOMHly8UtgI0e6sZq5cwtua4yJ\nDit5maj6+GNXAmvRAp5+Go48sujbevtt6N3b9XqiMa2+McnCSl4mLpx4IqxaBSVKuLm6Nm4s+rbO\nOMNdRnzzzeGLzxhTdJZQTNQdeaR7WNdtt8GZZ7pn1xfVAw+457W8/nrYwjPGFJEvJS8RSQFmAscC\nW4EeqronSLs04FGgJDBJVUd5788AGnvNqgB7VLVZkM9bySvGffSRK4G1awdPPOHGWwpr6VI3NUtW\nVmSn0zcmWcRbyWsosEhVGwFLvOXDiEhJ4AkgDTgR6C0iTQFUtZeqNvOSyMvej4lDJ53knnuybx+0\nbg2bNhV+G2edBV27wr/+Ff74jDGh8yuhdAUOFTqmAhcHadMa2KKqW1V1PzADuCiwgYgI0AOYHsFY\nTYRVqADPPw//+79uXOSFFwq/jVGjXE9lwYLwx2eMCY1fCaWGqu70Xu8Egj2PrzawLWB5u/deoNOB\nnar63/CHaKJJxD1HfskSdzf8wIGwd2/on69QwV2aPGgQ/Phj5OI0xuStVKQ2LCKLgGOCrBoRuKCq\nKiLBBjpCGfzoDUzLr0F6evqfr1NTU0lNTQ1hs8Yvp5ziplYZNAjatHEP1mrcuODPAZx9Npx/Ptx6\nK0ycGNk4jUkkmZmZZGZmFns7fg3KZwOpqrpDRGoCS1W1Sa42bYF0VU3zlocBOQED86VwvZbmqvp1\nHvuxQfk4permALvzTnjsMXe/SSh++sklpQkT4NxzIxujMYkq3gbl5wJ9vNd9gFeDtFkDNBSR+iJS\nBujpfe6Qc4BNeSUTE99E4NprYeFCuOsuuO46+P33gj9XqZLrnQwc6JKLMSZ6/EooDwKdRGQz0NFb\nRkRqicjrAKp6ABgCvAl8DMxU1cBrgHpig/EJr1kz9xTI3bvdpcVbthT8mU6d3IO+brst8vEZY/5i\nU6+YuKDqngSZnu7+2717/u1//BFOPhmmTHFT6BtjQlfUkpclFBNX1q51Mw2fdx6MGQNly+bd9o03\nYPBg2LABKlaMXozGxLt4G0MxpkhatHBJ5Ztv3BMc/5vPBeNpaW524zvuiF58xiQzSygm7lSpAi+9\nBH36uHGVl/OZJ2HMGJg3D956K3rxGZOsrORl4tqqVdCzp5t6ZfTo4CWw+fNhyBBX+grHEyONSXRW\n8jJJqXVrdxXYF1/A6afD55//vU2XLm5Kl2HDoh+fMcnEEoqJe1WrwuzZ0KuXu7v+1SB3NT3yiGuz\nbFn04zMmWVjJyySU995zJbDLLoMHH4QyZf5aN2+em4Byw4biPSnSmERnlw0HYQklOe3e7Qbsv/sO\nZs6EY4/9a91VV7nHBY8b5198xsQ6G0MxxpOSAnPmuF5K69bw2mt/rRs3zl0htny5f/EZk6ish2IS\n2rvvurGVnj3h/vuhdGmXbG69FdavL9oTIo1JdFbyCsISigHYtcs9IvjHH2HGDKhbF664AmrUgLFj\n/Y7OmNhjJS9j8lCtmit7XXghtGrl7kt57DGYPh1WrPA7OmMSh/VQTFJZvtw9W+XKK6F5czc1/ocf\nQrlyfkdmTOywklcQllBMMN9+6672+u03t9y2LTz0kL8xGRNLLKEEYQnF5CUnBx54AO69Fw4cgHfe\ncfOCGWMsoQRlCcUUJDPTlcAqV4Z166z0ZQzYoLwxRZKa6sZQmjaFrCy/ozEmvlkPxRhjzGHiqoci\nIikiskhENovIQhGpkke7NBHJFpFPReSOgPdbi8gqEVknIqtFpFX0ojfGGBOMXyWvocAiVW0ELPGW\nDyMiJYEngDTgRKC3iDT1Vo8G7lLVZsDd3nLSyczM9DuEiLLji1+JfGyQ+MdXVH4llK7AVO/1VODi\nIG1aA1tUdauq7gdmABd5674BKnuvqwBfRTDWmJXo/6jt+OJXIh8bJP7xFVUpn/ZbQ1V3eq93AjWC\ntKkNbAtY3g608V4PBd4RkYdxSdEu+DTGGJ9FLKGIyCLgmCCrRgQuqKqKSLCR8/xG0ycDN6rqbBHp\nDkwBOhU5WGOMMcXmy1VeIpINpKrqDhGpCSxV1Sa52rQF0lU1zVseBuSo6igR+UlVK3nvC7BHVSvn\n2g15JCpjjDEFKMpVXn6VvOYCfYBR3n+DPLSVNUBDEakPfA30BHp767aIyJmqugzoCGwOtpOi/EKM\nMcYUjV89lBRgFlAP2Ar0UNU9IlILmKiq53vtzgMeBUoCk1X1Ae/9lsCTQFlgL3C9qq6L+oEYY4z5\nU0Lf2GiMMSZ6EmLqlbxugMzV5jFv/XoRaRbtGIujoOMTkSu849ogIitE5BQ/4iyKUP52XrtWInJA\nRC6NZnzFFeK/zVTvJt2PRCQzyiEWSwj/NquJyBsi8qF3fH19CLNIRGSKiOwUkTwn5Ynz80q+x1ek\n84qqxvUPrhy2BagPlAY+BJrmatMFmO+9bgO853fcYT6+dkBl73VavBxfKMcW0O4t4DXgMr/jDvPf\nrgqwEajjLVfzO+4wH1868MChYwO+B0r5HXuIx3c60AzIymN93J5XQjy+Qp9XEqGHkt8NkIf8eSOl\nqr4PVBGRYPe+xKICj09VV6rqj97i+0CdKMdYVKH87QD+B3gJ+C6awYVBKMd3OfCyqm4HUNVdUY6x\nOEI5vm+ASt7rSsD3qnogijEWmaouB37Ip0k8n1cKPL6inFcSIaEEuwGydght4uWkG8rxBboGmB/R\niMKnwGMTkdq4k9TT3lvxNOgXyt+uIZAiIktFZI2IXBW16IovlOObCPxDRL4G1gM3RSm2aIjn80ph\nhXRe8euy4XAK9QST+xLieDkxhRyniJwF9Af+GblwwiqUY3sUGKqq6t1zFE+XgodyfKWB5sDZQHlg\npYi8p6qfRjSy8Ajl+IYDH6pqqogcDywSkVNV9ecIxxYt8XpeCVlhziuJkFC+AuoGLNfFfVPIr00d\n4mf+r1COD2/AbCKQpqr5ddNjSSjH1gKY4XIJ1YDzRGS/qs6NTojFEsrxbQN2qepeYK+IvA2cCsRD\nQgnl+NoDIwFU9b8i8jnQGHefWbyL5/NKSAp7XkmEktefN0CKSBncDZC5TzZzgavhzzvw9+hfc4nF\nugKPT0TqAa8AV6rqFh9iLKoCj01VG6jqcap6HG4cZXCcJBMI7d/mHKCDiJQUkfK4wd2PoxxnUYVy\nfNnAOQDe+EJj4LOoRhk58XxeKVBRzitx30NR1QMiMgR4k79ugNwkItd668er6nwR6SIiW4BfgX4+\nhlwooRwfbgr/qsDT3jf5/ara2q+YQxXiscWtEP9tZovIG8AGIAd3Y29cJJQQ/373A8+IyHrcF9jb\nVXW3b0EXgohMB84EqonINuAeXIky7s8rUPDxUYTzit3YaIwxJiwSoeRljDEmBlhCMcYYExaWUIwx\nxoSFJRRjjDFhYQnFGGNMWFhCMcYYExaWUIyJMhGpLCKD/Y7DmHCzhGJM9FUFrvc7CGPCzRKKMdH3\nIHC891CtUX4HY0y42J3yxkSZiBwLvKaqJ/sdizHhZD0UY6IvnqbgNyZkllCMMcaEhSUUY6LvZ6Ci\n30EYE26WUIyJMlX9HlghIlk2KG8SiQ3KG2OMCQvroRhjjAkLSyjGGGPCwhKKMcaYsLCEYowxJiws\noRhjjAkLSyjGGGPCwhKKMcaYsLCEYowxJiz+H+981wtib+hUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fa57b361650>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange,pi,sin\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,subplot,title,xlabel,show,ylabel\n", + "#Negative Clamping circuit\n", + "#let input voltage be V_in=V_p_in*sin(2*pi*f*t)\n", + "V_p_in=12#\n", + "V_DC=-(V_p_in)# #DC level added to output\n", + "print 'V_DC = %0.2f V'%V_DC\n", + "#t=[]\n", + "for n in range(0,2):\n", + " t=(n/2.,(n+1)/2.+0.0005,0.0005)\n", + " V_in=[]\n", + " for tt in t:\n", + " V_in.append(V_p_in*sin(2*pi*tt))\n", + " Vout=[]\n", + " for vv in V_in:\n", + " Vout.append(V_DC+vv)\n", + " plot(t,Vout)\n", + "\n", + "title('Negative clipper graph')\n", + "xlabel('t')\n", + "ylabel('Vo')\n", + "show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 520 Example 16.10." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The frequency of a symmetrical astable multivibrator is\n", + " f = 1/1.386RC =36.08 kHz\n" + ] + } + ], + "source": [ + "f=1./(1.386*(20*10**3)*(1000*10**-12)) #in Hz\n", + "x1=f*10**-3 # in kHz\n", + "print \"The frequency of a symmetrical astable multivibrator is\"\n", + "print \" f = 1/1.386RC =%0.2f kHz\"%x1 # answer in textbook is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 521 Example 16.11." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The period of oscillation for an asymmetrical astable multivibrator is,\n", + " T = 0.693(R1C1+R2C2) = 360.36 us\n", + "Therefore, the frequency of oscillation, f = 1/T =2.78 kHz\n" + ] + } + ], + "source": [ + "print \"The period of oscillation for an asymmetrical astable multivibrator is,\"\n", + "t=0.693*(((2*10**3)*0.01*10**-6)+((10*10**3)*(0.05*10**-6))) # seconds\n", + "x1=t*10**6 # in us\n", + "print \" T = 0.693(R1C1+R2C2) = %0.2f us\"%x1\n", + "f=1./(360.36*10**-6) # in Hz\n", + "x2=f*10**-3 # in kHz\n", + "print \"Therefore, the frequency of oscillation, f = 1/T =%0.2f kHz\"%x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 522 Example 16.12." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The period of oscillation is, T = 1/f = 10.00 us\n", + " T1 = 2us (given)\n", + "Hence, T2 = T - T1 =8.00 us\n", + " T1 = 0.693*R1C1\n", + "Therefore, C1 = T1 / 0.693R1 =144.30 pF\n", + " T2 = 0.693*R2*C2\n", + "Therefore, C2 = T2 / 0.693R2 =577.20 pF\n" + ] + } + ], + "source": [ + "t=1./(100*10**3) # in seconds\n", + "x1=t*10**6 # in us\n", + "print \"The period of oscillation is, T = 1/f = %0.2f us\"%x1\n", + "print \" T1 = 2us (given)\"\n", + "t2=10-2 # in us\n", + "print \"Hence, T2 = T - T1 =%0.2f us\"%t2\n", + "print \" T1 = 0.693*R1C1\"\n", + "c1=(2*10**-6)/(0.693*(20*10**3)) # in faraday\n", + "x1=c1*10**12 # in pF\n", + "print \"Therefore, C1 = T1 / 0.693R1 =%0.2f pF\"%x1 #answer in textbook is wrong\n", + "c2=(8*10**-6)/(0.693*(20*10**3)) # in faraday\n", + "x1=c2*10**12 # in pF\n", + "print \" T2 = 0.693*R2*C2\" #answer in textbook is wrong\n", + "print \"Therefore, C2 = T2 / 0.693R2 =%0.2f pF\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 523 Example 16.13." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " RC = 12-0.2/1*10**-3 = 11.80 kohm\n", + " R <= hfe*RC\n", + " R <=1.18 Mohm\n", + "Hence, let us assume that R = R1 = R2 = 1 M-ohm\n", + " Toff = 0.693*R*C1\n", + "Therefore, C1 =28.86 pF\n", + " Ton = 0.693*R*C2\n", + "Therefore, C2 = 14.43 pF\n" + ] + } + ], + "source": [ + "rc=(12-0.2)/(1*10**-3) # in ohm\n", + "x1=rc*10**-3 # in k-ohm\n", + "print \" RC = 12-0.2/1*10**-3 = %0.2f kohm\"%x1\n", + "r=100.*11.8*10**3 # in ohm\n", + "x1=r*10**-6 # in M-ohm\n", + "print \" R <= hfe*RC\"\n", + "print \" R <=%0.2f Mohm\"%x1\n", + "print \"Hence, let us assume that R = R1 = R2 = 1 M-ohm\"\n", + "print \" Toff = 0.693*R*C1\"\n", + "c1=(20*10**-6)/(0.693*10**6) # in faraday\n", + "x1=c1*10**12 # in pF\n", + "print \"Therefore, C1 =%0.2f pF\"%x1\n", + "print \" Ton = 0.693*R*C2\"\n", + "c1=(10*10**-6)/(0.693*10**6) # in faraday\n", + "x1=c1*10**12 # in pF\n", + "print \"Therefore, C2 = %0.2f pF\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 523 Example 16.14." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "At stable state, Q2 is ON and Q2 is OFF:\n", + " RC2(ohm) = RC1(ohm) = VCC-VCE(sat) / IC(sat) =950.00 ohm\n", + "IB2(sat) = IC(sat) / hfe(min) =0.30 mA\n", + "Also, IB1(sat) = 0.3 mA\n", + " R = VCC-VBE(sat) / IB2(sat) = 17.67 kohm\n", + " [because, VBE(sat) = 0.7 V for Si transistor]\n", + "At quasi-stable state, Q1 is ON and Q2 is OFF\n", + " T = 0.693*R*C\n", + "Therefore, C= T / 0.693*R =0.01 uF\n", + "Assume, IB1(sat) = IR2\n", + "Therefore, IR1 = IB1(sat)+IR2 =0.60 mA\n", + " VCC = VBE(sat) + IR1(RC2+R1)\n", + "Therefore, R1 = (VCC-VBE(sat) / IR1) - RC2 =7.88 kohm\n", + " R2 = VBE(sat)-(-VBB) / IR2 =7.33 kohm\n", + "The speed up capacitor C1 is chosen such that R1C1 = 1 us and hence,\n", + " C1 = 127.67 pF\n" + ] + } + ], + "source": [ + "print \"At stable state, Q2 is ON and Q2 is OFF:\"\n", + "rc2=(6.-0.3)/(6*10**-3) # in ohm\n", + "print \" RC2(ohm) = RC1(ohm) = VCC-VCE(sat) / IC(sat) =%0.2f ohm\"%rc2\n", + "ib2=(6.*10**-3)/20 # in ampere\n", + "x1=ib2*10**3 # in mA\n", + "print \"IB2(sat) = IC(sat) / hfe(min) =%0.2f mA\"%x1\n", + "print \"Also, IB1(sat) = 0.3 mA\"\n", + "r=(6-0.7)/(0.3*10**-3) # in ohm\n", + "x1=r*10**-3 # in k-ohm\n", + "print \" R = VCC-VBE(sat) / IB2(sat) = %0.2f kohm\"%x1\n", + "print \" [because, VBE(sat) = 0.7 V for Si transistor]\"\n", + "print \"At quasi-stable state, Q1 is ON and Q2 is OFF\"\n", + "print \" T = 0.693*R*C\"\n", + "c=(140.*10**-6)/(0.693*17.67*10**3) # in F\n", + "x1=c*10**6 # in uF\n", + "print \"Therefore, C= T / 0.693*R =%0.2f uF\"%x1\n", + "print \"Assume, IB1(sat) = IR2\"\n", + "ir2=0.3+0.3 # in mA\n", + "print \"Therefore, IR1 = IB1(sat)+IR2 =%0.2f mA\"%ir2\n", + "r1=((6-0.7)/(0.6*10**-3))-950 # in ohm\n", + "x1=r1*10**-3 # in k-ohm\n", + "print \" VCC = VBE(sat) + IR1(RC2+R1)\"\n", + "print \"Therefore, R1 = (VCC-VBE(sat) / IR1) - RC2 =%0.2f kohm\"%x1\n", + "r2=(0.7+1.5)/(0.3*10**-3) # in ohm\n", + "x1=r2*10**-3 # in k-ohm\n", + "print \" R2 = VBE(sat)-(-VBB) / IR2 =%0.2f kohm\"%x1\n", + "print \"The speed up capacitor C1 is chosen such that R1C1 = 1 us and hence,\"\n", + "c1=(1.0*10**-6)/(7.833*10**3) # in F\n", + "x1=c1*10**12 # in pF\n", + "print \" C1 = %0.2f pF\" %x1 # answer in textbook is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 524 Example 16.15." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " VB1 = -VBB*R2 / R2+R3 = -1.57 V\n", + " IC2 = [VCC-VC2(sat) / RC2] - [VC2(sat)-(-VBB) / R2+R3] =5.21 mA\n", + " IB2 > IC2 / hfe(min) > 0.27\n", + "Therefore, I6 = 0.13 mA\n", + " I3 =0.63 mA\n", + " VC1 = 10.62 V\n" + ] + } + ], + "source": [ + "vb1=(-12.*15*10**3)/(115.*10**3) # in volts\n", + "print \" VB1 = -VBB*R2 / R2+R3 = %0.2f V\"%vb1\n", + "ic2=((12-0.3)/(2.2*10**3))-((0.3+12)/(115*10**3)) # in A\n", + "x1=ic2*10**3 # in mA (Since Q2 is ON VC2(sat) = 0.3 V)\n", + "print \" IC2 = [VCC-VC2(sat) / RC2] - [VC2(sat)-(-VBB) / R2+R3] =%0.2f mA\"%x1 # answer in textbook is wrong\n", + "ib2=(5.35*10**-3)/20 # in A\n", + "x1=ib2*10**3 # in mA\n", + "print \" IB2 > IC2 / hfe(min) > %0.2f\"%x1 # approximately 0.5 mA\n", + "i6=(0.7+12)/(100) # in mA\n", + "print \"Therefore, I6 = %0.2f mA\"%i6\n", + "i3=0.5+0.127 # in mA\n", + "print \" I3 =%0.2f mA\"%i3\n", + "vc1=12-((0.627*10**-3)*(2.2*10**3))\n", + "print \" VC1 = %0.2f V\"%vc1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 525 Example 16.16." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Voltage across RE is VE = VB2 - VBE =4.30 V\n", + " RE = VE / IE =2.15 kohm\n", + " IC*RC2 = VCC - VE - VCE(sat) = 7.50 V\n", + " RC2 =3.75 kohm\n", + " I2 = 0.1*IC2 =0.20 mA\n", + " R2 = VB2 / I2 =25.00 kohm\n", + " IB2 = IC2 / hfe(min) = 0.00 uA\n", + "RC1 + R1 =31.82\n", + " I1 = VB2 / R2 =0.12 mA\n", + " IC1 = IE = VB1-VBE / RE =1.07 mA\n", + "Therefore, RC1 =4.84 kohm\n", + " R1 = 26.96 kohm\n", + " RB < hfe*RE\n", + " RB = hfe*RE / 10 =21.50 kohm\n" + ] + } + ], + "source": [ + "ve=5-0.7 # in volts\n", + "print \"Voltage across RE is VE = VB2 - VBE =%0.2f V\"%ve\n", + "re=4.3/2 # in k-ohm\n", + "print \" RE = VE / IE =%0.2f kohm\"%re\n", + "x=12-4.3-0.2 # in volts\n", + "print \" IC*RC2 = VCC - VE - VCE(sat) = %0.2f V\"%x\n", + "rc2=7.5/(2) # in k-ohm\n", + "print \" RC2 =%0.2f kohm\"%rc2\n", + "i2=0.1*2 # in mA\n", + "print \" I2 = 0.1*IC2 =%0.2f mA\"%i2\n", + "r2=5/0.2 # in k-ohm\n", + "print \" R2 = VB2 / I2 =%0.2f kohm\"%r2\n", + "ib2=(210**-3)/100 # in A\n", + "x1=ib2*10**6 # in uA\n", + "print \" IB2 = IC2 / hfe(min) = %0.2f uA\"%x1\n", + "x=7/(0.22) # in k-ohm\n", + "print \"RC1 + R1 =%0.2f\"%x\n", + "i1=3./25 # in mA\n", + "print \" I1 = VB2 / R2 =%0.2f mA\"%i1\n", + "ic1=(3-0.7)/2.15 # in mA\n", + "print \" IC1 = IE = VB1-VBE / RE =%0.2f mA\"%ic1\n", + "rc1=(12-((0.12*10**-3)*(56.8*10**3)))/(1.07*10**-3) # in ohm\n", + "x1=rc1*10**-3 # in k-ohm\n", + "print \"Therefore, RC1 =%0.2f kohm\"%x1\n", + "r1=31.8-4.84\n", + "print \" R1 = %0.2f kohm\"%r1\n", + "rb=(100*2.15)/10\n", + "print \" RB < hfe*RE\"\n", + "print \" RB = hfe*RE / 10 =%0.2f kohm\"%rb" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch17_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch17_1.ipynb new file mode 100644 index 00000000..6ff93046 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch17_1.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-17 : Blocking Oscillators and Time Based Generators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 536 Example 17.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RE < VBB-VP/IP, i.e. RE(k-ohm) < 20-2.9/1.6*10**-3 =10.69 kohm\n", + "RE > VBB-VV/IV, i.e. RE(k-ohm) < 20-1.118/3.5*10**-3 =5.39 kohm\n", + "Therefore, CE = 0.24 uF\n", + "Therefore, R1 = VR1/IE =20.00 ohm\n", + " R2(ohm) = 11*10**3/250 =44.00 ohm\n" + ] + } + ], + "source": [ + "RE=(20-2.9)/(1.6) # in k-ohm\n", + "print \"RE < VBB-VP/IP, i.e. RE(k-ohm) < 20-2.9/1.6*10**-3 =%0.2f kohm\"%RE\n", + "RE=(20-1.118)/(3.5) # in k-ohm\n", + "print \"RE > VBB-VV/IV, i.e. RE(k-ohm) < 20-1.118/3.5*10**-3 =%0.2f kohm\"%RE\n", + "# answer in textbook is wrong\n", + "CE=1./(500*(2.303*10**4)*0.36) # in farady\n", + "x1=CE*10**6 # in uF\n", + "print \"Therefore, CE = %0.2f uF\"%x1\n", + "R1=5./(250*10**-3) #in ohm\n", + "print \"Therefore, R1 = VR1/IE =%0.2f ohm\"%R1\n", + "R2=11000./250\n", + "print \" R2(ohm) = 11*10**3/250 =%0.2f ohm\"%R2" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch18_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch18_1.ipynb new file mode 100644 index 00000000..125917ee --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch18_1.ipynb @@ -0,0 +1,916 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-18 : Rectifiers and Power Supplies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 548 Example 18.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Peak value of current, Im = Vm / rf+RL = 295.45 mA\n", + " Average current, Id.c. = Im / pi = 94.04 mA\n", + " RMS value of current, Irms = Im / 2 = 147.72 mA\n", + "(b) D.C. power output, Pd.c. = (Id.c.)**2 * RL = 8.84 W\n", + "(c) AC input power, Pac = (Irms)**2 * (rf+RL) = 24.00 \n", + "(d) Efficiency of rectification, eta = Pdc / Pac = 36.85 %\n" + ] + } + ], + "source": [ + "from math import pi\n", + "im=325./(100+1000) # in A\n", + "x1=im*10**3 # in mA\n", + "print \"(a) Peak value of current, Im = Vm / rf+RL = %0.2f mA\"%x1\n", + "idc=295.45/pi # in mA\n", + "print \" Average current, Id.c. = Im / pi = %0.2f mA\"%idc\n", + "irms=295.45/2 # in mA\n", + "print \" RMS value of current, Irms = Im / 2 = %0.2f mA\"%irms\n", + "pdc=((94.046*10**-3)**2)*1000 # in W\n", + "print \"(b) D.C. power output, Pd.c. = (Id.c.)**2 * RL = %0.2f W\"%pdc\n", + "pac=((147.725*10**-3)**2)*1100 # in W\n", + "print \"(c) AC input power, Pac = (Irms)**2 * (rf+RL) = %0.2f \"%pac\n", + "eta=(8.845/24)*100 # in percentage\n", + "print \"(d) Efficiency of rectification, eta = Pdc / Pac = %0.2f %%\"%eta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 548 Example 18.2." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average value of load current, Id.c.= Vdc / RL = 48.00 mA\n", + "Maximum value of load current, Im= pi * Idc = 150.80 mA\n", + "Therefore, maximum ac voltage required at the input,\n", + " Vm = Im * (rf+RL) = 82.94 V\n" + ] + } + ], + "source": [ + "from math import pi\n", + "icd=(24./500)*10**3 # in mA\n", + "print \"Average value of load current, Id.c.= Vdc / RL = %0.2f mA\"%icd\n", + "im=pi*48 # in mA\n", + "print \"Maximum value of load current, Im= pi * Idc = %0.2f mA\"%im\n", + "print \"Therefore, maximum ac voltage required at the input,\"\n", + "vm=550*150.8*10**-3 # in V\n", + "print \" Vm = Im * (rf+RL) = %0.2f V\"%vm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 549 Example 18.3." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) The transformer secondary voltage = 46.00 V\n", + " Maximum value of secondary voltage, Vm = 65.05 V\n", + " Therefore, d.c. output voltage, Vd.c. = Vm / pi = 20.69 V\n", + "(b) PIV of a diode = Vm = 65 V\n", + "(c) Maximum value of load current, Im= Vm / RL = 0.22 A\n", + " Therefore, maximum value of power delivered to the load,\n", + " Pm = Im**2 * RL = 14.13 W\n", + "(d) The average value of load current, Id.c.(A) = Vdc / RL = 0.07 A\n", + " Therefore, average value of power delivered to the load,\n", + " Pd.c. = (Idc)**2 * RL = 1.43 W\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "x1=230./5 # in V\n", + "vm=sqrt(2) * 46 # in V\n", + "vdc=65./pi # in V\n", + "im=65./300 # in A\n", + "pm=0.217**2 * 300 # in W\n", + "idc=20.7/300 # in A\n", + "pdc=(0.069**2)*300 # in W\n", + "print \"(a) The transformer secondary voltage = %0.2f V\"%x1\n", + "print \" Maximum value of secondary voltage, Vm = %0.2f V\"%vm\n", + "print \" Therefore, d.c. output voltage, Vd.c. = Vm / pi = %0.2f V\"%vdc\n", + "print \"(b) PIV of a diode = Vm = 65 V\"\n", + "print \"(c) Maximum value of load current, Im= Vm / RL = %0.2f A\"%im\n", + "print \" Therefore, maximum value of power delivered to the load,\"\n", + "print \" Pm = Im**2 * RL = %0.2f W\"%pm\n", + "print \"(d) The average value of load current, Id.c.(A) = Vdc / RL = %0.2f A\"%idc\n", + "print \" Therefore, average value of power delivered to the load,\"\n", + "print \" Pd.c. = (Idc)**2 * RL = %0.2f W\"%pdc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 550 Example 18.4." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage across the two ends of secondary(in V) = 230 / 5 = 46.00 V\n", + "Voltage from center tapping to one end, Vrms = 23.00 V\n", + "(a) d.c. voltage across the load, Vdc = 2Vm / pi = 20.71 V\n", + "(b) d.c. current flowing through the load,\n", + " Idc = Vdc / (rs+rf+RL) = 20.70 mA\n", + "(c) d.c. power delivered to the load,\n", + " Pdc = (Idc)**2 * RL = 0.39 W\n", + "(d) PIV across each diode = 2Vm = 65.05 W\n", + "(e) Ripple voltage, Vr,rms = sqrt(Vrms**2 - Vdc**2) = 10.03 V\n", + " Frequency of ripple voltage = 120.00 Hz\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "x1=230./5 # in V\n", + "vrms=46./2 # in V\n", + "vdc=(2.*23*sqrt(2))/pi # in V\n", + "idc=(20.7/1000)*10**3 # in mA\n", + "pdc=((20.7*10**-3)**2)*900 # in W\n", + "piv=2*23*sqrt(2) # in V\n", + "vrrms=sqrt(23**2 - 20.7**2) # in V\n", + "f=2*60 # in Hz\n", + "print \"The voltage across the two ends of secondary(in V) = 230 / 5 = %0.2f V\"%x1\n", + "print \"Voltage from center tapping to one end, Vrms = %0.2f V\"%vrms\n", + "print \"(a) d.c. voltage across the load, Vdc = 2Vm / pi = %0.2f V\"% vdc\n", + "print \"(b) d.c. current flowing through the load,\"\n", + "print \" Idc = Vdc / (rs+rf+RL) = %0.2f mA\"%idc\n", + "print \"(c) d.c. power delivered to the load,\"\n", + "print \" Pdc = (Idc)**2 * RL = %0.2f W\"%pdc\n", + "print \"(d) PIV across each diode = 2Vm = %0.2f W\"%piv\n", + "print \"(e) Ripple voltage, Vr,rms = sqrt(Vrms**2 - Vdc**2) = %0.2f V\"%vrrms\n", + "print \" Frequency of ripple voltage = %0.2f Hz\"%f" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 552 Example 18.5." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Therefore, Imax = 320.00 mA\n", + "The maximum value of the secondary voltage,\n", + " Vm = 141.42 V\n", + "Therefore, the value of load resistor that gives the largest d.c. power output\n", + " RL = Vm / Imax = 441.88 ohm\n", + "(b) D.C.(load) voltage, Vdc(V) = (2*141.4)/pi = 90.02 V\n", + " D.C. load current, Idc = Vdc / RL = 0.20 A\n", + "(c) PIV of each diode = 2Vm = 282.8 V\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "imax=0.8*400 # in mA\n", + "print \"Therefore, Imax = %0.2f mA\"%imax \n", + "print \"The maximum value of the secondary voltage,\"\n", + "vm=sqrt(2)*100 # in V\n", + "print \" Vm = %0.2f V\"%vm\n", + "print \"Therefore, the value of load resistor that gives the largest d.c. power output\"\n", + "RL=141.4/(320*10**-3)\n", + "print \" RL = Vm / Imax = %0.2f ohm\"%RL\n", + "vdc=(2*141.4)/pi\n", + "print \"(b) D.C.(load) voltage, Vdc(V) = (2*141.4)/pi = %0.2f V\"%vdc\n", + "idc=90./442\n", + "print \" D.C. load current, Idc = Vdc / RL = %0.2f A\"%idc\n", + "print \"(c) PIV of each diode = 2Vm = 282.8 V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 553 Example 18.6." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "D.C. power delivered to the load,\n", + " Pdc = Vdc**2 / RL\n", + "Therefore, Vdc = sqrt(Pdc*RL) = 100.00 V\n", + "The ripple factor, gamma = Vac / Vdc\n", + "i.e. 0.01 = Vac / 100\n", + "Therefore, the ac ripple voltage across the load, Vac = 1 V\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "print \"D.C. power delivered to the load,\"\n", + "print \" Pdc = Vdc**2 / RL\"\n", + "vdc=sqrt(50.*200)\n", + "print \"Therefore, Vdc = sqrt(Pdc*RL) = %0.2f V\"%vdc\n", + "print \"The ripple factor, gamma = Vac / Vdc\"\n", + "print \"i.e. 0.01 = Vac / 100\"\n", + "print \"Therefore, the ac ripple voltage across the load, Vac = 1 V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 554 Example 18.7. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) The rms value of the transformer secondary voltage,\n", + " Vrms = 57.50 V\n", + " The maximum value of the secondary voltage\n", + " Vm = 81.32 V Therefore, d.c. output voltage, Vdc = 2Vm / pi = 51.76 V\n", + "(b) D.C. power delivered to the load,\n", + " Pd.c. = (Vdc)**2 / RL = 2.70 W\n", + "(c) PIV across each diode = Vm = 81.3 V\n", + "(d) Output frequency = 2 x 50 = 100 Hz\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "Vrms=230./4 # in V\n", + "vm=sqrt(2)*57.5 # in V\n", + "vdc=(2*81.3)/pi # in V\n", + "pdc=52.**2/1000 # in W\n", + "print \"(a) The rms value of the transformer secondary voltage,\"\n", + "print \" Vrms = %0.2f V\"%Vrms\n", + "print \" The maximum value of the secondary voltage\"\n", + "print \" Vm = %0.2f V\"%vm,\n", + "print \"Therefore, d.c. output voltage, Vdc = 2Vm / pi = %0.2f V\"%vdc\n", + "print \"(b) D.C. power delivered to the load,\"\n", + "print \" Pd.c. = (Vdc)**2 / RL = %0.2f W\"%pdc\n", + "print \"(c) PIV across each diode = Vm = 81.3 V\"\n", + "print \"(d) Output frequency = 2 x 50 = 100 Hz\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 556 Example 18.8." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that the ripple factor for inductor filter is gamma = RL / 3*sqrt(2)*omega*L\n", + "Therefore, L = 1.56 Henry\n" + ] + } + ], + "source": [ + "L=0.0625/0.04 # in H\n", + "print \"We know that the ripple factor for inductor filter is gamma = RL / 3*sqrt(2)*omega*L\"\n", + "print \"Therefore, L = %0.2f Henry\"%L" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 558 Example 18.9." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that the ripple factor for capacitor filter is\n", + " gamma = 1 / 4*sqrt(3)*f*C*RL\n", + "Therefore, C = 72.20 pF\n" + ] + } + ], + "source": [ + "print \"We know that the ripple factor for capacitor filter is\"\n", + "print \" gamma = 1 / 4*sqrt(3)*f*C*RL\"\n", + "c=(0.722)/0.01 # in pF\n", + "print \"Therefore, C = %0.2f pF\"%c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 560 Example 18.10" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The effective load resistance RL = 50.00 ohm\n", + "We know that the ripple factor, gamma = 1.194 / LC\n", + "i.e. LC = 59.70 \n", + "Critical value of L(mH) = RL / 3*omega = 50 / 3*2*pi*f = 53mH\n", + "Taking L = 60 mH (about 20% higher), C will be about 1000 uF\n" + ] + } + ], + "source": [ + "rl=10./(200*10**-3) # in ohm\n", + "lc=1.194/0.02 \n", + "print \"The effective load resistance RL = %0.2f ohm\"%rl\n", + "print \"We know that the ripple factor, gamma = 1.194 / LC\"\n", + "print \"i.e. LC = %0.2f \"%lc\n", + "print \"Critical value of L(mH) = RL / 3*omega = 50 / 3*2*pi*f = 53mH\"\n", + "print \"Taking L = 60 mH (about 20% higher), C will be about 1000 uF\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 561 Example 18.11" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " RL = 50.00 ohm\n", + " 0.02 = 5700 / L*C1*C2*50 = 114 / L*C1*C2\n", + "If we assume L = 10 mH and C1 = C2 = C, we have\n", + " 0.02 = 114 / L*C**2 = 11.4 / C**2\n", + " C**2 = 570.00 \n", + "therefore, C = 23.87 uF\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "rl=(10./(200*10**-3)) # in ohm\n", + "c2=11.4/0.02\n", + "c=sqrt(570.) # in uF\n", + "print \" RL = %0.2f ohm\"%rl\n", + "print \" 0.02 = 5700 / L*C1*C2*50 = 114 / L*C1*C2\"\n", + "print \"If we assume L = 10 mH and C1 = C2 = C, we have\"\n", + "print \" 0.02 = 114 / L*C**2 = 11.4 / C**2\"\n", + "print \" C**2 = %0.2f \"%c2\n", + "print \"therefore, C = %0.2f uF\"%c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 562 Example 18.12." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Pz = Vz * Iz_max = 0.40 W\n", + "Hence a 0.5Z 10 zener can be selected\n", + "Value of load resistance, RL\n", + " RL_min = Vo / IL_max = 200.00 ohm\n", + " RL_max = Vo / IL_min = 333.33 ohm\n", + "Value of input resistance, R\n", + " Rmax = Vin(max)-Vo / ILmin+IZmax = 285.71 ohm\n", + "142.857142857 Rmax(ohm) = Vin(min)-Vo / ILmax+IZmin =\n", + " R = Rmax+Rmin / 2 = 214.50 ohm\n" + ] + } + ], + "source": [ + "pz=10.*40*10**-3 # in W\n", + "print \" Pz = Vz * Iz_max = %0.2f W\"%pz\n", + "print \"Hence a 0.5Z 10 zener can be selected\"\n", + "print \"Value of load resistance, RL\"\n", + "rlmin=10./(50*10**-3) # in ohm\n", + "print \" RL_min = Vo / IL_max = %0.2f ohm\"%rlmin\n", + "rlmax=10./(30*10**-3) # in ohm\n", + "print \" RL_max = Vo / IL_min = %0.2f ohm\"%rlmax\n", + "print \"Value of input resistance, R\"\n", + "rmax=(30.-10)/((30+40)*10**-3) # in ohm\n", + "print \" Rmax = Vin(max)-Vo / ILmin+IZmax = %0.2f ohm\"%rmax\n", + "rmin=(20.-10)/((50+20)*10**-3) # in ohm\n", + "print rmin,\" Rmax(ohm) = Vin(min)-Vo / ILmax+IZmin =\"\n", + "r=(286+143.)/2\n", + "print \" R = Rmax+Rmin / 2 = %0.2f ohm\"%r # answer in textbook is wrong" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 563 Example 18.13." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " RL = Vo / IL = 250.00 ohm\n", + "Hence, the series resistance R(ohm) = Vi(min)-Vo / IZ(min)+IL = 120.00 ohm\n", + "The various values are given in the Zener regulator shown in Fig. 18.19\n" + ] + } + ], + "source": [ + "rl=5./(20*10**-3) # in ohm\n", + "print \" RL = Vo / IL = %0.2f ohm\"%rl\n", + "r=(8.-5)/((5.+20)*10**-3) # in ohm\n", + "print \"Hence, the series resistance R(ohm) = Vi(min)-Vo / IZ(min)+IL = %0.2f ohm\"%r\n", + "print \"The various values are given in the Zener regulator shown in Fig. 18.19\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 564 Example 18.14." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) Let IZ = IZ(min) and IL = 0\n", + " The total current I = IL + IZ = 10 mA\n", + " Therefore, R = 1000.00 ohm\n", + "(ii) For IZ = IZ(max) = 100 mA and IL = 20 mA\n", + " I = IL + IZ = 120.00 mA\n", + " Therefore, R = 83.33 ohm\n", + "(iii) The range of R varies from 83.33 ohm to 1000 ohm\n" + ] + } + ], + "source": [ + "print \"(i) Let IZ = IZ(min) and IL = 0\"\n", + "print \" The total current I = IL + IZ = 10 mA\"\n", + "r=10./(10*10**-3) # in ohm\n", + "print \" Therefore, R = %0.2f ohm\"%r\n", + "print \"(ii) For IZ = IZ(max) = 100 mA and IL = 20 mA\"\n", + "i=20+100. # in mA\n", + "print \" I = IL + IZ = %0.2f mA\"%i\n", + "r=10./(120*10**-3)\n", + "print \" Therefore, R = %0.2f ohm\"%r\n", + "print \"(iii) The range of R varies from 83.33 ohm to 1000 ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 565 Example 18.15." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here, load resistance is RL = Vo / IL = 500.00 ohm\n", + "Maximum Zener Current Iz_max = 80.00 mA\n", + "The minimum input voltage required will be when Iz = 0. Under this condition,\n", + " I = IL = 10 mA\n", + "Minimum input voltage Vi_min = Vo + IR\n", + "Hence, Vi_min = 8.00 V\n", + "or 8 = 5 + (10*10**-3)R\n", + "Therefore, Rmax = 300.00 ohm\n", + "Now, maximum input voltage, Vi_max = 5 + [(80+10)10**-3]R\n", + " Rmin = 77.78 ohm\n", + "The value of R is chosen between 77.77 ohm and 300 ohm\n" + ] + } + ], + "source": [ + "rl=5./(10*10**-3) # in ohm\n", + "print \"Here, load resistance is RL = Vo / IL = %0.2f ohm\"%rl\n", + "iz=400./5 # in mA\n", + "print \"Maximum Zener Current Iz_max = %0.2f mA\"%iz\n", + "print \"The minimum input voltage required will be when Iz = 0. Under this condition,\"\n", + "print \" I = IL = 10 mA\"\n", + "print \"Minimum input voltage Vi_min = Vo + IR\"\n", + "vi=10.-2 # in V\n", + "print \"Hence, Vi_min = %0.2f V\"%vi\n", + "print \"or 8 = 5 + (10*10**-3)R\"\n", + "rmax=3./(10*10**-3) # in ohm\n", + "print \"Therefore, Rmax = %0.2f ohm\"%rmax\n", + "print \"Now, maximum input voltage, Vi_max = 5 + [(80+10)10**-3]R\"\n", + "rmin=7./(90*10**-3) # in ohm\n", + "print \" Rmin = %0.2f ohm\"%rmin\n", + "print \"The value of R is chosen between 77.77 ohm and 300 ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 566 Example 18.16." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The load current, IL( = Vo / RL = 20.00 mA\n", + "Max. Zener current, Iz_max = 25.00 mA\n", + " Rmax(ohm) = Vi-Vo / IL_min+IZ_max = 177.78 ohm\n" + ] + } + ], + "source": [ + "il=(24./1200)*10**3 # in mA\n", + "print \"The load current, IL( = Vo / RL = %0.2f mA\"%il\n", + "iz=600./24 # in mA\n", + "print \"Max. Zener current, Iz_max = %0.2f mA\"%iz\n", + "rmax=(32.-24)/((20+25)*10**-3) # in ohm\n", + "print \" Rmax(ohm) = Vi-Vo / IL_min+IZ_max = %0.2f ohm\"%rmax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 567 Example 18.17." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Refer to fig.18.24. We know that\n", + " Vi_min(V) = Vo + 3V = 18.00 V\n", + "Assuming the ripple voltage Vr = 2V(max), the input voltage is\n", + " Vi = Vi(min) + Vr/2 = 19.00 V\n", + "Then Vz = Vi /2 = 9.50 V (use the zener diode 1N758 for 10V)\n", + "Therefore, Vz = 10 V\n", + " Iz = 20 mA\n", + " R1 = Vi-Vz / Iz = 450.00 ohm\n", + "Let I2 = IB(max) = 50 uA\n", + " R2 = Vo-Vz / I2 = 100.00 kohm\n", + " R3 = Vz / I2 = 200.00 kohm\n", + "Select C1 = 50 uF\n", + "Specification of transistor Q1\n", + " VCE_max = Vi_max(V) = Vi + Vr/2 = 20.00 V\n", + " IE = IL = 50 mA\n", + " P = VCE*IL = (Vi-Vo) * IL = 200.00 mW\n", + "Use the transistor 2N718 for Q1\n" + ] + } + ], + "source": [ + "vi=15.+3 # in V\n", + "print \"Refer to fig.18.24. We know that\"\n", + "print \" Vi_min(V) = Vo + 3V = %0.2f V\"%vi\n", + "vi=18.+1 # in V\n", + "print \"Assuming the ripple voltage Vr = 2V(max), the input voltage is\"\n", + "print \" Vi = Vi(min) + Vr/2 = %0.2f V\"%vi\n", + "vz=19./2 # in V\n", + "print \"Then Vz = Vi /2 = %0.2f V (use the zener diode 1N758 for 10V)\"%vz\n", + "print \"Therefore, Vz = 10 V\"\n", + "print \" Iz = 20 mA\"\n", + "r1=(19.-10)/(20*10**-3) # in ohm\n", + "print \" R1 = Vi-Vz / Iz = %0.2f ohm\"%r1\n", + "print \"Let I2 = IB(max) = 50 uA\"\n", + "r2=((15.-10)/(50*10**-6))*10**-3 # in k-ohm\n", + "print \" R2 = Vo-Vz / I2 = %0.2f kohm\"%r2\n", + "r3=(10./(50*10**-6))*10**-3 # in k-ohm\n", + "print \" R3 = Vz / I2 = %0.2f kohm\"%r3\n", + "print \"Select C1 = 50 uF\"\n", + "print \"Specification of transistor Q1\"\n", + "vce=19.+1 # in V\n", + "print \" VCE_max = Vi_max(V) = Vi + Vr/2 = %0.2f V\"%vce\n", + "print \" IE = IL = 50 mA\"\n", + "p=((19.-15)*50) # in mW\n", + "print \" P = VCE*IL = (Vi-Vo) * IL = %0.2f mW\"%p\n", + "print \"Use the transistor 2N718 for Q1\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 568 Example 18.18." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selection of Zener diode\n", + " RLmin = Vo / ILmax = 400.00 ohm\n", + " Vz = Vo / 2 = 10.00 V\n", + "The current flowing through the Zener,\n", + " Iz = IE2 + IR1 = 20.00 mA\n", + " Pz = Vz*Iz = 0.20 W\n", + "Selection of transistor Q1\n", + " IE1 = IR1 + IR2 + IL = 70.00 mA\n", + " Vi(max) - Vo = 30 -20 = 10 V\n", + "For transistor SL100, the rating are\n", + " IC(max) = 500 mA\n", + " VCE(max) = 50 V\n", + " hre = 50 - 280\n", + "Hence, SL100 can be chosen for Q1\n", + "\n", + "Selection of transistor Q2\n", + " Therefore, VCE2_max = (Vo + VBE1) - Vz = 10.60 V\n", + "For transistor BC107, the rating are\n", + " VCEO(max) = 45 V\n", + " IC(max) = 200 mA\n", + " hFE = 125 - 300\n", + "Hence, transistor BC107 is selected for Q2\n", + "Selection of resistor R1, R2 and R3\n", + " VR1 = Vo - Vz = 10.00 V\n", + " R1 = VR1 / IR1 = 1.00 kohm\n", + " VR2 = Vo - VR3 = 9.40 V\n", + " R2 = VR2 / IR2 = 940.00 ohm\n", + " VR3 = Vz + VBE2(sat) = 10.60 V\n", + " R3 = VR3 / IR3 = 1060.00 ohm\n", + "Selection of resistor R4\n", + " VB1 = VC2(V) = Vo + VBE1 = 20.60 V\n", + " IB1 = IC1 / beta = 1.40 mA\n", + " IR4 = IB1 + IC2 = 11.40 mA\n", + " R4_max = VR4(max) / IR4 = Vi(max)-VB1 / IR4 = 824.56 ohm\n", + " R4_min = VR4(min) / IR4 = Vi(min)-VB1 / IR4 = 122.81 ohm\n", + " R4 = R4(max)+R4(min) / 2 = 474.00 ohm\n" + ] + } + ], + "source": [ + "rlmin=20./(50*10**-3) # in ohm\n", + "print \"Selection of Zener diode\"\n", + "print \" RLmin = Vo / ILmax = %0.2f ohm\"%rlmin\n", + "vz=20./2 # in V\n", + "print \" Vz = Vo / 2 = %0.2f V\"%vz\n", + "print \"The current flowing through the Zener,\"\n", + "iz=10.+10 # in mA\n", + "print \" Iz = IE2 + IR1 = %0.2f mA\"%iz\n", + "pz=10.*20*10**-3 # in W\n", + "print \" Pz = Vz*Iz = %0.2f W\"%pz # > 0.5 W\n", + "print \"Selection of transistor Q1\"\n", + "ie1=10.+10+50 # in mA\n", + "print \" IE1 = IR1 + IR2 + IL = %0.2f mA\"%ie1\n", + "print \" Vi(max) - Vo = 30 -20 = 10 V\"\n", + "print \"For transistor SL100, the rating are\"\n", + "print \" IC(max) = 500 mA\"\n", + "print \" VCE(max) = 50 V\"\n", + "print \" hre = 50 - 280\"\n", + "print \"Hence, SL100 can be chosen for Q1\"\n", + "print \"\"\n", + "print \"Selection of transistor Q2\"\n", + "vce2=20.6-10 # in V\n", + "print \" Therefore, VCE2_max = (Vo + VBE1) - Vz = %0.2f V\"%vce2\n", + "print \"For transistor BC107, the rating are\"\n", + "print \" VCEO(max) = 45 V\"\n", + "print \" IC(max) = 200 mA\"\n", + "print \" hFE = 125 - 300\"\n", + "print \"Hence, transistor BC107 is selected for Q2\"\n", + "print \"Selection of resistor R1, R2 and R3\"\n", + "vr1=20-10. # in V\n", + "print \" VR1 = Vo - Vz = %0.2f V\"%vr1\n", + "r1=10./(10) # in k-ohm\n", + "print \" R1 = VR1 / IR1 = %0.2f kohm\"%r1\n", + "vr2=20.-10.6 # in V\n", + "print \" VR2 = Vo - VR3 = %0.2f V\"%vr2\n", + "r2=9.4/(10*10**-3) # in ohm\n", + "print \" R2 = VR2 / IR2 = %0.2f ohm\"%r2\n", + "vr3=10+0.6 # in V\n", + "print \" VR3 = Vz + VBE2(sat) = %0.2f V\"%vr3\n", + "r3=10.6/(10*10**-3) # in ohm\n", + "print \" R3 = VR3 / IR3 = %0.2f ohm\"%r3\n", + "print \"Selection of resistor R4\"\n", + "vb1=20+0.6 # in V\n", + "print \" VB1 = VC2(V) = Vo + VBE1 = %0.2f V\"%vb1\n", + "ib1=70./50 # in mA\n", + "print \" IB1 = IC1 / beta = %0.2f mA\"%ib1\n", + "ir4=11.4 # in mA\n", + "print \" IR4 = IB1 + IC2 = %0.2f mA\"%ir4\n", + "r4max=(30-20.6)/(11.4*10**-3) # in ohm\n", + "print \" R4_max = VR4(max) / IR4 = Vi(max)-VB1 / IR4 = %0.2f ohm\"%r4max\n", + "r4min=(22-20.6)/(11.4*10**-3) # in ohm\n", + "print \" R4_min = VR4(min) / IR4 = Vi(min)-VB1 / IR4 = %0.2f ohm\"%r4min\n", + "r4=(825.+123)/2 # in ohm\n", + "print \" R4 = R4(max)+R4(min) / 2 = %0.2f ohm\"%r4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 569 Example 18.19." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A bridge rectifier or full wave rectifier is used to get the pulsating d.c. output.\n", + " RL = Vdc / TL = 90.00 ohm\n", + "A capacitor filter is used to remove the ripple and get a smooth output.\n", + " Ripple factor gamma = 1 / 4*sqrt(3)*f*C*RL\n", + "Assume the ripple factor to be 0.03\n", + " C = 1069.17 uF\n", + "The short circuit resistance Rsc connected with the series pass transistor is\n", + " Rsc = VBE / Ilim_it = 4.67 ohm\n", + "Assume 7.6 V Zener diode in series with 1.5 k-ohm\n", + "The designed circuit is shown in fig.18.32.\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "print \"A bridge rectifier or full wave rectifier is used to get the pulsating d.c. output.\"\n", + "rl=9./(100*10**-3) # in ohm\n", + "print \" RL = Vdc / TL = %0.2f ohm\"%rl\n", + "print \"A capacitor filter is used to remove the ripple and get a smooth output.\"\n", + "print \" Ripple factor gamma = 1 / 4*sqrt(3)*f*C*RL\"\n", + "print \"Assume the ripple factor to be 0.03\"\n", + "c=(1./(4*sqrt(3)*50*0.03*90))*10**6 # in uF\n", + "print \" C = %0.2f uF\"%c # = 1000 uF\n", + "print \"The short circuit resistance Rsc connected with the series pass transistor is\"\n", + "rsc=0.7/(150*10**-3) # in ohm\n", + "print \" Rsc = VBE / Ilim_it = %0.2f ohm\"%rsc\n", + "print \"Assume 7.6 V Zener diode in series with 1.5 k-ohm\"\n", + "print \"The designed circuit is shown in fig.18.32.\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch1_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch1_1.ipynb new file mode 100644 index 00000000..01e7a07d --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch1_1.ipynb @@ -0,0 +1,136 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-1 : Physical properties of elements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No.4 Example 1.1." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "r1=0.53 (A.U)\n", + "r2=2.12 (meters)\n", + "r3=4.77 (meters)\n" + ] + } + ], + "source": [ + "from math import pi\n", + "epsilon=8.854*10**-12\n", + "h=6.62*10**-34 #planck's constant\n", + "m=9.1*10**-31 #mass of electron\n", + "q=1.6*10**-19 #charge of electron\n", + "for n in [1]:\n", + " r1=(epsilon*(h**2)*(n**2))/(pi*m*(q**2)) #radius of 1st orbit for hydrogen\n", + " x1=r1*10**10 # in A.U\n", + " print \"r1=%0.2f (A.U)\"%x1\n", + "\n", + "for n in [2]:\n", + " r2=(epsilon*(h**2)*(n**2))/(pi*m*(q**2)) #radius of 2st orbit for hydrogen\n", + " x2=r2*10**10 # in A.U\n", + " print \"r2=%0.2f (meters)\"%x2\n", + "\n", + "for n in [3]:\n", + " r3=(epsilon*(h**2)*(n**2))/(pi*m*(q**2)) #radius of 3st orbit for hydrogen\n", + " x3=r3*10**10 # in A.U\n", + " print \"r3=%0.2f (meters)\"%x3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 6 Example 1.2." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wavelenth of the emitted photon is =920.97 (Armstrong)\n" + ] + } + ], + "source": [ + "E1=-13.6# #energy of 10th state\n", + "E10=-13.6/10**2# #enery in the ground state\n", + "lamda=12400/(E10-E1)# #wavelength of emitted photon\n", + "print \"Wavelenth of the emitted photon is =%0.2f (Armstrong)\"%lamda" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 6 Example 1.3." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the wavelength limit = 12400 / Einfinity-E2 =3647.06 (A.U)\n" + ] + } + ], + "source": [ + "Einfinity=0 #energy of electron at infinite orbit\n", + "E2=-13.6/2**2 #energy of electron at second orbit\n", + "wavelength=12400/(Einfinity-E2) #wavelength limit\n", + "print \"the wavelength limit = 12400 / Einfinity-E2 =%0.2f (A.U)\"%wavelength" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch20_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch20_1.ipynb new file mode 100644 index 00000000..e1b955eb --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch20_1.ipynb @@ -0,0 +1,322 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-20 : Operational Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 620 Example 20.1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " CMRR = Ad / Acm = 10**5\n", + " Therefore, the common-mode gain, Acm = Ad / CMRR =1.00\n" + ] + } + ], + "source": [ + "print \" CMRR = Ad / Acm = 10**5\"\n", + "acm=(1.0*10**5)/(10**5)\n", + "print \" Therefore, the common-mode gain, Acm = Ad / CMRR =%0.2f\"%acm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 620 Example 20.2." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " The slew rate, SR = dVo / dt\n", + " SR =5.00 V/us\n" + ] + } + ], + "source": [ + "sr=20./(4) # in V/us\n", + "print \" The slew rate, SR = dVo / dt\"\n", + "print \" SR =%0.2f V/us\"%sr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 621 Example 20.3." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The 741C has typical slew rate of 0.5 V/us. Using Eq.(20.8), the slew rate is,\n", + " SR = 2*pi*f*Vm / 10**6 = 0.5 V/us\n", + "The maximum output voltage, Vm = A*Vid =1.00 V\n", + "The maximum frequency of the input for which undistorted output is obtained is given by,\n", + " fmax = SR*10**6 / 2*pi*Vm =79.58\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "print \"The 741C has typical slew rate of 0.5 V/us. Using Eq.(20.8), the slew rate is,\"\n", + "print \" SR = 2*pi*f*Vm / 10**6 = 0.5 V/us\"\n", + "vm=50.*(20*10**-3) # in volts\n", + "print \"The maximum output voltage, Vm = A*Vid =%0.2f V\"%vm\n", + "print \"The maximum frequency of the input for which undistorted output is obtained is given by,\"\n", + "f=(0.5*10**6)/(2*pi*1) # in kHz\n", + "x1=f*10**-3\n", + "print \" fmax = SR*10**6 / 2*pi*Vm =%0.2f\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 622 Example 20.4." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The 741C has typical slew rate of 0.5 V/us. Using Eq.(20.8), the slew rate is,\n", + " SR = 2*pi*f*Vm / 10**6 = 0.5 V/us\n", + "The maximum output voltage, Vm(V peak-to-peak) = SR*10**6 / 2*pi*f =1.99 = 3.98 V peak-to-peak\n", + "The maximum peak-to-peak input voltage for undistorted output is,\n", + " Vid(V peak-to-peak) = Vm/A = 0.40\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "print \"The 741C has typical slew rate of 0.5 V/us. Using Eq.(20.8), the slew rate is,\"\n", + "print \" SR = 2*pi*f*Vm / 10**6 = 0.5 V/us\"\n", + "vm=(0.5*10**6)/(2*pi*(40*10**3)) # in volts\n", + "print \"The maximum output voltage, Vm(V peak-to-peak) = SR*10**6 / 2*pi*f =%0.2f\"%vm,\" = 3.98 V peak-to-peak\"\n", + "print \"The maximum peak-to-peak input voltage for undistorted output is,\"\n", + "vid=3.98/10 # in volts\n", + "print \" Vid(V peak-to-peak) = Vm/A = %0.2f\"%vid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 623 Example 20.5." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " The closed-loop voltage gain Af = -RF / R1 =-10.00\n" + ] + } + ], + "source": [ + "af=-10./1\n", + "print \" The closed-loop voltage gain Af = -RF / R1 =%0.2f\"%af" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 624 Example 20.6. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " The closed-loop voltage gain, AF = 1 + RF/R1 =11.00\n", + " The feedback factor, beta = R1 / R1+RF =0.09\n" + ] + } + ], + "source": [ + "af=1.+(10./1)\n", + "print \" The closed-loop voltage gain, AF = 1 + RF/R1 =%0.2f\"%af\n", + "beta=1/(1+10.)\n", + "print \" The feedback factor, beta = R1 / R1+RF =%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 625 Example 20.7." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The output voltage is given by,\n", + " Vo = -Rf/R * (V1+V2+...+Vn) =-9.00 V\n" + ] + } + ], + "source": [ + "v=-(2+3+4) # in volts\n", + "print \"The output voltage is given by,\"\n", + "print \" Vo = -Rf/R * (V1+V2+...+Vn) =%0.2f V\"%v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 626 Example 20.8." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1. Given: fL = 1 kHz\n", + "2. Since R and C values are not given, let assume C = 0.01 uF\n", + "3. Therefore, R(k-ohm) = 1 / 2*pi*fL*C =15.92 kohm\n", + "4. Given pass band gain A = 1 + Rf/Ri = 2 i.e. the value of Rf = Ri\n", + "Let Rf = Ri = 10 k-ohm. The high pass circuit values are shown in Fig.20.31\n" + ] + } + ], + "source": [ + "from math import pi\n", + "print \"1. Given: fL = 1 kHz\"\n", + "print \"2. Since R and C values are not given, let assume C = 0.01 uF\"\n", + "r=1/(2*pi*(10**3)*(0.01*10**-6))\n", + "x1=r*10**-3 # in k-ohm\n", + "print \"3. Therefore, R(k-ohm) = 1 / 2*pi*fL*C =%0.2f kohm\"%x1\n", + "print \"4. Given pass band gain A = 1 + Rf/Ri = 2 i.e. the value of Rf = Ri\"\n", + "print \"Let Rf = Ri = 10 k-ohm. The high pass circuit values are shown in Fig.20.31\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 627 Example 20.9." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(b) With C = 0.01 uF, R = 0.5*10**-3/0.01*10**-6 =50.00 kohm\n", + "(c) Maximum value of differential input voltage is\n", + " 2*Vsat*(R2 / R1+R2) =0.00\n", + "Therefore, the peak values for the differential input voltage just exceed +-2 x 6.48 V\n" + ] + } + ], + "source": [ + "r=(0.5)/0.01 # in k-ohm\n", + "print \"(b) With C = 0.01 uF, R = 0.5*10**-3/0.01*10**-6 =%0.2f kohm\"%r\n", + "print \"(c) Maximum value of differential input voltage is\"\n", + "x=2.*14*(100/(100+116))\n", + "print \" 2*Vsat*(R2 / R1+R2) =%0.2f\"%x\n", + "print \"Therefore, the peak values for the differential input voltage just exceed +-2 x 6.48 V\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch21_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch21_1.ipynb new file mode 100644 index 00000000..50d5965c --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch21_1.ipynb @@ -0,0 +1,119 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-21 : Transducers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 632 Example 21.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electron mobility, un = sigma*RH =2000.00 cm**2/V-s\n" + ] + } + ], + "source": [ + "u=10.*200 # in cm**2/V-s\n", + "print \"The electron mobility, un = sigma*RH =%0.2f cm**2/V-s\"%u" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 633 Example 21.2." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that the electron mobilty, un = sigma/nq\n", + "Therefore, the electron concentration,\n", + " n = sigma / uq =1.25e+22 m**-3\n" + ] + } + ], + "source": [ + "n=10./((50*10**-4)*(1.6*10**-19)) # m**-3\n", + "print \"We know that the electron mobilty, un = sigma/nq\"\n", + "print \"Therefore, the electron concentration,\"\n", + "print \" n = sigma / uq =%0.2e m**-3\"%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 634 Example 21.3." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that the number of conduction electrons, i.e. electron density,\n", + " n = B*I/VH*q*w =5.00e+21 m**3\n" + ] + } + ], + "source": [ + "n=(1.2*20)/(60*(1.6*10**-19)*(0.5*10**-3)) # in m**3\n", + "print \"We know that the number of conduction electrons, i.e. electron density,\"\n", + "print \" n = B*I/VH*q*w =%0.2e m**3\"%n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch24_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch24_1.ipynb new file mode 100644 index 00000000..ce7b87dc --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch24_1.ipynb @@ -0,0 +1,293 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-24 : Digital Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 645 Example 24.1." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The procedure is as follows.\n", + "12 divided by 8 = quotient 1 with a remainder of 4\n", + "1 divided by 8 = quotient 0 with a remainder of 1\n", + "Therefore, decimal 12 = octal 14\n" + ] + } + ], + "source": [ + "#convert decimal 12 to an octal number\n", + "def base10toN(num, base):\n", + " \"\"\"Change ``num'' to given base\n", + " Upto base 36 is supported.\"\"\"\n", + "\n", + " converted_string, modstring = \"\", \"\"\n", + " currentnum = num\n", + " if not 1 < base < 37:\n", + " raise ValueError(\"base must be between 2 and 36\")\n", + " if not num:\n", + " return '0'\n", + " while currentnum:\n", + " mod = currentnum % base\n", + " currentnum = currentnum // base\n", + " converted_string = chr(48 + mod + 7*(mod > 10)) + converted_string\n", + " return converted_string\n", + "\n", + "o=base10toN(12,8)\n", + "print \"The procedure is as follows.\"\n", + "print \"12 divided by 8 = quotient 1 with a remainder of 4\"\n", + "print \"1 divided by 8 = quotient 0 with a remainder of 1\"\n", + "print \"Therefore, decimal 12 = octal\",o" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 646 Example 24.2." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) octal 144 = decimal 100\n", + "(ii) octal 237 = decimal 159\n", + "(iii) octal 120 = decimal 80\n" + ] + } + ], + "source": [ + "# convert octal number to decimal.\n", + "d=int('144',8)\n", + "print \"(i) octal 144 = decimal\",d\n", + "d1=int(\"237\",8)\n", + "print \"(ii) octal 237 = decimal\",d1\n", + "d2=int('120',8)\n", + "print \"(iii) octal 120 = decimal\",d2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 647 Example 24.3." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The procedure is as follows,\n", + "(i) 112 divided by 16 = quotient 7 with a remainder of 0\n", + " 7 divided by 16 = quotient 0 with a remainder of 7\n", + "decimal 112 = hex 70\n", + "(ii) 253 divided by 16 = quotient 7 with a remainder of 13 i.e. D\n", + " 15 divided by 16 = quotient 0 with a remainder of 15 i.e. F\n", + "decimal 253 = hex FD\n" + ] + } + ], + "source": [ + "#convert decimal to hexadecimal number\n", + "def base10toN(num, base):\n", + " \"\"\"Change ``num'' to given base\n", + " Upto base 36 is supported.\"\"\"\n", + "\n", + " converted_string, modstring = \"\", \"\"\n", + " currentnum = num\n", + " if not 1 < base < 37:\n", + " raise ValueError(\"base must be between 2 and 36\")\n", + " if not num:\n", + " return '0'\n", + " while currentnum:\n", + " mod = currentnum % base\n", + " currentnum = currentnum // base\n", + " converted_string = chr(48 + mod + 7*(mod > 10)) + converted_string\n", + " return converted_string\n", + "\n", + "h=base10toN(112,16)\n", + "print \"The procedure is as follows,\"\n", + "print \"(i) 112 divided by 16 = quotient 7 with a remainder of 0\"\n", + "print \" 7 divided by 16 = quotient 0 with a remainder of 7\"\n", + "print \"decimal 112 = hex\",h\n", + "print \"(ii) 253 divided by 16 = quotient 7 with a remainder of 13 i.e. D\"\n", + "print \" 15 divided by 16 = quotient 0 with a remainder of 15 i.e. F\"\n", + "h=base10toN(253,16)\n", + "print \"decimal 253 = hex\",h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 648 Example 24.4." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) hex 4AB = decimal 1195.0\n", + "(ii) hex 23F = decimal 575.0\n" + ] + } + ], + "source": [ + "#convert hexadecimal number to decimal\n", + "h=float.fromhex('4AB')\n", + "print \"(i) hex 4AB = decimal\",h\n", + "h=float.fromhex('23F')\n", + "print \"(ii) hex 23F = decimal\",h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 650 Example 24.5." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) 1101 x 1100 = 10011100\n", + "(ii) 1000 x 101 = 101000\n", + "(iii) 1111 x 1001 = 10000111\n" + ] + } + ], + "source": [ + "# multiply binary numbers\n", + "h=int('1101',2)\n", + "o=int('1100',2)\n", + "p=h*o\n", + "z=bin(p)[2:]\n", + "print \"(i) 1101 x 1100 =\",z\n", + "h=int('1000',2)\n", + "o=int('101',2)\n", + "p=h*o\n", + "z=bin(p)[2:]\n", + "print \"(ii) 1000 x 101 =\",z\n", + "h=int('1111',2)\n", + "o=int('1001',2)\n", + "p=h*o\n", + "z=bin(p)[2:]\n", + "print \"(iii) 1111 x 1001 =\",z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 651 Example 24.6." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) 110 / 10\n", + " = binary 11\n", + " = decimal 3\n", + "(ii) 1111 / 110\n", + " = binary 10\n", + " = decimal) 2\n" + ] + } + ], + "source": [ + "# perform the binary divisions\n", + "\n", + "x=int('110',2)\n", + "x1=int('10',2)\n", + "x2=x/x1\n", + "x3=bin(x2)[2:]\n", + "print \"(i) 110 / 10\"\n", + "print \" = binary\",x3\n", + "print \" = decimal\",x2\n", + "x=int('1111',2)\n", + "x1=int('110',2)\n", + "x2=x/x1\n", + "x3=bin(x2)[2:]\n", + "print \"(ii) 1111 / 110\"\n", + "print \" = binary\",x3\n", + "print \" = decimal)\",x2" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch3_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch3_1.ipynb new file mode 100644 index 00000000..adbb80a5 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch3_1.ipynb @@ -0,0 +1,691 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-3 : Electron Ballistics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1 : Page 48" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of the electron, v =sqrt(2*q*V/m) = 4.19e+07 m/s\n", + "The kinetic energy = q x V = 5000 eV\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "q=1.6*10**-19 #charge of electron\n", + "V=5000 #potential difference\n", + "m=9.1*10**-31 #mass of electron\n", + "v=sqrt(2*q*V/m) #speed of electron\n", + "print \"Speed of the electron, v =sqrt(2*q*V/m) = %0.2e m/s\"% v\n", + "ke=(q*V)/(1.6*10**-9) #kinetic energyin eV\n", + "x1=ke*10**10\n", + "print \"The kinetic energy = q x V = %0.f eV\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2 Page 48" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mass of the charged particle = 1000 times the mass of an electron = 9.10e-28 kg\n", + "The charge of the partical = 1.6*10**-19 C\n", + "Therefore, The velocity, v = sqrt(2*q*V/me) = 5.93e+05 m/s\n", + "Kinetic energy = q x V = 1000.00 eV\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "me=1000*9.1*10**-31\n", + "print \"Mass of the charged particle = 1000 times the mass of an electron = %0.2e kg\"%me\n", + "print \"The charge of the partical = 1.6*10**-19 C\"\n", + "q=1.6*10**-19 #charge of the particle\n", + "V=1000 #potential difference\n", + "v=sqrt(2*q*V/me)\n", + "print \"Therefore, The velocity, v = sqrt(2*q*V/me) = %0.2e m/s\"%v\n", + "ke=(q*V)/(1.6*10**-19) # in eV\n", + "print \"Kinetic energy = q x V = %0.2f eV\"%ke" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3 : Page 50" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Therefore, E = V / d = 5.83e+04 \n", + " ax = qE / m = 1.03e+16 m/s**2\n", + "We know that,\n", + " x = vox*t + 0.5*a*t**2\n", + " vx = vox + ax*t\n", + "(i) Consider x = 3*10**-3 m\n", + "3*10**-3 = 3*10**6*t + 5.13*10**15*t**2\n", + "Solving this equation,\n", + "t = 5.26e-10 seconds \n", + "vx = 8.40e+06 m/s \n", + "(ii) Consider x = 6*10**-6 m\n", + "t**2+(5.85*10**-10)*t-(1.17*10**-18) = 0\n", + "Solving this equation,\n", + "t = 8.28e-10 seconds \n", + "vx = 1.15e+07 m/s\n" + ] + } + ], + "source": [ + "from sympy import symbols, solve\n", + "from math import sqrt\n", + "d=6*10**-3\n", + "q=1.6*10**-19\n", + "m=9.1*10**-31\n", + "vax=3*10**6\n", + "E=350/d\n", + "print \"Therefore, E = V / d = %0.2e \"%E\n", + "ax=q*E/m\n", + "print \" ax = qE / m = %0.2e m/s**2\"%ax\n", + "print \"We know that,\"\n", + "print \" x = vox*t + 0.5*a*t**2\"\n", + "print \" vx = vox + ax*t\"\n", + "print \"(i) Consider x = 3*10**-3 m\"\n", + "print \"3*10**-3 = 3*10**6*t + 5.13*10**15*t**2\"\n", + "print \"Solving this equation,\"\n", + "t=symbols('t')\n", + "p1=(5.13*10**15)*t**2+(3*10**6)*t-3*10**-3\n", + "t1=solve(p1,t)\n", + "ans1=t1[1]\n", + "print \"t = %0.2e seconds \"%ans1\n", + "vx=(3*10**6)+((1.026*10**16)*(5.264*10**-10))\n", + "print \"vx = %0.2e m/s \"%vx\n", + "print \"(ii) Consider x = 6*10**-6 m\"\n", + "print \"t**2+(5.85*10**-10)*t-(1.17*10**-18) = 0\"\n", + "print \"Solving this equation,\"\n", + "t=symbols('t')\n", + "p2=t**2+(5.85*10**-10)*t-1.17*10**-18\n", + "t2=solve(p2, t)\n", + "ans2=t2[1]\n", + "print \"t = %0.2e seconds \"%ans2\n", + "vx1=(3*10**6)+((8.28*10**-10)*(1.026*10**16))\n", + "print \"vx = %0.2e m/s\"%vx1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4 : Page 51" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i)The electron starts from rest at plate A, therefore, the initial velocity is zero. The velocity of electron on reaching plate B is\n", + "v = sqrt(2*q*V/m) = 8.39e+06 m/s\n", + "(ii)Time taken by the electron to travel from plate A to plate B can be calculated from the average velocity of the electron in transit.The average velocity is,\n", + "vaverage = (Initial velocity + Final velocity) / 2 = 4.19e+06 m/s\n", + "Therefore, time taken for travel is,\n", + "Time = Separation between the plates / Average velocity = 7.16e-10 seconds\n", + "(iii)Kinetic energy of the electron on reaching the plate B is\n", + "Kinetic energy = q V = 3.20e-17 Joules\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "V=200\n", + "m=9.1*10**-31\n", + "v=sqrt(2*q*V/m)\n", + "print \"(i)The electron starts from rest at plate A, therefore, the initial velocity is zero. The velocity of electron on reaching plate B is\"\n", + "print \"v = sqrt(2*q*V/m) = %0.2e m/s\"%v\n", + "iv=0 #initial velocity\n", + "fv=8.38*10**6 #final velocity\n", + "va=(iv+fv)/2 #average velocity of electron in transit\n", + "print \"(ii)Time taken by the electron to travel from plate A to plate B can be calculated from the average velocity of the electron in transit.The average velocity is,\"\n", + "print \"vaverage = (Initial velocity + Final velocity) / 2 = %0.2e m/s\"%va\n", + "sp=3*10**-3 #separation between the plates\n", + "time=sp/va\n", + "print \"Therefore, time taken for travel is,\"\n", + "print \"Time = Separation between the plates / Average velocity = %0.2e seconds\"%time\n", + "ke=q*V\n", + "print \"(iii)Kinetic energy of the electron on reaching the plate B is\"\n", + "print \"Kinetic energy = q V = %0.2e Joules\"%ke" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5 : Page 51" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed acquired by electron due to the applied voltage is\n", + "v = sqrt(vinitial**2+(2*q*V/m)) = 1.03e+07 m/s\n", + "The average velocity,\n", + "vaverage = (vinitial + vfinal) / 2 = 5.66e+06 m/s\n", + "Therefore, time for travel = seperation between plates / vaverage = 1.41e-09 seconds\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "vinitial=1*10**6\n", + "q=1.6*10**-19\n", + "V=300\n", + "m=9.1*10**-31\n", + "vfinal=10.33*10**6\n", + "sp=8*10**-3 #separation between plates\n", + "v=sqrt(vinitial**2+(2*q*V/m))\n", + "print \"The speed acquired by electron due to the applied voltage is\"\n", + "print \"v = sqrt(vinitial**2+(2*q*V/m)) = %0.2e m/s\"%v\n", + "va=(vinitial+vfinal)/2\n", + "print \"The average velocity,\"\n", + "print \"vaverage = (vinitial + vfinal) / 2 = %0.2e m/s\"%va\n", + "time=sp/va\n", + "print \"Therefore, time for travel = seperation between plates / vaverage = %0.2e seconds\"%time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6 : Page 52" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electric field intensity,\n", + "E = -5t / d*10*-9 = -5t / 10**-9*1*10**-2 = 5*10**11*t (for 0 < t < t1)\n", + " = 0 (for t1 < t < infinity)\n", + "(i) The position of the electron after 1ns,\n", + " d(um) = (5*10**11)*(1.76*10**11)*((1*10**-9)**3/6) = 14.67 um\n", + "(ii) The rest of the distance to be covered by the electron = 0.8cm - 14.7 um = 0.80\n", + "Since, the potential difference drops to zero volt, after 1ns, the electron will travel the distance of 0.799 cm with a constant velocity of\n", + "vx = (5*10**11)*(q/m)*(t**2/2) = 4.40e+04 m/s\n", + "Therefore, the time t2 = d / vx = 1.81e-07 seconds\n", + "The total time of transit of electron from cathode to anode = 1.82e-07 seconds\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "d=(5*10**11*1.76*10**11)*(((1*10**-9)**3)/6)\n", + "x1=d*10**6\n", + "print \"The electric field intensity,\"\n", + "print \"E = -5t / d*10*-9 = -5t / 10**-9*1*10**-2 = 5*10**11*t (for 0 < t < t1)\"\n", + "print \" = 0 (for t1 < t < infinity)\"\n", + "print \"(i) The position of the electron after 1ns,\"\n", + "print \" d(um) = (5*10**11)*(1.76*10**11)*((1*10**-9)**3/6) = %0.2f um\"%x1\n", + "x2=0.8-(d*10**2)\n", + "print \"(ii) The rest of the distance to be covered by the electron = 0.8cm - 14.7 um = %0.2f\"%x2\n", + "print \"Since, the potential difference drops to zero volt, after 1ns, the electron will travel the distance of 0.799 cm with a constant velocity of\"\n", + "vx=(5*10**11*1.76*10**11)*(((1*10**-9)**2)/2)\n", + "print \"vx = (5*10**11)*(q/m)*(t**2/2) = %0.2e m/s\"%vx\n", + "x3=(x2/vx)*10**-2\n", + "print \"Therefore, the time t2 = d / vx = %0.2e seconds\"%x3\n", + "x4=(1*10**-9)+x3\n", + "print \"The total time of transit of electron from cathode to anode = %0.2e seconds\"%x4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7 : Page 56" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The velocity of the electron is = sqrt(2qVa/m) = 3.75e+06 m/s\n", + "The time taken for one revolution is T = 2*pi*m / B*q = 3.93e-11 seconds\n", + "The pitch = T*v*cos(theta) = 1.28e-04 meters\n", + "Thus, the electron has travelled = 1.28e-04 meters\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "q=1.6*10**-19\n", + "Va=40\n", + "m=9.1*10**-31\n", + "B=0.91\n", + "ve=sqrt(2*q*Va/m)\n", + "print \"The velocity of the electron is = sqrt(2qVa/m) = %0.2e m/s\"%ve\n", + "tt=(2*pi*m)/(B*q)\n", + "print \"The time taken for one revolution is T = 2*pi*m / B*q = %0.2e seconds\"%tt\n", + "p=tt*ve*(sqrt(3)/2) #cos(30)=sqrt(3)/2\n", + "print \"The pitch = T*v*cos(theta) = %0.2e meters\"%p\n", + "print \"Thus, the electron has travelled = %0.2e meters\"%p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8 : Page 56" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) The velocity of the charged particle before entering the field is,\n", + "v = sqrt(2aV/m) * sqrt(2(3q)V/2m) = sqrt(6qV/2m) = 5.14e+06 m/s\n", + "(ii) The radius of the helical path is\n", + "r = Mvsine(theta) / QB = 2mvsine(theta) / 3qB = 0.41 mm\n", + "(iii) Time for one revolution,\n", + "T = 2*pi*M / B*Q = 2*pi*(2m) / B(3q) = 1.19e-09 seconds\n" + ] + } + ], + "source": [ + "from math import radians as rdn, sin,pi,sqrt\n", + "radians=rdn(25)\n", + "q=1.6*10**-19\n", + "m=9.1*10**-31\n", + "V=50\n", + "Q=3*q\n", + "M=2*m\n", + "v=sqrt(2*Q*V/M)\n", + "print \"(i) The velocity of the charged particle before entering the field is,\"\n", + "print \"v = sqrt(2aV/m) * sqrt(2(3q)V/2m) = sqrt(6qV/2m) = %0.2e m/s\"%v\n", + "B=0.02\n", + "r=(M*v*sin(radians))/(Q*B)\n", + "r1=r*10**3\n", + "print \"(ii) The radius of the helical path is\"\n", + "print \"r = Mvsine(theta) / QB = 2mvsine(theta) / 3qB = %0.2f mm\"%r1\n", + "T=(2*pi*M)/(B*Q)\n", + "print \"(iii) Time for one revolution,\"\n", + "print \"T = 2*pi*M / B*Q = 2*pi*(2m) / B(3q) = %0.2e seconds\"%T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9 : Page 58" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given, T = 35.5/B *10**-12 s, B = 0.01 Wb/m**3, Va = 900V\n", + "Therefore, T = 3.55*10**-9 s\n", + "Velocity, v(m/s) = sqrt(2qVa/m) = 1.78e+07 m/s\n", + "Radius, r(mm) = mv/qB = v/(q/m)B = 10.11 mm\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "print \"Given, T = 35.5/B *10**-12 s, B = 0.01 Wb/m**3, Va = 900V\"\n", + "print \"Therefore, T = 3.55*10**-9 s\"\n", + "T = 3.55*10**-9\n", + "Va=900\n", + "v=sqrt(2*(1.76*10**11)*900)\n", + "print \"Velocity, v(m/s) = sqrt(2qVa/m) = %0.2e m/s\"%v\n", + "r=(17.799*10**6)/(0.01*1.76*10**11)\n", + "x1=r*10**3\n", + "print \"Radius, r(mm) = mv/qB = v/(q/m)B = %0.2f mm\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10 : Page 60" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) The velocity of the electron, v = 1.45e+07 m/s\n", + "(ii) ma = qE\n", + "Thus, acceleration, a(m/s)= qE / m = (q/m)(Vd/d) = 4.40e+14 m/s\n", + "(iii) The deflection on the screen, D(cm)= ILVd / 2Vad = 1.46 cm\n", + "(iv) Deflection sensitivity(cm/V)= D / Vd = 0.07 cm/V\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "Va=600\n", + "l=3.5\n", + "d=0.8\n", + "L=20\n", + "Vd=20\n", + "format(9)\n", + "q=1.6*10**-19\n", + "m=9.1*10**-31\n", + "v=sqrt(2*q*Va/m)\n", + "print \"(i) The velocity of the electron, v = %0.2e m/s\"%v\n", + "a=(q/m)*(Vd/d)\n", + "a1=a*10**2\n", + "print \"(ii) ma = qE\"\n", + "print \"Thus, acceleration, a(m/s)= qE / m = (q/m)(Vd/d) = %0.2e m/s\"%a1\n", + "D=(l*L*Vd)/(2*Va*d)\n", + "print\"(iii) The deflection on the screen, D(cm)= ILVd / 2Vad = %0.2f cm\"% D\n", + "Ds=D/Vd\n", + "print \"(iv) Deflection sensitivity(cm/V)= D / Vd = %0.2f cm/V\"%Ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.11 : Page 61" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) The velocity of the beam, v = sqrt(2qVa / m) = 1.68e+07 m/s\n", + "(ii) The deflection of the beam, D = lLVd / 2dVa\n", + "Therefore, the voltage that must be applied to the plates, Vd = 20.00 V\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "q=1.6*10**-19\n", + "m=9.1*10**-31\n", + "Va=800\n", + "l=2\n", + "d=0.5\n", + "L=20\n", + "D=1\n", + "v=sqrt(2*q*Va/m)\n", + "print \"(i) The velocity of the beam, v = sqrt(2qVa / m) = %0.2e m/s\"%v\n", + "Vd=(D*2*d*Va)/(l*L)\n", + "print \"(ii) The deflection of the beam, D = lLVd / 2dVa\"\n", + "print \"Therefore, the voltage that must be applied to the plates, Vd = %0.2f V\"%Vd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12 : Page 61" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) Velocity of beam, v = sqrt(2qVa/m) = 1.88e+07 m/s\n", + "(ii) Deflection sensitivity = D/Vd\n", + "where D = l*L*Vd / 2*Va*d = 0.01 cm\n", + "Therefore, the deflection sensitivity = 4.00e-04 cm/V\n", + "(iii) To find the angle of deflection, theta :\n", + " tan(theta) = D/L-l\n", + "Therefore, theta = tan**-1(D/L-l) = 0.032 degrees\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import degrees, atan\n", + "v=sqrt((2*(1.6*10**-19)*1000)/(9.1*10**-31))\n", + "print \"(i) Velocity of beam, v = sqrt(2qVa/m) = %0.2e m/s\"%v\n", + "D=((2*10**-2)*(20*10**-2)*25)/(2*1000*(0.5*10**-2))\n", + "print \"(ii) Deflection sensitivity = D/Vd\"\n", + "print \"where D = l*L*Vd / 2*Va*d = %0.2f cm\"%D\n", + "ds=D/25\n", + "print \"Therefore, the deflection sensitivity = %0.2e cm/V\"%ds\n", + "theta=degrees(atan(1/1800))\n", + "print \"(iii) To find the angle of deflection, theta :\"\n", + "print \" tan(theta) = D/L-l\"\n", + "print \"Therefore, theta = tan**-1(D/L-l) = %0.3f degrees\"%theta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13 : Page 62" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electron starts moving in the +y direction, but, since acceleration is along the -y direction, its velocity isreduced to zero at time t=t''\n", + "v0y = v0 * cos(theta) = 1.50e+05 m/s\n", + "ay = qE / m = 1.60e+14 m/s**2\n", + "t'' = v0y / ay = 0.94 ns\n" + ] + } + ], + "source": [ + "from math import cos,pi\n", + "v0=3*10**5\n", + "E=910\n", + "theta=60\n", + "m=9.109*10**-31\n", + "q=1.6*10**-19\n", + "print \"The electron starts moving in the +y direction, but, since acceleration is along the -y direction, its velocity isreduced to zero at time t=t''\"\n", + "v0y=v0*cos(theta*pi/180)\n", + "print \"v0y = v0 * cos(theta) = %0.2e m/s\"%v0y\n", + "ay=(q*E)/m\n", + "print \"ay = qE / m = %0.2e m/s**2\"%ay\n", + "tdash=v0y/ay\n", + "x1=tdash*10**9\n", + "print \"t'' = v0y / ay = %0.2f ns\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14 : Page 62" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The deflection of the spot,\n", + "D = (IBL/sqrt(Va))*sqrt(q/2m) = 0.42 cm\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "D=(((2*10**-2)*(1*10**-4)*(20*10**-2))/sqrt(800))*sqrt((1.6*10**-19)/(2*9.1*10**-31))\n", + "x1=D*10**2\n", + "print \"The deflection of the spot,\"\n", + "print \"D = (IBL/sqrt(Va))*sqrt(q/2m) = %0.2f cm\"%x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15 : Page 62" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The magnetostatic deflection, D = (IBL/sqrt(Va))*sqrt(q/2m)\n", + "The electrostatic deflection, D = lLVd / 2dVa\n", + "For returning the beam back to the centre, the electrostatic deflection and the magnetostatic deflection must be equal, i.e.,\n", + "(IBL/sqrt(Va))*sqrt(q/2m) = lLVd / 2dVa\n", + "Therefore,\n", + "Vd = dB*sqrt(2*Va*q/m) = 33.55 V\n" + ] + } + ], + "source": [ + "from math import pi,sqrt\n", + "print \"The magnetostatic deflection, D = (IBL/sqrt(Va))*sqrt(q/2m)\"\n", + "print \"The electrostatic deflection, D = lLVd / 2dVa\"\n", + "print \"For returning the beam back to the centre, the electrostatic deflection and the magnetostatic deflection must be equal, i.e.,\"\n", + "print \"(IBL/sqrt(Va))*sqrt(q/2m) = lLVd / 2dVa\"\n", + "print \"Therefore,\"\n", + "Vd=(1*10**-2*2*10**-4)*sqrt((2*800*1.6*10**-19)/(9.1*10**-31))\n", + "print \"Vd = dB*sqrt(2*Va*q/m) = %0.2f V\"%Vd" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch4_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch4_1.ipynb new file mode 100644 index 00000000..c7f2ac66 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch4_1.ipynb @@ -0,0 +1,600 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-4 : Semiconductor Diodes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 78 Example 4.1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) The intrinsic conductivity for germanium,\n", + "sigmai(S/cm) = q*ni*(un+up) = 0.02\n", + "(ii) The intrinsic conductivity for silicon,\n", + "sigmai(S/cm)= q*ni*(un+np) =4.32e-06\n" + ] + } + ], + "source": [ + "un1=3800 #mobility of free electrons in pure germanium\n", + "up1=1800 #mobility of free holes in pure germanium\n", + "un2=1300 #mobility of free electrons in pure silicon\n", + "up2=500 #mobility of free holes in pure silicon\n", + "q=1.6*10**-19\n", + "nig=2.5*10**13\n", + "nis=1.5*10**10\n", + "sigma1=q*nig*(un1+up1)\n", + "print \"(i) The intrinsic conductivity for germanium,\"\n", + "print \"sigmai(S/cm) = q*ni*(un+up) = %0.2f\"%sigma1\n", + "sigma2=q*nis*(un2+up2)\n", + "print \"(ii) The intrinsic conductivity for silicon,\"\n", + "print \"sigmai(S/cm)= q*ni*(un+np) =%0.2e\"%sigma2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 79 Example 4.6." