summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_2.ipynb163
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_2.ipynb626
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_2.ipynb440
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_2.ipynb150
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_2.ipynb895
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_2.ipynb418
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_2.ipynb1116
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_2.ipynb491
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_2.ipynb620
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_2.ipynb431
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:17:52.pngbin0 -> 83862 bytes
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:22:12.pngbin0 -> 68694 bytes
-rw-r--r--Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:24:08.pngbin0 -> 43249 bytes
-rw-r--r--sample_notebooks/Ashish Kumar/Ch13.ipynb351
-rw-r--r--sample_notebooks/Babita./Ch5.ipynb290
-rw-r--r--sample_notebooks/NareshKumar/Ch2.ipynb441
-rw-r--r--sample_notebooks/Suhaib Alam/Ch14.ipynb569
-rw-r--r--sample_notebooks/hemanth/Untitled1.ipynb27
-rw-r--r--sample_notebooks/hemanth/Untitled1_1.ipynb27
19 files changed, 7055 insertions, 0 deletions
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_2.ipynb
new file mode 100644
index 00000000..f6562421
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_12_Ploymers_and_Polymerization_2.ipynb
@@ -0,0 +1,163 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Polymers and Polymerization"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page no: 311"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variable\n",
+ "Mwt = 21150 # g / mol\n",
+ "\n",
+ "# Solution\n",
+ "m = 2 * 12 + 3 * 1.008 + 1 * 35.45 # g / mer\n",
+ "n = Mwt / m\n",
+ "print \"The degree of polymerization is\", int(n)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The degree of polymerization is 338\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page no: 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "n = 10000 # degree of polymerisation\n",
+ "\n",
+ "# Solution\n",
+ "m = 8 * 12 + 8 * 1.008 # g / mer\n",
+ "M = n * m\n",
+ "print \"Molecular weight of polystyrene chain,\", M, \"g /mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Molecular weight of polystyrene chain, 1040640.0 g /mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page no: 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "d1 = 920 # density, kg / m^3\n",
+ "d2 = 961.97 # density, kg / m^3\n",
+ "dp = 44 # density percentange\n",
+ "\n",
+ "# Solution\n",
+ "print \"dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\"\n",
+ "p = 937.98\n",
+ "print \"Density of sample is\", p, \"kg / m^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\n",
+ "Density of sample is 937.98 kg / m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page no: 313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "Na = 6.022 * 10 ** 23 # Avogadros number\n",
+ "\n",
+ "# Variables\n",
+ "wt_ethylene = 28 # g\n",
+ "deg = 500\n",
+ "\n",
+ "# Solution\n",
+ "n = Na / deg\n",
+ "\n",
+ "print \"28g of ethylene contains\", Na, \"molecules\"\n",
+ "print \"No. of polyethylene formed\", \"{:.3e}\".format(n), \"molecules\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "28g of ethylene contains 6.022e+23 molecules\n",
+ "No. of polyethylene formed 1.204e+21 molecules\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_2.ipynb
new file mode 100644
index 00000000..a19a42ce
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_13_Fuel_and_Combustions_2.ipynb
@@ -0,0 +1,626 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13: Fuel and Combustions"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page No: 350"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "C = 84 # Percentage\n",
+ "S = 1.5 # Percentage\n",
+ "N = 0.6 # Percentage\n",
+ "H = 5.5 # Percentage\n",
+ "O = 8.4 # Percentage\n",
+ "\n",
+ "# Solution\n",
+ "GCV = (8080 * C + 34500 * (H - O / 8) + 2240 * S) / 100\n",
+ "LCV = (GCV - 9 * H / 100 * 587)\n",
+ "print \"Gross Calorific Value\", int(GCV), \"kcal / kg\"\n",
+ "print \"Net Calorific Value\", \"{:.2f}\".format(LCV), \"kcal / kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gross Calorific Value 8356 kcal / kg\n",
+ "Net Calorific Value 8065.48 kcal / kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page No: 350"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "C = 90 # Percentage\n",
+ "O = 3.0 # Percentage\n",
+ "S = 0.5 # Percentage\n",
+ "N = 0.5 # Percentage\n",
+ "ash = 2.5 # Percentage\n",
+ "LCV = 8490.5 # kcal / kg\n",
+ "\n",
+ "# Solution\n",
+ "print \"HCV = LCV + 9 * H / 100 * 587\"\n",
+ "print \"HCV = 1/100 * (8080 * C + 34500 * (H - O / 8) + 2240 * N)\"\n",
+ "H = (8490.5 - 7754.8) / (345 - 52.8)\n",
+ "H = 4.575\n",
+ "print \"The precentage of H is\", H, \"%\"\n",
+ "HCV = LCV + 52.8 * H\n",
+ "print \"Higeher calorific value of coal\", \"{:.1f}\".format(HCV), \"kcal / kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "HCV = LCV + 9 * H / 100 * 587\n",
+ "HCV = 1/100 * (8080 * C + 34500 * (H - O / 8) + 2240 * N)\n",
+ "The precentage of H is 4.575 %\n",
+ "Higeher calorific value of coal 8732.1 kcal / kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page No: 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "x = 0.72 # g\n",
+ "W = 250 # g\n",
+ "w = 150 # g\n",
+ "t1 = 27.3 # C\n",
+ "t2 = 29.1 # C\n",
+ "\n",
+ "# Solution\n",
+ "HCV = ((W + w) * (t2 - t1)) / x\n",
+ "HCV *= 4185.0 / 10 ** 6\n",
+ "print \"HCV of fuel is\", \"{:.3f}\".format(HCV), \"KJ / Kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "HCV of fuel is 4.185 KJ / Kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page No: 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "x = 0.84 # g\n",
+ "W = 1060 # g\n",
+ "w = 135 # g\n",
+ "delta_t = 2.5 # C\n",
+ "\n",
+ "# Solution\n",
+ "HCV = ((W + w) * delta_t) / x\n",
+ "print \"HCV of fuel is\", \"{:.2f}\".format(HCV), \"kcal / kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "HCV of fuel is 3556.55 kcal / kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page No: 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "V = 0.1 # m ^ 3\n",
+ "W = 25 # kg\n",
+ "t1 = 20 # C\n",
+ "t2 = 33 # C\n",
+ "m = 0.025 # kg\n",
+ "\n",
+ "# Solution\n",
+ "HCV = W * (t2 - t1) / V\n",
+ "LCV = HCV - (m / V) * 580\n",
+ "print \"HCV is\", HCV, \"kcal / m^3\"\n",
+ "print \"LCV is\", LCV, \"kcal / m^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "HCV is 3250.0 kcal / m^3\n",
+ "LCV is 3105.0 kcal / m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page No: 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "w1 = 2.5 # g\n",
+ "w2 = 2.415 # g\n",
+ "r = 1.528 # g\n",
+ "ma = 0.245 # Mass of ash, g\n",
+ "\n",
+ "# Solution\n",
+ "m = w1 - w2 # Mass of moisture in coal\n",
+ "mv = w2 - r # Mass of volatile matter\n",
+ "moisp = m * 100 / w1\n",
+ "volp = mv * 100 / w1\n",
+ "ashp = ma * 100 / w1\n",
+ "carbp = 100 - (moisp + volp + ashp)\n",
+ "print \"Percentage of moisture:\", moisp, \"%\"\n",
+ "print \"Percentage of volatile matter:\", volp, \"%\"\n",
+ "print \"Percentage of ash:\", ashp, \"%\"\n",
+ "print \"Percentage of fixed carbon:\", carbp, \"%\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage of moisture: 3.4 %\n",
+ "Percentage of volatile matter: 35.48 %\n",
+ "Percentage of ash: 9.8 %\n",
+ "Percentage of fixed carbon: 51.32 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page No: 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt_coke = 2 # kg\n",
+ "\n",
+ "# Solution\n",
+ "wt_O = 2 * 32 / 12.0\n",
+ "wt_air = wt_O * 100 / 23.2\n",
+ "Vol_air = wt_air / 28.94 * 22.4\n",
+ "print \"Volume of air needed for the complete combustion of 2kg coke\",\n",
+ "print \"is\", \"{:.3f}\".format(Vol_air), \"litres at NTP\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Volume of air needed for the complete combustion of 2kg coke is 17.793 litres at NTP\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page No: 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "C = 86 # Percent\n",
+ "H = 4 # Percent\n",
+ "N = 1.3 # Percent\n",
+ "S = 3 # Percent\n",
+ "O = 4 # Percent\n",
+ "Ash = 1.7 # Percent\n",
+ "wt = 500 # g\n",
+ "\n",
+ "# Solution\n",
+ "wt_C = C / 100.0\n",
+ "wt_S = S / 100.0\n",
+ "wt_H = H / 100.0\n",
+ "wt_O = O / 100.0\n",
+ "\n",
+ "print \"Nitrogen and ash are incombustible, so they do not require oxygen.\"\n",
+ "wt_O_C = 32 / 12.0 * wt_C\n",
+ "wt_O_S = 32 / 32.0 * wt_S\n",
+ "wt_O_H = 32 / 4.0 * wt_H\n",
+ "\n",
+ "Twt_O = wt_O_H + wt_O_S + wt_O_C\n",
+ "wt_O_needed = Twt_O - wt_O\n",
+ "wt_air = (100.0 / 23.0 * wt_O_needed) * 500 / 1000.0\n",
+ "print \"Minimum Wt. of air required by 500g of fuel\", \"{:.2f}\".format(wt_air), \"kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nitrogen and ash are incombustible, so they do not require oxygen.\n",
+ "Minimum Wt. of air required by 500g of fuel 5.66 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page No: 353"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt_C = 3 # kg\n",
+ "\n",
+ "# Solution\n",
+ "wt_air = wt_C * 32 * 100 / 12.0 / 23.0\n",
+ "vol_air = wt_air * 1000 * 22.4 / 28.94\n",
+ "\n",
+ "print \"H2(g) + 1/2 O2(g) --> H20(l)\"\n",
+ "print \" 1 0.5 1\\t\\t(By Vol.)\"\n",
+ "print \"CO(g) + 1/2 O2(g) --> CO2(g)\"\n",
+ "print \" 1 0.5 1\\t\\t(By Vol.)\"\n",
+ "print \"CH4(g) + 2 O2(g) --> CO2(g) + 2H2O(l)\"\n",
+ "print \" 1 2 1\\t\\t(By Vol.)\"\n",
+ "\n",
+ "print \"Weight of air for the combustion of 3kg carbon\",\n",
+ "print \"{:.3f}\".format(wt_air), \"kg\"\n",
+ "print \"Vol. pf air required for combustion of 3kg carbon\",\n",
+ "print \"{:.3e}\".format(vol_air), \"L\",\n",
+ "print \"or\", \"{:.2f}\".format(vol_air / 1000), \"m^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "H2(g) + 1/2 O2(g) --> H20(l)\n",
+ " 1 0.5 1\t\t(By Vol.)\n",
+ "CO(g) + 1/2 O2(g) --> CO2(g)\n",
+ " 1 0.5 1\t\t(By Vol.)\n",
+ "CH4(g) + 2 O2(g) --> CO2(g) + 2H2O(l)\n",
+ " 1 2 1\t\t(By Vol.)\n",
+ "Weight of air for the combustion of 3kg carbon 34.783 kg\n",
+ "Vol. pf air required for combustion of 3kg carbon 2.692e+04 L or 26.92 m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page No: 353"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "H = 0.30 # m^3\n",
+ "CO = 0.10 # m^3\n",
+ "CH4 = 0.04 # m^3\n",
+ "N2 = 0.56 # m^3\n",
+ "\n",
+ "# Soution\n",
+ "vol_oxygen = H * 0.5 + CO * 0.5 + CH4 * 2\n",
+ "vol_air = vol_oxygen * 100 / 21\n",
+ "print \"Volumer of air required for complete combustion of 1 m^3 of\",\n",
+ "print \"producer gas:\", \"{:.3f}\".format(vol_air), \"m^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Volumer of air required for complete combustion of 1 m^3 of producer gas: 1.333 m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 11, Page No: 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "H = 15.4 # Percentage\n",
+ "C = 84.6 # Percentage\n",
+ "wt_fuel = 1 # kg\n",
+ "wt_C = 0.846 # kg\n",
+ "wt_H = 0.154 # kg\n",
+ "\n",
+ "# Solution\n",
+ "print \"The combustion reactions are,\"\n",
+ "print \"C + O2 --> CO2\"\n",
+ "print \"12 32 \\t(by Weight)\"\n",
+ "print \"2H2 + O2 --> H20\"\n",
+ "print \" 4 32\\t(by Weight)\"\n",
+ "\n",
+ "wt_O = 32 / 12.0 * wt_C\n",
+ "wt_O_H = 32 / 4.0 * wt_H\n",
+ "Twt_O = wt_O + wt_O_H\n",
+ "print \"Because 32 gm of O2 occupies a volume of 22.4 liters at NTP\"\n",
+ "print \"3.488 * 1000 gm of O2 will occupy\",\n",
+ "print \"{:.1f}\".format(22.4 / 32 * Twt_O * 1000), \"liters\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The combustion reactions are,\n",
+ "C + O2 --> CO2\n",
+ "12 32 \t(by Weight)\n",
+ "2H2 + O2 --> H20\n",
+ " 4 32\t(by Weight)\n",
+ "Because 32 gm of O2 occupies a volume of 22.4 liters at NTP\n",
+ "3.488 * 1000 gm of O2 will occupy 2441.6 liters\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 12, Page No: 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "C = 750 # g\n",
+ "H = 52 # g\n",
+ "O = 121 # g\n",
+ "N = 32 # g\n",
+ "ash = 45 # g\n",
+ "\n",
+ "# Solution\n",
+ "min_wt_air = (C * 32 / 12. + H * 16 / 2. - O) * 100 / 23.\n",
+ "HCV = 1 / 1000. * (8080 * C + 34500 * (H - O / 8.) + 2240 * 0)\n",
+ "LCV = HCV - 0.09 * H * 587 / 10.0\n",
+ "\n",
+ "print \"HCV is\", int(HCV), \"kcal/kg\"\n",
+ "print \"LCV is\", int(LCV), \"kcal/kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "HCV is 7332 kcal/kg\n",
+ "LCV is 7057 kcal/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 13, Page No: 355"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "C = 81 # Percent\n",
+ "H = 8 # Percent\n",
+ "N = 2 # Percent\n",
+ "O = 5 # Percent\n",
+ "\n",
+ "# Solution\n",
+ "print \"In 1kg coal,\"\n",
+ "\n",
+ "wt_C = C * 10\n",
+ "wt_H = H * 10\n",
+ "wt_N = N * 10\n",
+ "wt_O = O * 10\n",
+ "wt_ash = 100 - (wt_O + wt_N + wt_H + wt_C)\n",
+ "\n",
+ "wt_air = ((wt_C * 32 / 12. + wt_H * 16 / 2. - wt_O) * 100 / 23.) / 1000.\n",
+ "\n",
+ "print \"Weight of air required for complete combustion of 10kg coal\",\n",
+ "print \"=\", \"{:.2f}\".format(wt_air * 10), \"kg\"\n",
+ "\n",
+ "HCV = 1 / 100. * (8080 * C + 34500 * (H - O / 8.))\n",
+ "LCV = HCV - 0.09 * H * 587\n",
+ "\n",
+ "print \"HCV is\", int(HCV), \"kcal/kg\"\n",
+ "print \"LCV is\", int(LCV), \"kcal/kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "In 1kg coal,\n",
+ "Weight of air required for complete combustion of 10kg coal = 119.57 kg\n",
+ "HCV is 9089 kcal/kg\n",
+ "LCV is 8666 kcal/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 14, Page No: 355"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "C = 80 # Percent\n",
+ "H = 7 # Percent\n",
+ "N = 2.1 # Percent\n",
+ "O = 3 # Percent\n",
+ "S = 3.5 # Percent\n",
+ "Ash = 4.4 # Percent\n",
+ "\n",
+ "# Solution\n",
+ "HCV = 1 / 100. * (8080 * C + 34500 * (H - O / 8.) + 2240 * S)\n",
+ "LCV = HCV - 0.09 * H * 587\n",
+ "\n",
+ "print \"HCV is\", int(HCV), \"kcal/kg\"\n",
+ "print \"LCV is\", int(LCV), \"kcal/kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "HCV is 8828 kcal/kg\n",
+ "LCV is 8458 kcal/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_2.ipynb
new file mode 100644
index 00000000..5117d5ae
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_14_Water_Treatment_2.ipynb
@@ -0,0 +1,440 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14: Water Treatment"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page No:378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt_CaSO4 = 160 # mg / l\n",
+ "\n",
+ "# Solution\n",
+ "hardness = 100 * wt_CaSO4 / 136.\n",
+ "print \"The hardness is\", \"{:.2f}\".format(hardness), \"mg / L of CaCO3 eqv.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The hardness is 117.65 mg / L of CaCO3 eqv.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page No:378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt1 = 9.3 # mg / L\n",
+ "wt2 = 17.4 # mg / L\n",
+ "wt3 = 8.7 # mg / L\n",
+ "wt4 = 12.6 # mg / L\n",