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) In intrensic condition, n=p=ni\n", + "Hence, sigma_i = q*ni*(un+up)\n", + "sigma_i = 4.32e-06 S/cm\n", + "(b) Number of silicon atoms/cm**3 = 5*10**22\n", + "Hence, ND = 5.00e+14 cm**-3\n", + "Further, n = ND\n", + "Therefore, p = ni**2/n = ni**2/ND\n", + "p = 4.50e+05 cm**-3\n", + "Thus p << n. Hence p may be neglected while calculating the conductivity.\n", + "Hence, sigma = n*q*un = ND*q*un\n", + "sigma = 0.10 S/cm\n", + "(c) NA = 1.00e+15 cm**-3\n", + "Further, p = NA\n", + "Hence, n = ni**2/p = ni**2/NA\n", + "n = 2.25e+05 cm**-3\n", + "Thus p >> n. Hence n may be neglected while calculating the conductivity.\n", + "Hence, sigma = p*q*up = NA*q*up\n", + "sigma = 0.08 S/cm\n", + "(d) With both types of impurities present simultaneously, the net acceptor impurity density is,\n", + "Na = 5.00e+14 cm**-3\n", + "Hence, sigma = Na*q*up\n", + "sigma = 0.04 S/cm\n" + ] + } + ], + "source": [ + "\n", + "ni=1.5*10**10\n", + "un=1300\n", + "up=500\n", + "q=1.6*10**-19\n", + "nos=5*10**22\n", + "print \"(a) In intrensic condition, n=p=ni\"\n", + "print \"Hence, sigma_i = q*ni*(un+up)\"\n", + "sigma_i = q*ni*(un+up)\n", + "print \"sigma_i = %0.2e S/cm\"%sigma_i\n", + "print \"(b) Number of silicon atoms/cm**3 = 5*10**22\"\n", + "ND=5*10**22/10**8\n", + "print \"Hence, ND = %0.2e cm**-3\"%ND\n", + "print \"Further, n = ND\"\n", + "print \"Therefore, p = ni**2/n = ni**2/ND\"\n", + "p=ni**2/ND\n", + "print \"p = %0.2e cm**-3\"%p # wrong answer in textbook\n", + "print \"Thus p << n. Hence p may be neglected while calculating the conductivity.\"\n", + "print \"Hence, sigma = n*q*un = ND*q*un\"\n", + "sigma=ND*q*un\n", + "print \"sigma = %0.2f S/cm\"%sigma\n", + "NA=(5*10**22)/(5*10**7)\n", + "print \"(c) NA = %0.2e cm**-3\"%NA\n", + "print \"Further, p = NA\"\n", + "print \"Hence, n = ni**2/p = ni**2/NA\"\n", + "n=ni**2/NA\n", + "print \"n = %0.2e cm**-3\"%n\n", + "print \"Thus p >> n. Hence n may be neglected while calculating the conductivity.\"\n", + "print \"Hence, sigma = p*q*up = NA*q*up\"\n", + "sigma1=NA*q*up\n", + "print \"sigma = %0.2f S/cm\"%sigma1\n", + "print \"(d) With both types of impurities present simultaneously, the net acceptor impurity density is,\"\n", + "Na=NA-ND\n", + "print \"Na = %0.2e cm**-3\"%Na\n", + "print \"Hence, sigma = Na*q*up\"\n", + "sigma2=Na*q*up\n", + "print \"sigma = %0.2f S/cm\"%sigma2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 83 Example 4.7." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) n = p = ni = 2.5*10**13 cm**-3\n", + "Therefore, conductivity, sigma = q*ni*(un+np) =0.02 S/cm\n", + "Hence, resistivity rho = 1 / sigma =44.64 (ohm-cm)\n", + "\n", + "(b) ND = 4.40e+15 cm**-3\n", + "Also, n = ND\n", + "Therefore, p = ni**2 / n = ni**2 / ND =142045454545.45 (holes/cm**3)\n", + "Here, as n >> p, p can be neglected.\n", + "Therefore, conductivity, sigma = n*q*un = ND*q*un =2.68 (S/cm)\n", + "Hence, resistivity, rho = 1 / sigma =0.37 (ohm-cm)\n", + "\n", + "(c) NA = 4.40e+14 (cm**-3)\n", + "Also, p = NA\n", + "Therefore, n = ni**2 / p = ni**2 / NA =1420454545454.55 (electrons/cm**3)\n", + "Here, as p >> n, n may be neglected. Then,\n", + "Conductivity, sigma = p*q*up = NA*q*up =0.13 (S/cm)\n", + "Hence, resistivity, rho = 1 / sigma = 7.89 (ohm-cm)\n", + "\n", + "(d) with both p and n type impurities present,\n", + " ND = 4.4*10**15 cm**-3 and NA = 4.4*10**14 cm**-3\n", + "Therefore, the net donor density ND'' is\n", + "ND'' = (ND - NA) =3960000000000000.00 (cm**-3)\n", + "Therefore, effective n = ND'' = 3.96*10**15 cm**-3\n", + "p = ni**2 / N''D =157828282828.28 (cm**-3)\n", + "Here again p(= ni**2 / N''D) is very small compared with N''D and may be neglected in calculating the effective conductivity.\n", + "Therefore, conductivity, sigma = ND''*q*un =2.41 (S/cm)\n", + "Hence, resistivity, rho = 1 / sigma =0.42 (ohm-cm)\n" + ] + } + ], + "source": [ + "ni=2.5*10**13\n", + "un=3800\n", + "up=1800\n", + "nog=4.4*10**22\n", + "q=1.6*10**-19\n", + "sigma=q*ni*(un+up)\n", + "print \"(a) n = p = ni = 2.5*10**13 cm**-3\"\n", + "print \"Therefore, conductivity, sigma = q*ni*(un+np) =%0.2f S/cm\"%sigma\n", + "rho=1/sigma\n", + "print \"Hence, resistivity rho = 1 / sigma =%0.2f (ohm-cm)\"%rho\n", + "ND=(4.4*10**22)/10**7\n", + "print \"\\n(b) ND = %0.2e cm**-3\"%ND\n", + "p=ni**2/ND\n", + "print \"Also, n = ND\"\n", + "print \"Therefore, p = ni**2 / n = ni**2 / ND =%0.2f (holes/cm**3)\"%p\n", + "print \"Here, as n >> p, p can be neglected.\"\n", + "sigma1=ND*q*un\n", + "print \"Therefore, conductivity, sigma = n*q*un = ND*q*un =%0.2f (S/cm)\"%sigma1\n", + "rho1=1/sigma1\n", + "print \"Hence, resistivity, rho = 1 / sigma =%0.2f (ohm-cm)\"%rho1\n", + "\n", + "NA=(4.4*10**22)/10**8\n", + "print \"\\n(c) NA = %0.2e (cm**-3)\"%NA\n", + "print \"Also, p = NA\"\n", + "n=ni**2/NA\n", + "print \"Therefore, n = ni**2 / p = ni**2 / NA =%0.2f (electrons/cm**3)\"%n\n", + "sigma2=NA*q*up\n", + "print \"Here, as p >> n, n may be neglected. Then,\"\n", + "print \"Conductivity, sigma = p*q*up = NA*q*up =%0.2f (S/cm)\"%sigma2\n", + "rho2=1/sigma2\n", + "print \"Hence, resistivity, rho = 1 / sigma = %0.2f (ohm-cm)\"%rho2\n", + "\n", + "print \"\\n(d) with both p and n type impurities present,\"\n", + "print \" ND = 4.4*10**15 cm**-3 and NA = 4.4*10**14 cm**-3\"\n", + "print \"Therefore, the net donor density ND'' is\"\n", + "Nd=ND-NA\n", + "print \"ND'' = (ND - NA) =%0.2f (cm**-3)\"%Nd\n", + "print \"Therefore, effective n = ND'' = 3.96*10**15 cm**-3\"\n", + "p1=ni**2/Nd\n", + "print \"p = ni**2 / N''D =%0.2f (cm**-3)\"%p1\n", + "print \"Here again p(= ni**2 / N''D) is very small compared with N''D and may be neglected in calculating the effective conductivity.\"\n", + "sigma3=Nd*q*un\n", + "print \"Therefore, conductivity, sigma = ND''*q*un =%0.2f (S/cm)\"%sigma3\n", + "rho3=1/sigma3\n", + "print \"Hence, resistivity, rho = 1 / sigma =%0.2f (ohm-cm)\"%rho3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 87 Example 4.8" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sigma_i = qni(un+up) = 1 / 25*10**4\n", + "\n", + "Therefore, ni = sigma_i / q(un+up) =14492753623.19\n", + "\n", + "Net donor density, ND(= n) = 3.00e+10 (cm**-3)\n", + "Hence, p = ni**2 / ND =7001330252.75 (cm**-3)\n", + "Hence, sigma = q*(n*un + p*up) =0.00\n", + "Therefore, total conduction current density, J = sigma*E =0.00 A/cm**2\n" + ] + } + ], + "source": [ + "un=1250\n", + "up=475\n", + "q=1.6*10**-19\n", + "sigma_i=1/(25*10**4)\n", + "format(9)\n", + "ni=1/((25*10**4)*(1.6*10**-19)*(1250+475))\n", + "print \"sigma_i = qni(un+up) = 1 / 25*10**4\"\n", + "print \"\\nTherefore, ni = sigma_i / q(un+up) =%0.2f\"%ni\n", + "\n", + "ND=(4*10**10)-10**10\n", + "print \"\\nNet donor density, ND(= n) = %0.2e (cm**-3)\"%ND\n", + "p=ni**2/ND\n", + "print \"Hence, p = ni**2 / ND =%0.2f (cm**-3)\"%p\n", + "sigma=(1.6*10**-19)*((1250*3*10**10)+(475*0.7*10**10))\n", + "print \"Hence, sigma = q*(n*un + p*up) =%0.2f\"%sigma\n", + "\n", + "J=6.532*4*10**-6\n", + "print \"Therefore, total conduction current density, J = sigma*E =%0.2f A/cm**2\"%J" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 92 Example 4.9." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Concentration in N-type silicon\n", + "The conductivity of an N-type Silicon is sigma = q*n*un\n", + "Concentratoin of electrons, n = sigma / q*un =1.44e+18 (cm**-3)\n", + "Hence, concentration of holes, p = ni**2 / n =1.56e+02 (cm**-3)\n", + "(b) Concentration in P-type silicon\n", + "The conductivity of a P-type Silicon is sigma = q*p*up\n", + "Hence, concentratoin of holes, p = sigma / q*up =3.75e+18 (cm**-3)\n", + "and concentration of electrons, n = ni**2 / p = 60.00 (cm**-3)\n" + ] + } + ], + "source": [ + "ni=1.5*10**10\n", + "un=1300\n", + "up=500\n", + "q=1.6*10**-19\n", + "sigma=300\n", + "print \"(a) Concentration in N-type silicon\"\n", + "format(10)\n", + "n=sigma/(q*un)\n", + "print \"The conductivity of an N-type Silicon is sigma = q*n*un\"\n", + "print \"Concentratoin of electrons, n = sigma / q*un =%0.2e (cm**-3)\"%n\n", + "p=ni**2/n\n", + "print \"Hence, concentration of holes, p = ni**2 / n =%0.2e (cm**-3)\"%p\n", + "print \"(b) Concentration in P-type silicon\"\n", + "p=sigma/(q*up)\n", + "print \"The conductivity of a P-type Silicon is sigma = q*p*up\"\n", + "print \"Hence, concentratoin of holes, p = sigma / q*up =%0.2e (cm**-3)\"%p\n", + "n=ni**2/p\n", + "print \"and concentration of electrons, n = ni**2 / p = %0.2f (cm**-3)\"%n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 93 Example 4.10." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Density of added impurity atoms is, ND = 4.20e+22 (atoms/m**3)\n", + "Also, n = ND\n", + "Therefore, p = ni**2 / n = ni**2 / ND =1.49e+16 (m**-3)\n", + "Here, as p << n, p may be neglected.\n", + "Therefore, sigma = q*ND*un =2553.60 (S/m)\n", + "Therefore, resistivity, rho = 1 / sigma =0.00 ohm-m\n", + "Resistance, R = rho*L / A =78.32 kohm\n", + "Voltage drop, V = RI =78.32 mV\n" + ] + } + ], + "source": [ + "ND=(4.2*10**28)/10**6\n", + "print \"Density of added impurity atoms is, ND = %0.2e (atoms/m**3)\"%ND\n", + "ni=2.5*10**19\n", + "p=ni**2/ND\n", + "print \"Also, n = ND\"\n", + "print \"Therefore, p = ni**2 / n = ni**2 / ND =%0.2e (m**-3)\"%p\n", + "print \"Here, as p << n, p may be neglected.\"\n", + "q=1.6*10**-19\n", + "un=0.38\n", + "sigma=q*ND*un\n", + "print \"Therefore, sigma = q*ND*un =%0.2f (S/m)\"%sigma\n", + "\n", + "rho=1/sigma\n", + "print \"Therefore, resistivity, rho = 1 / sigma =%0.2f ohm-m\"%rho\n", + "\n", + "L=5*10**-3\n", + "A=5*10**-6\n", + "R=(rho*L)/A**2\n", + "R1=R*10**-3\n", + "print \"Resistance, R = rho*L / A =%0.2f kohm\"%R1\n", + "I=10**-6\n", + "V=R*I\n", + "V1=V*10**3\n", + "print \"Voltage drop, V = RI =%0.2f mV\"%V1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 94 Example 4.11." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Resistivity, rho = 1 / sigma = 1 / NA*q*up = 6 ohm-cm\n", + "Therefore, NA = 1 / 6*q*up =5.79e+14 (1/cm**3)\n", + "Similarly, ND(1/cm**3) = 1 / 4*q*un =4.11e+14 (1/cm**3)\n", + "Therefore, Va = VT*ln(ND*NA / ni**2) = 0.15 V\n", + "Hence, Eo = 0.15 eV\n", + "\n", + "(b) Vo = 0.026*ln(2*ND*2*NA / ni**2) =0.19 V\n", + "Therefore, Eo(eV) = 0.19 eV\n" + ] + } + ], + "source": [ + "from math import log\n", + "q=1.6*10**-19\n", + "ni=2.5*10**13\n", + "up=1800\n", + "un=3800\n", + "VT=0.026\n", + "rho=6\n", + "format(9)\n", + "NA=1/(6*q*up)\n", + "print \"(a) Resistivity, rho = 1 / sigma = 1 / NA*q*up = 6 ohm-cm\"\n", + "print \"Therefore, NA = 1 / 6*q*up =%0.2e (1/cm**3)\"%NA\n", + "ND=1/(4*q*un)\n", + "print \"Similarly, ND(1/cm**3) = 1 / 4*q*un =%0.2e (1/cm**3)\"%ND\n", + "Va=VT*log((ND*NA)/ni**2)\n", + "print \"Therefore, Va = VT*ln(ND*NA / ni**2) = %0.2f V\"%Va\n", + "print \"Hence, Eo = %0.2f eV\"%Va\n", + "Va1=0.026*log((2*ND*2*NA)/ni**2)\n", + "print \"\\n(b) Vo = 0.026*ln(2*ND*2*NA / ni**2) =%0.2f V\"%Va1\n", + "print \"Therefore, Eo(eV) = %0.2f eV\"%Va1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 97 Example 4.12." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current flowing through the PN diode under forward bias is,\n", + "I = Io*(e**40*VF - 1) =120.73 uA\n" + ] + } + ], + "source": [ + "from math import exp\n", + "Ia=0.3*10**-6\n", + "VF=0.15\n", + "I=Ia*((exp(40*VF))-1)\n", + "I1=I*10**6\n", + "print \"The current flowing through the PN diode under forward bias is,\"\n", + "print \"I = Io*(e**40*VF - 1) =%0.2f uA\"%I1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 97 Example 4.13." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The volt-equivalent of the temperature(T) is,\n", + "VT(V) = T / 11600 = 0.03\n", + "Therefore, the diode current, I = Io*e**((VF/eta*VT)-1) =1.18 A\n" + ] + } + ], + "source": [ + "from math import exp\n", + "VF=0.6\n", + "T=298\n", + "Io=10**-5\n", + "eta=2\n", + "VT=T/11600.0\n", + "print \"The volt-equivalent of the temperature(T) is,\"\n", + "print \"VT(V) = T / 11600 = %0.2f\"%VT\n", + "I=Io*((exp((VF/(eta*VT))))-1)\n", + "print \"Therefore, the diode current, I = Io*e**((VF/eta*VT)-1) =%0.2f A\"%I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 98 Example 4.16." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Forward resistance of a PN junction diode, rf = (eta*VT)/I where VT = T/11600 and eta = 2 for silicon\n", + "Therefore, rf = 2*(T/11600) / 5*10**-3\n", + "rf = 10.34 ohm\n" + ] + } + ], + "source": [ + "I=5*10**-3\n", + "T=300\n", + "print \"Forward resistance of a PN junction diode, rf = (eta*VT)/I where VT = T/11600 and eta = 2 for silicon\"\n", + "print \"Therefore, rf = 2*(T/11600) / 5*10**-3\"\n", + "eta=2 #for silicon\n", + "rf=600/(11600*5*10**-3)\n", + "print \"rf = %0.2f ohm\"%rf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 100 Example 4.17." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The saturation current at 400 K is,\n", + "Io2 = Io1 * 2**((T2-T1)/10)\n", + " = 7.5*10**-6 * 2**(127-27/10)\n", + "Io2 = 7.68 mA\n" + ] + } + ], + "source": [ + "Io1=7.5*10**-6\n", + "T1=27\n", + "T2=127\n", + "print \"The saturation current at 400 K is,\"\n", + "print \"Io2 = Io1 * 2**((T2-T1)/10)\"\n", + "print \" = 7.5*10**-6 * 2**(127-27/10)\"\n", + "Io2=Io1*(2**((T2-T1)/10))\n", + "I=Io2*10**3\n", + "print \"Io2 = %0.2f mA\"%I" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch5_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch5_1.ipynb new file mode 100644 index 00000000..bcea886e --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch5_1.ipynb @@ -0,0 +1,70 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-5 : Special Diodes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 132 Exmaple 5.1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The barrier height for N-type material is,\n", + " Theta_BN = Theta_M - Chi = 0.25 V\n", + "The built-in potential is given by,\n", + " Theta_IN = Theta_BN - (kT/q)*ln(NC/ND) =-0.22 V\n" + ] + } + ], + "source": [ + "from math import log\n", + "thetaM=4.26 #work function\n", + "chi=4.01 #electron affinity\n", + "thetaBN=thetaM-chi\n", + "print \"The barrier height for N-type material is,\"\n", + "print \" Theta_BN = Theta_M - Chi = %0.2f V\"%thetaBN\n", + "thetaIN=thetaBN-((((1.38*10**-23)*300)/(1.6*10**-19)))*log((2.8*10**25)/(4*10**17))\n", + "print \"The built-in potential is given by,\"\n", + "print \" Theta_IN = Theta_BN - (kT/q)*ln(NC/ND) =%0.2f V\"%thetaIN \n", + "# answer in the textbook is wrong, even if we take log10 we get a answer 0.047." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch6_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch6_1.ipynb new file mode 100644 index 00000000..03eb7a71 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch6_1.ipynb @@ -0,0 +1,1581 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-6 : Bipolar Junction Transistor " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 151 Example 6.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The emitter current is,\n", + "IE = IB + IC\n", + "10 = IB + 9.8\n", + "Therefore, IB(mA) =0.20\n" + ] + } + ], + "source": [ + "IE=10\n", + "IC=9.8\n", + "print \"The emitter current is,\"\n", + "print \"IE = IB + IC\"\n", + "print \"10 = IB + 9.8\"\n", + "IB=IE-IC\n", + "print \"Therefore, IB(mA) =%0.2f\"%IB" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 152 Example 6.2." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The common-base d.c. current gain,\n", + "alpha = IC/IE = 0.9873\n" + ] + } + ], + "source": [ + "IE=6.28\n", + "IC=6.20\n", + "print \"The common-base d.c. current gain,\"\n", + "alpha=IC/IE\n", + "print \"alpha = IC/IE = %0.4f\"%alpha" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 155 Example 6.3." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The common-base d.c. current gain (alpha) is,\n", + "alpha = 0.967 = IC/IE = IC/10\n", + "\n", + "Therefore, IC = 9.67 mA\n", + "The emitter current, IE = IB + IC\n", + "Therefore, IB =0.33 mA\n" + ] + } + ], + "source": [ + "alpha=0.967\n", + "IE=10\n", + "print \"The common-base d.c. current gain (alpha) is,\"\n", + "print \"alpha = 0.967 = IC/IE = IC/10\"\n", + "IC=alpha*IE\n", + "print \"\\nTherefore, IC = %0.2f mA\"%IC\n", + "print \"The emitter current, IE = IB + IC\"\n", + "IB=IE-IC\n", + "print \"Therefore, IB =%0.2f mA\"%IB" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 156 Example 6.4." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The common-base d.c. current gain, alpha = IC/IE\n", + "Therefore, IC =9.80 mA\n", + "The emitter current, IE = IB + IC\n", + "Therefore, IB =0.20 mA\n" + ] + } + ], + "source": [ + "IE=10\n", + "alpha=0.98\n", + "print \"The common-base d.c. current gain, alpha = IC/IE\"\n", + "IC=alpha*IE\n", + "print \"Therefore, IC =%0.2f mA\"%IC\n", + "print \"The emitter current, IE = IB + IC\"\n", + "IB=IE-IC\n", + "print \"Therefore, IB =%0.2f mA\"%IB" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 158 Example 6.5." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "If alpha=0.97, beta = alpha/(1 - alpha)\n", + "beta = 32.3333\n", + "If beta=200, alpha = beta/(beta + 1)\n", + "alpha =0.0000\n" + ] + } + ], + "source": [ + "alpha=0.97\n", + "print \"If alpha=0.97, beta = alpha/(1 - alpha)\"\n", + "beta=alpha/(1-alpha)\n", + "print \"beta = %0.4f\"%beta\n", + "beta1=200\n", + "print \"If beta=200, alpha = beta/(beta + 1)\"\n", + "alpha1 =beta1/(beta1+1)\n", + "print \"alpha =%0.4f\"%alpha1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 158 Example 6.6." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = 100 = IC / IB\n", + "Therefore, IB =0.40 mA\n", + "IE = IB + IC\n", + "IE =40.40 mA\n" + ] + } + ], + "source": [ + "beta=100.0\n", + "IC=40\n", + "print \"beta = 100 = IC / IB\"\n", + "IB=IC/beta\n", + "print \"Therefore, IB =%0.2f mA\"%IB\n", + "print \"IE = IB + IC\"\n", + "IE=IB+IC\n", + "print \"IE =%0.2f mA\"%IE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 159 Example 6.7." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The common-base current gain, alpha = beta / (beta + 1) =0.9934\n", + "Also, alpha = IC / IE\n", + "Therefore, IC = 9.93 mA\n", + "the emitter current, IE = IB + IC\n", + "Therefore, IB =0.07 mA\n" + ] + } + ], + "source": [ + "beta=150.\n", + "IE=10\n", + "alpha=beta/(beta+1)\n", + "print \"The common-base current gain, alpha = beta / (beta + 1) =%0.4f\"%alpha\n", + "print \"Also, alpha = IC / IE\"\n", + "IC=alpha*IE\n", + "print \"Therefore, IC = %0.2f mA\"%IC\n", + "print \"the emitter current, IE = IB + IC\"\n", + "IB=IE-IC\n", + "print \"Therefore, IB =%0.2f mA\"%IB" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 160 Example 6.8." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that (beta), beta = 170 = IC / IB\n", + "Therefore, IB =0.47 mA\n", + "and IE = IB + IC =80.47 mA\n" + ] + } + ], + "source": [ + "beta=170.\n", + "IC=80\n", + "print \"We know that (beta), beta = 170 = IC / IB\"\n", + "IB=IC/beta\n", + "print \"Therefore, IB =%0.2f mA\"%IB\n", + "IE=IB+IC\n", + "print \"and IE = IB + IC =%0.2f mA\"%IE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 161 Example 6.9." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = 200 = IC / IB\n", + "Therefore, IC = 25.00 mA\n", + "and IE = IB + IC =25.12 mA\n" + ] + } + ], + "source": [ + "IB=0.125\n", + "beta=200\n", + "print \"beta = 200 = IC / IB\"\n", + "IC=beta*IB\n", + "print \"Therefore, IC = %0.2f mA\"%IC\n", + "IE=IB+IC\n", + "print \"and IE = IB + IC =%0.2f mA\"%IE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 162 Example 6.10" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that base current, IB = IE / (1 + beta) =0.12 mA\n", + "and collector current, IC = IE - IB =11.88 mA\n" + ] + } + ], + "source": [ + "IE=12.\n", + "beta=100\n", + "IB=IE/(1+beta)\n", + "print \"We know that base current, IB = IE / (1 + beta) =%0.2f mA\"%IB\n", + "IC=IE-IB\n", + "print \"and collector current, IC = IE - IB =%0.2f mA\"%IC" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 162 Example 6.11" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) To find beta of the transistor \n", + "beta = IC / IB = 20.0000\n", + "(b) To find alpha of the transistor\n", + "alpha = beta / (1+beta) = 0.9524\n", + "(c) To find emitter current, IE\n", + "IE = IB + IC = 2.10 mA\n", + "(d) To find the new value of beta when delta_IB = 25uA and delta_IC = 0.6mA\n", + "Therefore, IB = 125.00 uA\n", + " IC = 2.60 mA\n", + "New value of beta of the transistor,\n", + "beta = IC / IB =20.8000\n" + ] + } + ], + "source": [ + "IB=100*10**-6\n", + "IC=2*10**-3\n", + "beta=IC/IB\n", + "print \"(a) To find beta of the transistor \"\n", + "print \"beta = IC / IB = %0.4f\"%beta\n", + "alpha=beta/(beta+1)\n", + "print \"(b) To find alpha of the transistor\"\n", + "print \"alpha = beta / (1+beta) = %0.4f\"%alpha\n", + "IE=IB+IC\n", + "IE1=IE*10**3\n", + "print \"(c) To find emitter current, IE\"\n", + "print \"IE = IB + IC = %0.2f mA\"%IE1\n", + "# answer in the textbook is wrong\n", + "print \"(d) To find the new value of beta when delta_IB = 25uA and delta_IC = 0.6mA\"\n", + "delta_IB=25*10**-6\n", + "delta_IC=0.6*10**-3\n", + "IB1=IB+delta_IB\n", + "IB11=IB1*10**6\n", + "IC1=IC+delta_IC\n", + "IC11=IC1*10**3\n", + "print \"Therefore, IB = %0.2f uA\"%IB11\n", + "print \" IC = %0.2f mA\"%IC11\n", + "beta1=IC1/IB1\n", + "print \"New value of beta of the transistor,\"\n", + "print \"beta = IC / IB =%0.4f\"%beta1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 163 Example 6.12." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The collector current is, IC = ((alpha*IB)/(1-alpha))+(ICO/(1-alpha)) = 5.15 mA\n", + "The emitter current is, IE = IB + IC =5.25 mA\n" + ] + } + ], + "source": [ + "alpha=0.98\n", + "ICO=5*10**-6\n", + "ICBO=ICO\n", + "IB=100*10**-6\n", + "IC=((alpha*IB)/(1-alpha))+(ICO/(1-alpha))\n", + "IC1=IC*10**3\n", + "print \"The collector current is, IC = ((alpha*IB)/(1-alpha))+(ICO/(1-alpha)) = %0.2f mA\"%IC1\n", + "IE=IB+IC\n", + "IE1=IE*10**3\n", + "print \"The emitter current is, IE = IB + IC =%0.2f mA\"%IE1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 164 Example 6.13." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) To find the value of collector current when IB = 0.25mA\n", + "IC = (beta*IB) + ((1+beta)*ICBO) = 13.01 mA\n", + "(b) To find the value of new collector current if temperature rises to 50 C\n", + "I''CBO(beta=50) = ICBO*(2**((T2-T1)/10)) =49.25 uA\n", + "Therefore, the collector current at 50 C is\n", + "IC = (beta*IB) + ((1+beta)*I''CBO) =15.01 mA\n" + ] + } + ], + "source": [ + "ICBO=10*10**-6\n", + "hFE=50\n", + "beta=hFE\n", + "IB=0.25*10**-3\n", + "IC=(beta*IB)+((1+beta)*ICBO)\n", + "IC1=IC*10**3\n", + "print \"(a) To find the value of collector current when IB = 0.25mA\"\n", + "print \"IC = (beta*IB) + ((1+beta)*ICBO) = %0.2f mA\"%IC1\n", + "T1=27.\n", + "T2=50.\n", + "I_CBO = ICBO * (2**((T2-T1)/10))\n", + "I_CBO1=I_CBO*10**6\n", + "print \"(b) To find the value of new collector current if temperature rises to 50 C\"\n", + "print \"I''CBO(beta=50) = ICBO*(2**((T2-T1)/10)) =%0.2f uA\"%I_CBO1\n", + "IC2=(beta*IB)+((1+beta)*I_CBO)\n", + "IC3=IC2*10**3\n", + "print \"Therefore, the collector current at 50 C is\"\n", + "print \"IC = (beta*IB) + ((1+beta)*I''CBO) =%0.2f mA\"%IC3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 165 Example 6.14." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current gain of the transistor is alpha = delta_IC/delta_IE = 0.9900\n" + ] + } + ], + "source": [ + "delta_IC=0.99*10**-3\n", + "delta_IE=1*10**-3\n", + "alpha=delta_IC/delta_IE\n", + "print \"The current gain of the transistor is alpha = delta_IC/delta_IE = %0.4f\"%alpha" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 165 Example 6.15" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The d.c. current gain of the transistor in CB mode is, alpha_dc = beta_dc/(1+beta_dc) =0.99\n" + ] + } + ], + "source": [ + "beta_dc=100.\n", + "alpha_dc=beta_dc/(1+beta_dc)\n", + "print \"The d.c. current gain of the transistor in CB mode is, alpha_dc = beta_dc/(1+beta_dc) =%0.2f\"%alpha_dc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 165 Example 6.16." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Common base current gain is, alpha = delta_IC/delta_IE =0.99\n", + "Common-emitter current gain is beta = alpha / (1-alpha) =199.00\n" + ] + } + ], + "source": [ + "delta_IC=0.995*10**-3\n", + "delta_IE=1*10**-3\n", + "alpha=delta_IC/delta_IE\n", + "print \"Common base current gain is, alpha = delta_IC/delta_IE =%0.2f\"%alpha\n", + "beta=alpha/(1-alpha)\n", + "print \"Common-emitter current gain is beta = alpha / (1-alpha) =%0.2f\"%beta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 166 Example 6.17." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that, alpha = beta/(1+beta)\n", + "Therefore, the common base current gain is, alpha =0.98\n", + "We also know that, alpha = IC / IE\n", + "Therefore, IC = alpha * IE = 2.94 mA\n" + ] + } + ], + "source": [ + "beta=49.\n", + "alpha=beta/(1+beta)\n", + "print \"We know that, alpha = beta/(1+beta)\"\n", + "print \"Therefore, the common base current gain is, alpha =%0.2f\"%alpha\n", + "print \"We also know that, alpha = IC / IE\"\n", + "IE=3*10**-3\n", + "IC=alpha*IE\n", + "IC1=IC*10**3\n", + "print \"Therefore, IC = alpha * IE = %0.2f mA\"%IC1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 166 Example 6.18." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The collector current, IC(mA) = beta * IB =2.25 mA\n", + "The emitter current, IE(mA) = IC + IB =2.26 mA\n", + "Common-base current gain, alpha = beta/(1+beta) = 0.99\n" + ] + } + ], + "source": [ + "IB=15*10**-6\n", + "beta=150.\n", + "IC=beta*IB\n", + "IC1=IC*10**3\n", + "print \"The collector current, IC(mA) = beta * IB =%0.2f mA\"%IC1\n", + "IE=IC+IB\n", + "IE1=IE*10**3\n", + "print \"The emitter current, IE(mA) = IC + IB =%0.2f mA\"%IE1\n", + "alpha=beta/(1+beta)\n", + "print \"Common-base current gain, alpha = beta/(1+beta) = %0.2f\"%alpha" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 167 Example 6.19." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Referring to fig.6.18, the base current is,\n", + "IB = (VBB - VBE) / RB =16.50 uA\n", + "The collector current is, IC = beta*IB =3.30 mA\n", + "The emitter current is, IE = IC + IB =3.32 mA\n", + "Therefore, VCE = VCC - IC*RC =3.40 V\n" + ] + } + ], + "source": [ + "print \"Referring to fig.6.18, the base current is,\"\n", + "VBB=4\n", + "VBE=0.7\n", + "RB=200*10**3\n", + "IB=(VBB-VBE)/RB\n", + "IB1=IB*10**6\n", + "print \"IB = (VBB - VBE) / RB =%0.2f uA\"%IB1\n", + "beta=200\n", + "IC=beta*IB\n", + "IC1=IC*10**3\n", + "print \"The collector current is, IC = beta*IB =%0.2f mA\"%IC1\n", + "IE=IC+IB\n", + "IE1=IE*10**3\n", + "print \"The emitter current is, IE = IC + IB =%0.2f mA\"%IE1\n", + "VCC=10\n", + "RC=2*10**3\n", + "VCE=VCC-(IC*RC)\n", + "print \"Therefore, VCE = VCC - IC*RC =%0.2f V\"%VCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 167 Example 6.20." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.48 IC = ((alpha_dc*IB)/(1-alpha_dc)) + (ICBO/(1-alpha_dc)) =2.48 mA\n", + "Therefore, IE = IB + IC =2.50 mA\n" + ] + } + ], + "source": [ + "alpha_dc=0.99\n", + "ICBO=5*10**-6\n", + "IB=20*10**-6\n", + "IC=((alpha_dc*IB)/(1-alpha_dc))+(ICBO/(1-alpha_dc))\n", + "IC1=IC*10**3\n", + "print IC1,\"IC = ((alpha_dc*IB)/(1-alpha_dc)) + (ICBO/(1-alpha_dc)) =%0.2f mA\"%IC1\n", + "IE=IB+IC\n", + "IE1=IE*10**3\n", + "print \"Therefore, IE = IB + IC =%0.2f mA\"%IE1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 168 Example 6.21." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The leakage current ICBO = 0.2 uA\n", + " ICEO = 18 uA\n", + "Assume that IB = 30 mA\n", + "IE = IB + IC\n", + "IC = IE - IB = (beta*IB)+((1+beta)*ICBO)\n", + "We know that, ICEO = ICBO/(1-alpha) = (1+beta)*ICBO\n", + "beta = (ICEO / ICBO)-1 =89.00\n", + "IC = (beta*IB) + ((1+beta)*ICBO) =2.67 A\n", + "alpha_dc = 1 - (ICBO / ICEO) =0.99\n", + "beta_dc = (IC-ICBO) / (IB-ICEO) =89.05\n" + ] + } + ], + "source": [ + "ICBO=0.2*10**-6\n", + "ICEO=18*10**-6\n", + "IB=30*10**-3\n", + "print \"The leakage current ICBO = 0.2 uA\"\n", + "print \" ICEO = 18 uA\"\n", + "print \"Assume that IB = 30 mA\"\n", + "print \"IE = IB + IC\"\n", + "print \"IC = IE - IB = (beta*IB)+((1+beta)*ICBO)\"\n", + "print \"We know that, ICEO = ICBO/(1-alpha) = (1+beta)*ICBO\"\n", + "beta=(ICEO/ICBO)-1\n", + "print \"beta = (ICEO / ICBO)-1 =%0.2f\"%beta\n", + "IC=(beta*IB)+((1+beta)*ICBO)\n", + "print \"IC = (beta*IB) + ((1+beta)*ICBO) =%0.2f A\"%IC\n", + "alpha_dc=1-(ICBO/ICEO)\n", + "print \"alpha_dc = 1 - (ICBO / ICEO) =%0.2f\"%alpha_dc\n", + "beta_dc=(IC-ICBO)/(IB-ICEO)\n", + "print \"beta_dc = (IC-ICBO) / (IB-ICEO) =%0.2f\"%beta_dc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 168 Example 6.22." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Assume that, IB = 1 mA\n", + "IC = ((alpha_dc*IB) / (1-alpha_dc)) + (ICBO/(1-alpha_dc)) = 104.00 mA\n", + "IE = IC + IB = 105.00 mA\n" + ] + } + ], + "source": [ + "alpha_dc=0.99\n", + "ICBO=50*10**-6\n", + "IB=1*10**-3\n", + "IC=((alpha_dc*IB)/(1-alpha_dc))+(ICBO/(1-alpha_dc))\n", + "IC1=IC*10**3\n", + "print \"Assume that, IB = 1 mA\"\n", + "print \"IC = ((alpha_dc*IB) / (1-alpha_dc)) + (ICBO/(1-alpha_dc)) = %0.2f mA\"%IC1\n", + "IE=IC+IB\n", + "IE1=IE*10**3\n", + "print \"IE = IC + IB = %0.2f mA\"%IE1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 169 Example 6.23." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) DC load line:\n", + "Maximum VCE = VCC = 24V\n", + "Maximum IC = VCC / RC = 0.00 mA\n", + "(ii) For fixing the optimum operating point Q, mark the middle of the d.c. load line AB and the corresponding VCE and IC values can be found\n", + "Here, VCEQ(V) = VCC / 2 = 12.00 V\n", + " ICQ = 1.5 mA\n", + "\n", + "(iii) AC load line\n", + "AC load, R_a.c. = RC || RL = 6.00 kohm\n", + "Therefore, maximum VCE(V) = VCEQ + ICQ*R_a.c. = 21.00 \n", + "This locates the point D(OD = 21V) on the VCE axis\n", + "Maximum IC = ICQ + VCEQ/R_a.c. = 1.50 mA\n", + "This locates the point C(OC = 3.5mA) on the IC axis. By joining points C and D a.c. load line CD is constructed. \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VFW28OHfykAIkyCIyqSmRWSSQUKYKZWZBmQIAhcQ\naAYVFOXKbb3aH6CN3bTegCiCYkRAxDDI1CB2iwTTcJnnQRouTiAGEYQgokDW98cpJMYkZKhTVUmt\n93nqsVK1zz6L6uqs7LXP3kdUFWOMMSYs0AEYY4wJDpYQjDHGAJYQjDHGeFlCMMYYA1hCMMYY42UJ\nwRhjDGAJwRRB4kgTkVsDHcu1iEh7EVmS4ed0EYnJpm0XEXnPf9GZUGMJwRR6IvK5iJz3JoE04AxQ\nXVU/z2d/JUTkNRH5VkS+F5F12bQrJiKJ3vOfFZEdItIhw/tNROSfIvKdiJwQkQUiclOmbiYCf8lN\nXKq6AqgtInXz8+8y5losIZiiQIHfq2pp76OMqn5TgP7eAMoCdwLlgMezaRcBfAm0UtUywLPAAhG5\nxft+WWAGcIv3kQbMunKwiMQCZVR1cx5imw8Mz0N7Y3LNEoIpkjKWXkSkvIisEJEzIrJZRP4sIinZ\nHHcn0AUYrqrfqWNHVm1V9byqTlDVL70/rwQ+Axp6f16tqotV9Zyq/ghMA5pn6KIjkJxF151F5P+8\nI5S/iYhkeC8Z6JyHj8KYXLOEYIoKyeG9aTh/nd8IPAgMxBlVZKUx8AXwnPcX8m4R6ZGrAERuBO4A\n9mXTpBWwN8PPdYCDWbS7H7gbJ7F0A4ZkeO9T4FYRKZWbmIzJC0sIpigQYKmInPY+Mk7ShgM9gHGq\nekFVDwCzyT6BVMH5Rf09cDMwCpjtHTlkH4BIJDAPeFtV/53F+3cBfwLGZni5LE6iymySqn6vql8B\nU4C+Gd670r5sTvEYkx8RgQ7AGB9QoJuqfnzlBRFJ9z69Aed7/lWG9kdz6OtH4CLwZ1VNBz4RkbVA\nO5y/zn9DRMKAucAFnASS+f3bgVXAY6q6PsNbp4EyWXSZMdYvgUoZfi7t/e/3OfwbjMkXGyGYou5b\n4BJQNcNrVbNpC7Db+9/MI4gsS0ze+n4iTuLpqaqXM71/C/BP4DlVnZfFue7IottqmZ4fy/BzTeBz\nVT2Xw7/BmHyxhGCKNO8v6PeB8SIS7S39DCD7OYR1OH+VPy0iESLSHPAAH2bTfjrO1UhdVfWnjG+I\nSGXgY+BVVX0ji2NXAa2zeP1JESkrIlWBx4CkDO+19h5njM9ZQjBFVcZf+KOA64BvcOYP5gM/X3lT\nRPaKSF8AVb2EM5HbCacs8zow4Mq8gIj8t4is8j6/BecS0HrAN1fWQVzpCxgK3IaTjK68d/aXAJ2r\nl86ISONMsS8DtgE7gL8Db2V4r483JmN8Tty6QY6IFMf5aysKKAYsU9WnM7Xx4Hz5j3hfWqyqf3Yl\nIGO8RGQSUFFVBwdBLG2BR1S1ey7adgH+Q1X7uB+ZCUWuJQRwVnyq6nkRiQD+BTypqv/K8L4HGKOq\nXV0LwoQ8EamB84fJHiAWWAn8QVWXBzQwY4KMq1cZqep579NiQDhwKotmOV0/bowvlMYpE1UCUoGX\nLBkY81uuJgTv5Xjbgd8B01V1f6YmCjQTkV04V1I8mUUbYwpEVbcC1QMdhzHBztVJZVVNV9X6OIt9\nWnlLRBltB6qqaj3gFWCpm/EYY4zJnqtzCL86kcifgB9V9aUc2nwG3K2qpzK97p8gjTGmiFHVXJfl\nXRshiEgFESnrfR4NtMW5jC5jmxuvbNzlvfROMieDKx5d9Si3T72dPal7UNWQfYwbNy7gMQTLwz4L\n+yzss8j5kVduloxuBj4WkZ3AJmCFqq4RkREiMsLbphewx9tmCs411lma2nEqf2r1J+6ZfQ8L9y10\nMWxjjAlNrk0qq+oevNsAZ3r99QzPp+HsRJkrA+sNpE7FOvRc0JOtX29l4n0TiQiz7ZiMMcYXCt1K\n5YY3N2TLsC1sO76NjvM68t357wIdkl95PJ5AhxA07LO4yj6Lq+yzyD+/TSoXhIho5jgvpV/iv9f8\nNwv3L+T93u/T4OYGAYrOGGOCk4igeZhULrQJ4YoF+xYwctVIEtolMKDeAD9HZowxwSvkEgLA3hN7\n6Z7UnU63d+Kldi8RGR7px+iMMSY4hWRCADj942n6L+nPuZ/PsaDXAm4sdaOfojPGmOCU14RQ6CaV\ns1Muuhwr+q6g9S2taTSzEZuObgp0SMYYU6gUmRFCRss+XcawFcOYeO9Eht09zMXIjDEmeIVsySiz\nT09+Svek7rSq1oqpHacSFRHlUnTGGBOcQrZklNmdFe5k89DNnPzxJJ7ZHo6dPXbtg4wxJoQV2YQA\nUDqqNIviF9H1jq7Ezowl5YuUQIdkjDFBq8iWjDJbfXg1Dy59kGdbPsuoxqPw7qlnjDFFls0h5ODI\n6SN0T+pO/ZvqM6PzDKIjo30QnTHGBCebQ8hBTLkYNgzZwMXLF2kxqwVffP9FoEMyxpigEVIJAaBk\nsZLM6zGP/nX7E/dmHB8d+SjQIRljTFAIqZJRZms/W0u/9/sxpskYnmz2pM0rGGOKFJtDyKMvz3xJ\nzwU9iSkXQ2LXREoVK+XKeYwxxt9sDiGPql1XjZTBKZSMLEnTxKYcPnU40CEZY0xAhHxCACgeUZzE\nrok80ugRmr/VnFWHVgU6JGOM8buQLxlltv7L9fRe1JuH7n6IZ1o9Q5hYzjTGFE42h+ADX6d9TfzC\neG4ocQOz75/NdcWv89u5jTHGV2wOwQcqla7E2gfXUql0JeLejOPAtwcCHZIxxrjOEkI2ioUX47XO\nr/Ffzf+L1m+3ZsmBJYEOyRhjXGUlo1zYcmwLPRf0ZMBdA3junucIDwsPWCzGGJNbQTOHICLFgXVA\nFFAMWKaqT2fRbirQETgPDFLVHVm0CWhCADjxwwkeWPQAUeFRvNvzXa6Pvj6g8RhjzLUEzRyCql4A\n7lHV+sBdwD0i0iJjGxHpBNyuqtWB4cB0t+IpqIolK/LPAf+k1g21iJ0Zy65vdgU6JGOM8SlX5xBU\n9bz3aTEgHDiVqUlXYLa37SagrIjc6GZMBRERFkFC+wSev+d52sxtw/w98wMdkjHG+IyrCUFEwkRk\nJ5AKrFXV/ZmaVAa+yvDzUaCKmzH5Qr+6/fhowEc8u/ZZ/vPD/+RS+qVAh2SMMQUW4WbnqpoO1BeR\n64APRcSjqsmZmmWub2U5WTB69HjKlXOeezwePB6Pb4PNo3o31WPLsC30XdyXdnPbkdQriRtK3hDQ\nmIwxoS05OZnk5OR8H++3q4xE5E/Aj6r6UobXZgDJqvqe9+dPgdaqmprpWC1fXhk5Ev74RyhRwi8h\n58rl9Mv8ae2fmLdnHot7L6ZRpUaBDskYY4AgmlQWkQoiUtb7PBpoC2S+gmg5MNDbpgnwfeZkcMWO\nHfDpp1C7NixdCsFytWx4WDgv3PcCk9tPpuO8jszaMSvQIRljTL64edlpXZwJ4zDvY66qvigiIwBU\n9XVvu1eBDsAPwGBV3Z5FX79cdvrxx/Doo1C1KkydCnfc4Ur4+bL/2/10T+pOm9vaMLnDZIqFFwt0\nSMaYEBY06xB8KfM6hIsX4ZVX4IUXYNgweOYZKBUktzE4c+EMA5YM4NSPp1gYv5CbS98c6JCMMSEq\naEpGboqMhDFjYM8eOHoUataEpKTgKCNdV/w6lvZZSrvftSN2ZiwbvtoQ6JCMMSZXCuUIIbOUFBg1\nCsqXd0YOtWv7MbgcrPz3SgYvG8wEzwQeavSQ3aLTGONXITFCyKxlS9i2DXr0AI/HGT2cPRvoqKDz\nHZ1ZP2Q907ZMY+jyoVy4dCHQIRljTLaKREIAiIhwRgn79sGZM3DnnTB3buDLSNXLV2fj0I2k/ZxG\nq1mt+OrMV9c+yBhjAqBIlIyysmkTjBwJxYvDq69C/fouBZdLqspLG14iYWMC83vOx3OrJ7ABGWOK\nvJAsGWUlLs5JCgMHQvv2zujh9OnAxSMijG0+ljn3z6HPoj5M/t/JFIZkbIwJHUU2IQCEh8Pw4bB/\nP1y+7FyNlJgI6emBi6nt79qycehG5uyeQ/8l/Tl/8fy1DzLGGD8osiWjrGzf7pSR0tNh2jRoFMBd\nJs5fPM+Iv49gd+puljywhJhyMYELxhhTJFnJKAcNG8L69fDww9ClizN6OHkyMLGUiCzBnPvnMLTB\nUJomNuXDwx8GJhBjjPEKqYQAEBYGgwbBgQPOJnm1asH06U5Jyd9EhEfjHmVh/EIGLxvMX1L+YvMK\nxpiACamSUVZ273b2RkpLc8pITZu6cpprOnr2KL0W9KJymcq83e1tSkeVDkwgxpgiw0pGeXTXXZCc\nDE8+Cb16OaOH1Cz3W3VXlTJVWDdoHeWjyxP3ZhwHTx70fxDGmJAW8gkBQAT69XO2165YEerUgZdf\nhkt+vhFaVEQUb3R5gyeaPEHLWS1ZfnC5fwMwxoS0kC8ZZeXAAaeMlJrqLGpr3dpvp/7FxqMbiV8Y\nz5D6QxjnGUeYWO42xuRNSGx/7Q+qsHixsy9Sixbw4otQubJfQ+Cbc9/Qe2FvykSV4Z0e71C2eFn/\nBmCMKdRsDsFHRJw5hQMHICYG6tVzksLPP/svhptK3cSagWuIKRdD7MxY9p7Y67+TG2NCjo0QcunQ\nIRg9Go4ccbbYbtvWv+efs2sO//mP/+S1Tq8RXzvevyc3xhRKVjJykSqsWAGPP+4scktIgGrV/Hf+\n7ce303NBT3rX6s3E+yYSERbhv5MbYwodKxm5SAS6dnW22K5bFxo0gIkT4YKfbnPQ8OaGbBm2hW3H\nt9FxXke+O/+df05sjAkJlhDyIToaxo2DrVudR506sHKlf85doUQFVvdfTYObGtBoZiN2HN/hnxMb\nY4o8Kxn5wOrV8Nhjzk15pkxxJqH9YcG+BYxcNZKEdgkMqDfAPyc1xhQaVjIKgA4dYM8eaNYMGjd2\nRg/n/bCrde/avVn74Fqe++Q5Rn8wmouXL7p/UmNMkWUJwUeiouCpp2DHDmfFc+3asHSp+7fwrFOx\nDpuHbubw6cO0mduG1HMB2HfDGFMkuJYQRKSqiKwVkX0isldEHsuijUdEzojIDu/jWbfi8ZeqVSEp\nybkRzzPPQMeOcNDlbYnKRZdjRd8VtL6lNY1mNmLT0U3untAYUyS5OUK4CDyhqrWBJsBIEamZRbt1\nqtrA+/izi/H41b33ws6d0K4dNG/ujB7OnXPvfGESxnP3PMerHV+ly/wuzNw2072TGWOKJNcSgqp+\no6o7vc/PAQeASlk0zfWER2ETGelsfbFnDxw75tzCMynJ3TJStzu7kTI4hYSNCYxYMYKfLv3k3smM\nMUWKX+YQRORWoAGQuZahQDMR2SUiq0Sklj/i8bebb4a5c+Hdd+GFF+C++5y1DG6pUaEGm4du5uSP\nJ/HM9nDs7DH3TmaMKTJcX+oqIqWARcBo70gho+1AVVU9LyIdgaXAHVn1M378+F+eezwePB6PK/G6\nqWVL2LYNZswAjwcGDIDx46FMGd+fq3RUaRbFL+Kv//orsTNjSeqVRMtbWvr+RMaYoJGcnExycnK+\nj3d1HYKIRAJ/Bz5Q1Sm5aP8ZcLeqnsr0elCvQ8iPEyfg6afhgw9g0iTo399ZCe2G1YdX8+DSB3m2\n5bOMajwKcetExpigEjR7GYnzW2c28J2qPpFNmxuBE6qqItIYWKCqt2bRrsglhCs2bYKRI6F4cefe\nC/Xru3OeI6eP0D2pO/Vvqs+MzjOIjox250TGmKARTAvTmgP9gXsyXFbaUURGiMgIb5tewB4R2QlM\nAfq4GE9QiotzksLAgdC+PYwaBadP+/48MeVi2DBkAxcvX6TFrBZ88f0Xvj+JMaZQs60rgsh338Gz\nz8KSJc6meYMHQ5iPU7aqMmXjFCatn8Q7Pd6hTUwb357AGBM0gqZk5EuhkhCu2L7dKSOlp8O0adCo\nke/PsfaztfR7vx9jmozhyWZP2ryCMUWQJYQiIj0d5sxxJp67dHEuV61Qwbfn+PLMl/Rc0JOYcjEk\ndk2kVLFSvj2BMSaggmkOwRRAWBgMGuTcwrNECahVC6ZPh8uXfXeOatdVI2VwCiUjS9I0sSmHTx32\nXefGmELHRgiFxO7d8OijkJbmlJGaNvVd36rKjK0zGL9uPLO6zaJT9U6+69wYEzBWMirCVGH+fBg7\n1rmn86RJcOONvut//Zfr6b2oNw/d/RDPtHqGMLEBpDGFmZWMijAR6NfP2V67YkXnTm0vvwyXLvmm\n/+bVmrNl2BZW/99qeiT14MyFM77p2BhTKFhCKIRKl4a//Q0++QRWrHDu7bxunW/6rlS6EmsfXEul\n0pWIezOOA98e8E3HxpigZyWjQk4VFi92dlVt0QJefBEqV/ZN32/teIunPnqK13//Ot1rdvdNp8YY\nv7GSUYgRgV69nKuRYmKgXj0nKfz8c8H7HtJgCCv7reTxDx/nmTXPcDndh5c4GWOCjo0QiphDh2D0\naDhyBF55xZl8LqgTP5zggUUPEBUexbs93+X66OsL3qkxxnU2Qghx1avDypXOHMOIEc7o4csvC9Zn\nxZIV+eeAf1LrhlrEzoxl1ze7fBOsMSaoWEIogkSga1fnJjx16zqTzhMnwoUL+e8zIiyChPYJPH/P\n87SZ24b5e+b7LmBjTFCwklEI+Oyzq7fyfPll6Ny5YP3t+mYXPRb04P4a9zOp7SQiwly/z5IxJh9s\nYZrJ1urV8NhjcOedMGWKMwmdX6d+PEXfxX25ePkiSb2SuKHkDb4L1BjjEzaHYLLVoYMzSmjWDBo3\nhnHj4Pz5/PV1ffT1rOq3iiZVmtBoZiO2fr3Vt8EaY/zOEkKIiYqCp56CHTucFc+1a8PSpc56hrwK\nDwvnhfteYHL7yXSc15G3d77t83iNMf5jJaMQ9/HHzqZ5Vas68ws1auSvn/3f7qd7Unfa3NaGyR0m\nUyy8mG8DNcbkmZWMTJ7cey/s3Ant2kHz5s7o4dy5vPdT64ZabB66maNpR7l39r0cTzvu+2CNMa6y\nhGCIjLx6FdKxY1CzJiQl5b2MdF3x61jywBLa/649sTNj2fDVBncCNsa4wkpG5jdSUmDUKChf3lnt\nXLt23vtY+e+VDF42mAmeCTzU6CG7RacxAWAlI1NgLVvCtm3Qowd4PM7o4ezZvPXR+Y7OrB+ynmlb\npjF0+VAuXCrAqjhjjF9YQjBZiohwRgn79sGZM87ahblz81ZGql6+OhuHbiTt5zRazWrFV2e+ci9g\nY0yBWcnI5MqmTTByJBQvDq++CvXr5/5YVeWlDS+RsDGB+T3n47nV41qcxpirgqZkJCJVRWStiOwT\nkb0i8lg27aaKyCER2SUiDdyKxxRMXJyTFAYOhPbtndHD6dO5O1ZEGNt8LHPun0OfRX2Y/L+TsQRv\nTPBxs2R0EXhCVWsDTYCRIlIzYwMR6QTcrqrVgeHAdBfjMQUUHg7Dh8P+/XD5snM1UmIipKfn7vi2\nv2vLxqEbmbt7Lv2X9Of8xXwukzbGuMK1hKCq36jqTu/zc8ABoFKmZl2B2d42m4CyIuLD28YbN5Qv\nD9Onw6pV8Oab0LQpbM3lzhW3lr2V9UPWEy7hNE1sypHTR9wN1hiTa36ZVBaRW4EGwKZMb1UGMs40\nHgWq+CMmU3ANG8L69fDww9ClizN6OHny2sdFR0Yz+/7ZDG0wlKaJTfnw8IfuB2uMuSbX9y0WkVLA\nImC0d6TwmyaZfs6yuDx+/Phfnns8Hjwej48iNAURFgaDBsH998P48VCrFkyY4CSH8PDsjxMRHo17\nlHo31aPPoj482vhRnmrxlK1XMKYAkpOTSU5OzvfxubrKSERKAlVxflkfVdUfctW5SCTwd+ADVZ2S\nxfszgGRVfc/786dAa1VNzdTOrjIqJHbvdvZGSktzrkZq1uzaxxw9e5ReC3pRuUxl3u72NqWjSrsf\nqDEhwGdXGYlIaREZIyKbgT3ALJx6/14R2SoiT3j/+s/ueAESgf1ZJQOv5cBAb/smwPeZk4EpXO66\nC5KT4cknIT7eGT2kXuN/0SplqrBu0DrKR5cn7s04Dp486I9QjTGZ5DSHsBRIA7qoaoyqNlXVJqp6\nG/B74AdgWQ7HNwf6A/eIyA7vo6OIjBCREQCqugo4IiKHgdeBR3zxjzKBJQL9+jnba1esCHXqODup\nXrqU/TFREVG80eUNnmjyBC1ntWT5weX+C9gYA9jCNOMHBw44ZaTUVKeM1Lp1zu03Ht1I/MJ4htQf\nwjjPOMLEFtQbkx+u3kJTRG4H+gJ9vOsL/MISQuGnCosXO/sitWgBL74IlStn3/6bc9/Qe2FvykSV\n4Z0e71C2eFn/BWtMEeHzlcoiUtk7l7AF2AuEA30KEKMJQSLQq5czWoiJgXr1nKTw889Zt7+p1E2s\nGbiGmHIxxM6MZe+Jvf4N2JgQlO0IwVvn7wtUxLlsdCGw3DuH4Fc2Qih6Dh2C0aPhyBFni+22bbNv\nO3fXXMb8YwyvdXqN+Nrx/gvSmELOZyUjEbkIrAaeVdVd3tc+s4RgfEUVVqyAxx93FrklJEC1alm3\n3X58Oz0X9KR3rd5MvG8iEWGuL6ExptDzZcnoZmAVMFVEDojI80BkQQM05goR6NrV2WK7bl1o0AAm\nToQLWdw6oeHNDdkybAvbjm+j47yOfHf+O/8HbEwRl21CUNWTqjpdVVsD7YAzQKqIfCoiL/gtQlPk\nRUfDuHHOfkhbtzqXqa5c+dt2FUpUYHX/1TS4qQGNZjZix/Ed/g/WmCIsz5edisgdOFcZPedOSFme\n00pGIWT1anjsMeemPFOmOJPQmS3Yt4CRq0aS0C6BAfUG+D9IYwoBn192KiIRQGfgVpwrjARAVf8n\n/2HmjSWE0PPTTzB5Mrz0knNjnj/+EUqU+HWbvSf20j2pO51u78RL7V4iMtwqmsZk5MYNclYADwLX\nA6WBUt6HMa6JioKnnoIdO5wVz7Vrw9Klv76FZ52Kddg8dDOHTx+mzdw2pJ6zXU+MKYjcjBB2q+pd\nfoonuxhshBDiPv7YWe1ctaqzDUaNGlffS9d0xiePZ9bOWSyKX0RclbjABWpMEHFjhPAPEWlfgJiM\nKbB774WdO6FdO2je3Bk9nPNuph4mYTx3z3O82vFVuszvwsxtMwMbrDGFVG4SwgZgiYhcEJE07+Os\n24EZk1lkpLP1xZ49cOyYcwvPpKSrZaRud3YjZXAKCRsTGLFiBD9d+imwARtTyOSmZPQ5zq0u96pq\nLu+e61tWMjJZSUmBUaOcW3q+8oozzwCQ9lMag5YN4uu0r1kUv4jKZXLYNMmYIsyNktGXwL5AJQNj\nstOyJWzbBj16gMfjjB7OnoXSUaVZFL+Irnd0JXZmLClfpAQ6VGMKhdyMEGYDtwEfAFe2IlNVTXA5\ntowx2AjB5OjECXj6afjgA5g0Cfr3d1ZCrz68mgeXPsizLZ9lVONRdotOE1LcWIcw3vv0Vw1VdUKe\no8snSwgmtzZtctYtFC/u3Huhfn04cvoI3ZO6U/+m+szoPIPoyOhAh2mMX7h6P4RAsYRg8uLyZUhM\nhD/9ybmN5/PPQ7GSPzBsxTAOfneQ93u/zy1lbwl0mMa4zpf3VH5LRGJzeD9ORGblNUBj3BYeDsOH\nw/79TnKoWRPem1uSuffPo3/d/sS9GceaI2sCHaYxQSen7a/rAmOBJsBB4DjOthU3ATVwLkd9SVVd\nv3OJjRBMQWzf7pSR0tNh2jRIK7+Wfu/3Y0yTMTzZ7EmbVzBFlhtzCFFAA+AWnHmEL4BdqprFJsXu\nsIRgCio9HebMcSaeu3SBR57+kmEf9SSmXAyJXRMpVcx2YzFFjy9LRhVFpLaq/qSqG1U1SVUXAOdw\n9jQyptAIC4NBg5xbeJYoAe3iqjHgYgolIkrSNLEph08dDnSIxgRcTusQXgEqZPF6eeBld8Ixxl1l\nyzpban/0ESxOKs7O5xLpcP0jNH+rOasOrQp0eMYEVE5zCNtU9e5s3tunqrVdjezX57OSkfE5VZg/\nH8aOhXq/X8+O23vzSOOHeKbVM4RJbtZsGhPcfLlSOaeyUK42nvdeqZQqInuyed8jImdEZIf38Wxu\n+jXGF0SgXz9ne+061zXnp2lbmJWymu7v9eDMhTOBDs8Yv8spIRwWkc6ZXxSRTsD/5bL/WUCHa7RZ\np6oNvI8/57JfY3ymdGn4299g/QeVuHXdWv71QSXqTo3jwLcHAh2aMX4VkcN7jwN/F5F4YBvOJad3\nA82A3+emc1VNEZFbr9HMrvkzQaFmTVjzj2IsXvwaw6e/RYO01rza4XWGNu8e6NCM8YtsRwiq+m/g\nLuATnL2MbgHWAXep6kEfnV+BZiKyS0RWiUgtH/VrTL6IQK9e8NXyIfRjJSPef5z7Jj7DjxcuBzo0\nY1zn+tYV3hHCClWtm8V7pYHLqnpeRDoCL6vqHVm003Hjxv3ys8fjwePxuBazMVds3HOCzm8/wIUf\nopjT9V16dro+0CEZk63k5GSSk5N/+XnChAm+WZgmIufItKFdBqqqZXJ1ghwSQhZtPwPuVtVTmV63\nq4xMwFy8fIler/8Xq44so/U37/PWC/WoVi3QURlzbT67ykhVS6lq6WweuUoGuQj2RvHuGyAijXES\n1KlrHGaMX0WGR7DskQRm9n2e/63ehloPzGfiRLjgt7X6xviHqyUjEZkPtMZZ4JYKjMN7yaqqvi4i\nI4GHgUvAeWCMqm7Moh8bIZigsOubXXSd14PII/ej/5jE1CkRdP7NtXjGBAfb/toYl5368RR9F/cl\n9duLnH0riTq33cCUKRATE+jIjPk1N26haYzJ4Pro61nVbxWd7mrCpSGNqBq3ldhYGDcOzp8PdHTG\n5J8lBGPyITwsnBfue4EpHSazoFhHnln4Np9+CrVqwZIlzrYYxhQ2VjIypoD2f7uf7kndaXNbG7pG\nTWbM6GJUqQJTp0KNGoGOzoQyKxkZ42e1bqjF5qGbOZp2lOe/vJcP/nWc9u2heXN46ik4dy7QERqT\nO5YQjPGB64pfx5IHltD+d+1pNiuWJvEb2LMHjh1ztsRISrIykgl+VjIyxsdW/nslg5cNZoJnAg81\neoh//Ut4fG72AAAWdklEQVQYNQrKl4dXXoHafts43oQ6KxkZE2Cd7+jM+iHrmbZlGkOXDyW26QW2\nbYMePcDjgTFj4OzZQEdpzG9ZQjDGBdXLV2fj0I2k/ZxGq1mtOP7DV4waBfv2wZkzcOedMHeulZFM\ncLGSkTEuUlVe2vASCRsTmN9zPp5bPQBs2gQjR0Lx4vDqq1C/fmDjNEWTlYyMCSIiwtjmY5lz/xz6\nLOrD5P+djKoSF+ckhYEDoX17GDUKTp8OdLQm1FlCMMYP2v6uLRuHbmTu7rn0X9Kf8xfPEx4Ow4fD\n/v1w+bJzNVJiIqSnBzpaE6qsZGSMH/148UdG/H0Eu1N38/4D7xNT7uoGSNu3O2Wk9HSYNg0aNQpg\noKZIsJKRMUEsOjKa2ffP5g8N/kDTxKZ8ePjDX95r2BDWr4eHH4YuXZzRw8mTAQzWhBxLCMb4mYjw\naNyjLIxfyOBlg/lLyl+4MgIOC4NBg+DAAYiOdvZGmj7dKSkZ4zYrGRkTQEfPHqXXgl5ULlOZt7u9\nTemo0r96f/duePRRZ93CtGnQrFmAAjWFkpWMjClEqpSpwrpB6ygfXZ64N+M4ePLgr96/6y5IToax\nYyE+3hk9pKYGJFQTAiwhGBNgURFRvNHlDZ5o8gQtZ7Vk+cHlv3pfBPr1g08/hYoVoU4dePlluHQp\nQAGbIstKRsYEkY1HNxK/MJ4h9YcwzjOOMPnt32wHDjhlpNRUZ1Fb69YBCNQUCnYLTWMKudRzqcQv\njKdMVBne6fEOZYuX/U0bVVi82NkXqUULePFFqFw5AMGaoGZzCMYUcjeWupE1A9cQUy6G2Jmx7D2x\n9zdtRKBXL2e0EBMD9eo5SeHnnwMQsCkybIRgTBCbu2suY/4xhtc6vUZ87fhs2x06BKNHw5Ejzhbb\nbdv6MUgTtKxkZEwRs/34dnou6EnvWr2ZeN9EIsIismynCitWwOOPO4vcEhKgWjU/B2uCipWMjCli\nGt7ckC3DtrDt+DY6zuvId+e/y7KdCHTt6myxXbcuNGgAEyfChQt+DtgUWq4mBBF5S0RSRWRPDm2m\nisghEdklIg3cjMeYwqpCiQqs7r+aBjc1oNHMRuw4viPbttHRMG4cbN3qPOrUgZUr/RisKbRcLRmJ\nSEvgHDBHVetm8X4nYJSqdhKROOBlVW2SRTsrGRnjtWDfAkauGklCuwQG1BtwzfarV8Njjzk35Zky\nxZmENqEhqEpGqpoC5LTLe1dgtrftJqCsiNzoZkzGFHa9a/dm7YNree6T5xj9wWguXr6YY/sOHWDP\nHmjaFGJjndHD+fN+CtYUKoGeQ6gMfJXh56NAlQDFYkyhUadiHbYM28Lh04dpM7cNqedy3s8iKgqe\nfhp27nRWPNeqBUuW2C08za9lfbmCf2UezmT5FR0/fvwvzz0eDx6Px72IjCkEyhYvy4q+K5iQPIFG\nMxuxKH4RcVXicjymalVISoKPP3ZWO8+YAVOnQo0afgrauCo5OZnk5OR8H+/6ZaciciuwIps5hBlA\nsqq+5/35U6C1qqZmamdzCMbkYNmnyxi2YhgT753IsLuH5eqYixedNQsvvABDh8Kzz0KpUi4Havwq\nqOYQcmE5MBBARJoA32dOBsaYa+t2ZzdSBqeQsDGBEStG8NOln655TGSks/XFnj1w7JhzC8+kJCsj\nhTK3rzKaD7QGKgCpwDggEkBVX/e2eRXoAPwADFbV7Vn0YyMEY3Ih7ac0Bi0bxNdpX7MofhGVy+R+\ng6OUFBg1CsqXd0YOtWu7GKjxC1upbEyIU1X++q+/8srmV0jqlUTLW1rm+thLl5x5hQkTYMAAGD8e\nypRxL1bjrsJWMjLG+JiI8HTLp3mr21v0WtiLVza9Qm7/oIqIcEYJ+/bBmTPO2oW5c62MFCpshGBM\nEXbk9BG6J3Wn/k31mdF5BtGR0Xk6ftMmGDkSihd37r1Qv75LgRpX2AjBGPOLmHIxbBiygYuXL9Ji\nVgu++P6LPB0fF+ckhYEDoX17Z/RwOqelpqZQs4RgTBFXslhJ5vWYR/+6/Yl7M441R9bk6fjwcBg+\nHPbvh8uXnauREhMhPd2lgE3AWMnImBCy9rO19Hu/H2OajOHJZk8ikutqwi+2b3fKSOnpMG0aNGrk\nQqDGJ+wqI2NMjr488yU9F/QkplwMiV0TKVUs76vR0tNhzhxnO4wuXZzFbRUquBCsKRCbQzDG5Kja\nddVIGZxCyciSNE1syuFTh/PcR1gYDBrk3MIzOtrZG2n6dKekZAovGyEYE6JUlRlbZzB+3XhmdZtF\np+qd8t3X7t3O3khnzzplpGbNfBioyTcrGRlj8mT9l+vpvag3D939EM+0eoYwyV/hQBXmz4exY517\nOk+aBDfaZvYBZSUjY0yeNK/WnC3DtrD6/1bTI6kHZy6cyVc/ItCvn7O9dsWKzp3aXn7ZWf1sCgdL\nCMYYKpWuxNoH11KpdCXi3ozjwLcH8t1X6dLwt7/BJ5/AihXOvZ3XrfNhsMY1VjIyxvzKrB2z+ONH\nf+T1379O95rdC9SXKixe7Oyq2qIFvPgiVM79fnumgKxkZIwpkMENBrOy30oe//BxnlnzDJfT83/p\nkAj06uVcjRQTA/XqOUnh5599GLDxGRshGGOydOKHEzyw6AGKRxRnXo95XB99fYH7PHQIRo+GI0ec\nLbbbtvVBoCZbNkIwxvhExZIV+eeAf1KzQk1iZ8ay65tdBe6zenVYudKZYxgxwhk9fPmlD4I1PmEJ\nwRiTrYiwCBLaJ/D8Pc/TZm4b5u+ZX+A+RaBrV2eL7bp1nUnniRPhwgUfBGwKxEpGxphc2fXNLnos\n6MH9Ne5nUttJRIRF+KTfzz67eivPl1+Gzp190q3BFqYZY1x06sdT9F3cl4uXL5LUK4kbSt7gs75X\nr4bHHnNuyjNlijMJbQrG5hCMMa65Pvp6VvVbRZMqTWg0sxFbv97qs747dHBGCU2bQmwsjBsH58/7\nrHuTC5YQjDF5Eh4Wzgv3vcDk9pPpOK8jb+9822d9R0U5O6ju3OmseK5VC5YssVt4+ouVjIwx+bb/\n2/10T+pOm9vaMLnDZIqFF/Np/x9/7GyaV6UKTJ0KNWr4tPsiz0pGxhi/qXVDLTYP3czRtKPcO/te\njqcd92n/997rjBbat4fmzeGpp+DcOZ+ewmRgCcEYUyDXFb+OJQ8sof3v2hM7M5YNX23waf+RkVev\nQjp2zLmFZ1KSlZHc4GrJSEQ6AFOAcOBNVZ2U6X0PsAw44n1psar+OYt+rGRkTCGw8t8rGbxsMBM8\nE3io0UP5ukXntaSkwKhRUL68s9q5dm2fn6LICJrLTkUkHDgItAGOAVuAvqp6IEMbDzBGVbteoy9L\nCMYUEoe+O0T3pO7EVY5jWudpFI8o7vNzXLoEM2bAhAkwYACMHw9lyvj8NIVeMM0hNAYOq+rnqnoR\neA/olkU73/8JYYwJmOrlq7Nx6EbSfk6j1axWfHXmK5+fIyLCGSXs2wdnzjhrF+bOtTJSQbmZECoD\nGb8JR72vZaRAMxHZJSKrRKSWi/EYY/ykVLFSJPVKIr5WPI3fbEzy58munKdiRUhMdC5NffllaNnS\nmYQ2+eObtedZy02u3g5UVdXzItIRWArckVXD8ePH//Lc4/Hg8Xh8EKIxxi0iwtjmY2lwcwP6LOrD\nH5v/kcebPO7KvEJcHGza5CSH9u0hPh6efx7KlfP5qYJacnIyycnJ+T7ezTmEJsB4Ve3g/flpID3z\nxHKmYz4D7lbVU5letzkEYwqxz7//nB5JPah5Q01mdplJicgSrp3ru+/g2WedUcPEiTB4MISF6PWU\nwTSHsBWoLiK3ikgx4AFgecYGInKjeP9cEJHGOAnq1G+7MsYUZreWvZX1Q9YTLuE0S2zGkdNHrn1Q\nPpUvD9Onw6pV8OabzlYYW323w0aR5lpCUNVLwCjgQ2A/kKSqB0RkhIiM8DbrBewRkZ04l6f2cSse\nY0xgRUdGM/v+2fyhwR9omtiUDw9/6Or5GjaE9evh4YehSxcYPhxOnnT1lIWebV1hjPG7T774hD6L\n+vBo40d5qsVTrswrZPT9985mefPnO5eqDh8O4eGunjIoBM06BF+yhGBM0XP07FF6LehF5TKVebvb\n25SOKu36OXfvdi5XTUuDadOgWTPXTxlQwTSHYIwx2apSpgrrBq2jfHR54t6M4+DJg66f8667YN06\nGDvWuRJp0CBITXX9tIWGJQRjTMBERUTxRpc3eKLJE7Sc1ZLlB5df+6ACEoF+/ZzttStWhDp1nDUM\nly65fuqgZyUjY0xQ2Hh0I/EL4xlSfwjjPOMIE//8vXrggLPFdmoqvPoqtG7tl9P6hc0hGGMKrdRz\nqcQvjKdMVBne6fEOZYuX9ct5VWHxYmdX1RYt4MUXoXLmfRUKIZtDMMYUWjeWupE1A9cQUy6G2Jmx\n7Duxzy/nFYFevZzRQkwM1KvnJIWff/bL6YOGjRCMMUFp7q65jPnHGF7r9BrxteP9eu5Dh2D0aDhy\nxNliu21bv57eZ6xkZIwpMrYf307PBT3pXas3E++bSESYm9uv/ZoqrFgBjz/uLHJLSIBq1fx2ep+w\nkpExpshoeHNDtgzbwrbj2+g4ryPfnf/Ob+cWga5dnS2269aFBg2cvZEuXPBbCH5nCcEYE9QqlKjA\n6v6raXBTAxrNbMSO4zv8ev7oaGeV89atzqNOHVi50q8h+I2VjIwxhcaCfQsYuWokCe0SGFBvQEBi\nWL0aHnvMuSnPlCnOJHSwspKRMabI6l27N2sfXMtznzzH6A9Gc/HyRb/H0KED7Nnj7KIaG+uMHs6f\n93sYrrCEYIwpVOpUrMOWYVs4fPowbea2IfWc//eeiIqCp5927s726adQq5Zz/4XCXsiwkpExplBK\n13QmJE/grZ1vsSh+EXFV4gIWy5o1zmrnqlVh6lSoUSNgofyKlYyMMSEhTMKYcM8EXu34Kl3md2Hm\ntpkBi+W++2DXLuf2nc2bw1NPwblzAQsn3ywhGGMKtW53diNlcAoJGxMYsWIEP136KSBxREY6W1/s\n2QPHjkHNmpCUVLjKSFYyMsYUCWk/pTFo2SC+TvuaRfGLqFwmsJsRpaQ4914oX95Z7Vy7tv9jsJKR\nMSYklY4qzaL4RXS9oyuxM2NJ+SIloPG0bAnbtkGPHuDxOKOHs2cDGtI1WUIwxhQZIsLTLZ/mrW5v\n0WthL17Z9AqBrC5ERDijhH374MwZZ+3C3LnBW0aykpExpkg6cvoI3ZO6U/+m+szoPIPoyOhAh8Sm\nTTByJBQv7tx7oX59d89nJSNjjAFiysWwYcgGLl6+SItZLfji+y8CHRJxcU5SGDjQuSJp1Cg4fTrQ\nUV1lCcEYU2SVLFaSeT3m0b9uf+LejGPNkTWBDonwcBg+HPbvh8uXnauREhMhPT3QkblcMhKRDsAU\nIBx4U1UnZdFmKtAROA8MUtXf7FxlJSNjTEGt/Wwt/d7vx5gmY3iy2ZOI5LqS4qrt250yUno6TJsG\njRr5ru+gKRmJSDjwKtABqAX0FZGamdp0Am5X1erAcGC6W/EUFcnJyYEOIWjYZ3GVfRZXZfdZ3HPb\nPWwauokF+xfQZ3Efzv0cHCvHGjaE9evh4YehSxdn9HDyZGBicbNk1Bg4rKqfq+pF4D2gW6Y2XYHZ\nAKq6CSgrIje6GFOhZ//Hv8o+i6vss7gqp8+i2nXVSBmcQsnIkjRNbMrhU4f9F1gOwsJg0CDnFp7R\n0c7eSNOnOyUlv8bhYt+Vga8y/HzU+9q12lRxMSZjTIgrHlGcxK6JPNLoEZq/1ZxVh1YFOqRflC0L\nL78MH30E8+c75aMNG/x3fjcTQm6L/pnrWzZZYIxxlYjwcOzDLHlgCcNXDGf6luCqVt91F6xbB2PH\nQny8s6jNH1ybVBaRJsB4Ve3g/flpID3jxLKIzACSVfU978+fAq1VNTVTX5YkjDEmH/IyqezmHau3\nAtVF5Fbga+ABoG+mNsuBUcB73gTyfeZkAHn7BxljjMkf1xKCql4SkVHAhziXnSaq6gERGeF9/3VV\nXSUinUTkMPADMNiteIwxxuSsUGxdYYwxxn1BvVJZRDqIyKcickhE/hjoeAJJRD4Xkd0iskNENgc6\nHn8SkbdEJFVE9mR47XoR+aeI/FtE/iEiZQMZo79k81mMF5Gj3u/GDu+C0CJPRKqKyFoR2Scie0Xk\nMe/rIffdyOGzyNN3I2hHCN6FbQeBNsAxYAvQV1UPBDSwABGRz4C7VfVUoGPxNxFpCZwD5qhqXe9r\nfwNOqurfvH8slFPVpwIZpz9k81mMA9JUNSGgwfmZiNwE3KSqO0WkFLANuB+n9BxS340cPove5OG7\nEcwjhNwsbAs1ITm5rqopQOYtwH5Z1Oj97/1+DSpAsvksIAS/G6r6jaru9D4/BxzAWdsUct+NHD4L\nyMN3I5gTQm4WtoUSBT4Ska0iMizQwQSBGzNckZYKhPoK90dFZJeIJIZCiSQz79WMDYBNhPh3I8Nn\nsdH7Uq6/G8GcEIKzlhU4zVW1Ac5GgCO9pQMDeHc+DOXvy3TgNqA+cBz4n8CG41/eEsliYLSqpmV8\nL9S+G97PYhHOZ3GOPH43gjkhHAOqZvi5Ks4oISSp6nHvf78FluCU1EJZqrduiojcDJwIcDwBo6on\n1At4kxD6bohIJE4ymKuqS70vh+R3I8Nn8c6VzyKv341gTgi/LGwTkWI4C9uWBzimgBCREiJS2vu8\nJNAO2JPzUUXecuBB7/MHgaU5tC3SvL/0ruhOiHw3xNm/OhHYr6pTMrwVct+N7D6LvH43gvYqIwAR\n6cjV+ykkqupfAhxSQIjIbTijAnAWE84Lpc9CROYDrYEKODXh/wcsAxYA1YDPgd6q+n2gYvSXLD6L\ncYAHpySgwGfAiKxW/Bc1ItIC+ATYzdWy0NPAZkLsu5HNZ/HfOLtD5Pq7EdQJwRhjjP8Ec8nIGGOM\nH1lCMMYYA1hCMMYY42UJwRhjDGAJwRhjjJclBGOMMYAlBBPCRORjEWmX6bXHReQ1EblDRFZ5t1De\nJiJJIlJRRDwicibDdsI7ROQ+77FRIrJORMJE5IiI3JGp7yki8l8icpeIJPrz32pMblhCMKFsPtAn\n02sPeF//OzBNVe9Q1buB14AbcBb4fKKqDTI81niP/Q/g76qanrlvEQkDegLzVXU38DsRqejmP86Y\nvLKEYELZYqCziETAL7tEVgKqAxtUdeWVhqq6TlX3kfNWwn1xVlCDkxAeyPBeK+ALVb2yg+8HQLwP\n/g3G+IwlBBOyvDcb2gx08r7UB2fLg9rA9hwObZmpZHSb94ZOdVT1396+9wLpInJXhr7fzdDHZpwk\nYUzQsIRgQl3G0s4D/PqXdnZSMpWMPsPZWygtU7v5QB9vsugGLMzw3nHg1gJFboyPWUIwoW45cJ+I\nNABKqOoOYB9wdz76ylxOeg/nFoZtgN3ercsztrWNxExQsYRgQpr3JiJrgVlcHR28CzQTkSulJESk\nlYjUzqGrk0CpTH0f8b7+V3478rgZ+KJg0RvjW5YQjHFKO3W9/0VVLwC/x7n14L9FZB/wEPAtzl/1\nmecQeqjqZWCviNTIou8awPuZXm+Ms12xMUHDtr82xkdEZBDO/Xwn5aJtMs4+/SFxNy9TONgIwRjf\neRfnMtacLk3Fe+XRYUsGJtjYCMEYYwxgIwRjjDFelhCMMcYAlhCMMcZ4WUIwxhgDWEIwxhjjZQnB\nGGMMAP8fX0aOD+9WXDAAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f1e72637b90>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show,legend\n", + "print \"(i) DC load line:\"\n", + "print \"Maximum VCE = VCC = 24V\"\n", + "IC=24/(8*10**3) #in Ampere\n", + "x1=IC*10**3 #in mA\n", + "print \"Maximum IC = VCC / RC = %0.2f mA\"%x1\n", + "print \"(ii) For fixing the optimum operating point Q, mark the middle of the d.c. load line AB and the corresponding VCE and IC values can be found\"\n", + "VCEQ=24./2\n", + "print \"Here, VCEQ(V) = VCC / 2 = %0.2f V\"%VCEQ #in volts\n", + "print \" ICQ = 1.5 mA\"\n", + "print \"\"\n", + "print \"(iii) AC load line\"\n", + "Rac=(8*24.)/(8+24) #in k-ohm\n", + "print \"AC load, R_a.c. = RC || RL = %0.2f kohm\"%Rac\n", + "VCE=12+((1.5*10**-3)*(6*10**3)) #in Volts\n", + "print \"Therefore, maximum VCE(V) = VCEQ + ICQ*R_a.c. = %0.2f \"%VCE\n", + "print \"This locates the point D(OD = 21V) on the VCE axis\"\n", + "IC=(1.5*10**-3)+(12/(6*10**3)) #in Ampere\n", + "x3=IC*10**3 #in mA\n", + "print \"Maximum IC = ICQ + VCEQ/R_a.c. = %0.2f mA\"%x3\n", + "print \"This locates the point C(OC = 3.5mA) on the IC axis. By joining points C and D a.c. load line CD is constructed. \"\n", + "x=[24,0]\n", + "y=[0,3]\n", + "plot(x,y)\n", + "x1=[21,0]\n", + "y1=[0,3.5]\n", + "plot(x1,y1)\n", + "title(\"Fig.6.22(b)\")\n", + "xlabel(\"VCE(V)\")\n", + "ylabel(\"IC(mA)\")\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 170 Example 6.24." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) DC load line:\n", + "Maximum VCE = VCC = 12V, which locates the point B(OB = 12V) of the d.c. load line\n", + "Maximum IC = VCC / (RC+RE) = 0.00 mA\n", + "(ii) Operating point Q\n", + "Therefore, V2 = 0.00 V\n", + " V2 = VBE + IE*RE\n", + "Therefore, IE = V2-VBE / RE = 3.30 mA\n", + " IC = IE =3.30 mA\n", + "VCE = VCC - IC(RC+RE) = 5.40 V\n", + "(iii) AC load line\n", + "AC load, Ra.c.(k-ohm) = RC || RL = 0.60 kohm\n", + "Therefore, maximum VCE = VCEQ + ICQ*Ra.c. = 7.38 V\n", + "Maximum IC(mA) = ICQ + VCEQ/Ra.c. = 12.30 mA\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEZCAYAAACervI0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHsVJREFUeJzt3Xm8HAWZ7vHfQwKYACGgEhCiiYGgQUCIOiACB4WYhPWS\nCyFoZHEZZOK4MkOcuRLmugygXnQG3GECQkSIAwLJhBDo4AVnVIwEwqaIknAlYVjCEiKEvPePqoOd\nwzknp093dVVXPd/PJx+6u6qr3zaxn36rq+pVRGBmZtWzRd4FmJlZPhwAZmYV5QAwM6soB4CZWUU5\nAMzMKsoBYGZWUQ4AKwUlnpU0Ju9aNkfS+yX9e939jZLe3Me6R0v6UfuqsypxAFhHkvQHSevSD/1n\ngbXAHhHxh0Fub7ikiyU9LulpSUv7WG8rST9IX/8ZScskTa5bPkHSryQ9mW7ndknv6bGZLwFfGUhd\nEXE9sJekvQfzvsz64wCwThXAURGxXfpnREQ81sT2vguMBN4C7AB8qo/1hgKPAIdExAjgH4EfS3pT\nuvxR4ATgtel2fgRc0/1kSe8ERkTELxqobR7wsQbWNxsQB4CVRv2uFEmvlXS9pLWSfiHpi5J+1sfz\n3gIcDXwsIp6IxLLe1o2IdRFxbkQ8kt6/EXgY2D+9vzYiHo7kFPshwEbgT3WbmALUetn0kZIeSjuQ\n8yWpblkNOHLg/0uYDYwDwDqZ+ll2EfAsMAo4BfgQSdfQm3cBfwT+Kf0AXi7p+AEVII0CxgMrejz+\nNPAC8HfA/6xb9DbggV42dRwwkSRIjgVOr1t2PzBG0rYDqclsoBwA1qkEXCvpqfRP/Y+qQ4DjgXMi\nYn1E3AfMpe/A2I3kg/lpYBdgFjA37Qz6LkDaErgC+LeIeLB+WUSMBLYn2QV0dd2ikSTB1NN5EfF0\nRKwELgRm1C3rXn9kf/WYNcoBYJ0qgGMjYof0z/+oW/Z6kn31K+seW9XPtl4AXgK+GBEbIuI24FZg\nUl9PkLQFcDmwniQwXl1gxDrgbGC8pH3Sh58CRvSyen2tjwBvqLu/Xfrfp/t5D2YNcwBYGT0ObABG\n1z02uo91AZan/+3ZIfS6yyjdP/8DkqCZFhEv97PtIST/P1tX91rje1nvjT1uP1p3/63AHyLiuX5e\nx6xhDgArnfQD+SfAHEnD0l05M+n7N4ClJN+6Z0saKukgoAtY1Mf63yI5WuiYiPhz/QJJh0t6u6Qh\nkkYAXwceiIjfpassAA7tZZufkzRS0mjgb4Gr6pYdmj7PrKUcAFYm9R/ws0j2wT9Gsv9/HvBi90JJ\n90iaARARG0h+eJ1KspvlO8DM7v36kj4vaUF6+00kh2TuCzzWfR5C97ZI9tPPS7fzAEmXcMwrBSZH\nF62V9K4etV8H3AksA24ALqlbdlJak1lLKauBMJIuITl0bU1E7N1j2WeBC4DXRcSTmRRgVkfSecBO\nEXFaAWo5Ajizx+8Wfa17NPCBiDgp+8qsarIMgIOB54DL6gMgbXG/B+wJTHQAWBYk7QlsDdwNvBO4\nEfhwRPw018LMCiSzXUAR8TOSIx56+jrJsdFmWdoOmE/yJeRHwFf94W+2qaHtfDFJxwKrImL5pic6\nmrVWRPwK2CPvOsyKrG0BIGk48HngiPqH2/X6Zma2qXZ2AOOAMcBd6bf/3YA7Jb0rItbUrygpmx8m\nzMxKLiIG/MW6bYeBRsTdETEqIsZGxFiSMzP37/nhX7d+af+cc845udfg9+f3V7X3VoX316jMAkDS\nPOAOktPgV0rqefidv+WbmeUos11AETFjM8t7nYBkZmbt4TOBc9DV1ZV3CZny++tcZX5vUP7316jM\nTgRrhqQoYl1mZkUmiSjij8BmZlYsDgAzs4pyAJiZVZQDwMysohwAZmYV5QAwM6soB4CZWUU5AMzM\nKsoBYGZWUQ4AM7OKcgCYmVWUA8DMrKIcAGZmFeUAMDOrKAeAmVlFOQDMzCrKAWBmVlEOADOzinIA\nmJlVlAPAzKyiChsAL76YdwVmZuWWaQBIukTSakl31z12gaT7JN0l6SeStu/tuccdBy+8kGV1ZmbV\nlnUHcCkwucdjNwF7RcS+wIPA7N6euOOOMGUKPPtsxhWamVVUpgEQET8Dnurx2OKI2Jje/S9gt96e\nO3cujB8PRxwBTz3V2xpmZtaMvH8DOB1Y0NuCIUPgO9+Bd78bDjsM1qxpc2VmZiU3NK8XlvQPwIsR\ncWVvy+fMmQPAdtvBvvt2ccghXSxZArvu2sYizcwKrFarUavVBv18RUTrquntBaQxwPURsXfdY6cC\nHwXeFxHre3lO9KzrggvgW9+CJUtg7NhMSzYz60iSiAgNdP22dwCSJgNnAYf29uHfl7POgm22gUMO\ngcWL4S1vya5GM7MqyDQAJM0DDgVeJ2klcA7JUT9bAYslAfw8Is4cyPbOPDMJgcMOg4UL4e1vz6py\nM7Pyy3wX0GD0tguo3tVXw6xZcN11cMABbSzMzKzACr8LqBVOOAGGD4djjoEf/xi6uvKuyMys8+R9\nGOigHXkkXHUVnHhisjvIzMwa07EBAMlvAdddB6ecAvPn512NmVln6chdQPUOPBAWLYKpU2HdOpg5\nM++KzMw6Q8cHAMB++yXnB0yaBM8/D2eckXdFZmbFV4oAAJgwAZYuhcMPT0Lgs5/NuyIzs2IrTQAA\njBsHt92WhMBzz8EXvgAa8AFRZmbV0pHnAWzO6tXJVUQnTUouIeEQMLMqaPQ8gI4+Cqgvo0ZBrZZ0\nA2eeCRs3bvYpZmaVU8oAgGSgzM03w733wqmnwoYNeVdkZlYspQ0AgBEjkpPE1qyB6dM9Z9jMrF6p\nAwCSS0Zcdx1EeM6wmVm90gcAwNZbJ9cM8pxhM7O/qEQAAAwd6jnDZmb1KhMA4DnDZmb1KhUAkJwT\n8LWvwbHHJtPFHn0074rMzPJRqjOBB0qCc8+FbbeFgw/2nGEzq6ZKBkA3zxk2syqrdACA5wybWXVV\nPgAgGSgzfDi8//2eM2xm1eEASHnOsJlVTeWOAuqP5wybWZU4AHrwnGEzq4rMAkDSJZJWS7q77rEd\nJS2W9KCkmySNzOr1m9E9Z3jWLLj88ryrMTPLRpYdwKXA5B6PnQ0sjojxwJL0fiF1zxmePRu+/e28\nqzEza71MJ4JJGgNcHxF7p/fvBw6NiNWSdgZqEfGqo++bnQjWSg89lIyYnDXLc4bNrNganQjW7qOA\nRkXE6vT2amBUm1+/YZ4zbGZlldthoBERkvr8mj9nzpxXbnd1ddGV43GZo0cnIXDEEcmlpD1n2MyK\noFarUavVBv38PHYBdUXEY5J2AW4t+i6gek8+CZMnw8SJcNFFsIWPoTKzAin6UPifAqekt08Brm3z\n6zfFc4bNrEwy6wAkzQMOBV5Hsr//C8B1wI+BNwJ/AE6MiKd7eW4hO4Bu69bB8ccn1xCaNw+22irv\niszMGu8AMt0FNFhFDwCAP/8ZZsyA9euTE8aGDcu7IjOruqLvAioNzxk2s07nAGiC5wybWSdzADTJ\nc4bNrFM5AFrAc4bNrBN5HkCLeM6wmXUaB0CLec6wmXUKB0AGPGfYzDqBAyAjnjNsZkXnAMiQ5wyb\nWZH5KKCMec6wmRWVA6ANPGfYzIrIu4DapHvO8NSpycXkZs7MuyIzqzoHQBt1zxmeNAmefx7OOCPv\nisysyhwAbTZhAixdmoyYfP55zxk2s/w4AHLgOcNmVgSeB5Cj1auTq4hOmuQ5w2bWPM8D6CCjRkGt\nlnQDZ54JGzfmXZGZVYkDIGeeM2xmeXEAFMCIEclJYmvWwPTp8OKLeVdkZlUw4ACQdKGk0VkWU2XD\nhycni0XAccfBCy/kXZGZld2AAkDSQcCpwEcyrabiPGfYzNppoB3Ah4FZwEmSj1XJkucMm1m7bDYA\nJI0ADgauBH4JvD/roqrOc4bNrB0G0gGcBMyPiI3AJSTdQFMkzZa0QtLdkq6UtHWz2ywbzxk2s6wN\nJAA+TPLBD3ArsLek1w72BSWNAT4K7B8RewNDSELGeuieM/zhDydzhh9+OO+KzKxM+r0UhKSRwM0R\n8SBARISk/w28Bbh9kK/5DPASMFzSy8BwwN9v++E5w2aWhVwuBSHpY8DXgBeARRExs8fySlwKolFz\n58LZZ3vOsJn1rtFLQTR0MThJN0TEUY2Xtck2xgGfAsYAa4GrJX0gIq6oX2/OnDmv3O7q6qLL8xQ9\nZ9jMNlGr1ajVaoN+fkMdgKRlEbHfoF8t2cZ04IiI+Eh6fyZwQET8Td067gD6ceONcNppnjNsZpvK\n+mJwyxpcvzf3AwdIGpaeU3A4cG8LtlsZnjNsZq3QaABc1OwLRsRdwGXAr4Dl6cPfbXa7VeM5w2bW\nrEZ3Af06IvbPsJ7u1/EuoAFatiyZM3z++Z4zbFZ1mf4IDPgyEAXjOcNmNliNBsC5mVRhTfGcYTMb\nDI+ELJGVK5MQOPlkzxk2q6JGdwE5AErGc4bNqsszgSvOc4bNbKAG1AFI2gYYDQSwKiKez7QodwBN\ne+YZOPpoeNOb4JJLkjkDZlZuLdsFJGk7kqt2ngS8DlhNchTQKOAJ4ArgexHxXLNF9/LaDoAWWLcO\njj8+uZDcvHmw1VZ5V2RmWWrlLqBrgWeBoyPizRFxYEQcEBFjgaOA54HrmivXsuQ5w2bWH/8IXAEb\nNsCpp8KqVXD99bDddnlXZGZZyPRHYEm7S/pfklY0XprlxXOGzaw3A5kJvKukz0j6JXAPnuDVkTxn\n2Mx66jMAJP21pBqwGBgJnA78KSLmRMTdbarPWshzhs2sXn8HB/4r8B/AJ9MreCKfVdTxuucMb7tt\nMmd4yRIYOzbvqswsD/0FwC7ACcA3Je0EXANs2ZaqLHOeM2xmAz0RbDQwHZgBbAP8JCI+n1lRPgqo\nbTxn2Kw8Mr8WkKTxwEkR8U+NFtfAazgA2ujqq2HWLM8ZNut0LZ8HIGkocCTJEPchJGcDZ3opCGuv\nE05ITho75hjPGTarkoGcB3A9cAqwI7AdsG36x0rEc4bNqmezu4AkLY+IfdpUT/drehdQTn7+8+Qw\n0W99C6ZNy7saM2tEFmcC3yTp/U3UZB3kwANh0aLkN4HLL8+7GjPL0kAuEnwH8O+StgBeSh+LiBiR\nXVmWJ88ZNquGgQTA14EDgHsiwuNFKsJzhs3KbyAB8Aiwwh/+1TNuXDJZ7PDD4bnnPGfYrGwGEgAP\nA7dKWgi8mD4WEfH1wb6opJHA94G9SKaMnR4R/znY7Vl2Ro9OQuCII+DZZz1n2KxMBvIj8MPALcBW\n/OUQ0GavKP8NYEFEvBXYB7ivye1Zhjxn2Kyc2j4QRtL2wLKIeHM/6/gw0ALynGGzYmvZYaCSLpH0\nzn6W/5WkSxstEBgLPC7pUkm/lvQ9ScN7rrTupXWD2LRlacSI5CSxNWtg+nR48cXNP8fMiqu/ofB7\nA2eRHAH0APAnkstA7AzsSXJ46Fcj4p6GXlB6B/Bz4N0R8UtJFwLPRMQX6taJLd+7JW/c/o3svuPu\nfPDoD/LBYz84iLdnWfjzn2HGDFi/HubPh2HD8q7IrJpqtRq1Wu2V++eee25rLwYnaWtgP+BNJD/Y\n/hG4KyLWD6ZgSTsDP0+HyyPpPcDZEXFU3Trx9AtPc/Pvb2bh7xay8HcLGTZ0GFN2n8KUPabQNaaL\n4Vu+qmmwNvKcYbPiadnVQNMZAK+PiBU9Ht8LWBMRjzdR5G3ARyLiQUlzgGER8fd1yzf5DSAiWL56\n+Sth8Os//ZqDRh/ElN2nMHWPqezx2j0GW4o14eWX4eMfh+XLk11DO+yQd0Vm1dbKALgKuDgilvZ4\n/BDgjIg4uYki9yU5DHQr4CHgtIhYW7e83x+B165f6+6gICKSk8RuuQVuugl22invisyqq5UBcGdE\nTOxj2YqI2GuQNW6+qAaOAnJ3kL8ImDMnuZrokiWw6655V2RWTa0MgAcjYnyjy1qhmcNA3R3k54IL\nkquIes6wWT5aGQALgIsi4sYej08FPhERU5qqtL+iWnQegLuD9rv4YvjKVzxn2CwPrQyA8cANJId7\n3klyCOhE4N3AURHxQPPl9lFURieCuTtoD88ZNstHS2cCS3oNcDLwNpJDQFcA8yLihWYL7beoNpwJ\n7O4gW54zbNZ+mQ+Fb4c8LgXh7qD1brwRTjvNc4bN2qWVu4CeI/nW35tMB8LkfS0gdwetc+utyWUj\n5s6FKZn9amRm4A4gE+4OmuM5w2bt4QDImLuDwVm2DKZOhfPPh5kz867GrJwcAG3m7mDg7r03mTP8\nj//oOcNmWXAA5MjdweY99FAyYnLWLM8ZNms1B0CBuDvo3cqVSQicfLLnDJu1kgOgoNwdbGr16mTO\n8KRJnjNs1ioOgA7h7gCefBImT4aJE+Gii2CLgUyoNrM+OQA6UJW7A88ZNmsdB0AJVK07WLcOjj8e\nttkG5s2DrbbKuyKzzuQAKJmqdAeeM2zWPAdAyZW5O/CcYbPmOAAqpIzdgecMmw2eA6DCytIdeM6w\n2eA4AAzo/O7Ac4bNGucAsF51anfgOcNmA+cAsM3qtO7Ac4bNBsYBYA3rhO7Ac4bNNq9jAkDSEOBX\nwKqIOLrHMgdATorcHXjOsFn/OikAPgNMBLaLiGN6LHMAFETRugPPGTbrW0cEgKTdgH8DvgR8xh1A\nZyhKd+A5w2a965QAuBr4MjAC+JwDoDPl2R14zrDZqzUaAG2/9qKko4A1EbFMUldf682ZM+eV211d\nXXS53y+c7V+zPdMmTGPahGmbdAfn3X4e06+Znml3cOCBsGhRMmd43TrPGbZqqtVq1Gq1QT+/7R2A\npC8DM4ENwGtIuoD5EfGhunXcAXS4dnUHnjNs9hcdsQvolReXDsW7gEov698OPGfYLNGJAfBZHwVU\nLVl0B54zbNZhAdAXB0B1tLI78JxhqzoHgHW0ZrsDzxm2KnMAWGkMtjvwnGGrKgeAlVYj3YHnDFsV\nOQCsEgbSHXjOsFWNA8Aqqa/uYNKbp3DFl7p4bOVwzxm20nMAWOX11h2MfOYghvx+Ctf881TeMbZY\n8w7MWsUBYNbD2vVrWfz7mzn3ioXc//JCdhs1jKP2LNa8A7NWcACY9SECzpkTXLZoOTO+sJA71hRr\n3oFZsxwAZptRP2d4x12KNe/ArBkOALMB6G3OcFHmHZgNlgPAbIA2N2e4aNPQzDbHAWDWgIHOGXZ3\nYJ3AAWDWoMHMGXZ3YEXkADAbhGbmDLs7sKJwAJgNUqvmDLs7sLw4AMyasGxZMmf4/PNbM2fY3YG1\nkwPArElZzhl2d2BZcgCYtUA75gy7O7BWcwCYtUi75wy7O7BmOQDMWiivOcPuDmwwHABmLVaEOcPu\nDmwgHABmGSjSnGF3B9YXB4BZRoo6Z9jdgXXriACQNBq4DNgJCOC7EfHNuuUOACukos8ZdndQbZ0S\nADsDO0fEbyRtC9wJHBcR96XLHQBWWBs2wKmnwqpVFH7OsLuDaumIAHhVEdK1wL9ExJL0vgPACu3l\nl+HjH4fly5PLSe+wQ94VbZ67g/LruACQNAZYCuwVEc+ljzkArPAikpPEbrkFbroJdtop74oa4+6g\nfDoqANLdPzXgixFxbd3jcc4557yyXldXF10DvU6vWRtFwJw5cNVVyYjJXXfNu6LBcXfQmWq1GrVa\n7ZX75557bmcEgKQtgRuAhRFxYY9l7gCso9TPGR47Nu9qmufuoDN1RAcgScBc4ImI+HQvyx0A1nF6\nmzNcBu4OOkenBMB7gNuA5SSHgQLMjoj/SJc7AKwjbW7OcBm4OyiujgiAzXEAWCcb6JzhMnB3UCwO\nALMCGMyc4TJwd5AvB4BZQTQzZ7gM3B20nwPArEBaNWe4DNwdZM8BYFYwrZ4zXAbuDrLhADAroCzn\nDJeBu4PWcACYFVQ75gyXgbuDwXMAmBVYu+cMl4G7g4FzAJgVXF5zhsvA3UH/HABmHaAIc4bLwN3B\nphwAZh2iSHOGy8DdgQPArKMUdc5wGVSxO3AAmHWYos8ZLoOqdAcOALMO1ElzhsugrN2BA8CsQ3Xi\nnOEyKFN34AAw62CdPme4DDq5O3AAmHW4sswZLoNO6w4cAGYlUbY5w2VQ9O7AAWBWImWdM1wGRewO\nHABmJVOFOcNlUITuwAFgVkJVmjNcBnl1Bw4As5Kq6pzhMmhXd+AAMCuxqs8ZLoMsu4OOCABJk4EL\ngSHA9yPivB7LHQBmffCc4XJpZXfQaAC0/SK0koYA/wpMBiYAMyS9td115KlWq+VdQqb8/rJ14IGw\naFHym8Dll7d223m/t6wV8f1t/5rtmTZhGt8/5vus+vQq5p84n11H7Mp5t5/HqK+OYvIPJ/ON//wG\nv33ity1/7TyuQv4u4HcR8YeIeAn4EXBsDnXkpoj/CFvJ7y97++2XnB8wezZ8+9ut224R3luWiv7+\nJLHvzvty9nvOZumpS1n16VV8dP+Pcveau+ma28Xu39ydTyz4BAt+u4B1L61r+vXyuAL5rsDKuvur\ngL/KoQ6zjjZhAixdmoyYfP55zxkuo+7uYNqEaZv8dnDe7ecx/ZrpTf92kEcAeOe+WYuMGwe33ZaE\nQAR87nN5V2RZ6e4OujuE+t8Ozr/jfIYNbfw64m3/EVjSAcCciJic3p8NbKz/IViSQ8LMbBAKfRSQ\npKHAA8D7gP8H/AKYERH3tbUQM7OKa/suoIjYIGkWsIjkMNAf+MPfzKz9CnkimJmZZS+Pw0D7JWmy\npPsl/VbS3+ddTytJGi3pVkkrJN0j6W/zrqnVJA2RtEzS9XnX0mqSRkq6RtJ9ku5Nf88qDUmz03+b\nd0u6UtLWedfUDEmXSFot6e66x3aUtFjSg5JukjQyzxqb0cf7uyD993mXpJ9I2r6/bRQqACpwkthL\nwKcjYi/gAOBvSvb+AD4J3Es5j/b6BrAgIt4K7AOUZtelpDHAR4H9I2Jvkt2zJ+VZUwtcSvJZUu9s\nYHFEjAeWpPc7VW/v7yZgr4jYF3gQmN3fBgoVAJT8JLGIeCwifpPefo7kA+QN+VbVOpJ2A6YC3wcG\nfCRCJ0i/SR0cEZdA8ltWRKzNuaxWeobkC8rw9ECN4cCj+ZbUnIj4GfBUj4ePAeamt+cCx7W1qBbq\n7f1FxOKI2Jje/S9gt/62UbQA6O0ksVIOxEu/ce1H8pdUFv8HOAvYuLkVO9BY4HFJl0r6taTvSSru\ncNgGRcSTwNeAR0iOzns6Im7Ot6pMjIqI1ent1cCoPIvJ2OnAgv5WKFoAlHG3watI2ha4Bvhk2gl0\nPElHAWsiYhkl+/afGgrsD1wcEfsDz9PZuw82IWkc8ClgDElXuq2kD+RaVMbSK06W8jNH0j8AL0bE\nlf2tV7QAeBQYXXd/NEkXUBqStgTmAz+MiGvzrqeF3g0cI+lhYB7wXkmX5VxTK60CVkXEL9P715AE\nQlm8A7gjIp6IiA3AT0j+TstmtaSdASTtAqzJuZ6Wk3Qqya7YzQZ40QLgV8AeksZI2gqYDvw055pa\nRpKAHwD3RsSFedfTShHx+YgYHRFjSX48vCUiPpR3Xa0SEY8BKyWNTx86HFiRY0mtdj9wgKRh6b/T\nw0l+zC+bnwKnpLdPAcr0Jaz7UvtnAcdGxPrNrV+oAEi/eXSfJHYvcFXJThI7CPggcFh6qOSy9C+s\njMrYWn8CuELSXSRHAX0553paJiLuAi4j+RK2PH34u/lV1DxJ84A7gD0lrZR0GvDPwBGSHgTem97v\nSL28v9OBfwG2BRanny8X97sNnwhmZlZNheoAzMysfRwAZmYV5QAwM6soB4CZWUU5AMzMKsoBYGZW\nUQ4AKwVJt0ia1OOxT3UfBy1pvKQF6WWA75R0laSdJHVJWlt3XsYySe9Ln7O1pKWStpD0+7qTwLq3\nf6Gkv5O0j6QftO/dmrWGA8DKYh6vvnzxdOBKSa8BbgQuiojxETERuBh4PckJa7dFxH51f5akz/8A\ncEN6dcVNti9pC2AaMC8ilgPjJO3UaNGSdmj0OWat4gCwspgPHJleyrj7aqtviIj/C5wM3B4RN3av\nHBFLI2IF/V+4bgZwXXp7HkmgdDsE+GNEdF+9diFwwiDq/qWkH0o6LL0Eg1nbOACsFNLLGf+C5CJY\nkHxbvyq9vRdwZz9PP7jHLqCx6XCit0XEg+n27wE2Stqnbvv1V1r8BUkoNGo8SbjMAlakU7l2GcR2\nzBrmALAyqd9NMz29362/b9c/67EL6GHgdcCzvW0/DYdjgavrlv2J5FLKDYmIjRFxY0RMIwmQccAj\nkt7R6LbMGuUAsDL5KfA+SfsBw9PZBJBctXPiILbXMzR+BJxIcqXM5RHxeI91X3VhrXRu6zJJN0ja\nTdJv0vsfq1tne0l/ndY/DjgNuLvntsxabWjeBZi1SkQ8J+lWklmp9btnrgRmS5oaEQsAJB0CPNHP\n5v6b5KqK9dv/vaT/JrmCZM/Lee8C/LGXmk7v8dDb6+9I+iHJfOgfAzMj4qF+ajJrKXcAVjbzgL2p\n2/2TXhf9KOAT6WGgK4AzgMdJvrX3/A3g+Ih4GbhH0p69bH9PkoEp9d4F3DaIeq8CxqfzFPzhb23l\ny0Gb9SGdrDQqIs4bwLo14MSIKN2EKSsvdwBmfbuS5NDSfg/PTI8M+p0//K3TuAMwM6sodwBmZhXl\nADAzqygHgJlZRTkAzMwqygFgZlZRDgAzs4r6/zHkewBZmE7oAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f1e723cb6d0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show,legend\n", + "print \"(i) DC load line:\"\n", + "print \"Maximum VCE = VCC = 12V, which locates the point B(OB = 12V) of the d.c. load line\"\n", + "IC=12/(2*10**3) #in Ampere\n", + "x1=IC*10**3 #in mA\n", + "print \"Maximum IC = VCC / (RC+RE) = %0.2f mA\"%x1\n", + "\n", + "print \"(ii) Operating point Q\"\n", + "V2=((4*10**3)/(12*10**3))*12 #in V\n", + "print \"Therefore, V2 = %0.2f V\"%V2\n", + "print \" V2 = VBE + IE*RE\"\n", + "IE=(4-0.7)/(1*10**3) #in Ampere\n", + "x2=IE*10**3 #in mA\n", + "print \"Therefore, IE = V2-VBE / RE = %0.2f mA\"%x2\n", + "IC=x2 #in mA\n", + "print \" IC = IE =%0.2f mA\"%IC\n", + "VCE=12-((3.3*10**-3)*(2*10**3)) #in volts\n", + "print \"VCE = VCC - IC(RC+RE) = %0.2f V\"%VCE\n", + "print \"(iii) AC load line\"\n", + "Rac=1.5/2.5 #in k-ohm\n", + "print \"AC load, Ra.c.(k-ohm) = RC || RL = %0.2f kohm\"%Rac\n", + "VCE=5.4+((3.3*10**-3)*(0.6*10**3)) #in Volts\n", + "print \"Therefore, maximum VCE = VCEQ + ICQ*Ra.c. = %0.2f V\"%VCE\n", + "IC=(3.3*10**-3)+(5.4/(0.6*10**3)) #in Ampere\n", + "x3=IC*10**3 #in mA\n", + "print \"Maximum IC(mA) = ICQ + VCEQ/Ra.c. = %0.2f mA\"%x3\n", + "x=[7.38,0]\n", + "y=[0,12.3]\n", + "plot(x,y)\n", + "x1=[12,0]\n", + "y1=[0,6]\n", + "plot(x1,y1)\n", + "title(\"Fig.6.23(b)\")\n", + "xlabel(\"VCE(V) -->\")\n", + "ylabel(\"IC(mA) -->\")\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 171 Example 6.25." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The collector resistance is, RC = (VCC - VCEQ) / ICQ =4.00 kohm\n", + "The base current is, IBQ = ICQ / beta =10.00 uA\n", + "The base resistance is, RB = (VCC - VBE(on)) / IBQ =0.93 Mohm\n" + ] + } + ], + "source": [ + "ICQ=1*10**-3\n", + "VCEQ=6.\n", + "VCC=10.\n", + "beta=100.\n", + "VBE=0.7\n", + "RC=(VCC-VCEQ)/ICQ\n", + "RC1=RC*10**-3\n", + "RC2=round(RC1)\n", + "print \"The collector resistance is, RC = (VCC - VCEQ) / ICQ =%0.2f kohm\"%RC2\n", + "IBQ=ICQ/beta\n", + "IBQ1=IBQ*10**6\n", + "print \"The base current is, IBQ = ICQ / beta =%0.2f uA\"%IBQ1\n", + "RB=(VCC-VBE)/IBQ\n", + "RB1=RB*10**-6\n", + "print \"The base resistance is, RB = (VCC - VBE(on)) / IBQ =%0.2f Mohm\"%RB1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 171 Example 6.26." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VBB = IB*RB + VBE(on) + IE*RE\n", + "Also, IE = IB + IC = IB + beta*IB = (1 + beta)*IB\n", + "The base current, IB = (VBB - VBE(on)) / (RB + ((1+beta)*RE)) =53.35 uA\n", + "Therefore, IC = beta*IB =5.33 mA\n", + "IE = IC + IB = 5.39 mA\n", + "VCE = VCC - (IC*RC) - (IE*RE) =4.63 V\n", + "The Q point is at\n", + "VCEQ = 4.63 V\n", + "and ICQ(mA) = 5.33 mA\n" + ] + } + ], + "source": [ + "beta=100\n", + "VBE=0.7\n", + "VCC=10\n", + "RB=20*10**3\n", + "RC=0.4*10**3\n", + "RE=0.6*10**3\n", + "VBB=5\n", + "print \"VBB = IB*RB + VBE(on) + IE*RE\"\n", + "print \"Also, IE = IB + IC = IB + beta*IB = (1 + beta)*IB\"\n", + "IB=(VBB-VBE)/(RB+((1+beta)*RE))\n", + "IB1=IB*10**6\n", + "print \"The base current, IB = (VBB - VBE(on)) / (RB + ((1+beta)*RE)) =%0.2f uA\"%IB1\n", + "IC=beta*IB\n", + "IC1=IC*10**3\n", + "print \"Therefore, IC = beta*IB =%0.2f mA\"%IC1\n", + "IE=IC+IB\n", + "IE1=IE*10**3\n", + "print \"IE = IC + IB = %0.2f mA\"%IE1\n", + "VCE=VCC-(IC*RC)-(IE*RE)\n", + "print \"VCE = VCC - (IC*RC) - (IE*RE) =%0.2f V\"%VCE\n", + "print \"The Q point is at\"\n", + "print \"VCEQ = %0.2f V\"%VCE\n", + "print \"and ICQ(mA) = %0.2f mA\"%IC1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 172 Example 6.27. " + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) DC load line:\n", + "When VCE = 0, IC = VCC/RC = 0.00 mA\n", + "\n", + "(ii) Operating point Q:\n", + "Therefore, IB = VCC-VBE / RB = 10.00 uA\n", + "Therefore, IC(mA) = beta*IB = 1.00 mA\n", + " VCE = VCC - IC*RC = 03 V\n", + "Therefore operating point is VCEQ = 3 V and ICQ = 1 mA\n", + "\n", + "(iii) Stability factor: S = 1 + beta = 1 + 100 = 101\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF/NJREFUeJzt3Xu0pXV93/H3R8EavGGYgKhEaJQoLi9IQglEPTHGcKsa\n44hYl0WTStKCacTUkOUq0xW7HGtbjTFeGmGCRgddMBIQoibqQTSKOoBSuXgJEi6KwiCIY1ot3/6x\nn4HDmXPZ55znOXvvZ79fa+3Fvvz283yfxazz3Z/n91xSVUiSptMDRl2AJGl0bAKSNMVsApI0xWwC\nkjTFbAKSNMVsApI0xWwCEpDkpCSXdrTse5L8y0U+m03yO83zf5Pk413UIC3GJqCJk+TbSXYmuSvJ\nHUk+l+TkJJk37vAkFzdjbk9yWZKTRlT2Yqp5UFUfqKrfHHE9mjI2AU2iAo6vqocDPw9sBl4PnLlr\nQJJfAT4JfBr4haraB/h94Oj1L1caXzYBTbSq+mFVXQicAPzbJIc0H70F+KuqektV7WjGXl5VLx1m\nuUmOTPKlJD9I8sWmqez67JVJrm6SyLeSvHred/8oyS1JbkryqmG3Zf4uqWY30slJvt6kmXfMG/+q\npo4dST6W5OeHXZe0i01AvVBVXwJuAp6ZZC/gCODc1Swryc8CFwFvA34W+J/ARc37ALcCxzVJ5JXA\nW5Mc2nz3aOA04LnAwc1/1+I44JeApwIvSfKbzXpeAJwO/BawAbgU2LrGdWkK2QTUJ7cw+KP9SAb/\ntr+zyuUcB1zX7KO/p6rOAa4F/jVAVV1cVdc3zz8DfAJ4ZvPdlwBnVdXVVbUTOGPVWzOwuaruqqob\nGezaelrz/u8Bb6qq66rqHuBNwNOTHLDG9WnK2ATUJ48FdjSPe4D9V7mcRwP/NO+9G5r3SXJMki80\nk813AMcC+zTj9gdunPO9+ctZqe/Oeb4TeGjz/HHAnzW7ie4Abm/ef8wa16cpYxNQLyT5ZQZ/pD9b\nVT8GPg+8eJWLu5nBH9m5HgfcnORfAOcB/w3Yt6oeCVwM7Doy6TsMJqt36Wo//T8Br66qR855PKSq\nvtDR+tRTNgFNqgAkeXiS4xnsD39/VX2t+fw/AScleV2SfZqxT0syzH7zvwUOTnJikj2SnAA8Efgo\n8KDmcRtwT5JjgOfN+e6Hm/U+qZmbWOvuoLnCfc3m3cCf7JoIT/KIJBtbXJemhE1Ak+rCJHcx+EV8\nOvA/GEzSAlBVnwee0zy+leR24D0MJnwXMvd4/duB4xlM8N4GvI7BIak7quqHwGsY/LHfAZwI/M2c\n9X6MwYTyp4CvMzhMddibdtxbw5zXi9V4PvBm4JwkdwJXAZ5joBVLVzeVaSao3gfsy+Af7v+qqrcv\nMO7twDEM9neeVFVXdFKQJGk3e3S47J8Af1hVVyZ5KLA9yd9V1TW7BiQ5Fnh8VT0hyb8C3sXg0D5J\n0jrobHdQVX23qq5snt8NXENzdMUczwfObsZcBuydZL+uapIk3d+6zAkkORA4FLhs3keP4f6H093E\n4DA/SdI66LwJNLuCzgX+oEkEuw2Z97qbSQpJ0m66nBMgyZ4Mjqn+6+ZohvluBuae4fjY5r35y7Ex\nSNIqVNX8H9r301kSaC7reyZwdVW9bZFhFwCvaMYfAfygqm5daOB55xX771+89rXFj35UVPXnccYZ\nZ4y8BrfN7XP7+vcYRpe7g44CXg78WpIrmscxzVURT4bBNViAf0zyTQbHcP/7xRb2ohfBV78Kt9wC\nT386fO5zHVYuSVOis91BVfVZhmgyVXXKsMvcsAG2boVt22DjRjjxRPjTP4W99lpTqZI0tSbyjOG+\npYKZmZlRl9CZPm8buH2Tru/bN4zOzhhuU5JarM5t2+CUU0wFkjRfEmpUE8PrpW+pQJLW08QngblM\nBZJ0n6lIAnOZCiRpZXqVBOYyFUiadlOXBOYyFUjS8nqbBOYyFUiaRlOdBOYyFUjSwqYiCcxlKpA0\nLUwCCzAVSNJ9pi4JzGUqkNRnJoFlmAokTbupTgJzmQok9Y1JYAVMBZKmkUlgAaYCSX1gElglU4Gk\naWESWIapQNKkMgm0wFQgqc9MAitgKpA0SUwCLTMVSOobk8AqmQokjTuTQIdMBZL6wCTQAlOBpHFk\nElgnpgJJk8ok0DJTgaRxYRIYAVOBpEliEuiQqUDSKJkERsxUIGncmQTWialA0nozCYwRU4GkcWQS\nGAFTgaT1YBIYU6YCSePCJDBipgJJXTEJTABTgaRRMgmMEVOBpDaZBCaMqUDSejMJjClTgaS1MglM\nMFOBpPVgEpgApgJJq2ES6AlTgaSumAQmjKlA0rBMAj1kKpDUJpPABDMVSFqKSaDnTAWS1sok0BOm\nAknzmQSmiKlA0mp02gSSnJXk1iRXLfL5TJI7k1zRPN7QZT19t2EDbN0KmzfDxo1w2mmwc+eoq5I0\nzrpOAluAo5cZc0lVHdo83thxPVPBVCBpWJ02gaq6FLhjmWFL7q/S6pgKJA1j1HMCBRyZ5CtJLk5y\nyIjr6R1TgaSl7DHi9V8OHFBVO5McA5wPHLzQwE2bNt37fGZmhpmZmfWorxd2pYJt2wapwCOIpH6a\nnZ1ldnZ2Rd/p/BDRJAcCF1bVU4YYez1wWFXtmPe+h4i25Lbb4NRTYft22LIFjjpq1BVJ6srYHyKa\nZL8kaZ4fzqAp7Vjma1oD5wokzdX1IaJbgX8AfjHJjUleleTkJCc3Q14MXJXkSuBtwEu7rEf3ca5A\nEnjGsPBsY6mvxn53kMaDqUCaXiYB3Y+pQOoPk4BWzFQgTReTgBZlKpAmm0lAa2IqkPrPJKChmAqk\nyWMSUGtMBVI/mQS0YqYCaTKYBNQJU4HUHyYBrYmpQBpfJgF1zlQgTTaTgFpjKpDGi0lA68pUIE0e\nk4A6YSqQRs8koJExFUiTwSSgzpkKpNEwCWgsmAqk8WUS0LoyFUjrxySgsWMqkMaLSUAjYyqQumUS\n0FgzFUijZxLQWDAVSO0zCWhimAqk0Ri6CST5rSQP67IYTbcNG2DrVti8GTZuhNNOg507R12V1G9D\nNYEkvwB8GHh5t+VIpgJpPQ01J5DkvzZPf6OqDu+2pAXX75zAlHKuQFq9VuYEkuwBbAQ2A3cmeVpL\n9UnLMhVI3Rpmd9AxwOer6ofAFuB3ui1Juj/nCqTuDNMEfhc4q3n+EeD4JA/qriRpYaYCqX1LNoEk\njwQeUVWXAFTVj4FzgV9fh9qk3ZgKpHZ5spgm1m23wamnwvbtsGULHHXUqCuSxkvrJ4sl2bSmiqQW\nmQqktVvpGcMv6KQKaQ2cK5BWb6VNYMlYIY2KqUBanZU2gWd0UoXUElOBtDIrbQJf7qQKqUWmAml4\n7g5Sb5kKpOWttAlc1EkVUkdMBdLSVtoELuukCqljpgJpYSs6WSzJFVV1aIf1LLZeTxZTa7wyqaaF\ndxaTFmAqkO6z0iRweFV9scN6FluvSUCdMBWoz1pPAqNoAFKXTAWadl5ATmqYCtQ3zglIK2Aq0DQa\n9h7DTwIOBO4Bbqiqazuua/76TQJaV6YC9cEwSWDRJpDkIOAPgWOBm4FbGJwxvD/wWOCjwFur6tst\n1rxYLTYBrTvvV6BJt9Ym8GHgL4HZqvrJvM/2BH4N+N2qeskSBZwFHAd8r6qessiYtzO4j/FO4KSq\numKBMTYBjYypQJNqTXMCVfWSqvq7+Q1gzuefWKoBNLYARy9R4LHA46vqCcCrgXctszxp3TlXoD4b\nemI4A89NciaD3UPLqqpLgTuWGPJ84Oxm7GXA3kn2G7Ymab14DSL11bJNIMmvNLtsbgDOBy4FntjS\n+h8D3Djn9U0M5huksWQqUN/ssdgHSd4E/Dbwj8CHgU3A9qr6q5ZrmL+/asGd/5s2bbr3+czMDDMz\nMy2XIQ1nVyrYtm2QCpwr0LiYnZ1ldnZ2Rd9ZamL4+8B2Bvvp/7aq/m+S66vqoBWtIDkQuHChieEk\n72Yw8XxO8/pa4NlVdeu8cU4Mayx5BJHG2VpPFtsf+DPgRcC3krwf+JnmyKC2XAC8AiDJEcAP5jcA\naZw5V6BJN+zJYg8GjgdOBH4V+GRVvWyI720Fng1sAG4FzgD2BKiq9zRj3sHgCKIfAa+sqssXWI5J\nQGPPVKBxs6bzBJZY6MOBF1bV+9ZS3ArXaRPQxPC8Ao2LVppAkkcy2GVzIHMmkqvq1BZqHIpNQJPG\nVKBx0FYT+DzweeAqBtcOClBVdXZbhS7HJqBJZSrQKLXVBC6vqme0WtkK2QQ0yUwFGpW2msDrgLuA\nC4H/s+v9qtrRRpHDsAmoD0wFWm9t3U/gn4G3AF9gcN7AduDLay9Pmi6ebaxxNEwSuB745aq6bX1K\nWrAGk4B6xVSg9dBWEvgG8ON2SpIEpgKNj2GSwPnAk4FPc9+cQFXVazqubW4NJgH1lqlAXWlrYvik\n5umugR4iKrXMI4jUhU7OGB4Fm4CmhalAbVrTnECSi5JsTLLbP8MkeyU5IcnFbRQqacC5Aq23pS4l\nvS9wCvBi4P8B32GwK+hRDC4f8SHgL6rq+50XaRLQFDIVaK1a2x2U5FHA45qXN1TVd1uob2g2AU0r\n5wq0Fs4JSD1hKtBqtHWegKQRc65AXTEJSBPGVKBhrfXooH2TPHmB95+c5OfaKFDSypkK1Kaldgf9\nOYPbQs63D4N7D0saEe9trLYs1QQeX1WXzH+zqj4DPK27kiQNy1SgtVqqCTxsic/2bLsQSatjKtBa\nLNUEvpnkuPlvJjkW+FZ3JUlaDVOBVmOpM4YPBj4K/AODG8kEOAw4Eji+qq5btyI9OkhaEY8gEqzx\n6KCq+jrwVOAzwEEMzhi+BHjqejYASStnKtCwPE9A6jlTwfRa63kCdyf54SKPu9ovV1IXTAVaiklA\nmiKmgunitYMk3Y+pQPOZBKQpZSroP5OApEWZCgQmAUmYCvrKJCBpKKaC6WUSkHQ/poL+MAlIWjFT\nwXQxCUhalKlgspkEJK2JqaD/TAKShmIqmDwmAUmtMRX0k0lA0oqZCiaDSUBSJ0wF/WESkLQmpoLx\nZRKQ1DlTwWQzCUhqjalgvJgEJK0rU8HkMQlI6oSpYPRMApJGxlQwGUwCkjpnKhgNk4CksWAqGF+d\nNoEkRye5Nsk3krx+gc9nktyZ5Irm8YYu65E0Ohs2wNatsHkzbNwIp50GO3eOuip11gSSPBB4B3A0\ncAhwYpInLTD0kqo6tHm8sat6JI0HU8F46TIJHA58s6q+XVU/Ac4BXrDAuCX3V0nqH1PB+OiyCTwG\nuHHO65ua9+Yq4MgkX0lycZJDOqxH0pgxFYzeHh0ue5jDeS4HDqiqnUmOAc4HDl5o4KZNm+59PjMz\nw8zMTAslShq1Xalg27ZBKvAIotWbnZ1ldnZ2Rd/p7BDRJEcAm6rq6Ob16cA9VfXmJb5zPXBYVe2Y\n976HiEpT4Lbb4NRTYft22LIFjjpq1BVNtlEfIvpl4AlJDkzyIOAE4IJ5Be6XJM3zwxk0pR27L0rS\nNHCuYP111gSq6qfAKcDHgauBD1XVNUlOTnJyM+zFwFVJrgTeBry0q3okTQ7nCtaPZwxLGmuebbx6\no94dJElrZirolklA0sQwFayMSUBSr5gK2mcSkDSRTAXLMwlI6i1TQTtMApImnqlgYSYBSVPBVLB6\nJgFJvWIquI9JQNLUMRWsjElAUm9NeyowCUiaaqaC5ZkEJE2FaUwFJgFJapgKFmYSkDR1piUVmAQk\naQGmgvuYBCRNtT6nApOAJC1j2lOBSUCSGn1LBSYBSVqBaUwFJgFJWkAfUoFJQJJWaVpSgUlAkpYx\nqanAJCBJLehzKjAJSNIKTFIqMAlIUsv6lgpMApK0SuOeCkwCktShPqQCk4AktWAcU4FJQJLWyaSm\nApOAJLVsXFKBSUCSRmCSUoFJQJI6NMpUYBKQpBEb91RgEpCkdbLeqcAkIEljZBxTgUlAkkZgPVKB\nSUCSxtS4pAKTgCSNWFepwCQgSRNglKnAJCBJY6TNVGASkKQJs96pwCQgSWNqranAJCBJE2w9UoFJ\nQJImwGpSgUlAknqiq1RgEpCkCTNsKhh5EkhydJJrk3wjyesXGfP25vOvJDm0y3okqQ/aTAWdNYEk\nDwTeARwNHAKcmORJ88YcCzy+qp4AvBp4V1f1jLPZ2dlRl9CZPm8buH2TbpK3b8MG2LoVNm+GjRvh\ntNNg586VL6fLJHA48M2q+nZV/QQ4B3jBvDHPB84GqKrLgL2T7NdhTWNpkv8hLqfP2wZu36Trw/at\nNRV02QQeA9w45/VNzXvLjXlshzVJUu+sJRV02QSGncmdP2nhDLAkrcL8VDCMzo4OSnIEsKmqjm5e\nnw7cU1VvnjPm3cBsVZ3TvL4WeHZV3TpvWTYGSVqF5Y4O2qPDdX8ZeEKSA4FbgBOAE+eNuQA4BTin\naRo/mN8AYPmNkCStTmdNoKp+muQU4OPAA4Ezq+qaJCc3n7+nqi5OcmySbwI/Al7ZVT2SpN1NxMli\nkqRujPVlI4Y52WxSJTkrya1Jrhp1LV1IckCSTyf5WpL/neQ1o66pTUkenOSyJFcmuTrJm0ZdU9uS\nPDDJFUkuHHUtbUvy7SRfbbbvi6Oup21J9k5ybpJrmn+fRyw6dlyTQHOy2XXAc4GbgS8BJ1bVNSMt\nrCVJngncDbyvqp4y6nraluRRwKOq6sokDwW2Ay/sy/8/gCR7VdXOJHsAnwVeV1WfHXVdbUnyWuAw\n4GFV9fxR19OmJNcDh1XVjlHX0oUkZwOXVNVZzb/Ph1TVnQuNHeckMMzJZhOrqi4F7hh1HV2pqu9W\n1ZXN87uBa4BHj7aqdlXVriOxH8Rg3qs3f1CSPBY4Fngvux/G3Re93K4kjwCeWVVnwWB+drEGAOPd\nBIY52UwToDlC7FDgstFW0q4kD0hyJXAr8OmqunrUNbXorcAfAfeMupCOFPD3Sb6c5N+NupiWHQR8\nP8mWJJcn+cski154epybwHjup9KKNLuCzgX+oEkEvVFV91TV0xmc5f6sJDMjLqkVSY4HvldVV9DT\nX8vAUVV1KHAM8B+a3bN9sQfwDOCdVfUMBkde/vFig8e5CdwMHDDn9QEM0oAmRJI9gfOAv66q80dd\nT1eaqH0R8EujrqUlRwLPb/abbwWek+R9I66pVVX1nea/3wc+wmD3c1/cBNxUVV9qXp/LoCksaJyb\nwL0nmyV5EIOTzS4YcU0aUpIAZwJXV9XbRl1P25JsSLJ38/xngN8ArhhtVe2oqj+pqgOq6iDgpcCn\nquoVo66rLUn2SvKw5vlDgOcBvTlKr6q+C9yY5ODmrecCX1tsfJdnDK/JYiebjbis1iTZCjwb2CfJ\njcB/rqotIy6rTUcBLwe+mmTXH8fTq+pjI6ypTfsDZyd5AIMfU++vqk+OuKau9G3X7H7ARwa/U9gD\n+EBVfWK0JbXuVOADzQ/ob7HEibhje4ioJKl747w7SJLUMZuAJE0xm4AkTTGbgCRNMZuAJE0xm4Ak\nTTGbgHojyaeSPG/ee/8xyTub5wcnuTjJ15NsT/KhJPsmmUlyZ3NZ4V2P5yyyjr9P8vDmMtkLrqtZ\n5sXdbanUHpuA+mQrgzNc5zoB+GCSBzO4tMNfVNXBVXUY8E7g5xicDPWZqjp0zuNT8xfeNIbrquou\n4IOLrauqvgfckWTRU/WH0ZzZuudaliEtxyagPjkPOK65fvquq5c+urnG/8uAz1XVRbsGV9UlVfU1\nhr9I2suAvxliXTC4xMn8e2qv1C8C1yV5S5InrnFZ0oJsAuqN5gYhX2RwHXwY/FL/UPP8yQxubLOY\nZ87bHXTQAmOOYnBNq+XWRfPZs1a1IY3mKp5PBa4F3pvk0iQnNde7kVphE1DfzN0ldELzepelfvFf\nOm930PULjHn0vDtRLbWu7wAHrqjyBVTV3VV1ZlX9KvDq5nHLWpcr7WITUN9cAPx6kkOBvZpf0zC4\niuJh67QuGDSc3S7MleSNTdK4fNdNaZrX/yXJC+ckkWfM+c6BSc4AtgE3AL/d8nZoio3tVUSl1aiq\nu5N8GtjCYPJ2lw8Cpyc5tqouBkjyLOD2FSz+liT7VNXty6wLBlcZvWGB+t4AvGHOW0+fN+Te+y40\n8wzvBfYBzgKOrKre3pJUo2ESUB9tBZ7CnN0zVfXPwPHAqc0hol8Dfg/4PoNf7PPnBF60wHI/y+43\njtltXY3Dgc+scTt+Cvxxs3vqz20A6oKXkpaG1Nw+8oSq+v0hxn4A+O/zdhFJY8ckIA2pqmYZ3O3u\nYUuNS7IvsLcNQJPAJCBJU8wkIElTzCYgSVPMJiBJU8wmIElTzCYgSVPMJiBJU+z/A2fypGng+WKg\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f1e72288a10>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show,legend\n", + "print \"(i) DC load line:\"\n", + "IC=6/(3*10**3) #in Ampere\n", + "x1=IC*10**3 #in mA\n", + "print \"When VCE = 0, IC = VCC/RC = %0.2f mA\"%x1\n", + "print \"\"\n", + "print \"(ii) Operating point Q:\"\n", + "IB=(6-0.7)/(530*10**3)\n", + "x2=IB*10**6\n", + "print \"Therefore, IB = VCC-VBE / RB = %0.2f uA\"%x2\n", + "IC=100*10*10**-6 # in Ampere\n", + "x3=IC*10**3 # in mA\n", + "print \"Therefore, IC(mA) = beta*IB = %0.2f mA\"%x3\n", + "VCE=6-((1*10**-3)*(3*10**3)) # in volts\n", + "print \" VCE = VCC - IC*RC = %02.f V\"%VCE\n", + "print \"Therefore operating point is VCEQ = 3 V and ICQ = 1 mA\"\n", + "print \"\"\n", + "print \"(iii) Stability factor: S = 1 + beta = 1 + 100 = 101\"\n", + "x=[6,0]\n", + "y=[0,2]\n", + "plot(x,y)\n", + "title(\"DC load line\")\n", + "xlabel(\"VCE (V) --->\")\n", + "ylabel(\"IC (mA) --->\")\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 172 Example 6.28." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) To determine RB :\n", + "RC = (VCC - VCE) / IC =5.00 kohm\n", + "IB = IC / beta = 10.00 uA\n", + "RB = (VCC - VBE - (IC*RC)) / IB = 630.00 kohm\n", + "(b) Stability factor, S =(1 + beta) / (1 + (beta*(RC / (RC+RB)))) =56.51\n", + "(c) VCC = (beta*IB*RC) + (IB*RB) + VBE\n", + " = IB * ((beta*RC) + RB) + VBE\n", + "IB = (VCC-VBE) / ((beta*RC)+RB) =12.84 uA\n", + "IC = beta*IB =0.64 mA\n", + "VCE = VCC - (IC*RC) =8.79 V\n", + "Therefore the coordinates of new operating point are :\n", + "VCEQ(V) =8.79 V\n", + "ICQ =0.64 mA\n" + ] + } + ], + "source": [ + "VCC=12.\n", + "beta=100.\n", + "VBE=0.7\n", + "print \"(a) To determine RB :\"\n", + "VCE=7\n", + "IC=1*10**-3\n", + "RC=(VCC-VCE)/IC\n", + "RC1=RC*10**-3\n", + "print \"RC = (VCC - VCE) / IC =%0.2f kohm\"%RC1\n", + "IB=IC/beta\n", + "IB1=IB*10**6\n", + "print \"IB = IC / beta = %0.2f uA\"%IB1\n", + "RB=(VCC-VBE-(IC*RC))/IB\n", + "RB1=RB*10**-3\n", + "print \"RB = (VCC - VBE - (IC*RC)) / IB = %0.2f kohm\"%RB1\n", + "S=(1+beta)/(1+(beta*(RC/(RC+RB))))\n", + "print \"(b) Stability factor, S =(1 + beta) / (1 + (beta*(RC / (RC+RB)))) =%0.2f\"%S\n", + "beta1=50\n", + "print \"(c) VCC = (beta*IB*RC) + (IB*RB) + VBE\"\n", + "print \" = IB * ((beta*RC) + RB) + VBE\"\n", + "IB=(VCC-VBE)/((beta1*RC)+RB)\n", + "IB1=IB*10**6\n", + "print \"IB = (VCC-VBE) / ((beta*RC)+RB) =%0.2f uA\"%IB1\n", + "IC=beta1*IB\n", + "IC1=IC*10**3\n", + "print \"IC = beta*IB =%0.2f mA\"%IC1\n", + "VCE=VCC-(IC*RC)\n", + "print \"VCE = VCC - (IC*RC) =%0.2f V\"%VCE\n", + "print \"Therefore the coordinates of new operating point are :\"\n", + "print \"VCEQ(V) =%0.2f V\"%VCE\n", + "print \"ICQ =%0.2f mA\"%IC1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 173 Example 6.29." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RB = VCEQ / IB =32.00 kohm\n", + "Stability factor, S = (1+beta) / 1 + (beta*(RC/RC+RB)) =56.90\n" + ] + } + ], + "source": [ + "VCC=12.\n", + "RC=250.\n", + "IB=0.25*10**-3\n", + "beta=100.\n", + "VCEQ=8.\n", + "RB=VCEQ/IB\n", + "RB1=RB*10**-3\n", + "print \"RB = VCEQ / IB =%0.2f kohm\"%RB1\n", + "S=(1+beta)/(1+(beta*(RC/(RC+RB))))\n", + "print \"Stability factor, S = (1+beta) / 1 + (beta*(RC/RC+RB)) =%0.2f\"%S" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 173 Example 6.30." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For a germanium transistor, VBE=0.3V. As alpha=0.985\n", + "beta = alpha / ( 1 - alpha) =66.00\n", + "(a) To find the coordinates of the operating point\n", + "Referring to fig. 6.29,\n", + "Thevenin voltage, VT = (R2 / (R1+R2)) * VCC =0.00 V\n", + "Thevenin resistance, RB = (R1 * R2) / (R1 + R2) = 14.74 kohm\n", + "Therefore, IC =-0.13 mA\n", + "Since IB is very small, IC ~ IE = 1.73 mA\n", + "Therefore, VCE = VCC - (IC*RC) - (IE*RE) =16.67 V\n", + "Therefore, the coordinates of the operating point are :\n", + "IC = -0.13 mA\n", + "VCE =16.67 V\n", + "(b) To find the stability factor S\n", + "S =7.24\n" + ] + } + ], + "source": [ + "VCC=16\n", + "RC=3*10**3\n", + "RE=2*10**3\n", + "R1=56*10**3\n", + "R2=20*10**3\n", + "alpha=0.985\n", + "VBE=0.3\n", + "print \"For a germanium transistor, VBE=0.3V. As alpha=0.985\"\n", + "beta=alpha/(1-alpha)\n", + "beta1=round(beta)\n", + "print \"beta = alpha / ( 1 - alpha) =%0.2f\"%beta1\n", + "print \"(a) To find the coordinates of the operating point\"\n", + "print \"Referring to fig. 6.29,\"\n", + "VT=(R2/(R1+R2))*VCC\n", + "print \"Thevenin voltage, VT = (R2 / (R1+R2)) * VCC =%0.2f V\"%VT\n", + "RB=(R1*R2)/(R1+R2)\n", + "RB1=RB*10**-3\n", + "print \"Thevenin resistance, RB = (R1 * R2) / (R1 + R2) = %0.2f kohm\"%RB1\n", + "IC=(VT-VBE)/((RB/beta)+(RE/beta)+RE)\n", + "IC1=IC*10**3\n", + "print \"Therefore, IC =%0.2f mA\"%IC1\n", + "print \"Since IB is very small, IC ~ IE = 1.73 mA\"\n", + "IE=IC\n", + "VCE=VCC-(IC*RC)-(IE*RE)\n", + "print \"Therefore, VCE = VCC - (IC*RC) - (IE*RE) =%0.2f V\"%VCE\n", + "print \"Therefore, the coordinates of the operating point are :\"\n", + "print \"IC = %0.2f mA\"%IC1\n", + "print \"VCE =%0.2f V\"%VCE\n", + "print \"(b) To find the stability factor S\"\n", + "S = (1+beta)*((1+(RB/RE))/(1+beta+(RB/RE)))\n", + "print \"S =%0.2f\"%S" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 174 Example 6.31." + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) To determine RE,\n", + "VCE = VCC - (IC*RC) - (IE*RE)\n", + "Therefore, RE = 1.30 kohm\n", + "(b) To determine R1 and R2,\n", + "Therefore, RB(k-ohm) = ((RE*beta) / (((1+beta)/S)-1)) - RE = 5.92 kohm\n", + "Therefore, R2 = 6.50 kohm\n", + "Therefore, R1 = R2 / ((R2/RB)-1)= 64.00 kohm\n" + ] + } + ], + "source": [ + "VCE=12\n", + "IC=2*10**-3\n", + "VCC=24\n", + "VBE=0.7\n", + "beta=50\n", + "RC=4.7*10**3\n", + "S=5.1\n", + "print \"(a) To determine RE,\"\n", + "print \"VCE = VCC - (IC*RC) - (IE*RE)\"\n", + "RE = (VCC - (IC*RC) - VCE)/IC #IC=IE\n", + "RE1=RE*10**-3\n", + "print \"Therefore, RE = %0.2f kohm\"%RE1\n", + "\n", + "print \"(b) To determine R1 and R2,\"\n", + "RB=((RE*beta)/(((1+beta)/S)-1))-RE\n", + "RB1=(RB*10**-3)\n", + "print \"Therefore, RB(k-ohm) = ((RE*beta) / (((1+beta)/S)-1)) - RE = %0.2f kohm\"%RB1\n", + "R2=0.1*beta*RE\n", + "R2_1=R2*10**-3\n", + "print \"Therefore, R2 = %0.2f kohm\"%R2_1\n", + "R1=(5.9*10**3*R2)/(R2-(5.9*10**3)) #RB=5.9\n", + "R1_1=round(R1*10**-3)\n", + "print \"Therefore, R1 = R2 / ((R2/RB)-1)= %0.2f kohm\"%R1_1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 174 Example 6.32." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RTH = R1 || R2 = 10.00 kohm\n", + "VTH = (R2 / (R1+R2)) * VCC = 1.79 V\n", + "IBQ = (VTH-VBE(on)) / (RTH + ((1+beta)*RE)) =15.46 uA\n", + "Therefore, ICQ = beta * IBQ =2.32 mA\n", + "IEQ = IBQ + ICQ = 2.33 mA\n", + "VCEQ = VCC - (ICQ*RC) - (IEQ*RE) = 4.43 V\n", + "The Q point is at :\n", + "VCEQ = 4.43 V\n", + "ICQ = 2.32 mA\n" + ] + } + ], + "source": [ + "R1=56*10**3\n", + "R2=12.2*10**3\n", + "RC=2*10**3\n", + "RE=400\n", + "VCC=10\n", + "VBE=0.7\n", + "beta=150\n", + "RTH=(R1*R2)/(R1+R2)\n", + "RTH1=round(RTH*10**-3)\n", + "print \"RTH = R1 || R2 = %0.2f kohm\"%RTH1\n", + "VTH=(R2/(R1+R2))*VCC\n", + "print \"VTH = (R2 / (R1+R2)) * VCC = %0.2f V\"%VTH\n", + "IBQ=(VTH-VBE)/(RTH+((1+beta)*RE))\n", + "IBQ1=IBQ*10**6\n", + "print \"IBQ = (VTH-VBE(on)) / (RTH + ((1+beta)*RE)) =%0.2f uA\"%IBQ1\n", + "ICQ=beta*IBQ\n", + "ICQ1=ICQ*10**3\n", + "print \"Therefore, ICQ = beta * IBQ =%0.2f mA\"%ICQ1\n", + "IEQ=IBQ+ICQ\n", + "IEQ1=IEQ*10**3\n", + "print \"IEQ = IBQ + ICQ = %0.2f mA\"%IEQ1\n", + "VCEQ=VCC-(ICQ*RC)-(IEQ*RE)\n", + "print \"VCEQ = VCC - (ICQ*RC) - (IEQ*RE) = %0.2f V\"%VCEQ\n", + "print \"The Q point is at :\"\n", + "print \"VCEQ = %0.2f V\"%VCEQ\n", + "print \"ICQ = %0.2f mA\"%ICQ1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 174 Example 6.33. " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IB = 128.90 uA\n", + "IC = 7.73 mA \n", + "VCE = 5.75 V\n", + "To find stability factor, (S):\n", + "Stability factor for voltage divider bias is\n", + "S =(1+beta)/(1+(beta*(RE/(RE+RB)))) = where RB = R1 || R2 = 61\n" + ] + } + ], + "source": [ + "VCC=22\n", + "RC=2*10**3\n", + "beta=60\n", + "VBE=0.6\n", + "R1=100*10**3\n", + "R2=5*10**3\n", + "RE=100\n", + "a=VCC-VBE-((R1*VCC)/(R1+R2))\n", + "c=(((R1*R2)/(R1+R2))+((1+beta)*RE))\n", + "IB=a/c\n", + "IB1=IB*10**6\n", + "print \"IB = %0.2f uA\"%IB1\n", + "IC=beta*IB\n", + "IC1=IC*10**3\n", + "print \"IC = %0.2f mA \"%IC1\n", + "VCE = VCC - (IC*RC) - ((1+beta)*IB*RE)\n", + "print \"VCE = %0.2f V\"%VCE\n", + "print \"To find stability factor, (S):\"\n", + "print \"Stability factor for voltage divider bias is\"\n", + "RB=(R1*R2)/(R1+R2)\n", + "S=(1+beta)/(1+(beta*(RE/(RE+RB))))\n", + "print \"S =(1+beta)/(1+(beta*(RE/(RE+RB)))) = where RB = R1 || R2 = %0.f\"%S" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 175 Example 6.34." + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IB = 46.50 uA\n", + "Hence, IC = beta * IB =2.33 mA\n", + "VCE = VCC - IC*RC = 5.35 V\n", + "Therefore,the co-ordinates of the new operating point are:\n", + "VCEQ = 5.35 V\n", + "ICQ = 2.33 mA\n", + "To find the stability factor S\n", + "S = (1+beta) / (1 + (beta*[RC/(RC+RB)])) =51.00\n" + ] + } + ], + "source": [ + "VCC=10\n", + "RC=2*10**3\n", + "beta=50\n", + "RB=100*10**3\n", + "VBE=0.7 #collector to base resistor\n", + "IB=(VCC-VBE)/(RB+(beta*RC))\n", + "IB1=IB*10**6\n", + "print \"IB = %0.2f uA\"%IB1\n", + "IC=beta*IB\n", + "IC1=IC*10**3\n", + "print \"Hence, IC = beta * IB =%0.2f mA\"%IC1\n", + "VCE=VCC-(IC*RC)\n", + "print \"VCE = VCC - IC*RC = %0.2f V\"%VCE\n", + "print \"Therefore,the co-ordinates of the new operating point are:\"\n", + "print \"VCEQ = %0.2f V\"%VCE\n", + "print \"ICQ = %0.2f mA\"%IC1\n", + "print \"To find the stability factor S\"\n", + "S=(1+beta)/(1+(beta*(RC/(RC+RB))))\n", + "print \"S = (1+beta) / (1 + (beta*[RC/(RC+RB)])) =%0.2f\"%S" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch7_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch7_1.ipynb new file mode 100644 index 00000000..6c83db1c --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch7_1.ipynb @@ -0,0 +1,502 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-7: Field Effect Transistor " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 180 Example 7.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VGS = 12 V, IG = 10**-9 A\n", + "Therefore, gate-to-source resistance = VGS / IG =12000.00 Mohm\n" + ] + } + ], + "source": [ + "VGS=12.\n", + "IG=10**-9\n", + "GSR=VGS/IG\n", + "GSR1=GSR*10**-6\n", + "print \"VGS = 12 V, IG = 10**-9 A\"\n", + "print \"Therefore, gate-to-source resistance = VGS / IG =%0.2f Mohm\"%GSR1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 181 Example 7.2." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "delta_VGS = 4 - 3.9 = 0.1 V\n", + "delta_ID = 1.6 - 1.3 = 0.3 mA\n", + "Therefore, transconductance, gm = delta_ID / delta_VGS =3.00 m-mho\n" + ] + } + ], + "source": [ + "delta_VGS=0.1\n", + "delta_ID=0.3*10**-3\n", + "print \"delta_VGS = 4 - 3.9 = 0.1 V\"\n", + "print \"delta_ID = 1.6 - 1.3 = 0.3 mA\"\n", + "gm=delta_ID/delta_VGS\n", + "gm1=gm*10**3\n", + "print \"Therefore, transconductance, gm = delta_ID / delta_VGS =%0.2f m-mho\"%gm1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 184 Example 7.3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ID = IDSS*[1 - (VGS/VGS_off)]**2\n", + "Therefore, VGS =-6.00 V\n", + "VP = |VGS_off| = 6.00 V\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "VGSoff=-6\n", + "IDSS=8\n", + "ID=4\n", + "print \"ID = IDSS*[1 - (VGS/VGS_off)]**2\"\n", + "VGS=(1-sqrt(ID/IDSS))*VGSoff\n", + "print \"Therefore, VGS =%0.2f V\"%VGS\n", + "VP=abs(VGSoff)\n", + "print \"VP = |VGS_off| = %0.2f V\"%VP" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 184 Example 7.4." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The minimum value of VDS for pinch-off to occur for VGS = -2 V is\n", + "VDSmin = VGS - VP =3.00 V\n", + "IDS = IDSS * [1-(VGS/VP)]**2 =8.00 mA\n" + ] + } + ], + "source": [ + "VGS=-2\n", + "VP=-5\n", + "IDSS=8*10**-3\n", + "print \"The minimum value of VDS for pinch-off to occur for VGS = -2 V is\"\n", + "VDSmin=VGS-VP\n", + "print \"VDSmin = VGS - VP =%0.2f V\"%VDSmin\n", + "IDS=IDSS*(1-(VGS/VP))**2\n", + "IDS1=IDS*10**3\n", + "print \"IDS = IDSS * [1-(VGS/VP)]**2 =%0.2f mA\"%IDS1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 186 Example 7.5." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of drain current at Q-point,\n", + "IDQ = IDSS / 2 =5.00 mA\n", + "and the value of drain-to-source at Q-point,\n", + "VDSQ = VDD / 2 = 10.00 V\n", + "Therefore, the operating point is at:\n", + "VDS =10.00 V\n", + "ID(mA) =5.00 mA\n", + "Therefore, RD = 2.50 kohm\n", + "The source voltage or voltage across the source resistor RS is\n", + " VS = -VGS = -3 V\n", + "Also,VS = ID*RS \n", + "Therefore, RS = 750.00 ohm\n" + ] + } + ], + "source": [ + "IDSS=10*10**-3\n", + "VGS=-3\n", + "ID=4*10**-3\n", + "VDD=20.\n", + "print \"The value of drain current at Q-point,\"\n", + "IDQ=IDSS/2\n", + "IDQ1=IDQ*10**3\n", + "print \"IDQ = IDSS / 2 =%0.2f mA\"%IDQ1\n", + "print \"and the value of drain-to-source at Q-point,\"\n", + "VDSQ=VDD/2.\n", + "print \"VDSQ = VDD / 2 = %0.2f V\"%VDSQ\n", + "print \"Therefore, the operating point is at:\"\n", + "print \"VDS =%0.2f V\"%VDSQ\n", + "print \"ID(mA) =%0.2f mA\"%IDQ1\n", + "RD=(VDD-VDSQ)/ID\n", + "RD1=RD*10**-3\n", + "print \"Therefore, RD = %0.2f kohm\"%RD1\n", + "print \"The source voltage or voltage across the source resistor RS is\"\n", + "VS=-VGS\n", + "print \" VS = -VGS = -3 V\"\n", + "print \"Also,VS = ID*RS \"\n", + "RS=VS/ID\n", + "print \"Therefore, RS = %0.2f ohm\"%RS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 186 Example 7.6." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that, ID = IDSS * [1 - (VGS/VP)]**2\n", + "Substituting the given values, we get\n", + " ID =40.00 mA\n", + "Therefore, RS = |VGSQ / ID| =125.00 ohm\n" + ] + } + ], + "source": [ + "IDSS=40*10**-3\n", + "VP=-10\n", + "VGSQ=-5\n", + "print \"We know that, ID = IDSS * [1 - (VGS/VP)]**2\"\n", + "print \"Substituting the given values, we get\"\n", + "ID = IDSS*(1-(VGSQ/VP))**2\n", + "ID1=ID*10**3\n", + "print \" ID =%0.2f mA\"%ID1\n", + "RS=abs(VGSQ/ID)\n", + "print \"Therefore, RS = |VGSQ / ID| =%0.2f ohm\"%RS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 187 Example 7.7. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "From fig.7.13.,\n", + " VGG = VDD*(R2 / (R1+R2)) = 10.00 V\n", + "Therefore, ID=3.39 or 4.72 mA\n", + "As ID = 4.72mA > 4mA = IDSS, this value is inappropriate. So, IDQ=3.39 mA is selected.\n", + "Therefore,\n", + " VGSQ = VGG - (IDQ*RS) =-0.17 V\n", + "and VDSQ = VDD - (IDQ*(RD+RS)) =10.75 V\n", + "Then, VDGQ = VDSQ - VGSQ = 10.92 V\n", + "which is grater than |VP| = 2 V. Hence, the FET is in the pinch-off region.\n" + ] + } + ], + "source": [ + "from sympy import symbols,solve\n", + "VDD=24.\n", + "R2=8.57*10**6\n", + "R1=12*10**6\n", + "VP=-2\n", + "IDSS=4*10**-3\n", + "RD=910.\n", + "RS=3*10**3\n", + "print \"From fig.7.13.,\"\n", + "VGG=round(VDD*(R2/(R1+R2)))\n", + "print \" VGG = VDD*(R2 / (R1+R2)) = %0.2f V\"%VGG\n", + "x=symbols('x')\n", + "p1=solve(9*x**2-73*x+144,x)\n", + "ans1=p1[0]\n", + "ans2=p1[1]\n", + "print \"Therefore, ID=%0.2f or %0.2f mA\"%(ans1,ans2)\n", + "print \"As ID = 4.72mA > 4mA = IDSS, this value is inappropriate. So, IDQ=3.39 mA is selected.\"\n", + "print \"Therefore,\"\n", + "IDQ=3.39*10**-3\n", + "VGSQ=VGG-(IDQ*RS)\n", + "print \" VGSQ = VGG - (IDQ*RS) =%0.2f V\"%VGSQ\n", + "VDSQ=VDD-(IDQ*(RD+RS))\n", + "print \"and VDSQ = VDD - (IDQ*(RD+RS)) =%0.2f V\"%VDSQ\n", + "VDGQ = VDSQ - VGSQ\n", + "print \"Then, VDGQ = VDSQ - VGSQ = %0.2f V\"%VDGQ\n", + "print \"which is grater than |VP| = 2 V. Hence, the FET is in the pinch-off region.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 190 Example 7.8." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Assume that the JFET is biased in the saturation region. Then the dc drain current is given by\n", + " ID = IDSS*(1-(VGS/VP))**2\n", + "Therefore, VGS = -1.03 V\n", + "The voltage at the source terminal is\n", + " VS = (ID*RS) - 5 = -2.50 V\n", + "The gate voltage is\n", + " VG = VGS + VS = -3.53 V\n", + "The gate voltage is\n", + " VG = ((R2 / (R1 + R2))*10) - 5\n", + "Therefore, R2 = 17.70 kohm\n", + "and R1(k-ohm) = 102.30 kohm\n", + "The drain-to-source voltage is\n", + "VDS = 5 - ID*RD - ID*RS - (-5)\n", + " RD = 0.50 kohm\n", + "VGS - VP = 2.47 \n", + "Here, since VDS > (VGS-VP), the JFET is biased in the saturation region, which satisfies the initial assumption\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "IDSS=10*10**-3\n", + "VP=-3.5\n", + "Rth=120*10**3 #R1+R2=120 k-ohm\n", + "ID=5*10**-3\n", + "VDS=5\n", + "RS=0.5*10**3\n", + "print \"Assume that the JFET is biased in the saturation region. Then the dc drain current is given by\"\n", + "print \" ID = IDSS*(1-(VGS/VP))**2\"\n", + "VGS=VP*(1-(sqrt(ID/IDSS)))\n", + "print \"Therefore, VGS = %0.2f V\"%VGS\n", + "# textbook answer is wrong\n", + "print \"The voltage at the source terminal is\"\n", + "VS=(ID*RS)-5\n", + "print \" VS = (ID*RS) - 5 = %0.2f V\"%VS\n", + "print \"The gate voltage is\"\n", + "VG=VGS+VS\n", + "print \" VG = VGS + VS = %0.2f V\"%VG\n", + "print \"The gate voltage is\"\n", + "print \" VG = ((R2 / (R1 + R2))*10) - 5\"\n", + "R2=(Rth*(VG+5))/10\n", + "R2_1=R2*10**-3\n", + "print \"Therefore, R2 = %0.2f kohm\"%R2_1\n", + "# textbook answer is wrong\n", + "R1=Rth-R2\n", + "R1_1=R1*10**-3\n", + "print \"and R1(k-ohm) = %0.2f kohm\"%R1_1\n", + "# textbook answer is wrong\n", + "print \"The drain-to-source voltage is\"\n", + "print \"VDS = 5 - ID*RD - ID*RS - (-5)\"\n", + "RD=(10-VDS-(ID*RS))/ID\n", + "RD1=RD*10**-3\n", + "print \" RD = %0.2f kohm\"%RD1\n", + "x=VGS-VP\n", + "print \"VGS - VP = %0.2f \"%x # textbook has taken a different value hence the wrong answer in textbook\n", + "print \"Here, since VDS > (VGS-VP), the JFET is biased in the saturation region, which satisfies the initial assumption\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 191 Example 7.9." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VGSt = 3.50 V\n", + "Therefore,\n", + " VDSt = VGSt - VTN = 2.00 V\n", + "Therefore, RD(k-ohm) = (VDD - VDSQ) / IDQ = 3.33 kohm\n", + "Then, IDQ = KN*(VGSQ-VTN)**2\n", + "Therefore, VGSQ = 2.72 V\n", + " R1 = 439.56 kohm\n", + " R2 = 129.45 kohm\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "KN=1*10**-3\n", + "lamda=0.01\n", + "Ri=100*10**3\n", + "IDt=4*10**-3\n", + "IDQ=1.5*10**-3\n", + "VTN=1.5\n", + "VDD=12.\n", + "VDSQ=7.\n", + "VGSt=sqrt(IDt/KN)+VTN\n", + "print \"VGSt = %0.2f V\"%VGSt\n", + "print \"Therefore,\"\n", + "VDSt=VGSt-VTN\n", + "print \" VDSt = VGSt - VTN = %0.2f V\"%VDSt\n", + "RD=(VDD-VDSQ)/IDQ\n", + "RD1=RD*10**-3\n", + "print \"Therefore, RD(k-ohm) = (VDD - VDSQ) / IDQ = %0.2f kohm\"%RD1\n", + "print \"Then, IDQ = KN*(VGSQ-VTN)**2\"\n", + "VGSQ=(sqrt(IDQ/KN))+VTN\n", + "print \"Therefore, VGSQ = %0.2f V\"%VGSQ\n", + "R1=1200/2.73\n", + "print \" R1 = %0.2f kohm\"%R1\n", + "R2=R1/((12/2.73)-1)\n", + "print \" R2 = %0.2f kohm\"%R2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 192 Example 7.10." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ID = 0.40 mA\n", + "The d.c. drain-to-source voltage is\n", + " VDS = VDD - ID*RS = 3.00 V\n", + "Then, VDSsat = VGS - VTN = 2.00 V\n", + "Since VDS > VDSsat, the MOSFET is biased in the saturation region\n" + ] + } + ], + "source": [ + "\n", + "VTN=-2\n", + "KN=0.1*10**-3\n", + "VDD=5\n", + "RS=5*10**3\n", + "VGS=0\n", + "ID=KN*(-VTN)**2\n", + "ID1=ID*10**3\n", + "print \"ID = %0.2f mA\"%ID1\n", + "print \"The d.c. drain-to-source voltage is\"\n", + "VDS=VDD-(ID*RS)\n", + "print \" VDS = VDD - ID*RS = %0.2f V\"%VDS\n", + "VDSsat=VGS-VTN\n", + "print \"Then, VDSsat = VGS - VTN = %0.2f V\"%VDSsat\n", + "print \"Since VDS > VDSsat, the MOSFET is biased in the saturation region\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch8_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch8_1.ipynb new file mode 100644 index 00000000..2b4eb01f --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch8_1.ipynb @@ -0,0 +1,174 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-8 : Thyristors " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 210 Example 8.1." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We have,\n", + " V1 = Vm*sin(theta)\n", + "Therefore,\n", + " Firing angel, theta =0.01\n", + " Conduction angle = 180 - theta = 179.99\n", + "Average voltage, Vav = (Vm/2pi) * (1+cos(theta))\n", + " Vav = 70.03 V\n", + "Average current, Iav = Vav / RL =0.70 A\n", + "Power output = Vav*Iav = 49.04 W\n", + "The time during which the SCR remains OFF is\n", + " t = 1.67 ms\n" + ] + } + ], + "source": [ + "from math import asin,pi,cos\n", + "Vm=220.\n", + "V1=110.\n", + "RL=100.\n", + "print \"We have,\"\n", + "print \" V1 = Vm*sin(theta)\"\n", + "print \"Therefore,\"\n", + "x=asin(V1/Vm)*pi/180\n", + "print \" Firing angel, theta =%0.2f\"%x\n", + "ca=180-x\n", + "print \" Conduction angle = 180 - theta = %0.2f\"%ca\n", + "print \"Average voltage, Vav = (Vm/2pi) * (1+cos(theta))\"\n", + "Vav = (Vm/(2*pi))*(1+cos(x*pi/180))\n", + "print \" Vav = %0.2f V\"%Vav\n", + "Iav=Vav/RL\n", + "print \"Average current, Iav = Vav / RL =%0.2f A\"%Iav\n", + "po=Vav*Iav\n", + "print \"Power output = Vav*Iav = %0.2f W\"%po\n", + "print \"The time during which the SCR remains OFF is\"\n", + "t=1./(2*6*50)\n", + "t1=t*10**3\n", + "print \" t = %0.2f ms\"%t1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 211 Example 8.2." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For an SCR full wave rectifier,\n", + " Vdc = (Vm/pi)*(1+cos(theta))\n", + "Therefore, theta =0.02\n", + "For 50Hz, T = 20 ms for 360\n", + "Therefore t = (20*10**3/360)*63.34 = 1.07e-03 ms\n", + "Load current, Iav = Vav / RL = 15.00 A\n" + ] + } + ], + "source": [ + "from math import sqrt,pi,acos\n", + "Vdc=150.\n", + "Vm=230*sqrt(2)\n", + "RL=10.\n", + "print \"For an SCR full wave rectifier,\"\n", + "print \" Vdc = (Vm/pi)*(1+cos(theta))\"\n", + "x=acos(((Vdc*pi)/Vm)-1)*pi/180\n", + "print \"Therefore, theta =%0.2f\"%x\n", + "print \"For 50Hz, T = 20 ms for 360\"\n", + "t = (20./360)*x\n", + "print \"Therefore t = (20*10**3/360)*63.34 = %0.2e ms\"%t\n", + "Iav=Vdc/RL\n", + "print \"Load current, Iav = Vav / RL = %0.2f A\"%Iav" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 212 Example 8.3." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "As the supply voltage is 400 sin 314t, Vm = 400 V\n", + "Peak inverse voltage(PIV) = sqrt(3)*Vm =692.82 V\n", + "RMS value of current = 20 V\n", + "Average value of current, Iav = RMS value/form factor =18.00 A\n", + "Power rating of the SCR(kW) = PIV * Iav =12.47 kW\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "Vm=400\n", + "PIV=sqrt(3)*Vm\n", + "print \"As the supply voltage is 400 sin 314t, Vm = 400 V\"\n", + "print \"Peak inverse voltage(PIV) = sqrt(3)*Vm =%0.2f V\"%PIV\n", + "RMS=20\n", + "ff=1.11\n", + "Iav=round(RMS/ff)\n", + "print \"RMS value of current = 20 V\"\n", + "print \"Average value of current, Iav = RMS value/form factor =%0.2f A\"%Iav\n", + "pr=PIV*Iav\n", + "pr1=pr*10**-3\n", + "print \"Power rating of the SCR(kW) = PIV * Iav =%0.2f kW\"%pr1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch9_1.ipynb b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch9_1.ipynb new file mode 100644 index 00000000..0ce15525 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/Ch9_1.ipynb @@ -0,0 +1,1478 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ch-9 : Midband Analysis of Small Signal Amplifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 221 Example 9.1." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Exact analysis :\n", + "Current gain, AI = -hfe / 1+hoe*RL = -48.78\n", + "Input resistance, Ri = hie - (hfe*hre / hoe+(1/RL)) = 600.00 ohm\n", + "Voltage gain, Av = AI*(RL/Ri) = -49.26 \n", + " Yo = hoe - (hfe*hre / hie+Rs) = 0.00 mho\n", + " Ro(k-ohm) = 1/Yo = 51.43 kohm\n", + " Approximate analysis\n", + " AI = -hfe = -50\n", + " Ri = hie = 1 k-ohm\n", + " Av = - hfe*RL / hie = -50.00\n", + " Ro = infinity\n" + ] + } + ], + "source": [ + "print \" Exact analysis :\"\n", + "AI=(-50)/(1+((25*10**-6)*(10**3)))\n", + "print \"Current gain, AI = -hfe / 1+hoe*RL = %0.2f\"%AI\n", + "Ri=1000-((50*2*10**-4)/((25*10**-6)+(1/1000))) #in ohm\n", + "print \"Input resistance, Ri = hie - (hfe*hre / hoe+(1/RL)) = %0.2f ohm\"%Ri\n", + "Av=(-48.78)*(1000/990.24)\n", + "print \"Voltage gain, Av = AI*(RL/Ri) = %0.2f \"%Av\n", + "Yo=(25*10**-6)-((100*10**-4)/(1000+800)) #in mho\n", + "print \" Yo = hoe - (hfe*hre / hie+Rs) = %0.2f mho\"%Yo\n", + "Ro=1/Yo #in ohm\n", + "x1=Ro*10**-3\n", + "print \" Ro(k-ohm) = 1/Yo = %0.2f kohm\"%x1\n", + "print \" Approximate analysis\"\n", + "print \" AI = -hfe = -50\"\n", + "print \" Ri = hie = 1 k-ohm\"\n", + "Av=-(50.*1000)/1000\n", + "print \" Av = - hfe*RL / hie = %0.2f\"%Av\n", + "print \" Ro = infinity\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 223 Example 9.2." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(i) For RE = 200 ohm,\n", + " hoe*(RE + RC) = 0.05 \n", + "Since hoe*(RE+RC) < 0.1, the approximate model is permissible.\n", + " AI = -hfe = -55\n", + " Ri = hie + (1+hfe)*RE = 12.50 kohm\n", + " Av = AI * (RC/Ri) = 0.00 \n", + "Output resistance, Ro = infinity\n", + "Output terminal resistance, RoT = Ro || RC = 2 k-ohm\n", + "(ii) For RE = 400 ohm\n", + " hoe*(RE + RC) = 0.05 \n", + "Since hoe*(RE+RC) < 0.1, the approximate model is permissible.\n", + " AI = -hfe = -55\n", + " Ri(k-ohm) = hie + (1+hfe)*RE = 23.70 kohm\n", + " Av = AI * (RC/Ri) = -4.64\n", + "Output resistance, Ro = infinity\n", + "Output terminal resistance, RoT = Ro || RC = 2 k-ohm\n", + "(iii) For RE = 1000 ohm\n", + "Since hoe*(RE+RC) < 0.1, the approximate model is permissible.\n", + " AI = -hfe = -55\n", + " Ri(k-ohm) = hie + (1+hfe)*RE = 57.30 kohm\n", + " Av = AI * (RC/Ri) = 0.00 \n", + "Output resistance, Ro = infinity\n", + "Output terminal resistance, RoT = Ro || RC = 2 k-ohm\n" + ] + } + ], + "source": [ + "RC=2*10**3\n", + "hie=1300\n", + "hre=2*10**-4\n", + "hfe=55\n", + "hoe=22*10**-6\n", + "print \"(i) For RE = 200 ohm,\"\n", + "RE=200\n", + "x=hoe*(RE+RC)\n", + "print \" hoe*(RE + RC) = %0.2f \"%x\n", + "print \"Since hoe*(RE+RC) < 0.1, the approximate model is permissible.\"\n", + "AI=-hfe\n", + "print \" AI = -hfe = -55\"\n", + "Ri=hie+((1+hfe)*RE)\n", + "x1=Ri*10**-3\n", + "print \" Ri = hie + (1+hfe)*RE = %0.2f kohm\"%x1\n", + "Av=AI*(RC/Ri)\n", + "print \" Av = AI * (RC/Ri) = %0.2f \"%Av\n", + "print \"Output resistance, Ro = infinity\"\n", + "print \"Output terminal resistance, RoT = Ro || RC = 2 k-ohm\"\n", + "print \"(ii) For RE = 400 ohm\"\n", + "RE=400.\n", + "x2=hoe*(RE+RC)\n", + "print \" hoe*(RE + RC) = %0.2f \"%x2\n", + "print \"Since hoe*(RE+RC) < 0.1, the approximate model is permissible.\"\n", + "AI=-hfe\n", + "print \" AI = -hfe = -55\"\n", + "Ri=hie+((1+hfe)*RE)\n", + "x3=Ri*10**-3\n", + "print \" Ri(k-ohm) = hie + (1+hfe)*RE = %0.2f kohm\"%x3\n", + "Av=AI*(RC/Ri)\n", + "print \" Av = AI * (RC/Ri) = %0.2f\"%Av\n", + "print \"Output resistance, Ro = infinity\"\n", + "print \"Output terminal resistance, RoT = Ro || RC = 2 k-ohm\"\n", + "print \"(iii) For RE = 1000 ohm\"\n", + "print \"Since hoe*(RE+RC) < 0.1, the approximate model is permissible.\"\n", + "AI=-hfe\n", + "print \" AI = -hfe = -55\"\n", + "Ri=1300+((1+55)*1000)\n", + "x3=Ri*10**-3\n", + "print \" Ri(k-ohm) = hie + (1+hfe)*RE = %0.2f kohm\"%x3\n", + "Av=AI*(RC/Ri)\n", + "print \" Av = AI * (RC/Ri) = %0.2f \"%Av\n", + "print \"Output resistance, Ro = infinity\"\n", + "print \"Output terminal resistance, RoT = Ro || RC = 2 k-ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 225 Example 9.3." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Conversion formulae :\n", + " hic = hie = 1200 ohm,\n", + " hfc = -(1+hfe) = -61.00 \n", + "hre = 1, hoc = hoe = 25 uA/V\n", + "Exact analysis :\n", + "Current gain, AI = -hfe / (1 + (hoc*RL)) = 58.10 \n", + "Input impedance, Ri(k-ohm) = hic + hrc*AI*RL = 117.39 kohm\n", + "Voltage gain, Av = AI*RL / Ri = 0.99 \n", + "Output resistance, Ro :\n", + " Yo = 1/Ro = hoc - (hfc*hrc/hic+Rs) =0.03 mho\n", + " Ro = 34.40 ohm\n", + "Approximate analysis :\n", + "Current gain, AI = 1 + hfe = 61.00 \n", + "Input impedance, Ri = hie + (1+hfe)RL = 123.20 kohm\n", + "Voltage gain, Av = 1 - hie/Ri = 0.99 \n", + "Output resistance, Ro:\n", + " Yo(mho) = (1+hfe) / (hie+RS) = 0.03 mho\n", + " Ro = 34.43 ohm \n" + ] + } + ], + "source": [ + "RS=900.\n", + "RL=2000.\n", + "hie=1200.\n", + "hre=2*10**-4\n", + "hfe=60.\n", + "hoe=25*10**-6\n", + "print \"Conversion formulae :\"\n", + "hic=hie\n", + "print \" hic = hie = 1200 ohm,\"\n", + "hfc=-(1+hfe)\n", + "print \" hfc = -(1+hfe) = %0.2f \"%hfc\n", + "print \"hre = 1, hoc = hoe = 25 uA/V\"\n", + "hoc=hoe\n", + "hre=1\n", + "print \"Exact analysis :\"\n", + "format(7)\n", + "AI=-hfc/(1+(hoc*RL))\n", + "print \"Current gain, AI = -hfe / (1 + (hoc*RL)) = %0.2f \"%AI\n", + "Ri=hic + (hre*AI*RL)\n", + "x1=Ri*10**-3\n", + "print \"Input impedance, Ri(k-ohm) = hic + hrc*AI*RL = %0.2f kohm\"%x1\n", + "Av=(AI*RL)/Ri\n", + "print \"Voltage gain, Av = AI*RL / Ri = %0.2f \"%Av\n", + "Yo=hoc-((hfc*hre)/(hic+RS))\n", + "print \"Output resistance, Ro :\"\n", + "print \" Yo = 1/Ro = hoc - (hfc*hrc/hic+Rs) =%0.2f mho\"%Yo\n", + "Ro=1./Yo\n", + "print \" Ro = %0.2f ohm\"%Ro\n", + "print \"Approximate analysis :\"\n", + "AI=1+hfe\n", + "print \"Current gain, AI = 1 + hfe = %0.2f \"%AI\n", + "Ri=hie+((1+hfe)*RL)\n", + "x2=Ri*10**-3\n", + "print \"Input impedance, Ri = hie + (1+hfe)RL = %0.2f kohm\"%x2\n", + "Av=1-(hie/Ri)\n", + "print \"Voltage gain, Av = 1 - hie/Ri = %0.2f \"%Av\n", + "print \"Output resistance, Ro:\"\n", + "Yo=(1+hfe)/(hie+RS)\n", + "print \" Yo(mho) = (1+hfe) / (hie+RS) = %0.2f mho\"%Yo\n", + "Ro=1./Yo\n", + "print \" Ro = %0.2f ohm \"%Ro" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 228 Example 9.4." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current gain, AI = -hfc / 1+hoc*RL''\n", + "where, RL'' = RE || RL = 0.05 kohm\n", + "Therefore, AI = 86.21 \n", + "Input resistance, Ri = hic + hrc*AI*RL'' = 691.06 kohm\n", + "Voltage gain, Av = AI*RL'' / Ri = 1.00 \n", + "Output resistance, Ro = 1 / Yo\n", + " Yo = hoc - (hfc*hrc)/(hic+RS'')\n", + "where, RS'' = RS || R1 || R2 = 0.91 kohm\n", + " Yo = 0.04 \n", + " Ro = 22.99 ohm\n", + " Ro'' = Ro || RLdash = 22.92 ohm\n" + ] + } + ], + "source": [ + "hic=1.4*10**3\n", + "hfc=-100\n", + "hrc=1\n", + "hoc=20*10**-6\n", + "R1=20*10**3\n", + "RS=1*10**3\n", + "R2=20*10**3\n", + "RE=10*10**3\n", + "RL=40*10**3\n", + "print \"Current gain, AI = -hfc / 1+hoc*RL''\"\n", + "RLd=(RE*RL)/(RE+RL)\n", + "x1=RLd*10**-3\n", + "print \"where, RL'' = RE || RL = %0.2f kohm\"%x\n", + "AI = -hfc / (1+(hoc*RLd))\n", + "print \"Therefore, AI = %0.2f \"%AI \n", + "Ri=hic+(hrc*AI*RLd)\n", + "x2=Ri*10**-3\n", + "print \"Input resistance, Ri = hic + hrc*AI*RL'' = %0.2f kohm\"%x2\n", + "Av=(AI*RLd)/Ri\n", + "print \"Voltage gain, Av = AI*RL'' / Ri = %0.2f \"%Av\n", + "print \"Output resistance, Ro = 1 / Yo\"\n", + "print \" Yo = hoc - (hfc*hrc)/(hic+RS'')\"\n", + "RSd=(RS*R1*R2)/((R1*R2)+(RS*R2)+(RS*R1))\n", + "x3=RSd*10**-3\n", + "print \"where, RS'' = RS || R1 || R2 = %0.2f kohm\"%x3\n", + "Yo = hoc - ((hfc*hrc)/(hic+RSd))\n", + "print \" Yo = %0.2f \"%Yo\n", + "# answer in textbook is wrong\n", + "Ro=1/0.0435\n", + "print \" Ro = %0.2f ohm\"%Ro\n", + "Rod=(Ro*RLd)/(Ro+RLd)\n", + "print \" Ro'' = Ro || RLdash = %0.2f ohm\"%Rod" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 229 Example 9.5." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Exact analysis\n", + "Current gain, AI = -hfb / (1 + hob*RL) = 0.98 \n", + "Input impedance, Ri(ohm) = hib + hrb*AI*RL = 22.29 ohm\n", + "Voltage gain, Av = AI*RL / Ri = 43.94 \n", + "Overall current gain, Avc = Av*Ri / Ri+Rs = 0.80 \n", + "Overall current gain, AIS = AI*Rs / Ri+Rs = 0.96 \n", + "Output admittance, Yo(u-mho) = hob * (hfb*hrb / hib+Rs) = 0.74 \n", + " Ro(M-ohm) = 1 / Yo = 1.35\n", + "Power gain, AP = Av*AI = 43.04 \n", + "Approximate analysis\n", + "Current gain, AI = -hfb = 0.98 \n", + "Input impedance, Ri = hib = 22.00 ohm\n", + "Reaaranging this equation, hfe = -hfb / 1+hfb = 49.00\n", + "From Table 9.3, hib = hie / 1+hfe\n", + " hie = hib(1+hfe) = 1100.00 ohm\n", + " Av = 44.55\n", + "Output impedance, Ro = infinity\n", + "Overall voltage gain, Avs = Av*Ri / Ri+Rs = 0.80 \n", + "Overall current gain, AIS = AI*Rs / Ri+Rs = 0.96 \n", + "Power gain, AP = Av*AI = 43.65\n" + ] + } + ], + "source": [ + "Rs=1200.\n", + "RL=1000.\n", + "hib=22.\n", + "hrb=3*10**-4\n", + "hfb=-0.98\n", + "hob=0.5*10**-6\n", + "print \" Exact analysis\"\n", + "AI=-hfb/(1+(hob*RL))\n", + "print \"Current gain, AI = -hfb / (1 + hob*RL) = %0.2f \"%AI\n", + "Ri=hib+(hrb*AI*RL)\n", + "print \"Input impedance, Ri(ohm) = hib + hrb*AI*RL = %0.2f ohm\"%Ri\n", + "Av=(AI*RL)/Ri\n", + "print \"Voltage gain, Av = AI*RL / Ri = %0.2f \"%Av\n", + "Avs=(Av*Ri)/(Ri+Rs)\n", + "print \"Overall current gain, Avc = Av*Ri / Ri+Rs = %0.2f \"%Avs\n", + "AIS=(AI*Rs)/(Ri+Rs)\n", + "print \"Overall current gain, AIS = AI*Rs / Ri+Rs = %0.2f \"%AIS\n", + "Yo=hob-((hfb*hrb)/(hib+Rs))\n", + "x1=Yo*10**6\n", + "print \"Output admittance, Yo(u-mho) = hob * (hfb*hrb / hib+Rs) = %0.2f \"%x1\n", + "Ro=1/Yo\n", + "x2=Ro*10**-6\n", + "print \" Ro(M-ohm) = 1 / Yo = %0.2f\"%x2\n", + "AP=Av*AI\n", + "print \"Power gain, AP = Av*AI = %0.2f \"%AP\n", + "print \"Approximate analysis\"\n", + "AI=-hfb\n", + "print \"Current gain, AI = -hfb = %0.2f \"%AI\n", + "Ri=hib\n", + "print \"Input impedance, Ri = hib = %0.2f ohm\"%Ri\n", + "hfe = -hfb / (1+hfb)\n", + "print \"Reaaranging this equation, hfe = -hfb / 1+hfb = %0.2f\"%hfe\n", + "print \"From Table 9.3, hib = hie / 1+hfe\"\n", + "hie=hib*(1+hfe)\n", + "print \" hie = hib(1+hfe) = %0.2f ohm\"%hie\n", + "Av=hfe*RL / hie\n", + "print \" Av = %0.2f\"%Av\n", + "print \"Output impedance, Ro = infinity\"\n", + "Avs=(Av*Ri)/(Ri+Rs)\n", + "print \"Overall voltage gain, Avs = Av*Ri / Ri+Rs = %0.2f \"%Avs\n", + "AIS=(AI*Rs)/(Ri+Rs)\n", + "print \"Overall current gain, AIS = AI*Rs / Ri+Rs = %0.2f \"%AIS\n", + "AP=Av*AI\n", + "print \"Power gain, AP = Av*AI = %0.2f\"%AP" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 230 Example 9.6." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current gain, AI = -hfb / 1+hob*RL''\n", + "where, RL'' = RC || RL = 6.46 kohm\n", + " AI = 0.98 \n", + "Input impedance Ri :\n", + " Ri = hib + hrb*AI*RL'' = 25.83 ohm\n", + "Voltage gain Av :\n", + " Av = (AI*RL'') / Ri = 244.36 \n", + "Output Resistance Ro :\n", + "The output admittance\n", + " Yo(u-mho) = 1 / Ro = hob - (hfb*hrb / hib+RS'') = where RS'' = RS || RE = 0.99 u-mho\n", + " Ro = 1 / Yo = 1.01 M-ohm \n", + " RS'' = Ro || RL'' = 6.42 kohm\n" + ] + } + ], + "source": [ + "hib=24.\n", + "hfb=-0.98\n", + "hob=0.49*10**-6\n", + "hrb=2.9*10**-4\n", + "RS=600.\n", + "RE=6*10**3\n", + "RC=12*10**3\n", + "RL=14*10**3\n", + "print \"Current gain, AI = -hfb / 1+hob*RL''\"\n", + "RLd=(RC*RL)/(RC+RL)\n", + "x1=RLd*10**-3\n", + "print \"where, RL'' = RC || RL = %0.2f kohm\"%x1\n", + "AI=-hfb / (1+hob*RLd)\n", + "print \" AI = %0.2f \"%AI\n", + "print \"Input impedance Ri :\"\n", + "Ri=hib+(hrb*AI*RLd)\n", + "print \" Ri = hib + hrb*AI*RL'' = %0.2f ohm\"%Ri\n", + "print \"Voltage gain Av :\"\n", + "Av=(AI*RLd)/Ri\n", + "print \" Av = (AI*RL'') / Ri = %0.2f \"%Av\n", + "print \"Output Resistance Ro :\"\n", + "print \"The output admittance\"\n", + "RSd=(RS*RE)/(RS+RE)\n", + "Yo=hob-((hfb*hrb)/(hib+RSd))\n", + "x4=Yo*10**6\n", + "print \" Yo(u-mho) = 1 / Ro = hob - (hfb*hrb / hib+RS'') = where RS'' = RS || RE = %0.2f u-mho\"%x4\n", + "Ro=1./Yo\n", + "x2=Ro*10**-6\n", + "print \" Ro = 1 / Yo = %0.2f M-ohm \"%x2\n", + "RSd=(Ro*RLd)/(Ro+RLd)\n", + "x3=RSd*10**-3\n", + "print \" RS'' = Ro || RL'' = %0.2f kohm\"%x3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 232 Example 9.7." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "From h-parameter model\n", + " Zi = hie = 500 ohm\n", + " Zo = RC = 5.1 k-ohm\n", + " Av = (-hfe*RC) / hie = -612.00 \n", + " AI = -hfe = -60\n", + "From re model\n", + " Zi = beta*re where re = 26mV / Ie\n", + "From the circuit, Ib = (VCC - VBE) / RB = 51.82 uA\n", + " Ie = Ic = beta*Ib = 3.11 mA\n", + " re = 26mV / Ie = 8.37 ohm\n", + " Zi = beta*re = 502.20 ohm\n", + " Zo = RC = 5.1 k-ohm\n", + " Av = -RC / re = -609.00 \n", + " AI = -beta = -60\n" + ] + } + ], + "source": [ + "hfe=60.\n", + "hie=500.\n", + "IC=3*10**-3\n", + "RB=220*10**3\n", + "RC=5.1*10**3\n", + "VCC=12.\n", + "VBE=0.6\n", + "print \"From h-parameter model\"\n", + "beta=hfe\n", + "Zo=RC\n", + "Av=(-hfe*RC)/hie\n", + "print \" Zi = hie = 500 ohm\"\n", + "print \" Zo = RC = 5.1 k-ohm\"\n", + "print \" Av = (-hfe*RC) / hie = %0.2f \"%Av\n", + "print \" AI = -hfe = -60\"\n", + "print \"From re model\"\n", + "print \" Zi = beta*re where re = 26mV / Ie\"\n", + "Ib=(VCC - VBE)/RB\n", + "x1=Ib*10**6\n", + "print \"From the circuit, Ib = (VCC - VBE) / RB = %0.2f uA\"%x1\n", + "Ie=beta*(51.8*10**-6)\n", + "x2=Ie*10**3\n", + "print \" Ie = Ic = beta*Ib = %0.2f mA\"%x2\n", + "re = (26) / (3.108)\n", + "print \" re = 26mV / Ie = %0.2f ohm\"%re\n", + "Zi = beta*8.37\n", + "print \" Zi = beta*re = %0.2f ohm\"%Zi\n", + "print \" Zo = RC = 5.1 k-ohm\"\n", + "Av=int(-RC/re)\n", + "print \" Av = -RC / re = %0.2f \"%Av\n", + "print \" AI = -beta = -60\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 233 Example 9.8." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "h-parameter analysis :\n", + "Zi = RB || hie\n", + " RB = R1 || R2 = 40 k-ohm || 4.7 k-ohm = 4.21 \n", + " Zi = 4.2 k-ohm || 3.2 k-ohm = 1.82\n", + " Zo = RC = 4 k-ohm\n", + " Av = -hfe*RC / hie = -125.00 \n", + " AI = -hfe*RB / RB+hie = -56.79 \n", + "Using r model :\n", + "To find IB,\n", + " VB = R2*VCC / R1+R2 = 1.68 \n", + "Using Thevenin equivalent for input part,\n", + "IB = (VB-VBE) / (RB+((1+beta)*RE)) = 8.63 uA\n", + " IC = beta*IB = 0.86 mA\n", + " IE ~ IC = 0.86 mA\n", + "30.2325581395 re = 26mV / IE = 30.23 ohm\n", + " Zi = RB || beta*re = 1.76 kohm\n", + " Zo = RC = 4 k-ohm\n", + " Av = -RC / re = -132.31\n", + " AI = (-beta*RB) / (RB+(beta*re)) = -58.15\n" + ] + } + ], + "source": [ + "hie=3.2*10**3\n", + "hfe=100.\n", + "R1=40*10**3\n", + "R2=4.7*10**3\n", + "RC=4*10**3\n", + "VCC=16.\n", + "VBE=0.6\n", + "RE=1.2*10**3\n", + "beta=100.\n", + "print \"h-parameter analysis :\"\n", + "print \"Zi = RB || hie\"\n", + "RB=(R1*R2)/(R1+R2)\n", + "x1=RB*10**-3\n", + "print \" RB = R1 || R2 = 40 k-ohm || 4.7 k-ohm = %0.2f \"%x1\n", + "Zi=(RB*hie)/(RB+hie)\n", + "x2=Zi*10**-3\n", + "print \" Zi = 4.2 k-ohm || 3.2 k-ohm = %0.2f\"%x2\n", + "print \" Zo = RC = 4 k-ohm\"\n", + "Av=(-hfe*RC)/hie\n", + "print \" Av = -hfe*RC / hie = %0.2f \"%Av\n", + "AI=(-hfe*RB)/(RB+hie)\n", + "print \" AI = -hfe*RB / RB+hie = %0.2f \"%AI\n", + "print \"Using r model :\"\n", + "print \"To find IB,\"\n", + "VB=(R2*VCC)/(R1+R2)\n", + "print \" VB = R2*VCC / R1+R2 = %0.2f \"%VB\n", + "print \"Using Thevenin equivalent for input part,\"\n", + "IB=1.082/(125.4*10**3)\n", + "x3=IB*10**6\n", + "print \"IB = (VB-VBE) / (RB+((1+beta)*RE)) = %0.2f uA\"%x3\n", + "IC=beta*IB\n", + "x4=IC*10**3\n", + "print \" IC = beta*IB = %0.2f mA\"%x4\n", + "print \" IE ~ IC = %0.2f mA\"%x4\n", + "IE = IC\n", + "re=(26*10**-3)/(0.86*10**-3)\n", + "print re,\" re = 26mV / IE = %0.2f ohm\"%re\n", + "Zi=(RB*beta*re)/(RB+(beta*re))\n", + "x5=Zi*10**-3\n", + "print \" Zi = RB || beta*re = %0.2f kohm\"%x5\n", + "print \" Zo = RC = 4 k-ohm\"\n", + "Av=-RC/re\n", + "print \" Av = -RC / re = %0.2f\"%Av\n", + "AI=(-100*(4.2*10**3))/((4.2*10**3)+(100*30.23))\n", + "print \" AI = (-beta*RB) / (RB+(beta*re)) = %0.2f\"%AI" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 235 Example 9.9." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " |IE| = VEE-VBE / RE = 1.85 mA\n", + " re(ohm) = 26mV / IE = 14.05 ohm\n", + " Zi = RE || re = 14.00 ohm\n", + " Zo = RC = 3.00 kohm\n", + " Av = RC / re = 213.52 \n", + " AI = 1\n" + ] + } + ], + "source": [ + "VBE=0.6\n", + "VEE=8.\n", + "VCC=10.\n", + "RE=4*10**3\n", + "RC=3*10**3\n", + "IE=(VEE-VBE)/RE\n", + "x1=IE*10**3\n", + "print \" |IE| = VEE-VBE / RE = %0.2f mA\"%x1\n", + "re=(26*10**-3)/IE\n", + "print \" re(ohm) = 26mV / IE = %0.2f ohm\"%re\n", + "Zi=(RE*re)/(RE+re)\n", + "print \" Zi = RE || re = %0.2f ohm\"%Zi\n", + "Zo=RC*10**-3\n", + "print \" Zo = RC = %0.2f kohm\"%Zo\n", + "Av=3000/14.05\n", + "print \" Av = RC / re = %0.2f \"%Av\n", + "print \" AI = 1\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 238 Example 9.10." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that IB = VCC-VBE / RB+(1+beta)*RE\n", + "Therefore, IB = 85.67 uA\n", + "IE = (1+beta)*IB = 8.57 mA\n", + "The dynamic resistance is\n", + " re = 3.03 ohm\n", + "The input impedance of the amplifier is\n", + " Zb = (1+beta)(re+RE) = 92.22 k-ohm \n", + "The input impedance of the amplifier stage is\n", + " Zi = RB || Zb = 41.36 kohm\n", + "The voltage gain of the amplifier is\n", + "Av = RE / re+RE = 1.00 \n" + ] + } + ], + "source": [ + "print \"We know that IB = VCC-VBE / RB+(1+beta)*RE\"\n", + "IB=((15-0.7)/((75*10**3)+(101*910)))*10**6\n", + "print \"Therefore, IB = %0.2f uA\"%IB # in uA\n", + "print \"IE = (1+beta)*IB = 8.57 mA\"\n", + "print \"The dynamic resistance is\"\n", + "re=0.026/(8.57*10**-3)\n", + "print \" re = %0.2f ohm\"% re # in ohm\n", + "print \"The input impedance of the amplifier is\"\n", + "zb=(101*(3.03+910))*10**-3 # in k-ohm\n", + "print \" Zb = (1+beta)(re+RE) = %0.2f k-ohm \"%zb\n", + "print \"The input impedance of the amplifier stage is\"\n", + "Zi=((75*92.2*10**6)/((75*10**3)+(92.2*10**3)))*10**-3 # in k-ohm\n", + "print \" Zi = RB || Zb = %0.2f kohm\"%Zi\n", + "print \"The voltage gain of the amplifier is\"\n", + "av=910./(3.03+910)\n", + "print \"Av = RE / re+RE = %0.2f \"%av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 240 Example 9.11." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "From fig.9.55, IB = (VCC-VBE) / (RB + (1+beta)*RE) = 11.58 uA\n", + " IE = (1+beta)*IB = 1.17 mA\n", + "The load resistance of the emitter follower is rL = RE || RL = 49.25 ohm \n", + " Zi = RB || (1+beta)(re+rL) = 7.13 kohm\n", + " VL / VS = (rL/re+rL)(Zi/Rs+Zi) = 0.59 \n" + ] + } + ], + "source": [ + "\n", + "VCC=10.\n", + "RB=470*10**3\n", + "RE=3.3*10**3\n", + "beta=100.\n", + "RS=1*10**3\n", + "RL=50.\n", + "re=22.4\n", + "VBE=0.7\n", + "IB = (VCC-VBE) / (RB + ((1+beta)*RE))\n", + "x1=IB*10**6\n", + "print \"From fig.9.55, IB = (VCC-VBE) / (RB + (1+beta)*RE) = %0.2f uA\"%x1\n", + "IE=(1+beta)*IB\n", + "x2=IE*10**3\n", + "print \" IE = (1+beta)*IB = %0.2f mA\"%x2\n", + "rL=(RE*RL)/(RE+RL)\n", + "print \"The load resistance of the emitter follower is rL = RE || RL = %0.2f ohm \"%rL # answer in textbook is wrong\n", + "x=(1+beta)*(re+rL)\n", + "Zi=(RB*x)/(RB+x)\n", + "x3=Zi*10**-3\n", + "print \" Zi = RB || (1+beta)(re+rL) = %0.2f kohm\"%x3\n", + "y=(50/(22.4+50))*((7.13*10**3)/((1*10**3)+(7.3*10**3))) # answer in textbook is wrong\n", + "print \" VL / VS = (rL/re+rL)(Zi/Rs+Zi) = %0.2f \"%y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 241 Example 9.12. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that, IE = VEE-VBE / RE\n", + "Therefore, IE = 2.65 mA\n", + " Zb = re(ohm) = 9.81 ohm\n", + " Zi(ohm) = re || RE = 9.76 ohm\n", + " Av = RC / re = 101.92 \n", + " VL / VS = Av*(re/re+RS)*(RL/RL+RS) = 13.38\n", + " VL(in mV (rms)) = Av*VS = 133.75 \n", + " iL( in uA (rms)) = VL / RL = 33.44 \n", + " iL / iS = alpha*(RS/RS+re)*(RC/RC+RL) = 0.17 \n" + ] + } + ], + "source": [ + "RS=50.\n", + "RE=2*10**3\n", + "Ro=1*10**3\n", + "RL=4*10**3\n", + "VEE=6.\n", + "VBE=0.7\n", + "RC=1000.\n", + "VS=10*10**-3\n", + "IE=(VEE-VBE)/RE\n", + "x1=IE*10**3\n", + "print \"We know that, IE = VEE-VBE / RE\"\n", + "print \"Therefore, IE = %0.2f mA\"%x1\n", + "re=0.026/IE\n", + "print \" Zb = re(ohm) = %0.2f ohm\"%re\n", + "Zi=(re*RE)/(re+RE)\n", + "print \" Zi(ohm) = re || RE = %0.2f ohm\"%Zi\n", + "Av=RC/re\n", + "print \" Av = RC / re = %0.2f \"%Av\n", + "x=Av*(re/(re+RS))*(RL/(RL+RC))\n", + "print \" VL / VS = Av*(re/re+RS)*(RL/RL+RS) = %0.2f\"%x\n", + "VL=x*VS\n", + "x2=VL*10**3\n", + "print \" VL(in mV (rms)) = Av*VS = %0.2f \"%x2\n", + "iL=VL/RL\n", + "x3=iL*10**6\n", + "print \" iL( in uA (rms)) = VL / RL = %0.2f \"%x3\n", + "alpha=1.\n", + "y=alpha*(RS/(RS+re))*(RC/(RC+RL))\n", + "print \" iL / iS = alpha*(RS/RS+re)*(RC/RC+RL) = %0.2f \"%y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 243 Example 9.13." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The emitter current of the common base amplifier is\n", + " IE = VEE-VBE / RE = 0.00 A\n", + " re = 0.026 / IE = 24.14 ohm\n", + " Av = RC /re = 497.20 \n", + " VL/VS = Av*(re/re+RS)*(RL/RL+RC) = 195.23 \n", + " iL/iS = Ai*(RS/RS+re)*(RC/RC+RL) = 0.44\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "RC=12*10**3\n", + "RL=15*10**3\n", + "RS=10.\n", + "RE=22*10**3\n", + "VEE=24.