+ "\n",
+ "# Solution\n",
+ "temp_hardness = wt1 * 100 / 146. + wt2 * 100 / 162.\n",
+ "per_hardness = wt3 * 100 / 95. + wt4 * 100 / 136.\n",
+ "total_hardness = temp_hardness + per_hardness\n",
+ "\n",
+ "print \"Temporary hardness:\", \"{:.2f}\".format(temp_hardness), \"mg / L\"\n",
+ "print \"Total hardness:\", \"{:.2f}\".format(total_hardness), \"mg / L\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temporary hardness: 17.11 mg / L\n",
+ "Total hardness: 35.53 mg / L\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page No:378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt1 = 32.4 # mg / L\n",
+ "wt2 = 29.2 # mg / L\n",
+ "wt3 = 13.5 # mg / L\n",
+ "\n",
+ "# Solution\n",
+ "temp_hardness = wt1 * 100 / 162. + wt2 * 100 / 146.\n",
+ "per_hardness = wt3 * 100 / 136.\n",
+ "\n",
+ "print \"Temporary hardness:\", \"{:.2f}\".format(temp_hardness), \"mg / L\"\n",
+ "print \"Permanent hardness:\", \"{:.2f}\".format(per_hardness), \"mg / L\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temporary hardness: 40.00 mg / L\n",
+ "Permanent hardness: 9.93 mg / L\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page No:379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "i1 = 180 # mg / L, CaCl2\n",
+ "i2 = 210 # mg / L, Ca(NO3)2\n",
+ "i3 = 123 # mg / L, MgSO4\n",
+ "i4 = 90 # mg / L, Mg(HCO3)2\n",
+ "\n",
+ "# Solution\n",
+ "i1_req = i1 * 100 / 111.\n",
+ "i2_req = i2 * 100 / 164.\n",
+ "i3_req = i3 * 100 / 120.\n",
+ "i4_req = i4 * 100 / 146.\n",
+ "\n",
+ "lime_req = 74 / 100. * (2 * i4_req + i3_req) * 100 / 70. * 10000\n",
+ "soda_req = 106 / 100. * (i1_req + i3_req + i2_req) * 100 / 80. * 10000\n",
+ "\n",
+ "print \"Lime Required\", \"{:.1e}\".format(lime_req), \"mg\",\n",
+ "print \"=\", \"{:.1f}\".format(lime_req / 10 ** 6), \"kg\"\n",
+ "print \"Soda Required\", \"{:.1e}\".format(soda_req), \"mg\",\n",
+ "print \"=\", \"{:.1f}\".format(soda_req / 10 ** 6), \"kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Lime Required 2.4e+06 mg = 2.4 kg\n",
+ "Soda Required 5.2e+06 mg = 5.2 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page No:379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt1 = 32.4 # mg / L, Ca(HCO3)2\n",
+ "wt2 = 29.29 # mg / L, Mg(HCO3)2\n",
+ "wt3 = 13.5 # mg / L, CaSO4\n",
+ "\n",
+ "# Solution\n",
+ "wt1_equi = wt1 * 100 / 162.\n",
+ "wt2_equi = wt2 * 100 / 146.\n",
+ "wt3_equi = wt3 * 100 / 136.\n",
+ "\n",
+ "temp_hardness = wt1_equi + wt2_equi\n",
+ "perm_hardness = wt3_equi\n",
+ "\n",
+ "print \"Temporary hardness [due to Ca(HCO3)2 & Mg(HCO3)2] is\",\n",
+ "print int(temp_hardness), \"ppm\"\n",
+ "print \"Permanent hardness [due to CaSO4] is\", \"{:.1f}\".format(perm_hardness), \"ppm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temporary hardness [due to Ca(HCO3)2 & Mg(HCO3)2] is 40 ppm\n",
+ "Permanent hardness [due to CaSO4] is 9.9 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page No:380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "v1 = 150 # litres, NaCl\n",
+ "\n",
+ "# Solution\n",
+ "v_hardwater = 22500 * v1 / 3 / 0.6 / 58.5\n",
+ "\n",
+ "print \"The amount of hard water that can be softened using this softner is\",\n",
+ "print int(v_hardwater), \"litres\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The amount of hard water that can be softened using this softner is 32051 litres\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page No:380"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "v1 = 30 # litres, NaCl\n",
+ "w = 1500 # mg / L, NaCl\n",
+ "\n",
+ "# Solution\n",
+ "hardness = 45 * 50 / 58.5 * 1000 / 1000\n",
+ "print \"Hardness of water is\", \"{:.2f}\".format(hardness), \"ppm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hardness of water is 38.46 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page No:381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "v1_water = 50 # ml, water\n",
+ "w1_CaCO3 = 1.5 # mg, pure CaCO3\n",
+ "v1_EDTA = 44 # ml, EDTA\n",
+ "v2_EDTA = 40 # ml, EDTA\n",
+ "v2_water = 20 # ml, water\n",
+ "\n",
+ "# Solution\n",
+ "EDTA_1ml = v1_water * w1_CaCO3 / v1_EDTA\n",
+ "hardwater_40ml = v2_water * 1.704\n",
+ "total_hardness0 = hardwater_40ml * 1000 / 40\n",
+ "total_hardness1 = total_hardness0 * 0.07\n",
+ "\n",
+ "print \"Total hardness is\", \"{:.2f}\".format(total_hardness1), \"\u00b0Cl\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total hardness is 59.64 \u00b0Cl\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page No:381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "Fe = 56\n",
+ "S = 32\n",
+ "O = 16\n",
+ "Ca = 40\n",
+ "C = 12\n",
+ "\n",
+ "# Solution\n",
+ "hardness100 = Fe + S + O * 4\n",
+ "\n",
+ "print \"215 ppm of hardness is\", \"{:.1f}\".format(hardness100 * 215 / 100.),\n",
+ "print \"ppm of FeSO4\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "215 ppm of hardness is 326.8 ppm of FeSO4\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page No:381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "v1 = 50. # ml, hardwater\n",
+ "v2 = 15 # ml, EDTA\n",
+ "m = 0.01 # M, EDTA\n",
+ "\n",
+ "# Solution\n",
+ "M = v2 * m / v1\n",
+ "N = M * 2\n",
+ "S = N * 50 * 1000\n",
+ "\n",
+ "print \"Molarity of hardness is\", M, \"M\"\n",
+ "print \"Normality of hardness is\", N, \"N\"\n",
+ "print \"Strength of hardness is\", S, \"ppm or mg / L\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Molarity of hardness is 0.003 M\n",
+ "Normality of hardness is 0.006 N\n",
+ "Strength of hardness is 300.0 ppm or mg / L\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 11, Page No:382"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variable\n",
+ "C = 16.5 # ppm, CO3-2\n",
+ "\n",
+ "# Solution\n",
+ "Molarity = C * 10 ** - 6 / 60.\n",
+ "\n",
+ "print \"Molarity of CO3-2 is\", \"{:.1e}\".format(Molarity), \"mol / L\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Molarity of CO3-2 is 2.7e-07 mol / L\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_2.ipynb
new file mode 100644
index 00000000..ab29e076
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_15_Environmental_Pollution_and_Control_2.ipynb
@@ -0,0 +1,150 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 15: Environmental Pollution and Control"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page No: 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "MM = 294 # Molar mass, K2Cr2O7\n",
+ "\n",
+ "# Variables\n",
+ "v_eff = 25 # cm ^ 3, effluent\n",
+ "v = 8.3 # cm ^ 3, K2Cr2O7\n",
+ "M = 0.001 # M, K2Cr2O7\n",
+ "\n",
+ "# Solution\n",
+ "w_O = v * 8 * 6 * M / 1000.\n",
+ "\n",
+ "print \"8.3 cm^3 of 0.006 N K2Cr2O7 =\", \"{:.3e}\".format(w_O), \"g of O2\"\n",
+ "print \"25 ml of the effluent requires\", \"{:.3e}\".format(w_O), \"g of O2\"\n",
+ "\n",
+ "cod = w_O * 10 ** 6 / 25.\n",
+ "print \"1 l of the effluent requires\", \"{:.2f}\".format(cod), \"g of O2\"\n",
+ "print \"COD of the effluent sample is\", \"{:.2f}\".format(cod), \"ppm or mg / L\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "8.3 cm^3 of 0.006 N K2Cr2O7 = 3.984e-04 g of O2\n",
+ "25 ml of the effluent requires 3.984e-04 g of O2\n",
+ "1 l of the effluent requires 15.94 g of O2\n",
+ "COD of the effluent sample is 15.94 ppm or mg / L\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page No: 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "v0 = 30 # cm^3, effluent\n",
+ "v1 = 9.8 # cm^3, K2Cr2O7\n",
+ "M = 0.001 # M, K2Cr2O7\n",
+ "\n",
+ "# Solution\n",
+ "O_30eff = 6 * 8 * v1 * M\n",
+ "print \"So 30 cm^3 of effluent contains =\", \"{:.4f}\".format(O_30eff), \"mg of O2\"\n",
+ "\n",
+ "cod = O_30eff * 1000 / 30.\n",
+ "\n",
+ "print \"1 l of the effluent requires\", cod, \"mg of O2\"\n",
+ "print \"COD of the effluent sample =\", cod, \"ppm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "So 30 cm^3 of effluent contains = 0.4704 mg of O2\n",
+ "1 l of the effluent requires 15.68 mg of O2\n",
+ "COD of the effluent sample = 15.68 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page No: 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "v0 = 25 # ml, sewage\n",
+ "d0_O = 410 # ppm, dissolved oxygen\n",
+ "d1_O = 120 # ppm, dissolved oxygen\n",
+ "v1 = 50 # ml, sewage\n",
+ "\n",
+ "# Solution\n",
+ "print \"BOD = (DOb - DOi) * Dilution Factor\"\n",
+ "print \"BOD = (DOb - DOi) *\",\n",
+ "print \"(ml of sample after dilution) / (ml of sample before dilution)\"\n",
+ "\n",
+ "BOD = (d0_O - d1_O) * (v1 / v0)\n",
+ "print \"BOD =\", BOD, \"ppm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "BOD = (DOb - DOi) * Dilution Factor\n",
+ "BOD = (DOb - DOi) * (ml of sample after dilution) / (ml of sample before dilution)\n",
+ "BOD = 580 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_2.ipynb
new file mode 100644
index 00000000..c0748974
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_1_Structure_and_Bonding_2.ipynb
@@ -0,0 +1,895 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Structure and Bonding"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page no: 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "c = 3 * 10 ** 10 # Velocity of light, cm/sec\n",
+ "\n",
+ "# Variable\n",
+ "wavelength = 3500 * 10 ** -8 # Wavelength of radiation, cm\n",
+ "\n",
+ "# Solution\n",
+ "print \"v = c / wavelength\"\n",
+ "print \"v: Velocity, c: Speed of light\"\n",
+ "\n",
+ "v = c / wavelength\n",
+ "\n",
+ "print \"The frequency of radiation is\", '{:.2e}'.format(v), \"Heartz.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "v = c / wavelength\n",
+ "v: Velocity, c: Speed of light\n",
+ "The frequency of radiation is 8.57e+14 Heartz.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page no: 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "c = 3 * 10 ** 8 # speed of light, m/sec\n",
+ "\n",
+ "# Variable\n",
+ "f = 5 * 10 ** 16 # frequency, cycles/sec\n",
+ "\n",
+ "# Solution\n",
+ "v_bar = f / c\n",
+ "print \"The wave number is\", '{:.2e}'.format(v_bar), \"cycles/m.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wave number is 1.67e+08 cycles/m.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page no: 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "c = 3 * 10 ** 8 # Speed of light, m/sec\n",
+ "\n",
+ "# Variable\n",
+ "T = 2.4 * 10 ** -10 # Time period, sec\n",
+ "\n",
+ "# Solution\n",
+ "f = 1 / T # Frequency, /sec\n",
+ "lamda = c / f # wavelength, m\n",
+ "v_bar = 1 / lamda # wavenumber, /meter\n",
+ "\n",
+ "print \"Frequency:\", '{:.2e}'.format(f), \"/sec\"\n",
+ "print \"Wavelength:\", '{:.2e}'.format(lamda), \"m\"\n",
+ "print \"Wave number:\", '{:.2e}'.format(v_bar), \"/m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency: 4.17e+09 /sec\n",
+ "Wavelength: 7.20e-02 m\n",
+ "Wave number: 1.39e+01 /m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page no: 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constants\n",
+ "c = 3 * 10 ** 8 # Speed of light, m/sec\n",
+ "m = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variable\n",
+ "ke = 4.55 * 10 ** -25 # Kinetic Energy, J\n",
+ "\n",
+ "# Solution\n",
+ "v = math.sqrt(ke * 2 / m)\n",
+ "\n",
+ "lamda = h / (m * v)\n",
+ "\n",
+ "print \"The de Broglie wavelength is\", '{:.2e}'.format(lamda), \"m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The de Broglie wavelength is 7.28e-07 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page no: 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variables\n",
+ "m = 10 * 10 ** -3 # Mass of the ball, kg\n",
+ "v = 10 ** 5 # Velocity of ball, cm / sec\n",
+ "\n",
+ "# Solution\n",
+ "lamda = (h * 10 ** 7) / (m * v)\n",
+ "print \"The Wavelength of iron ball is\", \"{:.2}\".format(lamda), \"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Wavelength of iron ball is 6.6e-30 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page no: 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variable\n",
+ "lamda = 2 * 10 ** -10 # wavelength, m\n",
+ "\n",
+ "# Solution\n",
+ "p = h / lamda\n",
+ "\n",
+ "print \"The momentum of the particle is\", \"{:.2}\".format(p), \"kg.m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The momentum of the particle is 3.3e-24 kg.m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page no: 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "m = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "pi = 3.141 # Pi\n",
+ "\n",
+ "# Variable\n",
+ "delta_x = 1 * 10 ** -10 # uncertainty in velocity, m\n",
+ "\n",
+ "# Solution\n",
+ "delta_v = h / (4 * pi * m * delta_x)\n",
+ "\n",
+ "print \"Uncertainty in position of electron >=\",\n",
+ "print \"{:.2}\".format(delta_v), \"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Uncertainty in position of electron >= 5.8e+05 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page no: 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "pi = 3.141 # Pi\n",
+ "\n",
+ "# Variables\n",
+ "m = 10 ** -11 # Mass of particle, g\n",
+ "v = 10 ** -4 # Velocity of particle, cm/sec\n",
+ "delta_v = 0.1 / 100 # Uncertainty in velocity\n",
+ "\n",
+ "# Solution\n",
+ "delta_v = v / 1000\n",
+ "delta_x = (h * 10 ** 7) / (4 * pi * delta_v * m)\n",
+ "\n",
+ "print \"Uncertainty in position >=\",\n",
+ "print \"{:.3e}\".format(delta_x), \"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Uncertainty in position 5.27e-10 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page no: 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "c = 3 * 10 ** 8 # Speed of light, m/sec\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variable\n",
+ "lamda = 650 * 10 ** -12 # Wavelength of radiation, m\n",
+ "\n",
+ "# Solution\n",
+ "E = h * c / lamda\n",
+ "\n",
+ "print \"Energy per photon\", \"{:.3e}\".format(E), \"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy per photon 3.058e-16 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page no: 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "h = 6.625 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variables\n",
+ "v = 6.5 * 10 ** 7 # Velocity of particle, m/s\n",
+ "lamda = 5 * 10 ** -11 # Wavelength, m\n",
+ "\n",
+ "# Solution\n",
+ "P = h / lamda\n",
+ "\n",
+ "print \"The momentum of the particle\", \"{:.2e}\".format(P), \"kg.m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The momentum of the particle 1.33e-23 kg.m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 11, Page no: 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constants\n",
+ "c = 3 * 10 ** 8 # Speed of light, m/sec\n",
+ "m = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variables\n",
+ "lamda = 200 * 10 ** -7 # Wavelength, cm\n",
+ "wf = 6.95 * 10 ** -12 # Work function, erg\n",
+ "\n",
+ "# Solution\n",
+ "E = (h * c) * 10 ** 9 / lamda\n",
+ "\n",
+ "print \"Energy of photon\", \"{:.3e}\".format(E), \"erg\"\n",
+ "\n",
+ "ke = E - wf\n",
+ "\n",
+ "v = math.sqrt((2 * ke) / (m * 10 ** 3)) * 10 ** -2\n",
+ "\n",
+ "print \"The maximum velocity of electron\", \"{:.3e}\".format(v), \"m/sec\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of photon 9.939e-12 erg\n",