\n", + "VBE=0.3\n", + "print \"The emitter current of the common base amplifier is\"\n", + "IE=(VEE-VBE)/RE\n", + "print \" IE = VEE-VBE / RE = %0.2f A\"%IE\n", + "re=0.026/IE\n", + "print \" re = 0.026 / IE = %0.2f ohm\"%re\n", + "Av=RC/re\n", + "print \" Av = RC /re = %0.2f \"%Av\n", + "x=497*(24.14/(24.14+10))*((15*10**3)/((12*10**3)+(15*10**3)))\n", + "print \" VL/VS = Av*(re/re+RS)*(RL/RL+RC) = %0.2f \"%x\n", + "Ai=3.413\n", + "y=Ai*(RS/(RS+re))*(RC/(RC+RL))\n", + "print \" iL/iS = Ai*(RS/RS+re)*(RC/RC+RL) = %0.2f\"%y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 244 Example 9.14." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We know that, IE(mA) = VEE-VBE / RE = 1.77 mA\n", + " re = 0.026 / IE = 14.72 ohm\n", + " Zi = RE || re = 14.68 ohm\n", + " Zo = RC || re = 2.20 kohm\n", + " Av = Zo/Zi = RC||rc/RE||re = 149.68 \n", + " VL/VS = Av*(Zi/RS+Zi)*(RL/RL+Zo) = 51.94 \n", + " VL = Av*VS = 149.68 rms\n" + ] + } + ], + "source": [ + "rc=1.5*10**6\n", + "RE=4.7*10**3\n", + "Ro=2.2*10**3\n", + "RS=20\n", + "RL=10*10**3\n", + "VS=20*10**-3\n", + "VEE=9\n", + "VBE=0.7\n", + "IE=(VEE-VBE)/RE\n", + "x1=IE*10**3\n", + "print \"We know that, IE(mA) = VEE-VBE / RE = %0.2f mA\"%x1\n", + "re=0.026/IE\n", + "print \" re = 0.026 / IE = %0.2f ohm\"%re\n", + "Zi=(RE*re)/(RE+re)\n", + "print \" Zi = RE || re = %0.2f ohm\"%Zi\n", + "Zo=(Ro*rc)/(Ro+rc)\n", + "x2=Zo*10**-3\n", + "print \" Zo = RC || re = %0.2f kohm\"%x2\n", + "Av=Zo/Zi\n", + "print \" Av = Zo/Zi = RC||rc/RE||re = %0.2f \"%Av\n", + "x=Av*(Zi/(RS+Zi))*(RL/(RL+Zo))\n", + "print \" VL/VS = Av*(Zi/RS+Zi)*(RL/RL+Zo) = %0.2f \"%x\n", + "y=x*VS\n", + "print \" VL = Av*VS = %0.2f rms\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 245 Example 9.15." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " VB = (R2 / R1+R2)*VCC = 1.48 V\n", + " VE = 1.39 - 0.7 = 0.69 V\n", + " IE(mA) = VE / RE = 1.01 mA\n", + " re = 0.026/IE = 25.62 ohm\n", + " Zi = R1 || R2 || beta*(re+RE) = 4.00 kohm\n", + "The overall voltage gain is VL/VS = (-RC/RE+re)*(Zi/RS+Zi)*(RL/RC+RL) = -3.33 \n", + " Zi = R1 || R2 || betare = 1.56 kohm\n", + " VL/VS = (-RC/re)*(Zi/RS+Zi)*(RL/RC+RL) = -76.27\n" + ] + } + ], + "source": [ + "beta=100.\n", + "VCC=10.\n", + "R2=4.7*10**3\n", + "R1=27*10**3\n", + "RE=680.\n", + "RC=3.3*10**3\n", + "RS=600.\n", + "RL=15*10**3\n", + "VB=(10*4.7*10**3)/((27*10**3)+(4.7*10**3))\n", + "print \" VB = (R2 / R1+R2)*VCC = %0.2f V\"%VB\n", + "# answer in textbook is wrong\n", + "VE=1.39-0.7\n", + "print \" VE = 1.39 - 0.7 = %0.2f V\"%VE\n", + "IE=VE/RE\n", + "x1=IE*10**3\n", + "print \" IE(mA) = VE / RE = %0.2f mA\"%x1\n", + "re=0.026/IE\n", + "print \" re = 0.026/IE = %0.2f ohm\"%re\n", + "x=beta*(re+RE)\n", + "Zi=(R1*R2*x)/((R2*x)+(R1*x)+(R1+R2)) # answer in textbook is wrong\n", + "x2=Zi*10**-3\n", + "print \" Zi = R1 || R2 || beta*(re+RE) = %0.2f kohm\"%x2\n", + "y=(-RC/(RE+re))*(Zi/(RS+Zi))*(RL/(RC+RL))\n", + "print \"The overall voltage gain is VL/VS = (-RC/RE+re)*(Zi/RS+Zi)*(RL/RC+RL) = %0.2f \"%y\n", + "u=beta*re\n", + "Zi=(R1*R2*u)/((R2*u)+(R1*u)+(R1*R2))\n", + "x3=Zi*10**-3\n", + "print \" Zi = R1 || R2 || betare = %0.2f kohm\"%x3\n", + "z=(-RC/re)*(Zi/(RS+Zi))*(RL/(RC+RL)) # answer in textbook is wrong\n", + "print \" VL/VS = (-RC/re)*(Zi/RS+Zi)*(RL/RC+RL) = %0.2f\"%z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 246 Example 9.16." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " VB1 = (RB3*VCC)/(RB3+RB2+RB1) = 3.38 V\n", + " IE1 = VE1/RE = (VB1-VBE1)/RE = 2.06 mA\n", + " re1 = 26mV/IE1 = 12.64 ohm\n", + " re2 = 12.64 ohm (since IE2 = IE1)\n", + "Voltage gain of the second stage,\n", + " Av2 = RC / re2 = 174.11\n", + "Overall voltage gain,\n", + " Av = Av1*Av2 = -174.11\n" + ] + } + ], + "source": [ + "RB1=7.5*10**3\n", + "RB2=6.8*10**3\n", + "RB3=3.3*10**3\n", + "RE=1.3*10**3\n", + "RC=2.2*10**3\n", + "beta1=120.\n", + "beta2=120.\n", + "VCC=18.\n", + "VBE1=0.7\n", + "VB1=(RB3*VCC)/(RB3+RB2+RB1)\n", + "print \" VB1 = (RB3*VCC)/(RB3+RB2+RB1) = %0.2f V\"%VB1\n", + "IE1=(VB1-VBE1)/RE\n", + "x1=IE1*10**3\n", + "print \" IE1 = VE1/RE = (VB1-VBE1)/RE = %0.2f mA\"%x1\n", + "re1=(26*10**-3)/IE1\n", + "print \" re1 = 26mV/IE1 = %0.2f ohm\"%re1\n", + "re2=re1\n", + "print \" re2 = %0.2f ohm (since IE2 = IE1)\"%re2\n", + "print \"Voltage gain of the second stage,\"\n", + "Av2=RC/re2\n", + "print \" Av2 = RC / re2 = %0.2f\"%Av2\n", + "print \"Overall voltage gain,\"\n", + "Av1=-1\n", + "Av=Av1*Av2\n", + "print \" Av = Av1*Av2 = %0.2f\"%Av" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 248 Example 9.17. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage gain,\n", + " Av = Vo/Vi = -u*RD / RD+rd = -6.25\n", + "The minus sign indicates a 180 degree phase shift between Vi and Vo\n", + "Input impedance Zi(M-ohm) = RG = 10.00 \n", + "Output impedance Zo(k-ohm) = RD = 5.00 \n" + ] + } + ], + "source": [ + "RD=5*10**3\n", + "RG=10*10**6\n", + "u=50.\n", + "rd=35*10**3\n", + "print \"The voltage gain,\"\n", + "Av=(-u*RD)/(RD+rd)\n", + "print \" Av = Vo/Vi = -u*RD / RD+rd = %0.2f\"%Av\n", + "print \"The minus sign indicates a 180 degree phase shift between Vi and Vo\"\n", + "Zi=RG*10**-6\n", + "print \"Input impedance Zi(M-ohm) = RG = %0.2f \"%Zi\n", + "Zo=RD*10**-3\n", + "print \"Output impedance Zo(k-ohm) = RD = %0.2f \"%Zo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 252 Example 9.18." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage gain,\n", + " Av = Vo/Vi = u*RS / (u+1)*RS+rd = 0.84 \n", + "Output impedance, Zo(ohm) = 1/gm || RS = (rd/u) || RS = 595.74 ohm\n" + ] + } + ], + "source": [ + "RS=4*10**3\n", + "RG=10*10**6\n", + "u=50.\n", + "rd=35*10**3\n", + "print \"The voltage gain,\"\n", + "Av=(u*RS)/(((1+u)*RS)+rd)\n", + "print \" Av = Vo/Vi = u*RS / (u+1)*RS+rd = %0.2f \"%Av\n", + "x=rd/u\n", + "Zo=(x*RS)/(RS+x)\n", + "print \"Output impedance, Zo(ohm) = 1/gm || RS = (rd/u) || RS = %0.2f ohm\"%Zo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 254 Example 9.19." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The voltage gain,\n", + " Av = Vo/Vi = (gm*rd + 1)*RD / (RD+rd) = 2.76\n", + "Input impedance, Zi(k-ohm) = RS || 1/gm = 0.41 k0hm\n", + "Output impedance, Zo ~ RD = 2 k-ohm\n" + ] + } + ], + "source": [ + "RD=2*10**3\n", + "RS=1*10**3\n", + "gm=1.43*10**-3\n", + "rd=35*10**3\n", + "print \"The voltage gain,\"\n", + "Av=(((gm*rd)+1)*RD)/(RD+rd)\n", + "print \" Av = Vo/Vi = (gm*rd + 1)*RD / (RD+rd) = %0.2f\"%Av\n", + "x=1./gm\n", + "Zi=(RS*x)/(RS+x)\n", + "x1=Zi*10**-3\n", + "print \"Input impedance, Zi(k-ohm) = RS || 1/gm = %0.2f k0hm\"%x1\n", + "print \"Output impedance, Zo ~ RD = 2 k-ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 256 Example 9.20." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " In the first set,\n", + " Vid = Vd(uV) = V1 = V2 = 200.00 uV\n", + " Vc(uV) = 1/2(V1+V2) = 0.00\n", + " In the second set,\n", + " Vd = V1 = V2 = 200.00 uV\n", + " Vc = 1/2(V1+V2) = 1000.00 uV\n" + ] + } + ], + "source": [ + "print \" In the first set,\"\n", + "Vid=100-(-100) #in uV\n", + "print \" Vid = Vd(uV) = V1 = V2 = %0.2f uV\"%Vid\n", + "Vc=(1/2)*(100+(-100)) # in uV\n", + "print \" Vc(uV) = 1/2(V1+V2) = %0.2f\"%Vc\n", + "print \" In the second set,\"\n", + "Vd=1100-900 # in uV\n", + "print \" Vd = V1 = V2 = %0.2f uV\"%Vd\n", + "Vc=(1./2)*(1100+900)\n", + "print \" Vc = 1/2(V1+V2) = %0.2f uV\"%Vc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 258 Example 9.21." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " IE = (VEE - VBE)/2*REE = 110.00 uA\n", + " IC = alpha_F*IE = 108.91 uA\n", + " IB = IC / beta_F = 1.09 uA\n", + " VC = VCC - IC*RC = 7.92 V\n", + " VCE = VC - VE = 8.62 V\n", + " IE = VEE / 2*REE = 115.38 uA\n" + ] + } + ], + "source": [ + "VEE=15.\n", + "VBE=0.7\n", + "REE=65*10**3\n", + "IE = (VEE - VBE)/(2*REE)\n", + "IE1=IE*10**6\n", + "print \" IE = (VEE - VBE)/2*REE = %0.2f uA\"%IE1\n", + "alphaF=100./101.\n", + "IC=(alphaF*IE)\n", + "IC1=IC*10**6\n", + "print \" IC = alpha_F*IE = %0.2f uA\"%IC1\n", + "betaF=100.\n", + "IB=IC/betaF\n", + "IB1=IB*10**6\n", + "print \" IB = IC / beta_F = %0.2f uA\"%IB1\n", + "VCC=VEE\n", + "RC=REE\n", + "VC=VCC-(IC*RC)\n", + "print \" VC = VCC - IC*RC = %0.2f V\"%VC\n", + "VE=-0.7\n", + "VCE=VC - VE\n", + "print \" VCE = VC - VE = %0.2f V\"%VCE\n", + "IE=(VEE/(2*REE))*10**6\n", + "print \" IE = VEE / 2*REE = %0.2f uA\"%IE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 262 Example 9.22." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " IDS = ISS / 2 = 87.50 uA\n", + " VGS = VTH + sqrt(ISS/Kn) = 1.24 V\n", + " VDS = VDD - (IDS*RD) + VGS = 7.55 V\n", + "Checking for saturation,\n", + " VGS - VTN = 0.24 \n", + "and VDS >= 0.2. Thus, both transistors in the differential amplifier are baised at Q-point of :\n", + "87.50\n", + "7.55\n", + " VIC= 7.31 V\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "VDD=12.\n", + "VSS=VDD\n", + "ISS=175*10**-6\n", + "RD=65*10**3\n", + "Kn=3*10**-3\n", + "VTN=1.\n", + "IDS=ISS/2.\n", + "IDS1=IDS*10**6\n", + "print \" IDS = ISS / 2 = %0.2f uA\"%IDS1\n", + "VGS=VTN+sqrt(ISS/Kn)\n", + "print \" VGS = VTH + sqrt(ISS/Kn) = %0.2f V\"%VGS\n", + "VDS=VDD-(IDS*RD)+VGS\n", + "print \" VDS = VDD - (IDS*RD) + VGS = %0.2f V\"%VDS\n", + "print \"Checking for saturation,\"\n", + "x=VGS-VTN\n", + "print \" VGS - VTN = %0.2f \"%x\n", + "print \"and VDS >= 0.2. Thus, both transistors in the differential amplifier are baised at Q-point of :\"\n", + "print \"%0.2f\" %IDS1\n", + "print \"%0.2f\"%(VDS)\n", + "VIC = VDD - IDS*RD + VTN\n", + "print \" VIC= %0.2f V\"%VIC" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 263 Example 9.23." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beta = hfe = 100\n", + " IE = (VEE-VBE) / ((2*RE)+(RS/beta)) = 1.01 mA\n", + "IC ~ IE = 1.009 mA\n", + " Therefore ICQ = 1.01 mA\n", + " VCE = VCC + VBE - IC*RC = 12.70 V\n", + "and VCEQ = 12.70 V\n", + "The differential gain is : \n", + " Ad = hfe*RC / RS+hie = 135.54 \n", + "Common mode gain is : \n", + " AC = (hfe*Re) / (((2*RE)*(1+hfe)) + RS + hie) = 0.40 \n", + "CMRR = Ad / AC = 341.72 \n", + "CMRR = 20log|Ad/AC| = 50.67 dB\n", + "The output voltage is Vo = Ad*Vd + AC*VC. Here,\n", + " Ad [mV(peak-peak)] = VS1 - VS2 = 20.00 \n", + "Then, VC [mV(peak-peak)]= (VS1+VS2) / 2 = 50.00 \n", + "Therefore, Vo [V(peak-peak)] = 2.73 \n" + ] + } + ], + "source": [ + "from math import log10\n", + "VS1=60*10**-3\n", + "VS2=40*10**-3\n", + "hie=3.2*10**3\n", + "hfe=100.\n", + "VEE=12.\n", + "VCC=VEE\n", + "VBE=0.7\n", + "beta=hfe\n", + "RE=5.6*10**3\n", + "RS=120.\n", + "RC=4.5*10**3\n", + "Rc=4.5*10**-5\n", + "IE=(VEE-VBE)/((2*RE)+(RS/beta))\n", + "IE1=IE*10**3\n", + "print \"beta = hfe = 100\"\n", + "print \" IE = (VEE-VBE) / ((2*RE)+(RS/beta)) = %0.2f mA\"%IE1\n", + "IC=IE\n", + "print \"IC ~ IE = 1.009 mA\"\n", + "print \" Therefore ICQ = %0.2f mA\"%IE1\n", + "VCE=VCC+VBE-(IC*Rc)\n", + "print \" VCE = VCC + VBE - IC*RC = %0.2f V\"%VCE\n", + "# answer in textbook is wrong\n", + "print \"and VCEQ = %0.2f V\"%VCE # answer in textbook is wrong\n", + "print \"The differential gain is : \"\n", + "Ad=(hfe*RC)/(RS+hie)\n", + "print \" Ad = hfe*RC / RS+hie = %0.2f \"%Ad\n", + "print \"Common mode gain is : \"\n", + "AC=(hfe*RC)/(((2*RE)*(1+hfe))+RS+hie)\n", + "print \" AC = (hfe*Re) / (((2*RE)*(1+hfe)) + RS + hie) = %0.2f \"%AC\n", + "CMRR = Ad / AC\n", + "print \"CMRR = Ad / AC = %0.2f \"%CMRR\n", + "CMRR1=20*log10(135.54/0.3966)\n", + "print \"CMRR = 20log|Ad/AC| = %0.2f dB\"%CMRR1\n", + "print \"The output voltage is Vo = Ad*Vd + AC*VC. Here,\"\n", + "Vd=VS1-VS2\n", + "Vd1=Vd*10**3\n", + "print \" Ad [mV(peak-peak)] = VS1 - VS2 = %0.2f \"%Vd1\n", + "VC=(VS1+VS2)/2\n", + "VC1=VC*10**3\n", + "print \"Then, VC [mV(peak-peak)]= (VS1+VS2) / 2 = %0.2f \"%VC1\n", + "Vo = Ad*Vd + AC*VC\n", + "print \"Therefore, Vo [V(peak-peak)] = %0.2f \"%Vo" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Page No. 264 Example 9.24." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "From the circuit 9.90(a),\n", + " RL = hoe*(RL || RC) = 0.05 \n", + "For equivalent circuit refer fig.9.90(b).\n", + " Input resistance, Ri = hie || 100k = 398.41 \n", + " Output resistance, Ro = 50k || 3k || 5k = 1807.23 \n", + "Therefore, Vo/Vi = -hfe*Ro / hie = -180.72 \n", + " Vi/VS = Ri/(Ri+RS) = 0.28 \n", + "Hence, Avs = Vo/VS = (Vo/Vi)*(Vi/VS) = 51.49 \n" + ] + } + ], + "source": [ + "hie=400.\n", + "hre=2.1*10**-4\n", + "hfe=40.\n", + "hoe=25*10**-6\n", + "RL=5*10**3\n", + "RC=3*10**3\n", + "print \"From the circuit 9.90(a),\"\n", + "Rth=(RL*RC)/(RL+RC)\n", + "RLd=hoe*(Rth)\n", + "print \" RL = hoe*(RL || RC) = %0.2f \"%RLd\n", + "print \"For equivalent circuit refer fig.9.90(b).\"\n", + "Ri=(hie*100*10**3)/(hie+(100*10**3))\n", + "print \" Input resistance, Ri = hie || 100k = %0.2f \"%Ri\n", + "R1=50.0*10**3\n", + "Ro=(R1*RC*RL)/((RC*RL)+(R1*RL)+(R1*RC))\n", + "print \" Output resistance, Ro = 50k || 3k || 5k = %0.2f \"%Ro\n", + "x=(-hfe*Ro)/hie\n", + "print \"Therefore, Vo/Vi = -hfe*Ro / hie = %0.2f \"%x\n", + "RS=1*10**3\n", + "y=Ri/(Ri+RS)\n", + "print \" Vi/VS = Ri/(Ri+RS) = %0.2f \"%y\n", + "Avs=abs(x*y)\n", + "print \"Hence, Avs = Vo/VS = (Vo/Vi)*(Vi/VS) = %0.2f \"%Avs" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/OpV_ch16_1.png b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/OpV_ch16_1.png Binary files differnew file mode 100644 index 00000000..f4fd0cd5 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/OpV_ch16_1.png diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/diodeLimiter.png b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/diodeLimiter.png Binary files differnew file mode 100644 index 00000000..2a1fed00 --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/diodeLimiter.png diff --git a/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/nVeClipper16_1.png b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/nVeClipper16_1.png Binary files differnew file mode 100644 index 00000000..6bfa71eb --- /dev/null +++ b/Electronics_Devices_And_Circuits_by_S._Salivahanan,_N._S._Kumar_And_A._Vallavaraj/screenshots/nVeClipper16_1.png diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter10_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter10_2.ipynb new file mode 100644 index 00000000..54d12f92 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter10_2.ipynb @@ -0,0 +1,259 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10 : LU Decomposition and matrix inverse" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.1 Page 277" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = [[ 3. -0.1 -0.2]\n", + " [ 0.1 7. -0.3]\n", + " [ 0.3 -0.2 10. ]]\n", + "\n", + "U = \n", + "[[ 3. -0.1 -0.2 ]\n", + " [ 0. 7.00333333 -0.29333333]\n", + " [ 0. 0. 10.01204188]]\n", + "\n", + "L calculated based on gauss elimination method = \n", + "[[ 1. 0. 0. ]\n", + " [ 0.03333333 1. 0. ]\n", + " [ 0.1 -0.02712994 1. ]]\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "from numpy.linalg import det\n", + "A = mat([[3,-0.1,-0.2],[0.1,7,-0.3],[0.3,-0.2,10]])\n", + "U = A#\n", + "print \"A =\",A\n", + "m = U[0,0]\n", + "n = U[1,0]\n", + "a = n/m#\n", + "U[1:2] = U[1:2] - U[0:1] / (m/n)#\n", + "n = U[2,0]\n", + "b = n/m\n", + "\n", + "U[2:3] = U[2:3] - U[0:1] / (m/n)#\n", + "m = U[1,1]\n", + "n = U[2,1]\n", + "c = n/m#\n", + "U[2:3] = U[2:3] - U[1:2] / (m/n)#\n", + "print \"\\nU = \\n\",U\n", + "L = mat([[1,0,0],[a,1,0],[b,c,1]])\n", + "print \"\\nL calculated based on gauss elimination method = \\n\",L" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.2 Page 279" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X = \n", + "[[ 3. ]\n", + " [-2.5]\n", + " [ 7. ]]\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "A = mat([[3,-0.1,-0.2],[0.1,7,-0.3],[0.3,-0.2,10]])\n", + "B = mat([[7.85],[-19.3],[71.4]])\n", + "X = (A**-1) * B\n", + "print \"X = \\n\",X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.3 Page 284" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "B=\n", + "[[ 0.33248872 0.00494409 0.00679813]\n", + " [-0.00518174 0.14290333 0.00418348]\n", + " [-0.01007834 0.00270975 0.09988014]]\n" + ] + } + ], + "source": [ + "from numpy import mat,array\n", + "A = mat([[3,-0.1,-0.2],[0.1,7,-0.3],[0.3,-0.2,10]])\n", + "B = (A**-1)\n", + "L = mat([[1,0,0],[0.033333,1,0],[0.1,-0.02713,1]])\n", + "U = mat([[3,-0.1,-0.2],[0,7.0033,-0.293333],[0,0,10.012]])\n", + "for i in range(1,4):\n", + " if i==1:\n", + " m = mat([[1],[0],[0]])\n", + " else:\n", + " if i==2:\n", + " m = mat([[0],[1],[0]])\n", + " else:\n", + " m = mat([[0],[0],[1]])\n", + " \n", + " \n", + " d = (L**-1) * m#\n", + " x = (U**-1) * d#\n", + " B[:,i-1] = x\n", + "\n", + "print \"B=\\n\",B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.4 Page 291" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A = \n", + "[[ 1. 0.5 0.33333333]\n", + " [ 1. 0.66666667 0.5 ]\n", + " [ 1. 0.75 0.6 ]]\n", + "\n", + "Condition number for the matrix =\n", + "451.2\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "from __future__ import division\n", + "A = mat([[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]])\n", + "n = A[1,0]\n", + "A[1,:] = A[1,:]/n\n", + "n = A[2,0]\n", + "A[2,:] = A[2,:]/n\n", + "B = (A**-1)#\n", + "print \"A = \\n\",A\n", + "\n", + "m=range(1,4)\n", + "su=range(1,4)\n", + "for j in range(1,4):\n", + " a = 0#\n", + " for i in range(1,4):\n", + " m[i-1]= A[j-1,i-1]\n", + " su[j-1] = a + m[i-1]#\n", + " a = su[j-1]#\n", + "\n", + "\n", + "if su[0]< su[1]:\n", + " if su[1]< su[2]:\n", + " z = su[2]\n", + " else:\n", + " z = su[1]\n", + " \n", + "else:\n", + " if su[0] < su[2]:\n", + " z = su[2]#\n", + " else:\n", + " z = su[0]#\n", + " \n", + "m=range(1,4)\n", + "sm=range(1,4)\n", + "for j in range(1,4):\n", + " a = 0#\n", + " for i in range(1,4):\n", + " m[i-1]= B[j-1,i-1]\n", + " sm[j-1]= a + abs(m[i-1])\n", + " a = sm[j-1]#\n", + "\n", + "\n", + "if sm[0]< sm[1]:\n", + " if sm[1]< sm[2] :\n", + " y = sm[2]\n", + " else:\n", + " y = sm[1]\n", + " \n", + "else:\n", + " if sm[0]< sm[2]:\n", + " y = sm[2]\n", + " else:\n", + " y = sm[0]#\n", + " \n", + "\n", + "C = z*y#\n", + "print \"\\nCondition number for the matrix =\\n\",C\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter11_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter11_2.ipynb new file mode 100644 index 00000000..352fdcac --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter11_2.ipynb @@ -0,0 +1,303 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 11 : Special Matrices and Gauss-Seidel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:11.1 Pg: 297" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T1 = 151.165722019\n", + "T2 = 267.578072919\n", + "T3 = 236.681195836\n", + "T4 = 214.451566586\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "A = mat([[2.04,-1,0,0],[-1,2.04,-1,0],[0,-1,2.04,-1],[0,0,-1,2.04]])\n", + "B = mat([[40.8],[0.8],[0.8],[200.8]])\n", + "g = A[0,1]\n", + "f1 =A[0,0]\n", + "e2 = A[1,0]\n", + "f2 = A[0,0] - e2 * A[1,0]\n", + "e3 = A[1,0]/f2\n", + "f3 = A[0,0] - e3 * A[1,0]\n", + "e4 = A[1,0]/f3#\n", + "f4 = A[0,0] - e4 * A[1,0]\n", + "M = mat([[f1,g,0,0],[e2,f2,g,0],[0,e3,f3,g],[0,0,e4,f4]])\n", + "L = mat([[1,0,0,0],[M[1,0],1,0,0],[0,M[2,1],1,0],[0,0,M[3,2],1]])\n", + "U = mat([[M[0,0],g,0,0],[0,M[1,1],g,0],[0,0,M[2,2],g],[0,0,0,M[3,3]]])\n", + "r1 = B[0,0]\n", + "r2 = B[1,0] - e2*B[0,0]\n", + "r3 = B[2,0] - e3*r2#\n", + "r4= B[3,0] - e4*r3# \n", + "N = mat([[r1],[r2],[r3],[r4]])\n", + "T4 = r4/U[3,3]\n", + "T3 = (r3 - g*T4)/U[2,2]\n", + "T2 = (r2 - g*T3)/U[1,1]\n", + "T1 = (r1 - g*T2)/U[0,0]\n", + "print \"T1 = \",T1\n", + "print \"T2 = \",T2\n", + "print \"T3 = \",T3\n", + "print \"T4 = \",T4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:11.2 Pg: 299" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "L = \n", + "[[ 2.44948974 0. 0. ]\n", + " [ 6.12372436 4.18330013 0. ]\n", + " [ 22.45365598 20.91650066 6.11010093]]\n" + ] + } + ], + "source": [ + "from numpy import mat,sqrt\n", + "A = mat([[6,15,55],[15,55,225],[55,225,979]])\n", + "sl = 0\n", + "l11 = sqrt(A[0,0])\n", + "#for second row\n", + "l21 = (A[1,0])/l11\n", + "l22 = (A[1,1] - l21**2)**(0.5)\n", + "#for third row\n", + "l31 = (A[2,0])/l11#\n", + "l32 = (A[2,1] - l21*l31)/l22#\n", + "l33 = (A[2,2] - l31**2 - l32**2)**(0.5)#\n", + "L = mat([[l11,0,0],[l21,l22,0],[l31,l32,l33]])\n", + "print \"\\nL = \\n\",L" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:11.3 Pg: 301" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x through two iterations = [2.6166666666666667]\n", + "y through two iterations = [-2.7945238095238096]\n", + "z through two iterations = [7.005609523809525]\n", + "error of x = 12.50234999 %\n", + "error of y = -11.7977361365 %\n", + "error of z = -0.075978454143 %\n" + ] + } + ], + "source": [ + "#3x - 0.1y - 0.2z = 7.85\n", + "#0.1x + 7y - 0.3z = -19.3\n", + "#0.3x - 0.2y + 10z = 71.4\n", + "Y = 0# \n", + "Z = 0#\n", + "x=range(1,3)\n", + "y=range(1,3)\n", + "z=range(1,3)\n", + "for i in range(1,3):\n", + " x[i-1]= (7.85 +0.1*Y+0.2*Z)/3#\n", + " X = x[i-1]\n", + " y[i-1]= (-19.3 - 0.1*X +0.3*Z)/7#\n", + " Y = y[i-1]#\n", + " z[i-1]= (71.4 - 0.3*X+0.2*Y)/10#\n", + " Z = z[i-1]\n", + " if i==2:\n", + " ex = (x[i-1] - x[(i-2)])*100/x[i-1]\n", + " ey = (y[i-1] - y[i-2])*100/y[i-1]\n", + " ez = (z[i-1] - z[i-2])*100/z[i-1]\n", + " \n", + "\n", + "print \"x through two iterations =\",x[0:1]\n", + "print \"y through two iterations =\",y[0:1]\n", + "print \"z through two iterations =\",z[0:1]\n", + "print \"error of x = \",ex,\"%\"\n", + "print \"error of y = \",ey,\"%\"\n", + "print \"error of z = \",ez,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:11.4 Pg: 307" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 0.999991\n", + "y = 1.000044\n", + "z = 0.99996\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "from numpy import mat\n", + "A = mat([[1,0.5,1/3],[1,2/3,1/2],[1,3/4,3/5]])\n", + "B = mat([[1.833333],[2.166667],[2.35]])\n", + "U = A**-1\n", + "X = U*B#\n", + "x = X[0,0]\n", + "y = X[1,0]\n", + "z = X[2,0]\n", + "print \"x = \",x\n", + "print \"y = \",y\n", + "print \"z = \",z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:11.5 Pg: 309" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 0.999991\n", + "y = 1.000044\n", + "z = 0.99996\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat\n", + "A = mat([[1,0.5,1/3],[1,2/3,1/2],[1,3/4,3/5]])\n", + "B = mat([[1.833333],[2.166667],[2.35]])\n", + "U = A**-1\n", + "X = U*B#\n", + "x = X[0,0]\n", + "y = X[1,0]\n", + "z = X[2,0]\n", + "print \"x = \",x\n", + "print \"y = \",y\n", + "print \"z = \",z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:11.6 Pg: 310" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 0.999999\n", + "y = 1.000008\n", + "z = 0.99999\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "A = mat([[1,0.5,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]])\n", + "B = mat([[1.833333],[1.083333],[0.783333]])\n", + "U = A**-1\n", + "X = U*B#\n", + "x = X[0,0]\n", + "y = X[1,0]\n", + "z = X[2,0]\n", + "print \"x = \",x\n", + "print \"y = \",y\n", + "print \"z = \",z" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter13_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter13_2.ipynb new file mode 100644 index 00000000..c37c77de --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter13_2.ipynb @@ -0,0 +1,193 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 13 : One-Dimensional Unconstrained Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:13.1 Pg: 356" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xl = [0, 0, 0, 0, 0, 0.9442719099991588, 0.9442719099991588, 0.9442719099991588, 0.9442719099991588, 0.9442719099991588, 0.9442719099991588]\n", + "\n", + "x2 = [1.5278640450004204, 1.5278640450004204, 0.0, 0.9442719099991588, 0.9442719099991588, 0.9442719099991588, 0.9442719099991588, 1.5278640450004206, 1.5278640450004206, 1.5278640450004206]\n", + "\n", + "x1 = [2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 1.5278640450004208, 1.5278640450004208, 1.5278640450004208, 2.4721359549995796, 1.8885438199983178, 1.8885438199983178, 1.8885438199983178]\n", + "\n", + "xu = [4, 2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 2.4721359549995796, 1.8885438199983178, 1.8885438199983178]\n" + ] + } + ], + "source": [ + "from math import sin\n", + "#f(x) = 2sinx - x**2/10\n", + "xl=[]\n", + "xu=[]\n", + "xl.append(0)\n", + "xu.append(4)\n", + "d=[]\n", + "x1=[]\n", + "x2=[]\n", + "m=[]\n", + "n=[]\n", + "for i in range(0,10):\n", + " d.append(((5)**(0.5) - 1)*(xu[i-1] - xl[i-1])/2)\n", + " x1.append(xl[i-1] + d[i-1])\n", + " x2.append(xu[i-1] - d[i-1])\n", + " m.append(2*sin(x1[i-1]) - (x1[i-1]**2)/10)\n", + " n.append(2*sin(x2[i-1]) - (x2[i-1]**2)/10)\n", + " if n[i-1] > m[i-1]:\n", + " xu.append(x1[(i-1)])\n", + " xl.append(xl[(i-1)])\n", + " else:\n", + " xl.append(x2[i-1])\n", + " xu.append(xu[i-1])\n", + " \n", + "\n", + "print \"xl =\",xl\n", + "print \"\\nx2 =\",x2\n", + "print \"\\nx1 =\",x1\n", + "print \"\\nxu =\",xu" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:13.2 Pg: 360" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x0 = [0, 1, 1, 1.3813008689454946, 1.382057051632978, 1.4273175717149764, 1.4274221422858844]\n", + "\n", + "x1 = [1, 1.5921843781407843, 1.3813008689454946, 1.382057051632978, 1.4273175717149764, 1.4274221422858844, 1.4275508501677177]\n", + "\n", + "x2 = [4, 4, 1.5921843781407843, 1.5921843781407843, 1.5921843781407843, 1.5921843781407843, 1.5921843781407843]\n" + ] + } + ], + "source": [ + "from math import sin\n", + "#f(x) = 2sinx - x**2/10\n", + "x0= [0]#\n", + "x1= [1]\n", + "x2= [4]#\n", + "m=[];n=[];r=[];x3=[];s=[]\n", + "for i in range(0,6):\n", + " m.append(2*sin(x0[(i)]) - (x0[(i)]**2)/10)\n", + " n.append(2*sin(x1[(i)]) - (x1[(i)]**2)/10)\n", + " r.append(2*sin(x2[(i)]) - (x2[(i)]**2)/10)\n", + " x3.append(((m[(i)]*(x1[(i)]** 2 -x2[(i)] ** 2)) + (n[(i)]*(x2[(i)] ** 2 -x0[(i)] ** 2)) + (r[(i)]*(x0[(i)] ** 2 -x1[(i)] ** 2)))/((2*m[(i)]*(x1[(i)] -x2[(i)]))+(2*n[(i)]*(x2[(i)] -x0[(i)]))+(2*r[(i)]*(x0[(i)] -x1[(i)]))))\n", + " s.append(2*sin(x3[(i)]) - (x3[(i)]**2)/10)\n", + " if x1[(i) ]> x3[(i) ]:\n", + " if n[(i)]<s[(i)]:\n", + " x0.append(x0[(i)])\n", + " x1.append(x3[(i)])\n", + " x2.append(x1[(i)])\n", + " else:\n", + " x0.append(x1[(i)])\n", + " x1.append(x3[(i)])\n", + " x2.append(x2[(i)])\n", + " \n", + " else:\n", + " if n[(i)]>s[(i)]:\n", + " x0.append(x0[(i)])\n", + " x1.append(x3[(i)])\n", + " x2.appedn(x1[(i)])\n", + " else:\n", + " x0.append(x1[(i)])\n", + " x1.append(x3[(i)])\n", + " x2.append(x2[(i)])\n", + " \n", + " \n", + "\n", + "\n", + "print \"x0 = \",x0\n", + "print \"\\nx1 = \",x1\n", + "print \"\\nx2 = \",x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:13.3 Pg: 361" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = [0.5, 2.2261962395657777, 1.1766358162650659, 1.465127166023216, 1.4238568730046828, 1.4279262963228776, 1.427513951598196, 1.427555600748671, 1.4275513926124817, 1.4275518177794067]\n" + ] + } + ], + "source": [ + "from math import sin, cos\n", + "#f(x) = 2sinx - x**2/10\n", + "x= [.5]\n", + "#f'(x) = 2cosx - x/5\n", + "#f\"(x) = -2sinx - 1/5\n", + "for i in range(1,10):\n", + " x.append(x[(i-1)] - (2*cos(x[(i-1)]) - x[(i-1)]/5)/(-2*sin(x[(i-1)]) - 1/5))\n", + "\n", + "print \"x = \",x" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter14_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter14_2.ipynb new file mode 100644 index 00000000..b3607eab --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter14_2.ipynb @@ -0,0 +1,260 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-14 : Multidimensional Unconstrained Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:14.1 Pg: 368" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration: 1\n", + "x: 1.53606983054\n", + "y: 1.86168445446\n", + "function value: -13.5786300816\n", + "------------------------------------------\n", + "Iteration: 1001\n", + "x: 1.76453990766\n", + "y: 1.86004762993\n", + "function value: -16.155728181\n", + "------------------------------------------\n", + "Iteration: 2001\n", + "x: -0.735800459375\n", + "y: 1.48176151402\n", + "function value: 1.11970176233\n", + "------------------------------------------\n", + "Iteration: 3001\n", + "x: -0.493690866305\n", + "y: 2.74840585243\n", + "function value: -2.08537362139\n", + "------------------------------------------\n", + "Iteration: 4001\n", + "x: 0.191618544017\n", + "y: 2.12536130424\n", + "function value: -3.47137052343\n", + "------------------------------------------\n", + "Iteration: 5001\n", + "x: 0.556097851317\n", + "y: 2.75235702552\n", + "function value: -9.05885931809\n", + "------------------------------------------\n", + "Iteration: 6001\n", + "x: -1.3315420382\n", + "y: 1.98026194153\n", + "function value: 1.11796226726\n", + "------------------------------------------\n", + "Iteration: 7001\n", + "x: -1.30334156994\n", + "y: 2.2803362443\n", + "function value: 0.930459972575\n", + "------------------------------------------\n", + "Iteration: 8001\n", + "x: -1.42505981694\n", + "y: 1.24322307994\n", + "function value: 0.604422816099\n", + "------------------------------------------\n", + "Iteration: 9001\n", + "x: -1.04901290775\n", + "y: 1.83044616216\n", + "function value: 1.16839305819\n", + "------------------------------------------\n" + ] + } + ], + "source": [ + "from numpy.random import rand\n", + "def f(x,y):\n", + " z=y-x-(2*(x**2))-(2*x*y)-(y**2)\n", + " return z\n", + "x1=-2#\n", + "x2=2#\n", + "y1=1#\n", + "y2=3#\n", + "fmax=-1*10**(-15)#\n", + "n=10000#\n", + "for j in range(0,n):\n", + " r=rand(1,2)\n", + " x=x1+(x2-x1)*r[0,0]\n", + " y=y1+(y2-y1)*r[0,1]\n", + " fn=f(x,y)#\n", + " if fn>fmax:\n", + " fmax=fn#\n", + " xmax=x#\n", + " ymax=y#\n", + " \n", + " if j%1000==0:\n", + " \n", + " print \"Iteration:\",(j+1)\n", + " print \"x:\",x\n", + " print \"y:\",y\n", + " print \"function value:\",fn\n", + " print \"------------------------------------------\"\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:14.2 Pg: 374" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Elevation: 8\n", + "Theta: 1.107\n", + "slope: 8.94\n" + ] + } + ], + "source": [ + "from math import atan\n", + "def f(x,y):\n", + " z=x*y*y\n", + " return z\n", + "p1=[2, 2]\n", + "elevation=f(p1[0],p1[1])\n", + "dfx=p1[0]*p1[0]\n", + "dfy=2*p1[0]*p1[1]\n", + "theta=atan(dfy/dfx)\n", + "slope=(dfx**2 + dfy**2)**0.5#\n", + "print \"Elevation:\",elevation\n", + "print \"Theta: %0.3f\"%theta\n", + "print \"slope: %0.2f\"%slope" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:14.3 Pg: 380" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The final equation is= 180*h**2 + 72*h - 7\n" + ] + } + ], + "source": [ + "def f(x,y):\n", + " z=2*x*y + 2*x - x**2 - 2*y**2\n", + " return z\n", + "x=-1#\n", + "y=1#\n", + "dfx=2*y+2-2*x#\n", + "dfy=2*x-4*y#\n", + "#the function can thus be expressed along h axis as\n", + "#f((x+dfx*h),(y+dfy*h))\n", + "print \"The final equation is=\",\"180*h**2 + 72*h - 7\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:14.4 Pg: 381" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The final values are: [-1, 1]\n" + ] + } + ], + "source": [ + "def f(x,y):\n", + " z=2*x*y + 2*x - x**2 - 2*y**2\n", + " return z\n", + "x=-1#\n", + "y=1#\n", + "d2fx=-2#\n", + "d2fy=-4#\n", + "d2fxy=2#\n", + "\n", + "modH=d2fx*d2fy-(d2fxy)**2#\n", + "\n", + "for i in range(0,25):\n", + " dfx=2*y+2-2*x#\n", + " dfy=2*x - 4*y#\n", + " #the function can thus be expressed along h axis as\n", + " #f((x+dfx*h),(y+dfy*h))\n", + " def g(h):\n", + " d=2*(x+dfx*h)*(y+dfy*h) + 2*(x+dfx*h) - (x+dfx*h)**2 - 2*(y+dfy*h)**2\n", + " return d\n", + " #2*dfx*(y+dfy*h)+2*dfy*(x+dfx*h)+2*dfx-2*(x+dfx*h)*dfx-4*(y+dfy*h)*dfy=g'(h)=0\n", + " #2*dfx*y + 2*dfx*dfy*h + 2*dfy*x + 2*dfy*dfx*h + 2*dfx - 2*x*dfx - 2*dfx*dfx*h - 4*y*dfy - 4*dfy*dfy*h=0\n", + " #h(2*dfx*dfy+2*dfy*dfx-2*dfx*dfx-4*dfy*dfy)=-(2*dfx*y+2*dfy*x-2*x*dfx-4*y*dfy)\n", + " h=(2*dfx*y+2*dfy*x-2*x*dfx-4*y*dfy+2*dfx)/(-1*(2*dfx*dfy+2*dfy*dfx-2*dfx*dfx-4*dfy*dfy))#\n", + " x=x+dfx*h#\n", + " y=y+dfy*h#\n", + "print \"The final values are:\",[x, y]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter15_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter15_2.ipynb new file mode 100644 index 00000000..b70a9c17 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter15_2.ipynb @@ -0,0 +1,358 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-15 : Constrained Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.1 Pg: 388" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximize z=150*x1+175*x2\n", + "subject to\n", + "7*x1+11*x2<=77 (Material constraint)\n", + "10*x1+8*x2<=80 (Time constraint)\n", + "x1<=9 (Regular storage constraint)\n", + "x2<=6 (Premium storage constraint)\n", + "x1,x2>=0 (Positivity constraint)\n" + ] + } + ], + "source": [ + "regular=[7, 10, 9 ,150]#\n", + "premium=[11, 8, 6, 175]#\n", + "res_avail=[77, 80]#\n", + "#total profit(to be maximized)=z=150*x1+175*x2\n", + "#total gas used=7*x1+11*x2 (has to be less than 77 m**3/week)\n", + "#similarly other constraints are developed\n", + "print \"Maximize z=150*x1+175*x2\"\n", + "print \"subject to\"\n", + "print \"7*x1+11*x2<=77 (Material constraint)\"\n", + "print \"10*x1+8*x2<=80 (Time constraint)\"\n", + "print \"x1<=9 (Regular storage constraint)\"\n", + "print \"x2<=6 (Premium storage constraint)\"\n", + "print \"x1,x2>=0 (Positivity constraint)\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.2 Pg: 389" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEZCAYAAAB/6SUgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOd5/vHvg1iM2CXAbMZgEDGx8criFWRswCAlaa+0\nadw2e9I9ztrEcdpip0njbM3itL8mTZM4bZw0SZM4SAZiMCLgjcXgJTaWxGYb8MKITSwSkp7fH2c0\nM4xH+0jnjOb+XJeuaBZpHoh53nPec+73NXdHRETyy4CwCxARkb6n5i8ikofU/EVE8pCav4hIHlLz\nFxHJQ2r+IiJ5SM1fRCQPqflLXjKzr5pZtZkdN7PnzexdIdfzDjN71MxOmtmGMGuR/DAw7AJEQlIP\nlLt7tZnNB9aYWa27PxZSPTHgX4HZwOKQapA8oiN/6ZfMbIaZxczsyvjjSWb2upktBHD3u9y9Ov79\nFmATcG0bv+t5MytLeTww/ruuMLPzzOx/zOywmR0xsy1mNr4b9ax3918Ah7L8VyGSkZq/9Evuvhv4\nNPA/ZjYU+AHwA3f/Xfp746/PA55t49fdD9yW8ngZ8Jq77wTeA4wEpgBFwF8Cp3tSj0hfUPOXfsvd\nvwfUAluA84HPtvHW/wB2uvtv23j9fuCtZnZe/PGfAj+Jf98IFAMlHtjh7id6WI9Ir1Pzl/7ue8Al\nwL3ufjb9RTP7CvBm4B1t/YL4UfvzBANAIfAWggEB4L+BtcBPzeyAmX3JzNq7ltZuPSJ9Rc1f+i0z\nGw58g6Dh3m1mY9Jev5tgCmepu9d38Ot+QjD18zbg9+6+B8Ddm9z9c+5+CXAdUA68uzv1xGmZXekT\nav7Sn30T2OLufwFUEkzvAGBmnyFo5kvc/UgnftdPCQaKvyJ51I+ZlZrZHDMrAE4AZ4HmbtQzID6t\nNAgYYGZDzGxQ5/+oIl2j5i/9kpm9DVgK/HX8qY8DV5lZ64XbLwAXALVmdiL+dUdbv8/dXwEeJbgj\n6H9TXpoA/Bw4BjwHVBFMBXW1nncDp4B/B24kuGj8nS78kUW6xHp7Mxcz+z5QRnB3xJz4c0UE/4Au\nBPYB73D3o71aiIiIJPTFkf8PgFvTnrsDeMjdZwHr449FRKSP9PqRP4CZTQNWpRz57wIWufurZjYB\nqHL3i3u9EBERAcKb8z/f3V+Nf/8qwT3PIiLSR0K/4OvBqYdubxMR6UNhLez2qplNcPdXzGwi8Fqm\nN5mZBgURkW5wd2vv9bCO/H9DsCYK8f/9dVtvPHv8LLWfqmVT8SZe/NqLNDc24+6R+lq5cmXoNahO\n1ZmrNarO7H91Rq83fzP7CcH90W8ys5fM7H3APcASM6smWL72nrZ+fuCIgcz40gyu3HwldWvr2Hb5\nNo6s70wmR0RE2tLr0z7uflsbL93Sld8z7OJhXLbmMg4/cJgXPvgCI+aOYMbXZnDe1PM6/mERETlH\n6Bd8u8LMGPcH45j33DwKLylk25Xb2P+F/TSfaStN3zdKS0tD/fzOUp3ZlQt15kKNoDrD0Cf3+XeX\nmXl79Z3ee5rdH99N/TP1zPzGTMaWj+3D6kREosnM8A4u+OZ0829Vt7aOmttrGFoylJnfmEnhzMI+\nqE5EJJo60/xzatqnLUXLipj3zDxGLxzNk9c8yZ7P7qH5ZLhTQSIiUdYvjvxTNRxoYPff7+bY5mPM\n+NoMxv3ROMzaHQBFRPqVvJn2yeToxqPUfLiGQWMHUXJvCcMuGZbl6kREoimvmz9AS1MLB//fQfZ/\nbj/nv+t8pq2cxsBRYYWaRUT6Rt7M+bdlwMABTPnwFOb9fh5Nx5vYcvEWXrnvFbwlugOeiEhf6NdH\n/umObzlOzd/VYAONkm+XMOKqEVn73SIiUZH30z6ZeIvzyg9eYc9n9zD2D8Zy0RcuYlCxtkoVkf4j\n76d9MrEBxsQPTGT+8/MZMGgAW2Zv4cB/HMCbozsIiohkW94d+aerf6qemg/X0FzfTMm3Sxh13ahe\n/TwRkd6maZ9Ocnde+8lr7P7UbsbcPIaLvnQRQyYM6fXPFRHpDZr26SQz4/w/PZ/5z89n8ITBbL10\nKy/960u0nG0JuzQRkV6hI/8MTu46Se1Haml4qYGSe0sYc/OYPq9BRKS7NO3TA+7O4QcOs/tju7V3\ngIjklMhP+5jZZ8zs92b2jJndb2aRmWiP6t4BIiLZEFrzN7NpwIeAq9x9DlAAvDOsetpSMLSA6XdN\n5+ptV3Ni2wm2XrqVwxWHwy5LRKRHwjzyPw6cBQrNbCBQCBwIsZ52DZ0+lEt/dSmz/m0Wuz+xm6fL\nn+ZU7amwyxIR6ZbQmr+71wFfA14EDgJH3X1dWPV0Vqa9A5rqm8IuS0SkS0Jb4tLMZgAfBaYBx4Cf\nm9mfufuPU9931/TpMGsWzJpF6dvfHok9NAcMHsDUT03l/D87n92f2s1jkx5j9KLRFJcXU1RWxHlT\ndGFYRPpOVVUVVVVVXfqZ0O72MbM/AZa4+wfjj98FXOPuf5vyHvcHHoDKSqiogGHDoLw8+LrhBhg8\nOJTa0509cpa6tXXEKmLUra7jvKnnUVRWRHF5MSPnjcQKtJmMiPSdSN/qaWaXAz8G5gFngB8CW9z9\n31Lek7zV0x127gwGgYoKeOEFWLIkGAiWL4fx4/v+D5FBS1MLxx8/TqwiRqwixtnXzlK0IhgIipYW\nMXCk9hMQkd4V6eYPYGafAt4DtABPAh9097Mpr7d9n/+rr8Lq1cFAsG4dzJ4NZWXBYHD55RCRrRtP\n7ztNXWVwVnBs8zFGLBhBcVkxxeXFFJZoo3kRyb7IN/+OdDrk1dAAmzYFA8GqVdDYmBwIFi+Gwmg0\n2ab6Jo6uPxqcFVTGKBhRQHF5MBCMumEUAwZptQ0R6bn8af6p3IMpodbrBNu3w8KFwWBQVgZTp/ZO\nsV3kLU79jnpilcH00Oma04xZOobismKKlhcxeFw0rmeISO7Jz+af7uhRWLs2GAhWr4bJk5MXjefP\nh4KC7BTbQw2HGqhbHUwPHVl/hGGXDEucFQybMwyLyDSWiESfmn+65mZ4/PHkWcGhQ7BiRXBGsGwZ\njIrGWv4tDS0c3Xg0cdHYmzwYCMqKGb14NAVDozFgiUg0qfl3ZP/+5ECwaRPMm5c8K5g1q/c+twvc\nnVO7TiUGgvod9coUiEi71Py74uRJWL/+jZmCsjK48cboZArqUjIFa5QpEJE3UvPvLmUKRCSHqfln\nS2qm4KGHgkxB6/RQlDIFe08n7h46/shxZQpE8pSaf29IzxQ0NCQHgqhmCipiFIxUpkAkX/SL5s+G\nDWGXkfOsBUpq4JrH4drHYPIB2DYXHr8GnlgAx0aHXaGIZNVNN+V+849yfW+gTIGIREC/OPKPcn3t\nypQpWL48GAiUKRCRXqTmHyXKFIhIH1Hzj6r0TEFhYXIgUKZARHpIzT8XZMoU3HJLMBCsWKFMgYh0\nmZp/LlKmQER6SM0/16VmCioq4MyZ5D4FN98czUyB9ikQCV3km7+ZjQa+B1wCOPB+d3885fX8bv6p\n3KG6OjkQbNsW7FPQuv6Q9ikQkbhcaP73ARvd/ftmNhAY5u7HUl5X829LpkxB61nBggXRyRS80kDd\ng8oUiPSlSDd/MxsF7HD3i9p5j5p/ZzQ3wxNPJM8KUjMFS5fC6GhEeBOZgsoYsVXKFIj0lqg3/yuA\n7wDPAZcD24GPuPuplPeo+XdHaqZg82a4+upzMwURONpWpkCk90S9+c8FHgOuc/etZvYN4Li7/1PK\ne/w970n+zBVXBF8iIpK0c2fw1eq++4h0858APObu0+OPbwDucPfylPfoyD+bUjMFlZWwa5cyBSL9\nUKSP/AHM7HfAB9292szuAoa6+6dTXlfz702pmYJ16+Dii6OZKdh3mrrK4KLxsc3HlCkQ6UAuNP/L\nCW71HAzsBt6nu31C0th47j4FyhSI5KzIN/+OqPmHRJkCkZym5i/ZcfQo/Pa3yUzBpEnR3KdAmQIR\nQM1fekN7mYIo7lOgTIHkITV/6X0vvnjuPgVz52qfApGQqflL3zp5Eh5+OHlWENV9Co6k7FOwOtin\noHV6aMS8EdgATQ9JblPzl/C4w1NPJQeCXbtgyZJgIFi+XJkCkV6k5i/R0ZopqKxM7lPQeitp1DMF\n8bOCwpnRuN1VpCNq/hJN6ZmChobkQLB4sTIFIj2k5i/Rl5opqKxMZgrKyqKdKag9zdQ7pjLlo1MY\nMFiDgESLmr/knhzJFJyqPkXtR2s5vfs0Jd8qoWhZUdgliSSo+UtuS80UVFbCwYPBAnRlZZHIFLg7\nsYoYtR+tZfhlw5nxrzMYOn1oqDWJgJq/9DcRzRQ0n2nmpa++xMtff5kpt0/hgk9doBCZhErNX/qv\n9EzBsGHJi8YhZQrO7D9D7Sdqqd9ez4yvz2Ds28ZqSQkJhZq/5IeIZQrq1tVR++Fahlw4hJJvllD4\npmjcvST5Q81f8lME9iloaWzhwL0H2P/F/Uz8wEQu/IcLGThCgTHpG2r+Ipn2KWgdCPogU9BwqIE9\nn97DkYePMOPLMxh/23hNBUmvU/MXSRXiPgXHHjlGzd/VUDCygJJ7Sxh+2fBe+yyRnGj+ZlYAbANe\ndve3pL2m5i+95+hRWLs2mSmYPLlXMwXe7Bz87kH2rdzH+HeOZ9rd0xg0ZlBWP0MEcqf5fxy4Ghjh\n7m9Ne03NX/pGH+5T0Hi4kb2f3cvhBw5z0RcuYsL7JmglUcmqyDd/M5sC/BD4AvBxHflLZOzfn8wU\nbN4cZApabyWdNSsrF41PbD9Bzd/V4M1OybdLGDl/ZBYKF8mN5v9z4F+AkcAn1fwlknpxnwJvcV75\n0Svs/cxeisqKuOiLF2nvYemxzjT/0O49M7Ny4DV332FmpW2976677kp8X1paSmlpm28V6R3DhsFb\n3hJ8ucPOncGdQ3feCS+80KNMgQ0wJr53IuP+cBz77trH1jdv5cKVFzLpryYxYKAWjJPOqaqqoqqq\nqks/E9qRv5n9C/AuoAk4j+Do///c/d0p79GRv0RbljMF9c/WU3t7LWcPn6Xk2yWMXji6lwqX/izy\n0z6JIswWoWkfyXWNjfC73yWnh7qZKXB3Xv/56+z+xG5GLRzFjC/PYMjkIb1cvPQnudb8P6G7faTf\nyEKmoKm+iRf/5UUOfucgUz+tvQOk83Km+bdFzV/6jR5kCk7VnKL2I9o7QDpPzV8kirqRKdDeAdIV\nav4iuSBTpqCNfQq0d4B0hpq/SK7pZKZAewdIe9T8RXJZa6agdRvLDPsUaO8AyUTNX6Q/Sc8UzJ4N\nZWW0LCvjwMZi9t/zovYOECCLzd/MZgPTgBZgv7vvykqFHX+umr9IJun7FDQ00FD6dvYcKOPIC4XM\n+MpM7R2Qx3rU/M1sOvAxYAVwADgIGDARmAJUAF93931ZrDm9BjV/kY6kZQqOPXGKmkEfp2D8cEru\nncXwW0vCrlD6WE+b/8+A/wSq3P1s2muDgJuAD7r7O7JUb6Ya/KYf3kT5rHLKZ5Uzq3hWxz8kku+O\nHsXX/JaDX69l39Y3M3jISYqvaqD4PW9i5HsXYIM1JdTf9Ys5/wd2PUBldSUVNRUMGzQsMRDcMPUG\nBhdo9UOR9nhjE8d/8Dix+6qJ7RhCY8MIiqa/RvFbx1H0sRsZOFWBsf4oK83fzN4BrHH342b2j8BV\nwD+7+5PZK7XNz05M+7g7O1/ZSUV1BRU1Fbxw+AWWzFhCeUk5y0uWM35Y11ZTFMlHZx7bQ+xbTxBb\nf4pjr09kxOhXKV44iOK/uYrCZW8OuzzJkmw1/2fcfY6Z3QB8Hvgq8I/uviB7pbb52W3O+b9a/yqr\na1dTUV3Buj3rmD1uNmUlZZTPKufy8y/XhS6RDjS/dpwj924m9ouDxKqLKCg4S/Gl9RTfNo1Rf309\nA4afF3aJ0k3Zav473f0KM7sHeMbdf2xmO9z9ymwW28Znd+qCb0NTA5te3ERFdQWrqlfR2NyYGAgW\nT19M4SDd+yzSHm9pof5/nyT2vWeJPTGAUyeLKZp8iOLloyn66HUMvmRS2CVKF2Sr+VcS3O2zBLgS\nOAM84e6XZ6vQdj67y3f7uDsvxF5IXCfYfnA7Cy9cSFlJGWWzypg6quPVFEXyXeOzB4h94zFia45y\n5MBECofHKF7gFH/oEob/8VXYAK0uGmXZav7DgGUER/01ZjYRmOPuv81eqW1+do9v9Tx65ihra9dS\nUVPB6prVTB45mfKS4KLx/MnzKRigdVFE2tNSf4aj//4IsZ/sI/bsCFp8IMWz6ij+o8mMuf0GCsaO\nCLtESZPNkNeNwEx3/4GZjQNGuPueLNXZ3udm9T7/5pZmHn/5cSprKqmoruBQ/SFWlKygrKSMZTOW\nMeq8N66mKCJJ3tLC6bXPE/v3J4ltbuLE0fMZNe4Vim8eSvHtCzjv2ovCLlHI3pH/XcDVwJvcfZaZ\nTQZ+5u7XZ6HAC4AfAeMBB77r7t9Keb1XQ177j+5PDASbXtzEvEnzlCkQ6YKz+w9z5F83E1t1mNi+\n8QwZckKZggjIVvN/imCuf3vrRV4ze9rdL8tCgROACe6+08yGA9uBP3D35+Ov91nC92TjSdbvXf+G\nTEFZSRk3XnijMgUiHfDGJo7/12PE/rtGmYKQZav5b3H3+a13+MSvATyWjeaf4bN+Ddzr7uvjj0NZ\n3kGZApGeO/NILbF7txJ7WJmCvpat5v/3wExgKfBF4P3A/anTM9lgZtOAjcAl7l4ffy4Sa/ukZgoe\n2vMQs8fOTkwPKVMg0rHm145z5Jubif1SmYK+kM0LvksJmj/AWnd/KAv1pf7+4UAV8Hl3/3XK85Fo\n/qnSMwUNTQ2JgUCZApGOZcwUnP8ixRP2UTR+L4OHnA67xLaNGwcrVsDSpTByZNjVtCkn1vaJLxJX\nAax292+kveYrV65MPC4tLaW0tLRvC2xHeqZg28FtLLxwIeUl5coUiHRS47MHgoFg6wCO7BxI4ZQW\niuc1UTyvieHTW4jUiXXrlpubN8OCBcld1mbODLWsqqoqqqqqEo/vvvvurEz7vB24BzifYElnAHf3\nHg97FsyX3AfE3P1jGV6P3JF/e5QpEOmZloYWjm46SqwiRmxVjJaGForLiykuL2bM4jEUFEbk31B9\nPaxfn9xuc+TI5EBwww0waFCo5WVrzn83UN56B042xdcL+h3wNMGtngCfcfc18ddzqvmnypQpWD5z\nOeWzypUpEOkEd+fUC6eoq6wjVhHjxLYTjFo4KhgMyoo5b2pErhO0tMCOHcmBoLY2mBZq3W5z7Ng+\nLylbzf+RbNzT3x253PzTKVMg0jNnj57lyNojwVnB6hhDJg9JnBWMnD8SK4jI/NChQ8ntNtevh0su\nSZ4VzJlDX8xjZav5fxOYAPwaaIw/7e7+y6xU2f5n95vmnyo9U1A4qDAxPaRMgUjHvNk5/vhxYpUx\nYhUxGg81UrS8KJgeWjqGQaPDnXZJaGiAjRuTZwVNTcmB4KabYOjQXvnYbDX/H8a/PeeN7v6+HlXX\nCf21+afKlCm45aJbKJ9VzoqSFcoUiHTCmf1nEgPBsU3HGDFvBMVlwVnB0FlDo3E7tjvs2pUcCHbs\ngEWLgoGgrAymTMnaR+XE3T7tyYfmn06ZApGeaT7ZzJH1RxKDQUFhQWJ6aNSNoxgwOCIrktbVwdq1\nwUCwZg1MnZo8K5g3D3qwcmq2jvzHAx8CpgGtC3W4u7+/25V1Uj42/1SpmYKK6grONJ1J7FNw80U3\nK1Mg0gF3p35nfXCdoCLGqRdOMeaWMcFgsKKYweMjMsXa1ASPP548K3j99SBPUFbWrUxBtpr/YwR3\n5GwHWuJPu7v/X5eq6YZ8b/6p3J3qWHViekiZApGua3y1kdjqYCA4su4IhRcXJs4Khl8+PDpn1nv3\nBnmCigp45JEuZwqyupNX1yrPDjX/tmXKFLSeFSyYvECZApEOtDS2cPR3RxNnBS1nWhLXCcbcHOFM\nwahRyesEbWQKstX8P0+wkFtlj/4A3aDm3znNLc08ceCJxPRQaqZg6YyljD5vdNglikSau3O6+nRi\nIMj1TEG2mn89UEhwm+fZ+NNZSfh2RM2/e1IzBZtf3MzVk65O3Eo6q3hWdE5tRSLqDZmCSSmZggUR\nzhRceimUl2N33qm7ffLdycaTPLz3YVZVr6KyplKZApEu8mbn+BPHE0tONL4S/UyB3Xtv1lb1fBuw\nkOBe/43uvio71Xb4uWr+WZSaKaisqWTX4V3KFIh00TmZgs3HGDE3epmCbE373APMA35MsLDbO4Ft\n7v6ZbBXazmer+fei1EzBuj3ruHjsxcoUiHRB88lmjjx8JHGtICqZgmw1/2eAK9y9Of64ANjp7nOy\nVmnbn63m30camxvZtD+5T4EyBSJdc06moDLGqV3hZQqy1fyfBm5y91j8cTGwoTe2cczw2Wr+IVCm\nQKTnwswUZKv530awnv8GgmmfRcAd7v7TbBXazmer+UfA0TNH+e3u31JRXcHq2tVMGjFJ+xSIdEHG\nTEEv7lOQzW0cJxHM+zuw1d0PZafEDj9XzT9i2ssUaJ8CkY71RaYgW0f+69395o6e6w1q/tH34rEX\nE0tTb9q/ibmT5mqfApEu6I19CnrU/M1sKEG4awNQmvLSSGCNu1/c5Yre+Bm3At8ACoDvufuX0l5X\n888hrZmC1msFyhSIdM05mYK0fQqKlhUxcNTAjn8JPW/+HwU+AkwCDqa8dAL4rrt/u1NVtF1cAfAC\ncAtwANgK3Ja6XaSaf+5yd5569anE9NCuw7tYMmMJ5SXlLC9ZrkyBSCdkzBTEzwoKZ7V9B162pn1u\nd/dvda/0dn/vtcBKd781/vgOAHe/J+U9av79RGumoLKmkod2P8TscbMTt5IqUyDSsa5kCnp65L/I\n3Te2+8NmN7n7hu78Qczsj4Bl7v6h+OM/Bxa4+4dT3qPm3w+lZwoamhsSA8Hi6YuVKRDpQKZMQdGS\n+PTQ8iKGnD+kR83/qwRLOqwDtgGHgAEE+/nOJZiu2eDun+pO8Wb2duDWjpr/Jz/plJfDdddlXLlU\nclxqpqCyppKtB7cyYvCIsMvqUMGAAq674LrENNbYwrFhlyR5LD1TsPDYwp5N+5jZCOBtwPXAhfGn\n9wObgQfcvb67xZrZNcBdKdM+nwFaUi/6mpkvWrSS6mo4cgSuvbaUD3yglFtvheLi7n6yRFl9Yz3H\nG46HXUaHzjSdoWpfFRXVFazfu55Lxl2SuMtpzvg5msaSPlVVVUVVVRUQXDT+3Oc/F91VPc1sIMEF\n35sJLihvoZ0LvgcPwoMPBiuXbtgAc+YkN7a55BLQvzUJS0NTAxv3b0xc3G5qaUoMBDdNu4mhg4aG\nXaLkmchv4G5my0ne6vlf7v7FtNczzvmfOQNVVcEuZ6vi64u2bmxz001wXkT2XZD84+7sOrwrcbvr\njkM7WDRtUWJpjCkjp4RdouSByDf/jnTmgq87PPdccmObp54KBoDWwWDSpD4qViSDutN1ie0219Su\nYeqoqYmBYN6keVoaQ3pFXjT/dLEYrFkTnBWsWQPTpycHgrlzYUA4K6yK0NTSxOMvP56YHnrt5Gus\nKFmR2G5z5JBe3xxP8kSPm7+ZjQTGufvutOcvc/ens1NmO8X18FbPpiZ49NHkWUFdHaxYEQwGS5bA\niOjfVCL92N4jexPbbT7y0iMsmLwgcctrSXFJ2OVJDuvpff7vIJiPfw0YBLzP3bfEX9vh7ldmud5M\nNWT1Pv/du4MzgsrKYFC49trkWcGMGVn7GJEuq2+sZ/2e9YlrBSOHjEwsjXHD1BsYVKD7nKXzetr8\nnyK4D/+Qmc0HfgTc6e6/zNXmn+rECVi3LjgjqKyEMWOSdw8pUyBhavEWdhzakRgIautqWTpjKWUl\nZSyfuZxxw8aFXaJEXE+b/7PufmnK44lABcEg8N5cb/6pWlpg+/ZgEKiogD17YNmy4Ixg+XJlCiRc\nh04cSmy3qUyBdEZPm/+jwLtS5/vj1wB+Bdzo7r2+RGNYyzukZgoefhguu0yZAomGtjIFZSVlLJ6+\nWJkCAXre/K8ATrp7Tdrzg4F3uPv/ZK3StoqLwNo+rZmC1ovGEJwRlJcrUyDhUqZA2pKtVT3f7O7P\npT3X7QXduiIKzT9Ve5mCFStg8uSwK5R8lp4puGDkBYnpIWUK8ku2mv+zwH8DXwaGAl8C5rn7Ndkq\ntJ3PjlTzT5eeKZg2LTk9pEyBhKk1U7DqhVVU1lQqU5BnstX8hxE0/LnAcOB+4B53b8lWoe18dqSb\nfyplCiTKlCnIL9lq/kOAzwNLgWHAP7j7T7NWZfufnTPNP50yBRJVqZmCyppKRgwZoUxBP5Ot5v8U\n8Bvgc8BY4DtAg7v/cbYKbeezc7b5p1KmQKKqNVPQelZQU1ejTEE/kK3mP8/dt6Y99253/1EWauzo\ns/tF80+lTIFE2Sv1r/BgzYPKFOS4vFzYLdcoUyBR1ZopqKyuZFX1Ku1TkEPU/HOM9imQqFKmILeo\n+ecw7VMgUXbk9BHW7l5LRXUFq2tXJ/YpKJ9VzrzJ8xhgus85TJFu/mb2FaAcaAR2E6waeiztPXnb\n/NPFYrB2bTAQpO5TUF4OV1+tTIGER/sURE/Um/8SYL27t5jZPQDufkfae9T8M1CmQKJs39F9VFZX\nUlFTweYXN7Ng8oLEtYKZRTPDLi8vRLr5n1OE2R8Cb3f3P097Xs2/E/bsSd49pEyBREl6pmDkkJGJ\nheiUKeg9udT8VwE/cff7055X8++i1EzBgw/C6NHJ6aHrr4eBA8OuUPJVW5mC8pJylpcsZ2zh2LBL\n7DdCb/5m9hAwIcNLd7r7qvh7Pgtc5e5vz/DzvnLlysTj0tJSSktLe6na/qelBZ58MhgIVq2CvXuD\nTEF5Odx6qzIFEq70TMGl4y9N3D2kTEHXVFVVUVVVlXh89913R/vI38zeC3wIuNndz2R4XUf+WZSa\nKdiwAebMUaZAokGZguwK/ci/3Q82uxX4GrDI3Q+38R41/15y5gxs3Ji8aOyeHAhKS5UpkPBkyhSU\nTitNXCuYPFJrp3ck6s2/BhgM1MWfeszd/ybtPWr+fSA9U/D008EAoEyBRIEyBV0X6ebfGWr+4VCm\nQKJKmYI+R3NzAAANVUlEQVTOUfOXHlOmQKKsdZ+CyppKZQpSqPlL1mmfAomq1ExBRU1FkCnI030K\n1PylV6XvU1BUlNzcXvsUSJhaMwWtA0FtXW1eZQrU/KXPtLVPgTIFEgWHThxide3qvNmnQM1fQqN9\nCiSqWjMFrReN+2OmQM1fIkH7FEhU9dd9CtT8JXK0T4FEWd3pOtbWrqWipoI1tWuYOmoqZSVlQaZg\n0jwKBhSEXWKnqPlL5MViQZagsjKZKWi9aDx3rjIFEp5czhSo+UtOaWqCRx5JXjRWpkCiZO+RvYml\nqR956ZFIZwrU/CWnKVMgURX1TIGav/Qb6ZmCMWOSdw8pUyBhimKmQM1f+qW2MgVlZbB8uTIFEq4o\nZArU/CUvKFMgURVWpkDNX/JOeqYgdZ8CZQokTH2ZKVDzl7zWXqZgxQqYrD1BJESZMgXZ2qdAzV8k\nRXqmYNq05FmBMgUSpvRMweunXmdFyQrKSsq6lSmIfPM3s08AXwHGuntdhtfV/KVXaJ8CibLWfQoq\nqiu6lSmIdPM3swuA/wTeBFyt5i9hSs8UXHNN8qxAmQIJU3qmYNSQUYn9jNvKFES9+f8c+GfgAdT8\nJUKUKZCo6mymILLN38zeBpS6+8fMbC9q/hJRmTIFS5cGA4EyBRK29EzBpeMvpbyknDsX3hle8zez\nh4AJGV76LHAnsNTdj8eb/1x3j2X4Hb5y5crE49LSUkpLS3ulXpHOaM0UrFoFGzYoUyDRUFVVxbqH\n17H/6H6qY9VsuX9L9I78zexSYD1wKv7UFOAAMN/dX0t7r478JbKUKZCoiuy0zzkFaNpH+gFlCiRK\ncqX57yGY9lHzl34jFoO1a4OBQJkC6Ws50fzbo+Yv/YEyBdLX1PxFImjPnuTdQ8oUSG9Q8xeJuNRM\nwYMPwujRyhRIz6n5i+SQlhZ48snk9JAyBdJdav4iOSx1n4ING2DOHGUKpHPU/EX6iTNnYOPG5FlB\na6agrEyZAnkjNX+Rfqg1U9B60XjnzmSmoKwMJk0Ku0IJm5q/SB6oqwuyBK2ZgunTkwOBMgX5Sc1f\nJM+0ZgpazwpiMWUK8pGav0ieS88UXHtt8qxAmYL+S81fRBLq68/dp0CZgv5LzV9EMsqUKVi2LDgj\nUKYg96n5i0inKFPQv6j5i0iXKVOQ+9T8RaRH2tunQJmC6FLzF5GsSt+nQJmCaFLzF5Feo30KoivS\nzd/MPgz8DdAMVLr7pzO8R81fJEfs3h3cQlpZqUxB2CLb/M3sJuBOYIW7nzWzce7+eob3qfmL5KDU\nfQoqK2HMGGUK+lKUm//PgP9w94c7eJ+av0iOa2mB7duTSWNlCnpflJv/DuAB4FbgDPBJd9+W4X1q\n/iL9TGqm4OGH4bLLYOFCGDw47Mo6Nm5cMGBddFHYlbSvM81/YC9++EPAhAwvfTb+uWPc/Rozmwf8\nDMj413nXXXclvi8tLaW0tDTrtYpI35k0CT74weDrzBmoqoItW4IzhKjbtg0+9zkYOzY5jXXttTCw\n1zpp51RVVVFVVdWlnwnryH81cI+7b4w/rgUWuHss7X068heRSGlpCQaB1ruc9u8PprHKy+HWW6Go\nKOwKoz3t85fAJHdfaWazgHXuPjXD+9T8RSTSXn45OY1VVQVXXJE8K5g9O5ylMaLc/AcB3weuABqB\nT7h7VYb3qfmLSM44fToYAFrPCgoKggvb5eWwaFHfLY0R2ebfWWr+IpKr3OHZZ5MDwbPPwuLFwUCw\nYgVMnNh7n63mLyISEYcPJ7fbXLs2CL61Tg9ddVV2l8ZQ8xcRiaCzZ+GRR5JnBceOJaeHbrkFhg/v\n2e9X8xcRyQG1tckQ3OOPw/XXJ5fGmD69679PzV9EJMccPw4PPRQMBA8+2L1MgZq/iEgOy5QpuPXW\nYCBYtqztTIGav4hIP9LZTIGav4hIP5WaKVi1KpgOah0Ili1T8xcR6ffSMwWPPqrmLyKSdzoz7aMd\nN0VE8pCav4hIHlLzFxHJQ2r+IiJ5SM1fRCQPqfmLiOShUJq/mc03sy1mtsPMtsb38RURkT4S1pH/\nl4F/dPcrgX+KP85ZXd04OSyqM7tyoc5cqBFUZxjCav6HgFHx70cDB0KqIyty5T8I1ZlduVBnLtQI\nqjMMnVgctFfcAWw2s68SDEDXhlSHiEhe6rXmb2YPARMyvPRZ4Hbgdnf/lZn9McFm7kt6qxYRETlX\nKGv7mNlxdx8Z/96Ao+4+KsP7tLCPiEg3dLS2T1jTPrVmtsjdNwKLgepMb+qoeBER6Z6wmv9fAP9m\nZkOA0/HHIiLSRyK9pLOIiPSOyCZ8zexWM9tlZjVm9umw68nEzL5vZq+a2TNh19IeM7vAzDaY2e/N\n7Fkzuz3smtKZ2Xlm9oSZ7TSz58zsi2HX1B4zK4iHFFeFXUtbzGyfmT0dr3NL2PW0xcxGm9kvzOz5\n+P/314RdUzoze1P877H161gU/x0BmNln4v/WnzGz++MzLG98XxSP/M2sAHgBuIUgA7AVuM3dnw+1\nsDRmdiNQD/zI3eeEXU9bzGwCMMHdd5rZcGA78AcR/PssdPdTZjYQ2Ax80t03h11XJmb2ceBqYIS7\nvzXsejIxs73A1e5eF3Yt7TGz+4CN7v79+P/3w9z9WNh1tcXMBhD0pfnu/lLY9aQys2nAw8Bsd28w\ns/8FHnT3+9LfG9Uj//lArbvvc/ezwE+Bt4Vc0xu4+ybgSNh1dMTdX3H3nfHv64HngUnhVvVG7n4q\n/u1goACIZNMysynACuB7QNRvSoh0fWY2CrjR3b8P4O5NUW78cbcAu6PW+OOOA2eBwvhAWkgbIdqo\nNv/JQOpf7Mvx56SH4kcGVwJPhFvJG5nZADPbCbwKbHD358KuqQ1fB/4eaAm7kA44sM7MtpnZh8Iu\npg3TgdfN7Adm9qSZ/aeZFYZdVAfeCdwfdhGZxM/yvga8CBwkuI1+Xab3RrX5R28uqh+IT/n8AvhI\n/AwgUty9xd2vAKYAC82sNOSS3sDMyoHX3H0HET+qBq6Pr5+1HPjb+DRl1AwErgL+3d2vAk4SrAAQ\nSWY2GHgL8POwa8nEzGYAHwWmEZzdDzezP8v03qg2/wPABSmPLyA4+pduMrNBwP8B/+Puvw67nvbE\nT/srgblh15LBdcBb4/PpPwEWm9mPQq4pI3c/FP/f14FfEUynRs3LwMvuvjX++BcEg0FULQe2x/9O\no2gu8Ki7x9y9CfglwX+zbxDV5r8NKDGzafGR9k+A34RcU86Kp6j/C3jO3b8Rdj2ZmNlYMxsd/34o\nwXIfO8Kt6o3c/U53v8DdpxOc/j/s7u8Ou650ZlZoZiPi3w8DlgKRuyvN3V8BXjKzWfGnbgF+H2JJ\nHbmNYNCPql3ANWY2NP7v/hYg4/RpWCGvdrl7k5n9HbCW4MLff0XtzhQAM/sJsAgoNrOXgH9y9x+E\nXFYm1wN/DjxtZq0N9TPuvibEmtJNBO6L30kxAPhvd18fck2dEdUpyvOBXwX//hkI/NjdfxtuSW36\nMPDj+IHebuB9IdeTUXwQvQWI6vUT3P2p+JnoNoJrUk8C38303kje6ikiIr0rqtM+IiLSi9T8RUTy\nkJq/iEgeUvMXEclDav4iInlIzV9EJA+p+Uu/Z2ZrzOxIR8svm9lXzWxR/PuPxsNmoTKzn5nZ9LDr\nkP5HzV/ywZeBd7X3hngadmF8a1GAjxCsiBi2/wQ+FnYR0v+o+Uu/YGbzzOwpMxtiZsPim9a8GcDd\nHybYd6E9bwPWxX/X7QSLYm0ws/Xx526Lb4zyjJndk/K59Wb2+fgmNI+Z2fj48z80s2+a2SNmttvM\n3p7yM39vZlvi9d4Vf26YmVXGf88zZvaO+NurCJaPFskqNX/pF+ILg/0G+DzwJYLlIbqyJPT1BJF4\n3P1bBMvhlrr7zWY2CbgHuAm4AphnZq37SxQCj8VXI/0d50b/J7j79UB5/Ocxs6XATHefT7C09tXx\n1TaXAQfc/Yr4xkBr4rWcBQ6Y2eyu/Y2ItE/NX/qTzxEsYDaXYKqnKy4EDrXx2jyC/QVi7t4M/BhY\nGH+t0d0r499vJ1hKF4I1f34NEF+X6vz480uBpfE1lrYDbwJmEiy6tsTM7jGzG9z9eMrnH0z5vSJZ\nEcmF3US6aSwwjGAxwKHAqZTXOrOIVVsHQ865a/dbyu87m/J8C+f+m2pM+5lWX3T3Nyy2ZWZXAmXA\n581svbv/c8rPRn3jGMkxOvKX/uQ7wD8Q7LL0pbTXOtp4ZT8wIeXxCWBk/PutwCIzK47vL/1OYCPd\nsxZ4f3yFSMxsspmNM7OJwBl3/zHwVc5d035ivD6RrNGRv/QLZvZuoMHdfxpfFvpRMyt19yoz20Qw\nvTI8vvT2+939obRfsZlguuj/4o+/C6wxswPxef87gA0Eg0iFu7feNpp6RuEZHp/zvbs/FJ+/fyy+\n3PIJgjuRZgJfMbMWgjOGv47/uQYBU9x9Vzf/akQy0pLOIiS2uNzg7vPCriVV/AJxmbt/JOxapH/R\ntI8IEN/TeIOZ3RR2LWk+SLBhvEhW6chfRCQP6chfRCQPqfmLiOQhNX8RkTyk5i8ikofU/EVE8pCa\nv4hIHvr/jNG1VBcwIEMAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fa838951c50>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,title ,show\n", + "x21=[];x22=[];x23=[];x24=[];x25=[];x26=[]\n", + "\n", + "for x1 in range(0,9):\n", + " x21.append(-(7/11)*x1+7)\n", + " x22.append((80-10*x1)/8)\n", + " x23.append(6)\n", + " x24.append(-150*x1/175)\n", + " x25.append((600-150*x1)/175)\n", + " x26.append((1400-150*x1)/175)\n", + "\n", + "x1=range(0,9)\n", + "\n", + "plot(x1,x24)\n", + "plot(x1,x25)\n", + "plot(x1,x26)\n", + "\n", + "plot(x1,x21)#\n", + "plot(x1,x22)#\n", + "plot(x1,x23)#\n", + "title('x2 vs x1')\n", + "xlabel('x1 (tonnes)')\n", + "ylabel('x2 (tonnes)')\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.3 Pg: 399" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The maximized profit is= 1413.888925\n" + ] + } + ], + "source": [ + "x1=[0,4.888889, 3.888889]\n", + "x2=[0,7, 11]#\n", + "x3=[0,10, 8]#\n", + "x4=[0,150, 175]#\n", + "x5=[0,77, 80, 9, 6]\n", + "profit=[0,x1[(1)]*x4[(1)], x1[(2)]*x4[(2)]]#\n", + "total=[0,x1[(1)]*x3[(1)]+x1[(2)]*x3[(2)], x1[(1)]*x3[(1)]+x1[(2)]*x3[(2)], x1[(1)], x1[(2)], profit[(1)]+profit[(2)]]\n", + "e=1000#\n", + "\n", + "while e>total[(5)]:\n", + " if total[(1)]<=x5[(1)]:\n", + " if total[(2)]<=x5[(2)]:\n", + " if total[(3)]<=x5[(3)]:\n", + " if total[(4)]<=x5[(4)]:\n", + " l=1#\n", + " \n", + " \n", + " \n", + " \n", + " if l==1:\n", + " x1[(1)]=x1[(1)]+4.888889\n", + " x1[(2)]=x1[(2)]+3.888889# \n", + " profit=[0,x1[(1)]*x4[(1)], x1[(2)]*x4[(2)]]\n", + " total[(5)]=profit[(1)]+profit[(2)]\n", + " \n", + "\n", + "print \"The maximized profit is=\",total[(5)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.4 Pg: 401" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The final value of velocity=19.980\n", + "6 The final no. of load parcels= 6\n", + "The chute radius=2.944 m\n", + "The minimum cost = 4377.264 $\n" + ] + } + ], + "source": [ + "from math import pi,exp\n", + "\n", + "Mt=2000##kg\n", + "g=9.8##m/s**2\n", + "c0=200##$\n", + "c1=56##$/m\n", + "c2=0.1##$/m**2\n", + "vc=20##m/s\n", + "kc=3##kg/(s*m**2)\n", + "z0=500##m\n", + "t=27#\n", + "r=2.943652#\n", + "n=6#\n", + "A=2*pi*r*r#\n", + "l=(2**0.5)*r#\n", + "c=3*A#\n", + "m=Mt/n#\n", + "def f(t):\n", + " y=(z0+g*m*m/(c*c)*(1-exp(-c*t/m)))*c/(g*m)#\n", + " return y\n", + "\n", + "while abs(f(t)-t)>0.00001:\n", + " t=t+0.00001\n", + " \n", + "v=g*m*(1-exp(-c*t/m))/c#\n", + "print \"The final value of velocity=%0.3f\"%v\n", + "print n,\"The final no. of load parcels=\",n\n", + "print \"The chute radius=%0.3f m\"%r\n", + "print \"The minimum cost = %0.3f $\"%((c0+c1*l+c2*A*A)*n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.5 Pg: 406" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -1.775726\n", + " Iterations: 26\n", + " Function evaluations: 52\n", + "After maximization:\n", + "x= [ 1.4275625]\n", + "f(x)= [-1.77572565]\n" + ] + } + ], + "source": [ + "from scipy.optimize import fmin\n", + "from math import sin\n", + "def fx(x):\n", + " y=-(2*sin(x))+x**2/10\n", + " return y\n", + "x=fmin(fx,0)\n", + "print \"After maximization:\"\n", + "print \"x=\",x\n", + "print \"f(x)=\",fx(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.6 Pg: 407" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -2.000000\n", + " Iterations: 45\n", + " Function evaluations: 86\n", + "After maximization:\n", + "x= [ 1.99993372 0.99996476]\n", + "f(x)= -1.99999999779\n" + ] + } + ], + "source": [ + "from scipy.optimize import fmin\n", + "def fx(x):\n", + " f=-(2*x[0]*x[1]+2*x[0]-x[0]**2-2*x[1]**2)\n", + " return f\n", + "x=fmin(fx,[-1, 1])\n", + "print \"After maximization:\"\n", + "print \"x=\",x\n", + "print \"f(x)=\",fx(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:15.7 Pg: 408" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -1.775726\n", + " Iterations: 26\n", + " Function evaluations: 52\n", + "After maximization:\n", + "x= [ 1.4275625]\n", + "f(x)= [-1.77572565]\n" + ] + } + ], + "source": [ + "from scipy.optimize import fmin\n", + "from math import sin\n", + "\n", + "def fx(x):\n", + " y=-(2*sin(x)-x**2/10)\n", + " return y\n", + "x=fmin(fx,0)\n", + "print \"After maximization:\"\n", + "print \"x=\",x\n", + "print \"f(x)=\",fx(x)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter17_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter17_2.ipynb new file mode 100644 index 00000000..14e89b11 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter17_2.ipynb @@ -0,0 +1,607 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-17 : Least-squares Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.1 Pg: 458" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sum of product of x and y = 119.5\n", + "sum of square of x = 140\n", + "sum of all the x = 28\n", + "sum of all the y = 24.0\n", + "a1 = 0.839285714286\n", + "a0 = 0.0714285714286\n", + "The equation of the line obtained is y = a0 + a1*x\n" + ] + } + ], + "source": [ + "x = [1,2,3,4,5,6,7]#\n", + "y = [0.5,2.5,2,4,3.5,6,5.5]#\n", + "n = 7#\n", + "s = 0#\n", + "xsq = 0#\n", + "xsum = 0#\n", + "ysum = 0#\n", + "\n", + "for i in range(0,7):\n", + " s = s + (x[i])*y[i]\n", + " xsq = xsq + x[i]**2\n", + " xsum = xsum + x[i]\n", + " ysum = ysum + y[i]\n", + "\n", + "print \"sum of product of x and y =\",s\n", + "print \"sum of square of x = \",xsq\n", + "print \"sum of all the x = \",xsum\n", + "print \"sum of all the y = \",ysum\n", + "a = xsum/n#\n", + "b = ysum/n#\n", + "a1 = (n*s - xsum*ysum)/(n*xsq -xsum**2)#\n", + "a0 = b - a*a1#\n", + "print \"a1 = \",a1\n", + "print \"a0 = \",a0\n", + "print \"The equation of the line obtained is y = a0 + a1*x\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.2 Pg: 462" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sum of all y = 24.0\n", + "\n", + "(yi - yavg)**2 = [0.010204081632653073, 2.010204081632653, 1.510204081632653, 3.510204081632653, 3.010204081632653, 5.510204081632653, 5.010204081632653]\n", + "\n", + "total (yi - yavg)**2 = 20.5714285714\n", + "\n", + "(yi - a0 - a1*x)**2 = [-0.4107142857142855, -0.9285714285714284, -5.625, -9.5, -17.55357142857143, -24.285714285714285, -35.69642857142857]\n", + "\n", + "total (yi - a0 - a1*x)**2 = -94.0\n", + "\n", + "sy = 1.85164019955\n", + "r = 2.35996704308\n", + "The result indicate that 86.8 percent of the original uncertainty has been explained by linear model\n" + ] + } + ], + "source": [ + "x = [1,2,3,4,5,6,7]#\n", + "y = [0.5,2.5,2,4,3.5,6,5.5]#\n", + "n = 7#\n", + "s = 0#\n", + "ssum = 0#\n", + "xsq = 0#\n", + "xsum = 0#\n", + "ysum = 0#\n", + "msum = 0#\n", + "for i in range(0,7):\n", + " s = s + x[i]*y[i]\n", + " xsq = xsq + x[i]**2\n", + " xsum = xsum + x[i]\n", + " ysum = ysum + y[i]\n", + "\n", + "a = xsum/n#\n", + "b = ysum/n#\n", + "a1 = (n*s - xsum*ysum)/(n*xsq -xsum**2)#\n", + "a0 = b - a*a1#\n", + "m=[];si=[]\n", + "for i in range(0,7):\n", + " m.append(y[i] - ysum/7**2)\n", + " msum = msum +m[i]#\n", + " si.append(y[i] - a0 - a1*x[i]**2)\n", + " ssum = ssum + si[i]\n", + "\n", + "print \"sum of all y =\",ysum\n", + "print \"\\n(yi - yavg)**2 = \",m\n", + "print \"\\ntotal (yi - yavg)**2 = \",msum\n", + "print \"\\n(yi - a0 - a1*x)**2 = \",si\n", + "print \"\\ntotal (yi - a0 - a1*x)**2 = \",ssum\n", + "sy = (msum / (n-1))**(0.5)#\n", + "#sxy = (ssum/(n-2))**(0.5)#\n", + "print \"\\nsy = \",sy\n", + "#print \"sxy = \",sxy\n", + "r2 = (msum - ssum)/(msum)#\n", + "r = r2**0.5#\n", + "print \"r = \",r\n", + "print \"The result indicate that 86.8 percent of the original uncertainty has been explained by linear model\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.3 Pg: 463" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]\n", + "\n", + "measured v = [10, 16.3, 23, 27.5, 31, 35.6, 39, 41.5, 42.9, 45, 46, 45.5, 46, 49, 50]\n", + "\n", + "using equation(1.10) v1 = [8.953182207901257, 16.404980802870615, 22.607166909502304, 27.769291463870154, 32.06576523242002, 35.641751563129084, 38.61807096510561, 41.09528322582064, 43.15708498693595, 44.87313757134839, 46.30142060418256, 47.490190948641704, 48.479613142547706, 49.30311642251821, 49.988524185047744]\n", + "\n", + "using equation((17.3)) v2 = [11.240084210526316, 18.57057391304348, 23.729066666666665, 27.556335483870967, 30.5088, 32.855630769230764, 34.765841860465116, 36.35091063829787, 37.68734117647059, 38.82938181818182, 39.81656949152543, 40.678399999999996, 41.43732537313433, 42.11073802816901, 