+ "The maximum velocity of electron 8.105e+05 m/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 12, Page no: 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variables\n",
+ "m = 150 # Weight of ball, gm\n",
+ "v = 50 # Velocity, m/sec\n",
+ "\n",
+ "lamda = h / (m * v * 10 ** -8)\n",
+ "print \"Wavelength of ball\", \"{:.3e}\".format(lamda), \"m\"\n",
+ "print \"Its wavelength is so short that it does not fall\",\n",
+ "print \"in visible range, so we cannot observe it.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of ball 8.835e-30 m\n",
+ "Its wavelength is so short that it does not fall in visible range, so we cannot observe it.\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 13, Page no: 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "pi = 3.141 # Pi\n",
+ "\n",
+ "# Variables\n",
+ "m = 0.1 # Mass of base ball, kg\n",
+ "delta_x = 10 ** -10 # Uncertainty in position, m\n",
+ "\n",
+ "# Solution\n",
+ "delta_v = h / (4 * pi * m * delta_x)\n",
+ "\n",
+ "print \"Uncertainty in velocity >=\", \"{:.2e}\".format(delta_v), \"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Uncertainty in velocity >= 5.27e-24 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 14, Page no: 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "t_v = 1.3 * 10 ** 15 # Threashold freq. Pt, /sec\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "\n",
+ "# Solution\n",
+ "print \"The threshold frequency is the lowest frequency\",\n",
+ "print \"that photons may possess to produce the photoelectric\",\n",
+ "print \"effect.\"\n",
+ "E = h * t_v\n",
+ "print \"The energy corresponding to this frequency is the minimum\",\n",
+ "print \"energy =\", \"{:.2e}\".format(E), \"erg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The threshold frequency is the lowest frequency that photons may possess to produce the photoelectric effect.\n",
+ "The energy corresponding to this frequency is the minimum energy = 8.61e-19 erg\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 15, Page no: 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "m = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "e = 1.602 * 10 ** -19 # Charge of electron, C\n",
+ "\n",
+ "# Variable\n",
+ "v = 1.87 * 10 ** 9 # Velocity of electron, m/sec\n",
+ "\n",
+ "# Solution\n",
+ "V = m * v ** 2 / (2 * e)\n",
+ "lamda = h / (m * v)\n",
+ "\n",
+ "print \"The voltage is\", \"{:.2e}\".format(V), \"volt\"\n",
+ "print \"The de Broglie wavelength is\", \"{:.2e}\".format(lamda), \"m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage is 9.93e+06 volt\n",
+ "The de Broglie wavelength is 3.89e-13 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 16, Page no: 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "m = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variable\n",
+ "lamda = 4.8 * 10 ** -9 # Wavelength of electron, m\n",
+ "\n",
+ "# Solution\n",
+ "ke = ((h / lamda) ** 2) / (2 * m)\n",
+ "\n",
+ "print \"The Kinetic Energy of moving electron is\", \"{:.2e}\".format(ke),\n",
+ "print \"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Kinetic Energy of moving electron is 1.05e-20 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 17, Page no: 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "m = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "c = 3 * 10 ** 8 # Speed of light, m/sec\n",
+ "\n",
+ "# Variables\n",
+ "v = 6.46 * 10 ** 5 # Velocity of electron, m/sec\n",
+ "lamda = 200 * 10 ** -9 # Wavelength of light, m\n",
+ "\n",
+ "# Solution\n",
+ "E = (h * c) / lamda\n",
+ "ke = m * v ** 2\n",
+ "w = E - ke\n",
+ "\n",
+ "print \"The workfunction of the metal surface is\", \"{:.3e}\".format(w),\n",
+ "print \"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The workfunction of the metal surface is 6.141e-19 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 18, Page no: 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constants\n",
+ "e = 1.602 * 10 ** -19 # Charge of proton, C\n",
+ "m_p = 1.66 * 10 ** -27 # Mass of proton, kg\n",
+ "m_e = 9.1 * 10 ** -31 # Mass of electron, kg\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variable\n",
+ "V = 35 # Acceleration potential, volt\n",
+ "\n",
+ "# Solution\n",
+ "lamda_p = h / math.sqrt(2 * e * V * m_p)\n",
+ "lamda_e = h / math.sqrt(2 * e * V * m_e)\n",
+ "\n",
+ "print \"The wavelength of electron when accelerated with same\",\n",
+ "print \"potential is\", \"{:.3e}\".format(lamda_e), \"m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of electron when accelerated with same potential is 2.074e-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 19, Page no: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "B_O1 = (10 - 6) / 2 # Bond Order for O2\n",
+ "B_O2 = (10 - 7) / 2 # Bond Order for O2-\n",
+ "\n",
+ "print \"Bond length of O2- > O2 as Bond order of O2\",\n",
+ "print \"> Bond order of O2- :\", B_O1 > B_O2\n",
+ "print \"Both are paramagnetic, because they contain unpaired electrons.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Bond length of O2- > O2 as Bond order of O2 > Bond order of O2- : True\n",
+ "Both are paramagnetic, because they contain unpaired electrons.\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 20, Page no: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "B_O = (9 - 4) / 2.0 # Bond order of N2+\n",
+ "\n",
+ "print \"MO configuration of N2+ is\"\n",
+ "print \"\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz1)\\n\"\n",
+ "print \"The Bond order of N2+, 1/2[Nb - Na] =\", B_O\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MO configuration of N2+ is\n",
+ "\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz1)\n",
+ "\n",
+ "The Bond order of N2+, 1/2[Nb - Na] = 2.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 21, Page no: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "v_n = 2 * 5 # number of valence e- in nitrogen\n",
+ "v_co = 4 + 6 # number of valence e- in CO\n",
+ "\n",
+ "print \"The number of valence electrons in N2\", v_n\n",
+ "print \"The number of valence electrons in CO\", v_co\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of valence electrons in N2 10\n",
+ "The number of valence electrons in CO 10\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 22, Page no: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] <\",\n",
+ "print \"O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] < O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 23, Page no: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"The number of electrons in N2-\", (7 + 8)\n",
+ "print \"The molecular configuration of N2- is\"\n",
+ "print \"\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)]\",\n",
+ "print \"\u03c3(2pz2) [\u03c0*(2px1) = \u03c0*(2py0)] OR [\u03c0*(2px0) = \u03c0*(2py1)]\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of electrons in N2- 15\n",
+ "The molecular configuration of N2- is\n",
+ "\u03c3(1s2)\u03c3*(1s2)\u03c3(2s2)\u03c3*(2s2) [\u03c0(2px2) = \u03c0(2py2)] \u03c3(2pz2) [\u03c0*(2px1) = \u03c0*(2py0)] OR [\u03c0*(2px0) = \u03c0*(2py1)]\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_2.ipynb
new file mode 100644
index 00000000..58e602ab
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_2_Spectroscopy_and_Photochemistry_2.ipynb
@@ -0,0 +1,418 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2: Spectroscopy and Photochemistry"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page no: 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "m_br79 = 78.9183 # Mass of 79Br, amu\n",
+ "m_br81 = 80.9163 # Mass of 91Br, amu\n",
+ "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n",
+ "pi = 3.141 # Pi\n",
+ "c = 3 * 10 ** 10 # Speed of light, cm /s\n",
+ "\n",
+ "# Variable\n",
+ "wave_no = 323.2 # Wave no. of fund. vibration of 79Br - 81Br, /cm\n",
+ "\n",
+ "# Solution\n",
+ "mu = (m_br79 * m_br81) / ((m_br79 + m_br81) * Na)\n",
+ "\n",
+ "k = 4 * (pi * c * wave_no) ** 2 * mu * 10 ** -3\n",
+ "\n",
+ "print \"The force constant of the bond is\", \"{:.3e}\".format(k), \"N/m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The force constant of the bond is 2.461e+02 N/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page no: 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n",
+ "pi = 3.141 # Pi\n",
+ "c = 3 * 10 ** 10 # Speed of light, cm /s\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "\n",
+ "# Variables\n",
+ "b_l = 112.81 * 10 ** -12 # Equillibrium bond length, m\n",
+ "m1 = 12 # Mass of Carbon, g /mol\n",
+ "m2 = 16 # Mass of Oxygen, g /mol\n",
+ "\n",
+ "# Solution\n",
+ "mu = m1 * m2 / ((m1 + m2) * Na) # g\n",
+ "mu *= 10 ** -3 # kg\n",
+ "\n",
+ "B = h / (8 * pi ** 2 * mu * b_l ** 2 * c)\n",
+ "v2_3 = B * 6\n",
+ "\n",
+ "print \"The reduced mass of CO is\", \"{:.3e}\".format(mu), \"kg\"\n",
+ "print \"The frequency of 3->2 transition is\", \"{:.2f}\".format(v2_3), \"/cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The reduced mass of CO is 1.139e-26 kg\n",
+ "The frequency of 3->2 transition is 11.59 /cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page no: 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n",
+ "\n",
+ "# Variables\n",
+ "d_NaCl = 2.36 * 10 ** -10 # Intermolecular dist. NaCl, m\n",
+ "m_Cl = 35 * 10 ** -3 # Atomic mass, kg /mol\n",
+ "m_Na = 23 * 10 ** -3 # Atomic mass, kg /mol\n",
+ "\n",
+ "# Solution\n",
+ "mu = m_Na * m_Cl / ((m_Na + m_Cl) * 10 ** -3 * Na) * 10 ** -3\n",
+ "\n",
+ "I = mu * d_NaCl ** 2\n",
+ "\n",
+ "print \"The reduced mass of NaCl is\", \"{:.3e}\".format(mu), \"kg\"\n",
+ "print \"The moment of inertia of NaCl is\", \"{:.3e}\".format(I), \"kg.m^2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The reduced mass of NaCl is 2.305e-26 kg\n",
+ "The moment of inertia of NaCl is 1.284e-45 kg.m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page no: 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constant\n",
+ "e = 4000 # Extinction coeff., dm^3/mol/cm\n",
+ "\n",
+ "# Variable\n",
+ "x = 3 # Solution thickness, cm\n",
+ "\n",
+ "# Solution\n",
+ "A = math.log10(1 / 0.3) # Absorbance\n",
+ "C = A / (e * x)\n",
+ "\n",
+ "print \"The concentration of the solution is\", \"{:.2e}\".format(C), \"mol/dm^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The concentration of the solution is 4.36e-05 mol/dm^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page no: 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "pi = 3.141 # Pi\n",
+ "c = 3 * 10 ** 10 # Speed of light, cm /s\n",
+ "\n",
+ "# Variables\n",
+ "v_bar = 2140 # Fundamental vibrating freq, /cm\n",
+ "m_C = 19.9 * 10 ** -27 # Atomic mass of C, kg\n",
+ "m_O = 26.6 * 10 ** -27 # Atomic mass of O, kg\n",
+ "\n",
+ "# Solution\n",
+ "mu = m_O * m_C / (m_C + m_O)\n",
+ "k = 4 * (pi * c * v_bar) ** 2 * mu\n",
+ "\n",
+ "print \"The force constant of the molecule is\", \"{:.3e}\".format(k), \"N/m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The force constant of the molecule is 1.852e+03 N/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page no: 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"a) Microwave < IR < UV-Visible < X-Ray.\"\n",
+ "print \"b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a) Microwave < IR < UV-Visible < X-Ray.\n",
+ "b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page no: 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constants\n",
+ "pi = 3.141 # pi\n",
+ "c = 3 * 10 ** 10 # speed of light, cm /s\n",
+ "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n",
+ "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n",
+ "\n",
+ "# Variables\n",
+ "d = 20.7 # Interspacing, /cm\n",
+ "m1 = 1 # Mass of H, g / mol\n",
+ "m2 = 35.5 # Masso f Cl, g / mol\n",
+ "\n",
+ "# Solution\n",
+ "B = 0.1035 * 10 ** 2 # /m\n",
+ "I = h / (8 * pi ** 2 * B * c)\n",
+ "mu = m1 * m2 / ((m1 + m2) * Na)\n",
+ "mu *= 10 ** -3\n",
+ "r = math.sqrt(I / mu)\n",
+ "\n",
+ "print \"The intermolecular distance of HCl is\", \"{:.3e}\".format(r), \"m\"\n",
+ "# Discrepency in value is due to error in calculation in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The intermolecular distance of HCl is 1.294e-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page no: 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constant\n",
+ "e = 8000 # Molar absorbtion coeff, dm^3 / mol / cm\n",
+ "\n",
+ "# Variable\n",
+ "l = 2.5 # Thickness of solution, cm\n",
+ "\n",
+ "# Solution\n",
+ "C = math.log10(1 / 0.3) / (e * l)\n",
+ "\n",
+ "print \"The concentration of Solution from Lambert-Beer's Law is\",\n",
+ "print \"{:.2e}\".format(C), \"mol/dm^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The concentration of Solution from Lambert-Beer's Law is 2.61e-05 mol/dm^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page no: 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\"\n",
+ "print \"a higher value of lambda(max) because it has two conjugated\"\n",
+ "print \"chromophores, that is, one double bond (C=C) and a carbonyl\"\n",
+ "print \"group.\"\n",
+ "\n",
+ "print\n",
+ "print \"b) Because of the symmetrical vibrations of C=C double bond and\"\n",
+ "print \"triple bond, ethylene and acetylene do not absorb IR energy.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\n",
+ "a higher value of lambda(max) because it has two conjugated\n",
+ "chromophores, that is, one double bond (C=C) and a carbonyl\n",
+ "group.\n",
+ "\n",
+ "b) Because of the symmetrical vibrations of C=C double bond and\n",
+ "triple bond, ethylene and acetylene do not absorb IR energy.\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page no: 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Because CO2 is a linear molecule.\"\n",
+ "v_deg = 3 * 3 - 5\n",
+ "print \"The vibrational degree of freedom is\", v_deg"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Because CO2 is a linear molecule.\n",
+ "The vibrational degree of freedom is 4\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_2.ipynb
new file mode 100644
index 00000000..16fb19f8
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_3_Thermodynamics_and_Chemical_Equilibrium_2.ipynb
@@ -0,0 +1,1116 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Thermodynamic and Chemical Equilibrium"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page no: 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "q = 120 # Heat from surrounding, cal\n",
+ "W = 70 # Work done, cal\n",
+ "\n",
+ "# Solution\n",
+ "delta_E = q - W\n",
+ "\n",
+ "print \"Change in internal Energy\", delta_E, \"cals.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Change in internal Energy 50 cals.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page no: 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"CH4 (g) + 2O2 (g) -> CO2 (g) + 2H20 (l)\"\n",
+ "delta_n = 1 - (1 + 2)\n",
+ "solution = - 2 * 2 * 298 # cals\n",
+ "print \"Delta H - Delta E is:\", solution, \"cals\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "CH4 (g) + 2O2 (g) -> CO2 (g) + 2H20 (l)\n",