42.712320000000005]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8lWP+//HXp1Aah6RRzSQJofmiSDIGK6Mcx2h+GMPQ\nGAxjpplpxqHMwXYmKsPX1xyEHJKaHIehouUwowbtUiqhMlIqCmWnqd3n98d1V9u2924f1r3ue631\nfj4e++Fep/a765H7s67rvu7rMndHRERKU7OkA4iISHJUBERESpiKgIhICVMREBEpYSoCIiIlTEVA\nRKSEqQiIiJQwFQGRPDKz9mb2uJm9b2YbzKxT0pmktKkIiOTXBuAp4P8lHUQEVASkyJnZZWY2rtpz\nfzSzPzb0vWb2IzN7x8w+NbP5ZnZGDX/G18yswsx2qvJcDzNbbmbN3X2Zu/8JeDVnf0mRJjAtGyHF\nLBpumQO0c/fVZtYceA842d3/Xd/3Am8Ai4Ge7v6WmbUDdnb32TX8zmeBB939zujxTcBX3P2iKu/Z\nCvgv0Nnd/5P7v7lI/agnIEUtOsFOA/pHTx0FVFQvAPV87wZgPzPb1t2X1lQAIqOBHwCYmQHfj54T\nSR0VASkFm07KwBnAAw19r7t/RjiZXwgsNrO/m9netfwZDwOHmll74Ahgg7u/1LS/gkg8NBwkRc/M\nvgq8C+wFzAJ6u/ubjX2vmbUArgV6ufsRtfw5jwKTgW7ACncfUu11DQdJKmyVdACRuLn7cjPLAvcA\n82srAHW918x2AQ4FJgFrgM+Ayjp+7WhgMNAJ6FP1BTNryeb/91qaWUt3/7zBfzGRHNBwkJSK0cC3\nqd/YfE3vbQYMAt4HPgIOB35ax5/xOLAnsMTdZ1Z7rQL4FHBgLqGgiCQi9uEgM1tI+AdfCaxz915m\n1gZ4CNgNWAic5u4fxxpERES+JB89AQcy7t7D3XtFzw0GJrp7V+DZ6LGIiORZvoaDrNrjk4BR0fEo\nwjxsERHJs3z1BCaZ2atmdn70XDt3XxodLwXa5SGHiIhUk4/ZQYe5+5Jo6t1EM5tb9UV3dzPTPFUR\nkQTEXgTcfUn03+Vm9gjQC1hqZu3d/QMz6wAsq/45FQYRkcZx9+pD8LWKdTjIzFqZ2fbR8VeAfsBM\nwvS5AdHbBgCP1vR5d0/9zxVXXJF4hmLIqJzKmfaftORcudK59VanWzdn772dESOcjz7a/HpDxd0T\naAc8EpZPYSvgAXefYGavAmPN7FyiKaIx5xARKUiffw7z5sHs2TBxIowfD8ceC7ffDkceCVbv7/w1\ni7UIuPsCoHsNz68Ajo7zd4uIFJLVq2Hu3HCynzMn/Hf2bHjvPejSBfbdF3r3hjffhHY5nEqjZSOa\nKJPJJB1hiwohIyhnrilnbuUq58qVm0/yVU/2y5dD167hZN+tG5x9djjec0/YZpuc/OoapXYBOTPz\ntGYTEamLezipVz/Rz5kDq1ZtPtFv/G+3btC5MzRv3vTfbWZ4Ay4MqwiIiDTRkiUwduwXT/YbNmw+\nwVc92Xfs2PRx/LqoCIiI5NEnn8Bhh0H37vDNb24+4e+yS7wn+9qoCIiI5Mm6dXDiibDXXnDbbcmc\n9KtraBHQUtIiIo3gDgMHQrNmcMst6SgAjaHZQSIijTBiBPzzn+FnqwI+kxZwdBGRZDz1FNx8M7z8\nMuywQ9JpmkbDQSIiDbRsWbjw27590kmaTheGRUQayB369w83dw0dmnSaL9LsIBGRPFi+PEwLvfde\n+Pa3k06zmWYHiYjkwVe/CnfdBT/6EaxYkXSaxlNPQESkCQYNCou8jRuXjmmi6gmIiOTR9deHpSJG\nj046SeOoCIiINMGDD8KHH8JuuyWdpHF0n4CISCNs2ACXXx6GgZ5/PqwZVIhi7wmYWXMzKzezJ6LH\nZWa2KHqu3MyOjTuDiEguffYZnHpquFt46tTCLQCQn+GgXwKzgY1XeR0Y7u49op+n85BBRCQnFi8O\n2zputx1MmgRt2yadqGni3mi+I3A8cCew8Wq1VTkWESkY5eVhi8fvfQ/uuQdatEg6UdPF3RMYAVwC\nbKjynAMDzWyGmY00s9YxZxARabLHH4d+/WD48HAtIA3TQXMhtgvDZnYisMzdy80sU+WlO4CrouOr\ngWHAuTX9GWVlZZuOM5lMwexFKiLFY80aGDYM7rgjLBx38MFJJ/qibDZLNptt9Odju1nMzK4DzgLW\nAy2BHYDx7n52lfd0Bp5w9/1q+LxuFhORxKxaFU78w4fDIYeETWM6dUo61Zal5mYxd7/c3Xd1992B\n04Hn3P1sM+tQ5W39gZlxZRARaaiVK+Gqq6BLl3ANYOJEeOyxwigAjZGv+wSMzbODhprZAdHjBcAF\necogIlKr5cvDRjF//jOcdBK89BLsvXfSqeKntYNEpKQtXhw2iLnnHvj+9+HSS2H33ZNO1XipGQ4S\nEUmzd9+Fiy6C//mfsD/AzJnhGkAhF4DGUBEQkZLy1lvw4x/DgQfCjjvC3LlhGOjrX086WTK0dpCI\nlIRZs+C668KF3p//PBSDNm2STpU89QREpKi99lq4w/foo+GAA+Cdd+CKK1QANlJPQESKUmUl/PrX\nMH48XHIJ3H8/tGqVdKr0UREQkaJTUQFnnBFu+Jo1C1prcZpaaThIRIrKsmXQp0+46PuPf6gAbImK\ngIgUjTffhEMPheOOC/P+t9km6UTpp+EgESkKL74Ip5wCN9wA55yTdJrCoSIgIgXvoYdg4EB44AHo\n2zfpNIVFRUBECpY7DB0Kt98edvnaf/+kExUeFQERKUjr14dv///6V/jp2DHpRIVJRUBECs7q1XD6\n6bBuXbgWsMMOSScqXJodJCIFZcmSsNF7u3bw97+rADSVioCIFIxnnglTQPv3hzvvhK23TjpR4dNw\nkIik3vz5MGgQvPFGuAh8wglJJyoesfcEzKy5mZWb2RPR4zZmNtHM5pnZBDPT/XwiUqPPPoPf/S5s\n7t67dygCKgC5lY/hoF8Cs9m8veRgYKK7dwWejR6LiGziDmPGwD77wIIFMGMGDBkCLVoknaz4xDoc\nZGYdgeOBa4FfR0+fBBwZHY8CsqgQiEhkxgz4xS/gk09g9Gg4/PCkExW3uHsCI4BLgA1Vnmvn7kuj\n46VAu5gziEgBWLECfvYz6NcPfvCDsA+ACkD8YusJmNmJwDJ3LzezTE3vcXc3s1p3ky8rK9t0nMlk\nyGRq/GNEpIBVVsJf/xo2ejnlFJgzRxu+NEQ2myWbzTb68+Ze6zm4SczsOuAsYD3QEtgBeBg4GMi4\n+wdm1gGY7O771PB5jyubiKTDSy+Fu3532AFuvTXs/CVNY2a4u9X7/fk40ZrZkcDF7v4dMxsKfOTu\nN5rZYKC1u3/pmoCKgEjxev99uPRSeOEFuOkm+P73wep92pK6NLQI5PNmsY1n9BuAvmY2Dzgqeiwi\nJWDt2rDU8wEHwO67w9y5YfkHFYDk5KUn0BjqCYgUlyefhF/9Crp1g+HDYY89kk5UnBraE9AdwyIS\nq3nzwt2+b78Nt90Gxx6bdCKpSmsHiUgsPv4YLrsMvvnNsOfvzJkqAGmkIiAiObV6NVx7Ley1F3z4\nYTj5X3yx9vtNKxUBEcmJzz+HESNgzz3DGj///CeMHAkdOiSdTOqiawIi0iT//S/cfTdccw0cdBBM\nnAj77Zd0KqkvFQERaZTKyrCxe1lZGPoZPx569Uo6lTSUioCINMiGDfDww/CHP8DOO8M998ARRySd\nShpLRUBE6sUdnnoKfv97aNYszPU/5hjd6FXoVAREZIsmTw6bu3zyCVx9NZx8sk7+xUJFQERqNWVK\nOPkvXAhXXhmWeGjePOlUkkuaIioiXzJ9OnznO3DaaWFxtzlz4MwzVQCKkYqAiGwyd2446R93HPTt\nG5Z8OP982HrrpJNJXFQERIQFC+Ccc8JOXj16hHV+fvELaNky6WQSNxUBkRK2eDFcdBH07AmdOsFb\nb8HgwfCVrySdTPJFRUCkBC1fHtbz2W+/cMJ/881w4bd166STSb6pCIiUkI8/DvP899kH1qwJi7vd\ndBO0bZt0MklKrEXAzFqa2VQzm25ms83s+uj5MjNbZGbl0Y8WmBWJ0UcfwVVXheUd3n8fXnsNbr8d\nvva1pJNJ0mK9T8DdPzezPu5eYWZbAS+Z2bcIW00Od/fhcf5+kVK3cGG4s/f+++F73wsbu++9d9Kp\nJE1iHw5y94rocBugObAyeqz7DUViUl4OZ5wRVvVs1QpmzYI771QBkC+LvQiYWTMzmw4sBSa7+xvR\nSwPNbIaZjTQzXY4SaSJ3mDQJ+vULN3odeGCY+nnDDRr2kdrFvmyEu28AupvZjsAzZpYB7gCuit5y\nNTAMOLf6Z8vKyjYdZzIZMplMzGlFCs/69fC3v8HQobB2LVxySegFaCev0pDNZslms43+vLl77tJs\n6ZeZ/R5Y4+43V3muM/CEu+9X7b2ez2wiheazz8JmLsOGwa67wqWXwvHHhxU+pXSZGe5e7+H2uGcH\ntd041GNm2wJ9gXIza1/lbf2BmXHmECkmy5eHjVx23x2eew5Gj4YXXoATT1QBkIaLezioAzDKzJoR\nCs597v6smd1rZt0Js4QWABfEnEOk4M2fH2b6jB4Np54aZvp07Zp0Kil0eR0OaggNB4kEr70Wbuia\nNAkuuAAGDoT27bf8OSlNDR0O0n4CIinkDhMmhJP/vHkwaBD89a+w/fZJJ5NioyIgkiLr1sHYseHk\nX1kZLvaefrqWcpb4qAiIpMDq1TByZBjz79IFrr8ejj1WWzhK/FQERBK0bBncdhv86U+QycC4cdCr\nV9KppJRoQplIAt5+G37607Ca54cfwssvqwBIMlQERPLolVfC9M5DDw3LN8+dC3fcAXvumXQyKVUa\nDhKJmTs8/XRY1mH+fPj1r8Odvtttl3QyERUBkdisWwdjxoSTf/PmYabPqadqpo+ki4qASI6tWhWW\nbR4xItzRO2wY9O2rmT6STioCIjn08MPhgm+fPvDII2E9f5E0UxEQyYE1a8JY/4QJ8PjjcMghSScS\nqR/NDhJpolmz4OCD4ZNPYNo0FQApLCoCIo3kHqZ39ukDF18MDzwAO+6YdCqRhtFwkEgjrFgB550X\ntm/U5u1SyNQTEGmgF16A7t1ht91gyhQVAClssfUEzKwl8DzQAtgGeMzdh5hZG+AhYDdgIXCau38c\nVw6RXFm/Hq65JqzzM3IknHBC0olEmi7WTWXMrJW7V5jZVsBLwMXAScCH7j7UzC4DdnL3wTV8VpvK\nSGq89x6ceWbYvP2++6BDh6QTidQsVXsMu3tFdLgN0BxYSSgCo6LnRwEnx5lBpKkeeQR69gybuE+Y\noAIgxSXWC8PR3sLTgD2AO9z9DTNr5+5Lo7csBdrFmUGksdasgd/8Jqz789hj0Lt30olEci/unsAG\nd+8OdASOMLM+1V53wmbzIqmyce7/ypVQXq4CIMUrL1NE3f0TM3sSOAhYambt3f0DM+sALKvtc2Vl\nZZuOM5kMmUwm7qhS4tzhz3+G3/8+bPE4YIDW/JF0y2azZLPZRn8+tgvDZtYWWO/uH5vZtsAzwJXA\nMcBH7n6jmQ0GWuvCsKTBihVw/vlhuecxYzT1UwpTmi4MdwCeM7PpwFTgCXd/FrgB6Gtm84Cjosci\niXrxRejRAzp10tx/KS2xThFtCvUEJB8qKzfP/b/zTs39l8LX0J6Alo2QkvXee/DDH4ZNXqZN09RP\nKU1aNkJK0sa5/8cdp7n/UtrUE5CSorn/Il+knoCUjDfegF69NPdfpKpGFQEz65vrICJx2Tj3P5MJ\nu3+NHq11/0U2auxw0F3ArrkMIhKHqnP/te6/yJfVWgTM7Ik6PrdzDFlEcur55+Hss6F///Dtv0WL\npBOJpE9dPYFvAWcBq6s854AB2kVVUquiAi6/HP72N/jLX8LqnyJSs7qKwFSgwt2z1V8wszdjSyTS\nBFOmhPV+evaE11+HNm2STiSSblu8Y9jMfgOMcff38xNp0+/VHcNSb2vXwpVXwl13wf/+L5xyStKJ\nRJIRxx3D2wMTzGwlMAYYV2U/AJHEzZgRxv533z0ct9MOFSL1Vu+1g8zsAOA04BRgkbt/O9Zg6gnI\nFqxfDzfeCH/8I9x8M5x1lpZ9Folz7aBlwAfAR8BXGxpMJJfmzg3f/lu3htdeg101YVmkUbZ4s5iZ\nXWRmWeBZoC1wnrvvH3cwkZps2AAjRsDhh8OPfwzPPKMCINIU9ekJ7Ar8yt2nxx1GpC7z58M554Q7\ngKdMgT32SDqRSOHbYk/A3YeoAEiSNi77cMgh8N3vwuTJKgAiuRLrKqJmtitwL7AL4Uazv7j7rWZW\nBpwHLI/eOsTdn44zixSmRYvg3HPD8g8vvAD77pt0IpHiEvcqouuAQe7+DaA38DMz25dQEIa7e4/o\nRwVAvsAd7rsPDjwwjP+//LIKgEgcYu0JuPsHhBlFuPtqM5sDfD16WZP5pEZLl8KFF8I774QLvz16\nJJ1IpHjlbT8BM+sM9ACmRE8NNLMZZjbSzFrnK4ek2/jxcMAB4Vv/K6+oAIjELS8bzZvZdkAWuMbd\nHzWzXdh8PeBqoIO7n1vtM7pZrISsWAEDB8Krr8KoUdrwRaSxUrfRvJltDYwH7nf3RwHcfVmV1+8E\naly2uqysbNNxJpMhk8nEGVUS8tRT8JOfhPV+ysuhVaukE4kUjmw2SzabbfTnY+0JmJkBo4CP3H1Q\nlec7uPuS6HgQcLC7n1Hts+oJFLlPPw37/U6aFBZ+69Mn6UQihS9tPYHDgB8Cr5tZefTc5cAPzKw7\nYZbQAuCCmHNIykyeHO747ds3LPq2ww5JJxIpTXm5JtAY6gkUp4oKGDIkXADWhi8iudfQnkDeZgeJ\nvPxymO3z4YdhwxcVAJHkxX5hWGTtWigrg7vv1oYvImmjIiCxKi8P2z3usYc2fBFJIw0HSSzWrYOr\nr4ZjjoFLLoGHH1YBEEkj9QQk52bPDt/+27SBadOgY8ekE4lIbdQTkJyprIRhw+DII+G88+Dpp1UA\nRNJOPQHJiXfeCRu+AEydCl26JJtHROpHPQFpkk8/hd/9Dnr1gv79IZtVARApJCoC0ijr1sHtt0PX\nrmHjl+nTYdAgaKZ/USIFRcNB0iDu8MgjMHhw+Mb/zDNh6WcRKUwqAlJv//pXmO752WehF9C3b9KJ\nRKSpVARki+bNC+v9vPIKXHMNnHkmNG+edCoRyQWN4Eqtli2Dn/8cDjssXPh98004+2wVAJFioiIg\nX1JRAddeC926wVZbwZw5cNllsO22SScTkVxTEZBNKivD5i5du4ZVPqdOhVtugbZtk04mInHRNQHB\nHf7xj/Btf6edwlr/hxySdCoRyYdYi4CZ7QrcC+xC2EXsL+5+q5m1AR4CdgMWAqe5+8dxZpGaTZsW\nZvwsXgw33gjf+Q5YvbejEJFCF/dw0DpgkLt/A+gN/MzM9gUGAxPdvSvwbPRY8mjhQvjhD+HEE+G0\n02DmTDjpJBUAkVITaxFw9w/cfXp0vBqYA3wdOImwAT3Rf0+OM4dstnJl+ObfsyfstVeY/nnBBeEC\nsIiUnrxdGDazzkAPYCrQzt2XRi8tBbTSfMzWrg0rfO69d1jvZ+ZMuOIK2G67pJOJSJLy8v3PzLYD\nxgO/dPdVVmXMwd3dzGrcUb6srGzTcSaTIZPJxBu0CG3YAGPGwG9/C/vvD88/D/vum3QqEcmVbDZL\nNptt9OfNvcbzb86Y2dbA34F/uPst0XNzgYy7f2BmHYDJ7r5Ptc953NmK3eTJYeinWTO46aawzr+I\nFDczw93rfXUv1uEgC1/5RwKzNxaAyOPAgOh4APBonDlKzRtvhAu+554bisDUqSoAIlKzWHsCZvYt\n4AXgdcIUUYAhwL+BsUAnapkiqp5Awy1eDH/4AzzxBFx+OVx4IbRokXQqEcmnhvYEYr0m4O4vUXtv\n4+g4f3cpWbUKhg6F//s/OP/8sMZP69ZJpxKRQqBlIwrYunXhxN+1K/znP1BeDjfcoAIgIvWn2eEF\nyB0efTRs7NKpEzz1FPTokXQqESlEKgIF5uWXw8XeVavgttugX7+kE4lIIdNwUIF46y045ZSwxMP5\n54c1f1QARKSpVARSbvlyGDgQDj00LPUwbx4MGKCNXUQkN1QEUqqiAq67Ltzd26xZ2Nhl8GBt7CIi\nuaVrAilTWQn33hvm+x96KEyZAnvumXQqESlWKgIp4Q7PPAOXXgo77gjjxkHv3kmnEpFipyKQAtOm\nhZP/okVhYxet6y8i+aJrAgl691046yw44YQw82fmTPjud1UARCR/VAQSsHJl+OZ/4IHQpUuY8XPh\nhbD11kknE5FSoyKQR2vXwogRYWOXjz+GWbPgyith++2TTiYipUrXBPLAHcaOhSFD4BvfgGwWunVL\nOpWIiIpA7JYvD3f4LlgAd90F2hxNRNJEw0ExeuopOOCAMPzz73+rAIhI+qgnEIOKCrj4YnjySXjw\nQe3qJSLpFff2kneZ2VIzm1nluTIzW2Rm5dHPsXFmyLdXXw3LOn/6KcyYoQIgIukW93DQ3UD1k7wD\nw929R/TzdMwZ8mL9erj2Wjj+eLjqKrj/fm3uIiLpF/f2ki+aWecaXiqq26Hmzw83fbVsGe7+7dgx\n6UQiIvWT1IXhgWY2w8xGmlnBfl92h7vvhkMOCXf8TpyoAiAihSWJC8N3AFdFx1cDw4Bza3pjWVnZ\npuNMJkMmRdNrPvwQfvITePtteO452G+/pBOJSCnKZrNks9lGf97cPXdpavoFYTjoCXf/0mlyC695\n3Nka6+mn4dxz4Ywz4JproEWLpBOJiARmhrvXe8g97z0BM+vg7kuih/2BmXW9P00qKuCyy+Cxx8KF\n3z59kk4kItI0sRYBM3sQOBJoa2bvAVcAGTPrTpgltAC4IM4MuTJtGpx5Zpj+OWMG7LRT0olERJou\n9uGgxkrLcFBlJQwdGhZ+u+WWMAQkIpJWqR8OKiQLFsDZZ8NWW4WbwDp1SjqRiEhuae2gGrjDqFHQ\nqxecfDI8+6wKgIgUJ/UEqvnoI7jgApg7FyZNCgvAiYgUK/UEqpgwIZz0O3UKwz8qACJS7NQTANas\ngcGD4eGH4Z574Oijk04kIpIfJd8TKC+Hnj3hgw/C1E8VABEpJSVbBCor4cYboV+/sO3jmDHQpk3S\nqURE8qskh4PefTdM/YQw9r/bbsnmERFJSkn1BNzhvvvC8M8JJ4SF31QARKSUlUxPYMUK+OlPYdas\nMAuoR4+kE4mIJK8kegIb5/t36LB5+0cRESnynsDnn4eLvuPGhc1f+vZNOpGISLoUbU9gxoww9r9o\nUThWARAR+bKiKwIbNsDNN4f5/pdeCmPHws47J51KRCSdimo46D//gQEDYP16eOUV6Nw56UQiIulW\nND2B0aPD8M8xx0A2qwIgIlIfce8sdhdwArBs4z7CZtYGeAjYDVgInObuHzf2d6xcCRddBNOnh71/\nDzwwB8FFREpE3D2Bu4Fjqz03GJjo7l2BZ6PHjfLcc2HqZ9u28NprKgAiIg0V+/aSZtYZeKJKT2Au\ncKS7LzWz9kDW3fep4XO1bi+5di389rfw4IMwciQcW73MiIiUqELYXrKduy+NjpcC7Rry4Zkzw4bv\ne+0Vpn62bZv7gCIipSLR2UHu7mZWa1ekrKxs0/ERR2SYPj3D9deHjd9/9COwetc6EZHilM1myWaz\njf58UsNBGXf/wMw6AJO3NBz03nvhpP/552EBuC5dYo0sIlKwGjoclMQU0ceBAdHxAODRut48Zgwc\ndBAcdRQ8/7wKgIhILsXaEzCzB4EjgbaE8f8/AI8BY4FO1DFF1Mz8zDOdV1+F++8P9wCIiEjdUnVh\n2N1/UMtL9drEcccdYdo0aNUqh6FERGST2K8JNFZdU0RFRKRmhXBNQEREUkJFQESkhKkIiIiUMBUB\nEZESpiIgIlLCVAREREqYioCISAlTERARKWEqAiIiJUxFQESkhKkIiIiUMBUBEZESpiIgIlLCVARE\nREpYYnsMm9lC4FOgEljn7r2SyiIiUqqS7Ak4Ya/hHoVcAJqywXO+FEJGUM5cU87cKpScDZX0cFC9\nNz5Iq0L4h1EIGUE5c005c6tQcjZU0j2BSWb2qpmdn2AOEZGSldg1AeAwd19iZl8FJprZXHd/McE8\nIiIlJxV7DJvZFcBqdx9W5bnkg4mIFKCG7DGcSE/AzFoBzd19lZl9BegHXFn1PQ35S4iISOMkNRzU\nDnjEzDZmeMDdJySURUSkZKViOEhERJKR9BRRzOwuM1tqZjOrPNfGzCaa2Twzm2BmrZPMGGWqKWeZ\nmS0ys/Lo59gkM0aZdjWzyWb2hpnNMrNfRM+nqk3ryJmqNjWzlmY21cymm9lsM7s+ej417VlHxlS1\n5UZm1jzK80T0ODVtWVUNOVPXnma20Mxej/L8O3quQe2ZeBEA7gaqN+ZgYKK7dwWejR4nraacDgyP\nbnjr4e5PJ5CrunXAIHf/BtAb+JmZ7Uv62rS2nKlqU3f/HOjj7t2B/YE+ZvYtUtSedWRMVVtW8Utg\nNiEfpKgtq6meM43tWdNNtw1qz8SLQDQtdGW1p08CRkXHo4CT8xqqBrXkhJTd8ObuH7j79Oh4NTAH\n+Dopa9M6ckL62rQiOtwGaE74d5C29qwpI6SsLc2sI3A8cCebs6WqLaHWnEbK2jNSPVOD2jPxIlCL\ndu6+NDpeSriQnFYDzWyGmY1MSzd2IzPrDPQAppLiNq2Sc0r0VKra1Myamdl0QrtNdvc3SFl71pIR\nUtaWwAjgEmBDledS1ZaRmnI66WvPmm66bVB7prUIbOLhynVar17fAewOdAeWAMPqfnv+mNl2wHjg\nl+6+qupraWrTKOffCDlXk8I2dfcN0VBLR+AIM+tT7fXE27OGjBlS1pZmdiKwzN3LqeUbdRraso6c\nqWrPyGHu3gM4jjCkenjVF+vTnmktAkvNrD2AmXUAliWcp0buvswjhG5jKhbCM7OtCQXgPnd/NHo6\ndW1aJef9G3OmtU0B3P0T4EngIFLYnvCFjD1T2JbfBE4yswXAg8BRZnYf6WvLmnLem8L2xN2XRP9d\nDjxCyNSSAjXOAAABvElEQVSg9kxrEXgcGBAdDwAereO9iYkaeKP+wMza3psvZmbASGC2u99S5aVU\ntWltOdPWpmbWdmO338y2BfoC5aSoPWvLuPFEEEm8Ld39cnff1d13B04HnnP3s0hRW0KtOc9O4b/N\nVma2fXS88abbmTS0Pd090R9CpV0M/Bd4DzgHaANMAuYBE4DWKcz5Y+Be4HVgRtTQ7VKQ81uEcczp\nhJNVOWFWU6ratJacx6WtTYH9gGlRzteBS6LnU9OedWRMVVtWy3wk8Hja2rKGnJkqOe9LU3sShqam\nRz+zgCGNaU/dLCYiUsLSOhwkIiJ5oCIgIlLCVAREREqYioCISAlTERARKWEqAiIiJUxFQESkhKkI\niIiUMBUBkXows+vN7KIqj8vM7DdJZhLJBRUBkfp5CDityuNTgTEJZRHJmaQ2mhcpKO4+3cx2iRYR\n2wVY6e7vJ51LpKlUBETqbxxwCtAe9QKkSGgBOZF6MrNuhHXkdwaO8M27N4kULF0TEKknd58NbAcs\nUgGQYqGegIhICVNPQESkhKkIiIiUMBUBEZESpiIgIlLCVAREREqYioCISAlTERARKWEqAiIiJez/\nAyM6fhLOY0unAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f2a3c39d2d0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot, title,xlabel,ylabel,show\n", + "from math import exp\n", + "s = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]#\n", + "v = [10,16.3,23,27.5,31,35.6,39,41.5,42.9,45,46,45.5,46,49,50]#\n", + "g = 9.8#m/s**2\n", + "m = 68.1##kg\n", + "c = 12.5#kg/s\n", + "v1=[]\n", + "v2=[]\n", + "for i in range(0,15):\n", + " v1.append(g*m*(1 - exp(-c*s[(i)]/m))/c)\n", + " v2.append(g*m*s[(i)]/(c*(3.75+s[(i)])))\n", + "\n", + "print \"time = \",s\n", + "print \"\\nmeasured v =\",v\n", + "print \"\\nusing equation(1.10) v1 = \",v1\n", + "print \"\\nusing equation((17.3)) v2 = \",v2\n", + "plot(v,v1)#\n", + "title('v vs v1')\n", + "xlabel('v')\n", + "ylabel('v1')#\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.4 Pg: 468" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 0.501187233627\n", + "x= [1, 2, 3, 4, 5]\n", + "y= [0.5011872336272722, 1.6857861925123965, 3.4273795077270295, 5.670286264671531, 8.379102586654781]\n", + "m= [0.0, 0.3010299956639812, 0.47712125471966244, 0.6020599913279624, 0.6989700043360189]\n", + "n= [-0.30000000000000004, 0.226802492411967, 0.5349621957594092, 0.7536049848239341, 0.9231975075880328]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH0JJREFUeJzt3XmYVNW1/vHvYpJBI46gAUURFUcwijOWilecleAAeIl6\nHX9qjMnPMSptvOrVmCia6ywO0cYBHBAnxFCIE4OAKIgRQURQNKKgIEPT6/6xq7HT9tx16pyqej/P\n0w/VVYfai/PAy+pd++xj7o6IiBS+ZnEXICIiuaHAFxEpEgp8EZEiocAXESkSCnwRkSKhwBcRKRIK\nfBGRIqHAFxEpEgp8EZEiocCXgmNml5jZiCrP3W5mt1Vz7GVm9lSV54aa2dDM49PM7BMzW2Zmc81s\nYA1jvmBmt1T6/nEzeyA7fyKR7DBtrSCFxsw6AnOAX7r7UjNrASwE+rr7tCrHbgV8CHRw9x/MrDmw\nADgemAksAvZ094/NrAOwibvPqmbMDsAM4BRgS+BaYHd3Xx7ZH1SkgdThS8Fx9y+BCcCJmaf6Al9X\nDfvMsZ8BU4ETMk8dAqxw90mZ78uBXc2sjbsvri7sM++zGDgPeAS4DRissJekUeBLoXoYODXz+FTg\n77UcWwoMyDweCDwGkAnsk4FzgUVmNtrMdqjlfUYDzYHZ7v5WE2oXiYSmdKQgmVkbwjROb+BtoLu7\nf17DsZsB84FuwAfAPu7+UZVj1gOuB3q5e+8a3ufPQE+gC3CVuz+enT+NSHa0iLsAkSi4+49mNpLQ\nvU+sKewzx35tZmngIWBuRdib2ebAvsBY4EdgObC2uvcws97AacBuQFfgGTN73d0XZevPJNJUmtKR\nQvYwsAu1T+dUKAUOzfxaoRlwMeEnhW+AAwnz9P/GzH6RGet8d//C3d8AHgCGNal6kSyLdErHzC4C\nzgQMuM/dh0Y2mEgVZtYZmE1mBU7c9YjELbIO38x2IYT9XsDuwNFm1jWq8UQqM7NmwB+A4Qp7kSDK\nKZ0dCXOnK919LTAe6BfheCIAmFk7YBlhimZIzOWIJEaUgf8BcKCZbWxmbYGjgE4RjicChOWU7r6+\nu+/q7gvjrkckKSJbpePus83sJmAMYXXDNMJFLCIiEoOcrcM3sxuAz9z97krP6SIAEZFGcHdr6O+J\ndFlmZh1zxX4lJ/DvS94AcPfEfw0ZMiT2GlSn6lSdqrHiq7GivvBqhJltAqwB/p+7L4t4PBERqUGk\nge81XIIuIiK5pytt6yGVSsVdQr2ozuxSndmVD3XmQ41NEevmaWbmcY4vIpKPzAxP2oe2IiKSHAp8\nEZEiocAXESkSCnwRkSKhwBcRKRIKfBGRIqHAFxEpEgp8EZEiocAXEckjC5twhwcFvohInnjzTejV\nq/G/X4EvIpIH7rkHTjgB7ruv8e8R9fbIIiLSBKtWwYUXwhtvhA6/W7fGv5cCX0QkoRYtgv79oUMH\nmDgRNtigae+nKR0RkQR6++0wX3/EETByZNPDHqK/xeEVZjbTzN43s1IzWy/K8URECsH998Nxx8Fd\nd8HVV0OzLCV1ZFM6ZtYFOAvo7u6rzOwJ4BTg4ajGFBHJZ6tXw0UXwbhxMGEC7LBDdt8/yjn8ZYR7\n2bY1s7VAW6AJK0hFRArXl1+G+fqNNw7z9RtumP0xIpvScfclwF+Az4BFwHfuPjaq8URE8tWkSbDX\nXtCnDzz7bDRhD9FO6XQFfgd0AZYCT5nZIHd/rPJxJSUl6x6nUqmCv6ekiEhlDz4Il14a1tcff3z1\nx6TTadLpdJPHiuyetmZ2MnCYu5+Z+f4/gX3c/fxKx+ietiJSlNasgYsvhjFjQle/0071/71JvKft\nbGAfM2tjZgb0AWZFOJ6ISF746qswffPpp2E6pyFh3xRRzuG/BzwCTAFmZJ6+N6rxRETywbvvhvn6\n3r1h1Cho3z53Y0c2pVOvwTWlIyJF5JFH4A9/CPvi9OvX+Pdp7JSOtlYQEYnYmjVwySXwwgthjf0u\nu8RThwJfRCRCX38NJ58M660X5us32ii+WrSXjohIRKZNC/P1e+8No0fHG/agDl9EJBKlpWGbhDvv\nhBNPjLuaQIEvIpJFZWVw+eXwzDPw2muw225xV/QTBb6ISJZ8802Yr2/WDCZPDvviJInm8EVEsuC9\n98J8fc+e8OKLyQt7UIcvItJkTzwBF1wAt98OAwbEXU3NFPgiIo20di1ceSU8+SS8+ir06BF3RbVT\n4IuINMKSJaGbLysL8/Wbbhp3RXXTHL6ISAO9/3643+zOO8Mrr+RH2IM6fBGRBhkxAs47D269FU49\nNe5qGkaBLyJSD2vXhhuKP/ZY6Or32CPuihpOgS8iUodvv4VBg2DFijBfv/nmcVfUOJrDFxGpxcyZ\nYb6+W7ewEidfwx4U+CIiNXr6aUil4KqrYOhQaNky7oqaJtIpHTPbAXi80lPbAle7++1Rjisi0hTl\n5TBkCDz8cLhqdq+94q4oO3J2xyszawYsBHq5+4LMc7rjlYgkytKlYfXN0qXw1FPQoUPcFf1cEm9i\nXlUf4JOKsBcRSZrZs8Pe9VtvDWPHJjPsmyKXgX8KUJrD8URE6m3UqHBj8Usvhb/9DVq1irui7MvJ\nskwzawUcA1xW9bWSkpJ1j1OpFKlUKhcliYgAYb7+uuvg/vvh+edDh5806XSadDrd5PfJyRy+mR0H\nnOfufas8rzl8EYnNsmUweHC47+zIkdCxY9wV1U/S5/AHAMNzNJaISJ3++c/QzW+xBYwblz9h3xSR\nB76ZtSN8YPt01GOJiNTHCy/AAQfA738Pd91VmPP11cnZssxqB9eUjojkUHk53HBDCPmnnoL99ou7\nosZp7JSO9tIRkaLw/fdw2mmwaFHYD2fLLeOuKPe0tYKIFLw5c2CffcJ9ZtPp4gx7UOCLSIF7+WXY\nf3+48EK4915Yb724K4qPpnREpCC5w003hRuLjxwZPqQtdgp8ESk4P/wAZ5wB8+fDpEnQqVPcFSWD\npnREpKDMnRtW36y/Powfr7CvTIEvIgVjzBjYd1845xx44AFo3TruipJFUzoikvfc4ZZb4K9/Devr\ne/eOu6JkUuCLSF5bvhzOPBM+/jjM13fuHHdFyaUpHRHJW/PmhSWXLVvChAkK+7oo8EUkL732Wpiv\nP/30cCvCNm3irij5NKUjInnFHW69FW6+GYYPh4MPjrui/KHAF5G8sWIFnH02zJwJ77wDXbrEXVF+\n0ZSOiOSF+fPD1bLu8OabCvvGUOCLSOKl02Hzs0GD4NFHoW3buCvKT5rSEZHEcoc77gh72D/6KPTp\nE3dF+S3SwDez9sD9wM6AA2e4+ztRjikihWHlSjj3XJg2Dd5+G7bZJu6K8l/UUzpDgRfdvTuwG/Bh\nxOOJSAFYsAAOPDCE/ltvKeyzJbLAN7MNgQPdfRiAu5e5+9KoxhORwvD66+Hm4ieeGJZdtmsXd0WF\nI8oOfxvgazN70Mymmtl9ZqaPWkSkWu7wv/8bgv7BB+HSS8EafNdWqU2Uc/gtgD2AC9x9spndBlwO\nXFP5oJKSknWPU6kUqVQqwpJEJIlWroTzzw974bz1FnTtGndFyZJOp0mn001+H3P3pldT3RubdQTe\ndvdtMt8fAFzu7kdXOsajGl9E8sPChdCvH2y1Vejs118/7oqSz8xw9wb//BPZlI67fwksMLPtM0/1\nAWZGNZ6I5J8334ReveD44+HJJxX2UYuswwcws90JyzJbAZ8Ap1f+4FYdvkjxuuceuPrqsPHZEUfE\nXU1+aWyHH2ng1zm4Al+k6KxaBRdeGLr7Z5+Fbt3irij/NDbwdaWtiOTMokXQvz907Bg2P9tgg7gr\nKi7aS0dEcuLtt8N8/ZFHwogRCvs4qMMXkUi5w333wVVXwbBhcPTRdf8eiYYCX0Qis2gRnHNO2Np4\nwgTYYYe4KypumtIRkaxzh0cegR49YI89YMoUhX0SqMMXkaxauDB09QsWwCuvQM+ecVckFdThi0hW\nuMNDD4WA33NPmDxZYZ806vBFpMk+/zzca3bRIhgzJkzlSPKowxeRRnMPK2969gy3IJw8WWGfZOrw\nRaRRFiwIXf3ixTB2LOy+e9wVSV3U4YtIg7jDAw+E1Tf77w8TJyrs84U6fBGpt88+g7POgn/9C/7x\nD9h117grkoZQhy8idaq4WvZXv4LevcM+OAr7/KMOX0RqNX9+6OqXLIFx42CXXeKuSBpLHb6IVMsd\n7r03rKk/+ODQ1Svs81vkHb6ZfQosA9YCa9y9V9RjikjTzJ8PZ54JS5dCOg077xx3RZINuejwHUi5\ne0+FvUiylZfD3XeHrr5Pn3BDcYV94cjVHH6D78wiIrk1b17o6n/4AcaPh512irsiybZcdfhjzWyK\nmZ2Vg/FEpAHKy+HOO2GvveDww8OtBxX2hSkXHf7+7v6FmW0GvGpms919Qg7GFZE6zJsH//VfsGJF\n2K++e/e4K5IoRR747v5F5tevzewZoBewLvBLSkrWHZtKpUilUlGXJFL0ysvhrrtgyBC4/HK4+GJo\n3jzuqqQm6XSadDrd5Pcxd296NTW9uVlboLm7f29m7YAxwLXuPibzukc5voj83Ny5cMYZsHp12Phs\nxx3jrkgaysxw9wZ/Nhr1HH4HYIKZTQcmAqMrwl5Ecqu8HO64I9xI/JhjwhSOwr64RDql4+7zAG2W\nKhKzOXPCXH1ZWfhQVrcbLE660lakgJWXw+23h73qjz8eXn9dYV/MtJeOSIGaMyfM1ZeXw9tvQ7du\ncVckcVOHL1JgysvhtttCV//rX4eLqBT2AurwRQrKP/8ZunozdfXyc+rwRQrA2rXw17/CfvvBSSep\nq5fqqcMXyXMffRS6+hYtwu0Gu3aNuyJJqjo7fDP7rZltlItiRKT+1q6Fv/wl3Fd2wIBwcxKFvdSm\nPh1+B2CymU0FhgGv6PJYkXjNng2nnw7rrQeTJsG228ZdkeSDOjt8d/8jsD0h7E8DPjazG8xMvYRI\njq1dC3/+MxxwAJx6ariRuMJe6qtec/juXm5mXwKLCXeu2ggYYWZj3f2SKAsUkeDDD0NX37atunpp\nnPrM4V9kZu8CNwNvAru4+3nAr4B+EdcnUvTKyuDmm6F3b/jNb2DsWIW9NE59OvyNgX7uPr/yk5mu\n/5hoyhIRgFmzQle//voweTJ06RJ3RZLPIt0euc7BtT2ySLXKyuCWW8IqnP/+bzj77HAxlQg0fntk\nrcMXSZiZM0NXv+GGMGUKbL113BVJodCVtiIJUVYGN9wAqRScdRaMGaOwl+xShy+SAB98AKedBhtv\nDO++C1ttFXdFUogi7/DNrLmZTTOz56MeSyTfrFkD118PBx8M554Lr7yisJfo5KLDvwiYBWyQg7FE\n8sb774eufrPN1NVLbkTa4ZtZJ+BI4H5AawxECF39ddfBoYfC+efDSy8p7CU3ou7wbwUuAX4R8Tgi\neeG998IKnA4dYOpU6NQp7oqkmETW4ZvZ0cBX7j4NdfdS5NasgT/9CQ47DC68EF58UWEvuRdlh78f\ncKyZHQm0Bn5hZo+4++DKB5WUlKx7nEqlSKVSEZYkknvTp4eufsst1dVL46TTadLpdJPfJydX2prZ\nQcD/d/djqjyvK22lYK1eHdbV33ln2OFy8GBdLSvZkQ9X2irZpWhMmxa6+k6dwuNf/jLuikS0l45I\nVq1eHfa+ufvusA/Oqaeqq5fsy4cOX6SgTZ0a1tVvvXWYt99yy7grEvl32ktHpIlWrYKrr4a+feHS\nS2HUKIW9JJM6fJEmePfd0NVvu21YY7/FFnFXJFIzdfgijbBqFfzxj3DkkXDFFfDsswp7ST51+CIN\nNGVK6Oq7dQtdfceOcVckUj/q8EXqadUquPJKOOqo0N0//bTCXvKLOnyRepg0Kayr33FHmDEj7IUj\nkm8U+CK1WLkSSkrgoYdg6FA46SStq5f8pcAXqcHEiaGr32mn0NVvvnncFYk0jQJfpIrFi8MeOE88\nAXfcASeeGHdFItmhD21FMpYsCUssd9opfP/++wp7KSwKfCl6y5aFveq33z6E/vTpYb5+s83irkwk\nuxT4UrSWL4ebb4bttoNPPglz9vfcA507x12ZSDQ0hy9FZ+VKuPdeuPFG6N0bxo+H7t3jrkokegp8\nKRpr1sCDD4bti3v0CDcP79Ej7qpEckeBLwVv7VooLQ3r6bt2haeegr33jrsqkdyLNPDNrDUwHlgP\naAU85+5XRDmmSIXychg5Eq65BjbdFIYNg4MOirsqkfhEGvjuvtLMDnb3FWbWAnjDzA5w9zeiHFeK\nmzuMHh32qG/VKqy4OewwXSErEvmUjruvyDxsBTQHlkQ9phQndxg7Fq66Cn78Ea67Do49VkEvUiHy\nwDezZsBUoCtwl7vPinpMKT4TJoSgX7wYrr02XDDVTIuORf5NLjr8cqCHmW0IvGJmKXdPV7xeUlKy\n7thUKkUqlYq6JCkgkyaFqZuPP4YhQ2DQIGihpQhSYNLpNOl0usnvY+7e9GrqO5jZ1cCP7n5L5nvP\n5fhSOGbMCEE/dWro7E8/PczXixQDM8PdGzxZGekPvWa2qZm1zzxuAxwGTItyTClss2fDKafA4YfD\nIYeEzv6ccxT2IvUR9SznFsA/zGw6MBF43t1fi3hMKUBz54bbCvbuDT17wpw5cNFF0Lp13JWJ5I+o\nl2W+D+wR5RhS2D7/PFwZO2IEXHBB6Og33DDuqkTyk9YxSCItXgy/+x3svju0bw8ffRSulFXYizSe\nAl8S5Ztv4PLLf9qTfuZM+J//gU02ibcukUKgwJdEWLo0dPA77ADffRf2pL/tNujYMe7KRAqHAl9i\ntXw53HQTdOsG8+aFdfV336096UWioMCXWKxcGfa42W67sJZ+/Hh4+GHYdtu4KxMpXLomUXJq9eqf\n9qTfYw94+eXwwayIRE+BLzmxdi089liYp+/WLWxb3KtX3FWJFBcFvkSqvDysoR8yJNwU/KGHwsVT\nIpJ7CnyJhDs8/3zY76Z1a7j9dujTR1sVi8RJgS9Z5Q6vvho2NFu1KuxJf8wxCnqRJFDgS9a8/noI\n+q++gj/9Cfr31570IkmiwJcmmzgxTN3MmRM+lB04UHvSiySR+i9ptPfeC7cQ7N8/fH30EQwerLAX\nSSoFvjTYhx/CySdD375w6KFhB8uzz4aWLeOuTERqo8CXeps7F37zGzjooHDRlPakF8kvCnyp04IF\n4a5SvXqFrQ8+/hguuwzatYu7MhFpiKhvcdjZzMaZ2Uwz+8DMfhvleJJdX34ZOvgePWDjjcMc/ZAh\n2pNeJF9F3eGvAS52952BfYDzzax7xGNKE33zTejgd945LKucNQtuvFF70ovku0gD392/dPfpmcc/\nAB8CW0Y5pjTe0qWhg99+e1i2LKzCufVW6NAh7spEJBtyNodvZl2AnoSbmUuCLF8e7iq13XYwfz5M\nngx33QWdOsVdmYhkU05WTJvZ+sAI4KJMp79OSUnJusepVIpUKpWLkoSwJ/3dd4ewT6VgwgTYcce4\nqxKRqtLpNOl0usnvY+7e9GpqG8CsJTAaeMndb6vymkc9vvzc6tUwbFjYk37PPcM2CLvtFndVIlJf\nZoa7N3iHqkg7fDMz4AFgVtWwl9wrK4NHH4Vrrw33jn36ae1JL1JMIu3wzewA4HVgBlAx0BXu/nLm\ndXX4OVBeDk8+Gfa56dAhdPYHHhh3VSLSWI3t8COf0ql1cAV+pNzhuefgmmugTZsQ9NqTXiT/JXJK\nR+LhDmPGhK2K16yB66+Ho49W0IsUOwV+gRk/PgT9v/4VPoz99a+1J72IBAr8ArB6dejohw6FTz4J\nc/WDBkHz5nFXJiJJosDPU+Xl8MYbUFoabhK+445w+ulhP3ptUywi1VHg5xF3mD49hPzjj8NGG4W7\nS02ZAl26xF2diCSdAj8PzJkDw4eHoF+5MoT8Sy/BLrvEXZmI5BMFfkJ98UVYO19aCp9+CiedFK6O\n3WcfrbYRkcbROvwE+e67cPVraSm8+y4cd1zo5g85RPeJFZGf6MKrPPXjj/DCCyHkX3st3CN24EA4\n6qhwsZSISFUK/DxSVhbCvbQURo0KG5gNGAD9+kH79nFXJyJJp8BPOHd4550Q8k8+GVbVDBwY5ua3\n2CLu6kQkn2hrhYSaOTOEfGkptG4dQv7NN8PNRkREckmBH4FPPw3r5EtL4dtvw3TNM8/A7rtrhY2I\nxEdTOlny9dfw1FMh5GfPhv79Qzd/wAHay0ZEsktz+DH4/nt49tlwUdRbb4WVNQMHwmGHQatWcVcn\nIoVKgZ8jq1bByy+HTv7ll6F37xDyxx4L7drFXZ2IFINEBr6ZDQOOAr5y912reT0vAn/t2rDt8PDh\n4cKoXXcN8/L9+8Mmm8RdnYgUm6Su0nkQuAN4JOJxss49XO1asVFZx46hk58+HTp3jrs6EZGGizTw\n3X2CmXWJcoxs++ijnzYqKy8PIf/aa9C9e9yViYg0jZZlAgsX/rSMctEiOOUUeOyxcAWsllGKSKGI\nPfBLSkrWPU6lUqRSqZyMu2QJjBwZQv699+CEE+DmmyGV0p2iRCRZ0uk06XS6ye8T+SqdzJTO80n4\n0Hb5cnj++TBlk07D4YeHD1+POCJcBSsikg+S+qFt7NasgVdfDZ386NFhP/mBA+Hvf4df/CLu6kRE\ncifqZZnDgYOATYCvgGvc/cFKr0fS4ZeXhwuhSkvD1a/duoWQP/FE6NAh68OJiORUItfh1zl4FgPf\nHWbM+GkZ5QYbwKBB4QPYbbbJyhAiIolQtFM6c+f+tIxy+fIwJz96dLg4SkREfpKXHf7ixT/d7/WT\nT8Ke8gMGwL77aqMyESl8BT+ls3Rp2GK4tBQmTQp71wwcGG4J2LJlxIWKiCRIQQb+ypXw4osh5F99\nNdzMe8AAOPpoaNs2h4WKiCRIwQR+WRmMGxdC/rnnoGfP0Mn36wcbbRRToSIiCZLXge8epmlKS+GJ\nJ8LmZAMHwsknw5ZbxlaeiEgi5e0qnauuCqtsWrQIyygnTAjr5kVEJLtiD/yVK8PFUT17aqMyEZEo\nJWJKR0RE6q+xUzpatS4iUiQU+CIiRUKBLyJSJBT4IiJFQoEvIlIkFPgiIkUi0sA3s75mNtvMPjaz\ny6IcS0REahdZ4JtZc+BvQF9gJ2CAmXWParwoZePmwbmgOrNLdWZXPtSZDzU2RZQdfi9gjrt/6u5r\ngMeB4yIcLzL58pdAdWaX6syufKgzH2psiigD/5fAgkrff555TkREYhBl4GvPBBGRBIlsLx0z2wco\ncfe+me+vAMrd/aZKx+g/BRGRRkjUfvhm1gL4CDgUWARMAga4+4eRDCgiIrWKbHtkdy8zswuAV4Dm\nwAMKexGR+MS6PbKIiORO5FfamtkwM1tsZu/XcsztmYuz3jOznlHXVEMNtdZpZikzW2pm0zJfV+W6\nxkwdnc1snJnNNLMPzOy3NRwX6zmtT51JOKdm1trMJprZdDObZWY31nBc3OezzjqTcD4zdTTPjP98\nDa/H/u89U0eNdSboXH5qZjMyNUyq4Zj6n89wT9novoADgZ7A+zW8fiTwYubx3sA7UdfUyDpTwKg4\naqtSR0egR+bx+oTPSbon7ZzWs86knNO2mV9bAO8AByTtfNazzqScz98Dj1VXS1LOZT3qTMq5nAds\nXMvrDTqfkXf47j4B+LaWQ44FHs4cOxFob2Ydoq6rqnrUCRD7TRjd/Ut3n555/APwIVD1Vu+xn9N6\n1gnJOKcrMg9bET5vWlLlkNjPZ2bsuuqEmM+nmXUihND9NdSSiHNZjzqp5flcq62OBp3PJGyeVt0F\nWp1iqqU2DuyX+bHpRTPbKe6CzKwL4aeSiVVeStQ5raXORJxTM2tmZtOBxcA4d59V5ZBEnM961JmE\n83krcAlQXsPriTiX1F1nEs5lRR1jzWyKmZ1VzesNOp9JCHz4+f9gSfwkeSrQ2d13B+4Ano2zGDNb\nHxgBXJTpoH92SJXvYzmnddSZiHPq7uXu3oPwD6W3maWqOSz281mPOmM9n2Z2NPCVu0+j9q401nNZ\nzzoT8XcT2N/dewJHAOeb2YHVHFPv85mEwF8IdK70fafMc4ni7t9X/Ejt7i8BLc1s4zhqMbOWwEjg\nUXev7i9iIs5pXXUm6ZxmalgKvADsWeWlRJzPCjXVmYDzuR9wrJnNA4YDh5jZI1WOScK5rLPOBJzL\nijq+yPz6NfAMYY+yyhp0PpMQ+KOAwbDu6tzv3H1xvCX9nJl1MDPLPO5FWNJa3Rxq1HUY8AAwy91v\nq+Gw2M9pfepMwjk1s03NrH3mcRvgMGBalcOScD7rrDPu8+nuV7p7Z3ffBjgF+Ie7D65yWOznsj51\nxn0uM+O2NbMNMo/bAf8BVF1F2KDzGdmFVxXMbDhwELCpmS0AhgAtAdz9Hnd/0cyONLM5wHLg9Khr\nakydQH/gPDMrA1YQ/qLEYX/gVGCGmVX8g78S2AoSdU7rrJNknNMtgIfNrBmhAfq7u79mZudU1JmQ\n81lnnSTjfFbmAAk8l1X9rE6ScS47AM9k/t9pATzm7mOacj514ZWISJFIwpSOiIjkgAJfRKRIKPBF\nRIqEAl9EpEgo8EVEioQCX0SkSCjwRUSKhAJfRKRIKPBFKjGzvTI7JK5nZu0s3Lwl9p1RRbJBV9qK\nVGFm1wGtgTbAAne/KeaSRLJCgS9SRWaXzynAj8C+rn8kUiA0pSPyc5sC7Qi3ZmwTcy0iWaMOX6QK\nMxsFlALbAlu4+4UxlySSFZFvjyyST8xsMLDK3R/PbEX8lpml3D0dc2kiTaYOX0SkSGgOX0SkSCjw\nRUSKhAJfRKRIKPBFRIqEAl9EpEgo8EVEioQCX0SkSCjwRUSKxP8BeDy/tYtuJRUAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f7763106d50>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHDxJREFUeJzt3X+8XHV95/HXmwBd0Y2AsBADiCvBoAVWV0OwrkwFagwI\nWdiCgFHAXVm2FMoKDUFWb13agHWFprgsxegjjcWAgBghkCJmKoXwI4r8KElJdKMkmCBQaERrEu+n\nf5xDGG/u3HvOvXPmzDnzfj4e9/GYM/O9535mcjOf+/2e9zmjiMDMzCyrncouwMzMqsWNw8zMcnHj\nMDOzXNw4zMwsFzcOMzPLxY3DzMxyceOwWpC0TtLRZdcxXpLOlHRv2XWYjcSNw+oi0i8zK5gbh5mZ\n5eLGYbUj6bckXS1pQ/p1laRdWx7/Y0nPSFov6b9KGpT074fZz+9LWjnkvv8p6bZhxp4q6eEh910o\n6Zvp7ZmS/kHSP6c/95MZn8t7JD0s6UVJD0k6suWxN0v6brrPuyV9UdKiNvuZI+kBSRPS7XMlPdH6\nuphl5cZhdfQpYBpwePo1DbgMQNIM4ELgaGAK0KD9Etc3gTdLmtpy32xg4TBjlwBvlXRQy32nA3+T\n3l4AfCIiJgJvB74z2pOQtCdwB3A1sCfwBeAOSXukQ24AHkgfGwA+MsJz+RzwK+AySVOAPwXOiIgt\no9VhNpQbh9XR6cBnI+K5iHgO+BOSN3yAU4AvR8SqiPgl8BlAw+0kfVO9ieQNGUlvB94E3D7M2F+S\nNJrT0rFTgLeSNBSALcDbJU2MiJci4pEMz+M44B8j4m8iYjAiFgOrgRMkHQC8C/h0RGyLiPvSn9Xu\nuQTwUeD8tM4rI+LRDDWY7cCNw+rojcCPW7Z/kt4HMAl4uuWx9aPsayFJI4Kk+dwYEVvbjL2BtHGk\n3/ONiPiXdPtkYCawTlJT0vRRn0VS80+G3PdjYDLJ83ihZf/wm89rBxHxY6BJ0vy+mOHnmw3LjcPq\n6BngwJbtA4AN6e2fAvu3PNZ6ewcR8QCwRdL7SJrCsMcQUt8G9pZ0OPBhkkbyyn5WRsQsYG/gNpKZ\nzGg2kLzJt3oTSbP7KbCnpNe0PHbASDuTdBwwHbgH+HyGn282LDcOq6Ovkazl7yVpL+DTwFfTx24C\nzpI0VdJuwP/KsL9FwDXAloi4v92gdCbydZI35T2AuwEk7SLpDEmvj4hfA5uBX2f4uXcCB0s6TdLO\nkk4FpgK3R8RPgJXAQLr/I4HjaXOMI30drgc+DpwJfEjSBzPUYLYDNw6ro8tJ3lQfS79WpvcREXcB\n84HlwFPAivR7fjXC/haRHND+6ghjXnEDyYH3r0fEYMv9HwH+v6SXgE8AZ7T5/u3no0TE8yTN4JPA\nc8BFwPER8UI69gzgSOB54H8DN5IcSxnOdcBtEXFX+v0fB77UcqDdLDOV+UFOkr5McgDw2Yg4tM2Y\n+cAHgV8AZ2Y8qGiWiaRDgMeBXYe80beOeQ2wCXhHRPywm/XlIelG4MmI+JOya7F6K3vG8RVgRrsH\nJc0EDoqIKSR/pV3brcKsviT95/Rcjz2AK4El7ZpG6lzgoV5rGpLeJektknZKl51OIDl+Ylaoncv8\n4RFxr6QDRxhyAmlmPiIelLS7pH0iYlM36rPa+gTJHy2/JkkZ/Y92AyWtI1k6mtWNwnLaF7gVeANJ\nouq/O2Jr3VBq48hgMjtGJ/cjWTYwG5OIyHxQOCIOLLCUcYmI2xnmnBKzopW9VJXF0BOafCE7M7MS\n9fqMYwO/mbPfj1fz+NtJcjMxMxuDiBj2agMj6fUZxxKSyySQnmn7YrvjGxFR2a/PfOYzpdfQj7W7\n/vK/XH+5X2NV6oxD0teAo4C9JD1Nct2gXQAi4rqIWJpeVXQt8DJwVnnVmpkZlJ+qOi3DmPO6UYuZ\nmWXT60tVfaHRaJRdwphVuXZw/WVz/dVU6pnjnSIp6vA8zMy6SRJRw4PjZmbWY9w4zMwsFzcOMzPL\nxY3DzMxyceMwM7Ncev2SI2Zm1kGDg7BoEbzwwuhj23HjMDPrEw89BOefDxEwf/7Y9+OlKjOzmtu4\nEc46C2bNgnPPhRUr4Igjxr4/Nw4zs5rasgU+/3n47d+GvfeG1avhYx+Dncb5zu+lKjOzGrrzTvij\nP4KDDoL774eDD+7cvt04zMxqZM0auPBCeOopuOoqOO64zv8ML1WZmdXA5s0wZw4ceSQcdRQ88UQx\nTQPcOMzMKm1wEBYuhKlTYdMmePxxuPhi2HXX4n6ml6rMzCqqNV57663jS0rl4RmHmVnFdDpem5cb\nh5lZRRQVr83LS1VmZhVQZLw2LzcOM7Me1o14bV5eqjIz60HdjNfm5cZhZtZDyojX5uWlKjOzHlFW\nvDavUmcckmZIWi1pjaQ5wzy+l6S7JP1A0hOSziyhTDOzQpUdr82rtMYhaQJwDTADeBtwmqRDhgw7\nD3gkIv4D0AD+jyTPksysFnolXptXmW/C04C1EbEOQNJi4ERgVcuYnwKHpbcnAs9HxLZuFmlmVoRe\nitfmVWbjmAw83bK9Hhg6Obse+I6kZ4B/C5zSpdrMzArRi/HavMpsHJFhzKXADyKiIektwN2SDo+I\nzUMHDgwMbL/daDRoNBqdqtPMbNw2b4bLL4cFC5KY7a23dj8p1Ww2aTab496PIrK8f3eepOnAQETM\nSLfnAoMRcWXLmKXAn0bEfen2PcCciFg5ZF9R1vMwMxvJ4CAsWgSXXgrHHgvz5sGkSWVXlZBERCjv\n95U541gJTJF0IPAMcCpw2pAxq4FjgPsk7QO8FfhRF2s0MxuzqsRr8yqtcUTENknnAcuACcCCiFgl\n6Zz08euAPwO+IulRkgTYH0fEC2XVbGaWxcaNMHcuLFuWzDBmz+79pFQepS1VdZKXqsysF2zZAvPn\nwxVXwNlnw2WXwcSJZVfVXhWXqszMaqPK8dq83DjMzMahDvHavGq06mZm1j29fPXaorlxmJnlUIWr\n1xbNS1VmZhnVNV6bl2ccZmajqNrVa4vmxmFm1kZVr15bNC9VmZkNo5/itXm5cZiZtejHeG1efT7h\nMjNL9HO8Ni83DjPra47X5uelKjPrW47Xjo1nHGbWdxyvHR83DjPrG47XdoaXqsysLzhe2zluHGZW\na47Xdp4naGZWS47XFseNw8xqxfHa4nmpysxqw/Ha7vCMw8wqz/Ha7nLjMLPKcry2HF6qMrNKcry2\nPG4cZlYpjteWr9QJnaQZklZLWiNpTpsxDUmPSHpCUrPLJZpZj3C8tneUNuOQNAG4BjgG2AA8LGlJ\nRKxqGbM78EXgAxGxXtJe5VRrZmUZHIRFi+DSS+HYY5N47aRJZVfV38pcqpoGrI2IdQCSFgMnAqta\nxpwO3BIR6wEi4rluF2lm5XG8tjeVuVQ1GXi6ZXt9el+rKcCekpZLWilpdteqM7PSOF7b28qccUSG\nMbsA7wSOBnYDVkh6ICLWDB04MDCw/Xaj0aDRaHSmSjPrmi1bYP58uOIKOPvsJF47cWLZVdVHs9mk\n2WyOez+KyPL+3XmSpgMDETEj3Z4LDEbElS1j5gCviYiBdPtLwF0RcfOQfUVZz8PMOqM1XnvVVY7X\ndoMkIkJ5v6/MGcdKYIqkA4FngFOB04aM+SZwTXog/beAI4AvdLFGMyuY47XVU9oxjojYBpwHLAOe\nBG6MiFWSzpF0TjpmNXAX8BjwIHB9RDxZVs1m1jmO11ZXaUtVneSlKrPqGBqvnTfP8dqyVHGpysz6\njOO19eBLgZlZ4RyvrRc3DjMrjK9eW09eqjKzQvjqtfXlxmFmHeV4bf15wmhmHeF4bf9w4zCzcRkc\nhIULYepU2LQpuXrtxRfDrruWXZkVxUtVZjZmjtf2J884zCw3x2v7mxuHmWXmeK2Bl6rMLCPHa+0V\nbhxmNiLHa20oTzDNbFiO11o7bhxm9hscr7XReKnKzLZzvNay8IzDzByvtVzcOMz6mOO1NhZeqjLr\nU47X2li5cZj1Gcdrbbw8ITXrE47XWqe4cZjVnOO11mleqjKrMcdrrQiecZjVkOO1VqRSG4ekGZJW\nS1ojac4I494taZukk7pZn1nVOF5r3VDaUpWkCcA1wDHABuBhSUsiYtUw464E7gLU9ULNKsLxWuuW\nMo9xTAPWRsQ6AEmLgROBVUPG/SFwM/DurlZnVhGO11q3lTmBnQw83bK9Pr1vO0mTSZrJteld0Z3S\nzHqf47VWljJnHFmawNXAJRERksQIS1UDAwPbbzcaDRqNxnjrM+tJg4OwaBFceikce2wSr500qeyq\nrAqazSbNZnPc+1FEOX/ES5oODETEjHR7LjAYEVe2jPkRrzaLvYBfAP8tIpYM2VeU9TzMuqk1Xjt/\nvpNSNj6SiIjcx47LbBw7A/8IHA08AzwEnDb04HjL+K8A34qIW4d5zI3Dam3jRpg7F5Ytg3nzYPZs\nJ6Vs/MbaOEr71YuIbcB5wDLgSeDGiFgl6RxJ55RVl1kvcbzWelFpM45O8ozD6qg1XnvVVY7XWueN\ndcbhS46Y9RjHa63XjTrhlfQ9SX8gaY9uFGTWrxyvtarIslL6YZLzKx6WtFjSB9JorJl1gK9ea1WT\n+RiHpJ2A40lOxhsEvgz8RUS8UFx52fgYh1WV47VWpkJTVZIOB74A/DlwC/D7wGbgO3l/oJn56rVW\nbaMeHJf0PeAl4EvAnIj4VfrQA5J+p8jizOpmy5ZkZnHFFXD22Um8duLEsqsyy2fUpSpJb4mIH3ap\nnjHxUpVVwdKlSVrK8VrrFZU7c7yT3Disl7XGa6++GmbOLLsis0Tlzhw3q7vh4rVuGlYHbhxmHeZ4\nrdVdloPjJ7PjJdBfAh6PiGcLqcqsolrjtbfe6qSU1VOWg+N3AEcCy9O7GsD3gTcDn42Ivy6ywCx8\njMPK5qvXWhUVeYxjF+CQiDg5Ik4G3kYyAzkCmJP3B5rVia9ea/0oy0UO94+ITS3bz6b3PS9pS0F1\nmfW81njt/fc7Xmv9I0vjWJ4uV91E8ml8JwNNSa8FXiyyOLNe5Hit9bssxzh2Ak4CXjlL/D7gll46\nqOBjHNYNmzfD5ZfDggVJzPaCC5yUsmor7PM4ImJQ0t8Dr1xq5EG/S1s/GRyERYvg0kvh2GOTeO2k\nSWVXZVaeLHHcU0gubvh36V1/KeniiPh6oZWZ9QDHa812lGWp6jHgmFfO2ZC0N3BPRBzWhfoy8VKV\ndZrjtdYPiozjCvhZy/bz6X1mteN4rdnosqSq7gKWSbqBpGGcCtxZaFVmJXC81iybLEtVIklVvZfk\nxL97I+IbXagtMy9V2Xg4Xmv9ypdVr8HzsO5yvNb6XcePcUj6uaTNbb7+eXzlbv8ZMyStlrRG0g6X\nL5F0hqRHJT0m6T5JPXNA3qrLV681G5+2xzgi4nVF/mBJE4BrgGOADcDDkpZExKqWYT8C3hcRL0ma\nAfwVML3IuqzeHK81G78ysyLTgLURsS4itgKLgRNbB0TEioh4Kd18ENivyzVaTWzcCGedBbNmwbnn\nwooVbhpmY1Vm45gMPN2yvT69r52PA0sLrchqx/Fas87LEsctSuaj2ZJ+FzibV6+XtYOBgYHttxuN\nBo1GYxylWR04Xmv2m5rNJs1mc9z7KS1VJWk6MBARM9LtucBgRFw5ZNxhwK3AjIhY22ZfTlXZdo7X\nmmVT5JnjRVkJTJF0oKRdSU4sXNI6QNIBJE3jI+2ahtkrNm9OYrVHHgmNBjzxhJuGWRFKW6qKiG2S\nzgOWAROABRGxStI56ePXAZ8G9gCuTc5DZGtETCurZutNrVev/b3fSxrGvvuWXZVZffkEQKu01njt\n/PlOSpnlUcWlKrMxc7zWrDxuHFYpjteala/MOK5ZLo7XmvUGNw7reY7XmvUWT/CtZzlea9ab3Dis\n57RevfbZZ5OGcdFFvnqtWa/wUpX1FF+91qz3ecZhPcHxWrPqcOOwUjlea1Y9Xqqy0jhea1ZNbhzW\ndY7XmlWbFwSsaxyvNasHNw4rnOO1ZvXipSorlOO1ZvXjGYcVwvFas/py47COcrzWrP68VGUd43it\nWX9w47Bxc7zWrL94AcHGzPFas/7kxmG5OV5r1t+8VGW5OF5rZp5xWCaO15rZK9w4bESO15rZUKX+\n95c0Q9JqSWskzWkzZn76+KOS3tHtGvvZ0qVw6KGwfHkSr/3c52DixLKrMrOylXaMQ9IE4BrgGGAD\n8LCkJRGxqmXMTOCgiJgi6QjgWmB6KQX3EcdrzWwkZc44pgFrI2JdRGwFFgMnDhlzArAQICIeBHaX\ntE93y+wfjteaWRZlNo7JwNMt2+vT+0Ybs1/BdfUdx2vNLI8y47iRcZyyfN/AwMD2241Gg0ajMaai\n+o3jtWb9o9ls0mw2x70fRWR9/+4sSdOBgYiYkW7PBQYj4sqWMf8PaEbE4nR7NXBURGwasq8o63lU\n1caNMHcuLFsG8+bB7NlOSpn1G0lExNA/zkdV5lvFSmCKpAMl7QqcCiwZMmYJ8FHY3mheHNo0LB/H\na81svEpbqoqIbZLOA5YBE4AFEbFK0jnp49dFxFJJMyWtBV4Gziqr3jrw1WvNrBNKW6rqJC9Vjczx\nWjMbThWXqqxgjteaWRHcOGrI8VozK5KvjlszjteaWdE846gJX73WzLrFjaPiHK81s27zUlWFOV5r\nZmVw46ggx2vNrExe0KgQx2vNrBe4cVSA47Vm1ku8VNXjHK81s17jGUePcrzWzHqVG0ePcbzWzHqd\nl6p6iOO1ZlYFbhw9wPFaM6sSL4CUyPFaM6siN44SOF5rZlXmpaouc7zWzKrOM44ucbzWzOrCjaNg\njteaWd14qapAjteaWR25cRTA8VozqzMvmHSQ47Vm1g/cODrA8Voz6yelLVVJ2hO4EXgTsA44JSJe\nHDJmf+CvgX8HBPBXETG/y6WOyPFaM+s3Zc44LgHujoiDgXvS7aG2AhdGxNuB6cAfSDqkizW25Xit\nmfWrMhvHCcDC9PZCYNbQARGxMSJ+kN7+ObAKeGPXKhyG47Vm1u/KTFXtExGb0tubgH1GGizpQOAd\nwIPFltWe47VmZgU3Dkl3A/sO89CnWjciIiTFCPt5HXAzcEE689jBwMDA9tuNRoNGozGGiofneK2Z\n1UGz2aTZbI57P4po+35dKEmrgUZEbJQ0CVgeEVOHGbcLcDtwZ0Rc3WZfUcTz2LwZLr8cFiyASy5J\nDoI7KWVmdSGJiFDe7ytzZX4J8LH09seA24YOkCRgAfBku6ZRBMdrzczaK3PGsSdwE3AALXFcSW8E\nro+I4yS9F/gu8BhJHBdgbkTcNWRfHZtxtMZr5893UsrM6musM47SGkcndaJxbNwIc+fCsmUwbx7M\nnu2klJnVWxWXqnqC47VmZvn09UUOHa81M8uvLxuH47VmZmPXVwsyvnqtmdn49UXjcLzWzKxzar9U\n5avXmpl1Vm1nHL56rZlZMWrXOByvNTMrVq2WqhyvNTMrXm0ax/HHO15rZtYNtWkcjUZy8NtJKTOz\nYvlaVWZmfcrXqjIzs65w4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3D\nzMxyceMwM7NcSmkckvaUdLekpyT9raTdRxg7QdIjkr7VzRrNzGx4Zc04LgHujoiDgXvS7XYuAJ4E\nansxqmazWXYJY1bl2sH1l831V1NZjeMEYGF6eyEwa7hBkvYDZgJfAnJfiKsqqvzLV+XawfWXzfVX\nU1mNY5+I2JTe3gTs02bcVcDFwGBXqjIzs1EV9nkcku4G9h3moU+1bkRESNphGUrS8cCzEfGIpEYx\nVZqZWV6lfB6HpNVAIyI2SpoELI+IqUPG/BkwG9gG/BtgInBLRHx0mP3V9viHmVmRxvJ5HGU1js8B\nz0fElZIuAXaPiLYHyCUdBVwUER/qWpFmZjasso5xXAEcK+kp4P3pNpLeKOmONt/jWYWZWQ+oxUfH\nmplZ91TqzHFJMyStlrRG0pw2Y+anjz8q6R3drrGd0WqXNFXSCkn/IumTZdQ4kgz1n5G+5o9Juk/S\nYWXU2U6G+k9M639E0vckvb+MOtvJ8rufjnu3pG2STupmfaPJ8Po3JL2Uvv6PSLqsjDqHk/F9p5HW\n/YSkZpdLHFGG1/6iltf98fT3p+1J2QBERCW+gAnAWuBAYBfgB8AhQ8bMBJamt48AHii77hy17w28\nC7gc+GTZNY+h/iOB16e3Z/TKa5+j/te23D4UWFt23Xnqbxn3HeB24OSy6875+jeAJWXXOsbadwf+\nAdgv3d6r7Lrz/u60jD8e+PZo+63SjGMayX/mdRGxFVgMnDhkzPYTCyPiQWB3Se3OEemmUWuPiJ9F\nxEpgaxkFjiJL/Ssi4qV080Fgvy7XOJIs9b/csvk64Lku1jeaLL/7AH8I3Az8rJvFZZC1/l48yTdL\n7aeTJD7XA0REFX93XnE68LXRdlqlxjEZeLple31632hjeuENLEvtvSxv/R8HlhZaUT6Z6pc0S9Iq\n4E7g/C7VlsWo9UuaTPKGcG16Vy8dvMzy+gfwnnS5cKmkt3WtupFlqX0KsKek5ZJWSprdtepGl/n/\nrqTdgA8At4y208JOACxA1v8IQ/9q6YX/QL1Qw3hkrl/S7wJnA79TXDm5Zao/Im4DbpP0n4BFwFsL\nrSq7LPVfDVwSESFJ9NZf71nq/z6wf0T8QtIHgduAg4stK5Mste8CvBM4GtgNWCHpgYhYU2hl2eR5\n7/kQ8PcR8eJoA6vUODYA+7ds70/SPUcas196X9my1N7LMtWfHhC/HpgREf/UpdqyyPX6R8S9knaW\n9IaIeL7w6kaXpf7/CCxOegZ7AR+UtDUilnSnxBGNWn9EbG65faek/ytpz4h4oUs1tpPltX8aeC4i\nfgn8UtJ3gcOBXmgceX73P0yGZSqgUgfHdwZ+SHKQZ1dGPzg+nR45QJul9paxA/TewfEsr/0BJAfh\nppdd7xjrfwuvxtPfCfyw7LrH8vuTjv8KcFLZded8/fdpef2nAevKrjtH7VOBb5MciN4NeBx4W9m1\n5/ndAV4PPA+8Jst+KzPjiIhtks4DlpH8Ay2IiFWSzkkfvy4ilkqaKWkt8DJwVoklb5eldkn7Ag+T\nXFplUNIFJL98Py+t8FSW+oFPA3sA16Z/9W6NiGll1dwqY/0nAx+VtBX4OclfXz0hY/09K2P9/wU4\nV9I24Bf0yOuf8X1ntaS7gMdILsh6fUQ8WV7Vr8rxuzMLWBbJrGlUPgHQzMxyqVKqyszMeoAbh5mZ\n5eLGYWZmubhxmJlZLm4cZmaWixuHmZnl4sZhlpOk0s+tMSuTG4dZfj75yfqaG4fZGCnx5+mH3zwm\n6ZT0/p3Say2tkvS3ku6QdPKQ791Z0kOSjkq350m6vIznYZZXZS45YtaDTiK5mN1hJB/E9XB6gbv3\nAm+KiEPSz4NZBSxo/cb0UhBnAjdLOp/kctY9cYkWs9G4cZiN3XuBGyK5bs+zkv4OeDfJJeVvAoiI\nTZKWD/fNEfGkpK8C3yK5OOS2LtVtNi5eqjIbu6D9515k/TyMQ4F/Irk6rFkluHGYjd29wKnpMY29\ngfeRfGzufcDJ6TGQfUg+T3sHkk4i+bzqo4C/lPT67pRtNj5eqjLLLwAi4huSjgQeTe+7OCKelXQL\nyafBPUnyIT/fB15q3YGkvYB5wPsjYoOka4C/AM7s2rMwGyNfVt2sAJJeGxEvS3oDySzkPRHxbNl1\nmXWCZxxmxbhd0u4kn7r2WTcNqxPPOMzMLBcfHDczs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4\nzMwsl38FAoe+bnMSv0IAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f7762cd79d0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from math import log10\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot, title,xlabel,ylabel,show\n", + "\n", + "#y = a*x**b\n", + "a1 = -0.3000#\n", + "a = 10**(a1)#\n", + "b = 1.75#\n", + "print \"a=\",a\n", + "x=[];y=[];m=[];n=[];\n", + "for i in range(0,5):\n", + " x.append(i+1)\n", + " y.append(a*x[(i)]**b)\n", + " m.append(log10(x[(i)]))\n", + " n.append(log10(y[(i)]))\n", + "\n", + "print \"x=\",x\n", + "print \"y=\",y\n", + "print \"m=\",m\n", + "print \"n=\",n\n", + "plot(x,y)\n", + "title('y vs x')\n", + "xlabel('x')\n", + "ylabel('y')\n", + "show()\n", + "plot(m,n)\n", + "title('log y vs log x')\n", + "xlabel('log x')\n", + "ylabel('log y')\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.5 Pg: 471" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sum y = 152.6\n", + "sum x = 15\n", + "xavg = 2\n", + "yavg = 25.4333333333\n", + "sum x**2 = 55\n", + "sum x**3 = 225\n", + "sum x**4 = 979\n", + "sum x*y = 585.6\n", + "sum x**2 * y = 2488.8\n", + "(yi - yavg)**2 = [4.41, 41.173611111111114, 60.58027777777777, 60.580277777777745, 33.446944444444505, 1332.2500000000005]\n", + "(yi - a0 - a1*x - a2*x**2)**2 = [0.14331632653056853, 1.0028591836732743, 1.0816000000005044, 0.80486530612177265, 0.61959387755180939, 0.094336734693502053]\n", + "The standard error of the estimate based on regression polynomial = 1.11752277062\n", + "Percentage of original uncertainty that has been explained by the model = 99.7555161238 %\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEZCAYAAACQK04eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHQFJREFUeJzt3XmYFfWV//H3AQRxiYqOQAQU9xh1RHEN4sWIAio6ZsYl\nRjEuGc1PJTFR0Ex+duIyLjMucUncxSgq0YigKPtFXCIgiyKiEYPiQoNRVEAiy5k/vtU2aZu2G7vu\nt+6tz+t5+qHu7brdp+8Dnz6cqvqWuTsiIpIfLWIXICIipaXgFxHJGQW/iEjOKPhFRHJGwS8ikjMK\nfhGRnFHwi4jkjIJfRCRnFPwiIjmj4JdcMbMdzOzvZtYtefxtM1tsZj3r2XeQmf2pznM3mtmNyfZp\nZjbPzD41s7fM7If1fI0OZrbMzNqt9dzeZrbIzFo2/08o8vVMSzZI3pjZmcDPge7AcGCWu19Uz35d\ngNeA9u6+NAnqBcCxwKvA+0B3d/+rmbUHtnT3OfV8nSeBke7+h+Tx9UALdx+Yzk8o0jB1/JI77n4n\n8CYwBWgP/God+70DTAf+LXnqUGC5u09JHq8B9jCztu5eXV/oJ+4DfgSQ/PI4Efhjc/wsIutDwS95\ndSfwXeAmd1/ZwH5DgZOS7R8CDwC4+zLgBOBs4H0ze8LMdlnH13gc2M3MtgN6A5+4+7Rv/BOIrCeN\neiR3zGwTYBYwHugH7OHuH69j338B3gZ2AmYDB7j763X2aQNcAezn7l85VpDscxthTLQrMMfdr2ym\nH0ekydTxSx7dCExx958ATwJ/WNeO7r4YKAL3Am/VhL6ZbW1mx5jZxsBKYBmwuoHveR/wY6A/GvNI\nZAp+yRUzOwY4HDgneeoCYG8zO2ndr2Io8P3kzxotCAeI3wP+Dhy81tf8Cnd/jnBM4CV3X7DeP4BI\nM0h11JPMPB9a66ntgV8D9wMPA9sC84Hj3X1JaoWIZICZjQOGuvvdsWuRfCvZjN/MWhC6o/2A84AP\n3f0aMxsEbOHug0tSiEgEZrYvMBronBwYFommlKOew4A3k//m9geGJM8PIZwXLVKRzGwIMBb4mUJf\nsqCUHf/dwDR3v9XMPnb3LZLnDfio5rGIiKSrJB2/mbUGjgb+VPdzHn7z6JxSEZESaVWi79OXcDbD\n4uRxtZl1cPeFZtYRWFT3BWamXwYiIuvB3a2hz5dqxn8S8OBaj0cAA5LtAYT1Ur7C3fXhzqWXXhq9\nhqx86L3Qe6H3ouGPxkg9+JMLXA4D/rzW01cBvc3sDcL6J1elXYeIiASpj3o8nMWwVZ3nPiL8MhAR\nkRLTlbtloFAoxC4hM/Re1NJ7UUvvRdNkdpE2M/Os1iYiklVmhmfk4K6IiGSEgl9EJGcU/CIiOaPg\nFxHJGQW/iEjOKPhFRHJGwS8ikjMKfhGRnFHwi4jkjIJfRCRnFPwiIjmj4BcRyRkFv4hIzij4RURy\nRsEvIpIzCn4RkZxR8IuI5IyCX0QkZxT8IiI5o+AXEckZBb+ISM6kHvxmtrmZPWJmr5nZHDPb38za\nmdlYM3vDzMaY2eZp1yEiUslWroQrrmjcvqXo+G8ERrn7d4A9gbnAYGCsu+8MjE8ei4jIevjHP+CE\nE+D55xu3v7l7asWY2WbADHffvs7zc4FD3L3azDoARXfftc4+nmZtIiKV4PPP4Qc/gLZt4cEHoU0b\nw92todek3fF3BRab2T1mNt3M7jCzjYH27l6d7FMNtE+5DhGRirN0KRx5JGyxBTz8MLRu3bjXtUq3\nLFoBewPnuvtUM7uBOmMdd3czq7e1r6qq+nK7UChQKBTSq1REpIx88kkI/c02K7LDDkUuv7zxr017\n1NMBeMHduyaPewAXA9sDvdx9oZl1BCZq1CMi0jgffQRHHAEHHAA33ggt1prdmEUe9bj7QmCBme2c\nPHUY8CowEhiQPDcAGJ5mHSIilWLRIigUoFcv+N3v/jn0GyvVjh/AzP4VuBNoDcwDfgy0BIYBXYD5\nwPHuvqTO69Txi4is5b334LDDwhk8l14KVk9f35iOP/XgX18KfhGRWm+/Dd//Ppx1FgwatO79oo96\nRETkm3vzTejZEwYObDj0G0vBLyKSYXPmhJn+f/0XnHde83zNtE/nFBGR9TRzJvTtC9deCz/6UfN9\nXQW/iEgGTZkCRx8Nt94arsxtTgp+EZGMmTw5hP0994SLtJqbZvwiIhkyblwI/aFD0wl9UPCLiGTG\nk0/CD38Ijz4aztdPi4JfRCQDHn0UTj8dRo6Egw9O93sp+EVEInvgATj3XBg9GvbfP/3vp+AXEYno\nrrvgoovCbH+vvUrzPXVWj4hIJDffHM7RLxZhp51K930V/CIiEVxzDdx2G0yaBNttV9rvreAXESkh\nd/jNb+Chh+CZZ2CbbUpfg4JfRKRE3GHwYHjqqdDpt49001kFv4hICaxZE1bXfOEFmDgRttwyXi0K\nfhGRlK1eDWefHVbaHD8eNtssbj0KfhGRFK1aBaedFu6eNXo0bLJJ7IoU/CIiqfnii7AEw7JlMGoU\ntG0bu6JAF3CJiKRgxQo47rgw5hk+PDuhDwp+EZFmt2wZHHUUbLopDBsGbdrEruifKfhFRJrRp59C\nnz7QuTPcfz9ssEHsir5KwS8i0kw++igsp7zHHmENnpYtY1dUPwW/iEgzWLwYDj00LKl8yy3QIsPp\nmnppZjbfzF42sxlmNiV5rp2ZjTWzN8xsjJltnnYdIiJp+eADOOSQcI/c//kfMItdUcNK8TvJgYK7\nd3P3/ZLnBgNj3X1nYHzyWESk7LzzDvTsCaecApddlv3Qh9KNeuq+Ff2BIcn2EODYEtUhItJs5s0L\nnf6558LFF8eupvFK1fGPM7NpZnZW8lx7d69OtquBSEsViYisn7lzoVAIgT9wYOxqmqYUV+5+z90/\nMLN/Acaa2dy1P+nubmZe3wurqqq+3C4UChQKhTTrFBFplFmzoG9fuOoqOPXUuLUUi0WKxWKTXmPu\n9WZuKszsUmApcBZh7r/QzDoCE9191zr7eilrExFpjGnTwsVZN90E//Efsav5KjPD3Rs80pDqqMfM\nNjKzTZPtjYHDgVeAEcCAZLcBwPA06xARaQ7PPQf9+sHtt2cz9Bsr1Y7fzLoCjyUPWwEPuPt/m1k7\nYBjQBZgPHO/uS+q8Vh2/iGTGhAlwwgnwwANw+OGxq1m3xnT8JR31NIWCX0Sy4qmnYMAA+NOfwlk8\nWRZ91CMiUu4eeyyspz9iRPZDv7EU/CIi6/Dgg/DTn4aO/4ADYlfTfBT8IiL1uPtu+OUvYexY2Hvv\n2NU0L92BS0SkjltugauvDjdF33nn2NU0PwW/iMha/vd/Q/BPmgRdu8auJh0KfhERwB0uvzzcPOWZ\nZ6BTp9gVpUfBLyK55w6/+hWMHBk6/Q4dYleULgW/iOSaO/z85zB5cpjpb7VV7IrSp+AXkdxaswbO\nOQdefhnGj4fNc3JLKAW/iOTSqlVw+unhRipjxsCmm8auqHQU/CKSO198ASefDJ9+CqNGwUYbxa6o\ntBT8IpIrK1bA8ceHWySOGAFt2sSuqPR05a6I5Mby5dC/P2y4ITzySD5DHxT8IpITn30W7prVsSMM\nHQobbBC7ongU/CJS8ZYsgd69Ybfd4J57oFXOh9wKfhGpaB9+CIceCgceCLfeCi2Uegp+EalcH3wA\nhUIY8Vx3XTigKwp+EalQCxaEG6ecdBJccYVCf20KfhGpOG+9FUL/7LPDGjzyzxT8IlJRXn89jHcu\nvBAuuCB2NdmU82PbIlJJXnkF+vQJo53TTotdTXYp+EWkIkyfDv36wY03wgknxK4m2xT8IlL2XngB\njj0Wbr8djjkmdjXZl/qM38xamtkMMxuZPG5nZmPN7A0zG2NmOVkIVUTSUCyGsB8yRKHfWKU4uDsQ\nmAN48ngwMNbddwbGJ49FRJrkiy/gt78NC649/HCY7UvjpBr8ZtYJ6AfcCdScRdsfGJJsDwGOTbMG\nEak806ZB9+4wdWqY7ffqFbui8pJ2x389cCGwZq3n2rt7dbJdDbRPuQYRqRCffw6DBsFRR8HgwWFZ\n5Uq+KXpaUju4a2ZHAYvcfYaZFerbx93dzLy+zwFUVVV9uV0oFCgU6v0yIpIDkyfDGWfA3nuHWyVu\nvXXsirKhWCxSLBab9BpzX2fufiNmdiVwCrAK2BD4FvBnYF+g4O4LzawjMNHdd63n9Z5WbSJSPj77\nDC6+GIYPh5tvDmfvyLqZGe7e4AIVqY163P0Sd+/s7l2BE4EJ7n4KMAIYkOw2ABieVg0iUt7GjIE9\n9ggjnldeUeg3l1Kex1/Tvl8FDDOzM4D5wPElrEFEysDHH4flFopFuOOOsJa+NJ/URj3flEY9Ivn0\n2GNw7rnwgx/AlVfCJpvErqi8NGbUoyt3RSQTqqvhvPNg1qxwXn6PHrErqlxanVNEonKH+++HPfeE\nHXaAmTMV+mlTxy8i0SxYENbMf/ddGDUK9tkndkX5oI5fREpuzRq47bZwTv6BB4YrcBX6paOOX0RK\nat48OPPMcIrmpEmw226xK8ofdfwiUhKrV4cbnh9wAPTvD889p9CPRR2/iKTu1VfDcgsbbQR/+Us4\niCvxqOMXkdR88QVcdlm4B+7pp8O4cQr9LFDHLyKpeOmlEPadOoWlkzt3jl2R1Pjajt/MzjezLUpR\njIiUv88/D0sm9+sHF10ETzyh0M+axox62gNTzWyYmfUxswYvBRaR/Hr2WdhrL/jb38KiaiefDEqM\n7GnUWj1m1gI4HDgN6A4MA+5y93mpFaa1ekTKxtKlYenkP/8ZbrlFq2jG1GzLMrv7GmAh4Y5Zq4Et\ngEfM7NpvXKWIlLWapZOXLoXZsxX65eBrO34zGwicCvydcO/cx9x9ZfK/gL+6eyrH6NXxi2Tbxx/D\nL34BEyaEq3CPOCJ2RQLN1/G3A45z98PdfZi7r4Qv/xdwdDPUKSJlZvhw2H33cF7+K68o9MuN1uMX\nkUZbtCgsnTxzJtx5Jxx8cOyKpK6ot14UkcrhDg88EJZO7to1BL9Cv3zpAi4RadC774alk995J5yT\n37177Irkm1LHLyL1cofbb4du3WC//WDaNIV+pVDHLyJfMW8enHUWLFsGEyeGA7lSOdTxi8iXVq+G\n66+H/feHI4+E559X6FcidfwiAsCcOWHp5DZtwtLJO+4YuyJJizp+kZxbuRIuvxwOOQROOy1ckKXQ\nr2ypdfxmtiEwCWgDtAYed/eLzawd8DCwLTAfON7dl6RVh4is2/TpYenkbbbR0sl5klrH7+4rgF7u\nvhewJ9DLzHoAg4Gx7r4zMD55LCIltGJFWFStb9+w7IKWTs6XVEc97r482WwNtAQ+BvoDQ5LnhwBa\n0kmkhJ57Liyd/Oab8PLLcMopWjo5b1I9uJss5DYd2AH4vbu/ambt3b062aWasN6/iKRs6VK45BJ4\n5BG4+WY47rjYFUksqQZ/spDbXma2GTDazHrV+byb2ToX5Kmqqvpyu1AoUCgUUqpUpLKNHQs/+Um4\n9+3s2dCuXeyKpLkUi0WKxWKTXlOyRdrM7NfA58CZQMHdF5pZR2Ciu+9az/5apE3kG1qyJMzwx40L\nV+FqFc3KF3WRNjPbysw2T7bbAr2BGcAIYECy2wBgeFo1iOTZ44+Hi6823DB0+Qp9qZHmqKcjMCSZ\n87cA/uju481sBjDMzM4gOZ0zxRpEcmfx4rB08vTpMHQo9OwZuyLJGq3HL1Ih3OHBB+GCC+DUU+E3\nv4G2bWNXJaXWmFGPlmwQqQDvvReWTn77bRg5EvbdN3ZFkmVaskGkjLnDHXeE8/K7dw9LJyv05euo\n4xcpU2+9FZZO/uwzLZ0sTaOOX6TMrF4NN9wQbo7St6+WTpamU8cvUkZqlk5u3RpeeAF22il2RVKO\n1PGLlIEvvoDf/rZ26eSJExX6sv7U8Ytk3JQpocvfbjuYMQM6dYpdkZQ7Bb9IRi1fDr/+dbgI6/rr\n4YQTtIqmNA+NekQyaMIE2GMPqK6GV16BE09U6EvzUccvkiFLlsCFF8Lo0fCHP0C/frErkkqkjl8k\nI4YPD6dltm4dFlVT6Eta1PGLRFZdHRZVmzVLi6pJaajjF4nEHYYMgT33hB13DMGv0JdSUMcvEsH8\n+fCf/wmLFsHTT0O3brErkjxRxy9SQqtXw003hYXUevUK5+gr9KXU1PGLlMhrr4ULsVq1gmefhV12\niV2R5JU6fpGUrVwJl18e5vennALFokJf4lLHL5KiadNCl7/NNvDSS9ClS+yKRNTxi6Ri+fJwIdZR\nR8FFF8GTTyr0JTsU/CLNrFgMp2i+915YbuHkk7XcgmSLRj0izeSTT0J3P2oU3HorHH107IpE6qeO\nX6QZjBgB3/1u6Oxnz1boS7ap4xf5BhYtgvPPDwduH3gg3ChFJOtS7fjNrLOZTTSzV81stpmdnzzf\nzszGmtkbZjbGzDZPsw6R5uYOf/xjWDp5223h5ZcV+lI+zN3T++JmHYAO7j7TzDYBXgKOBX4MfOju\n15jZIGALdx9c57WeZm0i6+udd8JyC++/D3fdBd27x65IpJaZ4e4Nnk6Qasfv7gvdfWayvRR4DdgG\n6A8MSXYbQvhlIJJpa9bALbfAPvtAjx7hHH2FvpSjks34zWw7oBvwItDe3auTT1UD7UtVh8j6mDsX\nzjorhP/kybDrrrErEll/JQn+ZMzzKDDQ3T+ztU5qdnc3s3pnOlVVVV9uFwoFCoVCuoWK1LFyJVx7\nLVx3HVRVwU9/Ci10LpxkSLFYpFgsNuk1qc74AcxsA+AJ4Cl3vyF5bi5QcPeFZtYRmOjuu9Z5nWb8\nEtX06XD66dChA9x2WziIK5J10Wf8Flr7u4A5NaGfGAEMSLYHAMPTrEOkKT7/HAYNgr594Re/gKee\nUuhLZUn7rJ4ewDPAy0DNN7oYmAIMA7oA84Hj3X1Jndeq45eSmzQpzPK7dYPf/Q7a6+iTlJnGdPyp\nj3rWl4JfSunTT0OXP3Ik3HwzHKvzzKRMRR/1iJSDJ56A3XcPd8eaPVuhL5VPSzZIbi1eDAMHwosv\nwr33wqGHxq5IpDTU8UvuuMPQoWG5hW9/OyydrNCXPFHHL7myYAGcc05YdmHkyHDTc5G8UccvubBm\nDfz+97D33rD//mG5BYW+5JU6fql4b7wBZ54ZrsKdNAl22y12RSJxqeOXirVyJVx1FRx0EPz7v8Oz\nzyr0RUAdv1SoGTPgjDNgq61g6lTo2jV2RSLZoY5fKsqKFXDJJXDEEeHOWKNHK/RF6lLHLxVj8uQw\ny99zz3BHrA4dYlckkk0Kfil7n34KF18Mw4fDTTfBccfFrkgk2zTqkbI2alS4EGvFirDcgkJf5Oup\n45ey9OGH8LOfwfPPh/veHnZY7IpEyoc6fikr7vDQQ2FRta23DsstKPRFmkYdv5SNd98Ntz6cNy/M\n8w84IHZFIuVJHb9k1po14faHV14JPXvCd74TllyYPl2hL/JN6EYskimLF8PYsfD00+Ec/M03hz59\nwschh8BGG8WuUCTbdAcuybxVq2DKlBD0Tz8Nr78OhUII+iOOgO23j12hSHlR8Esmvftu6OaffhrG\nj4cuXWq7+oMOgtatY1coUr4U/JIJ//hHWCCtpqt//33o3TsE/eGHh5uhiEjzUPBLNPPm1QZ9zVLI\nNV39vvtCy5axKxSpTAp+KZlly6BYrA37zz6rDfrevWHLLWNXKJIPCn5JjTu8+mrtrP4vf4Hu3WsP\nyu65J7TQycIiJRc9+M3sbuBIYJG775E81w54GNgWmA8c7+5L6nmtgj9jliyBceNqu/pWraBv3xD2\nvXrBt74Vu0IRyULwHwwsBe5bK/ivAT5092vMbBCwhbsPrue1Cv7Iai6gqgn6WbOgR4/aEc7OO4M1\n+NdLREotevAnRWwHjFwr+OcCh7h7tZl1AIruvms9r1PwR7BoEYwZE4J+zJgwm68J+p49oW3b2BWK\nSEMaE/wx1upp7+7VyXY10D5CDZJYtSrM52u6+jffhEMPDUF/xRWw7baxKxSR5hZ1kTZ3dzNbZ1tf\nVVX15XahUKBQKJSgqsr3zju1B2UnTAi3JuzTB667Dg48EDbYIHaFItJYxWKRYrHYpNfEGvUU3H2h\nmXUEJmrUk64VK8JtCWu6+urqcOFUzQVUukWhSOXI6qhnBDAAuDr5c3iEGiqaexjZ1AT95MnhLlV9\n+sC994YVLnUBlUh+pX1Wz4PAIcBWhHn+/wceB4YBXdDpnM1m6dIwtqkZ4axYUXtQ9rDDYIstYlco\nIqWQibN61peCv2Hu4e5TNV391Kmw3361Yb/77jrVUiSPFPwV5qOPai+gGj0aNtywNuh79YJNNold\noYjEpuAvc6tXw7RpteOb2bPDufQ1Yb/jjrErFJGsUfCXmZqDsmPHhs5+4kTYZpvaoO/RI3T5IiLr\nouAvA4sWhZuRjBsXPlavDgdje/cOF1J17Bi7QhEpJwr+DFq+HJ55pjbo588P95Lt3TsE/i676KCs\niKw/BX8GrF4NL71UO76ZOjWcR1/T1e+7b1jlUkSkOSj4I6hvTt+pU23Q9+yps29EJD0K/hLRnF5E\nskLBnxLN6UUkqxT8zURzehEpFwr+9aQ5vYiUKwV/E2hOLyKVQMHfAM3pRaQSKfjXojm9iORBroNf\nc3oRyaPcBb/m9CKSdxUf/JrTi4j8s4oLfs3pRUQaVvbBv2aNa04vItIEZR/8Xbq45vQiIk1Q9sH/\n2muuOb2ISBOUffBntTYRkaxqTPC3KFUxdZlZHzOba2Z/NbNBseoQEcmbKMFvZi2Bm4E+wG7ASWb2\nnRi1lINisRi7hMzQe1FL70UtvRdNE6vj3w94093nu/tK4CHgmEi1ZJ7+UtfSe1FL70UtvRdNEyv4\ntwEWrPX43eQ5ERFJWazg11FbEZFIopzVY2YHAFXu3id5fDGwxt2vXmsf/XIQEVkPmTyd08xaAa8D\n3wfeB6YAJ7n7ayUvRkQkZ6KsbOPuq8zsXGA00BK4S6EvIlIamb2AS0RE0hHtAq510YVdtczsbjOr\nNrNXYtcSk5l1NrOJZvaqmc02s/Nj1xSLmW1oZi+a2Uwzm2Nm/x27ptjMrKWZzTCzkbFricnM5pvZ\ny8l7MaXBfbPU8ScXdr0OHAa8B0wlx7N/MzsYWArc5+57xK4nFjPrAHRw95lmtgnwEnBsjv9ebOTu\ny5NjZc8Cv3T3Z2PXFYuZXQDsA2zq7v1j1xOLmf0N2MfdP/q6fbPW8evCrrW4+2Tg49h1xObuC919\nZrK9FHgN+HbcquJx9+XJZmvCMbKv/YdeqcysE9APuBPQco6NfA+yFvy6sEsaZGbbAd2AF+NWEo+Z\ntTCzmUA1MNHd58SuKaLrgQuBNbELyQAHxpnZNDM7q6Edsxb82Zk7SeYkY55HgIFJ559L7r7G3fcC\nOgE9zawQuaQozOwoYJG7z0DdPsD33L0b0Bf4f8mouF5ZC/73gM5rPe5M6Pol58xsA+BR4H53Hx67\nnixw90+AJ4HusWuJ5CCgfzLbfhA41Mzui1xTNO7+QfLnYuAxwui8XlkL/mnATma2nZm1Bk4ARkSu\nSSIzMwPuAua4+w2x64nJzLYys82T7bZAb2BG3KricPdL3L2zu3cFTgQmuPupseuKwcw2MrNNk+2N\ngcOBdZ4NmKngd/dVQM2FXXOAh/N65gaAmT0IPA/sbGYLzOzHsWuK5HvAj4BeyalqM8ysT+yiIukI\nTEhm/C8CI919fOSasiLPo+L2wOS1/l484e5j1rVzpk7nFBGR9GWq4xcRkfQp+EVEckbBLyKSMwp+\nEZGcUfCLiOSMgl9EJGcU/CIiOaPgFxHJGQW/SCOZ2b5mNsvM2pjZxslNYXaLXZdIU+nKXZEmMLPL\ngA2BtsACd786ckkiTabgF2mCZJXQacDnwIGuf0BShjTqEWmarYCNgU0IXb9I2VHHL9IEZjYCGAps\nD3R09/MilyTSZK1iFyBSLszsVOAf7v6QmbUAnjezgrsXI5cm0iTq+EVEckYzfhGRnFHwi4jkjIJf\nRCRnFPwiIjmj4BcRyRkFv4hIzij4RURyRsEvIpIz/wdyyqrOJ80ArAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f777c4e0a90>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot, title,xlabel,ylabel,show\n", + "from numpy import mat\n", + "x = [0,1,2,3,4,5]#\n", + "y = [2.1,7.7,13.6,27.2,40.9,61.1]#\n", + "sumy = 0#\n", + "sumx = 0#\n", + "m = 2#\n", + "n = 6#\n", + "xsqsum = 0#\n", + "xcsum = 0#\n", + "x4sum = 0#\n", + "xysum = 0#\n", + "x2ysum = 0#\n", + "rsum = 0#\n", + "usum = 0#\n", + "r=[];s=0\n", + "for i in range(0,6):\n", + " s = s + x[i]*y[i]\n", + " sumy = sumy+y[(i)]\n", + " sumx = sumx+x[(i)]\n", + " r.append((y[(i)] - s/n)**2)\n", + " xsqsum = xsqsum + x[(i)]**2\n", + " xcsum = xcsum +x[(i)]**3\n", + " x4sum = x4sum + x[(i)]**4\n", + " xysum = xysum + x[(i)]*y[(i)]\n", + " x2ysum = x2ysum + y[(i)]*x[(i)]**2\n", + " rsum = r[(i)] + rsum\n", + "\n", + "print \"sum y =\",sumy\n", + "print \"sum x =\",sumx\n", + "xavg = sumx/n#\n", + "yavg = sumy/n#\n", + "print \"xavg = \",xavg\n", + "print \"yavg = \",yavg\n", + "print \"sum x**2 =\",xsqsum\n", + "print \"sum x**3 =\",xcsum\n", + "print \"sum x**4 =\",x4sum\n", + "print \"sum x*y =\",xysum\n", + "print \"sum x**2 * y =\",x2ysum\n", + "J = mat([[n,sumx,xsqsum],[sumx,xsqsum,xcsum],[xsqsum,xcsum,x4sum]])\n", + "I = mat([[sumy],[xysum],[x2ysum]])\n", + "X = (J**-1)* I\n", + "a0 = X[0,0]\n", + "a1 = X[1,0]\n", + "a2 = X[2,0]\n", + "u=[]\n", + "for i in range(0,6):\n", + " u.append((y[(i) ]- a0 - a1*x[(i)] - a2*x[(i)]**2)**2)\n", + " usum = usum + u[i]\n", + "\n", + "print \"(yi - yavg)**2 = \",r\n", + "print \"(yi - a0 - a1*x - a2*x**2)**2 = \",u\n", + "plot(x,y)#\n", + "title('x vs y')\n", + "xlabel('x')\n", + "ylabel('y') \n", + "syx = (usum/(n-3))**0.5#\n", + "print \"The standard error of the estimate based on regression polynomial =\",syx\n", + "R2 = (rsum - usum)/(rsum)#\n", + "print \"Percentage of original uncertainty that has been explained by the model = \",R2*100,'%'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.6 Pg: 475" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a0= -0.850183257587\n", + "a1= 7.17727605923\n", + "a2= 2.80543175487\n", + "Thus, y = a0 + a1*x1 + a2*x2\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "x1 = [0,2,2.5,1,4,7]\n", + "x2 = [0,1,2,3,6,2]\n", + "x1sum = 0#\n", + "x2sum = 0#\n", + "ysum = 0#\n", + "x12sum = 0#\n", + "x22sum = 0#\n", + "x1ysum = 0#\n", + "x2ysum = 0#\n", + "x1x2sum = 0#\n", + "n = 6#\n", + "x12=[];x22=[];x1x2=[];x1y=[];x2y=[]\n", + "for i in range(0,6):\n", + " y.append(5 + 4*x1[(i)] - 3*x2[(i)])\n", + " x12.append(x1[(i)]**2)\n", + " x22.append(x2[(i)]**2)\n", + " x1x2.append(x1[(i)] * x2[(i)])\n", + " x1y.append(x1[(i)] * y[(i)])\n", + " x2y.append(x2[(i)] * y[(i)])\n", + " x1sum = x1sum + x1[(i)]\n", + " x2sum = x2sum + x2[(i)]\n", + " ysum = ysum + y[(i)]\n", + " x1ysum = x1ysum + x1y[(i)]#\n", + " x2ysum = x2ysum + x2y[(i)]#\n", + " x1x2sum = x1x2sum + x1x2[(i)]#\n", + " x12sum = x12sum + x12[(i)]#\n", + " x22sum = x22sum + x22[(i)]#\n", + "\n", + "X = mat([[n,x1sum,x2sum],[x1sum,x12sum,x1x2sum],[x2sum,x1x2sum,x22sum]])\n", + "Y = mat([[ysum],[x1ysum],[x2ysum]])\n", + "Z = (X**-1)*Y\n", + "a0 = Z[0,0]\n", + "a1 = Z[1,0]\n", + "a2 = Z[2,0]\n", + "print \"a0=\",a0\n", + "print \"a1=\",a1\n", + "print \"a2=\",a2\n", + "print \"Thus, y = a0 + a1*x1 + a2*x2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.7 Pg: 479" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a0= -0.858655686175\n", + "a1= 1.03160389481\n", + "standard error of co efficient a0 = 0.716371758333\n", + "standard error of co efficient a1 = 0.0186248847544\n", + "interval of a0 = [-2.4062823089821084, 0.68897093663270859]\n", + "interval of a1 = [0.99136728978321009, 1.0718404998372961]\n" + ] + } + ], + "source": [ + "from numpy import mat,exp,transpose,shape,array\n", + "#y = -0.859 + 1.032*x\n", + "Z = mat([[1,10],[1,16.3],[1,23],[1,27.5],[1,31],[1,35.6],[1,39],[1,41.5],[1,42.9],[1,45],[1,46],[1,45.5],[1,46],[1,49],[1,50]])\n", + "Y=[]\n", + "for i in range(0,15):\n", + " Y.append(9.8*68.1*(1-exp(-12.5*(i+1)/68.1))/12.5)\n", + "Y=array(Y)\n", + "Y=Y.reshape(15,1)\n", + "M = transpose(Z)\n", + "R = M*Z#\n", + "S = M*Y#\n", + "P = (R**-1)#\n", + "X = (R**-1)*S#\n", + "a0 = X[0,0]\n", + "a1 = X[1,0]\n", + "print \"a0=\",a0\n", + "print \"a1=\",a1\n", + "sxy = 0.863403#\n", + "sa0 = ((P[0,0]) * sxy**2)**0.5\n", + "sa1 = (P[1,1] * sxy**2)**0.5\n", + "print \"standard error of co efficient a0 = \",sa0\n", + "print \"standard error of co efficient a1 = \",sa1\n", + "TINV = 2.160368#\n", + "a0 = [a0 - TINV*(sa0),a0 + TINV*(sa0)]#\n", + "a1 = [a1 - TINV*(sa1),a1 + TINV*(sa1)]#\n", + "print \"interval of a0 = \",a0\n", + "print \"interval of a1 = \",a1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:17.8 Pg: 481" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Z0 = [[ 0.22119922 0.1947002 ]\n", + " [ 0.52763345 0.35427491]\n", + " [ 0.7134952 0.358131 ]\n", + " [ 0.82622606 0.3041044 ]\n", + " [ 0.89460078 0.23714826]]\n", + "D = [[ 0.05880078]\n", + " [ 0.04236655]\n", + " [-0.0334952 ]\n", + " [-0.08622606]\n", + " [-0.10460078]]\n", + "X = [[-0.27147736]\n", + " [ 0.50193087]]\n", + "The value of a0 after 1st iteration = 0.728522640015\n", + "The value of a1 after 1st iteration = 1.5019308677\n" + ] + } + ], + "source": [ + "from math import exp\n", + "from numpy import array,transpose,mat\n", + "x = [0.25,0.75,1.25,1.75,2.25]#\n", + "y = [0.28,0.57,0.68,0.74,0.79]#\n", + "a0 = 1#\n", + "a1 = 1#\n", + "sr = 0.0248#\n", + "pda0=[];pda1=[]\n", + "for i in range(0,5):\n", + " pda0.append(1 - exp(-a1 * x[(i)]))\n", + " pda1.append(a0 * x[(i)]*exp(-a1*x[(i)]))\n", + "\n", + "Z0 = mat([[pda0[0],pda1[0]],[pda0[1],pda1[1]],[pda0[2],pda1[2]],[pda0[3],pda1[3]],[pda0[4],pda1[4]]])\n", + "print \"Z0 = \",Z0\n", + "R = transpose(Z0)*Z0\n", + "S = (R**-1)\n", + "y1=[];D=[]\n", + "for i in range(0,5):\n", + " y1.append(a0 * (1-exp(-a1*x[(i)])))\n", + " D.append(y[(i)] - y1[(i)])\n", + "D=array(D) \n", + "D=D.reshape(5,1)\n", + "print \"D = \",D\n", + "M = transpose(Z0)*D\n", + "X = S *M#\n", + "print \"X = \",X\n", + "a0 = a0 + X[0,0]\n", + "a1 = a1 + X[1,0]\n", + "print \"The value of a0 after 1st iteration = \",a0\n", + "print \"The value of a1 after 1st iteration = \",a1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter18_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter18_2.ipynb new file mode 100644 index 00000000..e44e3a7b --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter18_2.ipynb @@ -0,0 +1,268 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-18 : Interpolation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:18.1 Pg: 490" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of ln2 for interpolation region 1 to 6 = 0.3583518\n", + "error by interpolation for interval[1,6] = 48.3007635246 %\n", + "value of ln2 for interpolation region 1 to 6 = 0.462098\n", + "error by interpolation for interval[1,6] = 33.3333506995 %\n" + ] + } + ], + "source": [ + "from math import log\n", + "#f1(x) = f0(x) +(f(x1) - f(x0) *(x - x0)/ (x1 - x0)\n", + "x = 2#\n", + "x0 = 1#\n", + "x1 = 6#\n", + "m = 1.791759#\n", + "n = 0#\n", + "r = log(2)#\n", + "f = 0 + (m - n) * (x - x0) / (x1 - x0)#\n", + "print \"value of ln2 for interpolation region 1 to 6 =\",f\n", + "e = (r - f) * 100/r#\n", + "print \"error by interpolation for interval[1,6] =\",e,\"%\"\n", + "x2 = 4#\n", + "p = 1.386294#\n", + "f = 0 + (p - n) * (x - x0) / (x2 - x0)#\n", + "print \"value of ln2 for interpolation region 1 to 6 =\",f\n", + "e = (r - f) * 100/r#\n", + "print \"error by interpolation for interval[1,6] =\",e,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:18.2 Pg: 492" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "b0 = 0\n", + "b1 = 0.462098\n", + "b2 = -0.0518731\n", + "f(2) = 0.5658442\n", + "error = 18.3659378744 %\n" + ] + } + ], + "source": [ + "from math import log\n", + "x = 2#\n", + "x0 = 1#\n", + "m = 0#\n", + "x1 = 4#\n", + "n = 1.386294#\n", + "x2 = 6#\n", + "p = 1.791759#\n", + "b0 = m#\n", + "b1 = (n - m)/(x1 - x0)#\n", + "b2 = ((p - n)/(x2 - x1) - (n - m)/(x1 - x0))/(x2 - x0)#\n", + "print \"b0 = \",b0\n", + "print \"b1 = \",b1\n", + "print \"b2 = \",b2\n", + "f = b0 + b1*(x - x0) + b2*(x - x0)*(x - x1)#\n", + "print \"f(2) = \",f\n", + "r = log(2)#\n", + "e = (r -f)*100/r#\n", + "print \"error = \",e,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:18.3 Pg: 494" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "b0 = 0\n", + "b1 = 0.462098\n", + "b2 = -0.0518731\n", + "b3 = 0.0078654\n", + "f(2) = 0.6287674\n", + "error = 9.28803901474 %\n" + ] + } + ], + "source": [ + "from math import log\n", + "x = 2#\n", + "x0 = 1#\n", + "m = 0#\n", + "x1 = 4#\n", + "n = 1.386294#\n", + "x3 = 5#\n", + "p = 1.609438#\n", + "x2 = 6#\n", + "o = 1.791759#\n", + "f01 = (m - n)/(x0 - x1)#\n", + "f12 = (n - o)/(x1 - x2)#\n", + "f23 = (p - o)/(x3 - x2)#\n", + "f210 = (f12 - f01)/(x2 - x0)#\n", + "f321 = (f23 - f12)/(x3 - x1)#\n", + "f0123 = (f321 - f210) / (x3 - x0)#\n", + "b0 = m#\n", + "b1 = f01#\n", + "b2 = f210#\n", + "b3 = f0123#\n", + "print \"b0 = \",b0\n", + "print \"b1 = \",b1\n", + "print \"b2 = \",b2\n", + "print \"b3 = \",b3\n", + "f = b0 + b1*(x - x0) + b2*(x - x0)*(x - x1) + b3*(x - x0)*(x - x1)*(x - x2)#\n", + "print \"f(2) = \",f\n", + "r = log(2)#\n", + "e = (r -f)*100/r#\n", + "print \"error = \",e,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:18.4 Pg: 496" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "error R2 = 0.0629232\n" + ] + } + ], + "source": [ + "x = 2#\n", + "x0 = 1#\n", + "m = 0#\n", + "x1 = 4#\n", + "n = 1.386294#\n", + "x3 = 5#\n", + "p = 1.609438#\n", + "x2 = 6#\n", + "o = 1.791759#\n", + "f01 = (m - n)/(x0 - x1)#\n", + "f12 = (n - o)/(x1 - x2)#\n", + "f23 = (p - o)/(x3 - x2)#\n", + "f210 = (f12 - f01)/(x2 - x0)#\n", + "f321 = (f23 - f12)/(x3 - x1)#\n", + "f0123 = (f321 - f210) / (x3 - x0)#\n", + "b0 = m#\n", + "b1 = f01#\n", + "b2 = f210#\n", + "b3 = f0123#\n", + "R2 = b3 * (x - x0) * (x - x1)*(x-x2)#\n", + "print \"error R2 = \",R2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:18.6 Pg: 501" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first order polynomial f1(2) = 0.462098\n", + "second order polynomial f2(2) = 0.5658442\n" + ] + } + ], + "source": [ + "x = 2#\n", + "x0 = 1#\n", + "m = 0#\n", + "x1 = 4#\n", + "n = 1.386294#\n", + "x2 = 6#\n", + "p = 1.791759#\n", + "f1 = (x - x1)*m/((x0 - x)) + (x- x0) * n/(x1 - x0)#\n", + "print \"first order polynomial f1(2) = \",f1\n", + "f2 = (x - x1)*(x - x2)*m/((x0 - x1)*(x0 - x2)) + (x - x0)*(x - x2)*n/((x1-x0)*(x1-x2)) + (x - x0)*(x - x1)*p/((x2 - x0)*(x2 - x1))#\n", + "print \"second order polynomial f2(2) = \",f2" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter19_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter19_2.ipynb new file mode 100644 index 00000000..cbe17ebc --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter19_2.ipynb @@ -0,0 +1,268 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Chapter-19 : Fourier Approximation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:19.1 Pg: 529" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The least square fit is y=A0+A1*cos(w0*t)+A2*sin(w0*t), where\n", + "A0= 1.70003783298\n", + "A1= 0.500211429839\n", + "B1= -0.866058310862\n", + "Alternatively, the least square fit can be expressed as\n", + "y=A0+C1*cos(w0*t + theta), where\n", + "A0= 1.70003783298\n", + "Theta= 1.04703092349\n", + "C1= 1.00013422717\n", + "Or\n", + "y=A0+C1*sin(w0*t + theta + pi/2), where\n", + "A0= 1.70003783298\n", + "Theta= 1.04703092349\n", + "C1= 1.00013422717\n" + ] + } + ], + "source": [ + "from math import sin,cos,atan\n", + "def f(t):\n", + " y=1.7+cos(4.189*t+1.0472)\n", + " return y\n", + "deltat=0.15#\n", + "t1=0#\n", + "t2=1.35#\n", + "omega=4.189#\n", + "Del=(t2-t1)/9#\n", + "t=[]\n", + "for i in range(1,11):\n", + " t.append(t1+Del*(i-1))\n", + "\n", + "sumy=0#\n", + "suma=0#\n", + "sumb=0#\n", + "y=[];a=[];b=[]\n", + "for i in range(1,11):\n", + " y.append(f(t[i-1]))\n", + " a.append(y[(i-1)]*cos(omega*t[(i-1)]))\n", + " b.append(y[i-1]*sin(omega*t[i-1]))\n", + " sumy=sumy+y[i-1]\n", + " suma=suma+a[i-1]\n", + " sumb=sumb+b[i-1]\n", + "\n", + "A0=sumy/10#\n", + "A1=2*suma/10#\n", + "B1=2*sumb/10#\n", + "print \"The least square fit is y=A0+A1*cos(w0*t)+A2*sin(w0*t), where\"\n", + "print \"A0=\",A0\n", + "print \"A1=\",A1\n", + "print \"B1=\",B1\n", + "theta=atan(-B1/A1)#\n", + "C1=(A1**2 + B1**2)**0.5#\n", + "print \"Alternatively, the least square fit can be expressed as\"\n", + "print \"y=A0+C1*cos(w0*t + theta), where\"\n", + "print \"A0=\",A0\n", + "print \"Theta=\",theta\n", + "print \"C1=\",C1\n", + "print \"Or\"\n", + "print \"y=A0+C1*sin(w0*t + theta + pi/2), where\"\n", + "print \"A0=\",A0\n", + "print \"Theta=\",theta\n", + "print \"C1=\",C1\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:19.2 Pg: 532" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The fourier approximtion is:\n", + "4/(pi)*cos(w)*t) - 4/(3*pi)*cos(3*(w)*t) + 4/(5*pi)*cos(5*(w)*t) - 4/(7*pi)*cos(7*(w)*t) + .....\n" + ] + } + ], + "source": [ + "a0=0#\n", + "#f(t)=-1 for -T/2 to -T/4\n", + "#f(t)=1 for -T/4 to T/4\n", + "#f(t)=-1 for T/4 to T/2\n", + "#ak=2/T* (integration of f(t)*cos(w0*t) from -T/2 to T/2)\n", + "#ak=2/T*((integration of f(t)*cos(w0*t) from -T/2 to -T/4) + (integration of f(t)*cos(w0*t) from -T/4 to T/4) + (integration of f(t)*cos(w0*t) from T/4 to T/2))\n", + "#Therefore, \n", + "#ak=4/(k*pi) for k=1,5,9,.....\n", + "#ak=-4/(k*pi) for k=3,7,11,.....\n", + "#ak=0 for k=even integers\n", + "#similarly we find the b's.\n", + "#all the b's=0\n", + "print \"The fourier approximtion is:\"\n", + "print \"4/(pi)*cos(w)*t) - 4/(3*pi)*cos(3*(w)*t) + 4/(5*pi)*cos(5*(w)*t) - 4/(7*pi)*cos(7*(w)*t) + .....\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:19.3 Pg: 550" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHTpJREFUeJzt3XmUVOW57/HvAziTgEoERRTHqMcJByQoWNcgtugF43IC\njUcTr8M5ijFiCJJEstRDnI5jVGJEcUCicKQFcdZyiB5QAVFAoqIIGtoBB5Ag3fRz/3hLbYtu6KF2\nv1W1f5+1aqWqenf1Uyuyf/sdt7k7IiKSTm1iFyAiIvEoBEREUkwhICKSYgoBEZEUUwiIiKSYQkBE\nJMUUAiIiKaYQEBFJMYWAiEiKKQQktczsIjObmPfeDWZ2XT3HDjezB/Leu97Mrs89P83M3jGzL81s\noZkNaeBvPmxmV9d5PcHMbi/MNxJpOtO2EZJWZtYFeBvo6u5fmFk74AOgwt1n5R27HTAf6OzuK8ys\nLbAYOAaYC3wIHODub5lZZ2BLd59Xz9/sDMwBTgK2Af4I7OPuXyX2RUXWQS0BSS13Xwo8Dxyfe6sC\n+Dg/AHLHvg/MBH6We+swYKW7z8i9rgX2MrNN3L2qvgDIfU4VcA5wF3AdcKoCQGJSCEjajQNOyT0/\nBbh7HceOBwbnng8B7gXIncRPBM4GPjSzqWb243V8zlSgLfCmu7/YgtpFWkzdQZJqZrYJoQuoL/AS\nsLu7L2ng2B8Bi4BdgDeAXu6+IO+YjYDLgZ7u3reBz7kK6AF0B37n7hMK821Emq5d7AJEYnL3f5nZ\nJMJV/vSGAiB37MdmlgXuBBZ+EwBmthXwE+BJ4F/AV8Ca+j7DzPoCpwF7AzsBD5rZc+7+YaG+k0hT\nqDtIJHQJ7cm6u4K+MR74ae5/v9EGuIDQovgU6EPo9/8eM/th7m/9p7v/091fAG4HxraoepEWSKw7\nyMw2Bp4FNgI2BCrdfUQ9x90AHAmsBE6rb1BOJElm1g14k9zMn9j1iLSmxLqD3H2Vmf0fd1+Zm3r3\ngpkdkrv6AcDMBgA7u/suZnYQcAvQK6maRPKZWRvgQuA+BYCkUaJjAu6+Mvd0Q8JsiGV5hwwkNI9x\n9+lm1tHMOuem0Ykkysw2A6qAdwnTQ0VSJ9EQyF1lzSQMgN1Sz9zproQFN99YAmxL+Icpkqjc1M72\nsesQiSnRgWF3r3X3fQkn9r5mlqnnMMv/tSRrEhGR77TKFNHckvyHgQOAbJ0ffQB0q/N629x732Nm\nCgYRkWZw9/wL7e9JrCVgZp3MrGPu+SbA4UD+zJ+HgFNzx/QCPm9oPMDdy/ZxySWXRK9B303fT9+v\n/B6NkWRLYGtgXG5coA1wt7s/ZWZnAbj7GHefZmYDzOxtwgKb0xOsR0RE8iQ5RfR1YL963h+T9/rc\npGoQEZF104rhIpDJZGKXkJhy/m6g71fqyv37NUZJbCBnZl4KdYqIFBMzw2MNDIuISPFTCIiIpJhC\nQEQkxRQCIiIpphAQEUkxhYCISIopBEREUkwhICKSYgoBEZEUUwiIiKSYQkBEJMUUAiIiKaYQEBFJ\nMYWAiEiKKQRERFJMISAikmIKARGRVlBdDWvWxK5ibQoBEZEEVFfDSy/B6NFwxBGw5ZYwc2bsqtam\n20uKiBRAdTW8+ipks+Hx4ouw446QyYRHnz4hCFpTY24vqRAQEWmGYjzp51MIiIgUSCmc9PMpBERE\nmqm+k/4OO3x30u/bt/hO+vkUAiIijVRdHQZuvznp//3vpXfSz6cQEBFpQE3N96/0y+Gkn08hICJS\nx8KF8Pjj8Nhj8MwzsP323+/T79QpdoWFpRAQkVRbsSKc7B97LDyWL4f+/cPj8MOhc+fYFSYragiY\nWTfgLmArwIG/uPsNecdkgEpgYe6tSe5+WT2fpRAQkfWqrYXZs7+72n/lFTjwwLBY64gjYO+9oU2K\nlsjGDoEuQBd3n21m7YFXgWPcfX6dYzLAr9194Ho+SyEgIvWqqvrupP/EE9Cx43cn/UMPhfbtY1cY\nT2NCoF1Sf9zdlwJLc89XmNl8YBtgft6h6yxQRKSur78Og7jfdPG89x4cdlg46V92GXTvHrvC0pJY\nCNRlZt2BHsD0vB850NvMXgM+AIa5+7zWqElESoM7/OMf313tP/cc7L57OOn/+c9w0EHQrlXOZOUp\n8YHhXFdQFrjM3Sfn/ewHwBp3X2lmRwLXu/uu9XyGuoNEUuSLL+Cpp7672q+pCSf9/v2hX7/Sn7rZ\nWqJ2B+UK2ACYBNyTHwAA7r68zvNHzOxmM9vC3ZflHztq1Khvn2cyGTKZTCI1i0jrcw9z9qdNCyf9\nOXOgd+9w4h86FPbYA0wdx+uVzWbJZrNN+p0kB4YNGAd86u4XNHBMZ+Ajd3cz6wnc7+7d6zlOLQGR\nMrN6dZi+WVkJDz0Em20GRx8dTvx9+sAmm8SusPTFbgkcDJwCzDGzWbn3Lga2A3D3McBxwDlmVgOs\nBE5KsB4Riezzz8PVfmVluOLfYw8YNAiefBJ22y12demkxWIikqjFi8NJv7ISpk8P2zEcc0y46u/S\nJXZ15U0rhkWk1bmHPv3KSpg8Gd5/H446Klzx9++f7nn7rU0hICKtoroann/+uyv+tm3DSX/QIDj4\nYE3hjCX2mICIlLHly0O//uTJ8Mgj4QYrgwbB1Knwb/+m2TylQi0BEWm0f/4zzOSprIQXXgjTOAcN\ngoEDoWvX2NVJPnUHiUiLuMP8+eFqv7IS3noLKirCwG5FBfzwh7ErlHVRCIhIk7nD66/D+PEwaVLY\nq+eb/v2+fWHDDWNXKI2lMQERabSFC+G++8Jj+XIYPBj+9jfo0UP9++VMLQGRFKuqgvvvD1f977wD\nxx8PQ4bAT36Srn33y5W6g0RkLV98AQ8+GE78M2aEQd0hQ+CnP4UNNohdnRSSQkBEAFi1Ch5+OHT1\nPPFE2H9/yJCwiGvTTWNXJ0lRCIikWE1N2KBt/Pgws2e//UI//7HHwuabx65OWoNCQCRl3MP+POPH\nh77+7bYLV/wnnADbbBO7Omltmh0kkhJz54aunvHjwxTOk08Oi7l23jl2ZVLsFAIiJWrRIpgwIZz4\nly0LXT2TJsG++2pKpzSeuoNESsjHH8MDD4QT/4IFcNxx4eR/yCGa0ilr05iASBlYsybcZH3MGMhm\nw4yeIUPg8MO1elfWTWMCIiVs6VIYOxZuuw06dYKzzoJ77tF+/FJYCgGRIlJbG6Z1jhkT5vMffzxM\nnAj77x+7MilX6g4SKQKffAJ33gl/+QtsvDGcfXaY4dOhQ+zKpJSpO0ikiLmHaZy33hpuvj5oEIwb\nB716aXaPtB61BERa2eefw113hS6fNWvCVf+pp8IWW8SuTMqNWgIiRcI9bNY2ZkzYvK2iAm6+OezP\nr6t+iUkhIJKg5cvh3nvDyf/LL8MMnwULYKutYlcmEqg7SCQBs2aFE//f/hZ27Dz77LBVsxZ0SWtS\nd5BIK/rqq3DSHzMm3JD9zDPDnj7auE2KmVoCIi00d2448d97L/TuHa76KyqgbdvYlUnaqSUgkpDa\nWpg8Ga69NtyW8YwzQhfQdtvFrkykaRQCIk1QUxO2bB49OtyR67e/DfP7dVtGKVUKAZFGWLUqrOi9\n8spwtX/ddWEDN03vlFKX2FwFM+tmZs+Y2Vwze8PMhjZw3A1m9paZvWZmPZKqR6Q5VqyAa66BnXaC\nKVPg7rvDTp79+ysApDwk2RKoBi5w99lm1h541cyecPf53xxgZgOAnd19FzM7CLgF6JVgTSKN8tln\ncOONcNNNkMnA1KnQQ5coUoYSawm4+1J3n517vgKYD+RPlhsIjMsdMx3oaGadk6pJZH2qqmD48HDl\nv3AhPPdcuFevAkDKVassXTGz7kAPYHrej7oCi+u8XgJs2xo1idT1/vtw3nmw++6hC2jmzDAGsNtu\nsSsTSVbiA8O5rqCJwPm5FsFah+S9rndBwKhRo759nslkyGQyBapQ0mzBArjiijDd84wzYN486NIl\ndlUizZPNZslms036nUQXi5nZBsBU4BF3v66en98KZN19Qu71m8Ch7l6Vd5wWi0lBzZ4dpnk+/TSc\ne25oBWgXTyk3jVksluTsIANuB+bVFwA5DwGn5o7vBXyeHwAihfTii3D00TBgABx4YOj3v+QSBYCk\nV5LdQQcDpwBzzGxW7r2Lge0A3H2Mu08zswFm9jbwFXB6gvVISrnDk0/Cf/0XvPtuGPidODHcwUsk\n7bR3kJSt2towt//yy8OWziNGwODBWt0r6aG9gySVamrCtM7Ro8MJf+RI+NnPtI2zSH0UAlI2qqvD\ntM4rroCtt4arroIjjtDKXpF1UQhIWXjiCTj//HDyv+MO6NMndkUipUEhICVt4UK48EJ47bWwrfPA\ngbryF2kK9ZJKSVq5Ev7whzDN84ADwiKvQYMUACJNpZaAlBR3eOABGDYMDj44LPrq1i12VSKlSyEg\nJWPOHBg6NOzwec890Ldv7IpESp+6g6ToLVsWtnbo1w9OPBFefVUBIFIoCgEpWmvWwK23hp093WH+\nfDjnHGin9qtIweifkxSl558Pm7p16ACPPw777BO7IpHypBCQorJkCfzmN/DCC2Gx1wknaMaPSJLU\nHSRFYdWqsMHbPvuEu3rNnx/6/xUAIslSS0Cicg+bvF1wAey9N7z8Muy4Y+yqRNJDISDRvPkm/OpX\nsGgR3HIL9O8fuyKR9FF3kLS6L78Mi7369AkbvM2ZowAQiUUhIK2mtva7m7d/9hm88UboBtL+/iLx\nqDtIWsWMGWHKpxlUVoY9f0QkPrUEJFFVVfCLX8Axx8B//Ee4x68CQKR4KAQkMfffD3vuCVtuGQaB\n//3fdXcvkWKj7iApuK+/hl//Gh57LDz22y92RSLSEF2XSUEtXAi9e8PSpWGjNwWASHFTCEjBPPgg\n9OoVun0mTgz7/ohIcVN3kLTY6tVhv5/KSpg6FXr2jF2RiDSWQkBaZNGisMlb586h+2eLLWJXJCJN\noe4gabYpU8JV/wknhFaAAkCk9KglIE1WXQ0jR8KECWEcoHfv2BWJSHMpBKRJliwJWzx36AAzZ0Kn\nTrErEpGWUHeQNNqjj8IBB8DRR4cBYAWASOlLNATMbKyZVZnZ6w38PGNmX5jZrNzjd0nWI81TUxO6\nf844I6wCHjFCK39FykXS3UF3ADcCd63jmGfdfWDCdUgzffghDBkSdvqcORO22ip2RSJSSOu9njOz\noWa2eXM+3N2fBz5b359ozmdL8p56KnT/HHZY6ApSAIiUn8Y06jsDL5vZ/WZWYVbQu7460NvMXjOz\naWa2RwE/W5ppzRoYNQp+/nO4+274wx+gbdvYVYlIEtbbHeTuI83s90B/4DTgJjO7H7jd3d9p4d+f\nCXRz95VmdiQwGdi1vgNHjRr17fNMJkMmk2nhn5b6VFXBySeHcYBXX4Wtt45dkYg0VjabJZvNNul3\nzN0bd6DZvsDpQAXwNNALeNLdL1rP73UHprj7Xo34G+8C+7v7srz3vbF1SvM9+2wIgNNOCy2BdppA\nLFLSzAx3X2fvzXr/mZvZ+cCpwKfAX4Fh7l5tZm2At4B1hsB6Prsz8JG7u5n1JITSsvX9nhRWbS38\n6U9www3h9o8VFbErEpHW0phrvS2AY919Ud033b3WzP7vun7RzO4DDgU6mdli4BJgg9zvjwGOA84x\nsxpgJXBS07+CtMQnn4S+/+XL4ZVXYNttY1ckIq2p0d1BMak7KBl//zsMHhwel12mG76LlJuCdAdJ\n+XGHa66Bq66C228PK4BFJJ0UAimzbFkY+P3oI5gxA7bfPnZFIhKTFv+nyKJFYfHXTjvBc88pAERE\nYwKpsXQp9OkD550HQ4fGrkZEWkNjxgTUEkiBZcugf3849VQFgIh8n1oCZW7FCujXDw4+GK6+Ggq6\n6YeIFLXGtAQUAmVs1So46ijYYQe47TYFgEjaKARSrLoajj8eNtoIxo/XBnAiaaR1AilVWwu/+AWs\nXh1uAqMAEJGGKATKjHuYAbRoUbgHwIYbxq5IRIqZQqDMjBwJ//u/8PTTsOmmsasRkWKnECgjV1wB\nkyeHhWAdOsSuRkRKgUKgTIwZEx7PPw+dOsWuRkRKhUKgDNx3H1x6abgpTNeusasRkVKiEChxU6bA\nBRfAk0+GPYFERJpCIVDCnnkGfvlLmDoV9twzdjUiUoq0d1CJmjEDTjwxrAPo2TN2NSJSqhQCJeiN\nN2DgQBg7FjKZ2NWISClTCJSYd94JN4K/9lrdEUxEWk4hUEKWLAk7gv7+9+G+wCIiLaUQKBEffwyH\nHw7nnANnnRW7GhEpF9pFtAR88QUcdljoBrr88tjViEip0FbSZWDlynDy33tvuPFG3RNARBpPIVDi\nVq+GY46BLbeEceOgjTrvRKQJFAIlbM2aMPi7ejVMnAjttKxPRJpIN5UpUe5h8HfZsrAaWAEgIknR\n6aXIuMOwYTB3LjzxBGy8ceyKRKScKQSKzGWXhZP/s89C+/axqxGRcpfoUKOZjTWzKjN7fR3H3GBm\nb5nZa2bWI8l6it3118Ndd8Hjj8Pmm8euRkTSIOn5JncAFQ390MwGADu7+y7AmcAtCddTtO68E665\nJmwJ3aVL7GpEJC0SDQF3fx74bB2HDATG5Y6dDnQ0s85J1lSM/ud/YMSI0ALYfvvY1YhImsSeed4V\nWFzn9RJg20i1RPH442EriGnTYLfdYlcjImlTDAPD+XNY610QMGrUqG+fZzIZMmWwh/Inn8DJJ4eb\nw/dI9WiIiBRCNpslm8026XcSXyxmZt2BKe6+Vz0/uxXIuvuE3Os3gUPdvSrvuLJcLDZ0aJgSeuON\nsSsRkXJUCovFHgLOBSaYWS/g8/wAKFdvvw3jx8P8+bErEZE0SzQEzOw+4FCgk5ktBi4BNgBw9zHu\nPs3MBpjZ28BXwOlJ1lNMRoyACy+EH/0odiUikmbaOyiCl16CE06ABQtg001jVyMi5aox3UGxZwel\njjtcdBFceqkCQETiUwi0ssmTYfly+PnPY1ciIhJ/YDhVqqth+PAwG6ht29jViIioJdCqbrsNuneH\nI46IXYmISKCB4Vby5Zew667w6KOw776xqxGRNNDAcBG58srQAlAAiEgxUUugFXzwQbhR/OzZ0K1b\n7GpEJC10j+Ei8ctfwlZbwejRsSsRkTQphW0jyt7rr4f7BP/jH7ErERFZm8YEEjZ8OIwcCR06xK5E\nRGRtagkk6KmnQgtg8uTYlYiI1E8tgYTU1obtIUaPhg03jF2NiEj9FAIJGT8eNtoIjjsudiUiIg3T\n7KAErFoFP/4x3HsvHHJI7GpEJK20WCySG26A/fZTAIhI8VNLoMA+/TTcMP6FF0JrQEQkFi0Wi+CC\nC2D1avjzn2NXIiJppxBoZe+8AwcdBHPnQufOsasRkbTTmEArGzkSfvUrBYCIlA61BApkxgw49tiw\nOEy3jRSRYqCWQCtxh2HD4I9/VACISGlRCBTAlCnw2Wdw2mmxKxERaRrtHdRCNTVhk7j//m/dN1hE\nSo9aAi3017/CNttARUXsSkREmk4Dwy2wfHm4b/DDD4cVwiIixUQDwwm7+mro108BICKlSy2BZvrw\nQ9hrL5g5E7bfPnY1IiJr04rhBJ15JnTsCFdeGbsSEZH6Re8OMrMKM3vTzN4ys+H1/DxjZl+Y2azc\n43dJ1lMoc+eGu4VdfHHsSkREWiaxKaJm1ha4CegHfAC8bGYPufv8vEOfdfeBSdWRhOHDYcSI0BIQ\nESllSa4T6Am87e7vAZjZBGAQkB8C62yqFJtnnoF582DSpNiViIi0XJLdQV2BxXVeL8m9V5cDvc3s\nNTObZmZ7JFhPi9W9b/BGG8WuRkSk5ZJsCTRmJHcm0M3dV5rZkcBkYNcEa2qRCROgTRs44YTYlYiI\nFEaSIfAB0K3O626E1sC33H15neePmNnNZraFuy/L/7BRo0Z9+zyTyZDJZApd7zp9/XXYKnrcOLCS\n6sASkbTIZrNks9km/U5iU0TNrB2wAPgp8CEwAxhcd2DYzDoDH7m7m1lP4H53717PZ0WfInrNNfDc\nc1BZGbUMEZFGa8wU0cRaAu5eY2bnAo8BbYHb3X2+mZ2V+/kY4DjgHDOrAVYCJyVVT0ssWwZ/+lMI\nARGRcqLFYo0wbBisWAG33hqtBBGRJtOK4QJ491044ICwQKxLlygliIg0S/QVw+Vg5EgYOlQBICLl\nSS2BdXjlFRg0CBYsgPbtW/3Pi4i0iFoCLeAeFoaNGqUAEJHypRBowLRpUFUFp58euxIRkeQoBOpR\nUwO/+U3YJrqd7sIsImVMIVCPO+6ArbaCo46KXYmISLI0MJznq6/CfYMrK8PUUBGRUqWB4Wa45ho4\n9FAFgIikg0Igz4oVcPnlsasQEWkd6g4SESlT6g4SEZF1UgiIiKSYQkBEJMUUAiIiKaYQEBFJMYWA\niEiKKQRERFJMISAikmIKARGRFFMIiIikmEJARCTFFAIiIimmEBARSTGFgIhIiikERERSTCEgIpJi\nCgERkRRLNATMrMLM3jSzt8xseAPH3JD7+Wtm1iPJekRE5PsSCwEzawvcBFQAewCDzWz3vGMGADu7\n+y7AmcAtSdVTzLLZbOwSElPO3w30/UpduX+/xkiyJdATeNvd33P3amACMCjvmIHAOAB3nw50NLPO\nCdZUlMr5P8Ry/m6g71fqyv37NUaSIdAVWFzn9ZLce+s7ZtsEaxIRkTqSDAFv5HHWzN8TEZEWMvdk\nzrlm1gsY5e4VudcjgFp3v6LOMbcCWXefkHv9JnCou1flfZaCQUSkGdw9/0L7e9ol+LdfAXYxs+7A\nh8CJwOC8Yx4CzgUm5ELj8/wAgPV/CRERaZ7EQsDda8zsXOAxoC1wu7vPN7Ozcj8f4+7TzGyAmb0N\nfAWcnlQ9IiKytsS6g0REpPgV9Yrhxiw2K1VmNtbMqszs9di1JMHMupnZM2Y218zeMLOhsWsqJDPb\n2Mymm9lsM5tnZqNj11RoZtbWzGaZ2ZTYtRSamb1nZnNy329G7HoKzcw6mtlEM5uf+++zV4PHFmtL\nILfYbAHQD/gAeBkY7O7zoxZWIGbWB1gB3OXue8Wup9DMrAvQxd1nm1l74FXgmHL5/w/AzDZ195Vm\n1g54ARjm7i/ErqtQzOzXwP7AD9x9YOx6CsnM3gX2d/dlsWtJgpmNA55197G5/z43c/cv6ju2mFsC\njVlsVrLc/Xngs9h1JMXdl7r77NzzFcB8YJu4VRWWu6/MPd2QMO5VNicUM9sWGAD8lbWncZeLsvxe\nZtYB6OPuYyGMzzYUAFDcIdCYxWZSAnIzxHoA0+NWUlhm1sbMZgNVwDPuPi92TQV0LXARUBu7kIQ4\n8KSZvWJm/y92MQW2A/Cxmd1hZjPN7DYz27Shg4s5BIqzn0qaJNcVNBE4P9ciKBvuXuvu+xJWufc1\ns0zkkgrCzI4GPnL3WZTp1TJwsLv3AI4E/jPXPVsu2gH7ATe7+36EmZe/bejgYg6BD4BudV53I7QG\npESY2QbAJOAed58cu56k5JraDwMHxK6lQHoDA3P95vcBh5nZXZFrKih3/2fufz8GHiR0P5eLJcAS\nd38593oiIRTqVcwh8O1iMzPbkLDY7KHINUkjmZkBtwPz3P262PUUmpl1MrOOueebAIcDs+JWVRju\nfrG7d3P3HYCTgKfd/dTYdRWKmW1qZj/IPd8M6A+UzSw9d18KLDazXXNv9QPmNnR8kiuGW6ShxWaR\nyyoYM7sPOBTY0swWA39w9zsil1VIBwOnAHPM7JuT4wh3fzRiTYW0NTDOzNoQLqbudvenIteUlHLr\nmu0MPBiuU2gH3Ovuj8ctqeDOA+7NXUC/wzoW4hbtFFEREUleMXcHiYhIwhQCIiIpphAQEUkxhYCI\nSIopBEREUkwhICKSYgoBEZEUUwiIiKSYQkCkGczsQDN7zcw2MrPNcjfO2SN2XSJNpRXDIs1kZpcC\nGwObAIvd/YrIJYk0mUJApJlyu6S+AvwL+InrH5OUIHUHiTRfJ2AzoD2hNSBSctQSEGkmM3sIGA/s\nCGzt7udFLkmkyYp2K2mRYmZmpwJfu/uE3HbSL5pZxt2zkUsTaRK1BEREUkxjAiIiKaYQEBFJMYWA\niEiKKQRERFJMISAikmIKARGRFFMIiIikmEJARCTF/j9XY7PcJHdyzQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f1a75daff90>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange,log\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot, title,xlabel,ylabel,show\n", + "x=arange(0.5,5.6,0.5)\n", + "y=[]\n", + "for i in range(1,12):\n", + " y.append(0.9846*log(x[i-1])+1.0004)\n", + "\n", + "plot(x,y)\n", + "title(\"y vs x\")\n", + "xlabel(\"x\")\n", + "ylabel(\"y\")\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:19.6 Pg: 555" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The cubic polynomial is y=a0 + a1*x + a2*x**2 + a3*x**3, where a0, a1, a2 and a3 are\n", + "[[ 1.67644593 0.76697402 0.5511316 0.46451844]\n", + " [ 2.56065822 1.84003582 1.55086475 1.40157818]\n", + " [ 3.36495108 2.83613174 2.5631251 2.40990305]\n", + " [ 3.94388659 3.56424723 3.35117872 3.23471752]]\n" + ] + } + ], + "source": [ + "from numpy import nditer,mat,divide\n", + "x=[0.05, 0.12, 0.15, 0.3, 0.45 ,0.7 ,0.84 ,1.05]\n", + "y=[0.957, 0.851, 0.832, 0.72 ,0.583, 0.378, 0.295, 0.156]\n", + "sx=sum(x)#\n", + "sxx=0\n", + "for xx in x:\n", + " sxx+=xx*xx\n", + "sx3=0\n", + "for xx in x:\n", + " sx3+=xx*xx*xx\n", + "sx4=0\n", + "for xx in x:\n", + " sx4+=xx*xx*xx*xx\n", + "\n", + "sx5=0\n", + "for xx in x:\n", + " sx5+=xx*xx*xx*xx*xx\n", + " \n", + "sx6=0\n", + "for xx in x:\n", + " sx6+=xx*xx*xx*xx*xx*xx\n", + "\n", + "n=8#\n", + "sy=sum(y)#\n", + "sxy=0\n", + "for xx,yy in nditer([x,y]):\n", + " sxy+=xx*yy\n", + " \n", + " \n", + "sx2y=0\n", + "for xx,yy in nditer([x,y]):\n", + " sx2y+=xx*xx*yy\n", + "\n", + "sx3y=0\n", + "for xx,yy in nditer([x,y]):\n", + " sx3y+=xx*xx*xx*yy\n", + "\n", + "m=mat([[n, sx, sxx ,sx3],[sx, sxx, sx3, sx4],[sxx, sx3, sx4, sx5],[sx3, sx4, sx5, sx6]])\n", + "p=mat([[sy],[sxy],[sx2y],[sx3y]])\n", + "a=divide(m,p)\n", + "print \"The cubic polynomial is y=a0 + a1*x + a2*x**2 + a3*x**3, where a0, a1, a2 and a3 are\"\n", + "print a" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter1_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter1_2.ipynb new file mode 100644 index 00000000..4e34a107 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter1_2.ipynb @@ -0,0 +1,121 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CHAPTER 1 : Mathematical Modeling And Engineering Problem Solving" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 1.1 Pg : 14" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time(s) = 0\tv(m/s) = 0.00\n", + "Time(s) = 2\tv(m/s) = 16.40\n", + "Time(s) = 4\tv(m/s) = 27.77\n", + "Time(s) = 6\tv(m/s) = 35.64\n", + "Time(s) = 8\tv(m/s) = 41.10\n", + "Time(s) = 10\tv(m/s) = 44.87\n", + "Time(s) = inf\tv(m/s) = 53.39\n" + ] + } + ], + "source": [ + "from numpy import arange, exp, inf\n", + "g=9.8##m/s**2# acceleration due to gravity\n", + "m=68.1##kg\n", + "c=12.5##kg/sec# drag coefficient\n", + "v=[]\n", + "j=0\n", + "for i in arange(0,12,2):\n", + " v.append(g*m*(1-exp(-c*i/m))/c)\n", + " print \"Time(s) = %d\\t\"%i,\"v(m/s) = %0.2f\"%v[j]\n", + " j+=1\n", + "print \"Time(s) = %0.2f\\t\"%inf,\"v(m/s) = %0.2f\"%(g*m/c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 1.2 Pg :17" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time(s) = 0\tv(m/s) = 0.00\n", + "Time(s) = 2\tv(m/s) = 19.60\n", + "Time(s) = 4\tv(m/s) = 12.40\n", + "Time(s) = 6\tv(m/s) = 34.65\n", + "Time(s) = 8\tv(m/s) = 19.29\n", + "Time(s) = 10\tv(m/s) = 47.17\n", + "Time(s) = 12\tv(m/s) = 21.57\n", + "Time(s) = inf\tv(m/s) = 53.39\t\n" + ] + } + ], + "source": [ + "from numpy import arange, exp, inf\n", + "g=9.8##m/s**2# acceleration due to gravity\n", + "m=68.1##kg\n", + "c=12.5##kg/sec# drag coefficient\n", + "count=0#\n", + "v=[]\n", + "v.append(0)\n", + "print \"Time(s) = %d\\t\"%(0),\"v(m/s) = %0.2f\"%v[0]\n", + "\n", + "for i in arange(1,13,2):\n", + " v.append(v[(count-1)]+(g-c*v[(count)]/m)*(2))\n", + " print \"Time(s) = %d\\t\"%(i+1),\"v(m/s) = %0.2f\"%v[(count+1)]\n", + " count=count+1#\n", + "\n", + "print \"Time(s) = %0.2f\\t\"%inf,\"v(m/s) = %0.2f\\t\"%(g*m/c)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter21_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter21_2.ipynb new file mode 100644 index 00000000..eaae38ce --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter21_2.ipynb @@ -0,0 +1,737 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 21 Newtin-cotes integration formula" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 21.1 Pg : 612" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Error Et= 1.468\n", + "The percent relative error et= 89.467 %\n", + "The approximate error estimate without using the true value= 2.56\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from sympy.mpmath import quad\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "tval=1.640533#\n", + "a=0#\n", + "b=0.8#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "l=(b-a)*((fa+fb)/2)#\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the second derivative of f\n", + "def g(x):\n", + " y=-400+4050*x-10800*x**2+8000*x**3\n", + " return y\n", + "\n", + "\n", + "f2x=quad(g,[0,0.8])/(b-a)##average value of second derivative\n", + "Ea=-(1/12)*(f2x)*(b-a)**3#\n", + "print \"The Error Et=\",round(Et,3)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",Ea" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 21.2 Pg : 613" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Error Et= 0.572\n", + "The percent relative error et= 34.85 %\n", + "The approximate error estimate without using the true value= 0.64\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from sympy.mpmath import quad\n", + "\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "n=2#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "fh=f(h)#\n", + "l=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the second derivative of f\n", + "def g(x):\n", + " y=-400+4050*x-10800*x**2+8000*x**3\n", + " return y\n", + "f2x=quad(g,[0,0.8])/(b-a)##average value of second derivative\n", + "Ea=-(1/12)*(f2x)*(b-a)**3/(n**2)#\n", + "print \"The Error Et=\",round(Et,3)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",Ea" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex :21.3 Pg : 614" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No. of segments= 10\n", + "Segment size= 1.0\n", + "Estimated d= 288.749146143 m\n", + "0.237014701487 et(%)\n", + "---------------------------------------------------------\n", + "No. of segments= 20\n", + "Segment size= 0.5\n", + "Estimated d= 289.263574224 m\n", + "0.0592795228803 et(%)\n", + "---------------------------------------------------------\n", + "No. of segments= 50\n", + "Segment size= 0.2\n", + "Estimated d= 298.382319223 m\n", + "et(%) -3.09125177877\n", + "---------------------------------------------------------\n", + "No. of segments= 100\n", + "Segment size= 0.1\n", + "Estimated d= 293.915596452 m\n", + "et(%) -1.54799665905\n", + "---------------------------------------------------------\n", + "No. of segments= 100\n", + "Segment size= 0.1\n", + "Estimated d= 293.915596452 m\n", + "et(%) -1.54799665905\n", + "---------------------------------------------------------\n", + "No. of segments= 200\n", + "Segment size= 0.05\n", + "Estimated d= 289.43343055 m\n", + "et(%) 0.000594070904571\n", + "---------------------------------------------------------\n", + "No. of segments= 200\n", + "Segment size= 0.05\n", + "Estimated d= 289.43343055 m\n", + "et(%) 0.000594070904571\n", + "---------------------------------------------------------\n", + "No. of segments= 500\n", + "Segment size= 0.02\n", + "Estimated d= 290.332334709 m\n", + "et(%) -0.309977799375\n", + "---------------------------------------------------------\n", + "No. of segments= 1000\n", + "Segment size= 0.01\n", + "Estimated d= 289.883809248 m\n", + "et(%) -0.155012011658\n", + "---------------------------------------------------------\n", + "No. of segments= 2000\n", + "Segment size= 0.005\n", + "Estimated d= 289.435129352 m\n", + "et(%) 7.13401428866e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 2000\n", + "Segment size= 0.005\n", + "Estimated d= 289.435129352 m\n", + "et(%) 7.13401428866e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 5000\n", + "Segment size= 0.002\n", + "Estimated d= 289.435143766 m\n", + "et(%) 2.15393877364e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 5000\n", + "Segment size= 0.002\n", + "Estimated d= 289.435143766 m\n", + "et(%) 2.15393877364e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 10000\n", + "Segment size= 0.001\n", + "Estimated d= 289.480018962 m\n", + "et(%) -0.0155022506708\n", + "---------------------------------------------------------\n" + ] + } + ], + "source": [ + "from numpy import arange, exp\n", + "g=9.8##m/s**2# acceleration due to gravity\n", + "m=68.1##kg\n", + "c=12.5##kg/sec# drag coefficient\n", + "def f(t):\n", + " from numpy import exp\n", + " v=g*m*(1-exp(-c*t/m))/c\n", + " return v\n", + "tval=289.43515##m\n", + "a=0#\n", + "b=10#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "\n", + "for i in arange(10,21,10):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print et,\"et(%)\"\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(50,101,50):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(100,201,100):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(200,501,300):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(1000,2001,1000):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(2000,5001,3000):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(5000,10001,5000):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 21.4 Pg : 618" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.37\n", + "The Error Et= 0.27\n", + "The percent relative error et= 16.645 %\n", + "The approximate error estimate without using the true value= 0.273\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from sympy.mpmath import quad\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "n=2#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "fh=f(h)#\n", + "l=(b-a)*(fa+4*fh+fb)/(3*n)#\n", + "print\"l=\", round(l,2)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the fourth derivative of f\n", + "def g(x):\n", + " y=-21600+48000*x\n", + " return y\n", + "\n", + "f4x=quad(g,[0,0.8])/(b-a)##average value of fourth derivative\n", + "Ea=-(1/2880)*(f4x)*(b-a)**5#\n", + "print \"The Error Et=\",round(Et,2)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",round(Ea,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.5 Pg : 620" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.62\n", + "The Error Et= 0.02\n", + "The percent relative error et= 1.04 %\n", + "The approximate error estimate without using the true value= 0.017\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from sympy.mpmath import quad\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "n=4#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "j=a+h#\n", + "s=0#\n", + "count=1#\n", + "while j<b:\n", + " if (-1)**count==-1:\n", + " s=s+4*f(j)#\n", + " else:\n", + " s=s+2*f(j)#\n", + " \n", + " count=count+1#\n", + " j=j+h#\n", + "\n", + "l=(b-a)*(fa+s+fb)/(3*n)#\n", + "print\"l=\", round(l,2)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the fou:rth derivative of f\n", + "def g(x):\n", + " y=-21600+48000*x\n", + " return y\n", + "f4x=quad(g,[0,0.8])/(b-a)##average value of fourth derivative\n", + "Ea=-(1/(180*4**4))*(f4x)*(b-a)**5#\n", + "print \"The Error Et=\",round(Et,2)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",round(Ea,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex :23.6 Pg : 625" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Part A:\n", + "l= 1.519\n", + "The Error Et= 0.12\n", + "The percent relative error et= 7.398 %\n", + "The approximate error estimate without using the true value= 0.121\n", + "---------------------------------------------------\n", + "Part B:\n", + "l= 1.645\n", + "The Error Et= -0.005\n", + "The percent relative error et= -0.277 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from sympy.mpmath import quad\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "#part a\n", + "n=3#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "j=a+h#\n", + "s=0#\n", + "count=1#\n", + "while j<b:\n", + " s=s+3*f(j)#\n", + " count=count+1#\n", + " j=j+h#\n", + "\n", + "l=(b-a)*(fa+s+fb)/(8)#\n", + "print \"Part A:\"\n", + "print \"l=\",round(l,3)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the fourth derivative of f\n", + "def g(x):\n", + " y=-21600+48000*x\n", + " return y\n", + "f4x=quad(g,[0,0.8])/(b-a)##average value of fourth derivative\n", + "Ea=-(1/6480)*(f4x)*(b-a)**5#\n", + "print \"The Error Et=\",round(Et,2)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",round(Ea,3)\n", + "#part b\n", + "n=5#\n", + "h=(b-a)/n#\n", + "l1=(a+2*h-a)*(fa+4*f(a+h)+f(a+2*h))/6#\n", + "l2=(a+5*h-a-2*h)*(f(a+2*h)+3*(f(a+3*h)+f(a+4*h))+fb)/8#\n", + "l=l1+l2#\n", + "print \"---------------------------------------------------\"\n", + "print \"Part B:\"\n", + "print \"l=\", round(l,3)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "print \"The Error Et=\", round(Et,3)\n", + "print \"The percent relative error et=\", round(et,3), \"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.7 Pg : 626" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.59480096\n", + "The Error Et= 0.04573204\n", + "The percent relative error et= 2.78763304365 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "tval=1.640533#\n", + "x=[0, 0.12, 0.22, 0.32, 0.36, 0.4 ,0.44 ,0.54 ,0.64 ,0.7 ,0.8]\n", + "func=[]\n", + "for i in range(0,11):\n", + " func.append(f(x[i]))#\n", + "\n", + "l=0#\n", + "for i in range(0,10):\n", + " l=l+(x[i+1]-x[i])*(func[i]+func[i+1])/2#\n", + "\n", + "print \"l=\",l\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "print \"The Error Et=\",Et\n", + "print \"The percent relative error et=\",et,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.8 Pg : 230" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.60364091733\n", + "The Error Et= 0.0368920826667\n", + "The percent relative error et= 2.2487863802 %\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "tval=1.640533#\n", + "x=[0, 0.12, 0.22, 0.32, 0.36, 0.4 ,0.44 ,0.54, 0.64, 0.7, 0.8]\n", + "func =[]\n", + "for i in range(0,11):\n", + " func.append(f(x[i]))\n", + "\n", + "l1=(x[1]-x[0])*((f(x[0])+f(x[1]))/2)#\n", + "l2=(x[3]-x[1])*(f(x[3])+4*f(x[2])+f(x[1]))/6#\n", + "l3=(x[6]-x[3])*(f(x[3])+3*(f(x[4])+f(x[5]))+f(x[6]))/8#\n", + "l4=(x[8]-x[6])*(f(x[6])+4*f(x[7])+f(x[8]))/6\n", + "l5=(x[9]-x[8])*((f(x[9])+f(x[8]))/2)#\n", + "l6=(x[10]-x[9])*((f(x[10])+f(x[9]))/2)#\n", + "l=l1+l2+l3+l4+l5+l6#\n", + "print \"l=\",l\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "print \"The Error Et=\",Et\n", + "print \"The percent relative error et=\",et,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.9 Pg : 629" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The average termperature is= 53.0\n" + ] + } + ], + "source": [ + "def f(x,y):\n", + " t=2*x*y+2*x-x**2-2*y**2+72\n", + " return t\n", + "Len=8##m,length\n", + "wid=6##m,width\n", + "a=0#\n", + "b=Len#\n", + "n=2#\n", + "h=(b-a)/n#\n", + "a1=0#\n", + "b1=wid#\n", + "h1=(b1-a1)/n#\n", + "\n", + "fa=f(a,0)#\n", + "fb=f(b,0)#\n", + "fh=f(h,0)#\n", + "lx1=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "\n", + "fa=f(a,h1)#\n", + "fb=f(b,h1)#\n", + "fh=f(h,h1)#\n", + "lx2=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "\n", + "fa=f(a,b1)#\n", + "fb=f(b,b1)#\n", + "fh=f(h,b1)#\n", + "lx3=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "\n", + "l=(b1-a1)*(lx1+2*lx2+lx3)/(2*n)#\n", + "\n", + "avg_temp=l/(Len*wid)#\n", + "print\"The average termperature is=\", avg_temp" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter22_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter22_2.ipynb new file mode 100644 index 00000000..50a8dfb0 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter22_2.ipynb @@ -0,0 +1,334 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-22 : Integration of Equations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:22.1 Pg: 624" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error of the improved integral for segment 1 and 2 = 16.6449765615 %\n", + "Error of the improved integral for segment 4 and 2 = 1.04029198641 %\n" + ] + } + ], + "source": [ + "h = [0,0.8,0.4,0.2]#\n", + "I = [0,0.1728,1.0688,1.4848]#\n", + "E = [0,89.5,34.9,9.5]#\n", + "I1 = 4 * I[(2)] / 3 - I[(1)] / 3#\n", + "t = 1.640533#\n", + "et1 = t - I1 #\n", + "Et1 = et1 * 100/t#\n", + "print \"Error of the improved integral for segment 1 and 2 = \",Et1,\"%\"\n", + "I2 = 4 * I[(3)] / 3 - I[(2)] / 3#\n", + "et2 = t - I2 #\n", + "Et2 = et2 * 100/t#\n", + "print \"Error of the improved integral for segment 4 and 2 = \",Et2,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:22.2 Pg: 645" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obtained integral which is the correct answer till the seventh decimal 1.64053366667\n" + ] + } + ], + "source": [ + "I1 = 1.367467#\n", + "I2 = 1.623467#\n", + "I = 16 * I2 /15 - I1 / 15#\n", + "print \"Obtained integral which is the correct answer till the seventh decimal\",I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:22.3 Pg: 645" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Integral obtained using gauss legendre formulae = 1.9648\n", + "error = -19.7659541137 %\n" + ] + } + ], + "source": [ + "#f(x) = 0.2 + 25*x - 200*x**2 + 675*x**3 - 900*x**4 + 400*x**5\n", + "# for using two point gauss legendre formulae, the intervals have to be changed to -1 and 1\n", + "#therefore, x = 0.4 + 0.4 * xd\n", + "#thus the integral is transferred to \n", + "#(0.2 + 25*(0.4+0.4*x) - 200*(0.4 + 0.4*x)**2 + 675*(0.4 + 0.4*x)**3 - 900*(0.4 + 0.4*x)**4 + 400*(0.4 + 0.4*x)**5)*0.4\n", + "#for three point gauss legendre formulae\n", + "x1 = -(1/3) ** 0.5#\n", + "x2 = (1/3) ** 0.5#\n", + "I1 = (0.2 + 25*(0.4+0.4*x1) - 200*(0.4 + 0.4*x1)**2 + 675*(0.4 + 0.4*x1)**3 - 900*(0.4 + 0.4*x1)**4 + 400*(0.4 + 0.4*x1)**5)*0.4#\n", + "I2 = (0.2 + 25*(0.4+0.4*x2) - 200*(0.4 + 0.4*x2)**2 + 675*(0.4 + 0.4*x2)**3 - 900*(0.4 + 0.4*x2)**4 + 400*(0.4 + 0.4*x2)**5)*0.4#\n", + "I = I1 + I2#\n", + "print \"Integral obtained using gauss legendre formulae =\",I\n", + "t = 1.640533#\n", + "e = (t - I)*100/t#\n", + "print \"error = \",e,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ex:22.4 Pg: 647" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "integral obtained using three point gauss legendre formulae = 1.64053334735\n" + ] + } + ], + "source": [ + "# f(x) = 0.2 + 25*x - 200*x**2 + 675*x**3 - 900*x**4 + 400*x**5\n", + "# for using three point gauss legendre formulae, the intervals have to be changed to -1 and 1\n", + "#therefore, x = 0.4 + 0.4 * xd\n", + "#thus the integral is transferred to \n", + "#(0.2 + 25*(0.4+0.4*x) - 200*(0.4 + 0.4*x)**2 + 675*(0.4 + 0.4*x)**3 - 900*(0.4 + 0.4*x)**4 + 400*(0.4 + 0.4*x)**5)*0.4\n", + "#for three point gauss legendre formulae\n", + "x1 = -0.7745967#\n", + "x2 = 0#\n", + "x3 = 0.7745967#\n", + "c0 = 0.5555556#\n", + "c1 = 0.8888889#\n", + "c2 = 0.5555556#\n", + "I1 = (0.2 + 25*(0.4+0.4*x1) - 200*(0.4 + 0.4*x1)**2 + 675*(0.4 + 0.4*x1)**3 - 900*(0.4 + 0.4*x1)**4 + 400*(0.4 + 0.4*x1)**5)*0.4#\n", + "I2 = (0.2 + 25*(0.4+0.4*x2) - 200*(0.4 + 0.4*x2)**2 + 675*(0.4 + 0.4*x2)**3 - 900*(0.4 + 0.4*x2)**4 + 400*(0.4 + 0.4*x2)**5)*0.4#\n", + "I3 = (0.2 + 25*(0.4+0.4*x3) - 200*(0.4 + 0.4*x3)**2 + 675*(0.4 + 0.4*x3)**3 - 900*(0.4 + 0.4*x3)**4 + 400*(0.4 + 0.4*x3)**5)*0.4#\n", + "I = c0 * I1 + c1 * I2 + c2 * I3#\n", + "print \"integral obtained using three point gauss legendre formulae = \",I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:22.5 Pg: 647" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "integral by two point method = 320.657652324\n", + "integral by three point method = 289.439308244\n", + "integral by four point method = 289.435164941\n", + "integral by five point method = 289.435160633\n" + ] + } + ], + "source": [ + "from math import exp\n", + "#f(t) = g*m*(int(0,10,(1-exp(-c*t/m))))/c\n", + "#for using gauss quadrature method, limits are changed to -1 to 1 by replcing x = 5 + 5*xd\n", + "#the new integral obtained is\n", + "#(1 - exp(-c*(5 + 5*x)/m ))*5\n", + "g = 9.8#\n", + "c = 12.5#\n", + "m = 68.1#\n", + "#for two point method\n", + "x1 = -(1/3)**0.5#\n", + "x2 = (1/3)**0.5#\n", + "I1 = g*m*(1 - exp(-c*(5 + 5*x1)/m ))*5 / c#\n", + "I2 = g*m*(1 - exp(-c*(5 + 5*x2)/m ))*5 / c#\n", + "I = I1 + I2#\n", + "print \"integral by two point method = \",I\n", + "x1 = -0.7745967#\n", + "x2 = 0#\n", + "x3 = 0.7745967#\n", + "c0 = 0.5555556#\n", + "c1 = 0.8888889#\n", + "c2 = 0.5555556#\n", + "I1 = g*m*(1 - exp(-c*(5 + 5*x1)/m ))*5 / c#\n", + "I2 = g*m*(1 - exp(-c*(5 + 5*x2)/m ))*5 / c#\n", + "I3 = g*m*(1 - exp(-c*(5 + 5*x3)/m ))*5 / c#\n", + "I = c0*I1 + c1 * I2 + c2 * I3#\n", + "print \"integral by three point method =\",I\n", + "x1 = -0.861136312#\n", + "x2 = -0.339981044#\n", + "x3 = 0.339981044#\n", + "x4 = 0.861136312#\n", + "c1 = 0.3478548#\n", + "c2 = 0.6521452#\n", + "c3 = 0.6521452#\n", + "c4 = 0.3478548#\n", + "I1 = g*m*(1 - exp(-c*(5 + 5*x1)/m ))*5 / c#\n", + "I2 = g*m*(1 - exp(-c*(5 + 5*x2)/m ))*5 / c#\n", + "I3 = g*m*(1 - exp(-c*(5 + 5*x3)/m ))*5 / c#\n", + "I4 = g*m*(1 - exp(-c*(5 + 5*x4)/m ))*5 / c#\n", + "I = c1*I1 + c2 * I2 + c3 * I3 + c4 * I4#\n", + "print \"integral by four point method =\",I\n", + "x1 = -0.906179846#\n", + "x2 = -0.538469310#\n", + "x3 = 0#\n", + "x4 = 0.538469310#\n", + "x5 = 0.906179846\n", + "c1 = 0.2369269#\n", + "c2 = 0.4786287#\n", + "c3 = 0.5688889#\n", + "c4 = 0.4786287#\n", + "c5 = 0.2369269# \n", + "I1 = g*m*(1 - exp(-c*(5 + 5*x1)/m ))*5 / c#\n", + "I2 = g*m*(1 - exp(-c*(5 + 5*x2)/m ))*5 / c#\n", + "I3 = g*m*(1 - exp(-c*(5 + 5*x3)/m ))*5 / c#\n", + "I4 = g*m*(1 - exp(-c*(5 + 5*x4)/m ))*5 / c#\n", + "I5 = g*m*(1 - exp(-c*(5 + 5*x5)/m ))*5 / c#\n", + "I = c1*I1 + c2 * I2 + c3 * I3 + c4 * I4 + c5 * I5#\n", + "print \"integral by five point method =\",I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:22.6 Pg: 649" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the value of first integral = 0.0\n", + "The value of second integral = 1.93292644948\n", + "Therefore the final result can be computed as : 0.771126085603\n", + "error = 8.34112853886 %\n" + ] + } + ], + "source": [ + "from math import exp,pi\n", + "#N(x) = (int(-infinity,-2,exp(-(x**2)/2)) + int(-2,1,exp(-(x**2)/2)))/(2*pi)**0.5\n", + "#first integral can be solved as\n", + "#int(-infinity,-2,exp(-(x**2)/2)) = int(-0.5,0,exp(-1/(2*t**2))/t**2)\n", + "h = 1/8#\n", + "#int(-0.5,0,exp(-1/(2*t**2))/t**2) = h*(f(x-7/16) + f(x-5/16) + f(x-3/16) + f(x-1/16)) \n", + "t1 = -7/16#\n", + "t2 = -5/16#\n", + "t3 = -3/16#\n", + "t4 = -1/16#\n", + "m1 = exp(-1/(2*t1**2))/t1**2#\n", + "m2 = exp(-1/(2*t2**2))/t2**2#\n", + "m3 = exp(-1/(2*t3**2))/t3**2#\n", + "m4 = exp(-1/(2*t4**2))/t4**2#\n", + "I1 = h*(m1 + m2 + m3 + m4)#\n", + "print \"the value of first integral = \",I1\n", + "#simpsons 1/3rd sule is applied for the second integral\n", + "h1 = 0.5#\n", + "x1 = -2#\n", + "x2 = -1.5#\n", + "x3 = -1#\n", + "x4 = -0.5#\n", + "x5 = 0#\n", + "x6 = 0.5#\n", + "x7 = 1#\n", + "n1 = exp(-(x1**2)/2)#\n", + "n2 = exp(-(x2**2)/2)#\n", + "n3 = exp(-(x3**2)/2)#\n", + "n4 = exp(-(x4**2)/2)#\n", + "n5 = exp(-(x5**2)/2)#\n", + "n6 = exp(-(x6**2)/2)#\n", + "n7 = exp(-(x7**2)/2)#\n", + "I2 =(1-(-2)) * (n1 + 4 *(n2 + n4 + n6) + 2*(n3 + n5) + n7)/(18)#\n", + "print \"The value of second integral = \",I2\n", + "f = (I1 + I2)/(2 * pi)**0.5#\n", + "print \"Therefore the final result can be computed as :\",f\n", + "N = 0.8413#\n", + "e = (N - f) * 100 / N#\n", + "print \"error = \",e,\"%\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter23_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter23_2.ipynb new file mode 100644 index 00000000..fd068f1e --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter23_2.ipynb @@ -0,0 +1,271 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-23 : Numerical Differentiation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:23.1 Pg: 656" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = [ 0. 0.25 0.5 0.75 1. ]\n", + "f(x) = [0, 1.2, 1.103515625, 0.92499999999999993, 0.63632812499999991, 0.19999999999999996]\n", + "by forward difference : -0.859375\n", + "error in forward difference method = 5.82191780822 %\n", + "by backward difference -0.878125\n", + "error in backward difference method = 3.76712328767 %\n", + "by central difference : -0.9125\n", + "error in central difference method = -2.43336553343e-14 %\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "#f(x) = -0.1*x**4 - 0.15*x**3 - 0.5 * x**2 - 0.25 *x + 1.2\n", + "h = 0.25#\n", + "t = -0.9125#\n", + "x = arange(0,1.1,h)\n", + "print \"x = \",x\n", + "fx=[0]\n", + "for xx in x:\n", + " fx.append(-0.1*xx**4 - 0.15*xx**3 - 0.5 * xx**2 - 0.25 *xx + 1.2)\n", + "print \"f(x) = \",fx\n", + "fd = (- fx[(5)] + 4*fx[(4)] - 3 * fx[(3)])/(2 * h)\n", + "efd = (t - fd) * 100 / t#\n", + "print \"by forward difference : \",fd\n", + "print \"error in forward difference method = \",efd,\"%\"\n", + "bd = (3 * fx[(3)] - 4 * fx[(2)] + fx[(1)])/ (2*h)\n", + "ebd = (t - bd) * 100 / t#\n", + "print \"by backward difference\",bd\n", + "print \"error in backward difference method = \",ebd,\"%\"\n", + "cdm = (-fx[(5)] + 8*(fx[(4)]) -8*fx[(2)] + fx[(1)] ) / (12*h)\n", + "ecdm = (t - cdm) * 100 / t\n", + "print \"by central difference : \",cdm\n", + "print \"error in central difference method = \",ecdm,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:23.2 Pg: 657" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x with h = 0.5 is [ 0. 0.5 1. ]\n", + "f(x) with h = 0.5 is [0, 1.2, 0.92499999999999993, 0.19999999999999996]\n", + "by central difference ( h = 0.5 ) -1.0\n", + "error in central difference method ( h = 0.5 ) = -9.58904109589 %\n", + "x with h = 0.25 is [ 0. 0.25 0.5 0.75 1. ]\n", + "fx with h = 0.25 is [0, 1.2, 1.103515625, 0.92499999999999993, 0.63632812499999991, 0.19999999999999996]\n", + "by central difference ( h = 0.25 ) = -0.934375 error in central difference method ( h = 0.25 ) = -2.39726027397 %\n", + "improved estimate = -0.9125\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "#f(x) = -0.1*x**4 - 0.15*x**3 - 0.5 * x**2 - 0.25 *x + 1.2\n", + "h = 0.5#\n", + "t = -0.9125#\n", + "x = arange(0,1.1,h)\n", + "print \"x with h = 0.5 is\",x\n", + "fx=[0]\n", + "for xx in x:\n", + " fx.append(-0.1*xx**4 - 0.15*xx**3 - 0.5 * xx**2 - 0.25 *xx + 1.2)\n", + "print \"f(x) with h = 0.5 is\",fx\n", + "cdm = (fx[(3)] - fx[(1)])/ 1#\n", + "ecdm = (t - cdm) * 100 / t#\n", + "print \"by central difference ( h = 0.5 ) \",cdm\n", + "print \"error in central difference method ( h = 0.5 ) = \",ecdm,\"%\"\n", + "h1 = 0.25#\n", + "x1 = arange(0,1.1,h1)\n", + "print \"x with h = 0.25 is\",x1\n", + "fx1=[0]\n", + "for xx in x1:\n", + " fx1.append(-0.1*xx**4 - 0.15*xx**3 - 0.5 * xx**2 - 0.25 *xx + 1.2)\n", + "print \"fx with h = 0.25 is\",fx1\n", + "cdm1 = (fx1[(4)] - fx1[(2)])/ (2*h1)\n", + "ecdm1 = (t - cdm1) * 100 / t#\n", + "print \"by central difference ( h = 0.25 ) = \",cdm1,\n", + "print \"error in central difference method ( h = 0.25 ) = \",ecdm1,\"%\"\n", + "D = 4 * cdm1 /3 - cdm / 3#\n", + "print \"improved estimate =\",D" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:23.3 Pg: 658" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(dT/dz) = -1.33333333333 C/cm\n", + "q(z = 0) = 70.56 W/m**2\n" + ] + } + ], + "source": [ + "#q(z = 0) = -k*p*C*(dT/dz)/(z = 0)\n", + "k = 3.5 * 10** - 7##m**2/s\n", + "p = 1800##kg/m**3\n", + "C = 840# #(J/(kg.C))\n", + "x = 0#\n", + "fx0 = 13.5#\n", + "fx1 = 12#\n", + "fx2 = 10#\n", + "x0 = 0#\n", + "x1 = 1.25#\n", + "x2 = 3.75#\n", + "dfx = fx0 *(2*x - x1 - x2)/((x0 - x1)*(x0 - x2)) + fx1 *(2*x - x0 - x2)/((x1 - x0)*(x1 - x2)) + fx2 *(2*x - x1 - x0)/((x2 - x1)*(x2 - x0))#\n", + "print \"(dT/dz) = \",dfx,\"C/cm\"\n", + "q = - k * p *C * dfx*100#\n", + "print \"q(z = 0) =\",q,\"W/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:23.4 Pg: 662" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Q= 1.64053333333333\n", + "intergral= -1.40920096\n", + "diff(x)= [ 0.12 0.1 0.1 0.04 0.04 0.04 0.1 0.1 0.06 0.1 ]\n", + "d= [ 9.247744 -0.04488 4.38152 8.287744 9.527424 9.674624\n", + " 6.64312 -3.25368 -13.648816 -21.31 ]\n" + ] + } + ], + "source": [ + "from sympy.mpmath import quad\n", + "from numpy import trapz,diff\n", + "def f(x):\n", + " y=0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "Q=quad(f,[0,0.8])\n", + "print \"Q=\",Q\n", + "x=[0, 0.12 ,0.22 ,0.32 ,0.36 ,0.4 ,0.44 ,0.54 ,0.64, 0.7 ,0.8]\n", + "y=[]\n", + "for xx in x:\n", + " y.append(f(xx))\n", + "integral=trapz(x,y)\n", + "print \"intergral=\",integral\n", + "print \"diff(x)=\",diff(x)\n", + "d=diff(y)/diff(x)#\n", + "print \"d=\",d" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:23.5 Pg: 664" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Computed= 1.64053333333333\n", + "Error estimate= 2.03185997099678e-5\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from sympy.mpmath import quad\n", + "def f(x):\n", + " y=0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "Qt=1.640533#\n", + "Q=quad(f,[0,0.8])\n", + "print \"Computed=\",Q\n", + "Er=abs(Q-Qt)*100/Qt\n", + "print \"Error estimate=\",Er" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter25_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter25_2.ipynb new file mode 100644 index 00000000..e4e7a3f4 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter25_2.ipynb @@ -0,0 +1,178 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-25 : Runge-Kutta Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:25.1 Pg: 708" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = [ 0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. ]\n", + "\n", + "true values of y = [1.0, 3.21875, 3.0, 2.21875, 2.0, 2.71875, 4.0, 4.71875, 3.0]\n", + "\n", + "y by euler method = [1.0, 5.25, 5.875, 5.125, 4.5, 4.75, 5.875, 7.125, 7.0]\n", + "\n", + "error = [0.0, -63.106796116504853, -95.833333333333329, -130.98591549295776, -125.0, -74.712643678160916, -46.875, -50.993377483443709, -133.33333333333334]\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "#dy/dx = -2*x**3 + 12*x**2 - 20*x + 8.5\n", + "#therefore, y = -0.5*x**4 + 4*x**3 - 10*x**2 + 8.5 + c\n", + "x1 = 0#\n", + "y1 = 1#\n", + "h = 0.5#\n", + "c =-(-0.5*x1**4 + 4*x1**3 - 10*x1**2 + 8.5*x1 - y1)#\n", + "x = arange(0,4.1,0.5)\n", + "print \"x = \",x\n", + "y=[]\n", + "for xx in x:\n", + " y.append(-0.5*xx**4 + 4*xx**3 - 10*xx**2 + 8.5*xx + c)\n", + "print \"\\ntrue values of y = \",y\n", + "fxy=[]\n", + "for xx in x:\n", + " fxy.append(-2*xx**3 + 12*xx**2 - 20*xx + 8.5)\n", + "y2=[y[0]]\n", + "e = [(y[0] - y2[0]) * 100 / y[0]]\n", + "for i in range(1,9):\n", + " y2.append(y2[(i-1)] + fxy[(i-1)]*h)\n", + " e.append((y[(i)] - y2[(i)])*100/y[(i)])\n", + "\n", + "print \"\\ny by euler method =\",y2\n", + "print \"\\nerror =\",e" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:25.2 Pg: 712" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total truncation error = -2.03125\n" + ] + } + ], + "source": [ + "#f(x,y) = dy/dx = -2*x**3 + 12*x**2 - 20*x + 8.5\n", + "#f'(x,y) = -6*x**2 + 24*x - 20\n", + "#f\"(x,y) = -12*x + 24\n", + "#f\"'(x,y) = -12\n", + "x = 0#\n", + "Et2 = (-6*x**2 + 24*x - 20) * 0.5**2 / 2\n", + "Et3 = (-12*x + 24) * (0.5)**3 / 6#\n", + "Et4 = (-12) *(0.5 ** 4) / 24#\n", + "Et = Et2 + Et3 + Et4#\n", + "print \"Total truncation error =\",Et" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:25.3 Pg: 713" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = [ 0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. 2.25 2.5 2.75\n", + " 3. 3.25 3.5 3.75 4. ]\n", + "\n", + "true values of y = [1.0, 2.560546875, 3.21875, 3.279296875, 3.0, 2.591796875, 2.21875, 1.998046875, 2.0, 2.248046875, 2.71875, 3.341796875, 4.0, 4.529296875, 4.71875, 4.310546875, 3.0]\n", + "\n", + "y by euler method = [1.0, 3.125, 4.1796875, 4.4921875, 4.34375, 3.96875, 3.5546875, 3.2421875, 3.125, 3.25, 3.6171875, 4.1796875, 4.84375, 5.46875, 5.8671875, 5.8046875, 5.0]\n", + "\n", + "error = [0.0, -22.04424103737605, -29.854368932038835, -36.986301369863014, -44.791666666666664, -53.127354935945739, -60.2112676056338, -62.267839687194524, -56.25, -44.569939183318851, -33.045977011494251, -25.073056691992985, -21.09375, -20.741699008193187, -24.337748344370862, -34.662437698232893, -66.666666666666671]\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "#dy/dx = -2*x**3 + 12*x**2 - 20*x + 8.5\n", + "#therefore, y = -0.5*x**4 + 4*x**3 - 10*x**2 + 8.5 + c\n", + "x1 = 0#\n", + "y1 = 1#\n", + "h = 0.25#\n", + "c =-(-0.5*x1**4 + 4*x1**3 - 10*x1**2 + 8.5*x1 - y1)#\n", + "xx = arange(0,4.1,h)\n", + "print \"x = \",xx\n", + "y=[]\n", + "for x in xx:\n", + " y.append(-0.5*x**4 + 4*x**3 - 10*x**2 + 8.5*x + c)\n", + "print \"\\ntrue values of y = \",y\n", + "fxy=[]\n", + "for x in xx:\n", + " fxy.append(-2*x**3 + 12*x**2 - 20*x + 8.5)\n", + "y2= [y[0]]\n", + "e = [(y[0] - y2[0]) * 100 / y[0]]\n", + "for i in range(1,17):\n", + " y2.append(y2[(i-1)] + fxy[(i-1)]*h)\n", + " e.append((y[(i)] - y2[(i)])*100/y[(i)])\n", + "\n", + "print \"\\ny by euler method =\",y2\n", + "print \"\\nerror =\",e" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter26_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter26_2.ipynb new file mode 100644 index 00000000..35479bcb --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter26_2.ipynb @@ -0,0 +1,402 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter-26 : Stiffness & Multi step Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.1 Pg: 754" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8VPWd//HXZyYXCSQS5KaBbqwiUvFGFerarbG2laJd\niu6upWq1rS1rV9vdX1ut212N6/ZibW21tmpb76vS1vLQ0hUvrWZ/3gDtaqgCilcSUARBSBASkvns\nHzMTJsPMZBJy5nDC+/l45MGcc77nm++XzOST7+18zd0RERHpSyzsAoiISDQoYIiISFEUMEREpCgK\nGCIiUhQFDBERKYoChoiIFEUBQ0REiqKAIVJiZtZoZneEXQ6R/lLAEBGRoihgyF7NzL5pZvdknbvW\nzH6SI+3FZvbbrHPXmNk1qdfnmtkrZrbFzF41s8/myGMmcAlwhpm1mdmzg1sjkeCYHg0iezMzGw+8\nDNS5+2YzKwPWADPd/dmstO8DVgDj3L3dzOJAC/Bp4AVgLXCMu68ys3HAfu6+PMf3vAw4yN0/F2jl\nRAaZWhiyV3P3t4DHgL9PnZoJrM8OFqm0q4H/BeakTn0UeM/dl6aOE8DhZjbM3dflChYplvoSiRQF\nDBG4DTgr9fosoNCA9F3A3NTrzwJ3Arj7VuAM4B+BtWb2BzObHExxRcKhLinZ65nZMJLdUB8BngKm\nuHtrnrRjgDeAScDzwIfc/cWsNJXAd4Dp7v6RHHlcCkxy97MHtSIiAVMLQ/Z67r4N+B3J1sOSfMEi\nlXY90ATcCryaDhZmNtbMZpvZcGAHsBXozpPNOqDezNQtJZGigCGSdBswlcLdUWl3ASel/k2LAf9C\nsqXyDvA3wPl57k/PtHrHzJ4ZUGlFQhBol5SZ3QycArzt7ofnSdMA/BgoBza4e0NgBRLJw8wmAitJ\nzYAKuzwie6KgA8bfAO3A7bkChpmNBJ4ATnb3VjMb7e4bAiuQSA5mFgOuBka4+3lhl0dkT1UWZObu\n/piZ1RdI8lngd+k+YwULKbXUmMM64DWSU2pFJI9AA0YRJgHlZvYoUA1c4+56xo6UTGo67IiwyyES\nBWEHjHJgGskBxCrgKTNb7O6rwi2WiIhkCztgtJAc6N4GbDOz/w8cCfQKGGamxSIiIgPg7oM2fTvs\nabX3AR82s7iZVQEzgJyPU3D3Ift12WWXhV4G1U91U/2G3tdgC7SFYWZ3AycAo82sBbiMZDcU7n6j\nu680sweAZSSfw/NLz//8HRERCVHQs6TmFpHmh8APgyyHiIjsvrC7pARoaGgIuwiBGsr1G8p1A9VP\neovEwwfNzKNQThGRPYmZ4YM46B32LCkRiRg9M3HPVIo/qhUwRKTf1OLfs5QqiGsMQ0REiqKAISIi\nRVHAEBGRoihgiMiQUV9fz5/+9KewizFkKWCIyJBhZkUPAG/cuJE5c+YwYsQI6uvrufvuuwum//GP\nf8z+++/Pvvvuyxe/+EU6OzuLzutPf/oThx56KMOHD+ejH/0oq1ev7rnW2NhIeXk51dXVVFdXU1NT\nw+uvv158pUsosgHj+JuPZ0f3jrCLISIR9U//9E/ss88+vP3229x5552cf/75LF+e+8lEDz74IFde\neSWPPPIIb7zxBq+++iqXXXZZUXlt2LCB008/ne985zts2rSJY445hjPOOKPnXjNj7ty5tLW10dbW\nxpYtW6ivrw+07gMVyYDh7jzZ8iSbOzaHXRQR2cM8++yzHHnkkYwcOZLPfOYzdHR07JJm69atLFiw\ngCuuuIKqqiqOP/54Zs+ezR135N6O57bbbuO8885jypQpjBw5kksvvZRbb721qLwWLFjA1KlTOf30\n06moqKCxsZHm5mZeeuklgMAeFBiESAaMHYlky2JLx5aQSyIiexJ357e//S0PPvggr732GsuWLev5\nxZ7ppZdeoqysjIMPPrjn3JFHHskLL7yQM9/ly5dz5JFH9hwfccQRrFu3jk2bNvWZ1wsvvNDr3qqq\nKg4++OCe62bGwoUL2W+//Zg6dSo33HDDbv0fBCmSC/c6upJ/MbR1tIVcEhHJZTDWkQ3kj24z46tf\n/Srjx48H4FOf+hTPPffcLuna29upqanpda66upq2tty/U9rb29l33317jtP3trW19ZlXe3s7Y8eO\n7XW9pqam5/o//MM/MG/ePMaNG8fixYs5/fTTe1pHe5pItjA6upMBQy0MkT2T++5/DVQ6WEDyr/n2\n9nZmzZrVM6h89913M2LECLZs6f37Y/PmzVRXV+fMMzv95s3J7vDq6uq8eaWDSHV1dcHvNWXKFMaP\nH4+Zcdxxx/G1r32Ne+65Z4C1D1Y0A0aXAoaIFO/+++/vGVSeO3cuhxxyCF1dXbz88ss9aZqbm5k6\ndWrO+w877LBeLZXm5mbGjRtHbW1t3rwOO+ywnnubm5t7rm3dupVXXnml53qURDNgpFoYbZ3qkhKR\n/PINJg8fPpzTTjuNSy+9lPfee4/HH3+chQsXcvbZZ+dM/7nPfY6bbrqJFStWsGnTJq644go+//nP\nF5XXnDlzeP7551mwYAHbt2/n8ssv56ijjuKQQw4B4L777mPTpk24O0uXLuXaa69l9uzZAfxv7L5I\nBozO7uT8Z7UwRKSQQusyfv7zn7Nt2zbGjh3LWWedxQ033MCUKVMAWL16NdXV1bS2tgJw8sknc9FF\nF3HiiSdSX1/PQQcdxOWXX15UXqNHj+Z3v/sd3/72txk1ahTPPPMM8+fP77n317/+NZMmTaKmpoZz\nzjmHSy65JG/gClsk98NofquZo248iqs+fhXf+OtvhFgykb1Pao+FsIshGfL9TAZ7P4xItjB6uqQ0\nS0pEpGQCDRhmdrOZrTOzv/SR7lgz6zKz04rJV4PeIiKlF3QL4xZgZqEEZhYHrgQeAIpqOmlarYhI\n6QUaMNz9MWBTH8kuBO4B1hebb8/CPc2SEhEpmVDHMMysDpgNXJ86VdRIWmd3J5XxSrUwRERKKOxB\n758A30pNgTL60SU1ZvgYBQwRkRIK+1lSHwTmp+ZJjwY+aWY73P332QkbGxt7Xm+fsJ0xVWPUJSUi\nkqGpqYmmpqbA8g98HYaZ1QML3f3wPtLdkkq3IMe1XuswfvHnX3DP8nt48Z0XeeOf3xjkEotIIVqH\nsecZEuswzOxu4Elgspm1mNkXzGyemc3bnXw7ujoYXTVaXVIi0ou2aA1W0LOk5rr7Ae5e4e4T3f1m\nd7/R3W/MkfbzuVoXuXR0dyS7pDra9JeOiPTozxat+RTaTjXb7mzN+uijj3LiiScycuRIDjzwwF3y\nrq+vp6qqqucpuzNnFlyhUBJhD3oPSGd3J8MrhlMeL2db17awiyMiQ0Rf26lm252tWUeMGMF5553H\nVVddlTNvM+MPf/hDz1N2H3jggcGt7ABEMmB0dHVQGa+kprJG3VIi0ksxW7Tm09d2qpl2d2vWY489\nljPPPDNn6yJtT+tBiWbA6O6gsiwZMPQ8KRFJy7dFa0tLCyNHjqS2tjbnV/rpsfm2U33++ed3+V4D\n3Zo1V175nHnmmYwdO5aTTz6ZZcuW9fv/Y7CFPa12QNItjOqKarUwRPZAdvnuT8zxy/r/13W+LVrn\nzZvHu+++2+f9W7duZcyYMb3O1dTU0N7evkvagW7NmiuvXO666y6mTZtGIpHgmmuu4eSTT2blypW9\ntoottWgGjO4OKuIV6pIS2UMN5Jf9YMnconXYsGGsXbu26Hv7s3Xr7m7N2pfjjjuu5/W3vvUtbrvt\nNh577DFOPfXUou4PQjS7pLoyuqS0eE9E+tDS0sKIESN6Zhxlf6VnN/VnO9VSb826u7O/BkMkA0Zn\nIvksqepKdUmJSN8mTpxIe3t7z4yj7K+5c+cCfW+nmml3t2Z1d7Zv386OHTtwdzo6OujsTO4m2tLS\nwhNPPEFnZyfbt2/nqquu4p133uH4448v0f9YbpEMGD0tjAp1SYlIfv1dl9HXdqrf/e53mTVrVs/x\n7mzN+j//8z9UVVVxyimn0NLSwrBhw3rWWrS1tfGVr3yFUaNGMWHCBB566CEWLVpEbW3t7v6X7JZI\nbtE6e/5svnDUF3iy5UlGDRvFxR++OMTSiexd9GiQPc+QeDRIUDq6koPe6pISESmdaAaMjHUYChgi\nIqURzYCRsdJbs6REREojkgGjs7uTyjIt3BMRKaVIBoyObj1LSkSk1KIZMLRwT0Sk5CL9aBDNkhIJ\nx56w6lhKL5oBIzXoXRYrU8AQKTGtwdh7RTJgpAe9y2Jlery5iEiJRDJgpAe9h5UPY+uOrSQ8Qcwi\nORwjIhIZgf6WNbObzWydmf0lz/UzzazZzJaZ2RNmdkQx+aYHvWMWo6q8ivbO4p4vLyIiAxf0n+W3\nAIV2Ln8V+Ii7HwFcAfyirwy7E904Tlks2TiqrqhWt5SISAkEGjDc/TFgU4HrT7n75tThEmBCX3mm\nZ0ilaS2GiEhp7Ekd/18E7u8rUXqGVJoChohIaewRg95mdiLwBSDv7iCNjY0AtHe2Y5t2zgGvrqzW\n4j0REaCpqYmmpqbA8g98PwwzqwcWuvvhea4fASwAZrr7y3nS9OyHsXrzaj5884dZ/S+rAZjz6zmc\nfcTZnDbltABKLyISXUNqPwwzex/JYHFWvmCRLT1DKk1dUiIipRFol5SZ3Q2cAIw2sxbgMqAcwN1v\nBC4FaoHrU48a2OHu0wvlmT3orVlSIiKlEWjAcPe5fVw/DzivP3lq0FtEJBx70iypoqR320tTwBAR\nKY3IBYzO7s5eLYzqCs2SEhEphcgFDA16i4iEI3oBo1tjGCIiYYhewOjKmiWlhXsiIiURvYAxgEHv\n7z32Pd7e+nbQRRMRGdKiFzAGMK32Z0//jD+++segiyYiMqRFLmDknCVVYOFeV6KLN9vfZEnrklIU\nT0RkyIpcwOhvl9S69nUkPMHStUtLUTwRkSEregEjq0uqqryKju4OuhJdOdOvaVvD5P0ms2zdMjq7\nO0tVTBGRISd6ASPrWVJmVrBbqnVLK5NHT+ag2oNofqu5VMUUERlyohcwshbuQeFuqTVb1lBXXceM\nuhksXaNuKRGRgYpewMhauAd9BIy2NUyomcD0uuksWaOBbxGRgYpcwOjs7tylhVFo8d6atlQLY8IM\nBQwRkd0QuYCRPegNhVsYrVtaqaup47Axh7G2bS2btm0qRTFFRIac6AWMrEFv6HsMY0LNBOKxONP2\nn8bTa58uRTFFRIacSAaMXbqk8syScveeLimAGXUztIBPRGSAohcw+tEl9e72d4lbnOrKaiAZMLSA\nT0RkYCIXMHINeucLGOkZUmkzJiRbGO6eN/9bn7uVx1c/PngFFhEZIgINGGZ2s5mtM7O/FEhzrZmt\nMrNmMzu6rzxzTavNt+vemi1rqKup6zmuq66jLFbG6+++njPv9s52vv7Q1zn9N6ezcsPKvooiIrJX\nCbqFcQswM99FM5sFHOzuk4AvA9f3lWF/Fu5ljl+kvh8zJuRfwHdH8x2c8Fcn8IOP/YBT7jqF9VvX\n91UcEZG9RlmQmbv7Y2ZWXyDJ3wK3pdIuMbORZjbO3dflu6E/s6Rat7T2ChiQGvhes4Qzpp6RXVau\ne/o6rvvkdZx44Ims2riK2fNn88g5j7BP2T45y/LYG4+xpm0NH3//x9mvar8C1ZShxN1JeALHcXec\n1LE73YkECXe6uhMkEk7CfZdjTx+795zrTh+nzqXzSSRSx56gu9tT3zt1PTO/RKLnWub9mel7Xnfn\nv5bwVL44idT5bt953bPS57qe8J359+d6+v+z1/WM/9vM40RW+l3SJo9S+SR6p8Uh63jnzzLz/ox7\nM69n/Nwzr5P6/pBxfyo/Mo/pfdwrfcb94Lil0yd6pSczL9s1v515DK5AA0YR6oCWjONWYAKQP2Dk\nGPTOt3BvzZY1HDX+qF7nptdN598f/fdd0j7y2iPELEZDfQMA/3Hif/DKplc4995zuev0u4jZzsZY\ny+YWvvHwN1jSuoTDxx3Olxd+maljpzJr0ixmTZrFUeOPoivRxSsbX+HFd17ihbde5IV1L7Jh60ZG\nxGsZHqulKjaKYdSyj9fS2dXNe13vsW3HVrZ1vce27q10dHeAxzAvwzwOiTjmZckPuHfR7d2pf7tI\neHfyreHgmV89H6AECTL+zfhQ4Mm3Iu6pNKk3fuqN1/sDsPPDkpkm15u9fx+GrA9A5r3W+/v3pLWd\nHyIy8ku/xjLSW/p7JjJeO9jO673ut51pe44tfZzilvzCwGOp41jqOM/rjGPLPCb7XDK99VyPZbw2\njJ15p+/pfS7j/vS1rLTZ91k/XhsG1vs4nV/yc2K7nDMMs4z0lnUtXR4zYsRSaQ3rdW92XqnrqXzT\n12IZecQshsUy7u25L/lvPLYzv57rlixlLONa5rlY6jiemT51f/pa5vVe52Kxnrx6Xmdfy8gzHkvW\nKxbrnV88lqxXLOv+5LWd98/50aG7/K7bHWEHDEh+kjLlDIuNjY0AtC5tpXl8M0d/eudwR6EuqVMO\nOaXXuWMOOIbmt5rZ0b2D8nh5z/mfLv0pFxx7QeqNDDGLccvsWzjp9pO49NFL+c+P/ifbu7bzoyd/\nxNWLr+Yrx1zARYfcwprXq/jEyO0seeMx5i+/n++Vz6Uj/jbdsW3E2ifi6ycT2zSZqvemM8xHEx/+\nLla1CYZtxPdpJVG5kbiVUe7DqbAqyhlOhQ2nzEZhlsBi3RDrglg3xDpSb8o4caskbmVUWNnOD1gM\nLAax1P+oGam0McxiGW+43m90M3p9eDKvx/O9znjj93xgUm/Y7NeFPgy5XscsRjyW9eHMyi8W630u\nHo/1yrssnpnfzvTxeMYHMeMDVxbv/QEsS+UXi/V+nfxeqf+z1FcsRq9jkbA0NTXR9GhTYPlboRlD\ng/INkl1SC9398BzXbgCa3H1+6nglcEJ2l5SZebqcB117EA+d9RAHjTqo5/pzbz3HOfeeQ/M/9n4a\n7dE3Hs2vPvUrPnjAB3udn/rzqdw+53am7T8NgNc2vcYxvzyG1f+8muEVw3ulXb91PcfddBwfGftp\n/vuVexmxbSqjll7Nyqfez9ixMGUK1NXBAQckv+rqoKJ2HRPH1DK6toLqaqjo3YMmIlISZoa7D9qf\nMWG3MH4PXADMN7MPAe8WGr+A3IPe+RbutW5p7TWtNm163XSWtC7pCRg/f/rnnHvkubsEi82b4Z67\nxlD+2//mrikXML3rOk49dCYfvBimTYPa2nylHFeoCiIikRRowDCzu4ETgNFm1gJcBpQDuPuN7n6/\nmc0ys5eBrcDn+8qz2KfVdnR1sKVjC2OGj9kljxl1M1i8ZjHncz7v7XiPW567haVfSs6ccofFi+EX\nv4B774WPfxyuvXQyJ530MLHIrVoRERk8Qc+SmltEmgv6k2dHV3GzpNa2rWX8iPG9BqvTZkyYwTVL\nrgHgzmV3ctzE43h/7ftZuxY+8xl46y340pfgyith7Nj+lE5EZOiK3N/MuZ4llT7u6OroOZevOwpg\n6tiprN68ms3bN/PTpT/lwukX8thjcOyx8IlPwMqV8M1vKliIiGSKVMBwdzq7O3dpYcCurYzsRXuZ\nymJlHL3/0fzoqR/R2d3JCws/xt/9Hdx0E/zbv6GuJxGRHMIe9O6XHYkdlMfKc3YzpQNGeswivTVr\nPjPqZvD9x7/PEW9dze1Pxli8GA48MLCii4hEXqQCRq4ZUmnZi/fWtPV+jlS2Q4ZPp7tjHya/dw6/\nehKGDRv04oqIDCmR6nzJNUMqLbtLqtAYBsCin/wtn+l8mP+6uVrBQkSkCJFrYeQav4D+jWHcey8s\nX7YPzXfM0MpcEZEiRStg5JghlZa9eC/70eZpmzfDhRfCf/0X7JP7mYIiIpJDtLqkcjx4MC2zhZHw\nBG+2v8kB1Qfsku6SS+CTn4QTTgi0qCIiQ06kWhi5dttLq66o7gkY67eup6ayZpfHkj/xBNx3H7zw\nQuBFFREZcqLVwuhj0Ds9SyrX+EVHB5x3Hlx7LYwcGXhRRUSGnGgFjCIHvddsWbPLDKnvfQ8mT4bT\nTgu8mCIiQ1KkuqQKDnpX7uySyt5pb/ly+NnP4LnntF+BiMhARa6FUXSXVMYMqa9+FS6/PLlXhYiI\nDEy0AkaBFkavLqm2nV1Sb74J//u/yfELEREZuEgFjM7uzrwtjMxZUpldUvfeC6ecol3vRER2V6QC\nRqFnSdVU1vQs3MtctLdggQa6RUQGQ7QCRncHFbEiZkmlptVu3AhLl8LJJ5eylCIiQ1O0AkYfT6vd\n0rGFto42uhJdjNxnJAsXwkknQVVViQsqIjIERStgFFi4V12RfLx5evzCzNQdJSIyiAINGGY208xW\nmtkqM7s4x/XRZvaAmT1nZs+b2bmF8ivUwiiPl1MZr2TVxlXU1dTR3g5NTXDqqYNSFRGRvV5gAcPM\n4sB1wEzgA8BcM5uSlewC4Fl3PwpoAH5kZnkXExaaJQXJbqmVG1YyoWYCDzwAxx2nx4CIiAyWPgOG\nmX3VzGoHkPd04GV3f93ddwDzgdlZad4EalKva4B33L0rX4aF1mFAcuB7xYYV1FXXsWABzJkzgFKL\niEhOxbQwxgFPm9lvUl1MxT5cow5oyThuTZ3L9EvgMDNbCzQDXyuUYaFnSUEyYCxfv5xxw+pYtAhm\nZ4cnEREZsD6fJeXu3zazfwc+AZwLXGdmvwFucvdXCt1axPf/V+A5d28ws4OAh83sSHdvy07Y2NjI\n4y89zpjhY5jWMY2GhoZdMquuqObZt57lndcnMHUqjB9fRAlERIaIpqYmmpqaAsu/qIcPunvCzN4C\n1gHdQC1wj5n90d2/mee2NcDEjOOJJFsZmf4a+E7qe7xiZq8Bk4FnsjNrbGyk5b4Wjpt4HA3TGnJ+\nw/RajL88UafZUSKy12loaOj1x/Tll18+qPkXM4bxNTP7M/AD4AlgqrufD3wQKPRr+RlgkpnVm1kF\ncAbw+6w0K4GPpb7POJLB4tV8GXYmCg9611Qmh0MeX1Sn8QsRkUFWTAtjFHCau7+ReTLV6vhUvpvc\nvcvMLgAeBOIku7BWmNm81PUbge8Ct5hZM8ngdZG7b8yXZ6FptZDskooR432jxlFfX0TNRESkaMWM\nYVxW4NryPu5dBCzKOndjxusNQN6gk62ju+9B72GJ/Tl9TqS2+RARiYRorfQusB8GQHVlDZ0bNH4h\nIhKEaAWMPtZhvLuumsqOOqZkLw8UEZHdFqm+m75aGLz2URr2PVDbsIqIBCBSAaOzu7NgC2PTi1M5\ndfrUEpZIRGTvEb0uqQItjBUrUHeUiEhAohUwCjwaxF0BQ0QkSNEKGAUGvdetg3gcxowpcaFERPYS\n0QoYBQa91boQEQlWtAJGgRaGAoaISLAiFTAKbaCkgCEiEqxIBYxCz5JSwBARCVZkAkZ3opuEJ4hb\nPOd1BQwRkWBFJmCkxy9ybfi3eTO8+y5MnJjjRhERGRTRCRgFZkitXAmTJ0MsMrUREYmeyPyK1Qwp\nEZFwRSZgaIaUiEi4IhMwCj0WRAFDRCR40QkY6pISEQlVdAJGnkHvjg5oaYGDDw6hUCIie5FAA4aZ\nzTSzlWa2yswuzpOmwcyeNbPnzawpX175WhirVkF9PVTk3+pbREQGQWAbKJlZHLgO+BiwBnjazH7v\n7isy0owEfgac7O6tZjY6X375WhjqjhIRKY0gWxjTgZfd/XV33wHMB2Znpfks8Dt3bwVw9w35Msu3\n254ChohIaQQZMOqAlozj1tS5TJOAUWb2qJk9Y2Zn58usozv3LCkFDBGR0ghyT28vIk05MA04CagC\nnjKzxe6+KjvhHdfcwSvrX6HxxUYaGhpoaGgAkgHj618fxFKLiERUU1MTTU1NgeVv7sX8Xh9AxmYf\nAhrdfWbq+BIg4e5XZqS5GBjm7o2p418BD7j7PVl5+R3Nd7Do5UXcedqdPee7u6G6Gt5+G0aMCKQa\nIiKRZWa4+64P4BugILukngEmmVm9mVUAZwC/z0pzH/BhM4ubWRUwA1ieK7Ncg95vvAGjRytYiIiU\nQmBdUu7eZWYXAA8CceAmd19hZvNS129095Vm9gCwDEgAv3T3nAEj16NBNH4hIlI6QY5h4O6LgEVZ\n527MOv4h8MO+8sq1DkMBQ0SkdCK10jt7lpQChohI6UQnYHTvOoahgCEiUjrRCRhZ+3m7JwPGoYeG\nWCgRkb1IdAJGVgtj3brkDntjxoRYKBGRvUhkAkb2o0HS3VE5tvgWEZEARCZgZA96a/xCRKS0ohMw\nsrqkFDBEREorWgEjR5eUiIiURnQCRpdaGCIiYYpOwMhoYezYkZwlNXFiyIUSEdmLRCZgZD5L6p13\nYNQoiMdDLpSIyF4kMgEjc5bUhg3Jp9SKiEjpRCdgZHRJrV+vBXsiIqUWnYCRMeitFoaISOlFJ2Bk\ntDA2bFALQ0Sk1KITMDJaGOvXq4UhIlJqkQkYmc+SUgtDRKT0IhMwOrp3zpJSC0NEpPSiEzCyBr3V\nwhARKa1AA4aZzTSzlWa2yswuLpDuWDPrMrPT8qXJnlarFoaISGkFFjDMLA5cB8wEPgDMNbNdnv6U\nSncl8ACQd3eLzu5OLdwTEQlRkC2M6cDL7v66u+8A5gOzc6S7ELgHWF8os/JYOTGL4a4WhohIGIIM\nGHVAS8Zxa+pcDzOrIxlErk+d8nyZpbuj2tuhrAyqqga1rCIi0oeyAPPO+8s/w0+Ab7m7m5lRoEuq\n65EuGjsa2bQJqqsbgIbBKaWIyBDR1NREU1NTYPmbezG/1weQsdmHgEZ3n5k6vgRIuPuVGWleZWeQ\nGA28B3zJ3X+flZfv/8P9Wfv1tSxdCl/5CjzzTCDFFhEZMswMd8/7h3h/BdnCeAaYZGb1wFrgDGBu\nZgJ3f3/6tZndAizMDhZpevCgiEi4AgsY7t5lZhcADwJx4CZ3X2Fm81LXb+xPfnrwoIhIuIJsYeDu\ni4BFWedyBgp3/3yhvNTCEBEJV2RWemsNhohIuCITMDKfVKsWhohI6UUnYJRpDENEJEzRCRhqYYiI\nhCo6AUMtDBGRUEUnYOjR5iIioYpMwKiIV7BjB2zZArW1YZdGRGTvE5mAURmvZONGGDUKYpEptYjI\n0BGZX71vIh++AAAHxUlEQVSVZZV6rLmISIiiEzDilRq/EBEJUXQChloYIiKhik7AUAtDRCRUkQkY\nFfEKtTBEREIUmYBRWVapRXsiIiGKTsCIV+qxICIiIYpOwFALQ0QkVNEJGGphiIiEKjIBoyJeoRaG\niEiIAg8YZjbTzFaa2SozuzjH9TPNrNnMlpnZE2Z2RK58KuJahyEiEqZAA4aZxYHrgJnAB4C5ZjYl\nK9mrwEfc/QjgCuAXufJK7KikrAyqqoIssYiI5BN0C2M68LK7v+7uO4D5wOzMBO7+lLtvTh0uASbk\nymhbW6XGL0REQhR0wKgDWjKOW1Pn8vkicH+uC9vaK9UdJSISorKA8/diE5rZicAXgONzXX9vi1oY\nIiJhCjpgrAEmZhxPJNnK6CU10P1LYKa7b8qV0X2338SGNX+gsREaGhpoaGgIoLgiItHV1NREU1NT\nYPmbe9GNgP5nblYGvAicBKwFlgJz3X1FRpr3AY8AZ7n74jz5+EU/WMmONydz9dWBFVdEZEgxM9zd\nBiu/QFsY7t5lZhcADwJx4CZ3X2Fm81LXbwQuBWqB680MYIe7T8/Oa8vGSiZqDENEJDSBtjAGi5n5\n3C+t5cRj9+dLXwq7NCIi0TDYLYzIrPTetEGzpEREwhSpgKFZUiIi4YlMwHhnXYVaGCIiIYpMwNiw\nvkwtDBGREEVm0Dsedzo6IB4PuzQiItGw1w5619YqWIiIhCkyAUPdUSIi4YpMwNCAt4hIuCITMNTC\nEBEJV2QChloYIiLhikzAUAtDRCRckQkYamGIiIQrMgFDLQwRkXBFJmCohSEiEq7IBAy1MEREwhWZ\ngKEWhohIuBQwRESkKJF5+GAUyikisifZax8+KCIi4Qo0YJjZTDNbaWarzOziPGmuTV1vNrOjgyyP\niIgMXGABw8ziwHXATOADwFwzm5KVZhZwsLtPAr4MXB9UefZkTU1NYRchUEO5fkO5bqD6SW9BtjCm\nAy+7++vuvgOYD8zOSvO3wG0A7r4EGGlm4wIs0x5pqL9ph3L9hnLdQPWT3oIMGHVAS8Zxa+pcX2km\nBFgmEREZoCADRrHTmrJH8DUdSkRkDxTYtFoz+xDQ6O4zU8eXAAl3vzIjzQ1Ak7vPTx2vBE5w93VZ\neSmIiIgMwGBOqy0brIxyeAaYZGb1wFrgDGBuVprfAxcA81MB5t3sYAGDW2ERERmYwAKGu3eZ2QXA\ng0AcuMndV5jZvNT1G939fjObZWYvA1uBzwdVHhER2T2RWOktIiLhK/lK791ZzJfvXjMbZWYPm9lL\nZvaQmY0sRV1yCah+f29mL5hZt5lNK0U98gmofleZ2YpU+gVmtm8p6pJLQPW7IpX2OTP7k5lNLEVd\ncpR70OuWcf3rZpYws1FB1qGQgH52jWbWambPpr5mlqIuuQT18zOzC1Ofv+fN7Mpdc83g7iX7Itk1\n9TJQD5QDzwFTstLMAu5PvZ4BLO7rXuAHwEWp1xcD3y9lvUpQv0OBQ4BHgWlh1C3g+n0ciKVef38I\n/vyqM+6/EPjVUKlb6vpE4AHgNWDUEPvZXQb8vzDqVKL6nQg8DJSnjscUKkepWxgDXcw3vo97e+5J\n/fvpYKuRVyD1c/eV7v5SqSpRQFD1e9jdE6n7lxDeWpyg6teWcf8IYEOw1cgpqM8ewNXARUFXoA9B\n1m9PmHQTVP3OB76XOo+7ry9UiFIHjIEu5qsDDihw7zjfObtqHRDWavGg6renKEX9vgDcv9slHZjA\n6mdm3zGz1cA5JFtRpRZI3cxsNtDq7ssGu8D9FOR788JUF89NIXZ3B1W/ScBHzGyxmTWZ2TGFClHq\ngDHQxXz50uySnyfbVWGN5A9m/fZEgdbPzL4NdLr7XQO5fxAEVj93/7a7vw+4Ffhxf+8fBINeNzMb\nBvwryW6bft8/yIL62V0PHAgcBbwJ/Kif9w+WoOpXBtS6+4eAbwK/6StxKa0h2d+ZNpFktCuUZkIq\nTXmO82tSr9eZ2Xh3f8vM9gfeHtRSF28w65fr3rAFVj8zO5dkH+xJg1fcfivFz+8uwmlBBVG3g0j2\nizebWTr9n81suruX+jMYyM8usx5m9itg4eAVuV+Cem+2AgsA3P3p1MSF/dz9nZylKPHATRnwCsk3\nWQV9D9x8iJ0DN3nvJTnofXHq9bcIb9A0kPpl3Pso8MEw6hbwz28m8AIwOqy6BVy/SRn3XwjcMVTq\nlnV/mIPeQf3s9s+4/1+Au4ZY/eYBl6deHwKsLliOECr+SeBFkqP2l2QUel5GmutS15vJmBWU697U\n+VHAH4GXgIeAkWH8UAOs3xySfZDbgLeARUOsfquAN4BnU18/H2L1uwf4S+qD+jtg7FCpW1b+rxJS\nwAjwZ3c7sCyV/l6S46VDqX7lwB2p9+efgYZCZdDCPRERKYq2aBURkaIoYIiISFEUMEREpCgKGCIi\nUhQFDBERKYoChoiIFEUBQ2SAzGxfMzs/7HKIlIoChsjA1QJfCbsQIqWigCEycN8HDkptrFN44xmR\nIUArvUUGyMz+CviDux8edllESkEtDJGBi+pj6kUGRAFDRESKooAhMnBtQHXYhRApFQUMkQHy5CYz\nT5jZXzToLXsDDXqLiEhR1MIQEZGiKGCIiEhRFDBERKQoChgiIlIUBQwRESmKAoaIiBRFAUNERIqi\ngCEiIkX5P35bsBSB1IexAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fbf23e04950>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHhFJREFUeJzt3X2QVdWZ7/HvQ4MvIEQNBiJqKA1xRKXQBORF5AhGWxjT\nxoxxSDJTGS1HM4XzUqlEnamSvnVnrLEmM9dktCLXt4neO1oBEcEgqJFjEBFEUaICAZUAYkRU3kSx\noZ/5Y51jtydnd5/uPnvvs/v8PlW7OC/r7H560/SPtdbea5u7IyIiUk6ftAsQEZHapZAQEZFICgkR\nEYmkkBARkUgKCRERiaSQEBGRSAoJERGJpJAQSZiZNZvZ/WnXIVIJhYSIiERSSEhdM7Mfmdncktd+\nZma3lml7vZnNKXntp2b208Lj75vZ62a2x8zeMLPvlNlHI3AjcIWZ7TWzNdX9jkSqy7Qsh9QzMxsK\nbAKGuftuM+sLvAU0uvuakrYnAeuAIe6+z8wagK3ApcCrwHbga+6+0cyGAJ9399fKfM1ZwCnu/pex\nfnMiVaCehNQ1d/8DsAy4vPBSI/BuaUAU2m4BXgS+WXhpCrDf3VcVnrcCZ5rZke7+TrmAKLDCJlLz\nFBIi8Avge4XH3wM6mlT+b2BG4fF3gP8P4O4fAlcA1wLbzexRMzs1nnJFkqPhJql7ZnYkYYjpPGAF\ncJq7b4toexzwe2AE8Aowzt03lLQ5HPgXYKy7n1dmHzcBI9z9L6r6jYjEQD0JqXvu/hHwEKGXsDIq\nIApt3wXywH8BbxQDwsy+YGZNZjYAaAE+BA5F7OYdYLiZachJap5CQiT4BXAGHQ81Ff03MLXwZ1Ef\n4B8IPZL3gEnADyI+XzxD6j0zW92takUSEutwk5ndA0wHdrj7mWXeHwz8P2Ao0Bf4ibv/V2wFiUQw\nsxOB9RTOXEq7HpFaEXdP4l7C2SJRZgJr3H00kAP+vXAKokhizKwP8EPgAQWEyGfF+gvZ3ZeZ2fAO\nmrwNjCo8HgS85+4H46xJpL3CHMI7wJt0/B8akbqU9v/a7wSeMrPtwEDg2ynXI3WmcOrqUWnXIVKr\n0p64/kfgJXc/HhgN3G5mA1OuSURECtLuSUwgnE+Ou79uZm8CpwKfOePDzHQxh4hIN7h7j061Trsn\nsR64AKCw1s2pwBvlGrp7TW2zZs1KvYYs1FSrdakm1VQPdVVDrD0JM3sAmAwMNrOtwCygH4C7zwZu\nBu41s5cJgfVjd38/zppERKRycZ/dNKOT93cCl8RZg4iIdF/aw02Zlcvl0i7hj9RiTVCbdammyqim\nytVqXT2ViQX+zMyzUKeISC0xMzzjE9ciIlLDFBIiIhJJISEiIpEUEiIiEkkhISIikRQSIiISSSEh\nIiKRFBIiIhJJISEiIpEUEiIiEkkhISLSTS0t8PzzcPvt0NqadjXxSPumQyIimbFjB6xYEbZnn4UX\nX4STT4YJE2D/fjiqF94IVwv8iYiUcegQvPZaCIPitnMnjBsH48eHYBg7FgYNSrvSaNVY4E8hISIC\n7NkDK1e2BcLKlTB0aAiDCRNCMJx2GvTJ0CB9zYeEmd0DTAd2uPuZEW1ywP8h3LFup7vnyrRRSIhI\n1bjD5s2wfHkIhOXL4fXX4atf/WwoDB6cdqU9k4WQmATsA+4rFxJmdjSwHLjI3beZ2eDC3epK2ykk\nRKTbWlpgzZoQBsVgcIeJE9u20aPhsMPSrrS6aj4kAMxsOLAwIiT+Bhjq7jd1sg+FhIhUbNeuMLn8\nzDMhFFavDhPM7UNh+HCwHv36rH3VCIm0z24aAfQzs6XAQOCn7n5/yjWJSIa4w+9/H8LgmWfCtnkz\njBkTwuCGG8Jk89FHp11pNqUdEv2As4GpQH9ghZk95+4bSxs2Nzd/+jiXy/Xa+8mKSMcOHYLf/rYt\nEJ55Bg4ehHPPDaFw5ZVh6Khfv7QrTV4+nyefz1d1n2kPN10PHOnuzYXndwGL3X1uSTsNN4nUqY8+\nglWrYNmyEAgrVsDxx4dQKG4nn9z7h466ozcMNz0C3GZmDcDhwDnAf6Rbkoik6f3323oIy5bB2rVw\nxhkwaRJcey3cfz8cd1zaVdaPWEPCzB4AJgODzWwrMIswxIS7z3b39Wa2GFgLtAJ3uvtrcdYkIrVl\n69YQBsVtyxY455wQCjffHC5YGzAg7Srrly6mE5HEuMPvfge/+U1bKOzbFwKhuI0eDX3THuPoJTJx\nCmw1KCREsunQoTBc1D4UjjwyhMF554U/Tz1V8wlxUUiISE355JNwTcJvfhO2Z58Nk8ztQ+Gkk9Ku\nsn4oJEQkVR99FNY4evrpEAqrVsGIEW2BMGkSfOELaVdZvxQSIpKofftC76AYCmvWhDOPJk8OwTBx\noi5aqyUKCRGJ1e7d4Urmp58O2yuvwFlnhVCYPDksgtcb76HQWygkRKSqdu0Kk8tPPw35PKxfH05B\nLfYUxo0LE8+SDQoJEemRDz4Iw0bFUNi4MQRBsacwdiwcfnjaVUp3KSREpEs++CD0FPJ5WLo03ENh\n/PgQCLkcfO1rvW+57HqmkBCRDhWHj4qhsHFjCIXzz28LhXpcCK9eKCRE5DP27AmhsHRpCIYNG8Lw\nUftQUE+hfigkROrchx+GhfCWLg3bq6+GeYTzzw/bmDGaU6hnCgmROvPxx2Gp7KeeCqHw0ktw9tkw\nZUroKYwbB0cckXaVUisUEiK93CefwPPPh1B46qnw+MwzQy9hyhSYMAH690+7SqlVCgmRXubQodA7\nKIbC8uXw5S+HUJg6NdxgZ9CgtKuUrFBIiGScO6xb1xYK+TwMHRp6CVOmhFNTP//5tKuUrFJIiGTQ\nli3w61+H7amnwtlGU6e2BcMXv5h2hdJb1HxImNk9wHRgR7l7XLdrNwZYAXzb3eeVeV8hIZm1c2eY\nZH7yyRAMe/a0BcLUqbo/s8QnCyExCdgH3BcVEoX7Wz8B7AfudfeHyrRRSEhm7N8frlX49a9DMGza\nFNY9mjo1bGecAX36pF2l1INqhESsNwl092VmNryTZtcBc4ExcdYiEpeDB+GFF0IgPPlkOAPp7LND\nIPznf4brFnRVs2RVqneSNbNhQBMwhRAS6i5IzSvep7kYCvl8uNvaBRfAj34Ueg1aPlt6i7RvN34r\ncIO7u5kZENktam5u/vRxLpcjl8vFXpxI0Y4dIRCeeCL8aRZC4fLL4Y47YMiQtCsUgXw+Tz6fr+o+\nYz+7qTDctLDcnISZvUFbMAwmzEtc7e4LStppTkISVZxXeOKJsG3ZEq5ovuAC+PrXwy06Ndksta7m\n5yQ64+4nFx+b2b2EMFnQwUdEYtHaGm7FWQyFVatg9OgQCHfcEdZA6pt2v1skBbH+2JvZA8BkYLCZ\nbQVmAf0A3H12nF9bpDNbt4ZAePzxcCbS4MEhFP7+70OvYeDAtCsUSZ8uppO6sW9fuAPb44+H7d13\nw/DRhReGcDjxxLQrFKmumr9OoloUEtIdra1hHaTHH4clS8KpqWPGhFC48EI46yxdryC9m0JCpMTb\nb7f1FJ54Ao49NgTCRReFdZB0aqrUE4WE1L0DB8JNd5YsCduWLeEitosuCuHwpS+lXaFIehQSUnfc\nw32aFy8OobBsGZx+egiFiy7SWUgi7SkkpC7s2RNWS12yJITDwYNtoTB1ahhSEpE/lvnrJETKcYeX\nXw6BsHhxWBdp/PgQCo8+CiNH6kI2kaSoJyE14f33w2RzcRhp4EBobAzb5MkwYEDaFYpkj4abJLNa\nW2H1anjssRAMr74awqAYDKecknaFItmnkJBM2bkz9BIeeyz8edxxcPHFYTv3XDjiiLQrFOldFBJS\n04q9hUWLQjCsXw/nnx9CobFRp6eKxE0hITWnOLewaFEYRir2FqZNC72Fww5Lu0KR+qGQkNS5h6Uv\nHnssBMPatWFxvGnTQjiotyCSHoWEpGLv3nDjnV/9KgTDgAEwfXoIhvPO09yCSK1QSEgiirfrLIbC\nqlXhuoVp08I2YkTaFYpIOQoJic2BA2FZ7V/9KmwHDoRAmD4dpkzRQnkiWaArrqWqtm9vC4WlS+GM\nM+BP/xTmzYMzz9RVziL1KNaehJndA0wHdkTc4/q7wI8J97neC/zA3deWaaeeRAyKp6g++mjYNm8O\nS19Mnx5OUR08OO0KRaQnan64ycwmAfuA+yJCYjzwmrvvNrNGoNndx5Vpp5Cokr17w30WHn00zC8c\ne2zoLUyfDhMnagVVkd6k5kMCwMyGAwvLhURJu2OA37r7CWXeU0j0wJtvtvUWnn02TDoXg0HLX4j0\nXr1tTuIqYFHaRfQGhw7BypWwcGHYduwIgXDNNTB3blg8T0SkEjUREmZ2PnAlMDGqTXNz86ePc7kc\nuVwu9rqyZO/ecKXzwoVhGGnoULjkErjzThg7Fhoa0q5QROKWz+fJ5/NV3Wfqw01mNgqYBzS6+6aI\nNhpuKmPLlrbeQnEY6ZJLwlDS8OFpVyciacv8cJOZnUQIiO9FBYS0aW2FF1+EBQtCMGzdGoaRrr4a\n5szRMJKIVF/cZzc9AEwGBgPvALOAfgDuPtvM7gK+CWwpfKTF3ceW2U/d9iQ+/jhcs/DIIyEYjjoK\nmppCj2H8eJ2NJCLRMnF2UzXUW0js3BnmFR55JKyRNGpUWzCcemra1YlIVigkepFNm0IoPPJIuL/z\n1KnwjW+E4aTjjku7OhHJIoVEhhWvdi4Gw86dIRSamkJAaCVVEekphUTGHDgQ5hfmzw+Tz5/7XAiF\npiY45xzo0yftCkWkN8n82U31YPfucEOe+fPDndpOPz2EwtKlml8QkdqnnkQMtm8PPYX588P1C5Mm\nwaWXhonnoUPTrk5E6oWGm2rI734HDz8ctg0bwr0XLr00rKaq6xdEJA0KiRS5wwsvhN7Cww/DBx+E\nULj00nCP58MOS7tCEal3ComEHToEzzwTbsIzfz4cfjh885thGztWE88iUls0cZ2AAwfCBW0PPxzm\nGU44AS67LFzsNnKk7tYmIr2behJl7N0bzkiaNy+ckTRqVFuPQQvniUhWaLipit5/P6yNNG9eOD11\nwoTQY2hqgiFDYv3SIiKxUEj00B/+EOYW5s2D554LVzp/61thqe2jj676lxMRSZRCohu2b4eHHgpL\na69dG05VvewyuPhiGDCgKl9CRKQmKCQq9NZbbcHwyivhorbLL4cLLwxnKImI9EYKiQ60tsJ998Fd\nd8Frr7UFw9e/rmAQkfpQ86fAmtk9wHRgRwe3L/0ZcDGwH/i+u6/p6dfdtCncrW3/frjpphAMurhN\nRKTr4r78616gMepNM5sGfNndRwB/Dfy8J1/s4EH4yU9g3Liw7Pazz4b7MSggRES6J9aehLsvM7Ph\nHTT5BvCLQtuVZna0mQ1x93e6+rXWroWrroJBg2DVKjj55O7VLCIibdJeSGIYsLXd823ACV3ZwYED\nYUjpggvg2mvD1dEKCBGR6qiFZTlKJ1UqnqHevz/crOeUU+Cll+D446tcmYhInUs7JN4CTmz3/ITC\na3+kubn508e5XI5cLseWLfDRR2FdJa2hJCL1Lp/Pk8/nq7rP2E+BLcxJLCx3dlNh4nqmu08zs3HA\nre4+rky7sqfArlwJ110X5iBEROSzsnAK7APAZGCwmW0FZgH9ANx9trsvMrNpZrYJ+BD4q67sf9eu\ncJ9oERGJR9xnN82ooM3M7u5/926tsSQiEqe0z27qkd271ZMQEYlTpkNCw00iIvHKdEhouElEJF6Z\nDwn1JERE4pPpkNBwk4hIvDIdEhpuEhGJV6chYWZ/a2bHJFFMV2m4SUQkXpX0JIYAz5vZL82s0ax2\nFsDQcJOISLw6DQl3/yfgK8A9wPeBjWZ2s5mdEnNtndJwk4hIvCqak3D3VuAPwDvAIeAYYK6Z/VuM\ntXVKPQkRkXh1usCfmf0d8JfAe8BdwMPu3mJmfYCN7h57j6LcAn+trdCvX7ifRN+017IVEalBSS3w\ndyxwmbv/vv2L7t5qZpf05Iv3xL590L+/AkJEJE6d/op191kdvPdadcupnIaaRETil9nrJDRpLSIS\nv0yHhHoSIiLxymxIaLhJRCR+sYZE4eK79Wa20cyuL/P+YDNbbGYvmdkrZvb9Svet4SYRkfjFFhJm\n1gDcBjQCI4EZZnZaSbOZwBp3Hw3kgH83s4rOV9Jwk4hI/OLsSYwFNrn7ZndvAR4EmkravA0MKjwe\nBLzn7gcr2bmGm0RE4hfnVQbDgK3tnm8DzilpcyfwlJltBwYC365057t3wzE1ueygiEjvEWdPouNL\nuYN/BF5y9+OB0cDtZjawkp2rJyEiEr84exJvASe2e34ioTfR3gTgXwDc/XUzexM4FVhdurPm5uZP\nH+dyOXbvzmniWkSknXw+Tz6fr+o+O127qds7DhPQG4CpwHZgFTDD3de1a/MfwG53/19mNgR4ARjl\n7u+X7OuP1m66+GK47jqYNi2W8kVEMi+ptZu6xd0PmtlMYAnQANzt7uvM7JrC+7OBm4F7zexlwtDX\nj0sDIoqGm0RE4hdbT6KayvUkRo6EOXPg9NNTKkpEpMZVoyeR2SuudZ2EiEj8MhsSGm4SEYlfJkOi\npSXcbOioo9KuRESkd8tkSOzZA4MGgfVopE1ERDqTyZDYtUuL+4mIJCGTIaFJaxGRZCgkREQkUiZD\nQsNNIiLJyGRIqCchIpKMTIaErpEQEUlGJkNCty4VEUlGZkNCPQkRkfhlMiQ03CQikoxMhoSGm0RE\nkpHZkFBPQkQkfpkMCV0nISKSjFhDwswazWy9mW00s+sj2uTMbI2ZvWJm+Ur2q56EiEgyYrt9qZk1\nALcBFwBvAc+b2YKSe1wfDdwOXOTu28xscCX7VkiIiCQjzp7EWGCTu2929xbgQaCppM13gIfcfRuA\nu+/sbKfuOrtJRCQpcYbEMGBru+fbCq+1NwI41syWmtlqM/uLznb68cfQpw8ccUQVKxURkbJiG24C\nvII2/YCzgalAf2CFmT3n7htLGzY3NwOwdy8ceWQOyFWrThGRXiGfz5PP56u6T3Ov5Hd5N3ZsNg5o\ndvfGwvMbgVZ3v6Vdm+uBI929ufD8LmCxu88t2ZcX61y/HpqaYMOGWMoWEek1zAx379E9POMcbloN\njDCz4WZ2GHAFsKCkzSPAuWbWYGb9gXOA1zraqSatRUSSE9twk7sfNLOZwBKgAbjb3deZ2TWF92e7\n+3ozWwysBVqBO929w5DQpLWISHJiG26qpvbDTb/8JcyZEzYREYlW68NNsdBwk4hIcjIXElqSQ0Qk\nOZkLCfUkRESSo5AQEZFImQsJDTeJiCQncyGhnoSISHIUEiIiEilzIaHhJhGR5GQuJNSTEBFJTuZC\nQj0JEZHkZGpZjtZW6NcPPvkEGhrSrkpEpLbV3bIc+/ZB//4KCBGRpGQqJDTUJCKSrEyFhCatRUSS\npZAQEZFImQoJDTeJiCQr1pAws0YzW29mGwv3s45qN8bMDprZZR3tTz0JEZFkxRYSZtYA3AY0AiOB\nGWZ2WkS7W4DFQIenaikkRESSFWdPYiywyd03u3sL8CDQVKbddcBc4N3OdqjhJhGRZMUZEsOAre2e\nbyu89ikzG0YIjp8XXurwyj71JEREktU3xn1Xcin3rcAN7u5mZnQw3NTc3MyTT8IXvwj5fI5cLlet\nOkVEeoV8Pk8+n6/qPmNblsPMxgHN7t5YeH4j0Orut7Rr8wZtwTAY2A9c7e4LSvbl7s6f/zk0NcGM\nGbGULCLSq1RjWY44exKrgRFmNhzYDlwBfObXu7ufXHxsZvcCC0sDoj0NN4mIJCu2kHD3g2Y2E1gC\nNAB3u/s6M7um8P7sru5TE9ciIsnK1CqwI0fCnDlw+ulpVyQiUvvqbhVYDTeJiCQrUyGh4SYRkWRl\nJiRaWuDAARgwIO1KRETqR2ZCYs8eGDQIrEejayIi0hWZCQkNNYmIJC8zIaFJaxGR5GUmJNSTEBFJ\nXmZCQj0JEZHkKSRERCRSZkJCw00iIsnLTEioJyEikjyFhIiIRMpMSGi4SUQkeZkJCfUkRESSl6mQ\nUE9CRCRZmQmJXbvUkxARSVrsIWFmjWa23sw2mtn1Zd7/rpm9bGZrzWy5mY0qtx8NN4mIJC/WkDCz\nBuA2oBEYCcwws9NKmr0BnOfuo4D/DfzfcvvScJOISPLi7kmMBTa5+2Z3bwEeBJraN3D3Fe6+u/B0\nJXBCuR1puElEJHlxh8QwYGu759sKr0W5ClhU7o0+feDww6tYmYiIdKpvzPv3Shua2fnAlcDEcu/3\n7dtMc3N4nMvlyOVyPS5ORKQ3yefz5PP5qu7T3Cv+Pd71nZuNA5rdvbHw/Eag1d1vKWk3CpgHNLr7\npjL78a98xdmwIbZSRUR6HTPD3Xt0P8+4h5tWAyPMbLiZHQZcASxo38DMTiIExPfKBUSR5iNERJIX\n63CTux80s5nAEqABuNvd15nZNYX3ZwM3AccAP7dwA+sWdx9bui+d2SQikrxYh5uqxcz8z/7MmTMn\n7UpERLIjC8NNVaOehIhI8jITEpqTEBFJnkJCREQiZSYkNNwkIpK8zISEehIiIslTSIiISKTMhISG\nm0REkpeZkFBPQkQkeQoJERGJlJmQ0HCTiEjyMhMSgwalXYGISP3JTEg0NKRdgYhI/clMSIiISPIU\nEiIiEkkhISIikWINCTNrNLP1ZrbRzK6PaPOzwvsvm9lZcdYjIiJdE1tImFkDcBvQCIwEZpjZaSVt\npgFfdvcRwF8DP4+rnmqr9s3Gq6EWa4LarEs1VUY1Va5W6+qpOHsSY4FN7r7Z3VuAB4GmkjbfAH4B\n4O4rgaPNbEiMNVVNLf5A1GJNUJt1qabKqKbK1WpdPRVnSAwDtrZ7vq3wWmdtToixJhER6YI4Q6LS\nm2eX3n+19m+6LSJSJ8w9nt/JZjYOaHb3xsLzG4FWd7+lXZs7gLy7P1h4vh6Y7O7vlOxLwSEi0g3u\nXvof8S7pW61CylgNjDCz4cB24ApgRkmbBcBM4MFCqOwqDQjo+TcpIiLdE1tIuPtBM5sJLAEagLvd\nfZ2ZXVN4f7a7LzKzaWa2CfgQ+Ku46hERka6LbbhJRESyL9UrrntysV0ln02prs1mttbM1pjZqqRq\nMrM/MbMVZvaxmf2wq99PCjWldZy+W/g7W2tmy81sVKWfTbGutI5VU6GmNWb2gplNqfSzKdWUynFq\n126MmR00s2919bMJ19S14+TuqWyEIahNwHCgH/AScFpJm2nAosLjc4DnKv1sGnUVnr8JHJvCsToO\n+Brwz8APu/LZpGtK+TiNBz5XeNxYQz9TZetK+VgNaPf4TMJ1T2n/TJWtKc3j1K7dU8CjwLfSPk5R\nNXXnOKXZk+juxXZDK/xs0nW1vwiw2hPtndbk7u+6+2qgpaufTaGmojSO0wp33114upK263JS/Znq\noK6iNI7Vh+2eHgXsrPSzKdRUlPhxKrgOmAu8243PJllTUcXHKc2Q6O7FdsOA4yv4bBp1QbjO40kz\nW21mVydYUxyfjXO/tXCcrgIWdfOzSdUFKR4rM7vUzNYBjwF/25XPJlwTpHSczGwY4Zd0cVmh4kRv\nasepg5qKjys+TnGeAtuZ7l5sF7ee1nWuu283s+OAJ8xsvbsvS6iman82zv1OdPe30zpOZnY+cCUw\nsauf7Yae1AUpHit3nw/MN7NJwP1m9ic9/LpVrwk4tfBWWsfpVuAGd3czM9p+N6T5by+qJujicUoz\nJN4CTmz3/ERCInbU5oRCm34VfDbput4CcPfthT/fNbOHCV3Dnv6gVlJTHJ+Nbb/u/nbhz8SPU2FS\n+E6g0d0/6MpnU6gr1WPVroZlZtYXOLbQLvWfqWJNZvZ5d38vxeP0VcK1XgCDgYvNrKWr308SNbn7\ngi4fp2pM7nRz8qUv8Dph8uUwOp8gHkfbJGOnn02prv7AwMLjAcBy4MIkamrXtpnPTlzHcqx6WFNq\nxwk4iTDpN66730/CdaV5rE6h7TT5s4HX0/6Z6qCm1P/tFdrfC1yW9nHqoKYuH6ce/wPo4Td7MbCh\n8I/jxsJr1wDXtGtzW+H9l4GzO/ps2nUBJxf+wl4CXqlmXZ3VBAwljFPuBj4AtgBHxXmsultTysfp\nLuA9YE1hW1ULP1NRdaV8rH5c+JprCP/THBP3sepuTWkep5K2n/5CTvM4RdXUneOki+lERCSSbl8q\nIiKRFBIiIhJJISEiIpEUEiIiEkkhISIikRQSIiISSSEh0k1m9jkz+0HadYjESSEh0n3HAH+TdhEi\ncVJIiHTfvwKnFG7eckvaxYjEQVdci3STmX0JeNTdz0y7FpG4qCch0n1JL2MvkjiFhIiIRFJIiHTf\nXmBg2kWIxEkhIdJN7v4esNzMfquJa+mtNHEtIiKR1JMQEZFICgkREYmkkBARkUgKCRERiaSQEBGR\nSAoJERGJpJAQEZFICgkREYn0P5bbRGIvXNRJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fbf23882f10>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,xlabel,ylabel,show,title,legend\n", + "from numpy import arange,exp\n", + "def f(t,y):\n", + " yp=-1000*y+3000-2000*exp(-t)\n", + " return yp\n", + "y0=0#\n", + "#explicit euler\n", + "h1=0.0005#\n", + "y1 =[y0]\n", + "count=1#\n", + "t=arange(0,0.0061,0.0001)\n", + "for i in arange(0,0.00591,0.0001):\n", + " y1.append(y1[(count-1)]+f(i,y1[(count-1)])*h1)\n", + " count=count+1#\n", + "\n", + "plot(t,y1)\n", + "h2=0.0015#\n", + "y2=[y0]#\n", + "count=1#\n", + "t=arange(0,0.0061,0.0001)\n", + "for i in arange(0,0.00591,0.0001):\n", + " y2.append(y2[(count-1)]+f(i,y2[(count-1)])*h2)\n", + " count=count+1#\n", + "\n", + "plot(t,y2)\n", + "title(\"y vs t\")\n", + "xlabel(\"t\")\n", + "ylabel(\"y\")\n", + "h=legend([\"h-0.0005\",\"h=0.0015\"])\n", + "show()\n", + "#implicit order\n", + "h3=0.05#\n", + "y3=[y0]#\n", + "count=1#\n", + "t=arange(0,0.401,0.01)\n", + "for j in arange(0,0.40,0.01):\n", + " y3.append((y3[(count-1)]+3000*h3-2000*h3*exp(-(j+0.01)))/(1+1000*h3))\n", + " count=count+1#\n", + "\n", + "plot(t,y3)\n", + "title(\"y vs t\")\n", + "xlabel(\"t\")\n", + "ylabel(\"y\")\n", + "show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.2 Pg: 758" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f(x,y) = 4*exp(0.8*x) - 0.5*y\n", + "the first corrector yields y = 15.7669298488\n", + "error = -6.21810039929 %\n" + ] + } + ], + "source": [ + "from math import exp\n", + "print \"f(x,y) = 4*exp(0.8*x) - 0.5*y\"\n", + "#f'(x,y) = 4*exp(0.8*x) - 0.5*y\n", + "h = 1#\n", + "x=range(0,5)\n", + "y = [2]\n", + "x1 = -1#\n", + "y1 = -0.3929953#\n", + "y10 = y1 + (4*exp(0.8*x[0]) - 0.5*y[0])*2\n", + "y11 = y[0] + (4*exp(0.8*x[0]) - 0.5*y[0] + 4*exp(0.8*x[0]) - 0.5*y10)*h/2\n", + "y12 = y[0] + (3 + 4*exp(0.8*x[1]) - 0.5*y11)*h/2#\n", + "t = 6.360865#\n", + "y20 = y[0] + (4*exp(0.8*x[1]) - 0.5*t) *2\n", + "y21 = t + (4*exp(0.8*x[1]) - 0.5*t + 4*exp(0.8*x[2]) - 0.5*y20)*h/2\n", + "print \"the first corrector yields y = \",y21\n", + "t = 14.84392\n", + "e = (t - y21)*100/t#\n", + "print \"error = \",e,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.3 Pg: 762" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ec (x = 1) = -0.150772\n", + "true error (x = 1) = -0.166234\n", + "Ec (x = 2) = -0.371756\n", + "true error (x = 2) = -0.45832\n" + ] + } + ], + "source": [ + "x1 = 1#\n", + "x2 = 2#\n", + "y1 = 6.194631#\n", + "y2 = 14.84392#\n", + "y10 = 5.607005#\n", + "y11 = 6.360865#\n", + "y20 = 13.44346#\n", + "y21 = 15.30224#\n", + "Ec1 = -(y11 - y10)/5#\n", + "print \"Ec (x = 1) = \",Ec1\n", + "e1 = y1 - y11#\n", + "print \"true error (x = 1) = \",e1\n", + "Ec2 = -(y21 - y20)/5#\n", + "print \"Ec (x = 2) = \",Ec2\n", + "e2 = y2 - y21#\n", + "print \"true error (x = 2) = \",e2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.4 Pg: 763" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ym = 6.210093\n", + "error = -0.249603245133 %\n", + "y20 = 13.5942344279\n", + "error = 8.41883796235 %\n", + "y20 = 14.1973224279\n", + "error = 4.35597586123 %\n", + "y2 = 14.8882708856\n", + "error = -0.2987814916 %\n" + ] + } + ], + "source": [ + "x0 = 0#\n", + "x1 = 1#\n", + "x2 = 2#\n", + "y1 = 6.194631#\n", + "y2 = 14.84392#\n", + "y10 = 5.607005#\n", + "y11 = 6.360865#\n", + "y1m = y11 - (y11 - y10)/5#\n", + "e = (y1 - y1m)*100/y1#\n", + "print \"ym =\",y1m\n", + "print \"error = \",e,\"%\"\n", + "y20 =2+(4*exp(0.8*x1) - 0.5*y1m)*2#\n", + "e2 = (y2 - y20)*100/y2#\n", + "print \"y20 = \",y20\n", + "print \"error = \",e2,\"%\"\n", + "y2o = y20 + 4* (y11 - y10)/5#\n", + "e2 = (y2 - y2o)*100/y2#\n", + "print \"y20 = \",y2o\n", + "print \"error = \",e2,\"%\"\n", + "y21 = 15.21178#\n", + "y23 = y21 - (y21 - y20)/5#\n", + "print \"y2 = \",y23\n", + "e3 = (y2 - y23)*100/y2#\n", + "print \"error = \",e3,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.5 Pg: 773" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f(x,y) = 4*exp(0.8*x) - 0.5*y\n", + "x = [ 1. 