+ "Delta H - Delta E is: -1192 cals\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page no: 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "delta_G = -16.0 # Kelvin cal\n",
+ "delta_H = -10.0 # Kelvin cal\n",
+ "T = 300 # Kelvin\n",
+ "\n",
+ "# Solution\n",
+ "delta_S = (delta_H - delta_G) * 10 ** 3 / T # cal/deg\n",
+ "new_T = 330 # Kelvin\n",
+ "new_delta_G = (delta_H * 10 ** 3) - new_T * delta_S\n",
+ "\n",
+ "print \"The free energy at 330K is:\", \"{:.2e}\".format(new_delta_G), \"K cal\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The free energy at 330K is: -1.66e+04 K cal\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page no: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "delta_S = -20.7 # cal /deg /mol\n",
+ "delta_H = -67.37 # K cal\n",
+ "T = 25 # deg C\n",
+ "\n",
+ "# Solution\n",
+ "T += 273 # K\n",
+ "delta_G = delta_H - (T * delta_S * 10 ** -3)\n",
+ "print \"The change in free energy at 25deg C is:\", delta_G, \"K cal / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The change in free energy at 25deg C is: -61.2014 K cal / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page no: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt = 1 # g\n",
+ "delta_H = 149 # joules\n",
+ "\n",
+ "# Solution\n",
+ "delta_H_fusion = delta_H * (10 * 12 + 8 * 1)\n",
+ "print \"Enthalpy of fusion of naphthalene:\", delta_H_fusion * 10 ** -3, \"kJ/mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Enthalpy of fusion of naphthalene: 19.072 kJ/mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page no: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "delta_H_acetylene = 230 # kJ/mol\n",
+ "delta_H_benzene = 85 # kJ/mol\n",
+ "T = 298 # K\n",
+ "\n",
+ "# Solution\n",
+ "delta_H = delta_H_benzene - 3 * delta_H_acetylene\n",
+ "print \"The enthalpy change for the reaction is:\", delta_H, \"kJ/mole\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The enthalpy change for the reaction is: -605 kJ/mole\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page no: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "delta_H_vap = 2.0723 # kJ/g\n",
+ "Tb = 373 # K\n",
+ "\n",
+ "# Solution\n",
+ "delta_H_vap *= 18 # kJ/mol\n",
+ "delta_S = delta_H_vap / Tb\n",
+ "delta_G = delta_H_vap - Tb * delta_S\n",
+ "delta_S *= 1000\n",
+ "\n",
+ "print \"The Entropy change is:\", \"{:.1f}\".format(delta_S), \"J/mol/K\"\n",
+ "print \"The Free Energy change is:\", delta_G, \"kJ/mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Entropy change is: 100.0 J/mol/K\n",
+ "The Free Energy change is: 0.0 kJ/mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page no: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constant\n",
+ "R = 1.987 # cal /K /mol\n",
+ "\n",
+ "# Variables\n",
+ "moles = 5\n",
+ "Vo = 4 # litres, Initial Volume\n",
+ "Vf = 40 # litres, Final Volume\n",
+ "T = 27 # deg C\n",
+ "\n",
+ "# Solution\n",
+ "print \"dS = nRln(V2 / V1)\"\n",
+ "dS = moles * R * 2.303 * math.log10(Vf / Vo)\n",
+ "print \"The change in entropy is:\", \"{:.2f}\".format(dS), \"cal / degree\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "dS = nRln(V2 / V1)\n",
+ "The change in entropy is: 22.88 cal / degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page no: 107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "wt = 10 # g\n",
+ "heat_abs = 4.5 # K\n",
+ "\n",
+ "# Solution\n",
+ "mole = 10 / 100.0 # mol\n",
+ "delta_H = heat_abs / mole\n",
+ "print \"The heat of the reaction is:\", delta_H, \"K cal / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The heat of the reaction is: 45.0 K cal / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page no: 107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constant\n",
+ "R = 8.314 # J / K\n",
+ "\n",
+ "# Variables\n",
+ "V_O2 = 2.8 # litres\n",
+ "V_H2 = 19.6 # litres\n",
+ "\n",
+ "# Solution\n",
+ "na = V_O2 / 22.4 # mol\n",
+ "nb = V_H2 / 22.4 # mol\n",
+ "Xa = na / (na + nb)\n",
+ "Xb = nb / (na + nb)\n",
+ "delta_S = (- R) * (na * math.log(Xa) + nb * math.log(Xb))\n",
+ "\n",
+ "print \"The increase in entropy on mixing is:\", \"{:.3f}\".format(delta_S), \"J / K\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The increase in entropy on mixing is: 3.132 J / K\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 11, Page no: 107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"For 1 mole of ideal gas,\"\n",
+ "print \"\\tPV = RT or T = (PV) / R\\n\"\n",
+ "print \"Differentiating with respect to V at constant P,\"\n",
+ "print \"\\t[dT/dV]p = P/R\\n\"\n",
+ "print \"Differentiating again with respect oto P at constant V\"\n",
+ "print \"\\t[d2T/(dV*dP)] = 1/R\\n\"\n",
+ "print \"Now differectiating with respect to P at constant V,\"\n",
+ "print \"\\t[dT/dP]v = V/R\\n\"\n",
+ "print \"Differentiating again with respect to V at constant P,\"\n",
+ "print \"\\t[d2T/(dV*dP)] = 1/R\\n\"\n",
+ "print \"From equations we get:\"\n",
+ "print \"\\t[d2T/(dV*dP)] = [d2T/(dV*dP)]\\n\"\n",
+ "print \"Hence, dT is a perfect differential.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For 1 mole of ideal gas,\n",
+ "\tPV = RT or T = (PV) / R\n",
+ "\n",
+ "Differentiating with respect to V at constant P,\n",
+ "\t[dT/dV]p = P/R\n",
+ "\n",
+ "Differentiating again with respect oto P at constant V\n",
+ "\t[d2T/(dV*dP)] = 1/R\n",
+ "\n",
+ "Now differectiating with respect to P at constant V,\n",
+ "\t[dT/dP]v = V/R\n",
+ "\n",
+ "Differentiating again with respect to V at constant P,\n",
+ "\t[d2T/(dV*dP)] = 1/R\n",
+ "\n",
+ "From equations we get:\n",
+ "\t[d2T/(dV*dP)] = [d2T/(dV*dP)]\n",
+ "\n",
+ "Hence, dT is a perfect differential.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 12, Page no: 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "delta_G_25 = - 85.77 # k J, Free Energy at 25 C\n",
+ "delta_G_35 = - 83.68 # k J, Free Energy at 35 C\n",
+ "Ti = 273 + 25 # K\n",
+ "Tf = 273 + 35 # K\n",
+ "\n",
+ "# Solution\n",
+ "print \"Equating the entropy change at both the temperatures.\"\n",
+ "print \"(delta_H + delta_G_25) / Ti = (delta_H + delta_G_35) / Tf\"\n",
+ "delta_H = - 148\n",
+ "print \"The change in enthalpy for the process at 30C is\", delta_H, \"kJ\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equating the entropy change at both the temperatures.\n",
+ "(delta_H + delta_G_25) / Ti = (delta_H + delta_G_35) / Tf\n",
+ "The change in enthalpy for the process at 30C is -148 kJ\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 13, Page no: 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constants\n",
+ "Lv = 101 # cal /g, Latent headt of vap.\n",
+ "mwt = 78 # molecular weight of benzene\n",
+ "\n",
+ "# Variable\n",
+ "moles = 2\n",
+ "Tb = 80.2 # C, boiling point of benzene\n",
+ "\n",
+ "# Solution\n",
+ "Tb += 273 # K\n",
+ "delta_H = Lv * mwt\n",
+ "delta_S = delta_H / Tb\n",
+ "delta_G = delta_H - Tb * delta_S\n",
+ "print \"delta_S =\", \"{:.2f}\".format(delta_S), \"cal / K\"\n",
+ "print \"delta_G = delta_A =\", delta_G\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "delta_S = 22.30 cal / K\n",
+ "delta_G = delta_A = 0.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 14, Page no: 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "V1 = 6 # dm^3\n",
+ "V2 = 2 # dm^3\n",
+ "T1 = 27 # C\n",
+ "moles = 5\n",
+ "\n",
+ "# Solution\n",
+ "print \"T1*V1 ^ (gamma - 1) = T2 * V2 ^ (gamma - 1)\"\n",
+ "T1 += 273 # K\n",
+ "T2 = T1 * (V1 / V2) ** (8.314 / 20.91)\n",
+ "print \"The final temperature is\", \"{:.1f}\".format(T2), \"K\"\n",
+ "q = 0 # Adiabatic process\n",
+ "delta_E = - moles * 20.91 * (T2 - T1)\n",
+ "delta_E /= 1000\n",
+ "print \"q = \", q\n",
+ "print \"Change is Energy is\", \"{:.2f}\".format(delta_E), \"kJ / mol\"\n",
+ "W = - delta_E\n",
+ "print \"W = \", \"{:.2f}\".format(delta_E), \"kJ / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "T1*V1 ^ (gamma - 1) = T2 * V2 ^ (gamma - 1)\n",
+ "The final temperature is 464.3 K\n",
+ "q = 0\n",
+ "Change is Energy is -17.18 kJ / mol\n",
+ "W = -17.18 kJ / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 15, Page no: 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constant\n",
+ "R = 8.314 # J / K mol\n",
+ "\n",
+ "# Variables\n",
+ "mole = 1\n",
+ "V1 = 5 # dm^3\n",
+ "V2 = 10 # dm^3\n",
+ "T = 300 # K\n",
+ "\n",
+ "# Solution\n",
+ "print \"For isothermal and reversible process,\"\n",
+ "delta_E = delta_H = 0\n",
+ "delta_A = delta_G = - 2.303 * mole * R * T * math.log10(V2 / V1)\n",
+ "q = W = - delta_G\n",
+ "print \"delta_E = delta_H =\", delta_H\n",
+ "print \"delta_G = delta_A =\", \"{:.3f}\".format(delta_G), \"J / mol\\n\"\n",
+ "print \"For isothermal and reversible expansion\"\n",
+ "print \"q = W = -delta_G =\", \"{:.3f}\".format(W), \"J / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For isothermal and reversible process,\n",
+ "delta_E = delta_H = 0\n",
+ "delta_G = delta_A = -1729.159 J / mol\n",
+ "\n",
+ "For isothermal and reversible expansion\n",
+ "q = W = -delta_G = 1729.159 J / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 16, Page no: 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Constant\n",
+ "R = 8.314 # J / K mol\n",
+ "\n",
+ "# Variables\n",
+ "n = 5 # moles\n",
+ "T = 27 # C\n",
+ "V1 = 50.0 # L, Initial Volume\n",
+ "V2 = 1000 # L, Final Volume\n",
+ "\n",
+ "# Solution\n",
+ "T += 273\n",
+ "delta_G = 2.303 * n * R * T * math.log10(V1 / V2)\n",
+ "delta_G /= 1000\n",
+ "print \"The free energy change is\", \"{:.3f}\".format(delta_G), \"k J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The free energy change is -37.367 k J\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 17, Page no: 110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "delta_H_neu = - 51.46 # k J/mol, neutralization\n",
+ "delta_H_ion = - 57.1 # k J/mol, ionization\n",
+ "\n",
+ "# Solution\n",
+ "delta_H = - delta_H_ion + delta_H_neu\n",
+ "print \"The head of ionization for NH4OH is\", delta_H, \"kJ / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The head of ionization for NH4OH is 5.64 kJ / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 18, Page no: 110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"For 1 mole of an ideal gas,\"\n",
+ "print \"PV = RT or V = (RT)/P\"\n",
+ "print \"(dV/ dP) = -(RT/P^2)\\t (at constant temperature)\"\n",
+ "print \"(d^2V/ (dP*dT)) = -(R/ P^2)\"\n",
+ "print \"(dV/ dT) = (R/ P)\\t (at constant pressure)\"\n",
+ "print \"(d^2V/ (dT*dP)) = -(R/ P^2)\\n\"\n",
+ "print \"(d^2V/ (dT*dP)) = (d^2V/ (dP*dT))\\t[From above equations]\"\n",
+ "print \"Hence, dV is an exact differential.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For 1 mole of an ideal gas,\n",
+ "PV = RT or V = (RT)/P\n",
+ "(dV/ dP) = -(RT/P^2)\t (at constant temperature)\n",
+ "(d^2V/ (dP*dT)) = -(R/ P^2)\n",
+ "(dV/ dT) = (R/ P)\t (at constant pressure)\n",
+ "(d^2V/ (dT*dP)) = -(R/ P^2)\n",
+ "\n",
+ "(d^2V/ (dT*dP)) = (d^2V/ (dP*dT))\t[From above equations]\n",
+ "Hence, dV is an exact differential.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 19, Page no: 110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Let P1, V1, T1 and P2, V2, T2 b the initial and final\",\n",
+ "print \"state, respectively of the system\"\n",
+ "print \"W rev = nRT[P1/ P2 - 1]\"\n",
+ "print \"W irr = nRT[1 - P2/ P1]\"\n",
+ "print \"W rev - W irr = [nRT/(P1P2)]*(P1 - P2)^2\"\n",
+ "print \"Because RHS of the above equation is always positive,\"\n",
+ "print \"W rev > W irr\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Let P1, V1, T1 and P2, V2, T2 b the initial and final state, respectively of the system\n",
+ "W rev = nRT[P1/ P2 - 1]\n",
+ "W irr = nRT[1 - P2/ P1]\n",
+ "W rev - W irr = [nRT/(P1P2)]*(P1 - P2)^2\n",
+ "Because RHS of the above equation is always positive,\n",
+ "W rev > W irr\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 20, Page no: 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "Eq_HI = 1.56 / 2\n",
+ "Eq_H2 = 0.22 / 2\n",
+ "Eq_I2 = 0.22 / 2\n",
+ "Kc = Eq_H2 * Eq_I2 / (Eq_HI ** 2)\n",
+ "print \"The equilibrium constant for the dissociation reaction\",\n",
+ "print \"{:.4f}\".format(Kc)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The equilibrium constant for the dissociation reaction 0.0199\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 21, Page no: 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "Kc = 0.5 # / mole^2 litre^2\n",
+ "T = 400 # K\n",
+ "R = 0.082 # litre atm degree^-1 mole^-1\n",
+ "\n",
+ "# Solution\n",
+ "Kp = Kc * (R * T) ** (-2)\n",
+ "\n",
+ "print \"The given equilibrium is\"\n",
+ "print \"\\t\\tN2(g) + 3H2(g) <--> 2NH3(g)\"\n",
+ "print \"Kp is\", \"{:.3e}\".format(Kp)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The given equilibrium is\n",
+ "\t\tN2(g) + 3H2(g) <--> 2NH3(g)\n",
+ "Kp is 4.648e-04\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 22, Page no: 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "solubility = 7.5 * 10 ** - 5 # mol L^-1\n",
+ "\n",
+ "# Solution\n",
+ "Ksp = 4 * (solubility ** 3)\n",
+ "print \"Solubility product of the salt is\", \"{:.4e}\".format(Ksp), \"mol^3 / L^-3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solubility product of the salt is 1.6875e-12 mol^3 / L^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 23, Page no: 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "Ti = 25 # C\n",
+ "S = 0.00179 # g / L\n",
+ "\n",
+ "# Solution\n",
+ "S /= 170 # mol / L\n",
+ "Ksp = S ** 2\n",
+ "print \"Solubility product at 25 C is\", \"{:.4e}\".format(Ksp), \"mol^2 / L^-2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solubility product at 25 C is 1.1087e-10 mol^2 / L^-2\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 24, Page no: 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "Ksp = 8 * 10 ** - 5 # Solubility product PbBr2\n",
+ "disso = 80 / 100 # % dissociation\n",
+ "\n",
+ "# Solution\n",
+ "S = (Ksp / 4) ** (1 / 3.0) # Solubility is 100%\n",
+ "S_80 = S * (80 / 100.0)\n",
+ "S_per_g = S_80 * 367 - 1.621\n",
+ "print \"Solubility in gm per litre is\", \"{:.3f}\".format(S_per_g), \"gm / litre\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solubility in gm per litre is 6.349 gm / litre\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 25, Page no: 112"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "n_acid = 1 # mole\n",
+ "n_alcohol = 1 # mole\n",
+ "T = 25 # C\n",
+ "x = 0.667 # mole\n",
+ "\n",
+ "# Solution\n",
+ "print \"Kc = [CH3COOC2H][H2O] / ([CH3COOH][C2H2OH])\"\n",
+ "Kc = 4\n",
+ "print \"[CH3COOH] = (2 - x) / V\"\n",
+ "print \"[C2H5OH] = (1 - x) / V\"\n",
+ "print \"[CH3COOC2H5] = [H20] = x / V\"\n",
+ "print \"3x^2 - 12x + 8 = 0\"\n",
+ "print \"x =\", 2.366, \"or\", 0.634\n",
+ "print \"0.634 mole of ester would be formed, because the other value,\",\n",
+ "print \"x = 2.366, is not permissible.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Kc = [CH3COOC2H][H2O] / ([CH3COOH][C2H2OH])\n",
+ "[CH3COOH] = (2 - x) / V\n",
+ "[C2H5OH] = (1 - x) / V\n",
+ "[CH3COOC2H5] = [H20] = x / V\n",
+ "3x^2 - 12x + 8 = 0\n",