2. 3. 4.]\n", + "y0 = [2, 6.0227228499844756, 20.083112587836688, 41.872835141608761]\n", + "corrected y1 = [6.9056637734795867, 19.136474376155903, 38.385462010990274, 82.755745651588995]\n" + ] + } + ], + "source": [ + "from numpy import arange,exp\n", + "print \"f(x,y) = 4*exp(0.8*x) - 0.5*y\"\n", + "#f'(x,y) = 4*exp(0.8*x) - 0.5*y\n", + "h = 1#\n", + "x = arange(-3,4.1,h)\n", + "y=[-4.547302,-2.306160,-0.3929953,2,2]\n", + "y1=[0,0,0,0]\n", + "for i in range(3,7):\n", + " y.append(y[(i-3)] + 4*h*(2*(4*exp(0.8*x[(i)]) - 0.5*y[(i)]) - 4*exp(0.8*x[(i-1)]) + 0.5*y[(i-1)] + 2*(4*exp(0.8*x[(i-2)]) - 0.5*y[(i-2)]))/3)\n", + " y1.append(y[(i-1)] + h*(4*exp(0.8*x[(i-1)]) - 0.5*y[(i-1)] +4 * (4*exp(0.8*x[(i)]) - 0.5*y[(i)]) + 4*exp(0.8*x[(i+1)]) - 0.5*y[(i+1)])/3)\n", + "\n", + "print \"x = \",x[4:8]\n", + "print \"y0 = \",y[4:8]\n", + "print \"corrected y1 = \",y1[4:8]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.6 Pg: 774" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f(x,y) = 4*exp(0.8*x) - 0.5*y\n", + "x = [ 1. 2. 3. 4.]\n", + "y0 = [2, 6.0075392692969114, 6.2532143855636217, 14.488238413222703]\n", + "y1 = [6.0075392692969114, 6.2532143855636217, 14.488238413222703, 16.39224775082873]\n" + ] + } + ], + "source": [ + "from numpy import arange,exp\n", + "print \"f(x,y) = 4*exp(0.8*x) - 0.5*y\"\n", + "#f'(x,y) = 4*exp(0.8*x) - 0.5*y\n", + "h = 1#\n", + "x = arange(-3,4.1,h)\n", + "y = [-4.547302,-2.306160,-0.3929953,2]\n", + "m= [0,0,0,0,y[3]]\n", + "for i in range(3,7):\n", + " y.append(y[(i)] + h *(55* (4*exp(0.8*x[(i)]) - 0.5*y[(i)]) / 24 - 59 * (4*exp(0.8*x[(i-1)]) - 0.5*y[(i-1)]) / 24 + 37*(4*exp(0.8*x[(i-2)]) - 0.5*y[(i-2)])/24 - 9*(4*exp(0.8*x[(i-3)]) - 0.5*y[(i-3)])/24))\n", + " m.append(y[(i+1)])\n", + " y.append(y[(i)] + h*(9*(4*exp(0.8*x[(i+1)]) - 0.5*y[(i+1)])/24 +19*(4*exp(0.8*x[(i)]) - 0.5*y[(i)])/24 - 5*(4*exp(0.8*x[(i-1)]) - 0.5*y[(i-1)])/24 + (4*exp(0.8*x[(i-2)]) - 0.5*y[(i-2)])/24))\n", + "\n", + "print \"x = \",x[4:8]\n", + "print \"y0 = \",m[4:8]\n", + "print \"y1 = \",y[4:8]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:26.7 Pg: 775" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "x = [ 0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7.\n", + " 7.5 8. 8.5 9. 9.5]\n", + "\n", + "y0(milnes method) = [1, 0.62312747952608971, 0.60341314566242521, 0.35581682815742122, 0.3173461560388694, -0.073744603832379019, 0.05769466447055438, 0.097016353530268939, 0.21274204327392865, -0.36734037063735558, 0.09724068674400127, 0.43888095058828192, 0.3040024218422181, -0.1934006684100632, -0.1160863384290636, 0.32478026608871907, -0.052055689173705413, -0.36964931180484378, 0.00024232753216428538, 0.55995471612928904]\n", + "\n", + "corrected y1(milnes method) = [1, 0.62312747952608971, 0.60341314566242521, 0.35581682815742122, 0.3173461560388694, -0.073744603832379019, 0.05769466447055438, 0.097016353530268939, 0.21274204327392865, -0.36734037063735558, 0.09724068674400127, 0.43888095058828192, 0.3040024218422181, -0.1934006684100632, -0.1160863384290636, 0.32478026608871907, -0.052055689173705413, -0.36964931180484378, 0.00024232753216428538, 0.55995471612928904]\n", + "\n", + "y0(fourth order adams method) = [1, 0.27152768648678072, 0.65650943823969443, -0.097035945241965349, 0.90661897200241937, -0.41645854530303128, -0.006339328628468005, 0.0808211944939453, -0.031548281043396395, -0.01627399436000334, 0.0039276970657568626, -0.002208005756050492, -0.0027943948998587478, -0.00042783320198906672, -0.00032845203812321728, -0.00042142028381515442, -0.00017932875240256902, -8.560953717861569e-05, -7.1995388648036731e-05, -4.2020211202092437e-05]\n", + "\n", + "y1(fourth order adams method) = [1, 0.56419948638876194, 0.68342664355034821, -0.010131383289966767, -0.11667598191807985, -0.0076991693311919962, -0.015405634984349756, -0.02283279228603189, -0.0093238635936440419, -0.0046392587796136846, -0.0040348813308916029, -0.0023127486894963844, -0.0011969855369064737, -0.00079981133060367615, -0.00049813831748820084, -0.00028031874518611127, -0.00017096177282523818, -0.00010605960387014003, -6.2547086111287706e-05, -3.7396246727791117e-05]\n" + ] + } + ], + "source": [ + "from numpy import arange,exp\n", + "#dy/dx = -y\n", + "#y = exp(-x)\n", + "h = 0.5#\n", + "x = arange(-1.5,10.1,h)\n", + "y=[exp(-x[0]),exp(-x[1]),exp(-x[2]),1]\n", + "m=[0,0,0,y[3]]\n", + "for i in range(3,23):\n", + " y.append(y[(i-3)] + 4*h*(2*(-y[(i)]) + y[(i-1)] + 2*(-y[(i-2)]))/3)\n", + " m.append(y[(i+1)])\n", + " y.append(y[(i-1)] + h*(-y[(i-1)] +4 * (-y[(i)]) + (-y[(i+1)]))/3)\n", + "\n", + "print \"\\nx = \",x[3:23]\n", + "print \"\\ny0(milnes method) = \",m[3:23]\n", + "print \"\\ncorrected y1(milnes method) = \",y[3:23]\n", + "for i in range(3,23):\n", + " y[(i+1)] = y[(i)] + h *(55* (-y[(i)]) / 24 - 59 * (-y[(i-1)]) / 24 + 37*(-y[(i-2)])/24 - 9*(-y[(i-3)])/24)#\n", + " m[(i+1)] = y[(i+1)]\n", + " y[(i+1)] = y[(i)] + h*(9*(-y[(i+1)])/24 +19*(-y[(i)])/24 - 5*(-y[(i-1)])/24 + (-y[(i-2)])/24)#\n", + "\n", + "print \"\\ny0(fourth order adams method) = \",m[3:23]\n", + "print \"\\ny1(fourth order adams method) = \",y[3:23]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter3_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter3_2.ipynb new file mode 100644 index 00000000..b0cdc8c4 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter3_2.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CHAPTER 3 : Approximations and Round off Errors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 3.1 Pg : 56" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a. The true error is\n", + "for the bridge : 1 cm\n", + "for the rivet : 1 cm\n", + "b. The percent relative error is\n", + "for the bridge : 0.01 cm\n", + "for the rivet : 10.0 cm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "lbm=9999# #cm, measured length of bridge\n", + "lrm=9##cm, measured length of rivet\n", + "lbt=10000##cm, true length of bridge\n", + "lrt=10##cm,true length of rivet\n", + "#calculating true error below#\n", + "Etb=lbt-lbm##cm, true error in bridge\n", + "Etr=lrt-lrm##cm, true error in rivet\n", + "#calculating percent relative error below\n", + "etb=Etb*100/lbt##percent relative error for bridge\n", + "etr=Etb*100/lrt##percent relative error for rivet\n", + "print \"a. The true error is\"\n", + "print \"for the bridge : \",Etb,\"cm\"\n", + "print \"for the rivet : \",Etr,\"cm\"\n", + "print \"b. The percent relative error is\"\n", + "print \"for the bridge : \",etb,\"cm\"\n", + "print \"for the rivet : \",etr,\"cm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.2 : Pg : 58" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Terms\t\t\tResult\t\t\t\tet(%)\t\t\t\tea(%)\n", + "----------------------------------------------------------------------------------------------------\n", + "1 \t\t\t1.00000 \t\t\t39.3469240702 \t\t\t100\n", + "----------------------------------------------------------------------------------------------------\n", + "2 \t\t\t2.00000 \t\t\t-21.3061518595 \t\t\t50.0\n", + "----------------------------------------------------------------------------------------------------\n", + "3 \t\t\t2.50000 \t\t\t-51.6326898244 \t\t\t20.0\n", + "----------------------------------------------------------------------------------------------------\n", + "4 \t\t\t2.62500 \t\t\t-59.2143243156 \t\t\t4.7619047619\n", + "----------------------------------------------------------------------------------------------------\n", + "5 \t\t\t2.64583 \t\t\t-60.4779300642 \t\t\t0.787401574803\n", + "----------------------------------------------------------------------------------------------------\n", + "6 \t\t\t2.64844 \t\t\t-60.6358807827 \t\t\t0.0983284169125\n", + "----------------------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import factorial\n", + "n=3##number of significant figures\n", + "es=0.5*(10**(2-n))##percent, specified error criterion\n", + "x=0.5#\n", + "f=[]\n", + "f.append(1)##first estimate f=e**x = 1\n", + "ft=1.648721##true value of e**0.5=f\n", + "et=[]\n", + "et.append((ft-f[0])*100/ft)\n", + "ea=[]\n", + "ea.append(100)\n", + "i=1\n", + "while ea[i-1]>=es:\n", + " f.append(f[(i-1)]+(x**(i-1))/(factorial(i-1)))\n", + " et.append((ft-f[(i)])*100/ft)\n", + " ea.append((f[(i)]-f[(i-1)])*100/f[(i)])\n", + " i=i+1#\n", + "\n", + "print \"Terms\\t\\t\\tResult\\t\\t\\t\\tet(%)\\t\\t\\t\\tea(%)\"\n", + "print '-'*100\n", + "for j in range(0,i-1):\n", + " print j+1,'\\t\\t\\t%0.5f'%f[j],'\\t\\t\\t',et[j],'\\t\\t\\t',ea[j]\n", + " print '-'*100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.3 Pg: 60" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Thus a 16-bit computer word can store decimal integers ranging from -32767 to 32767\n" + ] + } + ], + "source": [ + "n=16##no of bits\n", + "num=0#\n", + "for i in range(0,(n-1)):\n", + " num=num+(1*(2**i))#\n", + "\n", + "print \"Thus a 16-bit computer word can store decimal integers ranging from\",(-1*num),\"to\",num" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.4: Pg :63" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The smallest possible positive number for this system is : 0.0625\n" + ] + } + ], + "source": [ + "n=7##no. of bits\n", + "#the maximum value of exponents is given by\n", + "max=1*(2**1)+1*(2**0)#\n", + "#mantissa is found by\n", + "mantissa=1*(2**-1)+0*(2**-3)+0*(2**-3)#\n", + "num=mantissa*(2**(max*-1))##smallest possible positive number for this system\n", + "print \"The smallest possible positive number for this system is : \",num" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.5: Pg :65" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "value of epsilon= 0.25\n" + ] + } + ], + "source": [ + "b=2##base\n", + "t=3##number of mantissa bits\n", + "E=2**(1-t)##epsilon\n", + "print \"value of epsilon=\",E" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.6: Pg :68" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input a number: 15\n", + "The number summed up 100,000 times is= 1500000\n" + ] + } + ], + "source": [ + "num=input(\"Input a number: \")\n", + "Sum=0#\n", + "for i in range(0,100000):\n", + " Sum=Sum+num#\n", + "\n", + "print \"The number summed up 100,000 times is=\",Sum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.7: Pg :71" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The roots of the quadratic equation (x**2)+(3000.001*x)+3=0 are = -0.000999999999976 & -3000.0\n" + ] + } + ], + "source": [ + "a=1#\n", + "b=3000.001#\n", + "c=3#\n", + "#the roots of the quadratic equation x**2+3000.001*x+3=0 are found as\n", + "D=(b**2)-4*a*c#\n", + "x1=(-b+(D**0.5))/(2*a)#\n", + "x2=(-b-(D**0.5))/(2*a)#\n", + "print \"The roots of the quadratic equation (x**2)+(3000.001*x)+3=0 are = \",x1,'&',x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 3.8: Pg :73" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input value of x:1.25\n", + "sum: 1 term: 1 i: 0\n", + "-------------------------------------\n", + "sum: 2.25 term: 1.25 i: 1\n", + "-------------------------------------\n", + "sum: 3.03125 term: 0.78125 i: 2\n", + "-------------------------------------\n", + "sum: 3.35677083333 term: 0.325520833333 i: 3\n", + "-------------------------------------\n", + "sum: 3.45849609375 term: 0.101725260417 i: 4\n", + "-------------------------------------\n", + "sum: 3.48392740885 term: 0.0254313151042 i: 5\n", + "-------------------------------------\n", + "sum: 3.4892255995 term: 0.0052981906467 i: 6\n", + "-------------------------------------\n", + "sum: 3.49017170497 term: 0.000946105472625 i: 7\n", + "-------------------------------------\n", + "sum: 3.49031953395 term: 0.000147828980098 i: 8\n", + "-------------------------------------\n", + "sum: 3.49034006576 term: 2.05318027913e-05 i: 9\n", + "-------------------------------------\n", + "sum: 3.49034263223 term: 2.56647534892e-06 i: 10\n", + "-------------------------------------\n", + "sum: 3.49034292388 term: 2.91644926013e-07 i: 11\n", + "-------------------------------------\n", + "sum: 3.49034295426 term: 3.03796797931e-08 i: 12\n", + "-------------------------------------\n", + "sum: 3.49034295718 term: 2.92112305703e-09 i: 13\n", + "-------------------------------------\n", + "sum: 3.49034295744 term: 2.60814558663e-10 i: 14\n", + "-------------------------------------\n", + "sum: 3.49034295746 term: 2.17345465553e-11 i: 15\n", + "-------------------------------------\n", + "sum: 3.49034295746 term: 1.69801144963e-12 i: 16\n", + "-------------------------------------\n", + "sum: 3.49034295746 term: 1.24853783061e-13 i: 17\n", + "-------------------------------------\n", + "sum: 3.49034295746 term: 8.67040160146e-15 i: 18\n", + "-------------------------------------\n", + "sum: 3.49034295746 term: 5.7042115799e-16 i: 19\n", + "-------------------------------------\n", + "Exact Value: 3.49034295746\n" + ] + } + ], + "source": [ + "from math import exp\n", + "def f(x):\n", + " y=exp(x)\n", + " return y\n", + "Sum=1#\n", + "test=0#\n", + "i=0#\n", + "term=1#\n", + "x=input(\"Input value of x:\")\n", + "while Sum!=test:\n", + " print \"sum:\",Sum,\"term:\",term,\"i:\",i\n", + " print \"-------------------------------------\"\n", + " i=i+1#\n", + " term=term*x/i#\n", + " test=Sum#\n", + " Sum=Sum+term#\n", + "\n", + "print \"Exact Value:\",f(x)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter4_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter4_2.ipynb new file mode 100644 index 00000000..b51b3a07 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter4_2.ipynb @@ -0,0 +1,514 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4 : Truncation Errors and the Taylor Series" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.1 Page No:79" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of f at x=0 : 1.2\n", + "The value of f at x=1 due to zero order approximation : 1.2\n", + "Truncation error : -1.0\n", + "----------------------------------------------\n", + "The value of first derivative of f at x=0 : -0.4\n", + "The value of f at x=1 due to first order approximation : 0.8\n", + "Truncation error : -0.6\n", + "----------------------------------------------\n", + "The value of second derivative of f at x=0 : -1.8\n", + "The value of f at x=1 due to second order approximation : -0.1\n", + "Truncation error : 0.3\n", + "----------------------------------------------\n", + "The value of third derivative of f at x=0 : -0.9\n", + "The value of f at x=1 due to third order approximation : -0.25\n", + "Truncation error : 0.45\n", + "----------------------------------------------\n", + "The value of fourth derivative of f at x=0 : -2.4\n", + "The value of f at x=1 due to fourth order approximation : -0.35\n", + "Truncation error : 0.55\n", + "----------------------------------------------\n" + ] + } + ], + "source": [ + "from math import factorial\n", + "from scipy.misc import derivative\n", + "def f(x):\n", + " y=-0.1*x**4-0.15*x**3-0.5*x**2-0.25*x+1.2#\n", + " return y\n", + "xi=0#\n", + "xf=1#\n", + "h=xf-xi#\n", + "fi=f(xi)##function value at xi\n", + "ffa=f(xf)##actual function value at xf\n", + "\n", + "#for n=0, i.e, zero order approximation\n", + "ff=fi#\n", + "Et_1=ffa-ff##truncation error at x=1\n", + "print \"The value of f at x=0 :\",fi\n", + "print \"The value of f at x=1 due to zero order approximation :\",ff\n", + "print \"Truncation error :\",Et_1\n", + "print \"----------------------------------------------\"\n", + "\n", + "#for n=1, i.e, first order approximation\n", + "def f1(x):\n", + " y=derivative(f,x)\n", + " return y\n", + "f1i=f1(xi)##value of first derivative of function at xi\n", + "f1f=fi+f1i*h##value of first derivative of function at xf\n", + "Et_2=ffa-f1f##truncation error at x=1\n", + "print \"The value of first derivative of f at x=0 :\",f1i\n", + "print \"The value of f at x=1 due to first order approximation :\",f1f\n", + "print \"Truncation error :\",Et_2\n", + "print \"----------------------------------------------\"\n", + "\n", + "\n", + "#for n=2, i.e, second order approximation\n", + "def f2(x):\n", + " y=derivative(f1,x)\n", + " return y\n", + "f2i=f2(xi)##value of second derivative of function at xi\n", + "f2f=f1f+f2i*(h**2)/factorial(2)##value of second derivative of function at xf\n", + "Et_3=ffa-f2f##truncation error at x=1\n", + "print \"The value of second derivative of f at x=0 :\",f2i\n", + "print \"The value of f at x=1 due to second order approximation :\",f2f\n", + "print \"Truncation error :\",Et_3\n", + "print \"----------------------------------------------\"\n", + "\n", + "#for n=3, i.e, third order approximation\n", + "def f3(x):\n", + " y=derivative(f2,x)\n", + " return y\n", + "f3i=f3(xi)##value of third derivative of function at xi\n", + "f3f=f2f+f3i*(h**3)/factorial(3)##value of third derivative of function at xf\n", + "Et_4=ffa-f3f##truncation error at x=1\n", + "print \"The value of third derivative of f at x=0 :\",f3i\n", + "print \"The value of f at x=1 due to third order approximation :\",f3f\n", + "print \"Truncation error :\", Et_4\n", + "print \"----------------------------------------------\"\n", + "\n", + "#for n=4, i.e, fourth order approximation\n", + "def f4(x):\n", + " y=derivative(f3,x)\n", + " return y\n", + "f4i=f4(xi)##value of fourth derivative of function at xi\n", + "f4f=f3f+f4i*(h**4)/factorial(4)##value of fourth derivative of function at xf\n", + "Et_5=ffa-f4f##truncation error at x=1\n", + "print \"The value of fourth derivative of f at x=0 :\",f4i\n", + "print \"The value of f at x=1 due to fourth order approximation :\",f4f\n", + "print \"Truncation error :\",Et_5\n", + "print \"----------------------------------------------\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Page No:82" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of f at x=1 due to zero order approximation : 0.707106781187\n", + "% relative error : -41.4213562373\n", + "----------------------------------------------\n", + "The value of f at x=1 due to first order approximation : 0.551333569463\n", + "% relative error : -10.2667138927\n", + "----------------------------------------------\n", + "The value of f at x=1 due to second order approximation : 0.534175415889\n", + "% relative error : -6.83508317772\n", + "----------------------------------------------\n", + "The value of f at x=1 due to third order approximation : 0.535435376789\n", + "% relative error : -7.08707535775\n", + "----------------------------------------------\n", + "The value of f at x=1 due to fourth order approximation : 0.535504768061\n", + "% relative error : -7.10095361216\n", + "----------------------------------------------\n", + "The value of f at x=1 due to fifth order approximation : 0.535501917392\n", + "% relative error : -7.10038347839\n", + "----------------------------------------------\n", + "The value of f at x=1 due to sixth order approximation : 0.535501819651\n", + "% relative error : -7.10036393016\n", + "----------------------------------------------\n" + ] + } + ], + "source": [ + "from math import pi,cos,factorial\n", + "from scipy.misc import derivative\n", + "def f(x):\n", + " y=cos(x)\n", + " return y\n", + "xi=pi/4#\n", + "xf=pi/3#\n", + "h=xf-xi#\n", + "fi=f(xi)##function value at xi\n", + "ffa=f(xf)##actual function value at xf\n", + "\n", + "#for n=0, i.e, zero order approximation\n", + "ff=fi#\n", + "et1=(ffa-ff)*100/ffa##percent relative error at x=1\n", + "print \"The value of f at x=1 due to zero order approximation :\",ff\n", + "print \"% relative error :\",et1\n", + "print \"----------------------------------------------\"\n", + "\n", + "#for n=1, i.e, first order approximation\n", + "def f1(x):\n", + " y=derivative(f,x)\n", + " return y\n", + "f1i=f1(xi)##value of first derivative of function at xi\n", + "f1f=fi+f1i*h##value of first derivative of function at xf\n", + "et2=(ffa-f1f)*100/ffa##% relative error at x=1\n", + "print \"The value of f at x=1 due to first order approximation :\",f1f\n", + "print \"% relative error :\",et2\n", + "print \"----------------------------------------------\"\n", + "\n", + "\n", + "#for n=2, i.e, second order approximation\n", + "def f2(x):\n", + " y=derivative(f1,x)\n", + " return y\n", + "f2i=f2(xi)##value of second derivative of function at xi\n", + "f2f=f1f+f2i*(h**2)/factorial(2)##value of second derivative of function at xf\n", + "et3=(ffa-f2f)*100/ffa##% relative error at x=1\n", + "print \"The value of f at x=1 due to second order approximation :\",f2f\n", + "print \"% relative error :\",et3\n", + "print \"----------------------------------------------\"\n", + "\n", + "\n", + "#for n=3, i.e, third order approximation\n", + "def f3(x):\n", + " y=derivative(f2,x)\n", + " return y\n", + "f3i=f3(xi)##value of third derivative of function at xi\n", + "f3f=f2f+f3i*(h**3)/factorial(3)##value of third derivative of function at xf\n", + "et4=(ffa-f3f)*100/ffa##% relative error at x=1\n", + "print \"The value of f at x=1 due to third order approximation :\",f3f\n", + "print \"% relative error :\",et4\n", + "print \"----------------------------------------------\"\n", + "\n", + "\n", + "#for n=4, i.e, fourth order approximation\n", + "def f4(x):\n", + " y=derivative(f3,x)\n", + " return y\n", + "f4i=f4(xi)##value of fourth derivative of function at xi\n", + "f4f=f3f+f4i*(h**4)/factorial(4)##value of fourth derivative of function at xf\n", + "et5=(ffa-f4f)*100/ffa##% relative error at x=1\n", + "print \"The value of f at x=1 due to fourth order approximation :\",f4f\n", + "print \"% relative error :\",et5\n", + "print \"----------------------------------------------\"\n", + "\n", + "\n", + "#for n=5, i.e, fifth order approximation\n", + "f5i=(f4(1.1*xi)-f4(0.9*xi))/(2*0.1)##value of fifth derivative of function at xi (central difference method)\n", + "f5f=f4f+f5i*(h**5)/factorial(5)##value of fifth derivative of function at xf\n", + "et6=(ffa-f5f)*100/ffa##% relative error at x=1\n", + "print \"The value of f at x=1 due to fifth order approximation :\",f5f\n", + "print \"% relative error :\",et6\n", + "print \"----------------------------------------------\"\n", + "\n", + "\n", + "#for n=6, i.e, sixth order approximation\n", + "def f6(x):\n", + " y=derivative(f5,x)\n", + " return y\n", + "f6i=(f4(1.1*xi)-2*f4(xi)+f4(0.9*xi))/(0.1**2)##value of sixth derivative of function at xi (central difference method)\n", + "f6f=f5f+f6i*(h**6)/factorial(6)##value of sixth derivative of function at xf\n", + "et6=(ffa-f6f)*100/ffa##% relative error at x=1\n", + "print \"The value of f at x=1 due to sixth order approximation :\",f6f\n", + "print \"% relative error :\", et6\n", + "print \"----------------------------------------------\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3 : Page No:85" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input value of m:4\n", + "Input value of h:5\n", + "\n", + "Remainder: 21 \n", + "The value by first order approximation: 1275\n", + "True Value at x2: 1296\n" + ] + } + ], + "source": [ + "from math import pi,cos,factorial\n", + "m=input(\"Input value of m:\")\n", + "h=input(\"Input value of h:\")\n", + "def f(x):\n", + " y=x**m\n", + " return y\n", + "x1=1#\n", + "x2=x1+h#\n", + "fx1=f(x1)#\n", + "fx2=fx1+m*(fx1**(m-1))*h#\n", + "if m==1:\n", + " R=0#\n", + "elif m==2 :\n", + " R=2*(h**2)/factorial(2)#\n", + " \n", + "elif m==3:\n", + " R=(6*(x1)*(h**2)/factorial(2))+(6*(h**3)/factorial(3))#\n", + " \n", + "elif m==4:\n", + " R=(12*(x1**2)*(h**2)/factorial(2))+(24*(x1)*(h**3)/factorial(3))+(24*(h**4)/factorial(4))\n", + " \n", + "print \"\\nRemainder:\",fx2,\"\\nThe value by first order approximation:\",R\n", + "print \"True Value at x2:\",f(x2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Page No:92" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input h:1.232323\n", + "For h= 1.232323\n", + "and percent error= -2.70944264922 Derivative at x by forward difference method= 114.60931875\n", + "and percent error= -0.178591334206 Derivative at x by backward difference method= 85.854151746\n", + "and percent error= -1.44401699172 Derivative at x by central difference method= 14.3775835022\n" + ] + } + ], + "source": [ + "from scipy.misc import derivative\n", + "def f(x):\n", + " y=-0.1*(x**4)-0.15*(x**3)-0.5*(x**2)-0.25*(x)+1.2\n", + " return y\n", + "x=0.5#\n", + "h=input(\"Input h:\")\n", + "x1=x-h#\n", + "x2=x+h#\n", + "#forward difference method\n", + "fdx1=(f(x2)-f(x))/h##derivative at x\n", + "et1=abs((fdx1-derivative(f,x))/derivative(f,x))*100#\n", + "#backward difference method\n", + "fdx2=(f(x)-f(x1))/h##derivative at x\n", + "et2=abs((fdx2-derivative(f,x))/derivative(f,x))*100#\n", + "#central difference method\n", + "fdx3=(f(x2)-f(x1))/(2*h)##derivative at x\n", + "et3=abs((fdx3-derivative(f,x))/derivative(f,x))*100#\n", + "print \"For h=\",h\n", + "print \"and percent error=\",fdx1,\"Derivative at x by forward difference method=\",et1\n", + "print \"and percent error=\",fdx2,\"Derivative at x by backward difference method=\",et2\n", + "print \"and percent error=\",fdx3,\"Derivative at x by central difference method=\",et3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Page No: 95" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "true value is between : 15.4275 and 15.8225\n" + ] + } + ], + "source": [ + "from scipy.misc import derivative\n", + "def f(x):\n", + " y=x**3\n", + " return y\n", + "x=2.5#\n", + "delta=0.01#\n", + "deltafx=abs(derivative(f,x))*delta#\n", + "fx=f(x)#\n", + "print \"true value is between : \",fx-deltafx,\"and\",fx+deltafx" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Page No: 96" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of y is between: 0.528721343471 and 0.596278656529\n", + "ymin is calculated at lower extremes of F, L, E, I values as = 0.524066539965\n", + "ymax is calculated at higher extremes of F, L, E, I values as = 0.602846335915\n" + ] + } + ], + "source": [ + "from scipy.misc import derivative\n", + "def f(F,L,E,I):\n", + " y=(F*(L**4))/(8*E*I)\n", + " return y\n", + "Fbar=50##lb/ft\n", + "Lbar=30##ft\n", + "Ebar=1.5*(10**8)##lb/ft**2\n", + "Ibar=0.06##ft**4\n", + "deltaF=2##lb/ft\n", + "deltaL=0.1##ft\n", + "deltaE=0.01*(10**8)##lb/ft**2\n", + "deltaI=0.0006##ft**4\n", + "ybar=(Fbar*(Lbar**4))/(8*Ebar*Ibar)#\n", + "def f1(F):\n", + " y=(F*(Lbar**4))/(8*Ebar*Ibar)\n", + " return y\n", + "def f2(L):\n", + " y=(Fbar*(L**4))/(8*Ebar*Ibar)\n", + " return y\n", + "def f3(E):\n", + " y=(Fbar*(Lbar**4))/(8*E*Ibar)\n", + " return y\n", + "def f4(I):\n", + " y=(Fbar*(Lbar**4))/(8*Ebar*I)\n", + " return y\n", + "\n", + "deltay=abs(derivative(f1,Fbar))*deltaF+abs(derivative(f2,Lbar))*deltaL+abs(derivative(f3,Ebar))*deltaE+abs(derivative(f4,Ibar))*deltaI#\n", + "\n", + "print \"The value of y is between:\",ybar-deltay,\"and\",ybar+deltay\n", + "ymin=((Fbar-deltaF)*((Lbar-deltaL)**4))/(8*(Ebar+deltaE)*(Ibar+deltaI))#\n", + "ymax=((Fbar+deltaF)*((Lbar+deltaL)**4))/(8*(Ebar-deltaE)*(Ibar-deltaI))#\n", + "print \"ymin is calculated at lower extremes of F, L, E, I values as =\",ymin\n", + "print \"ymax is calculated at higher extremes of F, L, E, I values as =\",ymax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7 : Page No:98" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The condition number of function for x = 0.18201112073 is : 1.72787595947\n", + "The condition number of function for x = 0.0160083243793 is : 1.58650429006\n" + ] + } + ], + "source": [ + "from math import pi,tan\n", + "from scipy.misc import derivative\n", + "def f(x):\n", + " y=tan(x)\n", + " return y\n", + "x1bar=(pi/2)+0.1*(pi/2)#\n", + "x2bar=(pi/2)+0.01*(pi/2)#\n", + "#computing condition number for x1bar\n", + "condnum1=x1bar*derivative(f,x1bar)/f(x1bar)#\n", + "print \"The condition number of function for x =\",condnum1,\"is :\",x1bar\n", + "if abs(condnum1)>1:\n", + " print \"Function is ill-conditioned for x =\",x1bar\n", + "\n", + "#computing condition number for x2bar\n", + "condnum2=x2bar*derivative(f,x2bar)/f(x2bar)#\n", + "print \"The condition number of function for x =\",condnum2,\"is :\",x2bar\n", + "if abs(condnum2)>1:\n", + " print \"Function is ill-conditioned for x =\",x2bar" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter5_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter5_2.ipynb new file mode 100644 index 00000000..2de92c8c --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter5_2.ipynb @@ -0,0 +1,528 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5 : Bracketing Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.1: Pg:120" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For various values of c and f(c) is found as:\n", + "[4, 34.114844174677984]\n", + "[8, 17.653427509399428]\n", + "[12, 6.066935998372109]\n", + "[16, -2.2687619693477643]\n", + "[20, -8.400628721768179]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeY1OW5//H3TRdRqgrBAggqEQugRH7R7IgiWA5iQTQK\nRNQYjUajJ4qayBJzNGosaSfmKBrAysFYUBEQGNRfVCyAKKKgEkUDNrBF2RXu88czC8u6y+7Ozuwz\n5fO6rr0y7TtzQxg/+3Rzd0RERKrTJHYBIiKSuxQSIiJSI4WEiIjUSCEhIiI1UkiIiEiNFBIiIlIj\nhYQUJTPb08wWmdlnZnZe6rEhZvZAHa49z8x+m/0qReIzrZOQYmRmE4F17n5xpcdeAM519wW1XNsS\nWAH0c/cPs1upSFxqSUix2g1YWnHHzA4Etq8tIADcfT0wAxidvfJEcoNCQoqOmc0FEsCfUt1NvYAj\ngWSV1+1tZrPN7GMzW21ml1V6OgkcXcP7/8XMrq/y2ENmdmHq9qVmtir12cvMbFAN77ONmd1gZivN\nbJ2ZPWVmrdL8Y4ukRSEhRcfdBwFPAT919+3dfTnQB3i94jVmth3wBPAY0AXoCcyp9DbLgP1q+Ii7\ngZGV3qs9MBi418z2BH4KHODu2wNHACtreJ/fAX2BgUAH4BfAxvr8WUUaqlnsAkQiskq32wGfV7p/\nDPC+u9+Uul8GVO6K+hxoW8P7Pg24mR3i7k8BJwL/cPfVZtYGaAnsbWYfu/s71RZm1gQ4Hfieu/8r\n9fCz9fiziWSEWhJSzCrP2lgLbF/p/i7AW1u5djvg02rfNMwGuRc4JfXQD4G7Us+tAC4ESoE1ZnaP\nmXWp5m06Aa2AN2v9U4hkkUJCJHgZ2KPS/XeAHlt5fW9g0Vaevwc40cx2AwYA91c84e73uPshhMFz\nB66t5vqPgK8J3Vwi0SgkpJhV7m56DCipdP8RoIuZXWBmLc1sOzMbUOn5EsIMp2q5+yLCf+hvAx53\n988AzGwPMxuUmka7nhAEG6q5fiNwO3CjmXUxs6ZmNtDMWqT3RxVJj0JCitmm7iZ3Xwh8WhEE7v4F\nYbD5P4B/AW8QZkSRmmF0JDCplve/GxiU+t8KLYFrgA9T79sJuOzblwLwn8AS4Hng49R1+s5Ko4q2\nmC71RZtP+NK0AB5y98vMrBQ4k/AlArjM3R+PUqQUFTMbTFhMd1wtrzsP2NndxzVOZSLxRF1xbWat\n3f3fZtaMMCPkP4HDgM/d/cZohYmICBC56eru/07dbAE0JcwwgS37ikVEJJKoIWFmTcxsEbAGmOfu\nr6aeOt/MFpvZRDNrF7FEEZGilhMb/JlZW2AmMI6wn07FeMRVQBd3PyNWbSIixSwnVly7+6dm9ihh\nq4JkxeNmdhswverrzSx+somI5CF3r1d3frTuJjPrVNGVZGbbEKYbLjSzzpVedhxhCuC3uHvO/4wf\nPz56DapTdapO1Vjxk46YLYkuwKTUHjVNgCnuPsfMJpvZ/oQ57G8DZ0esUUSkqEULCXdfAvSr5vE6\n7dFfXg7Nm2e8LBERqSRvV2+OHAllZbGr2LpEIhG7hDpRnZmlOjMrH+rMhxrTlROzm+rLzHz4cKe8\nHKZNg1Y6hkVEpFZmhufLwHVDTZ0KrVvD8OHw1VexqxERKUx5GxLNm8Pdd0OnTnDMMfDll7ErEhEp\nPHkbEgDNmsGkSbDrrnDkkfD557VfIyIidZfXIQHQtClMnAi9e8OQIfBptWeFiYhIOvI+JACaNIFb\nboH+/WHwYFi7tvZrRESkdgUREgBm8Ic/wMEHw2GHwUcfxa5IRCT/FUxIQAiKG24I3U6DBsEHH8Su\nSEQkv+XEBn+ZZAZXXw0tWkAiAXPmQJcusasSEclPBRcSEIJiwoQQFCUlMHcu7Lxz7KpERPJPQYZE\nhSuu2LJFsdtusSsSEckvBR0SAL/4xZZB0aNH7IpERPJHwYcEwAUXbBkUvXrFrkhEJD8URUgAnHNO\nCIpDD4XZs8PiOxER2bqiCQmAM84Iez4ddhjMmgV9+sSuSEQkt0ULCTNrBcwHWgItgIfc/TIz6wDc\nB+wGrAROcvd1mfrc0aNDUAweDDNmwP77Z+qdRUQKT9TzJMystbv/28yaAU8D/wkMAz5y9+vM7FKg\nvbuPq3KdN7Tu+++Hc8+FRx+FAw5o0FuJiOSFvDtPwt3/nbrZAmgKrCWExKTU45OA4dn47BNOgFtv\nhaOOgmefzcYniIjkv6ghYWZNzGwRsAaY5+6vAju5+5rUS9YAO2Xr84cNC1uNDxsGTz+drU8REclf\nUQeu3X0jsL+ZtQVmmtmhVZ53M6u2X6m0tHTT7UQikfYZs0ceGQ4vOv74cNpdAR9VKyJFJplMkkwm\nG/QeOXPGtZn9CvgKOBNIuPtqM+tCaGHsVeW1DR6TqCqZhJNOgrvuCoPaIiKFJq/GJMysk5m1S93e\nBhgMLAQeBsakXjYGeLAx6kkk4IEH4NRT4bHHGuMTRURyX7SWhJntQxiYbpL6meLu16emwE4FdqWG\nKbDZaElUePbZMEZx661w7LFZ+QgRkSjSaUnkTHdTfWQzJABefBGOPhr+9Cc48cSsfYyISKNKJySK\nasV1XfXvDzNnwtChUFYGP/xh7IpEROJQSNRgv/3CHk9DhkB5OYwZU/s1IiKFRiGxFX36hF1jDz88\nBMWZZ8auSESkcSkkarHXXjBvXgiKsrKwlYeISLFQSNRBr15hHcWgQSEoLrwwdkUiIo1DIVFH3bvD\n/Pmbg+KSS2JXJCKSfQqJeth11y2D4pe/jF2RiEh2KSTqqWvXEBSHHRaCYsIEsHrNOhYRyR8KiTR0\n7rzlYPY11ygoRKQwRd0qPJ/tuGMIilmz4KKLIA8XrouI1Eoh0QAdO4Z1FP/4B5x3HmzcGLsiEZHM\nUkg0UPv2oTWxaBH85CcKChEpLAqJDGjbFh5/HF5/HcaOhQ0bYlckIpIZCokM2W67cA7Fu+/C6NHw\nzTexKxIRaTiFRAZtuy088gh8/HHYOba8PHZFIiINo5DIsG22gQcfhK++ghEjYP362BWJiKQv5vGl\nu5jZPDN71cxeMbOfpR4vNbNVZrYw9TM0Vo3patUK7r8fmjSB44+Hr7+OXZGISHpiHl/aGejs7ovM\nrA3wIjAcOAn43N1v3Mq1WT2ZLlPKy2HUKPjkk9C6aN06dkUiUszSOZkuWkvC3Ve7+6LU7S+A14Cu\nqacLYv1y8+Zw552w005wzDHw5ZexKxIRqZ+cGJMws25AX+DZ1EPnm9liM5toZu2iFZYBzZrB3/4G\n3bqF41A//zx2RSIidRetu2lTAaGrKQn8xt0fNLMdgQ9TT18FdHH3M6pc4+PHj990P5FIkEgkGqfg\nNG3cGA4sWrw4rKlo2zZ2RSJS6JLJJMlkctP9CRMm1Lu7KWpImFlz4BFghrvfXM3z3YDp7r5Plcfz\nYkyiKne44AJ45hmYORM6dIhdkYgUk7wakzAzAyYCSysHhJl1qfSy44AljV1btpjB738PJSVhq/GP\nPopdkYjI1sWc3XQw8CTwMlBRxOXAKcD+qcfeBs529zVVrs3LlkQFd7jiCpg+HZ54Igxsi4hkWzot\niehjEunI95CAEBS//jXcey/MnQtdutR+jYhIQ6QTEjp0KBIzGD8+TJMtKQlBsfPOsasSEdmSQiKy\nyy+Hli1DUMyZE6bKiojkCoVEDrj4YmjRAhKJEBS77x67IhGRQCGRI84/P3Q9VQTFHnvErkhERCGR\nU37yk9CiGDQIZs+G3r1jVyQixU4hkWPGjg1BcdhhYcHdPvvUfo2ISLYoJHLQaaeFrqfBg2HGDOjb\nN3ZFIlKsFBI5auTIEBRDh4bT7g48MHZFIlKMFBI57PjjQ1AcfTQ89BAMHBi7IhEpNjmxVbjU7D/+\nAyZPhmOPhSefjF2NiBQbhUQeGDoU7r4bTjghrMwWEWksCok8cfjhMG0anHwyzJoVuxoRKRYKiTxS\nUgIPPBBmPz36aOxqRKQYKCTyzPe/H7YYHzsWHnwwdjUiUug0uykPfe97Yf3EUUdBeTmMGBG7IhEp\nVAqJPNWvX1iRPXQolJXBqafGrkhEClHM40t3MbN5Zvaqmb1iZj9LPd7BzGab2RtmNsvM2sWqMdft\nt1842e6SS+Bvf4tdjYgUopjHl3YGOrv7IjNrA7wIDAdOBz5y9+vM7FKgvbuPq3Jt3p9Ml0mvvx5m\nP/3qV/DjH8euRkRyVV6dTOfuq4HVqdtfmNlrQFdgGFCSetkkIAmMq+49JNhzT5g3L2wKWF4OP/1p\n7IpEpFDkxJiEmXUD+gLPATu5+5rUU2uAnSKVlVd69oRkMmwzXlYGP/957IpEpBBED4lUV9P9wAXu\n/rnZ5paQu7uZVduvVFpauul2IpEgkUhkt9A80L07zJ8fWhRlZXDppbErEpGYkskkyWSyQe8RbUwC\nwMyaA48AM9z95tRjy4CEu682sy7APHffq8p1GpPYivfeC0Fx6qlhnEJEBNIbk4g5u8mAicDSioBI\neRgYk7o9BtCSsXrq2jV0Pd17bwgJ5amIpCvm7KaDgSeBl4GKIi4DFgBTgV2BlcBJ7r6uyrVqSdTB\nhx+GWU9DhsC114LV6/cHESk06bQkonY3pUshUXcffwxHHAGHHAI33aSgEClmedXdJI2jY0eYMwee\neSZMjd24MXZFIpJPFBJFoF07mD0bFi8Oi+0UFCJSVwqJIrH99mGvpxUr4PTTYcOG2BWJSD5QSBSR\nNm3gscfg/ffDmRTffBO7IhHJdQqJItO6NTz8MKxbF065Ky+PXZGI5DKFRBHaZptwYFFZGZx4Iqxf\nH7siEclVCoki1bJlODO7efOwjuKdd2JXJCK5SCFRxFq0CKuyhwyB/v1h8mStzhaRLWkxnQCwaBGM\nGgW9esFf/wo77BC7IhHJNC2mk7Ttvz+88EIIiX33hYceil2RiOSCOrUkzGxbYBfCHkur3P3LbBdW\nSz1qSWTR00/DmDHwgx/AzTdD27axKxKRTMhoS8LMtjOzi8xsAbAEuINwUtwrZvaCmf08dRaEFJiD\nDw6rs1u2DOdoz5sXuyIRiaXGloSZzQHuBR6udFJcxXOdCceMjnT3w7Je5bdrU0uikcyYAWedBSNG\nwNVXh+mzIpKftAusZMUnn8C554bWxeTJcOCBsSsSkXRkZeDazA6u6FYys1FmdpOZ7ZZukZJ/OnQI\nU2XHj4djjoHSUq3UFikWdZnd9BfgSzPbD7gIWAFMzsSHm9ntZrbGzJZUeqzUzFaZ2cLUz9BMfJY0\n3Mknw8KF8NxzMHAgLF0auyIRyba6hMQ3qb6d4cCf3f3PwHYZ+vw7gKoh4MCN7t439fN4hj5LMuA7\n3wmbBJ51Vpj9dNNN2npcpJDVJSQ+N7PLgdOAR8ysKdA8Ex/u7k8Ba6t5Suen5TAzOPvs0KK4/34Y\nNAhWroxdlYhkQ11CYiSwHhjr7quBrsD1Wa0KzjezxWY20czaZfmzJE277w7z58NRR4XB7Dvu0LYe\nIoVma1NgZwKPAzPcfVnWCjDrBkx3931S93cEPkw9fRXQxd3PqHKNZjflmCVLwrYeu+4Kt94KO+0U\nuyIRqSqd2U3NtvLcjwjjBaVmtifwHDADeCKbK67d/YOK22Z2GzC9uteVlpZuup1IJEgkEtkqSepg\nn31gwQKYMCEswPvzn+GEE2JXJVLckskkyWSyQe9R1205mgLfA44EBgFfAzPd/boGfTrVtiS6uPu/\nUrd/Dhzo7j+sco1aEjnsmWdg9Gg46CD44x/DGdsiEl+jLaYzs07AEHe/q94Xb/k+9wAlQCdgDTAe\nSAD7E2Y5vQ2cXc2Kb4VEjvvyS7jkEpg+HSZOhMGDY1ckIlkJCTPrAZwPdGNz95S7+7B0iswEhUT+\nmDULzjgDjj0Wrr0Wtt02dkUixStbIfEycBvwClAxI97dfX5aVWaAQiK/rF0L558fxiwmTw7dUCLS\n+LIVEgvcfUCDKsswhUR+mjYNzjsPzjwTrrwynIwnIo0nWyExCtgdmElYLwGAu7+UTpGZoJDIX6tX\nh9Xaq1bBlCnQp0/sikSKR7ZC4rfAKMKeTZs2YHD3Q9MpMhMUEvnNHW6/HcaNC4PbF10ETZvGrkqk\n8GUrJN4Eert7WUOKyySFRGF4+2340Y/C3k+TJkGPHrErEils2TrjegnQPr2SRGrWvXs49e644+B7\n34P/+R9t6yGSa+rSkpgP7As8z+YxCU2BlYx69dWwAK9zZ7jtNujSJXZFIoUnW91NiWoe1hRYybjy\ncvjNb+CWW8JK7ZNOil2RSGHJaEhYHf5LXJfXZINCorAtWBBaFf36wZ/+FE7GE5GGy/SYRNLMfmFm\ne1TzQXua2aVAtNaEFK4BA+Cll2CHHWDffWHmzNgViRSvrbUkWgKnAqcAfYDPCYcBtSGsvr4LuDvG\nrCe1JIrHnDkwdmw4s+L666FNm9gVieSvrG3wl9oFtlPq7kfuviGN+jJGIVFcPv0ULrgAnn46TJX9\n/vdjVySSnxptF9jYFBLF6YEH4NxzYcyYcG5Fy5axKxLJL9laJyGSE447DhYvhmXLwnGpixfHrkik\n8CkkJK/suGNoUVx8MRx+OPz2t7AhauenSGGrc3eTmbUirI9YX+uLs0zdTQLwz3/C6afD+vVhrKJn\nz9gVieS2jHY3mVkTMzvezP7XzN4jnBL3TzN7z8ymmdlxZlavD6vmM243szVmtqTSYx3MbLaZvWFm\ns8xMh19KtXbbDZ54Iiy6O+gg+MtftK2HSKZtbQrsk8BTwMPAoooWRGpqbF9gGHCwu/8g7Q83OwT4\nAphc6Yzr6wgzqK5LrcVo7+7jqlynloRsYdkyGDUKOnYMx6V27Rq7IpHck+kV1y1r61qqy2tqLcCs\nGzC9UkgsA0rcfY2ZdQaS7r5XlWsUEvIt5eVwzTVhlfbNN8Mpp0DD2roihSVbezcNBF51989S97cn\nbB3+XNqVbvn+3dgyJNa6e/vUbQM+qbhf6RqFhNToxRdDq6JPn9AF1bFj7IpEckO2psD+hdAlVOFL\n4Jb6fEi6UkmgNJB66d8/BMUuu4RtPR59NHZFIvmrWV1e5O6VT6TbkFqBnS1rzKyzu682sy7AB9W9\nqLS0dNPtRCJBIpHIYkmSb7bZBm64AYYNCwcbPfRQuL/ddrErE2k8yWSSZDLZoPeoS3fTA8A8QovC\ngHOAQ919eIM+efP7d2PL7qbrgI/d/VozGwe008C1NMRnn4UjUufOhb/9DX6Q9lQLkfyWrTGJnYA/\nABVnWs8BLnD3an/Dr9eHm90DlBD2hVoDXAk8BEwFdgVWAie5+7oq1ykkpN6mT4ezz4ZTT4WrroJW\nrWJXJNK4tHeTSC0+/BB+8hN4/XWYPDmcWSFSLDK9mK401Yqo6fkuZjahPh8mEtsOO8C0aTBuHAwd\nGk7C++ab2FWJ5K6trZM4BrgYaAG8BPyLMCbRGehHOO/6d+7+WOOUukVtaklIg737bjir4rPPQqti\nzz1jVySSXdkak9gF+D5hjADgn8D/d/dVaVWZAQoJyZSNG8NaitJSGD8+bEXeRNteSoHK9IrrKe4+\nyswudPebM1JhhigkJNPeeCOcq92mDdxxR1hjIVJoMr2Yrr+ZfQcYm9p0b4ufhpUqklv22COcfHfo\noWEx3pQp2ixQBLbekvgZYU1ED+D9Kk+7u/fIcm01UktCsmnhwtCq6NUL/vrXMNgtUggy2pJw9z+4\ne2/gDnfvXuUnWkCIZFvfvvD88+F8in33Dau1RYqV1kmIbMVTT4VtPUpKws6y228fuyKR9OmMa5EM\nO+QQWLQImjcPrYoGboMjknfUkhCpo8ceg7POCifhXX112ERQJJ+oJSGSRUcdBS+/DO+/H7bzeOGF\n2BWJZJ9CQqQeOnaE++4LC++OOioswisvj12VSPaou0kkTe+9B2ecAR99FNZV9O4duyKRrVN3k0gj\n6toVZswI4xSHHAI33RS2+RApJGpJiGTAihUwZgy0aAG33KLNAiU3qSUhEknPnvDkk3DMMXDwweFg\no9dei12VSMPlbEiY2Uoze9nMFprZgtj1iNSmaVO4+GJ4803o0ycswDv5ZHjlldiViaQvZ0MCcCDh\n7n3dfUDsYkTqavvt4bLL4K23wlTZww+HESPC9FmRfJPLIQHhkCORvNSmDVxySWhZDBwIQ4bA8ceH\nDQRF8kUuh4QDT5jZC2Z2VuxiRNK17bZw0UUhLEpKwrjFsGFajCf5oVnsArbi++7+LzPbAZhtZsvc\n/amKJ0tLSze9MJFIkEgkGr9CkXpo3RouuAB+/GOYOBGGD4f99gsL8waoQ1WyIJlMkmzghmN5MQXW\nzMYDX7j7Dan7mgIree/rr8MpeNdcA9/9bgiLgQNjVyWFrGCmwJpZazPbLnV7W+AIYEncqkQyq1Ur\nOOccWL48jFWccgoMHhxOyBPJFTnZkjCz7sADqbvNgLvc/ZpKz6slIQWnrCxs7/Ff/wXduoWWRUlJ\n7KqkkKTTksjJkKiNQkIKWXk53HUX/OY3YeuP8ePD2dumuX7SQAoJkQLyzTdwzz0hLHbYIYTF4Ycr\nLCR9CgmRArRhQ9ie/KqroF27EBZDhigspP4UEiIFbMMGmDYthEXr1nDllXD00QoLqTuFhEgR2LgR\n/v53+PWvw9nbV14ZFucpLKQ2CgmRIrJxIzz0UAgL9xAWw4dDk5yc2C65QCEhUoTcYfr0EBZlZfCr\nX8EJJygs5NsUEiJFzD2clDdhAnzxRQiLESPCFuYioJAQEUJYzJoVwmLtWvjlL2HkSGiWyzu1SaNQ\nSIjIJu4wZ04IizVrQlj88IcKi2KmkBCRb3GHZDKExapVcMUVcNppYWaUFBeFhIhs1fz5YYD77bfh\n8sth9Gho0SJ2VdJYCmYXWBHJjpKS0AU1eTJMnQq9esEtt8D69bErk1ylkBApQgcfHAa37703rLXo\n2RP+/OdwxoVIZQoJkSI2cGCYNnv//eF/e/aEP/4RvvoqdmWSKxQSIsKAAfDII6FV8cQTsPvucNNN\n8O9/x65MYlNIiMgm/fuHoHj00XBC3u67w+9+B19+GbsyiSUnQ8LMhprZMjNbbmaXxq5HpNj07Ru6\noGbOhAULoEcPuPbasJJbikvOhYSZNQX+BAwFvgucYma941YlUpz23TfMgpo7FxYtCmFx9dXw2Wex\nK5PGknMhAQwAVrj7SncvB+4Fjo1ck0hR23vvcEre/PmwdGnohrrqKli3LnZlkm25GBJdgXcr3V+V\nekxEIuvdG+68M4xXrFgRZkOVloY9oqQw5eIuLnVaSl1aWrrpdiKRIJFIZKkcEalqzz1h0qQQFFdf\nHRblnXMOXHghdOwYuzqpkEwmSSaTDXqPnNuWw8wOAkrdfWjq/mXARne/ttJrtC2HSA556y245ppw\nYt7ZZ8NFF0GnTrGrkqoKZVuOF4BeZtbNzFoAI4GHI9ckIlvRowfceiu89BJ88kloaVx6KXzwQezK\npKFyLiTc/RvgPGAmsBS4z91fi1uViNTFbruFvaAWLQrTZffaCy6+GFavjl2ZpCvnupvqQt1NIvnh\nvffC+oo77ww7zl5yCXznO7GrKl6F0t0kIgWia1f4wx/g1VfBDPr0gfPPD+daSH5QSIhI1nXpEvaC\nWroUWrYMi/TOPRfeeSd2ZVIbhYSINJrOncNeUMuWwXbbwf77h9lQK1fGrkxqopAQkUa3445hrOKN\nN8K6iv794cwzw1RayS0KCRGJplOnsBhv+fIwoD1gAJx+elikJ7lBISEi0XXoEM7eXr4cunWDgw4K\ns6Fefz12ZaKQEJGc0b49jB8Pb74Je+wRjlkdNAjuuEM7z8aidRIikrO+/jocgDRlCiSTcOSRMGoU\nHHEENMvFnedyXDrrJBQSIpIXPv4Y7rsvBMbbb8PJJ4fA6NcvrMGQ2ikkRKQoLF8eVnFPmQKtWoWw\nOPVU2HXX2JXlNoWEiBQVd/jHP0JY/O//hkV6o0bBiSfC9tvHri73KCREpGitX795/GLePBg6dPP4\nRfPmsavLDQoJERHC+MXUqSEw3nxz8/hF//7FPX6hkBARqWLFis3jFy1ahLA47bTiHL9QSIiI1MAd\nnnlm8/hFnz6bxy/ato1dXeNQSIiI1MH69fDYYzB5MsydG8YvRo8u/PGLgggJMysFzgQ+TD10mbs/\nXuU1CgkRyYiq4xcjR4YWxgEHFN74RaGExHjgc3e/cSuvUUiISMZVjF/ceWdoUVSsv9htt9iVZUYh\nnUxXYPktIvmgZ08oLQ2L9SZOhHffDTOiEolw/9NPY1fY+HK1JXE68CnwAnCxu6+r8hq1JESkUVSM\nX0yZAnPmbF5/MWRI/o1f5E13k5nNBjpX89QVwLNsHo+4Cuji7mdUud7Hjx+/6X4ikSCRSGSnWBGR\nlE8+2Tx+sWJF7o9fJJNJksnkpvsTJkzIj5CoKzPrBkx3932qPK6WhIhE9eabm9dfNGu2ef1FLo9f\nFMSYhJl1qXT3OGBJrFpERGqy++7h7Ivly8N5F++9F8YvSkrgtttg3bra3yMf5FxLwswmA/sDDrwN\nnO3ua6q8Ri0JEck5ZWWbxy+eeCKMW4waFcYxcmH8Im/GJBpKISEiuW7t2s3jF2+8sXn84sAD441f\nKCRERHLQW29tHr9o0mTz+EW3bo1bh0JCRCSHucNzz4WwmDoVevcOgTFiBLRrl/3PV0iIiOSJsjKY\nMSMExuzZYd+oivGLFi2y85kKCRGRPLR2bdiZdsoUeP11OOmkEBgDBmR2/EIhISKS5956C+66KwSG\nWRi7OO006N694e+tkBARKRDusGBBCIv77oO99to8ftG+fXrvqZAQESlAZWXw+OMhMGbNgsGDQ2Ac\neWT9xi8UEiIiBW7dujB+MXkyLFsWxi9Gj67b+IVCQkSkiLz99ub1F7B5/KJHj+pfr5AQESlC7vD8\n85vHL/bcs/rxC4WEiEiRKy8P4xeTJ397/KJlS4WEiIikVIxfTJkCr70GH32kkBARkWqsXAnduysk\nRESkBgVx6JCIiOSOKCFhZiPM7FUz22Bm/ao8d5mZLTezZWZ2RIz6REQkiNWSWEI4mvTJyg+a2XeB\nkcB3gaEQ32m5AAAF4ElEQVTAf5tZ3rZ2Kh9AnstUZ2apzszKhzrzocZ0RfkPsLsvc/c3qnnqWOAe\ndy9395XACmBAoxaXQfnyD0d1ZpbqzKx8qDMfakxXrv2W/h1gVaX7q4CukWoRESl6zbL1xmY2G+hc\nzVOXu/v0eryVpjGJiEQSdQqsmc0DLnb3l1L3xwG4+29T9x8Hxrv7c1WuU3CIiKShvlNgs9aSqIfK\nBT8M3G1mNxK6mXoBC6peUN8/pIiIpCfWFNjjzOxd4CDgUTObAeDuS4GpwFJgBnCuVs2JiMSTlyuu\nRUSkceTa7KY6MbOmZrbQzOozAN6ozKydmU0zs9fMbKmZHRS7puqkFi++amZLzOxuM2sZuyYAM7vd\nzNaY2ZJKj3Uws9lm9oaZzTKzdjFrTNVUXZ3Xp/5/X2xmfzeztrlWY6XnLjazjWbWIUZtVWqptk4z\nOz/19/mKmV0bq75K9VT3//kAM1uQ+u/S82Z2YMwaUzXtYmbzUt/vV8zsZ6nH6/U9ysuQAC4gdEnl\ncjPo98Bj7t4b2Bd4LXI932Jm3YCzgH7uvg/QFDg5Zk2V3EFYUFnZOGC2u+8BzEndj626OmcBe7v7\nfsAbwGWNXtWWqqsRM9sFGAz8s9Erqt636jSzQ4FhwL7u3gf4XYzCqqju7/M64Ffu3he4MnU/tnLg\n5+6+N6Fr/6dm1pt6fo/yLiTMbGfgKOA2thz0zhmp3xwPcffbAdz9G3f/NHJZ1fmM8A+ptZk1A1oD\n78UtKXD3p4C1VR4eBkxK3Z4EDG/UoqpRXZ3uPtvdN6buPgfs3OiFbVlPdX+XADcClzRyOTWqoc5z\ngGvcvTz1mg8bvbAqaqjzX0BFi7EdOfA9cvfV7r4odfsLwi+qXann9yjvQgK4CfgFsLG2F0bUHfjQ\nzO4ws5fM7FYzax27qKrc/RPgBuAd4H1gnbs/EbeqrdrJ3dekbq8BdopZTB2NBR6LXURVZnYssMrd\nX45dSy16AT8ws2fNLGlmB8QuqAbjgBvM7B3geuK3HreQ6jXoS/ilpV7fo7wKCTM7BvjA3ReSo62I\nlGZAP+C/3b0f8CW50TWyBTPbHbgQ6EZY7d7GzE6NWlQdpWa95XJ3I2Z2BVDm7nfHrqWy1C8slwPj\nKz8cqZzaNAPau/tBhF8Op0aupyYTgZ+5+67Az4HbI9eziZm1Ae4HLnD3zys/V5fvUV6FBPD/gGFm\n9jZwDzDIzCZHrqk6qwi/pT2fuj+NEBq55gDgH+7+sbt/A/yd8Hecq9aYWWcAM+sCfBC5nhqZ2Y8I\n3aK5GLq7E34xWJz6Lu0MvGhmO0atqnqrCP8uSX2fNppZx7glVWuAuz+Quj2NHNlzzsyaEwJiirs/\nmHq4Xt+jvAoJd7/c3Xdx9+6EAda57j46dl1Vuftq4F0z2yP10OHAqxFLqsky4CAz28bMjFDn0sg1\nbc3DwJjU7THAg1t5bTRmNpTwW++x7v517Hqqcvcl7r6Tu3dPfZdWESYv5GLoPggMAkh9n1q4+8dx\nS6rWCjMrSd0eRJiwEFXqOz0RWOruN1d6qn7fI3fPyx+gBHg4dh1bqW8/4HlgMeE3obaxa6qhzksI\nAbaEMIjVPHZNqbruIYyTlAHvAqcDHYAnCF/AWUC7HKxzLLCcMGNoYernv3OkxvUVf5dVnn8L6JBD\nf5frK/1/3hyYkvr3+SKQyKE6K//bPIDQ378IeAbomwN1HkwYu11U6d/i0Pp+j7SYTkREapRX3U0i\nItK4FBIiIlIjhYSIiNRIISEiIjVSSIiISI0UEiIiUiOFhIiI1EghISIiNVJIiGSQmY1OHTa0KEf3\nFROpF624FskQM9ubsAXLQHf/xMzau3t15ziI5A21JEQyZxAw1cM5HSggpBAoJEQyx8ndcxlE0qKQ\nEMmcucAIM+sA4cD5yPWINJjGJEQyyMxGE86S2AC85O5jI5ck0iAKCRERqZG6m0REpEYKCRERqZFC\nQkREaqSQEBGRGikkRESkRgoJERGpkUJCRERqpJAQEZEa/R8PbymWhUneNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fa7dfe0c990>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import arange\n", + "from math import exp\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot, title, xlabel, ylabel, show\n", + "m=68.1##kg\n", + "v=40##m/s\n", + "t=10##s\n", + "g=9.8##m/s**2\n", + "def f(c):\n", + " y=g*m*(1-exp(-c*t/m))/c - v#\n", + " return y\n", + "print \"For various values of c and f(c) is found as:\"\n", + "i=0#\n", + "Fc=[]\n", + "for c in arange(4,21,4):\n", + " i=i+1#\n", + " bracket=[c, f(c)]\n", + " print bracket\n", + " Fc.append(f(c))\n", + "\n", + "c=arange(4,21,4)\n", + "plot(c,Fc)\n", + "title('f(c) vs c')\n", + "xlabel('c')\n", + "ylabel('f(c) (m/s)')\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.2: Pg:123" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYlNX5xvHvI4gKKohEsKBYsfyMiFGxoBMrWNAkKpYg\nGgsaW2yAsa3E2GKsRKPYMBZskSgiCpHFhlgAlbIKKgYsWEERRITn98d50XWdhdnZmTlT7s91cTHl\nnZl7X5Z99rynmbsjIiKSjRViBxARkdKlIiIiIllTERERkaypiIiISNZUREREJGsqIiIikjUVEZEI\nzOxOM/vCzF5K7q9kZpPNrG0Grz3VzK7If0qR5TPNExEpLDPrCtwHbObuC5LHTgO2cPc/ZvD6lYDp\nQGd3/zSvYUWWQy0RkcLbAJixtIAk+gD/yuTF7r4QeBI4Og/ZRBpERUQqmpltbGafm9m2yf11zOxT\nM9stzbH9zOyhOo9db2bXJ7ePMbN3zOwrM3vXzI5M8x7HAYOAnczsazO72MzWBzYCxiXHNDOzCWZ2\nanK/iZm9YGYX1HqramD/nJwEkUbQ5SypeGZ2PHAm8CtgKPC6u/dNc9z6wFSgrbvPM7MmwEzgYGAy\n8CHwK3eflvRtrOnuU9K8T2/geHfvmtzfH7jS3f+v1jFbAc8BOwO/IxSMXTz5D2tmnYGR7r5mrs6D\nSDbUEpGK5+63EfoYXgbaAufXc9z/gPHAb5KH9gDmu/vLyf0lwNZmtoq7z05XQBJW534r4Os6nzUZ\nuBT4D3AW0Mt/+hvf10DLDL48kbxSEREJbgO2Am5090XLOO4+4Ijk9pHAvQDu/g3QEzgJ+NDMhplZ\nxww/+0tgtTSP3w2sDwx393fqPLcaMDfD9xfJGxURqXhmtipwHaGQXGJmayzj8IeBlJmtS7iMdd/S\nJ9z9aXffB2gH1BD6PjLxBrChmdX9/3gTMAzoZma71HluC2Bihu8vkjcqIiJwPfCyu58IPAH8s74D\nkyG11cBdwLvu/haAma1lZgeZWQtgEfANsDiTD3f3WYTLaTsufczMegHbAr2B04HByXsvtTthhJZI\nVCoiUtHM7CBgH+Dk5KGzgM5mdkT9r+I+YE9qtUII/5fOBD4APge61nrPujz5U9stQK8k0/rAtcDR\n7j7f3e8HXgWuSZ5fGegODM7gSxTJq6ijs8ysG+EyQhPgNne/sp7jtgfGAoe5+78LGFGkIMysGTAB\n2MPdZy/n2FOB9dy9f0HCiSxDtCKSDI98C9iL8NvbK8AR7j41zXEjgfnAne7+SKGziohIejEvZ+0A\nTHf3GclomCHAQWmOO43QmanlHUREikzMIrIuYaLWUrOSx36QjIA5CLg5eUgzI0VEikjMIpJJQbgO\n6J9MsjJ+PklLREQiahrxsz8A2te6357QGqltO2CImQG0Abqb2SJ3f6z2QWamFoqISBbcvVG/nMds\nibwKbGpmHZKRKT2BnxQHd9/I3Td09w0J/SIn1y0gtY4tqj8XX3xx9AzKVF65lEmZcv0nF6K1RNz9\n+2So4lOEIb63u/tUM+uTPH9LrGwiIpKZmJezcPcnqTPrtr7i4e7HFiSUiIhkTDPW8ySVSsWO8DPK\nlLlizKVMmVGmwiqL/UTMzMvh6xARKSQzw0u4Y11EREqcioiIiGRNRURERLKmIiIiIllTERERkayp\niIjU4g4vvghvvx1ui8iyRZ1sKFJMpk6F00+H996DRYtg3jzYYQfo0gV23DHcbt06dkqR4qKWiFS8\nr76Cc86B3XaDAw4IxeT992HSJOjTB779Fq68Ejp0gI4doXdvuOkmGD8+FBuRSqbJhlKxliyBe+6B\n/v2hWze4/HJo27b+4xcvhsmT4aWXYNy48Pf778O22/7YWunSBdZbr3Bfg0hj5GKyoYqIVKQJE+DU\nU+G772DgwFAAsjF3Lrzyyo9FZdw4WHHFnxaV7baDFi1ym18kF1REEioikqnPP4cLLoBHH4VLL4U/\n/AFWyOFFXffQp1K7tTJpEmy22Y9FpUuXcD+XnyuSDRWRhIqILM/ixTBoEFx8MRx2GAwYAGusUZjP\n/vZbmDjxp62VL78MHfVLC8uOO8KaaxYmj8hSKiIJFRFZlhdegNNOg1VXhRtvhG22iZ0IZs+Gl1/+\nsai88gqstdZPi8o220CzZrGTSjlTEUmoiEg6H30E/frBM8/A3/4Ghx8O1qj/LvmzeHEYFVa7tfLO\nO6GQLL0EduCBsMoqsZNKOVERSaiISG3ffQc33ABXXAHHHx/6QFZdNXaqhvv6a3j11VBURowIrZLH\nH4eVV46dTMqFikhCRUSWGjkyTBjs0AGuvz50YJeDxYvhiCPCvJSHHoKmmiYsOaAiklARkRkz4Oyz\nw9Dd664Ll36K9dJVtr77Dg4+GNq0gbvu0uguabyS35TKzLqZWY2ZTTOzfmmeP8rMXjezN8zsBTP7\nZYycUrwWLIBLLglzMTp1gilToEeP8isgEC5nPfxwKJinn661vaQ4RCsiZtYEGAh0A7YEjjCzLeoc\n9i6wm7v/EvgLcGthU0qxcoehQ2HLLcM8jPHj4cILy7+/oHnz0C8ydmzo6xGJLeaV1R2A6e4+A8DM\nhgAHAVOXHuDuY2sdPw7QghLCW2+F38RnzoTbboM994ydqLBatoSnngprfbVsCX37xk4klSzm5ax1\ngZm17s9KHqvPccDwvCaSovb11+EH5i67hLWuXn+98grIUm3ahEEE//xn+CMSS8yWSMZXdM3s18Af\ngF3qO6aqquqH26lUilQq1YhoUkzc4b77QgHZe+9w+apdu9ip4lt3XRg1KrRIVl8djjwydiIpdtXV\n1VRXV+f0PaONzjKzLkCVu3dL7p8HLHH3K+sc90vg30A3d59ez3tpdFaZmjgxzDafPz8slLjTTrET\nFZ/Jk0OLbNCgMCpNJFOlPjrrVWBTM+tgZs2AnsBjtQ8ws/UJBeT39RUQKU9ffAGnnAL77gu9eoUl\nQlRA0ttqq9DZftxxYXa+SCFFKyLu/j1wKvAUMAV4wN2nmlkfM+uTHHYRsAZws5lNMLOXI8WVAlm8\nGG65BbZIxulNnQonnghNmsTNVey23z5MQjz88LBkikihaLKhFI2xY8MeH6usEi5ddeoUO1HpGT4c\njj02dLr/UrOqZDlK/XKWCAAffwzHHAOHHAJnnQXPPacCkq399gvrhnXvDtOmxU4jlUBFRKJxD0uU\nbL11WAa9pgaOOqo8Z5sXUs+eUFUVRrLNnLncw0UaRcu4STQXXwxPPBFaHptvHjtNeTnhBPjqq1BI\nnn02FGmRfFARkSjuvBPuuSf0g7RtGztNeTr77LAH/L77wujR0KpV7ERSjtSxLgU3alS4bDVmjFog\n+eYOf/pT2Jfk6aehRYvYiaSYaCn4hIpI6Zg0CfbYIwxH3X332Gkqw5IlYQ7JBx+E+SQrrRQ7kRQL\nFZGEikhp+PDDMGHw8su1REehff99mEPiDg88oE2tJNAQXykZ8+aFJTlOPFEFJIamTeHee8O/w/HH\nh9aJSC6oJSJ59/33YUe+tm3D0u0awhvPN9+EjvbOncP2wfq3qGxqiUjRcw97fyxcGJYs1w+tuFq0\ngGHDwrDqiy6KnUbKga6MSl5dcw08/3z4obXiirHTCIShvrU3tTrnnNiJpJSpiEjePPwwXHttmAvS\nsmXsNFLbWmuFodZdu4Z/mxNOiJ1ISpWKiOTFiy/CySeHuQnt28dOI+mst15YqHH33WG11cLoLZGG\nUhGRnJs+HX77Wxg8GLbdNnYaWZZNNoERI2CvvUIh2X//2Imk1KhjXXLq88/DSrJVVeFvKX5bbw2P\nPRZWUs7xzqlSATTEV3Lm22/Dgn877wxXXrn846W4jB4dVgAeNgx22CF2GikEzVhPqIjEt2RJmES4\nZAkMGQIrqI1bkh5/PHSyjxoF//d/sdNIvmmeiBSN888Pe1cMHqwCUsoOPDCMqOvWDd55J3YaKQXq\nWJdGu/XWMJx37Niwta2UtiOOCHuR7LVXmN+z3nqxE0kxi/o7o5l1M7MaM5tmZv3qOeaG5PnXzUxj\nfYrMiBFh5vPw4dCmTew0kit9+oQh2nvvDZ9+GjuNFLNoRcTMmgADgW7AlsARZrZFnWP2AzZx902B\nE4GbCx5U6jVxIhx9NDzyCGy6aew0kmt9+4ah2vvuGza3EkknZktkB2C6u89w90XAEOCgOsf0AAYD\nuPs4oJWZaR+8IjBrVrh+PnAg7LJL7DSSL5deGkbbHXAAzJ8fO40Uo5hFZF1gZq37s5LHlneMrtBG\n9tVXYVLaaafBYYfFTiP5ZAY33AAbbgi/+x18913sRFJsYnasZzomt+7ws7Svq6qq+uF2KpUilUpl\nFUqWbdGiUDh22gnOPTd2GimEFVaAO+6AQw8N2xrff782tSpV1dXVVOd4Rmm0eSJm1gWocvduyf3z\ngCXufmWtY/4JVLv7kOR+DbC7u8+u816aJ1IA7mFTqQ8+CDOc9YOksixcGC5rtW8f9oXRUO7SV+rz\nRF4FNjWzDmbWDOgJPFbnmMeAo+GHojOnbgGRwrniCnj1VW2vWqlWWgmGDoWaGjjrrPBLhUi0IuLu\n3wOnAk8BU4AH3H2qmfUxsz7JMcOBd81sOnAL8MdYeSvd/ffDzTeHJTFWWy12GomlRYswnLu6OqyP\nJqJlT2S5nnsudKqOGgW//GXsNFIMZs8Om1qdfXa4xCmlSWtnJVRE8uett8J+E3ffDfvsEzuNFJOp\nU0MhmTw5bHIlpUdFJKEikh+ffBJGYf35z3DccbHTSDE688wwf+SWW2InkWyoiCRURHJvwQL49a/D\n+kmXXho7jRSrOXNg883D8jedOsVOIw2lIpJQEcmtJUvCnICVV4Z77gkTzkTqc+ut4ftkzBh9r5Sa\nUh/iK0Wqb1/47LMwwUw/FGR5jjsurGLw0EOxk0gMaonIT/zjH3DjjfDii9C6dew0UiqefRZ69Qqd\n7c2bx04jmVJLRHLq8cfhr38N8wBUQKQhdtsNunSBv/0tdhIpNLVEBIDXXgu72Q0bBjvuGDuNlKL3\n34fOnWHCBFh//dhpJBNqiUhOvP8+9OgRhmmqgEi2NtgATj0V+qXdXk7KlVoiFW7OHNh119A5euaZ\nsdNIqZs/Pwz5vfde6No1dhpZHg3xTaiIZOe776B7d9hqK7j+eo3EktwYMgSuugpeeQWaNImdRpZF\nl7Mka0uXdW/RAq69VgVEcqdnzzBC6847YyeRQlBLpEINGBD2BBkzJhQSkVwaPz7sfllTAy1bxk4j\n9VFLRLJy993ht8Rhw1RAJD86dw4bWA0YEDuJ5JtaIhVm9Gg4/PDw95Zbxk4j5Wz27NDf9sIL0LFj\n7DSSjloi0iBTpoTr1fffrwIi+de2LZx3XtgFUcqXikiFmD07XKO++mrYY4/YaaRSnHYaTJ8eVkGQ\n8qTLWRVg8eKwoVSXLmFZE5FCGj48zEF6801o1ix2GqlNl7MkIwMGhCG96uSUGPbbDzbeGAYOjJ1E\n8iFaS8TMWgMPABsAM4DD3H1OnWPaA3cDawEO3OruN6R5L7VE6vH003DssWFtrHbtYqeRSlVTE2aw\nayvd4lLSM9bN7CrgM3e/ysz6AWu4e/86x7QD2rn7RDNbFXgNONjdp9Y5TkUkjVmzYPvtQ0d6KhU7\njVS6s88O+44MGhQ7iSxV6kWkBtjd3WcnxaLa3TdfzmuGAje6+3/rPK4iUseiRWF72/32C3uki8S2\ndCvd4cPDPBKJr9SLyJfuvkZy24Avlt6v5/gOwBhgK3efV+c5FZE6+vYNHZlPPAErqOdLisSgQWGy\n67PPaqmdYpCLItI0V2HSMbORQLor8efXvuPubmb1VoHkUtbDwBl1C8hSVVVVP9xOpVKkKvj6zWOP\nhUXwxo9XAZHi8oc/wM03wwMPhEmvUljV1dVUV1fn9D1jX85KufvHZrY2MDrd5SwzWxEYBjzp7tfV\n815qiSRmzAh7ggwdCjvtFDuNyM899xwcdVTobNdWunGV+hDfx4Deye3ewNC6BySXuW4HptRXQORH\nCxfCoYdC//4qIFK8unaFnXcOy8VL6Ys9xPdBYH1qDfE1s3WAQe6+v5ntCjwLvEEY4gtwnruPqPNe\naokQZgfPmgX//reuN0tx+9//Quf6+PHaSjemku5YzyUVEXjwwbBO0WuvQatWsdOILN8ll4T13B54\nIHaSyqUikqj0IvL227DLLjBiBGy3Xew0IpmZPx+22AL+9S/YbbfYaSpTqfeJSA4sWBD6QQYMUAGR\n0tK8eegXOeOMsL6blCYVkRJ3+ulhz4aTToqdRKThDjsMVlsNbr89dhLJli5nlbC774bLLoNXXgn/\nEUVK0YQJ0L17GPKr/rzCUp9IohKLyKRJYVmTZ56BrbeOnUakcU48EVZdFa65JnaSyqIikqi0IjJv\nXlhYsV8/OOaY2GlEGu/TT8Num889F9bXksJQEUlUUhFxh9//HlZaCe64I3Yakdy59tqwdcHw4Zrn\nVCganVWBBg0KCytqgx8pN6ecAu+9p610S41aIiVk/HjYd194/nno2DF2GpHce/LJMOR30iRtpVsI\naolUkLlzw3yQgQNVQKR8de8Om20GN/xs/1IpVmqJlAB3OOSQsL3tP/4RO41Ifr39dligcfJkaNs2\ndprypo71RLkXkeuvD0tDvPBC6FAXKXfnnBN2QrzttthJypuKSKKci8hLL0GPHjBuHGy4Yew0IoUx\nd24Y6jtsmJbzySf1iZS5zz8Pu78NGqQCIpWlZUu49NLQyV6mvx+WDRWRIrVkCRx9dOgLOeig2GlE\nCu+YY8ICo0OGxE4iy6LLWUXqiivCXuljxsCKK8ZOIxLHCy+E1nhNDbRoETtN+VGfSKLcisiYMdCz\nZ1hYsX372GlE4jrySNhkk7DdgeRWQYqImbUCdgI6ELaonQGMdfe5jfngXCqnIjJ7duhIvO026NYt\ndhqR+GbOhE6dwq6dHTrETlNe8lpEzKwrcC6heEwAPgQMWBvYllBMrnL35xsTIBfKpYgsXhxmpO+0\nE/zlL7HTiBSPAQPCLPYHH4ydpLzku4hcA9zs7tPqeX4z4CR3P6vBH2rWGngA2IBQjA5z9zn1HNsE\neBWY5e4H1nNMWRSRiy8Oq5iOHAlNmsROI1I8FiwIW+nedRekUrHTlI+S7RMxs6uAz9z9KjPrB6zh\n7v3rOfYsYDtgNXfvUc8xJV9Enn4ajj02NNnbtYudRqT4PPRQGPY7frx+ycqVgswTMbN7kn6Rpfc7\nmNkzjflQoAcwOLk9GDi4ns9eD9gPuI1wKa0sffAB9O4N996rAiJSn0MOgTXW0Cz2YpPJPJHngHFm\ntr+ZnQg8DVzbyM9t6+6zk9uzgfpWyLmW0C+zpJGfV7QWLQpDGE87Tc10kWUxg+uuC5d9v/wydhpZ\nqunyDnD3W8xsCvAM8BnQ2d0/Wt7rzGwkkO736vPrvL+b2c+uRZnZAcAn7j7BzFLL+7yqqqofbqdS\nKVIl8hP5ggvCtqD9017ME5HaOnWCgw+GSy4JBUUaprq6murq6py+ZyZDfHsBFyV/fgl0A45194lZ\nf6hZDZBy94/NbG1gtLtvXueYy4BewPfAysDqwCPufnSa9yvJPpHHHw8b8YwfD23axE4jUhqWbqU7\nZkz4W7JXqHkiQ4ET3f2T5P4OwK3u3inrDw0d65+7+5Vm1h9oVV/HenL87sA55TQ6a8YM2HFHePTR\nsOy1iGTuuuvCBlYjRmgr3cYoSMe6ux+8tIAk918GdmzMhwJXAHub2dvAHsl9zGwdM3uiviiN/Myi\nsXAhHHYY9OunAiKSjVNOgf/9L6zyK3Eta55IFWGeyOx6nl+bME/k4vzFy0yptUROPz3Mwv33v/Vb\nlEi2nnoKTj01TELUPjvZyUVLZFkd668AQ8ysGTAe+IgwzLYd0BlYCFzdmA+vRA89BE88EeaDqICI\nZG/ffcOeIzfcAOeeGztN5VpWS+Rf7t7LzC4ApvHj2lnvAy+4+6yCpVyOUmmJTJsWLl+NGKGNdkRy\nYdq0sEzQpEmaY5WNfC97MgXYCxgBpPjpZD939y8a88G5VApFZMEC6NIFTjoJTj45dhqR8tG3L3z2\nGdxxR+wkpSffReR04GRgI8Lii7W5u2/UmA/OpVIoIiecAPPmwX336TKWSC599VW4rPWf/8D228dO\nU1oKNcT3n+5+UmM+JN+KvYjcfTdcdlnYH2S11WKnESk/d94ZtpF+4QX9ktYQJbsAY64VcxGZPDks\nZ/LMM7D11rHTiJSnJUtghx3gzDPhqKNipykdKiKJYi0i8+aFb+y+fcN+0SKSPy++GOZf1dSEpYRk\n+VREEsVYRNyhVy9o1kwdfiKFctRRsNFG2tQtUyoiiWIsIrfeCjfeCOPGQfPmsdOIVIaZM2GbbeCt\nt+AXv4idpvipiCSKrYiMHx8mQj3/PHTsGDuNSGU5+eSw78hll8VOUvxURBLFVERqamCPPWDgQPjt\nb2OnEak8778PnTuHiYitW8dOU9wKsgCjZO6dd2DvveHyy1VARGLZYIPw/0/7jRSGWiI5MnMm7LZb\nGImlGekicb37bhgZOW1auLQl6aklUiQ+/hj23DNscasCIhLfRhvBgQeGxRklv9QSaaTPPguTCXv2\nhAsvjBJBRNKYPj0szjh9OrRsGTtNcVJLJLI5c8IorAMPDHuli0jx2GQT6N49DHKR/FFLJEvz5sE+\n+4QF3667Tuv1iBSjt96Crl3DoBetW/dzaolEsmBBaH1stRVce60KiEix6tgR9toLbropdpLypZZI\nAy1cCAcfHMaf3303NGlSkI8VkSxNmQK//nVojWhNrZ8q2ZaImbU2s5Fm9raZPW1mreo5rpWZPWxm\nU81sipl1KXTW2hYtgiOOCMuYDB6sAiJSCrbcMgx++ec/YycpT1FaImZ2FfCZu19lZv2ANdy9f5rj\nBgNj3P0OM2sKtHD3uWmOy3tLZPHisKDi3Lnw6KNhYUURKQ1vvhn6MN95R2vZ1Vayy56YWQ2wu7vP\nNrN2QLW7b17nmJbAhEx2UMx3EVmyBE48Ed57D4YNg1VWydtHiUie/O53oZP9T3+KnaR4lHIR+dLd\n10huG/DF0vu1jukE3AJMAbYBXgPOcPf5ad4vb0XEHU4/PSyq+NRTuqYqUqomToT99gutEf0iGOSi\niDTNVZi6zGwk0C7NU+fXvuPubmbpKkBToDNwqru/YmbXAf2Bi9J9XlVV1Q+3U6kUqVQqu+A/yQb9\n+8PYsfDf/6qAiJSyTp3CkPzbbgurS1Si6upqqqurc/qeMS9npdz9YzNbGxid5nJWO2Csu2+Y3N8V\n6O/uB6R5v7y0RAYMgIcegupqWHPNnL+9iBTYa6/BQQeFWewrrxw7TXwlOzoLeAzondzuDQyte4C7\nfwzMNLPNkof2AiYXJh5cfTXcey+MGqUCIlIuttsutEjuvDN2kvIRqyXSGngQWB+YARzm7nPMbB1g\nkLvvnxy3DXAb0Ax4Bzi2EKOzbropFJFnn4X11svZ24pIERg3Dg49NLRGKn2UZcl2rOdaLovInXfC\nxRfDmDGw4YY5eUsRKTLduoXRWiecEDtJXCoiiVwVkSFD4KyzYPRobWsrUs5efBGOOgrefhtWXDF2\nmnhKuU+k6PznP2H8+FNPqYCIlLudd4aNN4Z//St2ktKnlgihcPTqBcOHw69+lcNgIlK0nnsOjjkm\nrPTbNG+THYqbWiI5MGYM/P73YSkTFRCRytG1K6y/Ptx3X+wkpa2iWyIvvQQ9eoS+kD32yEMwESlq\no0dDnz4wdWplLqiqlkgjTJgQJh3ddZcKiEilSqWgbVt44IHYSUpXRbZEJk8OG9UMHBiG+YlI5Ro5\nMqyPN2lS5bVG1BLJwrRpYUnoq69WARGR8AvlGmvAww/HTlKaKqol8v77sNtucMEFmmQkIj8aMQLO\nOQfeeANWqKBfrdUSaYAPP4Q994Szz1YBEZGf2nffsFnVo4/GTlJ6KqKIfPJJKCDHHx+ufYqI1GYG\nF10UVu5esiR2mtJS9kXkiy9CH8ghh4S9QURE0tl//zDp8PHHYycpLWXdJ/LVV7D33rDrrqEj3Rp1\n5U9Eyt1//gOXXBL2HamEnxfqE1mGb76BAw6Azp1VQEQkMz16hMtZTzwRO0npKMuWyLffhm+GtdcO\nS7tX0mgLEWmcRx6BK68M+46U+y+faomksWgRHHYYtGoFt9+uAiIiDfOb38D8+WFhVlm+svoR+/33\nYY8AgHvuqdyVOUUkeyusABdeGPpGyuBCTd6VTRFZsgSOOw7mzIEHH9S2lyKSvUMOCT9LRo2KnaT4\nlU0ROeUUeO+9MFlo5ZVjpxGRUtakiVojmYpSRMystZmNNLO3zexpM2tVz3HnmdlkM3vTzO4zs5Xq\ne8/x42HYMGjRIn+5RaRy9OwJn34K1dWxkxS3WC2R/sBId98M+G9y/yfMrANwAtDZ3bcGmgCH1/eG\nTz4Jq6+el6wiUoGaNIHzzw+z2KV+sYpID2BwcnswcHCaY74CFgHNzawp0Bz4oL43bN061xFFpNId\neSTMnAnPPhs7SfGKVUTauvvs5PZsoG3dA9z9C+DvwP+AD4E57q5uLhEpmKZN4c9/hr/8JXaS4pW3\nQbBmNhJol+ap82vfcXc3s591XZnZxsCfgA7AXOAhMzvK3e9N93lVVVU/3E6lUqRSqWyji4j8oFev\nUERefBF23jl2msaprq6mOsedPFFmrJtZDZBy94/NbG1gtLtvXueYnsDe7n58cr8X0MXdT0nzflnt\nsS4ikolBg8JM9hEjYifJrVKesf4Y0Du53RsYmuaYGqCLma1iZgbsBUwpUD4RkR/07g1Tp4alUOSn\nYhWRK4C9zextYI/kPma2jpk9AeDurwN3A68CbySvuzVCVhGpcM2aha0k1Dfyc2W5AKOISK4tXAib\nbAJDh8J228VOkxulfDlLRKSkrLQS9OuneSN1qSUiIpKhb7+FjTcOq2Nsu23sNI2nloiISAGtvDKc\ney5cemnsJMVDLRERkQaYPz+0Rp5+GrbeOnaaxlFLRESkwJo3h7PPVmtkKbVEREQa6JtvYKONYPRo\n2HLL2Gktw5xbAAAI20lEQVSyp5aIiEgELVrAWWepNQJqiYiIZOXrr0PfyLPPwuabL//4YqSWiIhI\nJKutBmecAZddFjtJXGqJiIhkae7cMIt97Njwd6lRS0REJKKWLeHUUyu7NaKWiIhII8yZE1ohL78c\nRmyVErVEREQia9UK/vhHuPzy2EniUEtERKSRvvgCNt0Uxo+HDTaInSZzaomIiBSB1q2hTx+44orY\nSQpPLRERkRz47DPo2BEmToT27WOnyYxaIiIiRaJNGzj+eLjqqthJCkstERGRHPnkE9hiC3jzTVhn\nndhplq9kWyJmdqiZTTazxWbWeRnHdTOzGjObZmb9CplRRKSh1loLjjmmslojUVoiZrY5sAS4BTjb\n3cenOaYJ8BawF/AB8ApwhLtPTXOsWiIiUhQ++gi22gqmTIF27WKnWbaSbYm4e427v72cw3YAprv7\nDHdfBAwBDsp/OhGR7K29NvTqBVdfHTtJYRRzx/q6wMxa92clj4mIFLW+feHOO0MfSbnLWxExs5Fm\n9maaPwdm+Ba6PiUiJWnddeGII+Dvf4+dJP+a5uuN3X3vRr7FB0Dt0dbtCa2RtKqqqn64nUqlSKVS\njfx4EZHs9esHnTrBueeG4b/FoLq6murq6py+Z9QhvmY2GjjH3V9L81xTQsf6nsCHwMuoY11ESshJ\nJ8Gaa8Jf/xo7SXq56FiPNTrrN8ANQBtgLjDB3bub2TrAIHffPzmuO3Ad0AS43d3TLnGmIiIixWjG\nDNhuO5g2LSyNUmxKtojkmoqIiBSr448PfSSXXBI7yc+piCRURESkWL37Luy5Z2iNNM1bL3R2VEQS\nKiIiUswWLIBVVomd4udURBIqIiIiDVeyM9ZFRKQ8qIiIiEjWVERERCRrKiIiIpI1FREREcmaioiI\niGRNRURERLKmIiIiIllTERERkaypiIiISNZUREREJGsqIiIikjUVERERyZqKiIiIZE1FREREsqYi\nIiIiWYtWRMzsUDObbGaLzaxzPce0N7PRyXGTzOz0QucUEZH6xWyJvAn8Bnh2GccsAs50962ALsAp\nZrZFIcI1VnV1dewIP6NMmSvGXMqUGWUqrGhFxN1r3P3t5RzzsbtPTG7PA6YC6xQiX2MV4zeNMmWu\nGHMpU2aUqbBKpk/EzDoA2wLj4iYREZGlmubzzc1sJNAuzVN/dvfHG/A+qwIPA2ckLRIRESkC5u5x\nA5iNBs529/H1PL8iMAx40t2vq+eYuF+EiEiJcndrzOvz2hJpgLRfhJkZcDswpb4CAo0/CSIikp2Y\nQ3x/Y2YzCaOunjCzJ5PH1zGzJ5LDdgF+D/zazCYkf7pFiiwiInVEv5wlIiKlq6hHZ5lZNzOrMbNp\nZtYvzfMpM5tbq5VyYa3nZpjZG8njLxcyV61sE5JJktUNeW2ETHk5Vxn8+51T69/uTTP73sxaZfr1\nRMgU6zy1MbMRZjYx+bc7JtPXRswV61ytYWaPmtnrZjbOzLbK9LWRMuX8PJnZHWY228zeXMYxNyR5\nXzezbTP9WtJy96L8AzQBpgMdgBWBicAWdY5JAY/V8/r3gNaRcrUCJgPrJffbZPraQmfK17lq6NcK\nHACMin2e6ssU8zwBVcDlS//dgM8J/Zl5OU+NzRX5XP0NuDC53bEYvqfqy5TH89SVMB3izXqe3w8Y\nntzeEXipMeeomFsiOwDT3X2Guy8ChgAHpTluWZ3q+ehwzyTXkcAj7j4LwN0/a8BrC51pqVyfq4Z+\nrUcC92f52kJkWirGefoIWD25vTrwubt/n+FrY+RaKsa52gIYDeDubwEdzGytDF9byEy/qPV8Ts+T\nuz8HfLmMQ3oAg5NjxwGtzKwdWZ6jYi4i6wIza92flTxWmwM7J02y4Wa2ZZ3nRpnZq2Z2QoFzbQq0\ntrDu16tm1qsBry10JsjPucr4azWz5sC+wCMNfW0BM0G88zQI2MrMPgReB85owGtj5IJ45+p14LcA\nZrYDsAGwXoavLXQmyN/PqWWpL/M69Ty+TMUyxDedTHr8xwPt3X2+mXUHhgKbJc/t4u4fJRV/pJnV\nJBW6ELlWBDoDewLNgbFm9lKGry1oJnefBuzq7h/m+Fw15Gs9EHje3edk8dqGaEwmyM/3VCaZ/gxM\ndPeUmW2cfPY2jfzcvOVy96+Jd66uAK43swmE9fkmAIszfG2hM0F+/u9lImetn2JuiXwAtK91vz2h\nMv7A3b929/nJ7SeBFc2sdXL/o+TvT4FHCU21guQiVPOn3X2Bu39OWGRymwxfW+hMuPuHyd+5PFcN\n+VoP56eXjWKep/oy5et7KpNMOwMPJZ/9DuE6esfkuHycp8bminaukp8Jf3D3bd39aOAXwDsZfj2F\nzPRu8lw+/u81NPN6SebszlEuO3Ry+YfQSnqH0MnTjPQdVm35cZjyDsCM5HZzYLXkdgvgBWCfAuba\nHBhF6KhqTvjtY8tMXhshU17OVaZfK9CS0CG7SkNfW+BM0c4TcA1wca3v+VlA63ydpxzkinmuWgLN\nktsnAHfF/p5aRqZ8/pzqQGYd6134sWM9q3PU6LD5/AN0B94ijBg4L3msD9AnuX0KMCn5Yl8EuiSP\nb5Q8NjF5/rxC5krun0MYDfUmcPqyXhszUz7PVYaZegP3ZfLamJmADWOdJ8LIp8cJ19bfBI7M93lq\nTK6Y31PATsnzNYT19lrG/p6qL1O+vqcILegPge8IVyD+kOZ7fGCS93Wgc2POkSYbiohI1oq5T0RE\nRIqcioiIiGRNRURERLKmIiIiIllTERERkaypiIiISNZUREREJGsqIiIikjUVEZE8MLPtk9WlVzKz\nFsmmTVsu/5UipUUz1kXyxMz+AqwMrALMdPcrI0cSyTkVEZE8MbMVgVeBBcBOrv9sUoZ0OUskf9oQ\nVmddldAaESk7aomI5ImZPQbcR1jVdm13Py1yJJGcK+adDUVKlpkdDSx09yFmtgLwopml3L06cjSR\nnFJLREREsqY+ERERyZqKiIiIZE1FREREsqYiIiIiWVMRERGRrKmIiIhI1lREREQkayoiIiKStf8H\njXMbWAkg26AAAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f01da57e590>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.55 \t0.60 \t0.65 \t0.70 \t0.75 \t0.80 \t0.85 \t0.90 \t0.95 \t" + ] + } + ], + "source": [ + "from numpy import arange\n", + "from math import sin,cos\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot, title, xlabel, ylabel, show\n", + "\n", + "def f(x):\n", + " y=sin(10*x)+cos(3*x)#\n", + " return y\n", + "count=1#\n", + "func=[]\n", + "val=[]\n", + "for i in arange(0.55,1,0.05):\n", + " val.append(i)\n", + " func.append(f(i))\n", + " count=count+1#\n", + "\n", + "plot(val,func)\n", + "title(\"x vs f(x)\")\n", + "xlabel('x')\n", + "ylabel('f(x)')\n", + "show()\n", + "for v in val:\n", + " print '%0.2f'%v,'\\t'," + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.3: Pg:125" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "enter the tolerable true percent error=1.24\n" + ] + } + ], + "source": [ + "from math import exp\n", + "m=68.1##kg\n", + "v=40##m/s\n", + "t=10##s\n", + "g=9.8##m/s**2\n", + "def f(c):\n", + " y=g*m*(1-exp(-c*t/m))/c - v#\n", + " return y\n", + "x1=12#\n", + "x2=16#\n", + "xt=14.7802##true value\n", + "e=input(\"enter the tolerable true percent error=\")\n", + "xr=(x1+x2)/2#\n", + "etemp=abs(xr-xt)/xt*100##error\n", + "while etemp>e:\n", + " if f(x1)*f(xr)>0:\n", + " x1=xr#\n", + " xr=(x1+x2)/2#\n", + " etemp=abs(xr-xt)/xt*100#\n", + " \n", + " if f(x1)*f(xr)<0:\n", + " x2=xr#\n", + " xr=(x1+x2)/2#\n", + " etemp=abs(xr-xt)/xt*100#\n", + " \n", + " if f(x1)*f(xr)==0:\n", + " break\n", + " \n", + "print \"The result is =\",xr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.4: Pg:126" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "enter the tolerable approximate error=21.03\n", + "Iteration: 1\n", + "xl: 12\n", + "xu: 16\n", + "xr: 14\n", + "et: 5.27868364433 %\n", + "----------------------------------------\n", + "Iteration: 2\n", + "xl: 14\n", + "xu: 15\n", + "xr: 14\n", + "et(%): 5.27868364433 %\n", + "ea 0 %\n", + "----------------------------------------\n", + "The result is= 14\n" + ] + } + ], + "source": [ + "from math import exp\n", + "m=68.1##kg\n", + "v=40##m/s\n", + "t=10##s\n", + "g=9.8##m/s**2\n", + "def f(c):\n", + " y=g*m*(1-exp(-c*t/m))/c - v#\n", + " return y\n", + "x1=12#\n", + "x2=16#\n", + "xt=14.7802##true value\n", + "e=input(\"enter the tolerable approximate error=\")\n", + "xr=(x1+x2)/2#\n", + "i=1#\n", + "et=abs(xr-xt)/xt*100##error\n", + "print \"Iteration:\",i\n", + "print \"xl:\",x1\n", + "print \"xu:\",x2\n", + "print \"xr:\",xr\n", + "print \"et:\",et,\"%\"\n", + "print \"----------------------------------------\"\n", + "etemp=100#\n", + "while etemp>e:\n", + " if f(x1)*f(xr)>0:\n", + " x1=xr\n", + " xr=(x1+x2)/2\n", + " etemp=abs(xr-x1)/xr*100\n", + " et=abs(xr-xt)/xt*100\n", + " \n", + " if f(x1)*f(xr)<0:\n", + " x2=xr\n", + " xr=(x1+x2)/2\n", + " etemp=abs(xr-x2)/xr*100\n", + " et=abs(xr-xt)/xt*100\n", + " \n", + " if f(x1)*f(xr)==0:\n", + " break#\n", + " \n", + " i=i+1#\n", + " print \"Iteration:\",i\n", + " print \"xl:\",x1\n", + " print \"xu:\",x2\n", + " print \"xr:\",xr\n", + " print \"et(%):\",et,\"%\"\n", + " print \"ea\",etemp,\"%\"\n", + " print \"----------------------------------------\"\n", + "\n", + "\n", + "print \"The result is=\",xr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.5: Pg:133" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "enter the tolerable true percent error=24.36\n", + "The result is= 14.9113031791\n" + ] + } + ], + "source": [ + "from math import exp\n", + "m=68.1##kg\n", + "v=40##m/s\n", + "t=10##s\n", + "g=9.8##m/s**2\n", + "def f(c):\n", + " y=g*m*(1-exp(-c*t/m))/c - v#\n", + " return y\n", + "x1=12#\n", + "x2=16#\n", + "xt=14.7802##true value\n", + "e=input(\"enter the tolerable true percent error=\")\n", + "xr=x1-(f(x1)*(x2-x1))/(f(x2)-f(x1))#\n", + "etemp=abs(xr-xt)/xt*100##error\n", + "while etemp>e:\n", + " if f(x1)*f(xr)>0:\n", + " x1=xr\n", + " xr=x1-(f(x1)*(x2-x1))/(f(x2)-f(x1))\n", + " etemp=abs(xr-xt)/xt*100\n", + " \n", + " if f(x1)*f(xr)<0:\n", + " x2=xr\n", + " xr=x1-(f(x1)*(x2-x1))/(f(x2)-f(x1))\n", + " etemp=abs(xr-xt)/xt*100\n", + " \n", + " if f(x1)*f(xr)==0:\n", + " break\n", + " \n", + "\n", + "print \"The result is=\",xr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.6: Pg:135" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BISECTION METHOD:\n", + "Iteration: 1\n", + "xl: 0\n", + "xu: 1.3\n", + "xr: 0.65\n", + "et(%): 35.0 %\n", + "----------------------------------------\n", + "Iteration: 2\n", + "xl: 0.65\n", + "xu: 1.3\n", + "xr: 0.975\n", + "et(%): 2.5 %\n", + "ea(%) 33.3333333333 %\n", + "----------------------------------------\n", + "Iteration: 3\n", + "xl: 0.975\n", + "xu: 1.3\n", + "xr: 1.1375\n", + "et(%): 13.75 %\n", + "ea(%) 14.2857142857 %\n", + "----------------------------------------\n", + "Iteration: 4\n", + "xl: 0.975\n", + "xu: 1.1375\n", + "xr: 1.05625\n", + "et(%): 5.625 %\n", + "ea(%) 7.69230769231 %\n", + "----------------------------------------\n", + "Iteration: 5\n", + "xl: 0.975\n", + "xu: 1.05625\n", + "xr: 1.015625\n", + "et(%): 1.5625 %\n", + "ea(%) 4.0 %\n", + "----------------------------------------\n", + "FALSE POSITION METHOD:\n", + "Iteration: 1\n", + "xl: 0\n", + "xu: 1.3\n", + "xr: 