+ "x = 2.366 or 0.634\n",
+ "0.634 mole of ester would be formed, because the other value, x = 2.366, is not permissible.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 26, Page no: 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "n_acid = 0.2 # mole\n",
+ "n_salt = 0.10 # mole\n",
+ "Ka = 1.8 * 10 ** -5\n",
+ "\n",
+ "# Solution\n",
+ "pH = - math.log10(Ka) + math.log10(n_salt / n_acid)\n",
+ "print \"The pH of acidic buffer is\", \"{:.3f}\".format(pH)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The pH of acidic buffer is 4.444\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 27, Page no: 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "n_salt = 0.02 # mole\n",
+ "n_base = 0.2 # mole\n",
+ "pKb = 4.7\n",
+ "\n",
+ "# Solution\n",
+ "pOH = pKb + math.log10(n_salt / n_base)\n",
+ "pH = 14 - pOH\n",
+ "print \"pH of a buffer solution is\", pH\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "pH of a buffer solution is 10.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 28, Page no: 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "n_H2 = 8.07 # moles\n",
+ "n_I2 = 9.08 # moles\n",
+ "T = 448 # C\n",
+ "n_eqHI2 = 13.38 # moles\n",
+ "\n",
+ "# Solution\n",
+ "x = n_eqHI2 / 2 + 6.69\n",
+ "Kc = n_eqHI2 ** 2 / (n_H2 * n_I2)\n",
+ "\n",
+ "print \"H2 + I2 <--> 2HI\"\n",
+ "print \"1 0 0\"\n",
+ "print \"1 - 2xx x x\"\n",
+ "print \"x/(1 - 2x) = (1/Kc)^0.5\"\n",
+ "print \"Dissociation constant of HI is 106.75 x 10^-3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "H2 + I2 <--> 2HI\n",
+ "1 0 0\n",
+ "1 - 2xx x x\n",
+ "x/(1 - 2x) = (1/Kc)^0.5\n",
+ "Dissociation constant of HI is 106.75 x 10^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_2.ipynb
new file mode 100644
index 00000000..b0e0ac54
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_5_Chemical_Kinetics_and_Catalysis_2.ipynb
@@ -0,0 +1,491 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5: Chemical Kinetics and Catalysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page no: 149"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "K = 3.5 * 10 ** - 2 # Rate constant\n",
+ "\n",
+ "# Solution\n",
+ "print \"First order reaction = 0.693 / K\"\n",
+ "t_05 = 0.693 / K\n",
+ "print \"Time taken for half the initial concentration to react\", t_05, \"minutes\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "First order reaction = 0.693 / K\n",
+ "Time taken for half the initial concentration to react 19.8 minutes\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page no: 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "t05 = 40 # minutes\n",
+ "\n",
+ "# Solution\n",
+ "print \"Rate constant = 0.693 / t05\"\n",
+ "K = 0.693 / t05\n",
+ "print \"Rate constant\", \"{:.4f}\".format(K), \"/ min\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate constant = 0.693 / t05\n",
+ "Rate constant 0.0173 / min\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page no: 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Variables\n",
+ "t0 = 37.0 # cm^3 of KMnO4\n",
+ "t5 = 29.8 # cm^3 of KMnO4\n",
+ "t15 = 19.6 # cm^3 of KMnO4\n",
+ "t25 = 12.3 # cm^3 of KMnO4\n",
+ "t45 = 5.00 # cm^3 of KMnO4\n",
+ "\n",
+ "# Solution\n",
+ "K5 = 2.303 / 5 * log10(t0 / t5)\n",
+ "K15 = 2.303 / 15 * log10(t0 / t15)\n",
+ "K25 = 2.303 / 25 * log10(t0 / t25)\n",
+ "K45 = 2.303 / 45 * log10(t0 / t45)\n",
+ "\n",
+ "print \"At t = 5 min, K =\", \"{:.3e}\".format(K5), \"/min\"\n",
+ "print \"At t = 15 min, K =\", \"{:.3e}\".format(K15), \"/min\"\n",
+ "print \"At t = 25 min, K =\", \"{:.3e}\".format(K25), \"/min\"\n",
+ "print \"At t = 45 min, K =\", \"{:.3e}\".format(K45), \"/min\"\n",
+ "print \"As the different values of K are nearly same, so the reaction\",\n",
+ "print \"is of first-order\"\n",
+ "K = (K45 + K25 + K5 + K15) / 4\n",
+ "print \"The average value of K = \", \"{:.3e}\".format(K), \"/min\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "At t = 5 min, K = 4.329e-02 /min\n",
+ "At t = 15 min, K = 4.237e-02 /min\n",
+ "At t = 25 min, K = 4.406e-02 /min\n",
+ "At t = 45 min, K = 4.449e-02 /min\n",
+ "As the different values of K are nearly same, so the reaction is of first-order\n",
+ "The average value of K = 4.355e-02 /min\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem : 4, Page no: 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "t = 60 # min\n",
+ "x = \"0.5a\"\n",
+ "K = 5.2 * 10 ** - 3 # / mol L / min\n",
+ "\n",
+ "# Solution\n",
+ "a = 1 / (t * K)\n",
+ "print \"Initial concentration\", \"{:.3f}\".format(a), \"mol / L\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Initial concentration 3.205 mol / L\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page no: 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Solution\n",
+ "print \"99.9 % / 50 % =\",\n",
+ "times = round((2.303 * log10(100 / (100 - 99.9))) / (2.303 * log10(100 / (100 - 50))))\n",
+ "print times\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "99.9 % / 50 % = 10.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page no: 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Constants\n",
+ "R = 1.987 # cal / K / mol\n",
+ "\n",
+ "# Variables\n",
+ "T1 = 273.0 # K\n",
+ "T2 = 303.0 # K\n",
+ "K1 = 2.45 * 10 ** -5\n",
+ "K2 = 162 * 10 ** -5\n",
+ "\n",
+ "# Solution\n",
+ "Ea = log10(K2 / K1) * R * 2.303 / ((T2 - T1) / (T1 * T2))\n",
+ "print \"The activation energy of the reaction is\", int(Ea), \"cal / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The activation energy of the reaction is 22968 cal / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page no: 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "t05 = 30 # minutes\n",
+ "a = 0.1 # M\n",
+ "\n",
+ "# Solution\n",
+ "print \"For second order reaction,\"\n",
+ "print \"t0.5 = 1 / Ka\"\n",
+ "K = 1 / (a * t05)\n",
+ "print \"The rate constant is\", \"{:.3f}\".format(K), \"mol / lit / min\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For second order reaction,\n",
+ "t0.5 = 1 / Ka\n",
+ "The rate constant is 0.333 mol / lit / min\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page no: 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "# Variables\n",
+ "T = 500 # C\n",
+ "Pi = 350 # torr\n",
+ "r1 = 1.07 # torr / s\n",
+ "r2 = 0.76 # torr / s\n",
+ "\n",
+ "# Solution\n",
+ "print \"1.07 = k(0.95a)^n\"\n",
+ "print \"0.76 = k(0.80a)^n\"\n",
+ "n = log(r1 / r2) / log(0.95 / 0.80)\n",
+ "print \"Hence, order of reaction is\", round(n)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.07 = k(0.95a)^n\n",
+ "0.76 = k(0.80a)^n\n",
+ "Hence, order of reaction is 2.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page no: 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"Applying steady state approximation to the concentration of NOCl2,\",\n",
+ "print \"we get\"\n",
+ "print \"d[NOCl2] / dt = 0 = k1 [NO] [Cl2] - k-1 [NOCl2] - k2 [NO] [NOCl2]\"\n",
+ "print \"[NOCl2] = k1 [NO] [Cl2] / (k-1 + k2 [NO])\"\n",
+ "print \"Now, the overall rate of reaction,\"\n",
+ "print \"d[NOCl2] / dt = k2 [NO] [NOCl2]\"\n",
+ "print \"From the above equations we get,\"\n",
+ "print \"(k1 k2 / k-1) * [NO]^2 * [Cl2], if k2[NO] << k-1\"\n",
+ "print \"k [NO]^2[Cl2], where k = k1 * k2 / k-1\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Applying steady state approximation to the concentration of NOCl2, we get\n",
+ "d[NOCl2] / dt = 0 = k1 [NO] [Cl2] - k-1 [NOCl2] - k2 [NO] [NOCl2]\n",
+ "[NOCl2] = k1 [NO] [Cl2] / (k-1 + k2 [NO])\n",
+ "Now, the overall rate of reaction,\n",
+ "d[NOCl2] / dt = k2 [NO] [NOCl2]\n",
+ "From the above equations we get,\n",
+ "(k1 k2 / k-1) * [NO]^2 * [Cl2], if k2[NO] << k-1\n",
+ "k [NO]^2[Cl2], where k = k1 * k2 / k-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page no: 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Constant\n",
+ "R = 1.987 # cal / K / mol\n",
+ "\n",
+ "# Variables\n",
+ "K2_K1 = 4 # factor increase\n",
+ "T1 = 27 # C\n",
+ "T2 = 47 # C\n",
+ "\n",
+ "# Solution\n",
+ "T1 += 273.0\n",
+ "T2 += 273.0\n",
+ "Ea = log10(4) * 2.303 * R * (T1 * T2 / (T2 - T1))\n",
+ "print \"The activation energy for the reaction is\", \"{:.2e}\".format(Ea),\n",
+ "print \"cal /mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The activation energy for the reaction is 1.32e+04 cal /mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 11, Page no: 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Variables\n",
+ "a = 1 # mole\n",
+ "x = 3 / 4.0 # reaction completed\n",
+ "\n",
+ "# Solution\n",
+ "K = (2.303 / 6) * log10(1 / (1 - x))\n",
+ "print \"The rate constant is\", \"{:.3f}\".format(K), \"/min\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rate constant is 0.231 /min\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 12, Page no: 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Solution\n",
+ "print \"Let the initial concentration be 100, when x = 25\",\n",
+ "print \" t = 30 minutes\"\n",
+ "a = 100\n",
+ "x = 25.0\n",
+ "t = 30 # minutes\n",
+ "K = 2.303 / t * log10(a / (a - x))\n",
+ "t05 = 0.683 / K\n",
+ "t = 2.303 / K * log10(a / x)\n",
+ "print \"K =\", \"{:.2e}\".format(K), \"/ min\"\n",
+ "print \"T0.5 =\", \"{:.2f}\".format(t05), \"min\"\n",
+ "print \"t =\", \"{:.1f}\".format(t), \"min\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Let the initial concentration be 100, when x = 25 t = 30 minutes\n",
+ "K = 9.59e-03 / min\n",
+ "T0.5 = 71.21 min\n",
+ "t = 144.6 min\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_2.ipynb
new file mode 100644
index 00000000..b15856da
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_6_Electrochemistry_2.ipynb
@@ -0,0 +1,620 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Electrochemistry"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 1, Page no: 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Variables\n",
+ "T = 25 # C\n",
+ "E = 0.296 # V\n",
+ "Cu = 0.015 # M\n",
+ "\n",
+ "# Solution\n",
+ "Eo = E - 0.0296 * log10(Cu)\n",
+ "print \"The standard electrode potential is\", \"{:.3f}\".format(Eo), \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The standard electrode potential is 0.350 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 2, Page no: 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Variables\n",
+ "T = 25 # C\n",
+ "Cu = 0.1 # M\n",
+ "Zn = 0.001 # M\n",
+ "Eo = 1.1\n",
+ "\n",
+ "# Solution\n",
+ "E = Eo + 0.0296 * log10(Cu / Zn)\n",
+ "print \"The emf of Daniell cell is\", \"{:.4f}\".format(E), \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The emf of Daniell cell is 1.1592 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 3, Page no: 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Constant\n",
+ "R = 8.314 # J / K\n",
+ "F = 96500 # C / mol\n",
+ "\n",
+ "# Variables\n",
+ "Cu = 0.15 # M\n",
+ "Eo = 0.34 # V\n",
+ "T = 298 # K\n",
+ "n = 2 # moles\n",
+ "\n",
+ "# Solution\n",
+ "E = Eo + (2.303 * R * T) / (n * F) * log10(Cu)\n",
+ "print \"The single electrode potential for copper metal is\", \"{:.4f}\".format(E),\n",
+ "print \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The single electrode potential for copper metal is 0.3156 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 4, Page no: 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variable\n",
+ "Eo_Cu = 0.3370 # Cu+2 -> Cu\n",
+ "Eo_Zn = - 0.7630 # Zn -> Zn +2\n",
+ "\n",
+ "# Solution\n",
+ "Eo_cell = Eo_Cu - Eo_Zn\n",
+ "print \"Daniel cell is, Zn | Zn +2 || Cu+2 | Cu\"\n",
+ "print \"Eo (cell) is\", Eo_cell, \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Daniel cell is, Zn | Zn +2 || Cu+2 | Cu\n",
+ "Eo (cell) is 1.1 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 5, Page no: 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variable\n",
+ "Eo_Cu = 0.3370 # Cu+2 -> Cu\n",
+ "Eo_Cd = - 0.4003 # Cd -> Cd +2\n",
+ "\n",
+ "# Solution\n",
+ "Eo_cell = Eo_Cu - Eo_Cd\n",
+ "print \"Cell is, Cd | Cd +2 || Cu+2 | Cu\"\n",
+ "print \"Eo (cell) is\", Eo_cell, \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cell is, Cd | Cd +2 || Cu+2 | Cu\n",
+ "Eo (cell) is 0.7373 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 6, Page no: 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "F = 96500 # C / mol\n",
+ "\n",
+ "# Variables\n",
+ "n = 2\n",
+ "T = 25 # C\n",
+ "Eo_Ag = 0.80 # Ag+ / Ag\n",
+ "Eo_Ni = - 0.24 # Ni+2 / Ni\n",
+ "\n",
+ "# Solution\n",
+ "Eo_Cell = Eo_Ag - Eo_Ni\n",
+ "print \"Standard free energy change,\"\n",
+ "delta_Go = - n * F * Eo_Cell\n",
+ "print delta_Go, \"J / mol\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Standard free energy change,\n",
+ "-200720.0 J / mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 7, Page no: 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"-------------------------\"\n",
+ "print \"Reduction half reaction:\",\n",
+ "print \"2Fe+3 + 2e- --> 2Fe+2\"\n",
+ "print \"Oxidation half reaction:\",\n",
+ "print \"Fe - 2e- --> Fe+2\"\n",
+ "print \"Overall cell reaction :\",\n",
+ "print \"2Fe+3 + Fe --> 3Fe+2\"\n",
+ "\n",
+ "print \"-------------------------\"\n",
+ "print \"Reduction half reaction:\",\n",
+ "print \"Hg+2 + 2e- --> Hg\"\n",
+ "print \"Oxidation half reaction:\",\n",
+ "print \"Zn - 2e- --> Zn+2\"\n",
+ "print \"Overall cell reaction :\",\n",
+ "print \"Hg+2 + Zn --> Hg + Zn+2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "-------------------------\n",
+ "Reduction half reaction: 2Fe+3 + 2e- --> 2Fe+2\n",
+ "Oxidation half reaction: Fe - 2e- --> Fe+2\n",
+ "Overall cell reaction : 2Fe+3 + Fe --> 3Fe+2\n",
+ "-------------------------\n",
+ "Reduction half reaction: Hg+2 + 2e- --> Hg\n",
+ "Oxidation half reaction: Zn - 2e- --> Zn+2\n",
+ "Overall cell reaction : Hg+2 + Zn --> Hg + Zn+2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 8, Page no: 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "F = 96500 # C / mol\n",
+ "\n",
+ "# Variables\n",
+ "E1o = - 2.48 # V\n",
+ "E2o = 1.61 # V\n",
+ "\n",
+ "# Solution\n",
+ "delta_G1 = - 3 * F * (- 2.48)\n",
+ "delta_G2 = - 1 * F * 1.61\n",
+ "print \"delta_G3 = delta_G1 + delta_G2\"\n",
+ "print \"delta_G3 = - 4 * F * E3o\"\n",
+ "E3o = (delta_G1 + delta_G2) / (- 4 * F)\n",
+ "print \"The reduction potential for the half-cell Pt/Ce, Ce+4\",\n",
+ "print \"is\", \"{:.4f}\".format(E3o), \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "delta_G3 = delta_G1 + delta_G2\n",
+ "delta_G3 = - 4 * F * E3o\n",
+ "The reduction potential for the half-cell Pt/Ce, Ce+4 is -1.4575 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 9, Page no: 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"Anodic half reaction :\",\n",
+ "print \" Cd --> Cd+2 + 2e-\"\n",
+ "print \"Cathodic half reaction :\",\n",
+ "print \"2H+ + 2e- --> H2\"\n",
+ "print \"-\" * 50\n",
+ "print \"Overall cell reaction :\",\n",
+ "print \"Cd + 2H+ <--> Cd+2 + H2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Anodic half reaction : Cd --> Cd+2 + 2e-\n",
+ "Cathodic half reaction : 2H+ + 2e- --> H2\n",
+ "--------------------------------------------------\n",