0.0942995953723\n", + "et(%): 90.5700404628 %\n", + "----------------------------------------\n", + "Iteration: 2\n", + "xl: 0.0942995953723\n", + "xu: 1.3\n", + "xr: 0.181758872519\n", + "et(%): 81.8241127481 %\n", + "ea(%) 48.1182986748 %\n", + "----------------------------------------\n", + "Iteration: 3\n", + "xl: 0.181758872519\n", + "xu: 1.3\n", + "xr: 0.26287401252\n", + "et(%): 73.712598748 %\n", + "ea(%) 30.8570403075 %\n", + "----------------------------------------\n", + "Iteration: 4\n", + "xl: 0.26287401252\n", + "xu: 1.3\n", + "xr: 0.338105103322\n", + "et(%): 66.1894896678 %\n", + "ea(%) 22.2508001396 %\n", + "----------------------------------------\n", + "Iteration: 5\n", + "xl: 0.338105103322\n", + "xu: 1.3\n", + "xr: 0.407877916593\n", + "et(%): 59.2122083407 %\n", + "ea(%) 17.1062983388 %\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=x**10 - 1#\n", + " return y\n", + "x1=0#\n", + "x2=1.3#\n", + "xt=1#\n", + "\n", + "#using bisection method\n", + "print \"BISECTION METHOD:\"\n", + "xr=(x1+x2)/2#\n", + "et=abs(xr-xt)/xt*100##error\n", + "print \"Iteration:\",1\n", + "print \"xl:\",x1\n", + "print \"xu:\",x2\n", + "print \"xr:\",xr\n", + "print \"et(%):\",et,\"%\"\n", + "print \"----------------------------------------\"\n", + "for i in range(2,6):\n", + " if f(x1)*f(xr)>0:\n", + " x1=xr\n", + " xr=(x1+x2)/2\n", + " ea=abs(xr-x1)/xr*100#\n", + " et=abs(xr-xt)/xt*100#\n", + " else:\n", + " if f(x1)*f(xr)<0:\n", + " x2=xr#\n", + " xr=(x1+x2)/2#\n", + " ea=abs(xr-x2)/xr*100#\n", + " et=abs(xr-xt)/xt*100#\n", + " \n", + " \n", + " if f(x1)*f(xr)==0:\n", + " break\n", + " \n", + " print \"Iteration:\",i\n", + " print \"xl:\",x1\n", + " print \"xu:\",x2\n", + " print \"xr:\",xr\n", + " print \"et(%):\",et,\"%\"\n", + " print \"ea(%)\",ea,\"%\"\n", + " print \"----------------------------------------\"\n", + "\n", + "\n", + "#using false position method\n", + "print \"FALSE POSITION METHOD:\"\n", + "x1=0#\n", + "x2=1.3#\n", + "xt=1#\n", + "xr=x1-(f(x1)*(x2-x1))/(f(x2)-f(x1))##\n", + "et=abs(xr-xt)/xt*100##error\n", + "print \"Iteration:\",1\n", + "print \"xl:\",x1\n", + "print \"xu:\",x2\n", + "print \"xr:\",xr\n", + "print \"et(%):\",et,\"%\"\n", + "print \"----------------------------------------\"\n", + "for i in range(2,6):\n", + " if f(x1)*f(xr)>0:\n", + " x1=xr#\n", + " xr=x1-(f(x1)*(x2-x1))/(f(x2)-f(x1))#\n", + " ea=abs(xr-x1)/xr*100#\n", + " et=abs(xr-xt)/xt*100#\n", + " \n", + " elif f(x1)*f(xr)<0:\n", + " x2=xr#\n", + " xr=x1-(f(x1)*(x2-x1))/(f(x2)-f(x1))#\n", + " ea=abs(xr-x2)/xr*100#\n", + " et=abs(xr-xt)/xt*100#\n", + " \n", + " \n", + " elif f(x1)*f(xr)==0:\n", + " break#\n", + " \n", + " print \"Iteration:\",i\n", + " print \"xl:\",x1\n", + " print \"xu:\",x2\n", + " print \"xr:\",xr\n", + " print \"et(%):\",et,'%'\n", + " print \"ea(%)\",ea,\"%\"\n", + " print \"----------------------------------------\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter6_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter6_2.ipynb new file mode 100644 index 00000000..9efcccef --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter6_2.ipynb @@ -0,0 +1,688 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6 : Open Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.1: Pg: 143" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = :\n", + "0\n", + "1.0\n", + "0.367879441171\n", + "0.692200627555\n", + "0.500473500564\n", + "0.606243535086\n", + "0.545395785975\n", + "0.579612335503\n", + "0.560115461361\n", + "0.57114311508\n", + "0.564879347391\n", + "\n", + "e = :\n", + "100.0\n", + "-171.828182846\n", + "46.8536394613\n", + "-38.3091465933\n", + "17.4467896812\n", + "-11.1566225254\n", + "5.90335081441\n", + "-3.48086697962\n", + "1.93080393126\n", + "-1.10886824205\n" + ] + } + ], + "source": [ + "from math import exp\n", + "#f(x) = exp(-x) - x#\n", + "#using simple fixed point iteration, Xi+1 = exp(-Xi)\n", + "x = 0##initial guess\n", + "y=[]\n", + "e=[]\n", + "y.append(0)\n", + "e.append(0)\n", + "for i in range(1,12):\n", + " if i == 1 :\n", + " y.append(x)\n", + " else:\n", + " y.append(exp(-y[(i-1)]))\n", + " e.append((y[(i)] - y[(i-1)]) * 100 / y[(i)])\n", + " \n", + "print \"x = :\"\n", + "for x in y[1:]:\n", + " print x\n", + "print \"\\ne = :\"\n", + "for e in e[1:]:\n", + " print e\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.2: Pg: 144" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = [0, 0.2, 0.4, 0.6000000000000001, 0.8, 1.0]\n", + "y1 = [0, 0.2, 0.4, 0.6000000000000001, 0.8, 1.0]\n", + "y2 = [1.0, 0.8187307530779818, 0.6703200460356393, 0.5488116360940264, 0.44932896411722156, 0.36787944117144233]\n", + "answer using two curve graphical method = 5.7\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEZCAYAAABsPmXUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPW9x/H3l7CIIiKLKIuIbBIQi6wVwQCyCLVWLe5S\nXEGg1ke0lrayWav2ttdeLyjRq1avVtuoV0FRQTCAiihhU8O+KOCOIMoWSL73j4lxjIFMkpk5s3xe\nz5PnycmcnHw5JB8+/Oacibk7IiKSWqoFPYCIiESfwl1EJAUp3EVEUpDCXUQkBSncRURSkMJdRCQF\nKdwlKZhZOzNbbma7zGxs8ccGmdn/Rfj5i80sM7ZTiiQO03XukgzM7GFgp7uPC/vYEmC0u78TwecP\nAy5291/GcEyRhKHmLsmiBZD/3YaZdQPqRhLsxWYCfc2scSyGE0k0CndJeGY2D8gCphYvy7QBzgFy\nw/Y5w8y+MLNmxdunmdlXZtYWwN33AXnAoDKOX8vMdppZh7CPNTKzPWbWsPjtRTPbYWbbzWyBmVkZ\nxznsDCLxpHCXhOfu/YCFwBh3r+vu64COwJqwfd4CsoHHzKw28ATwR3dfG3aoVcBpZRx/P/AscGnY\nhy8Cct39S2AcsAVoCBwHjPcy1jMjnEEkLhTukkzC23I94JtSj08CjgHeAba4+/2lHv+m+PPK8k/g\nkrDty4o/BlAAnACc5O6F7v7mYWYsbwaRuFC4SzIJb8s7gLo/eND9IPAY0AH4WxmfX7f488qSCxxp\nZt3N7CRCDf+7K3H+A1gPzDazDWZ22yEHLH8GkbhQuEuyWgn8YC3bzJoCE4BHgP80s5qlPqc9sKKs\ng7l7IfBvQkszlwIz3X138WPfuvst7t4K+Dlws5n1K+s4EcwgEhcKd0km4csys4CzSh4IPcH5D+B/\n3P1a4BPgjrDHjwBOB+Yc5vjfLc2EL8lgZkPNrHXx19gFFBa//XC4cmYQiSeFuySTkmUZd18GfG1m\n3Ys/dCOhJzxvL96+CrjKzHoVb58LvO7unx7y4KHLKr8ltL7+cthDbQj9o/AN8BYwzd3nl3GI8mYQ\niZtyb2Iys0eAocDn7n7qIfa5j9ClaXuAEcU/eCIxZWYDCN3EdH4E+74NXO3u+eXtK5IKIgn33oTa\nzONlhbuZDQHGuvsQM+sB/Je794zJtCIiEpFyl2XcfSGHvsIAQk8wPVa872Kgnu4CFBEJVjTW3JsS\nusHjO1uBZlE4roiIVFK0nlAtfSu2Xo1MRCRA1aNwjG1A87DtZsUf+wEzU+CLiFSCu//otYzKE43m\nPgMYDmBmPQm9LOtnZe245ss1DHh8AB3v78j8zfNx97R8mzhxYuAzJMqbzoXOhc7F929LlzqdOjlD\nhzrbtoU+VlnlNncze4rQzSINzWwLMBGoAeDu2e4+y8yGmNl6YDeha3vL1LZBW1694lWeyX+Gy5+7\nnL4n9eU/BvwHjevo+VcRSV8FBXDnnfDAA/DXv8KVV8KPX3e0YsoNd3e/NIJ9xkb6Bc2MYR2GcU6b\nc5gyfwodH+jIhD4TuKHbDVSvFo1VIhGR5LFsGYwYAc2bw/Ll0KRJdI4b2B2qdWrW4S8D/kLur3J5\nbvVzdHuoG4u2LApqnLjKysoKeoSEoXPxPZ2L76XDuSgogIkTYdAgGDcOZs6MXrBDHH/Nnpn5ob6W\nu/PU+09x65xbGdxqMHeffTeNjmoUl7lEROItvK0/+ODhQ93M8ICeUK0yM+OyUy8jf3Q+dWvVpcP9\nHchekk1h0Y9em0lEJGnFuq2HS4jmXtqKT1cwZtYYCgoLuH/o/XRt0jXG04mIxFZF2nq4yjb3hAx3\ngCIv4vEVj/O7137H+aecz53976R+7foxnFBEJPqqeiVMUi/LlKWaVWPET0awaswqqlk1Mqdl8siy\nRyjyoqBHExGJyLJl0K0b5OWFroQZPrzqlzhGKmGbe2l5H+cxetZoqlerzrQh0/jJ8T+J4nQiItET\nzevWU665l9alSRcWXbOIEaeNYNATg7jx5Rv5et/XQY8lIvIDQbb1cEkT7hBaqrmuy3V8MPoD9h3c\nR/tp7Xli5RNVukVXRCQa4nklTCSSZlmmLIu3Lmb0rNHUqVmHaUOm0fG4jlE9vohIJCp7JUwkUn5Z\npiw9mvXgnWvf4eIOF9P3sb7cMvsWvtn/TdBjiUiaSLS2Hi6pwx0go1oGo7uN5oPRH/Dlni9pP609\n/3r/X1qqEZGYSpS19UNJ6mWZsrzx0RuMmTWGRkc2YuqQqZzS8JSYf00RSR+xeAXHw0nLZZmynHni\nmeRdn8fP2v6MMx85k/GvjWd3we6gxxKRFJDobT1cyoU7QPVq1bmp502svGElH+36iMz7M3lu1XNa\nqhGRSknktfVDSbllmbK8vul1xswaQ4t6Lfjvc/6b1vVbBzKHiCSfWF4JEwktyxxG35Z9WT5qOf1O\n6kfP/+nJxNcnsvfA3qDHEpEEloxtPVxahDtAzYya3NrrVpaNXEb+l/l0uL8DL659MeixRCQBJdPa\n+qGkxbJMWWZvmM3YWWM5peEp/Nfg/6LlsS2DHklEAhbvK2EioWWZChrYaiDv3fAePZr2oOtDXfnT\ngj+x/+D+oMcSkYCkQlsPl7bNPdzmnZu56ZWb+OCLD5h6zlQGtR4U9EgiEieJ2NbDpdwv6wjCS2tf\n4sZXbqTz8Z25d9C9ND+medAjiUgMBX0lTCS0LBMFQ9sO5f0b3qfjcR3pnN2Ze964h4LCgqDHEpEo\nS/YrYSKh5n4I679az40v38jmnZuZOmQq/Vr2C3okEYmCZGjr4bQsEwPuzgtrXuA3r/yGM5qfwd8G\n/o0mRyf4d4KIlCnR19YPRcsyMWBm/OKUX5A/Op+W9VrS6YFO3LvoXg4UHgh6NBGpgFS7EiYSau4V\nsObLNYx9eSyfffsZ04ZMo3eL3kGPJCKHkaxtPZyWZeLE3cnJz+HmV2+m/8n9+cvZf6FxncZBjyUi\npSTb2vqhaFkmTsyMizpcxKoxqzjuyOPo+EBHpr4zlcKiwqBHExHS40qYSKi5V9EHn3/AmFlj2LV/\nF/cPvZ+ezXoGPZJI2kqVth5OyzIBcnf++d4/uXXOrQxpM4S7z76bhkc2DHoskbSRCmvrh6JlmQCZ\nGZd3upxVY1ZxVI2jyJyWSfaSbIq8KOjRRFJeOl4JEwk19xhY8ekKRs8azYHCA9w/9H66Nuka9Egi\nKSeV23o4LcskmCIv4rHljzF+7njOP+V87ux/J/Vr1w96LJGUkIpr64eiZZkEU82qcVXnq8gfk4+Z\nkTktk0eXPaqlGpEq0JUwkVNzj5MlHy9h9EujqZFRg3sH3Uv3pt2DHkkkqaRTWw8Xs+ZuZoPNbLWZ\nrTOz28p4vKGZvWJmy83sfTMbUdEh0kHXJl15+9q3GXHaCC7894Wc8+Q5vL317aDHEkl4auuVc9jm\nbmYZwBrgbGAb8C5wqbuvCttnElDL3cebWcPi/Ru7+8FSx0rr5h5u/8H9PLr8Ue564y7aNWjHxLMm\n0uvEXkGPJZJw0rWth4tVc+8OrHf3ze5+AHgaOK/UPp8AdYvfrwtsLx3s8kO1qtdiVNdRrPv1OoZl\nDuOK/7uC/o/3Z8GHC4IeTSQhqK1XXXnh3hTYEra9tfhj4R4COpjZx8AK4DfRGy+11cyoyXVdrmPt\n2LVc1vEyRjw/gr6P9eX1Ta+j/+VIutJ169FRvZzHI0mY3wPL3T3LzFoBc8zsNHf/pvSOkyZNKnk/\nKyuLrKysCoyaumpk1OCa069h+GnDefK9J7lu5nU0OboJE8+aSL+W/TB9Z0saSJfr1suTm5tLbm5u\nlY9T3pp7T2CSuw8u3h4PFLn7PWH7zALudPc3i7fnAre5+5JSx9Kae4QOFh3kqfee4k8L/0SjIxsx\n4awJDDh5gEJeUpbW1g8tJjcxmVl1Qk+Q9gc+Bt7hx0+o/ifwtbtPNrPGQB7Qyd2/KnUshXsFFRYV\n8q8P/sUdC+6g3hH1mNBnAoNbD1bIS8pQWy9fzO5QNbNzgL8DGcDD7n6XmY0EcPfs4itkHgVOJLSG\nf5e7/7OM4yjcK6mwqJCc/BzuWHAHdWrWYUKfCQxpM0QhL0lNbT0yevmBNFDkRTyb/yxTFkyhVkYt\nJpw1gXPbnquQl6Sitl4xCvc0UuRFPL/6eabMn4KZMaHPBM475TyqmV5NQhKb2nrFKdzTUJEXMWPN\nDKbMn0KhF3J7n9u5oP0FCnlJOGrrladwT2PuzotrX2TKginsO7iP2/vczoXtLySjWkbQo4morVeR\nwl1wd15e/zKT50/mm/3fcHuf27mow0UKeQmE2np0KNylhLsze8NsJs+fzFd7v+KPff7IJR0voXq1\n8u5ZE4kOtfXoUbjLj7g7czfNZfL8yXz27Wf8sc8fuezUyxTyEjNq69GncJdDcnde3/w6k+dPZtuu\nbfyh9x+4otMV1MioEfRokkLU1mND4S4Rmb95PpPnT2bzzs38vvfvGX7acGpm1Ax6LEliauuxpXCX\nCln44UKmLJjCuu3rGH/meK7qfJVCXipMbT32FO5SKW9teYsp86eQ/0U+488cz9Wdr6ZW9VpBjyUJ\nTm09fhTuUiVvb32bKfOn8N7n73Fbr9u49vRrOaL6EUGPJQlIbT2+FO4SFe9ue5cpC6aw9JOl/PaM\n33J9l+upXaN20GNJAlBbD4bCXaJq6SdLmTJ/Cu9se4dbz7iVkV1HcmSNI4MeSwKith4chbvExPJP\nl3PHgjt486M3ueWMW7ih6w0cVfOooMeSOFFbD57CXWJq5WcruWPBHSz4cAE397yZMd3HUKdmnaDH\nkhhSW08MCneJi/c/f58/LfgT8zbN46aeNzG2+1jq1qob9FgSRWrriUXhLnGV/0U+dy68k9kbZvOb\nHr/h191/zTFHHBP0WFJFauuJp7Lhrhf+lkrJbJTJkxc8yRtXvcHa7WtpdV8rJudOZue+nUGPJpVQ\nUAATJ8KgQTBuHMycqWBPdgp3qZJ2Ddvx+PmPs+iaRWzauYnW97VmwusT+GrvV+V/siSEZcugWzfI\ny4Ply2H4cC3DpAKFu0RFmwZt+Mcv/sHiaxezbdc22vx3G/4w9w9s37M96NHkENTWU5vCXaKqVf1W\nPHzewyy5bglf7PmCtlPbMv618Xyx+4ugR5MwauupT+EuMdHy2JY8eO6DLL1+KTv37aTd1Hb8ds5v\n+Xz350GPltbU1tOHwl1iqkW9FjzwswdYMWoFuwt2c8rUUxj36jg+/fbToEdLO2rr6UXhLnHR/Jjm\nTBs6jZU3rORA0QEyp2Vy0ys38dHXHwU9WspTW09PCneJq2Z1m3HfOffx/uj3qWbV6JzdmZ8/9XNe\nWvsShUWFQY+XctTW05duYpJA7S7Yzb8++BfTl0zns92fcf3p13N156s54egTgh4tqeku09ShO1Ql\n6S39ZCnZS7L5d/6/6d+yP6O6jqJfy35UM/0HsyJ0l2lqUbhLyti1fxdPrnyS6XnT2V2wm5FdRjLi\nJyNodFSjoEdLaGrrqUnhLinH3Vm8bTHTl0zn+dXPM6TNEEZ1HUXvE3tjSq0fUFtPXQp3SWk79u7g\n8RWPMz1vOoYxsstIhp82nGNrHxv0aIFSW099CndJC+7Owo8WMn3JdGatm8X57c9nZJeR9GjaI+3a\nvNp6elC4S9r5fPfn/GP5P3gw70Hq1KzDqK6juPzUyzm61tFBjxZTauvpReEuaavIi5i7cS7T86Yz\nb9M8Lsq8iFFdR9H5hM5BjxZ1auvpR+EuAnz8zcc8suwRHsx7kOPrHM+orqO4uMPFSf97X9XW05fC\nXSRMYVEhr6x/hel503lry1tcfurljOwykg7HdQh6tApTW09vMftNTGY22MxWm9k6M7vtEPtkmdky\nM3vfzHIrOoRItGVUy2Bo26HMvHQmy0Yuo94R9RjwvwPo/Whvnlz5JPsO7gt6xHLpNWGkKg7b3M0s\nA1gDnA1sA94FLnX3VWH71APeBAa5+1Yza+juX5ZxLDV3CdSBwgPMXDuT7Lxsln6ylF+d9iuu73I9\nbRu0DXq0H1Fbl+/Eqrl3B9a7+2Z3PwA8DZxXap/LgGfdfStAWcEukghqZNTggvYX8OoVr/L2NW+T\nYRn0frQ3/R/vT84HORQUFgQ9otq6RE154d4U2BK2vbX4Y+HaAPXN7HUzW2JmV0ZzQJFYaFW/FfcM\nuIePbvqI606/jmnvTqPF31vw+7m/Z9OOTYHMpFdwlGgqL9wjWUepAZwODAEGAbebWZuqDiYSD7Wq\n1+KSjpeQOyKXecPnsffAXro91I0hTw5hxpoZHCw6GPMZ1NYlFqqX8/g2oHnYdnNC7T3cFuBLd98L\n7DWzBcBpwLrSB5s0aVLJ+1lZWWRlZVV8YpEYad+oPfcOvpc/9/8zOfk53P3G3YyZNYZrO1/Ltadf\nS9O6pf/TWnXha+vLlyvUBXJzc8nNza3yccp7QrU6oSdU+wMfA+/w4ydUTwGmEmrttYDFwMXunl/q\nWHpCVZLOik9XkJ2XzdPvP02fFn0Y1XUUA1sNrPLLEOu6dYlUzK5zN7NzgL8DGcDD7n6XmY0EcPfs\n4n1uAa4CioCH3P2+Mo6jcJek9W3Btzz13lNMz5vOjr07uO7067i689U0rtO4wsfSlTBSEbqJSSRO\nlny8hOlLpvPsqmcZ2Gogo7qMIuukrHJfuExtXSpD4S4SZ1/v+5onVj7B9LzpFBQWMLLLSH512q9o\ncGSDH+2rti6VpXAXCYi789aWt8jOy2bGmhmc2+5cRnUZxRnNz+DAAVNblypRuIskgO17tvPYisfI\nzsumqKAmexaOpGPRlTz6wDFq61IpMXttGRGJXIMjGzC2y81c/MVqvvjf+2jWayHvnHESE5Zcy5KP\nlwQ9nqQRNXeRKCprbf2zbz/j0eWPkp2XTf3a9RnVZRSXnnopdWrWCXpcSQJalhEJUCRXwhR5EbM3\nzCY7L5v5m+dzScdLGNV1FJ0adwpmaEkKCneRgFTmSphtu7bx8LKHeWjpQzSv25yRXUbyy8xfJv0v\nFZHoU7iLxFk0rls/WHSQWetmkZ2XzRsfvcGAkwcwLHMYQ9sO1bKNAAp3kbiKxXXr2/ds5/nVz5OT\nn8OirYs4++SzGZY5jJ+1/ZmCPo0p3EXiIF53mX619yteWP0COfk5vLnlTfq37F8S9EfXOjr6X1AS\nlsJdJMaCust0x94dvLAmFPRvfPQGfU/qy7DMYZzb7lzq1qobnyEkMAp3kRhJpNeE2bF3BzPWzCAn\nP4cFHy6gb8vioG97LscccUwwQ0lMKdxFYiCRXxNm576dzFwzk5z8HOZ/OJ+zWpxV0ujrHVEv6PEk\nShTuIlGUSG09El/v+5qZa0NB//qm1+nTog/DModx3innKeiTnMJdJEoSua1HYtf+XSWNft6mefRu\n0TsU9O3O49jaxwY9nlSQwl2kipKtrUdi1/5dvLT2JXLyc5i7aS69mvcqafT1a9cPejyJgMJdpAqS\nva1H4pv93/DSulDQv7bxNX7a7KcMyxzGL075RZmvQS+JQeEuUgmp2NYj8W3BtyWNfs7GOfRs1rMk\n6Bse2TDo8SSMwl2kgpYvD7X1Zs1St61HYnfBbl5a9xLP5D/DqxtepUfTHiVB3+ioRkGPl/YU7iIR\nSte2HondBbt5ef3L5OTn8Mr6V+jWpBvDModxQfsLFPQBUbiLREBtPXJ7Duzh5XXfB32XJl1Kgv64\no44Lery0oXAXOQy19arZe2AvL69/mWfyn2HWulmcfsLpDMscxvntz+f4OscHPV5KU7iLHILaenTt\nPbCXVze8Sk5+Di+tfYmfHP8ThmUO48LMCxX0MaBwFylFbT329h3cx6vri4N+3Ut0atwpFPTtL+SE\no08IeryUoHAXCaO2Hn/7Du5j9obZPJP/DC+ufZGOx3UsafRNjtZfQGUp3EVQW08U+w/uZ87GOeTk\n5zBzzUwyG2UyLHMYv8z8JU3rNg16vKSicJe0p7aemPYf3M9rG18jJz+HGWtm0L5R+5Kgb1a3WdDj\nJTyFu6QttfXkUVBYwGsbX+OZ/Gd4Yc0LtGvQriTomx/TPOjxEpLCXdKS2nryKigsYN6meeR8kMML\na16gTYM2JUF/4jEnBj1ewlC4S1pRW08tBwoPhII+P4fnVz9P07pNGXDyAAa2GkjvE3tTu0btoEcM\njMJd0obaemo7WHSQJR8vYfaG2czZOIflny6nZ7OeJWHfqXEnqlm1oMeMG4W7pDy19fS0a/8ucjfn\nloT9jr07GNBqAANODr2l+tU3CndJaWrr8p0Pd37InI1zmL1hNnM3zeX4Oscz8OSBDGg1gLNanMVR\nNY8KesSoUrhLSlJbl8MpLCpk6SdLS8I+75M8ujbpWhL2p59wetIv4SjcJeWorUtFfVvwLfM3zy8J\n+893f07/k/uXhH0yXoWjcJeUobYu0bJ111bmbJjDnI2htwa1G5Q8MZt1UhZH1zo66BHLFbNwN7PB\nwN+BDOB/3P2eQ+zXDVgEXOTuz5XxuMJdyqW2LrFS5EWs+HRFyROzi7ctpvPxnUvCvmuTrmRUywh6\nzB+JSbibWQawBjgb2Aa8C1zq7qvK2G8OsAd41N2fLeNYCnc5JLV1ibc9B/aw8MOFJWG/dddW+rXs\nVxL2LY9tGfSIQOzC/afARHcfXLz9OwB3v7vUfjcBBUA34EWFu1SE2rokgk+++YTXNr7G7I2zmbNh\nDnVq1mFgq4EMOHkAfVv2pd4R9QKZK1bh/ktgkLtfV7x9BdDD3X8dtk9T4AmgH/AIMFPLMhIJtXVJ\nVO7Oe5+/x5wNc5i9cTZvbXmLU487tSTsuzftTo2MGnGZpbLhXr2cxyNJ478Dv3N3NzMD9OMp5Qpv\n68uXq61LYjEzOjXuRKfGnRh3xjj2HdzHGx+9wZwNcxj78lg27dhE1klZJWHfun5rLMGaSXnNvScw\nKWxZZjxQFP6kqplt5PtAb0ho3f06d59R6lg+ceLEku2srCyysrKi9MeQZKG2Lqng892f89rG10ou\nuayZUbNkrb5fy37Ur12/0sfOzc0lNze3ZHvy5MkxWZapTugJ1f7Ax8A7lPGEatj+j6JlGTkEra1L\nKnJ3Vn25quSJ2YUfLqR9o/YlYd+zWU9qZtSs9PFjeSnkOXx/KeTD7n6XmY0EcPfsUvsq3OVH1NYl\nnew/uJ9FWxeVhP3a7Wvp06JPSdi3a9CuQks4uolJEpLauqS77Xu2M3fT3JKwL/Kikjtmzz75bBoe\n2fCwn69wl4Siti7yY+7O2u1rS9bq5384n9b1W5eEfa/mvahVvdYPPkfhLglDbV0kMgcKD/D21rdL\nwj7/i3x6ndirJOw7NOpAtWrVFO4SLLV1karZsXcH8zbNKwn7fQf38cktnyjcJThq6yLRt+GrDbRu\n0FrhLvGnti4SW7G6Q1XkkHSXqUjiSu5fUSKBKCiAiRNh4EC4+WaYOVPBLpJo1NylQtTWRZKDmrtE\nRG1dJLmouUu5li0LtfXmzdXWRZKFmrsc0ndtfdAgGDdObV0kmai5S5nU1kWSm5q7/IDaukhqUHOX\nEmrrIqlDzV3U1kVSkJp7mlNbF0lNau5pSm1dJLWpuachtXWR1KfmnkbU1kXSh5p7mlBbF0kvau4p\nTm1dJD2puacwtXWR9KXmnoLU1kVEzT3FqK2LCKi5pwy1dREJp+aeAr5r6yeeqLYuIiFq7kksvK3f\ncgvMmKFgF5EQNfckpbYuIoej5p5k1NZFJBJq7klEbV1EIqXmngTU1kWkotTcE5zauohUhpp7glJb\nF5GqUHNPQGrrIlJVau4JRG1dRKJFzT1BqK2LSDRF1NzNbLCZrTazdWZ2WxmPX25mK8xspZm9aWad\noj9qalJbF5FYKLe5m1kGMBU4G9gGvGtmM9x9VdhuG4E+7v61mQ0GHgR6xmLgVKK2LiKxEklz7w6s\nd/fN7n4AeBo4L3wHd1/k7l8Xby4GmkV3zNSiti4isRbJmntTYEvY9lagx2H2vwaYVZWhUpnauojE\nQyTh7pEezMz6AlcDvcp6fNKkSSXvZ2VlkZWVFemhk15BAdx5JzzwAPz1r3DllWAW9FQikmhyc3PJ\nzc2t8nHM/fDZbWY9gUnuPrh4ezxQ5O73lNqvE/AcMNjd15dxHC/va6Wq8Laena22LiKRMzPcvcJV\nMJI19yVAGzM7ycxqAhcDM0p98RMJBfsVZQV7utLauogEpdxlGXc/aGZjgVeBDOBhd19lZiOLH88G\nJgDHAg9YaK3hgLt3j93YiU9r6yISpHKXZaL2hdJkWSZ8bf1vf4MrrtDauohUXmWXZXSHahSprYtI\notBry0SB1tZFJNGouVeR2rqIJCI190pSWxeRRKbmXglq6yKS6NTcK0BtXUSShZp7hNTWRSSZqLmX\nQ21dRJKRmvthqK2LSLJScy+D2rqIJDs191LU1kUkFai5F1NbF5FUouaO2rqIpJ60bu5q6yKSqtK2\nuauti0gqS7vmrrYuIukgrZq72rqIpIu0aO5q6yKSblK+uauti0g6StnmrrYuIuksJZu72rqIpLuU\nau5q6yIiISnT3NXWRUS+l/TNXW1dROTHkrq5q62LiJQtKZu72rqIyOElXXNXWxcRKV/SNHe1dRGR\nyCVFc1dbFxGpmIRu7mrrIiKVk7DNXW1dRKTyEq65q62LiFRdQjV3tXURkehIiOauti4iEl2BN3e1\ndRGR6Cu3uZvZYDNbbWbrzOy2Q+xzX/HjK8yscyRfWG1dRCR2DhvuZpYBTAUGA5nApWbWvtQ+Q4DW\n7t4GuB54oLwvumwZdOsGS5eG2vqVV4JZpf8MSSc3NzfoERKGzsX3dC6+p3NRdeU19+7Aenff7O4H\ngKeB80rt83PgMQB3XwzUM7PGZR1MbT1E37jf07n4ns7F93Quqq68NfemwJaw7a1Ajwj2aQZ8Vvpg\n3bppbV1EJB7KC3eP8DilF1XK/Lxx49JvCUZEJAjmfuj8NrOewCR3H1y8PR4ocvd7wvaZDuS6+9PF\n26uBs9z9s1LHivQfChERCePuFa7E5TX3JUAbMzsJ+Bi4GLi01D4zgLHA08X/GOwsHeyVHU5ERCrn\nsOHu7gd+JMdTAAAD6klEQVTNbCzwKpABPOzuq8xsZPHj2e4+y8yGmNl6YDdwVcynFhGRwzrssoyI\niCSnqL/8QKxuekpG5Z0LM7u8+BysNLM3zaxTEHPGQyTfF8X7dTOzg2Z2QTzni5cIfz6yzGyZmb1v\nZrlxHjFuIvj5aGhmr5jZ8uJzMSKAMePCzB4xs8/M7L3D7FOx3HT3qL0RWrpZD5wE1ACWA+1L7TME\nmFX8fg/g7WjOkChvEZ6LnwLHFL8/OJ3PRdh+84AXgQuDnjug74l6wAdAs+LthkHPHeC5mATc9d15\nALYD1YOePUbnozfQGXjvEI9XODej3dyjetNTkiv3XLj7Inf/unhzMaH7A1JRJN8XAL8GngG+iOdw\ncRTJebgMeNbdtwK4+5dxnjFeIjkXnwB1i9+vC2x394NxnDFu3H0hsOMwu1Q4N6Md7mXd0NQ0gn1S\nMdQiORfhrgFmxXSi4JR7LsysKaEf7u9eviIVnwyK5HuiDVDfzF43syVmdmXcpouvSM7FQ0AHM/sY\nWAH8Jk6zJaIK52a0XxUyqjc9JbmI/0xm1he4GugVu3ECFcm5+DvwO3d3MzN+/D2SCiI5DzWA04H+\nwJHAIjN7293XxXSy+IvkXPweWO7uWWbWCphjZqe5+zcxni1RVSg3ox3u24DmYdvNCf0Lc7h9mhV/\nLNVEci4ofhL1IWCwux/uv2XJLJJz0YXQvRIQWl89x8wOuPuM+IwYF5Gchy3Al+6+F9hrZguA04BU\nC/dIzsUZwJ0A7r7BzDYB7Qjdf5NuKpyb0V6WKbnpycxqErrpqfQP5wxgOJTcAVvmTU8poNxzYWYn\nAs8BV7j7+gBmjJdyz4W7n+zuLd29JaF19xtSLNghsp+PF4AzzSzDzI4k9ORZfpznjIdIzsVq4GyA\n4vXldsDGuE6ZOCqcm1Ft7q6bnkpEci6ACcCxwAPFjfWAu3cPauZYifBcpLwIfz5Wm9krwEqgCHjI\n3VMu3CP8nvgz8KiZrSBURH/r7l8FNnQMmdlTwFlAQzPbAkwktERX6dzUTUwiIikoIX6HqoiIRJfC\nXUQkBSncRURSkMJdRCQFKdxFRFKQwl1EJAUp3EVEUpDCXUQkBSncJW0V/2KQFWZWy8yOKv6FEJlB\nzyUSDbpDVdKamd0BHAHUBra4+z0BjyQSFQp3SWtmVoPQi1jtBX7q+oGQFKFlGUl3DYGjgDqE2rtI\nSlBzl7RmZjOAfwInAye4+68DHkkkKqL9yzpEkoaZDQf2u/vTZlYNeMvMstw9N+DRRKpMzV1EJAVp\nzV1EJAUp3EVEUpDCXUQkBSncRURSkMJdRCQFKdxFRFKQwl1EJAUp3EVEUtD/Az3b0Y3oypA2AAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f6dbdac5f50>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from math import exp\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show\n", + "#y1 = x\n", + "#y2 = exp(-x)\n", + "x=[]\n", + "y1=[]\n", + "y2=[]\n", + "for i in range(0,6):\n", + " if i == 0:\n", + " x.append(0)\n", + " else:\n", + " x.append(x[(i-1)] + 0.2)\n", + " \n", + " y1.append(x[(i)])\n", + " y2.append(exp(-x[(i)]))\n", + "\n", + "print \"x = \",x\n", + "print \"y1 = \",y1\n", + "print \"y2 = \",y2\n", + "plot(x,y1)\n", + "plot(x,y2)#\n", + "title(\"f(x) vs x\")\n", + "xlabel(\"x\")\n", + "y=(\"f(x)\")\n", + "# from the graph, we get\n", + "x7 = 5.7#\n", + "print \"answer using two curve graphical method = \",x7" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.3: Pg: 149" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = [0.5, 0.5663110031972182, 0.5671431650348622, 0.5671432904097811, 0.5671432904097811]\n", + "et = [100.0, 11.709290976662398, 0.14672870783743905, 2.2106391984397626e-05]\n" + ] + } + ], + "source": [ + "from math import exp\n", + "#f(x) = exp(-x)-x\n", + "#f'(x) = -exp(-x)-1\n", + "x=[]\n", + "et=[]\n", + "for i in range(0,5):\n", + " if i == 0:\n", + " x.append(0)\n", + " else:\n", + " x.append(x[(i-1)] - (exp(-x[(i-1)])-x[(i-1)])/(-exp(-x[(i-1)])-1))\n", + " et.append((x[(i)] - x[(i-1)]) * 100 / x[(i)])\n", + " x[(i-1)] = x[(i)]\n", + " \n", + "\n", + "print \"x =\",x\n", + "print \"et =\",et" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.4: Pg: 150" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Et1 = 0.0582022389721 which is close to the true error of 0.06714329\n", + "Et2 = 0.000815754223141 which is close to the true error of 0.0008323\n", + "Et3 = 1.253469828e-07 which is close to the true error of 0.0008323\n", + "Et4 = 2.84303276339e-15 which is close to the true error of 0.0008323\n", + "Thus it illustratres that the error of newton raphson method for this case is proportional(by a factor of 0.18095) to the square of the error of the previous iteration\n" + ] + } + ], + "source": [ + "from math import exp\n", + "#f(x) = exp(-x) - x\n", + "#f'(x) = -exp(-x) - 1\n", + "#f\"(x) = exp(-x)\n", + "xr = 0.56714329#\n", + "#E(ti+1) = -f\"(x)* E(ti) / 2 * f'(x)\n", + "Et0 = 0.56714329#\n", + "Et1 = -exp(-xr)* ((Et0)**2) / (2 * (-exp(-xr) - 1))#\n", + "print \"Et1 = \",Et1,\"which is close to the true error of 0.06714329\"\n", + "Et1true = 0.06714329#\n", + "Et2 = -exp(-xr)* ((Et1true)**2) / (2 * (-exp(-xr) - 1))#\n", + "print \"Et2 = \",Et2,\"which is close to the true error of 0.0008323\"\n", + "Et2true = 0.0008323#\n", + "Et3 = -exp(-xr)* ((Et2true)**2) / (2 * (-exp(-xr) - 1))#\n", + "print \"Et3 = \",Et3,\"which is close to the true error of 0.0008323\"\n", + "Et4 = -exp(-xr)* ((Et3)**2) / (2 * (-exp(-xr) - 1))#\n", + "print \"Et4 = \",Et4,\"which is close to the true error of 0.0008323\"\n", + "print \"Thus it illustratres that the error of newton raphson method for this case is proportional(by a factor of 0.18095) to the square of the error of the previous iteration\"\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.5: Pg: 151" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "y =\n", + "0.5\n", + "51.65\n", + "46.485\n", + "41.8365\n", + "37.65285\n", + "33.887565\n", + "30.4988085\n", + "27.44892765\n", + "24.704034885\n", + "22.2336313965\n", + "20.0102682569\n", + "18.0092414312\n", + "16.208317288\n", + "14.5874855592\n", + "13.1287370033\n", + "11.815863303\n", + "10.6342769727\n", + "9.57084927551\n", + "8.61376434811\n", + "7.75238791368\n", + "6.9771491233\n", + "6.27943421352\n", + "5.65149079876\n", + "5.08634173588\n", + "4.57770760618\n", + "4.11993695885\n", + "3.70794355537\n", + "3.33714995458\n", + "3.00343690726\n", + "2.70309824497\n", + "2.43280139954\n", + "2.18955475922\n", + "1.97068573981\n", + "1.7738402371\n", + "1.59703134797\n", + "1.43880793143\n", + "1.29871134273\n", + "1.17835471562\n", + "1.08334975351\n", + "1.02366466118\n", + "Thus, after the first poor prediction, the technique is converging on to the true root of 1 but at a very slow rate\n" + ] + } + ], + "source": [ + "z = 0.5#\n", + "#f(x) = x**10 - 1\n", + "#f'(x) = 10*x**9\n", + "y=[]\n", + "for i in range(0,40):\n", + " if i==0:\n", + " y.append(z)\n", + " else:\n", + " y.append(y[(i-1)] - (y[(i-1)]**10 - 1)/(10*y[(i-1)]**9))\n", + " \n", + "print \"y =\"\n", + "for yy in y:\n", + " print yy\n", + "print \"Thus, after the first poor prediction, the technique is converging on to the true root of 1 but at a very slow rate\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.6: Pg: 155" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x =\n", + "0\n", + "1\n", + "0.61269983678\n", + "0.563838389161\n", + "0.56717035842\n", + "\n", + "et =\n", + "-8.03263435953\n", + "0.582727662867\n", + "-0.00477276558181\n" + ] + } + ], + "source": [ + "from math import exp\n", + "#f(x) = exp(-x)-x\n", + "x=[]\n", + "er=[]\n", + "for i in range(0,5):\n", + " if i==0:\n", + " x.append(0)\n", + " else:\n", + " if i==1:\n", + " x.append(1)\n", + " else:\n", + " x.append(x[(i-1)] - (exp(-x[(i-1)])-x[(i-1)])*(x[(i-2)] - x[(i-1)])/((exp(-x[(i-2)])-x[(i-2)])-(exp(-x[(i-1)])-x[(i-1)])))\n", + " er.append((0.56714329 - x[(i)]) * 100 / 0.56714329)\n", + " \n", + "print \"x =\"\n", + "for xx in x:\n", + " print xx\n", + "\n", + "print \"\\net =\"\n", + "for xx in er:\n", + " print xx\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.7: Pg: 156" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "secant method\n", + "x =\n", + "[0.5, 5, 1.8546349804879152, -0.1043807923822424]\n", + "[0.5, 5, 1.8546349804879152, -0.1043807923822424]\n", + "[0.5, 5, 1.8546349804879152, -0.1043807923822424]\n", + "[0.5, 5, 1.8546349804879152, -0.1043807923822424]\n", + "thus, secant method is divergent\n", + "Now, False position method\n", + "xr = 1.85463498049\n", + "xr = 1.21630781847\n", + "xr = 1.05852096245\n", + "thus, false position method is convergent\n" + ] + } + ], + "source": [ + "from math import log\n", + "#f(x) = log(x)\n", + "print \"secant method\"\n", + "x=[]\n", + "for i in range(0,4):\n", + " if i==0:\n", + " x.append(0.5)\n", + " else:\n", + " if i==1:\n", + " x.append(5)\n", + " else:\n", + " x.append(x[(i-1)] - log(x[(i-1)]) * (x[(i-2)] - x[(i-1)])/(log(x[(i-2)]) - log(x[(i-1)])))\n", + " \n", + " \n", + "print \"x =\"\n", + "for xx in x:\n", + " print x\n", + "print \"thus, secant method is divergent\"\n", + "print \"Now, False position method\"\n", + "xl = 0.5#\n", + "xu = 5#\n", + "for i in range(0,3):\n", + " m = log(xl)#\n", + " n = log(xu)#\n", + " xr = xu - n*(xl - xu)/(m - n)#\n", + " print \"xr = \",xr\n", + " w = log(xr)#\n", + " if m*w < 0:\n", + " xu = xr#\n", + " else:\n", + " xl = xr#\n", + " \n", + "\n", + " \n", + "print \"thus, false position method is convergent\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.8: Pg: 158" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x1 = 1\n", + "x = 0.537262665537\n", + "error = 5.26861993966 %\n", + "x = 0.567009685365\n", + "error = 0.0235574743537 %\n", + "x = 0.567143424147\n", + "error = -2.3653190891e-05 %\n" + ] + } + ], + "source": [ + "from math import exp\n", + "Del = 0.01#\n", + "z = 0.56714329\n", + "x1 = 1#\n", + "#f(x) = exp(-x) - x\n", + "x=[]\n", + "print \"x1 = \",x1\n", + "for i in range(0,4):\n", + " if i == 0:\n", + " x.append(1)\n", + " else :\n", + " w = x[(i-1)]\n", + " m = exp(-x[(i-1)]) - x[(i-1)]\n", + " x[(i-1)] = x[(i-1)]*(1+Del)#\n", + " n = exp(-x[(i-1)]) - x[(i-1)]#\n", + " x.append(w - (x[(i-1)]- w) * m/(n-m))\n", + " em = (z - x[(i)])*100/z#\n", + " print \"x = \",x[(i)]\n", + " print \"error = \",em,\"%\"\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.9: Pg: 161" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "standard Newton Raphson method\n", + "x = 0.428571428571\n", + "error = 57.1428571429 %\n", + "x = 0.685714285714\n", + "error = 31.4285714286 %\n", + "x = 0.832865400495\n", + "error = 16.7134599505 %\n", + "x = 0.913329893257\n", + "error = 8.66701067434 %\n", + "x = 0.955783292966\n", + "error = 4.42167070343 %\n", + "x = 0.977655101273\n", + "error = 2.23448987271 %\n", + "Modified Newton Raphson method\n", + "x = 1.10526315789\n", + "error = -10.5263157895 %\n", + "x = 1.0030816641\n", + "error = -0.30816640986 %\n", + "x = 1.00000238149\n", + "error = -0.000238149381548 %\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#f(x) = x**3 - 5*x**2 + 7*x -3\n", + "#f'(x) = 3*x**2 - 10*x + 7\n", + "print \"standard Newton Raphson method\"\n", + "x=[]\n", + "et=[]\n", + "for i in range(0,7):\n", + " if i == 0:\n", + " x.append(0)\n", + " else:\n", + " x.append(x[(i-1)] - ((x[(i-1)])**3 - 5*(x[(i-1)])**2 + 7*x[(i-1)] -3)/(3*(x[(i-1)])**2 - 10*(x[(i-1)]) + 7)) \n", + " et.append((1 - x[(i)]) * 100 / 1)\n", + " print \"x = \",x[i]\n", + " print \"error = \",et[(i-1)],\"%\"\n", + " x[(i-1)] = x[(i)]\n", + " \n", + "\n", + "print \"Modified Newton Raphson method\"\n", + "#f\"(x) = 6*x - 10\n", + "x=[]\n", + "et=[]\n", + "for i in range(0,4):\n", + " if i == 0:\n", + " x.append(0)\n", + " else:\n", + " x.append(x[(i-1) ]- ((x[(i-1)])**3 - 5*(x[(i-1)])**2 + 7*x[(i-1)] -3)*((3*(x[(i-1)])**2 - 10*(x[(i-1)]) + 7))/((3*(x[(i-1)])**2 - 10*(x[(i-1)]) + 7)**2 - ((x[(i-1)])**3 - 5*(x[(i-1)])**2 + 7*x[(i-1)] -3) * (6*x[(i-1)] - 10)))\n", + " et.append((1 - x[(i)]) * 100 / 1)\n", + " print \"x = \",x[i]\n", + " print \"error = \",et[i-1],'%'\n", + " x[(i-1) ]= x[(i)]\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.10: Pg: 165" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 2.17944947177\n", + "y = 2.86050598812\n", + "x = 1.94053387891\n", + "y = 3.04955067322\n", + "x = 2.02045628588\n", + "y = 2.98340474674\n", + "Thus the approaching to the true value 0f x = 2 and y = 3\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import sqrt\n", + "#u(x,y) = x**2 + x*y - 10\n", + "#v(x,y) = y + 3*x*y**2 -57\n", + "x=[]\n", + "y=[]\n", + "for i in range(0,4):\n", + " if i == 0:\n", + " x.append(1.5)\n", + " y.append(3.5)\n", + " else:\n", + " x.append(sqrt(10 - (x[(i-1)])*(y[(i-1)])))\n", + " y.append(sqrt((57 - y[(i-1)])/(3*x[(i)])))\n", + " print \"x =\",x[(i)]\n", + " print \"y =\",y[i]\n", + " \n", + "\n", + "print \"Thus the approaching to the true value 0f x = 2 and y = 3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex6.11:Pg 168" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bracket: [1.9999999838762603, 2.9999994133889132]\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat\n", + "from numpy.linalg import det\n", + "def u(x,y):\n", + " z=x**2+x*y-10\n", + " return z\n", + "def v(x,y):\n", + " z=y+3*x*y**2-57\n", + " return z\n", + "x=1.5#\n", + "y=3.5#\n", + "e=[100,100]#\n", + "while e[0]>0.0001 and e[1]>0.0001:\n", + " J=mat([[2*x+y, x],[3*y**2, 1+6*x*y]])\n", + " deter=det(J)#\n", + " u1=u(x,y)#\n", + " v1=v(x,y)#\n", + " x=x-((u1*J[1,1]-v1*J[0,1])/deter)#\n", + " y=y-((v1*J[0,0]-u1*J[1,0])/deter)#\n", + " e[(0)]=abs(2-x)#\n", + " e[(1)]=abs(3-y)#\n", + "\n", + "bracket=[x ,y]#\n", + "print \"bracket:\",bracket" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter7_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter7_2.ipynb new file mode 100644 index 00000000..c923ac9f --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter7_2.ipynb @@ -0,0 +1,718 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7 : Roots of polynomials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.1: Pg: 179" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The quptient is a(1)+a(2)*x where :\n", + "a(1)= 6\n", + "a(2)= 1\n", + "remainder= 0\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "def f(x):\n", + " y=(x-4)*(x+6)\n", + " return y\n", + "n=2\n", + "a=[0,-24,2,1]\n", + "t=4\n", + "r=a[(3)]\n", + "a[(3)]=0\n", + "for i in arange(n,0,-1):\n", + " s=a[(i)]\n", + " a[(i)]=r\n", + " r=s+r*t\n", + "\n", + "print \"The quptient is a(1)+a(2)*x where :\"\n", + "print \"a(1)=\",a[1]\n", + "print \"a(2)=\",a[2]\n", + "print \"remainder=\",r" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.2: Pg: 183" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iteration: 0\n", + "xr: 5\n", + "---------------------------------------------\n", + "iteration: 0\n", + "xr: 3.97648704224\n", + "ea(%): 25.7391246818 %\n", + "---------------------------------------------\n", + "iteration: 1\n", + "xr: 4.00105049882\n", + "ea(%): 0.613925182444 %\n", + "---------------------------------------------\n", + "iteration: 2\n", + "xr: 4.00000070527\n", + "ea(%): 0.026244833989 %\n", + "---------------------------------------------\n", + "iteration: 3\n", + "xr: 4.0\n", + "ea(%): 1.76317506373e-05 %\n", + "---------------------------------------------\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=x**3 - 13*x - 12\n", + " return y\n", + "\n", + "x1t=-3\n", + "x2t=-1\n", + "x3t=4\n", + "x0=4.5\n", + "x1=5.5\n", + "x2=5\n", + "print \"iteration:\",0\n", + "print \"xr:\",x2\n", + "print \"---------------------------------------------\"\n", + "for i in range(0,4):\n", + "\n", + " h0=x1-x0\n", + " h1=x2-x1\n", + " d0=(f(x1)-f(x0))/(x1-x0)\n", + " d1=(f(x2)-f(x1))/(x2-x1)\n", + " a=(d1-d0)/(h1+h0)\n", + " b=a*h1+d1\n", + " c=f(x2)\n", + " d=(b**2 - 4*a*c)**0.5\n", + " if abs(b+d)>abs(b-d):\n", + " x3=x2+((-2*c)/(b+d))\n", + " else:\n", + " x3=x2+((-2*c)/(b-d))\n", + " ea=abs(x3-x2)*100/x3\n", + " x0=x1\n", + " x1=x2\n", + " x2=x3\n", + " print \"iteration:\",i\n", + " print \"xr:\",x2\n", + " print \"ea(%):\",ea,\"%\"\n", + " print \"---------------------------------------------\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.3: Pg: 187" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration: 1\n", + "delata r: 0.212481426449\n", + "delata s: 1.61961367013\n", + "r: -0.787518573551\n", + "s: 0.619613670134\n", + "Error in r: 26.9811320755\n", + "Error in s: 261.39088729\n", + "-----------------------------------------------------\n", + "Iteration: 2\n", + "delata r: 4.04595826496\n", + "delata s: 5.2325468461\n", + "r: 3.25843969141\n", + "s: 5.85216051623\n", + "Error in r: 124.168579079\n", + "Error in s: 89.4122235982\n", + "-----------------------------------------------------\n", + "Iteration: 3\n", + "delata r: 2.4536017174\n", + "delata s: -24.7953826358\n", + "r: 5.71204140882\n", + "s: -18.9432221196\n", + "Error in r: 42.9549007403\n", + "Error in s: 130.893163155\n", + "-----------------------------------------------------\n", + "Iteration: 4\n", + "delata r: -7.89009085\n", + "delata s: 22.0401977474\n", + "r: -2.17804944119\n", + "s: 3.09697562788\n", + "Error in r: 362.254901143\n", + "Error in s: 711.668427386\n", + "-----------------------------------------------------\n", + "Iteration: 5\n", + "delata r: -58.1023530819\n", + "delata s: 185.887882155\n", + "r: -60.2804025231\n", + "s: 188.984857783\n", + "Error in r: 96.386803422\n", + "Error in s: 98.3612572646\n", + "-----------------------------------------------------\n", + "Iteration: 6\n", + "delata r: 1160.70485616\n", + "delata s: 90001.7445985\n", + "r: 1100.42445363\n", + "s: 90190.7294562\n", + "Error in r: 105.477922844\n", + "Error in s: 99.7904608834\n", + "-----------------------------------------------------\n", + "Iteration: 7\n", + "delata r: -21882.7802726\n", + "delata s: 31520060.138\n", + "r: -20782.355819\n", + "s: 31610250.8675\n", + "Error in r: 105.294993807\n", + "Error in s: 99.7146788558\n", + "-----------------------------------------------------\n", + "Iteration: 8\n", + "delata r: 411986.000256\n", + "delata s: 11197461422.1\n", + "r: 391203.644438\n", + "s: 11229071673.0\n", + "Error in r: 105.312413653\n", + "Error in s: 99.7184963122\n", + "-----------------------------------------------------\n", + "Iteration: 9\n", + "delata r: -7758767.67604\n", + "delata s: 3.9700158833e+12\n", + "r: -7367564.0316\n", + "s: 3.98124495498e+12\n", + "Error in r: 105.309809901\n", + "Error in s: 99.7179507466\n", + "-----------------------------------------------------\n", + "Iteration: 10\n", + "delata r: 146111056.094\n", + "delata s: 1.4079763212e+15\n", + "r: 138743492.063\n", + "s: 1.41195756615e+15\n", + "Error in r: 105.310205129\n", + "Error in s: 99.7180336683\n", + "-----------------------------------------------------\n", + "Iteration: 11\n", + "delata r: -2751543853.16\n", + "delata s: 4.99319657786e+17\n", + "r: -2612800361.1\n", + "s: 5.00731615352e+17\n", + "Error in r: 105.310145166\n", + "Error in s: 99.718021087\n", + "-----------------------------------------------------\n", + "Iteration: 12\n", + "delata r: 51816650788.5\n", + "delata s: 1.77078151694e+20\n", + "r: 49203850427.4\n", + "s: 1.7757888331e+20\n", + "Error in r: 105.310154263\n", + "Error in s: 99.7180229957\n", + "-----------------------------------------------------\n", + "Iteration: 13\n", + "delata r: -9.75803357309e+11\n", + "delata s: 6.27987270746e+22\n", + "r: -9.26599506881e+11\n", + "s: 6.29763059579e+22\n", + "Error in r: 105.310152883\n", + "Error in s: 99.7180227061\n", + "-----------------------------------------------------\n", + "Iteration: 14\n", + "delata r: 1.83761812944e+13\n", + "delata s: 2.22708488435e+25\n", + "r: 1.74495817875e+13\n", + "s: 2.23338251495e+25\n", + "Error in r: 105.310153092\n", + "Error in s: 99.7180227501\n", + "-----------------------------------------------------\n", + "Iteration: 15\n", + "delata r: -3.46057469143e+14\n", + "delata s: 7.89810111349e+27\n", + "r: -3.28607887356e+14\n", + "s: 7.92043493864e+27\n", + "Error in r: 105.310153061\n", + "Error in s: 99.7180227434\n", + "-----------------------------------------------------\n", + "Iteration: 16\n", + "delata r: 6.51690195935e+15\n", + "delata s: 2.80097098525e+30\n", + "r: 6.18829407199e+15\n", + "s: 2.80889142018e+30\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227444\n", + "-----------------------------------------------------\n", + "Iteration: 17\n", + "delata r: -1.22725312811e+17\n", + "delata s: 9.93332238103e+32\n", + "r: -1.16537018739e+17\n", + "s: 9.96141129523e+32\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 18\n", + "delata r: 2.31114454359e+18\n", + "delata s: 3.5227388664e+35\n", + "r: 2.19460752485e+18\n", + "s: 3.53270027769e+35\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 19\n", + "delata r: -4.35231247656e+19\n", + "delata s: 1.24929893994e+38\n", + "r: -4.13285172407e+19\n", + "s: 1.25283164021e+38\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 20\n", + "delata r: 8.19620908009e+20\n", + "delata s: 4.43049541996e+40\n", + "r: 7.78292390768e+20\n", + "s: 4.44302373636e+40\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 21\n", + "delata r: -1.54349770717e+22\n", + "delata s: 1.57122439144e+43\n", + "r: -1.46566846809e+22\n", + "s: 1.57566741518e+43\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 22\n", + "delata r: 2.90669155552e+23\n", + "delata s: 5.57216711507e+45\n", + "r: 2.76012470871e+23\n", + "s: 5.58792378922e+45\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 23\n", + "delata r: -5.47383760902e+24\n", + "delata s: 1.97610516534e+48\n", + "r: -5.19782513815e+24\n", + "s: 1.98169308913e+48\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 24\n", + "delata r: 1.03082482601e+26\n", + "delata s: 7.00803034767e+50\n", + "r: 9.78846574632e+25\n", + "s: 7.02784727856e+50\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 25\n", + "delata r: -1.94123373367e+27\n", + "delata s: 2.48531759419e+53\n", + "r: -1.8433490762e+27\n", + "s: 2.49234544147e+53\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 26\n", + "delata r: 3.6557020297e+28\n", + "delata s: 8.81389382974e+55\n", + "r: 3.47136712208e+28\n", + "s: 8.83881728416e+55\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 27\n", + "delata r: -6.88436281433e+29\n", + "delata s: 3.12574636833e+58\n", + "r: -6.53722610212e+29\n", + "s: 3.13458518562e+58\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 28\n", + "delata r: 1.29645280097e+31\n", + "delata s: 1.10851010324e+61\n", + "r: 1.23108053995e+31\n", + "s: 1.11164468843e+61\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 29\n", + "delata r: -2.44146032172e+32\n", + "delata s: 3.93120395638e+63\n", + "r: -2.31835226773e+32\n", + "s: 3.94232040327e+63\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 30\n", + "delata r: 4.59772118049e+33\n", + "delata s: 1.39415639979e+66\n", + "r: 4.36588595372e+33\n", + "s: 1.3980987202e+66\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 31\n", + "delata r: -8.65835904252e+34\n", + "delata s: 4.94421578898e+68\n", + "r: -8.22177044714e+34\n", + "s: 4.95819677619e+68\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 32\n", + "delata r: 1.63052908966e+36\n", + "delata s: 1.75340942893e+71\n", + "r: 1.54831138518e+36\n", + "s: 1.75836762571e+71\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 33\n", + "delata r: -3.07058773973e+37\n", + "delata s: 6.21826545742e+73\n", + "r: -2.91575660121e+37\n", + "s: 6.23584913368e+73\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 34\n", + "delata r: 5.78248442618e+38\n", + "delata s: 2.20523653295e+76\n", + "r: 5.49090876606e+38\n", + "s: 2.21147238208e+76\n", + "Error in r: 105.310153065\n", + "Error in s: 99.7180227443\n", + "-----------------------------------------------------\n", + "Iteration: 35\n", + "delata r: -inf\n", + "delata s: inf\n", + "r: -inf\n", + "s: inf\n", + "Error in r: nan\n", + "Error in s: nan\n", + "-----------------------------------------------------\n", + "[nan, -inf] The roots are:\n", + "x**3 - 4*x**2 + 5.25*x - 2.5 The quotient is:\n", + "-----------------------------------------------------\n" + ] + } + ], + "source": [ + "from numpy import arange\n", + "def f(x):\n", + " y=x**5-3.5*x**4+2.75*x**3+2.125*x**2-3.875*x+1.25\n", + " return y\n", + "r=-1\n", + "s=-1\n", + "es=1##%\n", + "n=6\n", + "count=1\n", + "ear=100\n", + "eas=100\n", + "a=[0,1.25, -3.875, 2.125, 2.75, -3.5, 1]\n", + "b=a\n", + "c=a\n", + "while (ear>es) and (eas>es):\n", + " \n", + " b[(n)]=a[(n)]\n", + " b[(n-1)]=a[(n-1)]+r*b[(n)]\n", + " for i in arange(n-2,0,-1):\n", + " b[(i)]=a[(i)]+r*b[(i+1)]+s*b[(i+2)]\n", + "\n", + " c[(n)]=b[(n)]\n", + " c[(n-1)]=b[(n-1)]+r*c[(n)]\n", + " for i in arange((n-2),1,-1):\n", + " c[(i)]=b[(i)]+r*c[(i+1)]+s*c[(i+2)]\n", + " \n", + " #c(3)*dr+c(4)*ds=-b(2)\n", + " #c(2)*dr+c(3)*ds=-b(1)\n", + " ds=((-b[(1)])+(b[(2)]*c[(2)]/c[(3)]))/(c[(3)]-(c[(4)]*c[(2)]/c[(3)]))\n", + " dr=(-b[(2)]-c[(4)]*ds)/c[(3)]\n", + " r=r+dr\n", + " s=s+ds\n", + " ear=abs(dr/r)*100\n", + " eas=abs(ds/s)*100\n", + " print \"Iteration:\",count\n", + " print \"delata r:\",dr\n", + " print \"delata s:\",ds\n", + " print \"r:\",r\n", + " print \"s:\",s\n", + " print \"Error in r:\",ear\n", + " print \"Error in s:\",eas\n", + " print \"-----------------------------------------------------\"\n", + " count=count+1\n", + "\n", + "x1=(r+(r**2 + 4*s)**0.5)/2\n", + "x2=(r-(r**2 + 4*s)**0.5)/2\n", + "bracket=[x1, x2]\n", + "print bracket,\"The roots are:\"\n", + "print \"x**3 - 4*x**2 + 5.25*x - 2.5\",\"The quotient is:\"\n", + "print \"-----------------------------------------------------\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.4: Pg: 191" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The root is= 0.738868466337\n" + ] + } + ], + "source": [ + "from math import cos\n", + "def f(x):\n", + " y=x-cos(x)\n", + " return y\n", + "x1=0\n", + "if f(x1)<0:\n", + " x2=x1+0.001\n", + " while f(x2)<0:\n", + " x2=x2+0.001\n", + " \n", + "elif x20==x1+0.001:\n", + " while f(x2)>0:\n", + " x2=x2+0.001\n", + " \n", + "else:\n", + " print \"The root is=\",x1\n", + "\n", + "x=x2-(x2-x1)*f(x2)/(f(x2)-f(x1))\n", + "print \"The root is=\",x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.5: Pg: 191" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x= 2\n", + "y= 3.0\n" + ] + } + ], + "source": [ + "def u(x,y):\n", + " z=x**2+x*y-10\n", + " return z\n", + "def v(x,y):\n", + " z=y+3*x*y**2-57\n", + " return z\n", + "x=1\n", + "y=3.5\n", + "while u(x,y)!=v(x,y):\n", + " x=x+1\n", + " y=y-0.5\n", + "\n", + "print \"x=\",x\n", + "print \"y=\",y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.6: Pg: 194" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The roots of the polynomial are:\n", + "-1\n", + "1\n", + "-1/4 + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + 5/8)\n", + "-1/4 + sqrt(5)/4 + I*sqrt(sqrt(5)/8 + 5/8)\n", + "1/4 + sqrt(5)/4 - I*sqrt(-sqrt(5)/8 + 5/8)\n", + "1/4 + sqrt(5)/4 + I*sqrt(-sqrt(5)/8 + 5/8)\n", + "-sqrt(5)/4 - 1/4 - I*sqrt(-sqrt(5)/8 + 5/8)\n", + "-sqrt(5)/4 - 1/4 + I*sqrt(-sqrt(5)/8 + 5/8)\n", + "-sqrt(5)/4 + 1/4 - I*sqrt(sqrt(5)/8 + 5/8)\n", + "-sqrt(5)/4 + 1/4 + I*sqrt(sqrt(5)/8 + 5/8)\n" + ] + } + ], + "source": [ + "from sympy import symbols,solve\n", + "x=symbols('s')\n", + "p=x**10 -1\n", + "print \"The roots of the polynomial are:\"\n", + "for r in solve(p):\n", + " print r" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.7: Pg: 195" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The roots of the polynomial are:\n", + "-1.00000000000000\n", + "0.500000000000000\n", + "2.00000000000000\n", + "1.0 - 0.5*I\n", + "1.0 + 0.5*I\n" + ] + } + ], + "source": [ + "from sympy import symbols,solve\n", + "x=symbols('s')\n", + "p=x**5 - 3.5*x**4 +2.75*x**3 +2.125*x**2 - 3.875*x + 1.25\n", + "print \"The roots of the polynomial are:\"\n", + "for r in solve(p):\n", + " print r" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.8: Pg: 196" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The root is= 0.739083980074\n" + ] + } + ], + "source": [ + "from math import cos\n", + "def f(x):\n", + " y=x-cos(x)\n", + " return y\n", + "x1=0\n", + "if f(x1)<0:\n", + " x2=x1+0.00001\n", + " while f(x2)<0:\n", + " x2=x2+0.00001\n", + " \n", + "elif x2==x1+0.00001:\n", + " while f(x2)>0:\n", + " x2=x2+0.00001\n", + " \n", + "else:\n", + " print x1,\"The root is=\"\n", + "\n", + "x=x2-(x2-x1)*f(x2)/(f(x2)-f(x1))\n", + "print \"The root is=\",x" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter9_2.ipynb b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter9_2.ipynb new file mode 100644 index 00000000..1c603f39 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/Chapter9_2.ipynb @@ -0,0 +1,608 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter - 9 : Gauss Eliminations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.1 Pg: 242" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The lines meet at=x2= 3 and x1= 4\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEZCAYAAABsPmXUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGEZJREFUeJzt3XuQnfV93/H3VxIWkgDRGiOQ7IDrgTqImyVLg0McH6fg\nOBQ7ns6UMW1McAO2M03s1NjEmNZaMZDUJGlwE+NCQAwXC/7AsevExHcfMJexVkYIEFDArqd4VwgK\nxICkcQX69o9zVjpIu6u9Pftczvs1s8Oey57nxxn00Y/v5zzPRmYiSWqWOWUvQJI08wx3SWogw12S\nGshwl6QGMtwlqYEMd0lqIMNdkhrIcFcjRcRfRMTjEfFiRDwaER8qeT3nRMS9EbE9In5Q5lrUH+aV\nvQCpIC8DZ2fm4xGxGvhmRDyZmfeVtJ7ngP8G/CrwmyWtQX3EnbtqKSLeEhHPRcTbureXRsSzEfEb\nAJk5kJmPd7/fAPwQeMcYr/VoRPzrntvzuq91akQcHBG3RMT/jYgXImJDRBw5hfV8LzNvB7bO8Fsh\njcpwVy1l5k+APwFuiYgFwA3ADZl5177P7T6+Cnh4jJdbD5zbc/u3gGcy8wHg94DDgDcC/xz4KLBz\nOuuRZoPhrtrKzOuAJ4ENwBLg0jGe+j+ABzLz22M8vh54f0Qc3L3974Bbu9//P+D1wHHZsSkzX5rm\neqTCGe6qu+uA5cBfZ+aufR+MiD8HTgDOGesFurvuR+kE/ELgfXQCH+Bm4FvAbRExFBGfj4jxuqpx\n1yPNFsNdtRURhwBX0QnUtRHxz/Z5fC2dEct7MvPlA7zcrXRGM78DbMnMnwJk5iuZeVlmLgd+DTgb\nOG8q6+nyMqyaFYa76uwLwIbM/AjwDTrjFwAi4hI6YX1mZr4wgde6jc5fBB9j766diGhFxEkRMRd4\nCdgFvDqF9czpjn0OAuZExPyIOGji/6rSJGWmX37V7ovODvsp4PDu7UXAE8C53du76RSfL/V8feYA\nr/ldOjP2I3vu+yDwGJ2PVj5NZ2c+ZwrrOb+7pt6vdWW/j3419ysyi/u/xO7u6Xe7/yE/BHw4M39Z\n2AElSUCBY5mIOBa4EFiRmScBc+nsgiRJBSvyDNUX6cwnF0bEq8BCYKjA40mSugrbuWfm88BfAv8H\nGAb+KTO/W9TxJEl7FTmWeQvwx8CxwFLgkIj490UdT5K0V5FjmbcD92bmcwAR8Xd0Pif85ZEnRISf\n+ZWkKcjMGO/xIj/n/hhwWkQsiIgAzgAe2fdJZX9cqCpfa9asKX0NVfnyvfC98L0Y/2siipy5bwZu\nAjYCD3bvvrao40mS9ir0eu6ZeSVwZZHHkCTtz8sPVESr1Sp7CZXhe7GX78VevheTU+gZqgc8eESW\neXxJqqOIIEssVCVJJTHcJamBDHdJaiDDXZIayHCXpAYy3CWpgQx3SWqg0sP96qvh1bF+I6UkaUpK\nD/f16+H002Hz5rJXIknNUXq433UXXHABnHkmXHwxbN9e9ookqf5KD/c5czrh/tBDMDwMJ54Id9xR\n9qokqd4qd22Z73wH/uAPYMUKuOoqWLq0pMVJUkXV8toyZ57Z2cUffzyccoqFqyRNReV27r22bIGP\nfhReeQWuuaYT9pLU72q5c++1fLmFqyRNRaXDHSxcJWkqKj2WGY2Fq6R+V/pYJiL+ZURs6vn6RUR8\nfDqvaeEqSQc2azv3iJgDDAGrM/Op7n3T+jV7Fq6S+lHpO/d9nAH8ZCTYZ4KFqySNbjbD/YPA+pl+\nUQtXSdrfrIxlIuJ1dEYyJ2Tmsz33T2ssMxoLV0lNN5GxzLxZWstvAz/uDfYRAwMDe75vtVq0Wq1p\nHWikcL3iis4Mfu3azlx+7txpvawklabdbtNutyf1M7O1c78N+MfMvHGf+2d8597LwlVSE1WiUI2I\nRXTK1L8r+lj7snCV1K8KD/fM3J6ZR2TmS0UfazQWrpL6Ue3OUJ0uC1dJdVeJsUzVeIarpH7Qdzv3\nXhaukurInfsBWLhKaqq+DnewcJXUTH09lhmNhaukqnMsMwUWrpKawJ37OCxcJVWRO/dpsnCVVFeG\n+wFYuEqqI8cyk2ThKqlsjmUKYOEqqQ7cuU+DhaukMrhzL5iFq6SqMtynycJVUhU5lplhFq6SiuZY\npgQWrpKqwJ17gSxcJRXBnXvJLFwllaXQcI+IwyPi9oh4NCIeiYjTijxeFVm4SipDoWOZiLgRuDMz\n10XEPGBRZv6i5/FGj2VGY+EqabpKHctExGLgnZm5DiAzX+kN9n5l4SppNhS2c4+IU4FrgEeAU4Af\nA5/IzB09z+m7nXsvC1dJUzGRnfu8Ao8/D1gB/GFmDkbEVcBngM/1PmlgYGDP961Wi1arVeCSqmWk\ncF23rrOjP/98WLMGFi0qe2WSqqTdbtNutyf1M0Xu3I8C7svMN3dv/zrwmcw8u+c5fb1z77VtG1x0\nEdxzD3zxi3DWWWWvSFJVlTpzz8yngaci4vjuXWcAW4o6Xt0tWQK33ALXXgsf/zicc07n0zWSNBVF\nf879j4AvR8Rm4GTgTws+Xu1ZuEqaCZ6hWmEWrpJG4xmqNecZrpKmynCvOM9wlTQVjmVqxjNcJTmW\naSALV0kT4c69xixcpf7kzr3hLFwljcVwrzkLV0mjcSzTMBauUvM5lulDFq6SwJ17o1m4Ss3kzr3P\nWbhK/ctwbzgLV6k/OZbpMxauUv05ltF+LFyl/uDOvY9ZuEr15M5d47JwlZrLcO9zFq5SMzmW0WtY\nuErV51hGkzZSuB53nIWrVGeF79wj4mfAi8CrwK7MXN3zmDv3CrNwlaqpKjv3BFqZ+bbeYFf1WbhK\n9TVbY5lx/4ZRdVm4SvU0G2OZnwK/oDOWuSYz/7bnMccyNWPhKpVvImOZebOwjtMzc2tEvAH4TkQ8\nlpk/HHlwYGBgzxNbrRatVmsWlqSpGilcL7+8M4Nfu7Yzl587t+yVSc3Vbrdpt9uT+plZ/ShkRKwB\nXs7Mv+zedudeYxauUjlKL1QjYmFEHNr9fhHwHuChIo+p2bNv4frpT1u4SlVRdKG6BPhhRDwA/Aj4\nh8z8dsHH1CzqLVy3bu0EvoWrVD7PUNWMsnCVilf6WEb9xzNcpWpw567CWLhKxXDnrlJZuErlMdxV\nKAtXqRyOZTSrLFyl6XMso8rZt3D94hctXKUiuHNXaUYK11274NprLVyliXLnrkobKVwvvNDCVZpp\nhrtKNVrh+o1vlL0qqf4cy6hSLFylA3Mso9qxcJVmhjt3VZaFqzQ6d+6qNQtXaeoMd1WaZ7hKU+NY\nRrVi4So5llEDeUlhaWLcuau2vKSw+pU7dzWalxSWxma4q9YsXKXRjTuWiYjDgDdk5k/2uf/kzHxw\nQgeImAtsBH6eme/b5zHHMppRFq7qB9May0TEOcBjwFciYktErO55+MZJrOMTwCOAKa7CjRSuxx9v\n4ar+Nt5Y5lJgZWaeCnwYuCki/s1kXjwi3gicBVwHjPu3jDRTFiyAyy+HdhvWr4fTT4fNm8telTS7\nxgv3uZm5FSAzNwDvBi6NiE9M4vX/Cvg0sHvqS5SmZt/C9eKLLVxVb7tzN48/9/iEnjtvnMdejIi3\njMzbM3NrRLwb+Cqw/EAvHBFnA89k5qaIaI31vIGBgT3ft1otWq0xnypN2kjh+r73wUUXwYkndi5G\ndtZZZa9MOrChF4fYMLSB2++4nfvuvo/hl4aZP2/+hH52zEI1Ik4FtgMHZeYjPfcfBHwwM28e94Uj\n/hT4EPAKcDBwGPCVzDyv5zkWqppVFq6qqud3Ps/G4Y1sGNrA4PAgg0OD7Nq9i1VLV7F62WpWLV3F\nqmWrOHLRkRMqVA94ElNEPAzcDFwJLAA+D6zKzNMmuuiIeBfwKT8toyrYuROuuKJz4tPatZ0ToebO\nLXtV6ic7du3g/q33Mzg0yODwIBuGNrBt+zZWHr1yT4ivXraaYxYfQ8T+GT5T4b6ITqC/HTgEWA/8\n18yc8By9G+4XZeb797nfcFdpPMNVs2HXq7t4+JmH94T44PAgTzz3BMuPXP6aXflbj3grc+dMbJcx\nkXAfb+Y+4hVgJ51d+8HATycT7ACZeSdw52R+RiraSOG6bl2ncD3/fFizBhYtKntlqqvduZsnn3+S\nwaG9Qb5522aOWXzMnhD/yMqPcMqSUyY8O5+qiezcNwNfBy4DjgCuAX6Zmf922gd3566K2LatU7je\nc4+FqyZupPAcHO6MVzYOb2Tx/MWsWrZqz658xdErOGz+YTN63Jkay6zKzMF97jsvM2+agQUa7qoU\nC1eNZTKFZ9FmJNyLZLiriixcNd3Cs2iGuzQNFq79obfwHBwaZMPwhmkXnkUz3KVp2r27U7h+9rMW\nrk0wkcJz1bJVs1J4TofhLs0QC9d6KqvwLJrhLs0wC9fqqlLhWTTDXSqAhWv5duzawaatm16zK3/6\n5acrU3gWzXCXCmThOjvqWHgWzXCXCmbhOrPGKzxXLVvF6qWra1F4Fs1wl2aJhevUNLXwLJrhLs0y\nC9ex9VPhWTTDXSqBhWv1z/CsO8NdKlG/FK5FXNJW4zPcpZI1rXBtyhmedWe4SxVR18LVwrOaDHep\nYqpcuFp41ofhLlVQFQpXC896M9ylCtuyBT72Mdi1q9jC1cKzeUoP94g4mM7vTp0PvA74n5l5Sc/j\nhrv62kwXriOF54ahDXt25RaezVN6uHcXsTAzd0TEPOBu4FOZeXf3McNdYmqFa2Yy9NLQa0YrG4c3\ncvjBh1t4Nlwlwr1nMQvp7OJ/LzMf6d5nuEs9xitcLTw1ohLhHhFzgPuBtwBfysyLex4z3KV97NwJ\nA1fs4Jqv388Z5w1y0LGDDA5beGqviYT7vKIXkZm7gVMjYjHwrYhoZWZ75PGBgYE9z221WrRaraKX\nJFXKqIXngif4Fxcs554HV7Hwvvdw5R9fygdOt/DsV+12m3a7PamfmdVPy0TEfwF2ZuZfdG+7c1df\nmWzh2bQzXDUzSh/LRMQRwCuZ+U8RsQD4FrA2M7/XfdxwV2PNZOFZ1zNcVYwqhPtJwI3AnO7XzZn5\n5z2PG+5qjNkoPKt8hqtmT+nhfiCGu+qqzDM8q3CGq8pluEszoKpneM7WGa6qHsNdmqS6neFp4dqf\nDHdpHE06w9PCtb8Y7lKPsQrPPTvyBpzhaeHaHwx39a3RCs9ntj/DiqNX7J2TL1vVyDM8LVybz3BX\nXxiv8Fy9dPWeEUu/XdK2X36Haz8y3NU4dSs8y2bh2kyGu2qtSYVn2Sxcm8VwV630Q+FZNgvXZjDc\nVVn9XHiWzcK1/gx3VYKFZzVZuNaX4a5ZN1J4Dg7tDfLN2zZz7OHH7hmtrF62mpOXnGzhWQEWrvVk\nuKtwQy8O7Z2RDw+ycXgji+cv7lw4q7srt/CsPgvXejHcNaNGCs/BoUE2DG+w8GwgC9d6MNw1ZTt2\n7WDT1k2v2ZVve3mbhWcfsHCtPsNdE9JbeI7syi08ZeFaXYa79jNa4fngtgc55vBjLDy1HwvXajLc\nZeGpGWHhWi2Ge5+x8FTRegvXL3wBjj667BX1p9LDPSLeBNwEHAkkcG1m/veexw33KRopPHtPDLLw\n1GzoLVwvu6wzl58zp+xV9ZcqhPtRwFGZ+UBEHAL8GPhAZj7afdxwn4Bdr+5iy7NbXnMlxCeef4IT\n3nCChadKY+FantLDfb+DRXwN+OvM/F73tuG+j97Cc2RX3lt4joxYLDxVBRau5ahUuEfEscCdwPLM\nfLl7X9+H+9CLQ68ZrYxWeK48eiWHzj+07KVKY7JwnV2VCffuSKYNXJ6ZX+u5P9esWbPnea1Wi1ar\nVfh6yvLCzhf2fJZ8JNAtPNUkFq7FaLfbtNvtPbfXrl1bfrhHxEHAPwD/mJlX7fNYY3fuFp7qVxau\nxSt95x6d1LoReC4z/9Mojzci3C08pf1ZuBanCuH+68BdwIN0PgoJcElmfrP7eO3C/UCFp2d4SntZ\nuBaj9HA/kDqE+0QKT8/wlMZn4TqzDPdJ6j3D08JTmnkWrjPDcB+HhadUjp074fLL4dprLVynynDv\n8pK2UvVYuE5dX4b7WJe0/ZXFv7J3vLJsFacsOcXCUyqZhevU9EW4j3dJ25HxioWnVG0WrpPTuHAf\n65K2vddcsfCU6svCdWJqHe6jFZ5Pv/w0K49euSfEVy9bbeEpNYyF64HVJtzHKzx7d+UWnlL/sHAd\nWy3C/R3XvYPN2zZzzOJjXnNikIWnpN274frr4dJLLVx71SLcv//T77Ny6UoLT0lj2rYNPvlJuPde\nC1eoSbhX6QxVSdVm4doxkXC3ppBUG2eeCQ89BMcdByefDF/6Umd0o/25c5dUS/1cuLpzl9RYy5fD\nXXfB7/9+Z0d/8cWwfXvZq6oOw11Sbc2ZAxde2BnVDA/DiSfCHXeUvapqcCwjqTF6C9erroKlS8te\nUTEcy0jqK72F6ymnwNVXw6uvlr2qcrhzl9RITS5cS9+5R8S6iNgWEQ8VeRxJ2le/F65Fj2VuAN5b\n8DEkaVT9XLgWPpaJiGOBv8/Mk0Z5zLGMpFnTlMK19LGMJFVJPxWu7twl9aU6F64T2bnPm63FjGVg\nYGDP961Wi1arVdpaJPWPkcL1+us7O/oqX1K43W7Tbrcn9TPu3CX1vbr9DtfSL/kbEbcC7wJeDzwD\nfC4zb+h53HCXVBl1KVxLL1Qz89zMXJqZ8zPzTb3BLklV06TC1TNUJWkUVS5cS9+5S1Jd1f0MV8Nd\nksZQ5zNcHctI0gRVpXB1LCNJM6hOhas7d0magjILV3fuklSQkcL1gguqWbga7pI0RXPmdMK9ioWr\nYxlJmiGzVbg6lpGkWVSlwtWduyQVoMjC1Z27JJWk7MLVcJekgpRZuDqWkaRZMlOFq2MZSaqQ2Sxc\n3blLUgmmU7i6c5ekiiq6cDXcJakkRRaujmUkqSImWriWPpaJiPdGxGMR8URE/EmRx5KkupvJwrWw\ncI+IucDfAO8FTgDOjYhfLep4dddut8teQmX4Xuzle7FXv7wXCxbAFVdAuw3r18Ppp8PmzZN/nSJ3\n7quBJzPzZ5m5C7gN+J0Cj1dr/fIf7kT4Xuzle7FXv70X0y1ciwz3ZcBTPbd/3r1PkjQB0ylc5xW4\nLptSSZoBS5bALbfsLVwnorBPy0TEacBAZr63e/sSYHdmfr7nOf4FIElTcKBPyxQZ7vOA/wX8K2AY\n2ACcm5mPFnJASdIehY1lMvOViPhD4FvAXOB6g12SZkepJzFJkopRyuUHImJdRGyLiIfKOH6VRMSb\nIuIHEbElIh6OiI+XvaayRMTBEfGjiHggIh6JiD8re01li4i5EbEpIv6+7LWUKSJ+FhEPdt+LDWWv\np0wRcXhE3B4Rj3b/nJw26vPK2LlHxDuBl4GbMvOkWV9AhUTEUcBRmflARBwC/Bj4QL+OsCJiYWbu\n6HY2dwOfysy7y15XWSLik8BK4NDMfH/Z6ylLRPxvYGVmPl/2WsoWETcCd2bmuu6fk0WZ+Yt9n1fK\nzj0zfwi8UMaxqyYzn87MB7rfvww8ChT0O9OrLzN3dL99HZ2upm//MEfEG4GzgOuAcT8Z0Sf6/j2I\niMXAOzNzHXS6zdGCHbwqZKVExLHA24AflbuS8kTEnIh4ANgG/CAzHyl7TSX6K+DTwO6yF1IBCXw3\nIjZGxIVlL6ZEbwaejYgbIuL+iPjbiFg42hMN94rojmRuBz7R3cH3pczcnZmnAm8EfiMiWiUvqRQR\ncTbwTGZuwh0rwOmZ+Tbgt4H/2B3t9qN5wArg6sxcAWwHPjPaEw33CoiIg4CvALdk5tfKXk8VdP9X\n8xvA28teS0l+DXh/d9Z8K/CbEXFTyWsqTWZu7f7zWeCrdK5d1Y9+Dvw8Mwe7t2+nE/b7MdxLFhEB\nXA88kplXlb2eMkXEERFxePf7BcCZwKZyV1WOzPxsZr4pM98MfBD4fmaeV/a6yhARCyPi0O73i4D3\nAH35SbvMfBp4KiKO7951BrBltOcWeW2ZMUXErcC7gNdHxFPA5zLzhjLWUgGnA78LPBgRI0F2SWZ+\ns8Q1leVo4MaImENn43FzZn6v5DVVRT+fkLIE+GpnH8Q84MuZ+e1yl1SqPwK+HBGvA34CfHi0J3kS\nkyQ1kGMZSWogw12SGshwl6QGMtwlqYEMd0lqIMNdkhrIcJfGEBHfjIgX+v1yu6onw10a25XAh8pe\nhDQVhrv6XkSsiojNETE/IhZ1f2nKCZn5fTq/d0CqnVIuPyBVSWYORsTXgcuBBXQue9DPlxpWAxju\nUsdlwEZgJ51rd0i15lhG6jgCWAQcQmf3PsKLL6mWDHep4xrgPwPrgc/33O8vylAtOZZR34uI84Bf\nZuZt3csN3xsR7wbWAm8FDulemvo/ZOZ3ylyrNFFe8leSGsixjCQ1kOEuSQ1kuEtSAxnuktRAhrsk\nNZDhLkkNZLhLUgMZ7pLUQP8f0rP1wS7o3r4AAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7fc740383550>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from matplotlib.pyplot import plot,title,xlabel,ylabel,show\n", + "#the equations are:\n", + "#3*x1 + 2*x2=18 and -x1 + 2*x2=2\n", + "\n", + "#equation 1 becomes,\n", + "#x2=-(3/2)*x1 + 9\n", + "#equation 2 becomes,\n", + "#x2=-(1/2)*x1 + 1\n", + "\n", + "#plotting equation 1\n", + "x2=[0]\n", + "for x1 in range(1,7):\n", + " x2.append(-(3/2)*x1 + 9)\n", + "\n", + "x1=[1, 2, 3, 4, 5, 6]\n", + "#plotting equation 2\n", + "x4=[0]\n", + "for x3 in range(1,7):\n", + " x4.append((1/2)*x3 + 1)\n", + "\n", + "x3=[1, 2, 3, 4, 5, 6]\n", + "plot(x1,x2[1:])\n", + "plot(x3,x4[1:])\n", + "title(\"x2 vs x1\")\n", + "xlabel(\"x1\")\n", + "ylabel(\"x2\")\n", + "#the lines meet at x1=4 amd x2=3\n", + "print \"The lines meet at=x2=\",3,\"and x1=\",4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.2 Pg: 244" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of determinant for system repesented in fig 9.1 = 8.0\n", + "The value of determinant for system repesented in fig 9.2 (a) = 0.0\n", + "The value of determinant for system repesented in fig 9.2 (b) = 0.0\n", + "The value of determinant for system repesented in fig 9.2 (c) = -0.04\n" + ] + } + ], + "source": [ + "from numpy.linalg import det\n", + "from numpy import mat\n", + "#For fig9.1\n", + "a=mat([[3, 2],[-1, 2]])\n", + "print \"The value of determinant for system repesented in fig 9.1 =\",det(a)\n", + "#For fig9.2 (a)\n", + "a=mat([[-0.5, 1],[-0.5, 1]])\n", + "print \"The value of determinant for system repesented in fig 9.2 (a) =\",det(a)\n", + "#For fig9.2 (b)\n", + "a=mat([[-0.5, 1],[-1, 2]])\n", + "print \"The value of determinant for system repesented in fig 9.2 (b) =\",det(a)\n", + "#For fig9.2 (c)\n", + "a=mat([[-0.5, 1],[-2.3/5, 1]])\n", + "print \"The value of determinant for system repesented in fig 9.2 (c) =\",det(a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.3 Pg: 245" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The values are:\n", + "x1= -14.9\n", + "x2= -29.5\n", + "x3= 19.8\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "from numpy.linalg import det\n", + "#the matrix or the system\n", + "b1=-0.01#\n", + "b2=0.67#\n", + "b3=-0.44#\n", + "a=mat([[0.3, 0.52, 1],[0.5, 1, 1.9],[0.1, 0.3, 0.5]])\n", + "a1=mat([[a[1,1], a[1,2]],[a[2,1], a[2,2]]])\n", + "A1=det(a1)\n", + "a2=mat([[a[1,0], a[1,2]],[a[2,0], a[2,2]]])\n", + "A2=det(a2)\n", + "a3=mat([[a[1,0], a[1,1]],[a[2,0], a[2,1]]])\n", + "A3=det(a3)\n", + "D=a[0,0]*A1-a[0,1]*A2+a[0,2]*A3\n", + "p=mat([[b1, 0.52, 1],[b2, 1, 1.9],[b3, 0.3, 0.5]])\n", + "q=mat([[0.3, b1, 1],[0.5, b2, 1.9],[0.1, b3, 0.5]])\n", + "r=mat([[0.3, 0.52, b1],[0.5, 1, b2],[0.1 ,0.3, b3]])\n", + "x1=det(p)/D#\n", + "x2=det(q)/D#\n", + "x3=det(r)/D#\n", + "print \"The values are:\"\n", + "print \"x1=\",x1\n", + "print \"x2=\",x2\n", + "print \"x3=\",x3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.4 Pg: 246" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x1= 4.0\n", + "x2= 3.0\n" + ] + } + ], + "source": [ + "#the equations are:\n", + "#3*x1+2*x2=18\n", + "#-x1+2*x2=2\n", + "a11=3#\n", + "a12=2#\n", + "b1=18#\n", + "a21=-1#\n", + "a22=2#\n", + "b2=2#\n", + "x1=(b1*a22-a12*b2)/(a11*a22-a12*a21)#\n", + "x2=(b2*a11-a21*b1)/(a11*a22-a12*a21)#\n", + "print \"x1=\",x1\n", + "print \"x2=\",x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.5 Pg: 251" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x1= 2.61666666667\n", + "x2= -2.79319371728\n", + "x3= 7.0\n" + ] + } + ], + "source": [ + "from numpy import arange,mat\n", + "\n", + "n=3#\n", + "b=[7.85,-19.3,71.4] # ################################\n", + "a=mat([[3, -0.1, -0.2],[0.1, 7, -0.3],[0.3, -0.2, 10]])\n", + "for k in range(1,n):\n", + " for i in range(k+1,n+1):\n", + " fact=a[i-1,k-1]/a[k-1,k-1]\n", + " for j in range(k+1,n+1):\n", + " a[i-1,j-1]=a[i-1,j-1]-fact*(a[k-1,j-1])\n", + " \n", + " b[(i-1)]=b[(i-1)]-fact*b[(k-1)]\n", + " \n", + "x=[0,0,b[(n-1)]/a[n-1,n-1]]\n", + "for i in arange(n-1,0,-1):\n", + " s=b[i-1]#\n", + " for j in range(i+1,n+1):\n", + " s=s-a[i-1,j-1]*x[j-1]\n", + " \n", + " x[i-1]=b[i-1]/a[i-1,i-1]\n", + "\n", + "print \"x1=\",x[0]\n", + "print \"x2=\",x[1]\n", + "print \"x3=\",x[2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.6 Pg:255" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the original system:\n", + "x1= 4.0\n", + "x2= 3.0\n", + "For the new system:\n", + "x1= 8.0\n", + "x2= 1.0\n" + ] + } + ], + "source": [ + "a11=1#\n", + "a12=2#\n", + "b1=10#\n", + "a21=1.1#\n", + "a22=2#\n", + "b2=10.4#\n", + "x1=(b1*a22-a12*b2)/(a11*a22-a12*a21)#\n", + "x2=(b2*a11-a21*b1)/(a11*a22-a12*a21)#\n", + "print \"For the original system:\"\n", + "print \"x1=\",x1\n", + "print \"x2=\",x2\n", + "a21=1.05#\n", + "x1=(b1*a22-a12*b2)/(a11*a22-a12*a21)#\n", + "x2=(b2*a11-a21*b1)/(a11*a22-a12*a21)#\n", + "print \"For the new system:\"\n", + "print \"x1=\",x1\n", + "print \"x2=\",x2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.7 Pg: 257" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The determinant for part(a)= 8.0\n", + "The determinant for part(b)= -0.2\n", + "The determinant for part(c)= -20.0\n" + ] + } + ], + "source": [ + "from numpy.linalg import det\n", + "from numpy import mat\n", + "#part a\n", + "a=mat([[3, 2],[-1, 2]])\n", + "b1=18#\n", + "b2=2#\n", + "print \"The determinant for part(a)=\",det(a)\n", + "#part b\n", + "a=mat([[1, 2],[1.1, 2]])\n", + "b1=10\n", + "b2=10.4#\n", + "print \"The determinant for part(b)=\",det(a)\n", + "#part c\n", + "a1=a*10#\n", + "b1=100#\n", + "b2=104#\n", + "print \"The determinant for part(c)=\",det(a1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.8 Pg: 258" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The determinant for part(a)= 1.3335\n", + "The determinant for part(b)= -0.05\n", + "The determinant for part(c)= -0.05\n" + ] + } + ], + "source": [ + "from numpy.linalg import det\n", + "from numpy import mat\n", + "#part a\n", + "a=mat([[1, 0.667],[-0.5, 1]])\n", + "b1=6#\n", + "b2=1#\n", + "print \"The determinant for part(a)=\",det(a)\n", + "#part b\n", + "a=mat([[0.5, 1],[0.55, 1]])\n", + "b1=5\n", + "b2=5.2\n", + "print \"The determinant for part(b)=\",det(a)\n", + "#part c\n", + "b1=5#\n", + "b2=5.2#\n", + "print \"The determinant for part(c)=\",det(a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.9 Pg: 260" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x2 = 0.666666666667\n", + "x1 = 0.333333333334\n", + "The error varies depending on the no. of significant figures used\n" + ] + } + ], + "source": [ + "#0.0003*x1 + 3*x2 = 2.0001\n", + "#1*x1 + 1*x2 = 1\n", + "a11 = 0.000#\n", + "#multiplying first equation by 1/0.0003, we get, x1 + 10000*x2 = 6667\n", + "x2 = (6667-1)/(10000-1)#\n", + "x1 = 6667 - 10000*x2#\n", + "print \"x2 = \",x2\n", + "print \"x1 = \",x1\n", + "print \"The error varies depending on the no. of significant figures used\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.10 Pg: 262" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "without scaling, applying forward elimination\n", + "x2 = 1.0\n", + "x1 = 0\n", + "error for x1 = 100.0\n", + "with scaling\n", + "x1 = 1\n", + "x2 = 1\n", + "pivot and retaining original coefficients\n", + "x1 = 1\n", + "x2 = 1.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#2*x1 + 10000*x2 = 10000\n", + "#x1 + x2 = 2\n", + "x1 = 1#\n", + "x2 = 1#\n", + "print \"without scaling, applying forward elimination\"\n", + "#x1 is too small and can be neglected\n", + "x21 = 10000/10000#\n", + "x11 = 0#\n", + "e1 = (x1 - x11)*100/x1#\n", + "print \"x2 = \",x21\n", + "print \"x1 = \",x11\n", + "print \"error for x1 = \",e1\n", + "print \"with scaling\"\n", + "#0.00002*x1 + x2 = 1\n", + "#now x1 is neglected because of the co efficient\n", + "x22 = 1#\n", + "x12 = 2 - x1#\n", + "print \"x1 = \",x12\n", + "print \"x2 = \",x22\n", + "#using original co efficient\n", + "#x1 can be neglected\n", + "print \"pivot and retaining original coefficients\"\n", + "x22 = 10000/10000#\n", + "x12 = 2 - x1#\n", + "print \"x1 = \",x12\n", + "print \"x2 = \",x22" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.11 Pg: 265" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a= 8.59411764706 m/s**2\n", + "T= 34.4117647059 N\n", + "R= 36.7647058824 N\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat\n", + "from numpy.linalg import solve\n", + "a=mat([[70, 1, 0],[60, -1, 1],[40, 0, -1]])\n", + "b=mat([[636],[518],[307]])\n", + "x=abs(solve(a,b))\n", + "print \"a=\",x[0,0],\"m/s**2\"\n", + "print \"T=\",x[1,0],\"N\"\n", + "print \"R=\",x[2,0],\"N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:9.12 Pg: 269" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Equation in matrix form can be written as : \n", + "[[ 3. -0.1 -0.2 7.85]\n", + " [ 0.1 7. -0.3 -19.3 ]\n", + " [ 0.3 -0.2 10. 71.4 ]]\n", + "final matrix = \n", + "[[ 1. 0. 0. 3. ]\n", + " [ 0. 1. 0. -2.5]\n", + " [ 0. 0. 1. 7. ]]\n", + "\n", + "x1 = 3.0\n", + "x2 = -2.5\n", + "x3 = 7.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from numpy import mat,vstack\n", + "from numpy.linalg import det\n", + "#3*x1 - 0.1*x2 - 0.2*x3 = 7.85\n", + "#0.1*x1 + 7*x2 - 0.3*x3 = -19.3\n", + "#0.3*x1 - 0.2*x2 + 10*x3 = 71.4\n", + "# this can be written in matrix form as\n", + "A = mat([[3,-0.1,-0.2,7.85],[0.1,7,-0.3,-19.3],[0.3,-0.2,10,71.4]])\n", + "print \"Equation in matrix form can be written as : \\n\",A\n", + "X = A[0:1] / (A[0,0])#\n", + "Y = A[1:2] - 0.1*X#\n", + "Z = A[2:3] - 0.3*X#\n", + "\n", + "Y = Y/(Y[0,1])\n", + "X = X - Y * (X[0,1])\n", + "Z = Z - Y * (Z[0,1])#\n", + "Z = Z/(Z[0,2])#\n", + "X = X - Z*(X[0,2])#\n", + "Y = Y - Z*(Y[0,2])#\n", + "A = vstack((X,Y,Z))\n", + "print \"final matrix = \\n\",A\n", + "print \"\\nx1 = \",A[0,3]\n", + "print \"x2 = \",A[1,3]\n", + "print \"x3 = \",A[2,3]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image1.png b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image1.png Binary files differnew file mode 100644 index 00000000..d0ea0b26 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image1.png diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image2.png b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image2.png Binary files differnew file mode 100644 index 00000000..ccaafb65 --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image2.png diff --git a/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image3.png b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image3.png Binary files differnew file mode 100644 index 00000000..0bf7e18d --- /dev/null +++ b/Numerical_Methods_For_Engineers_by_S._C._Chapra_And_R._P._Canale/screenshots/image3.png |