+ "Overall cell reaction : Cd + 2H+ <--> Cd+2 + H2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 10, Page no: 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Variables\n",
+ "T = 25 # C\n",
+ "Cu = 0.1 # M\n",
+ "Zn = 0.001 # M\n",
+ "Eo = 1.1 # V\n",
+ "\n",
+ "# Solution\n",
+ "print \"Zn(s) | Zn+2 (0.001M) || Cu+2(0.1M) | Cu(s)\"\n",
+ "Ecell = Eo + 0.0592 / 2 * log10(Cu / Zn)\n",
+ "print \"The emf of a Daniell cell is\", \"{:.4f}\".format(Ecell), \"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Zn(s) | Zn+2 (0.001M) || Cu+2(0.1M) | Cu(s)\n",
+ "The emf of a Daniell cell is 1.1592 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 11, Page no: 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "# Variables\n",
+ "pH = 7 # O2\n",
+ "Eo = 1.229 # V\n",
+ "pO2 = 0.20 # bar\n",
+ "\n",
+ "# Solution\n",
+ "print \"Nearnst's equation at 25C is,\"\n",
+ "print \"E = Eo - (0.0592 / 2) * log(1 / ([H+]^2 * [pO2]^ (1/2)))\"\n",
+ "E = Eo - (0.0592 / 2) * log10(1.0 / (((10 ** (- 7)) ** 2) * (pO2 ** (1 / 2.0))))\n",
+ "print \"The reduction potential for the reduction is\",\n",
+ "print \"{:.3f}\".format(E), \"V\"\n",
+ "# descrepency due to calculation error in the book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nearnst's equation at 25C is,\n",
+ "E = Eo - (0.0592 / 2) * log(1 / ([H+]^2 * [pO2]^ (1/2)))\n",
+ "The reduction potential for the reduction is 0.804 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 12, Page no: 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "E_KCl = 0.2415 # V\n",
+ "E_cell = 0.445 # V\n",
+ "\n",
+ "\n",
+ "# Solution\n",
+ "print \"Emf of the cell is\"\n",
+ "print \"At 25C,\"\n",
+ "print \"E = Er - El = Eref - ((RT)/ F) * ln H+\"\n",
+ "pH = (E_cell - E_KCl) / 0.059\n",
+ "\n",
+ "Eo_cell = - 0.8277 # V\n",
+ "print \"Thus, equilibrium constant for the reaction\"\n",
+ "print \"\\t 2H2O --> H3O+ + OH- may be calculated as\"\n",
+ "K = 10 ** (Eo_cell / 0.0591)\n",
+ "print \"K =\", \"{:.0e}\".format(K)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Emf of the cell is\n",
+ "At 25C,\n",
+ "E = Er - El = Eref - ((RT)/ F) * ln H+\n",
+ "Thus, equilibrium constant for the reaction\n",
+ "\t 2H2O --> H3O+ + OH- may be calculated as\n",
+ "K = 1e-14\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 13, Page no: 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "EoSn = 0.15 # V\n",
+ "EoCr = - 0.74 # V\n",
+ "\n",
+ "# Solution\n",
+ "print \"3Sn+4 + 2Cr --> 3Sn+2 + 2Cr+3\"\n",
+ "Eo_cell = EoSn - EoCr\n",
+ "n = 6\n",
+ "K = 10 ** (n * Eo_cell / 0.0591)\n",
+ "print \"The equillibrium constant for th reaction is\", \"{:.2e}\".format(K)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "3Sn+4 + 2Cr --> 3Sn+2 + 2Cr+3\n",
+ "The equillibrium constant for th reaction is 2.27e+90\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 14, Page no: 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "T = 25 # C\n",
+ "Eo = - 0.8277 # V\n",
+ "\n",
+ "# Solution\n",
+ "print \"The reversible reaction,\"\n",
+ "print \"2H2O <--> H3O+ + OH-\"\n",
+ "print \"May be divided into two parts.\"\n",
+ "print \"2H2O + e- --> 1/2 H2 + OH- (cathode) Eo = -0.8277 V\"\n",
+ "print \"H2O + 1/2 H2 --> H3O+ + e- (anode) Eo = 0\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The reversible reaction,\n",
+ "2H2O <--> H3O+ + OH-\n",
+ "May be divided into two parts.\n",
+ "2H2O + e- --> 1/2 H2 + OH- (cathode) Eo = -0.8277 V\n",
+ "H2O + 1/2 H2 --> H3O+ + e- (anode) Eo = 0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem: 15, Page no: 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "E = 0.4 # V\n",
+ "\n",
+ "# Solution\n",
+ "print \"The cell is Pt(H2) | H+, pH2 = 1 atm\"\n",
+ "print \"The cell reaction is\"\n",
+ "print \"1/2 H2 --> H+ + e-\"\n",
+ "pH = E / 0.0591\n",
+ "print \"pH =\", \"{:.3f}\".format(pH)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The cell is Pt(H2) | H+, pH2 = 1 atm\n",
+ "The cell reaction is\n",
+ "1/2 H2 --> H+ + e-\n",
+ "pH = 6.768\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_2.ipynb b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_2.ipynb
new file mode 100644
index 00000000..229b5da3
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/Chapter_7_Solid_State_2.ipynb
@@ -0,0 +1,431 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Solid State"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 1, Page no: 209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"Weiss indices \\t\\t\\t1/2, 2/3, infinity \\t2/3, 2, 1/3\"\n",
+ "print \"Reciprocal of Weiss indices 2, 3/2, 1/infinity \\t3/2, 1/2, 3\"\n",
+ "print \"Clear fractions\\t\\t\\t4, 3, 0 \\t3, 1, 6\"\n",
+ "print \"Miller indices \\t\\t\\t (430) \\t (316)\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Weiss indices \t\t\t1/2, 2/3, infinity \t2/3, 2, 1/3\n",
+ "Reciprocal of Weiss indices 2, 3/2, 1/infinity \t3/2, 1/2, 3\n",
+ "Clear fractions\t\t\t4, 3, 0 \t3, 1, 6\n",
+ "Miller indices \t\t\t (430) \t (316)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 2, Page no: 209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "\n",
+ "# Variable\n",
+ "a = 450 # pm\n",
+ "\n",
+ "# Solution\n",
+ "d220 = a / sqrt(2 ** 2 + 2 ** 2 + 0)\n",
+ "print \"Interplanar spacing\", int(d220)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Interplanar spacing 159\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 3, Page no: 209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"Intercept \\t(a, b ,c)\\t\\t(a, 2b, c) \\t\\t(a, 2b, 2c) \\t\\t(infi, b, -c)\"\n",
+ "print \"Weiss indices\\t 1, 1, 1 \\t\\t 1, 2, 1 \\t\\t 1, 2, 2 \\t\\t infi, 1, -1\"\n",
+ "print \"Reciprocals \\t 1, 1, 1 \\t\\t 1, 1/2, 1 \\t\\t 1, 1/2, 1/2\\t\\t 0, 1, -1\"\n",
+ "print \"Miller indicec\\t (111) \\t\\t (212) \\t\\t (211) \\t\\t (011)\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Intercept \t(a, b ,c)\t\t(a, 2b, c) \t\t(a, 2b, 2c) \t\t(infi, b, -c)\n",
+ "Weiss indices\t 1, 1, 1 \t\t 1, 2, 1 \t\t 1, 2, 2 \t\t infi, 1, -1\n",
+ "Reciprocals \t 1, 1, 1 \t\t 1, 1/2, 1 \t\t 1, 1/2, 1/2\t\t 0, 1, -1\n",
+ "Miller indicec\t (111) \t\t (212) \t\t (211) \t\t (011)\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 4, Page no: 209"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "rNa = 0.98 * 10 ** - 10 # m\n",
+ "rCl = 1.81 * 10 ** - 10 # m\n",
+ "\n",
+ "# Solution\n",
+ "rr = rNa / rCl\n",
+ "print \"When the radius ration is\", \"{:.2f}\".format(rr),\n",
+ "print \", the coordination number is 6.\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "When the radius ration is 0.54 , the coordination number is 6.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 5, Page no: 210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "rLi = 68 # pm\n",
+ "rF = 136. # pm\n",
+ "\n",
+ "# Solution\n",
+ "rr = rLi / rF\n",
+ "print \"Radius ratio =\", rr\n",
+ "print \"The structure of LiF is scc and C.N of Li+ = 6\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius ratio = 0.5\n",
+ "The structure of LiF is scc and C.N of Li+ = 6\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 6, Page no: 210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sin\n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "lamda = 2 * 10 ** - 10 # m\n",
+ "theta = 30 # degrees\n",
+ "\n",
+ "# Solution\n",
+ "print \"For first-order reflection\"\n",
+ "d = lamda / (2 * sin(theta))\n",
+ "dist = 2 * d\n",
+ "print \"Hence, distance between planes is\", \"{:.0e}\".format(abs(dist)), \"m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For first-order reflection\n",
+ "Hence, distance between planes is 2e-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 7, Page no: 210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "r = 174.6 # pm\n",
+ "\n",
+ "# Solution\n",
+ "a = r * sqrt(8)\n",
+ "print \"For 200 plane: h = 2, k = 0, l = 0\"\n",
+ "d200 = a / sqrt(2 ** 2)\n",
+ "print \"d200 =\", \"{:.1f}\".format(d200), \"pm\"\n",
+ "print \"For 200 plane: h = 2, k = 2, l = 0\"\n",
+ "d220 = a / sqrt(2 ** 2 + 2 ** 2)\n",
+ "print \"d220 =\", d220, \"pm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For 200 plane: h = 2, k = 0, l = 0\n",
+ "d200 = 246.9 pm\n",
+ "For 200 plane: h = 2, k = 2, l = 0\n",
+ "d220 = 174.6 pm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 8, Page no: 210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "N = 6.023 * 10 ** 23\n",
+ "\n",
+ "# Variables\n",
+ "wt = 55.6\n",
+ "p = 0.29 # nm\n",
+ "n = 2\n",
+ "\n",
+ "# Solution\n",
+ "print \"For BCC pattern,\"\n",
+ "print \"number of atoms per unit cell = 2\"\n",
+ "d = n * (wt * 10 ** -3) / (N * (p * 10 ** - 9) ** 3)\n",
+ "print \"Density of the metal is\", \"{:.2e}\".format(d), \"kg / m^3\"\n",
+ "print \"Number of nearest enighbour for BCC = 8\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For BCC pattern,\n",
+ "number of atoms per unit cell = 2\n",
+ "Density of the metal is 7.57e+03 kg / m^3\n",
+ "Number of nearest enighbour for BCC = 8\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 9, Page no: 210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Solution\n",
+ "print \"Intercept \\t2a/2, 2b, c/3\"\n",
+ "print \"Weiss indices\\t1, 2, 1/3\"\n",
+ "print \"Reciprocals \\t1, 1/2, 3\"\n",
+ "print \"Miller indices\\t (216)\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Intercept \t2a/2, 2b, c/3\n",
+ "Weiss indices\t1, 2, 1/3\n",
+ "Reciprocals \t1, 1/2, 3\n",
+ "Miller indices\t (216)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 10, Page no: 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Constant\n",
+ "N = 6.023 * 10 ** 23\n",
+ "\n",
+ "# Variables\n",
+ "D = 0.53 # g / cm ^ 3\n",
+ "MM = 6.94 # g / mol\n",
+ "n = 2\n",
+ "\n",
+ "# Solution\n",
+ "print \"For BCC pattern,\"\n",
+ "print \"number of atoms per unit cell = 2\"\n",
+ "V = D * N / (n * MM)\n",
+ "V = 1 / V\n",
+ "print \"Volume of a unit cell of lithium metal is\", \"{:.2e}\".format(V), \"cc\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For BCC pattern,\n",
+ "number of atoms per unit cell = 2\n",
+ "Volume of a unit cell of lithium metal is 4.35e-23 cc\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 11, Page no: 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "\n",
+ "print \"AB remain in BCC structure if the edge length is a then body diagonal\",\n",
+ "print \"is root(3)a\"\n",
+ "print \"root(3)a = 2(r+ + r-)\"\n",
+ "A = (sqrt(3) * 0.4123 - 2 * 0.81) / 2\n",
+ "print \"A+ =\", \"{:.2f}\".format(A), \"nm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "AB remain in BCC structure if the edge length is a then body diagonal is root(3)a\n",
+ "root(3)a = 2(r+ + r-)\n",
+ "A+ = -0.45 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:17:52.png b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:17:52.png
new file mode 100644
index 00000000..bbcb5bc1
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:17:52.png
Binary files differ
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:22:12.png b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:22:12.png
new file mode 100644
index 00000000..2f3025b1
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:22:12.png
Binary files differ
diff --git a/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:24:08.png b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:24:08.png
new file mode 100644
index 00000000..2f8aeb6b
--- /dev/null
+++ b/Advanced_Engineering_Chemistry__by_Dr._M.R._Senapati/screenshots/Screenshot_from_2016-03-05_22:24:08.png
Binary files differ
diff --git a/sample_notebooks/Ashish Kumar/Ch13.ipynb b/sample_notebooks/Ashish Kumar/Ch13.ipynb
new file mode 100644
index 00000000..e7941a67
--- /dev/null
+++ b/sample_notebooks/Ashish Kumar/Ch13.ipynb
@@ -0,0 +1,351 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter13 - Cathode Ray Oscilloscope"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 578 example 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "power to electrons = 8.0 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "quanti=3*10**17#\n",
+ "voltag=10*10**3##volt\n",
+ "distan=40*10**-3##metre per minute\n",
+ "w=quanti*1.6*10**-19*voltag\n",
+ "w=w/60##per second\n",
+ "\n",
+ "print \"power to electrons = \",round((w),2),\"watts\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 578 example 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "input voltage = 9.55 volt\n",
+ "frequency = 4761.9 hertz\n",
+ "vm1coswt vm2sinwt squaring and adding gives ellipse\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "sensit=5## per centimetre\n",
+ "q=50*10**-6##second per centimetre\n",
+ "petope=5.4##centimetre\n",
+ "horiax=8.4##centimetre\n",
+ "voltag=petope*sensit#\n",
+ "voltag=voltag/((2)*sqrt(2))#\n",
+ "#one cycle\n",
+ "horiax=(horiax/2)*q#\n",
+ "freque=1/horiax#\n",
+ "print \"input voltage = \",round((voltag),2),\"volt\"\n",
+ "print \"frequency = \",round((freque),2),\"hertz\"\n",
+ "\n",
+ "\n",
+ "print \"vm1coswt vm2sinwt squaring and adding gives ellipse\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 579 example 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity x = 1.874e+07 metre per second\n",
+ "velocity x = 3.10e+05 metre per second\n"
+ ]
+ }
+ ],
+ "source": [
+ "voltag=1000##volt\n",
+ "#(1) velocity\n",
+ "vx=sqrt(2*1.6*10**-19*(voltag)/(9.11*10**-31))#\n",
+ "print \"velocity x = %0.3e\"%vx,\"metre per second\"\n",
+ "vox=1*10**5##metre per second intial velocity\n",
+ "vx=sqrt((vox)+((2*1.6*10**-19*voltag)/(2.01*1.66*10**-27)))#\n",
+ "\n",
+ "print \"velocity x = %0.2e\"%vx,\"metre per second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 580 example 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transverse magnetic field = 3.87e-04 weber per metre square\n"
+ ]
+ }
+ ],
+ "source": [
+ "voltag=2000##volt\n",
+ "d=15##centimetre\n",
+ "d1=3##centimetre\n",
+ "r1=((d**2+d1**2)/(6))*10**-2##centimetre to metre\n",
+ "vox=sqrt(2*1.6*10**-19*(voltag)/(9.11*10**-31))#\n",
+ "b=vox/((1.6*10**-19*r1)/(9.11*10**-31))#\n",
+ "\n",
+ "print \"transverse magnetic field = %0.2e\"%b,\"weber per metre square\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 581 example 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max frequency = 6.63e+08 hertz\n",
+ "duration electron between the plates = 4.53e-08 second\n"
+ ]
+ }
+ ],
+ "source": [
+ "voltag=2000##volt\n",
+ "d=2*10**-2##metre\n",
+ "#(1) frequency\n",
+ "vx=sqrt(2*1.6*10**-19*(voltag)/(9.11*10**-31))#\n",
+ "durati=d/vx#\n",
+ "freque=1/(2*durati)#\n",
+ "print \"max frequency = %0.2e\"%freque,\"hertz\"\n",
+ "#(2)\n",
+ "durati=60*durati#\n",
+ "print \"duration electron between the plates = %0.2e\"%durati,\"second\"#correction in book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 582 example 7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max velocity = 1.68e+07 metre per second\n"
+ ]
+ }
+ ],
+ "source": [
+ "voltag=800##volt\n",
+ "\n",
+ "\n",
+ "q=1.6*10**-19##coulomb\n",
+ "m=9.11*10**-31##kilogram\n",
+ "vox=sqrt(2*q*voltag/m)#\n",
+ "\n",
+ "print \"max velocity = %0.2e\"%vox,\"metre per second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 582 example 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity = 2.65e+07 metre per second\n",
+ "sensitivity = 3.75e-04 metre per volt\n",
+ "deflection factor = 2666.67 volt per metre\n"
+ ]
+ }
+ ],
+ "source": [
+ "voltag=2000##volt\n",
+ "d=1.5*10**-2##centimetre\n",
+ "d1=5*10**-3##metre\n",
+ "distan=50*10**-2##metre\n",
+ "#(1) velocity\n",
+ "vox=sqrt(2*1.6*10**-19*(voltag)/(9.11*10**-31))#\n",
+ "#(2) sensitivity\n",
+ "defsen=distan*d/(2*d1*voltag)#\n",
+ "#deflection factor\n",
+ "g=1/defsen#\n",
+ "print \"velocity = %0.2e\"%vox,\"metre per second\"\n",
+ "print \"sensitivity = %0.2e\"%defsen,\"metre per volt\"\n",
+ "\n",
+ "print \"deflection factor = \",round((g),2),\"volt per metre\"#correction in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 582 example 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity = 2.65e+07 metre per second\n",
+ "fc = 1.33e+08 hertz\n"
+ ]
+ }
+ ],
+ "source": [
+ "voltag=2000##volt\n",
+ "d=50*10**-3##metre\n",
+ "#(1) velocity\n",
+ "vox=sqrt(2*1.6*10**-19*(voltag)/(9.11*10**-31))#\n",
+ "print \"velocity = %0.2e\"%vox,\"metre per second\"\n",
+ "#(2) fc\n",
+ "fc=vox/(4*d)#\n",
+ "\n",
+ "print \"fc = %0.2e\"%fc,\"hertz\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Page No : 582 example 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "phase angle = 30.0 degre\n"
+ ]
+ }
+ ],
+ "source": [
+ "y=2.5##divisions\n",
+ "y1=1.25##divisions\n",
+ "y=y1/y#\n",
+ "from math import asin, degrees\n",
+ "w=degrees(asin(y))\n",
+ "\n",
+ "print \"phase angle = \",round((w),2),\"degre\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/Babita./Ch5.ipynb b/sample_notebooks/Babita./Ch5.ipynb
new file mode 100644
index 00000000..9df5e9fa
--- /dev/null
+++ b/sample_notebooks/Babita./Ch5.ipynb
@@ -0,0 +1,290 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Ch-5 Combustion Mechanism, Combustion Equipment And Firing Methods"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 5.1 Page 308"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The total surface area of the particles in the bed As = 8423 m**2 \n"
+ ]
+ }
+ ],
+ "source": [
+ "#Input data\n",
+ "Vs=2500##The mass of a bed of solid particles in kg\n",
+ "p=2650##The density of the solid in kg/m**3\n",
+ "d=800*10**-6##The mean particle size in m\n",
+ "s=0.84##The sphericity of the particle\n",
+ "\n",
+ "#Calculations\n",
+ "As=(6*Vs)/(p*d*s)##The total surface area of the particles in the bed\n",
+ "\n",
+ "#Output\n",
+ "print \" The total surface area of the particles in the bed As = %3.0f m**2 \"%(As)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 5.2 Page 309"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " (a) The voidage of the bed = 0.417 \n",
+ " (b) The minimum fluidization velocity Umf = 0.187 m/s \n"
+ ]
+ }
+ ],
+ "source": [
+ "#Input data\n",
+ "d=427*10**-6##The mean particle size in m\n",
+ "pg=1.21##The density of air in kg/m**3\n",
+ "v=1.82*10**-5##The viscosity of air in kg/ms\n",
+ "pl=1620##The density of the loosely packed bed in kg/m**3\n",
+ "ps=2780##The density of the solids in kg/m**3\n",
+ "c1=27.2##(Grace,1982)constant value.\n",
+ "c2=0.0408##(Grace,1982)constant value\n",
+ "g=9.812##Gravitational forc constant in m/s**2\n",
+ "\n",
+ "#Calculations\n",
+ "E=1-(pl/ps)##The voidage of the bed\n",
+ "Ar=((pg)*(ps-pg)*g*(d**3))/v**2##Archimedes number\n",
+ "Re=(c1**2+(c2*Ar))**(0.5)-c1##Reynolds number\n",
+ "Umf=Re*v/(pg*d)##Minimum superficial velocity in m/s\n",
+ "\n",
+ "#Output\n",
+ "print \" (a) The voidage of the bed = %3.3f \\n (b) The minimum fluidization velocity Umf = %3.3f m/s \"%(E,Umf)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 5.3 Page 309"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The sphericity of particles is = 0.811 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from scipy.optimize import fsolve\n",
+ "#Input data\n",
+ "d=427*10**-6##The mean particle size in m\n",
+ "pg=1.21##The density of air in kg/m**3\n",
+ "v=1.82*10**-5##The viscosity of air in kg/ms\n",
+ "Umf=0.14##Minimum superficial velocity in m/s\n",
+ "Ar=7753##Archimedes number from previous example problem\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "Re=(Umf*pg*d)/v##Reynolds number\n",
+ "def F(x):##function definition\n",
+ " f = 7753*x**2- 381.1*x -4793#\n",
+ " return f\n",
+ "x = 100##Initial guss\n",
+ "y = fsolve(F,x)#\n",
+ "\n",
+ "#Output\n",
+ "print \"The sphericity of particles is = %3.3f \"%(y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 5.4 Page 310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The required flow rate of limestone is 2405.3 kg/h \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#Input data\n",
+ "O=35##The output of the fluidized bed combustion system in MW\n",
+ "n=0.80##Efficiency of the fluidized bed combustion system \n",
+ "H=26##The heating value of coal in MJ/kg\n",
+ "S=3.6##Sulphur content in the coal in %\n",
+ "C=3##The calcium sulphur ratio \n",
+ "Ca=85##The amount of calcium carbonate in the limestone in %\n",
+ "CaCO3=100##The molecular weight of CaCO3\n",
+ "\n",
+ "#Calculations\n",
+ "Cb=O/(n*H)##Coal burning rate in kg/s\n",
+ "Cb1=Cb*3600##Coal burning rate in kg/h\n",
+ "Sf=(Cb1*(S/100))/32##Flow rate of sulphur in Kmol/h\n",
+ "Cf=Sf*C##The flow rate of calcium in Kmol/h\n",
+ "Caf=Cf*CaCO3##Mass flow rate of CaCO3 in kg/h\n",
+ "L=Caf/(Ca/100)##Mass flow rate of limestone in kg/h\n",
+ "\n",
+ "#Output\n",
+ "print \"The required flow rate of limestone is %3.1f kg/h \"%(L)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 5.5 Page 310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " (a) The rate of heat removal from the bed = 6405 kW \n",
+ " (b) The rate of heat removal from the above bed zone = 16333 kW \n"
+ ]
+ }
+ ],
+ "source": [
+ "#Input data\n",
+ "CV=24##The calorific value of the fuel in MJ/kg\n",
+ "C=0.65##The amount of calorific value released in the bed in %\n",
+ "to=850##Temperature at which products leave in degree centigrade\n",
+ "ti=30##The inlet temperature in degree centigrade\n",
+ "tb=850##The bed temperature in degree centigrade\n",
+ "A=14.5##The air fuel ratio by mass\n",
+ "Cp=1.035##The specific heat of the products leaving the bed surface in kJ/kgK\n",
+ "B=7000##The burning rate of coal in kg/h\n",
+ "\n",
+ "#Calculations\n",
+ "H=(C*CV*1000)-(A*Cp*(to-ti))##Heat removal from the bed per kg fuel in kJ/kg fuel\n",
+ "Hr=(H*B)/3600##Rate of heat removal from the bed in kW\n",
+ "Hb=(B/3600)*(1-C)*CV*1000##The rate of heat removal from the above bed zone in kW\n",
+ "\n",
+ "#Output\n",
+ "print \" (a) The rate of heat removal from the bed = %3.0f kW \\n (b) The rate of heat removal from the above bed zone = %3.0f kW \"%(Hr,Hb)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 5.6 Page 311"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " (a) The planform area = 2.4 m**2 \n",
+ " (b) Fuel burning rate = 0.192 kg/s \n",
+ " Air flow rate = 2.1888 kg/s \n",
+ " Planform area = 2.58 m**2 \n"
+ ]
+ }
+ ],
+ "source": [
+ "#Input data\n",
+ "tb=850##The bed temperature in degree centigrade\n",
+ "CV=25##The calorific value of the fuel in MJ/kg\n",
+ "A=9.5##The stoichiometric air fuel ratio by mass\n",
+ "E=20##The amount of excess air used in %\n",
+ "F=4.8##The total fueling rate in MW\n",
+ "p=0.3145##The density of air at bed temperature in kg/m**3\n",
+ "f=2##The firing rate in MW/m**2\n",
+ "v=2.7##The fluidizing velocity in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "P=F/f##Planform area in m**2\n",
+ "m=(F*1000)/(CV*1000)##Fuel burning rate in kg/s\n",
+ "ma=A*(1+(E/100))*m##Mass flow rate of air in kg/s\n",
+ "Pa=ma/(p*v)##Planform area in m**2\n",
+ "\n",
+ "#Output\n",
+ "print \" (a) The planform area = %3.1f m**2 \\n (b) Fuel burning rate = %3.3f kg/s \\n Air flow rate = %3.4f kg/s \\n Planform area = %3.2f m**2 \"%(P,m,ma,Pa)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/NareshKumar/Ch2.ipynb b/sample_notebooks/NareshKumar/Ch2.ipynb
new file mode 100644
index 00000000..c06aa566
--- /dev/null
+++ b/sample_notebooks/NareshKumar/Ch2.ipynb
@@ -0,0 +1,441 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 Switched communication systems"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2, page no 125"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum auxillary current is:10.00 mA\n",
+ "\n",
+ "MMF in the auxillary winding is:2.00AT \n",
+ "\n",
+ "MMF in main winding is:40.00 AT \n",
+ "\n",
+ "net MMF required in main winding is:44.00 AT \n",
+ "\n",
+ "operating current needed is:4.40 mA \n",
+ "\n",
+ "working voltage is:2.84 volts \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#given\n",
+ "Io=4*10**-3 #rqueired operating current\n",
+ "N1=10000 #no of turns in the main winding\n",
+ "R1=645 #resistence of the main winding in ohms\n",
+ "N2=200 #no of turns in auxillary winding\n",
+ "B=2 #spacing bias\n",
+ "Iaux=B/N2 #maximum auxillary current\n",
+ "print \"maximum auxillary current is:%0.2f mA\\n\"%(Iaux*1e3)\n",
+ "MMFaux=N2*Iaux #MMF in the auxillary winding\n",
+ "print \"MMF in the auxillary winding is:%0.2fAT \\n\"%(MMFaux)\n",
+ "MMFop=Io*N1 #operating MFF in main winding\n",
+ "print \"MMF in main winding is:%0.2f AT \\n\"%(MMFop)\n",
+ "MMFnet=MMFop+(0.1*MMFop) #net MMF required in main winding\n",
+ "print \"net MMF required in main winding is:%0.2f AT \\n\"%(MMFnet)\n",
+ "Iop=MMFnet/N1 #operating current needed\n",
+ "print \"operating current needed is:%0.2f mA \\n\"%(Iop*1e3)\n",
+ "V=Iop*R1 #working voltage in volts\n",
+ "print \"working voltage is:%0.2f volts \\n\"%(V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3,page no 125"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Busy hour calling rate is:1.20 \n",
+ "\n",
+ "Rate of traffic flow is 250.00 traffic unit \n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "C=6000#Tatol no of call in busy hour\n",
+ "SC=5000#no of subscribers\n",
+ "CR=C/SC#busy hour calling rate\n",
+ "print \"Busy hour calling rate is:%0.2f \\n\"%(CR)\n",
+ "T=2.5/60#avarage duration of calls in hours\n",
+ "\n",
+ "A=C*T#rate of traffic flow\n",
+ "print \"Rate of traffic flow is %0.2f traffic unit \"%(A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,page no 126"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maxixmum current is 33.33 mamps \n",
+ "\n",
+ "operate lag is 1.83 msec \n",
+ "\n",
+ "release lag is 2.85 msec \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "#given\n",
+ "L=3#relay inductance in henry\n",
+ "R=1500#relay resistance in ohm\n",
+ "Io=20e-3#oparating current in amps\n",
+ "Ir=8e-3#release current in amps\n",
+ "\n",
+ "V=50#supply volatage in volts\n",
+ "Im=V/R#maxixmum current in amps\n",
+ "print \"maxixmum current is %0.2f mamps \\n\"%(Im*1e3)\n",
+ "to=(L/R)*log(1/(1-(Io/Im)))#operate lag in sec\n",
+ "print \"operate lag is %0.2f msec \\n\"%(to*1000)\n",
+ "tr=(L/R)*log(Im/Ir)#release lag in sec\n",
+ "print \"release lag is %0.2f msec \\n\"%(tr*1000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4.1,page no 126"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)\n",
+ "periods per character is:150.00 msec\n",
+ "\n",
+ "period per element is:20.00 msec\n",
+ "\n",
+ "speed is:50.00 bauds\n",
+ "\n",
+ "\n",
+ "(b)\n",
+ "periods per character is:100.00 msec\n",
+ "\n",
+ "period per element is:13.33 msec\n",
+ "\n",
+ "speed is 75.00 bauds\n",
+ "\n",
+ "\n",
+ "(c)\n",
+ "periods per character is:100.00 msec\n",
+ "\n",
+ "period per element is:10.00 msec\n",
+ "\n",
+ "speed is 100.00 bauds\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "#a\n",
+ "C_S1=20/3#speed in characters per second\n",
+ "P_C1=1/C_S1#periods per character\n",
+ "print \"(a)\\nperiods per character is:%0.2f msec\\n\"%(P_C1*1e3)\n",
+ "E_C1=7.5#elements per character\n",
+ "P_E1=P_C1/E_C1#period per element\n",
+ "print \"period per element is:%0.2f msec\\n\"%(P_E1*1e3)\n",
+ "Sb1=1/P_E1#speed in bauds\n",
+ "print \"speed is:%0.2f bauds\\n\\n\"%(Sb1)\n",
+ "#b\n",
+ "C_S2=10#speed in characters per second\n",
+ "P_C2=1/C_S2#periods per character\n",
+ "print \"(b)\\nperiods per character is:%0.2f msec\\n\"%(P_C2*1e3)\n",
+ "E_C2=7.5#elements per character\n",
+ "P_E2=P_C2/E_C2#period per element\n",
+ "print \"period per element is:%0.2f msec\\n\"%(P_E2*1e3)\n",
+ "Sb2=1/P_E2#speed in bauds\n",
+ "print \"speed is %0.2f bauds\\n\\n\"%( Sb2)\n",
+ "#c\n",
+ "C_S3=10#speed in characters per second\n",
+ "P_C3=1/C_S3#periods per character\n",
+ "print \"(c)\\nperiods per character is:%0.2f msec\\n\"%(P_C3*1e3)\n",
+ "E_C3=10#elements per character\n",
+ "P_E3=P_C3/E_C3#period per element\n",
+ "print \"period per element is:%0.2f msec\\n\"%(P_E3*1e3)\n",
+ "Sb3=1/P_E3#speed in bauds\n",
+ "print \"speed is %0.2f bauds\\n\"%(Sb3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,page no 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total inductance is 0.05 H \n",
+ "\n",
+ "maximum current is 10.00 mA \n",
+ "\n",
+ "operating current is 5.00 mA \n",
+ "\n",
+ "operate lag is 0.35 msec \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "N=1000#no of turns\n",
+ "L1=5e-8#inductance per turn\n",
+ "L=N**2*L1#total inductance\n",
+ "print \"total inductance is %0.2f H \\n\"%(L)\n",
+ "R=100#resistance of winding in ohm\n",
+ "MMF=5#operating MMF in amp. turn\n",
+ "V=1#voltage of received signal in volts\n",
+ "Im=V/R#maximum current\n",
+ "print \"maximum current is %0.2f mA \\n\"%(Im*1e3)\n",
+ "Io=MMF/N#operating current\n",
+ "print \"operating current is %0.2f mA \\n\"%(Io*1e3)\n",
+ "to=(L/R)*log(1/(1-(Io/Im)))#operate lag\n",
+ "print \"operate lag is %0.2f msec \\n\"%(to*1e3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6,page no 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Busy hour calling rate is:1.60 \n",
+ "\n",
+ "Rate of traffic flow is 693.33 traffic unit \n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "S=10000#no of subscribers\n",
+ "C=16000#Tatol no of call in busy hour\n",
+ "CR=C/S#busy hour calling rate\n",
+ "print \"Busy hour calling rate is:%0.2f \\n\"%(CR)\n",
+ "T=2.6#avarage duration of calls in min\n",
+ "\n",
+ "A=C*(T/60)#rate of traffic flow\n",
+ "print \"Rate of traffic flow is %0.2f traffic unit \"%(A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7,page no 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "duration of each element is:10.00 msec\n",
+ "\n",
+ "speed is 100.00 bauds\n",
+ "\n",
+ "total possible combinations are:128.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "N=7#no of character elements\n",
+ "E_C=10#elements per character (1+7+1+1)\n",
+ "To=100e-3#duration of one character\n",
+ "Te=To/E_C#duration of each element\n",
+ "print \"duration of each element is:%0.2f msec\\n\"%(Te*1e3)\n",
+ "Sb=1/Te#speed in bauds\n",
+ "print \"speed is %0.2f bauds\\n\"%(Sb)\n",
+ "C=2**N#total possible combinations\n",
+ "print \"total possible combinations are:%0.2f\"%(C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8,page no 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total no of call in busy hour is:1500.00 calls per Hour\n",
+ "\n",
+ "Busy hour calling rate is:1.50 \n",
+ "\n",
+ "grade of service is: 0.02\n"
+ ]
+ }
+ ],
+ "source": [
+ "#given\n",
+ "S=1000#no of subscribers\n",
+ "T=2.4/60#avarage duration of calls in hours\n",
+ "A=60#rate of traffic flow\n",
+ "C=A/T#Tatol no of call in busy hour\n",
+ "print \"Total no of call in busy hour is:%0.2f calls per Hour\\n\"%(C)\n",
+ "CR=C/S#busy hour calling rate\n",
+ "print \"Busy hour calling rate is:%0.2f \\n\"%(CR)\n",
+ "SCL=30#no of call lost per hour\n",
+ "\n",
+ "B=SCL/(C+SCL)#grade of service\n",
+ "print \"grade of service is: %0.2f\"%(B)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9,page no 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "grade of service is: 2.00e-03\n",
+ "\n",
+ "traffic lost is: 1.80e-03\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import factorial\n",
+ "#given\n",
+ "N=5#no of switches\n",
+ "A=0.9#traffic offered \n",
+ "#grade of service B=(A**N/N!)/(1+A+A**2/2!+A**3/3!+...+A**N/N!)\n",
+ "#here\n",
+ "B=(A**N/factorial(N))/(1+A+(A**2/factorial(2))+(A**3/factorial(3))+(A**4/factorial(4))+(A**5/factorial(5)))\n",
+ "print \"grade of service is: %0.2e\\n\"%(B)\n",
+ "Tl=A*B#traffic lost\n",
+ "print \"traffic lost is: %0.2e\"%(Tl)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/Suhaib Alam/Ch14.ipynb b/sample_notebooks/Suhaib Alam/Ch14.ipynb
new file mode 100644
index 00000000..f4ee9c8b
--- /dev/null
+++ b/sample_notebooks/Suhaib Alam/Ch14.ipynb
@@ -0,0 +1,569 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter14 - Turbulent Flow in Pipe"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1 page no 148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.1 page no 148\n",
+ "\n",
+ "\n",
+ "\n",
+ " Reynolds no R_e = 9769.23 \n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example 14.1 page no 148\\n\\n\" # a liquid flow through a tube\n",
+ "meu=0.78e-2#viscosity of liquid,g/cm*s\n",
+ "rho=1.50#density,g/cm**3\n",
+ "D=2.54#diameter,cm\n",
+ "v=20#flow velocity\n",
+ "R_e=D*v*rho/meu#reynolds no\n",
+ "print \"\\n Reynolds no R_e = %.2f \"%(R_e)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2 page no 148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.2 page no 148\n",
+ "\n",
+ "\n",
+ "\n",
+ " velocity v = 0.28 ft/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example 14.2 page no 148\\n\\n\" # a fluid is moving through a cylinder in laminar flow\n",
+ "meu=6.9216e-4#viscosity of fluid,lb/ft*s\n",
+ "rho=62.4#density,lb/ft**3\n",
+ "D=1/12#diameter,ft\n",
+ "R_e=2100#reynolds no\n",
+ "v=R_e*meu/(D*rho)#minimum velocity at which turbulance will appear\n",
+ "print \"\\n velocity v = %.2f ft/s\"%(v)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3 page no 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.3 page no 152\n",
+ "\n",
+ "\n",
+ "\n",
+ " fanning friction factor f_a=0.01 \n",
+ "\n",
+ " friction factor f_b1=0.01 \n",
+ "\n",
+ " friction factor f_b2=0.01 \n",
+ "\n",
+ " friction factor f_c=0.01 \n",
+ "\n",
+ " friction factor f_d=0.01 \n",
+ "\n",
+ " friction factor f_e=0.01\n",
+ "\n",
+ " average friction f_av=0.01 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "print \"Example 14.3 page no 152\\n\\n\" # calculate the friction factor by using different equation's\n",
+ "R_e=14080#reynolds no\n",
+ "K_r=0.004#relative roughness (a) by PAT proposed equation\n",
+ "f_a=0.0015+(8*(R_e)**0.30)**-1\n",
+ "print \"\\n fanning friction factor f_a=%0.2f \"%(f_a)# equation for 5000<R_e>50000\n",
+ "f_b1=0.0786/(R_e)**0.25 \n",
+ "print \"\\n friction factor f_b1=%0.2f \"%(f_b1)# equation for 30000<R_e>1000000\n",
+ "f_b2=0.046/(R_e)**0.20\n",
+ "print \"\\n friction factor f_b2=%0.2f \"%(f_b2)# equation for the completely turbulent region \n",
+ "f_c=1/(4*(1.14-2*log10(K_r))**2)\n",
+ "print \"\\n friction factor f_c=%0.2f \"%(f_c)# equation given by jain \n",
+ "f_d=1/(2.28-4*log10(K_r+21.25/(R_e**.9)))**2\n",
+ "print \"\\n friction factor f_d=%0.2f \"%(f_d)#\n",
+ "f_e=0.0085 #from figur 14.2\n",
+ "print \"\\n friction factor f_e=%0.2f\"%(f_e)#\n",
+ "f_av=(f_a+f_b1+f_b2+f_c+f_d+f_e)/6\n",
+ "print \"\\n average friction f_av=%0.2f \"%(f_av)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4 page no 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.4 page no 154\n",
+ "\n",
+ "\n",
+ "\n",
+ " equivalent diameter D_eq_a=3.33 in\n",
+ "\n",
+ " equivalent diameter D_eq_b=18.00 cm\n",
+ "\n",
+ " equivalent diameter D_eq_c=10.00 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "print \"Example 14.4 page no 154\\n\\n\" # for turbulent fluid flow in across section (a) for a rectangle \n",
+ "w=2#width of a rectangle,in\n",
+ "h=10#height of rectangle,in\n",
+ "S_a=h*w#cross sectional area\n",
+ "P_a=2*h+2*w#perimeter of rectangle\n",
+ "D_eq_a=4*S_a/P_a#equivalent diameter\n",
+ "print \"\\n equivalent diameter D_eq_a=%0.2f in\"%(D_eq_a)# (b) for an annulus \n",
+ "d_o=10#outer diameter of annulus\n",
+ "d_i=8#inner diameter \n",
+ "S_b=pi*(d_o**2-d_i**2)/4#cross sectional area\n",
+ "P_b=pi*(d_o-d_i)#perimeter\n",
+ "D_eq_b=(4*S_b)/(P_b)#eq. diameter\n",
+ "print \"\\n equivalent diameter D_eq_b=%0.2f cm\"%(D_eq_b)# (c) for an half- full circle\n",
+ "d_c=10#diameter of circle \n",
+ "S_c=pi*d_c**2/8# cross sectional area\n",
+ "P_c=pi*d_c/2#perimeter\n",
+ "D_eq_c=4*S_c/P_c#eq. diameter\n",
+ "print \"\\n equivalent diameter D_eq_c=%0.2f cm\"%(D_eq_c)# "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exampkle 14.5 page no 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.5 page no 157\n",
+ "\n",
+ "\n",
+ "\n",
+ " pipe diameter D=0.29 ft\n",
+ "\n",
+ "D=0.69 \n",
+ "\n",
+ " flow velocity v=22.28 ft/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example 14.5 page no 157\\n\\n\" # air is transported through a circular conduit \n",
+ "MW=28.9#molecular weight of air \n",
+ "R=10.73#gas constant\n",
+ "T=500#temperature\n",
+ "P=14.75#pressure,psia applying ideal gas law for density\n",
+ "rho=P*MW/(R*T)#density \n",
+ "rho=0.08#after round off\n",
+ "meu=3.54e-7#viscosity of air at 40 degF assume flow is laminar\n",
+ "q=8.33#flow rate ,ft**3/s\n",
+ "L=800#length of pipe,ft\n",
+ "P_1=.1#pressure at starting point\n",
+ "P_2=.01#pressure at delivery point \n",
+ "D=((128*meu*L*q)/(pi*(P_1-P_2)*144))**(1/4)#diameter\n",
+ "print \"\\n pipe diameter D=%0.2f ft\"%(D)# check the flow type\n",
+ "meu=1.14e-5\n",
+ "R_e1=4*q*rho/(pi*D*meu)#reynolds no print \"\\n reynolds no R_e=%0.2f \"%(R_e)# from R_e we can conclude that laminar flow is not valid\n",
+ "P_drop=12.96#pressure drop P_1-P2 in psf\n",
+ "f=0.005#fanning friction factor\n",
+ "g_c=32.174\n",
+ "D=(32*rho*f*L*q**2/(g_c*pi**2*P_drop))**(0.2)#diamter from new assumption strat the second iteration with the newly calculated D\n",
+ "k=0.00006/12#roughness factor\n",
+ "K_r=k/D#relative roughness \n",
+ "C_f=1.321224\n",
+ "R_e_n=4*q*rho/(pi*D*meu)#new reynolds no print \"\\n new reynolds no R_e=%0.2f \"%(R_e)#\n",
+ "f_n=0.0045#new fanning friction factor\n",
+ "D=(((8*rho*f_n*L*q**2)/(g_c*pi**2*P_drop))**(0.2))*C_f#final calculated diameter because last diameter is same with this\n",
+ "print \"\\nD=%0.2f \"%(D)# iteration may now be terminated\n",
+ "S=pi*(D**2)/4#cross sectional area of pipe\n",
+ "v=q/S#flow velocity\n",
+ "print \"\\n flow velocity v=%0.2f ft/s\"%(v)##printing mistake in book in the value of meu in the formula of D is first time that's why this deviation in answer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.6 page no 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.6 page no. 159\n",
+ "\n",
+ "\n",
+ "\n",
+ " R_e=106208.60 \n",
+ "\n",
+ " since R_e is more than 4000 flow is turbulent\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example 14.6 page no. 159\\n\\n\" # ethyl alcohol is pumped through a horizontal tube\n",
+ "rho=789#density .kg/m**3\n",
+ "meu=1.1e-3#viscosity ,kg/m-s\n",
+ "k=1.5e-6#roughness,m\n",
+ "L=60#length of tube,m\n",
+ "q=2.778e-3#flow rate \n",
+ "g=9.807\n",
+ "h_f=30#friction loss\n",
+ "A=(L*q**2)/(g*h_f)\n",
+ "A=1.574e-7\n",
+ "D=0.66*(((k**1.25)*(A**4.75)+meu*(A**5.2)/(q*rho))**.04)\n",
+ "D=0.0377 # calculate velocity of alcohol in the tube\n",
+ "S=3.14*(D)**2/4#surface area\n",
+ "v=q/S#velocity\n",
+ "v=3.93#velocity\n",
+ "neu=1.395e-6#dynamic viscosity\n",
+ "R_e=D*v/neu#reynolds no \n",
+ "print \"\\n R_e=%0.2f \"%(R_e)##printing mistake in book\n",
+ "print \"\\n since R_e is more than 4000 flow is turbulent\" #"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exanmple 14.7 page no 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.7 page no 160\n",
+ "\n",
+ "\n",
+ "\n",
+ " average velocity v=2.37 m/s\n",
+ "\n",
+ " S=0.00 \n",
+ "\n",
+ " flow rate q=1244.02 m**3/s\n",
+ "\n",
+ " mass flow rate m_dot=1020094.94 kg/s\n",
+ "\n",
+ " v_max=2.91 m/s\n",
+ "\n",
+ " length L_c=1.36 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example 14.7 page no 160\\n\\n\" # kerosene flow ina lng ,smooth ,horizontal pipe\n",
+ "rho=820#density,kg/m**3\n",
+ "D=0.0493#iside diameter of pipe by appendix A.5,m\n",
+ "R_e=60000\n",
+ "meu=0.0016#viscosity,kg/m.s\n",
+ "v=(R_e*meu)/(D*rho)# flow average velocity\n",
+ "print \"\\n average velocity v=%0.2f m/s\"%(v)#\n",
+ "S=(pi/4)*D**2#cross sectional area\n",
+ "print \"\\n S=%0.2f \"%(S)#\n",
+ "q=v/S#flow rate \n",
+ "print \"\\n flow rate q=%0.2f m**3/s\"%(q)##printing mistake in book\n",
+ "m_dot=rho*q#mass flow rate\n",
+ "print \"\\n mass flow rate m_dot=%0.2f kg/s\"%(m_dot)##printing mistake in book in the value of v\n",
+ "n=7#seventh power apply\n",
+ "v_max=v/(2*n**2/((n+1)*(2*n+1)))#maximum velocity\n",
+ "print \"\\n v_max=%0.2f m/s\"%(v_max)# check the assumptioon of fully developed flow\n",
+ "R_e=60000#reynolds no\n",
+ "L_c=4.4*R_e**(1/6)*D#critical length\n",
+ "print \"\\n length L_c=%0.2f m\"%(L_c)# since L_c <L th eassumption is valid"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.8 page no 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 14.8 page no 161\n",
+ "\n",
+ "\n",
+ "\n",
+ " fanning friction factor f=0.01 \n",
+ "\n",
+ " h_f friction loss=1.07 m \n",
+ "\n",
+ " P_drop_a =0.09 atm\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"\\n Example 14.8 page no 161\\n\\n\" # refer to example no 14.7\n",
+ "rho=860#density\n",
+ "R_e=60000#reynolds no\n",
+ "f=.046/R_e**.2#fanning friction factor\n",
+ "print \"\\n fanning friction factor f=%0.2f \"%(f)#\n",
+ "L=9#length of tube\n",
+ "v=2.38#velocity\n",
+ "D=.0493#diameter of tube\n",
+ "g=9.807\n",
+ "h_f=4*f*(L*v**2)/(D*2*g)#friction loss \n",
+ "print \"\\n h_f friction loss=%0.2f m \"%(h_f)# applying bernoulli equation\n",
+ "P_drop=rho*g*h_f#pressure drop in pa\n",
+ "P_drop_a=P_drop/10**5#pressure drop in atm\n",
+ "print \"\\n P_drop_a =%0.2f atm\"%(P_drop_a)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.9 page no 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Example 14.9 page no 161\n",
+ "\n",
+ "\n",
+ "\n",
+ " Force required to hold pipe F=16.58 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \" Example 14.9 page no 161\\n\\n\" # refer to example 14.7\n",
+ "D=0.0493#diameter of tuube\n",
+ "S=pi*D**2/4#cross sectional area\\\n",
+ "P=8685#pressure\n",
+ "F=P*S#force required to hold the pipe,direction is opposite the flow\n",
+ "print \"\\n Force required to hold pipe F=%0.2f N\"%(F)# "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.10 page no 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.10 page no 163\n",
+ "\n",
+ "\n",
+ "\n",
+ " vz_bar=40.00\n",
+ "\n",
+ " vz_sqr=4.60\n",
+ "\n",
+ " intensity of turbulance I=0.05 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "print \"Example 14.10 page no 163\\n\\n\" # a fluid is moving in the turbulent flw through a pipe a hot wire anemometer is inserted to measure the local velocity at a given point P in the system following readings were recorded at equal time interval instantaneous velocities at subsequent time interval\n",
+ "vz=[43.4,42.1,42,40.8,38.5,37,37.5,38,39,41.7]\n",
+ "vz_bar=0#\n",
+ "n=10#\n",
+ "i = 0#\n",
+ "sums=0#\n",
+ "for i in range(0,10):\n",
+ " sums=sums+vz[i]#\n",
+ "\n",
+ "vz_bar=sums/n#\n",
+ "print \"\\n vz_bar=%0.2f\"%(vz_bar)#\n",
+ "sigma=0#\n",
+ "for i in range(0,10):\n",
+ " sigma=sigma+(vz[i]-vz_bar)**2#\n",
+ " vz_sqr=sigma/10#\n",
+ "\n",
+ "print \"\\n vz_sqr=%0.2f\"%(vz_sqr)\n",
+ "I = sqrt(vz_sqr)/vz_bar#intensity of turbulance\n",
+ "print \"\\n intensity of turbulance I=%0.2f \"%(I)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.11 page no 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 14.11 page no 164\n",
+ "\n",
+ "\n",
+ "\n",
+ " flow rate q_a=0.33 ft**3/min\n",
+ " \n",
+ " flow rate q_b=0.65 ft**3/min\n",
+ "\n",
+ " flow rate q_c=0.53 ft**3/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example 14.11 page no 164\\n\\n\" # a fluid is flowing through a pipe\n",
+ "D=2#inside diameter of pipe,in\n",
+ "v_max=30#maximum velocity,ft/min\n",
+ "A=(pi/4)*(D/12)**2#cross sectional area (a) for laminar flow \n",
+ "v_a=(1/2)*v_max#average velocity\n",
+ "q_a=v_a*A#volumatric flow rate\n",
+ "print \"\\n flow rate q_a=%0.2f ft**3/min\"%(q_a)# (b) for plug flow \n",
+ "v_b=v_max#average velocity \n",
+ "q_b=v_b*A#volumatric flow rate\n",
+ "print \" \\n flow rate q_b=%0.2f ft**3/min\"%(q_b)# (c)for turbulent flow\n",
+ "v_c=(49/60)*v_max#average velocity\n",
+ "q_c=v_c*A#volumatric flow rate\n",
+ "print \"\\n flow rate q_c=%0.2f ft**3/min\"%(q_c)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/hemanth/Untitled1.ipynb b/sample_notebooks/hemanth/Untitled1.ipynb
new file mode 100644
index 00000000..9684d917
--- /dev/null
+++ b/sample_notebooks/hemanth/Untitled1.ipynb
@@ -0,0 +1,27 @@
+
+# coding: utf-8
+
+# # UNIT 3 : ELECTRICAL CONDUCTIVITY IN METALS
+
+#
+#
+# # Example number 1 , page number 208
+
+# In[ ]:
+
+#importing module
+from __future__ import division
+import math
+
+
+#Variable declaration
+u= 7*10**-3 # mobility of an electron
+E= 100 # applied field
+
+
+#Calculations
+Vd=u*E
+
+#Result
+print"the drift velocity = %.1f m/s" %Vd
+print"the correct choice is B"
diff --git a/sample_notebooks/hemanth/Untitled1_1.ipynb b/sample_notebooks/hemanth/Untitled1_1.ipynb
new file mode 100644
index 00000000..9684d917
--- /dev/null
+++ b/sample_notebooks/hemanth/Untitled1_1.ipynb
@@ -0,0 +1,27 @@
+
+# coding: utf-8
+
+# # UNIT 3 : ELECTRICAL CONDUCTIVITY IN METALS
+
+#
+#
+# # Example number 1 , page number 208
+
+# In[ ]:
+
+#importing module
+from __future__ import division
+import math
+
+
+#Variable declaration
+u= 7*10**-3 # mobility of an electron
+E= 100 # applied field
+
+
+#Calculations
+Vd=u*E
+
+#Result
+print"the drift velocity = %.1f m/s" %Vd
+print"the correct choice is B"