diff options
author | Trupti Kini | 2016-01-26 23:30:11 +0600 |
---|---|---|
committer | Trupti Kini | 2016-01-26 23:30:11 +0600 |
commit | 6a60c976001fc196b9bd9ae75903d09adce5861b (patch) | |
tree | 14faaae6bdeab0afe682de481b3a9320201f2a94 /sample_notebooks | |
parent | 8bc8abf406220e17735d7c92fd6ca54737cea481 (diff) | |
download | Python-Textbook-Companions-6a60c976001fc196b9bd9ae75903d09adce5861b.tar.gz Python-Textbook-Companions-6a60c976001fc196b9bd9ae75903d09adce5861b.tar.bz2 Python-Textbook-Companions-6a60c976001fc196b9bd9ae75903d09adce5861b.zip |
Added(A)/Deleted(D) following books
A The_Theory_of_Machines_by_T._Bevan/ch10.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch11.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch12.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch13.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch14.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch15.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch2.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch3.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch4.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch5.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch6.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch7.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch8.ipynb
A The_Theory_of_Machines_by_T._Bevan/ch9.ipynb
A The_Theory_of_Machines_by_T._Bevan/screenshots/amp_forced_vibr.png
A The_Theory_of_Machines_by_T._Bevan/screenshots/couple_sup_shaft_2.png
A The_Theory_of_Machines_by_T._Bevan/screenshots/vel,disp,acc.png
A sample_notebooks/PrashantSahu/Chapter-2-Molecular_Diffusion_-_Principles_of_Mass_Transfer_and_Separation_Process_by_Binay_K_Dutta_2.ipynb
Diffstat (limited to 'sample_notebooks')
-rw-r--r-- | sample_notebooks/PrashantSahu/Chapter-2-Molecular_Diffusion_-_Principles_of_Mass_Transfer_and_Separation_Process_by_Binay_K_Dutta_2.ipynb | 789 |
1 files changed, 789 insertions, 0 deletions
diff --git a/sample_notebooks/PrashantSahu/Chapter-2-Molecular_Diffusion_-_Principles_of_Mass_Transfer_and_Separation_Process_by_Binay_K_Dutta_2.ipynb b/sample_notebooks/PrashantSahu/Chapter-2-Molecular_Diffusion_-_Principles_of_Mass_Transfer_and_Separation_Process_by_Binay_K_Dutta_2.ipynb new file mode 100644 index 00000000..b67d0cbd --- /dev/null +++ b/sample_notebooks/PrashantSahu/Chapter-2-Molecular_Diffusion_-_Principles_of_Mass_Transfer_and_Separation_Process_by_Binay_K_Dutta_2.ipynb @@ -0,0 +1,789 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 Molecular Diffusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1 pgno:10" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Molar average velocity of gas mixture is: 0.0303 m/s\n", + "Mass average velocity of gas mixture is: 0.029 m/s\n" + ] + } + ], + "source": [ + "#Calculation of average velocities\n", + "\n", + "N2 = 0.05 #mole fraction of Nitrogen denoted as 1\n", + "H2 = 0.15 #mole fraction of Hydrogen denoted as 2\n", + "NH3 = 0.76 #mole fraction of Ammonia denoted as 3\n", + "Ar = 0.04 #mole fraction of Argon denoted as 4\n", + "u1 = 0.03\n", + "u2 = 0.035\n", + "u3 = 0.03\n", + "u4 = 0.02\n", + "#Calculating molar average velocity\n", + "U = N2*u1 + H2*u2 + NH3*u3 + Ar*u4\n", + "print 'Molar average velocity of gas mixture is: %.4f m/s'%U\n", + "#Calculating of mass average velocity\n", + "M1 = 28\n", + "M2 = 2\n", + "M3 = 17\n", + "M4 = 40\n", + "M = N2*M1 + H2*M2 + NH3*M3 + Ar*M4\n", + "u = (1/M)*(N2*M1*u1 + H2*M2*u2 + NH3*M3*u3 + Ar*M4*u4)\n", + "print 'Mass average velocity of gas mixture is: %.3f m/s'%u" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2 pgno:16" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Time for complete evaporation is: 15.93 hours\n", + "(b) Time for disappearance of water is: 8.87 hours\n" + ] + } + ], + "source": [ + "#Diffusion of A through non-diffusing B\n", + "\n", + "from math import log\n", + "from math import exp\n", + "import numpy as np\n", + "\n", + "#Calcualtion for (a) part\n", + "#calculating vapor pressure of water at 301K\n", + "pv = exp(13.8573 - (5160.2/301)) #in bar\n", + "#wet-bulb temperature is 22.5 degree centigrade\n", + "#calculating mean air-film temperature\n", + "Tm = ((28+22.5)/2)+273 #in kelvin\n", + "#calculating diffusion coefficient\n", + "Dab = ((0.853*(30.48**2))*((298.2/273)**1.75))/(3600*10000) #in m^2/s\n", + "l = 2.5e-3 #in m\n", + "P = 1.013 #in bar\n", + "R = 0.08317 #Gas constant\n", + "pAo = exp(13.8573 - (5160.2/295.2)) #vapor pressure of water at the wet-bulb temperature, 22.2C\n", + "pAl = 0.6*round(pv,4)\n", + "Na = (((round(Dab,7)*P)/(R*298.2*l))*log((P-pAl)/(P-round(pAo,3))))*18 #in kg/m^2s\n", + "#amount of water per m^2 of floor area is\n", + "thickness = 2e-3\n", + "Amount = thickness*1 #in m^3 \n", + "#density of water is 1000kg/m^3\n", + "#therefore in kg it is\n", + "amount = Amount*1000\n", + "Time_for_completion = amount/Na #in seconds\n", + "Time_for_completion_hours = Time_for_completion/3600\n", + "print '(a) Time for complete evaporation is: %.2f'%Time_for_completion_hours,'hours'\n", + "\n", + "#Calculation for (b) part\n", + "water_loss = 0.1 #in kg/m^2.h\n", + "water_loss_by_evaporation = Na*3600\n", + "total_water_loss = water_loss + water_loss_by_evaporation\n", + "time_for_disappearance = amount/total_water_loss\n", + "print '(b) Time for disappearance of water is: %0.2f'%time_for_disappearance,'hours'\n", + "#Answers may vary due to round off error" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3 pgno:17" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) The molar flux of Ammonia is:1.922E-05 gmol/cm^2.s\n", + "(b) and (c)\n", + "Velocity of A is 0.522 cm/s\n", + "Velocity of B is 0.000 cm/s\n", + "Mass average velocity of A is 0.439 cm/s\n", + "Molar average velocity of A is 0.47 cm/s\n", + "(d) Molar flux of NH3 is 3.062E-06 gmol/cm^2.s\n" + ] + }, + { + "data": { + "text/plain": [ + "<matplotlib.text.Text at 0x9bda2b0>" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmUVOW19/HvthsURAXFSyIiGERABKeADIolojYoojGK\nOI8hGjRZud4Q9I329Zogid6oITGoiENENIqIE8SpNBBEJhFlCKAog68ag4g4gb3vH08B3W0P1d11\n6lRV/z5rndV1qp4+tT3SteuZzd0RERHZZqe4AxARkdyixCAiIhUoMYiISAVKDCIiUoESg4iIVKDE\nICIiFUSaGMzsHjP7wMwW11DmdjNbYWaLzOywKOMREZHaRV1jmAiUVPeimQ0GDnD3TsCPgDsijkdE\nRGoRaWJw978DG2oocgpwX6rsHKClmbWJMiYREalZ3H0MbYE15c7XAvvGFIuIiBB/YgCwSudao0NE\nJEbFMb//OqBdufN9U89VYGZKFiIi9eDulb981yruGsM04HwAM+sNfOLuH1RV0N11uHP99dfHHkOu\nHLoXuhe6FzUf9RVpjcHMHgKOAVqb2RrgeqAJgLuPd/dnzGywma0ENgMXRRmPiIjULtLE4O7D0ygz\nMsoYRESkbuJuSpI6SiQScYeQM3QvdtC92EH3ouGsIe1Q2WJmng9xiojkEjPD87DzWUREcowSg4iI\nVKDEICIiFSgxiIhIBUoMIiJSgRKDiIhUoMQgIiIVKDGIiEgFSgwiIlKBEoOIiFSgxCAiIhUoMYiI\nSAVKDCIiUoESg4iIVBBpYjCzEjNbZmYrzGxUFa+3MrPHzWyRmc0xs25RxiMiIrWLLDGYWREwDigB\nDgKGm1nXSsWuARa4+yGEvZ9viyoeERFJT5Q1hl7ASndf7e5bgMnA0EplugIvAbj7cqCDme0dYUwi\nIlKLKBNDW2BNufO1qefKWwT8AMDMegHtgX0jjElERGpRHOG109mL8ybgNjNbCCwGFgLfVFVwr71K\n2Xtv2Htv6N8/wQ9/mKBLF2jWLIMRi4jksWQySTKZbPB1Itvz2cx6A6XuXpI6Hw2UufvYGn7nHaC7\nu39W6XlfssRZsgTeemvHsWoVtGsH3bvDwQeHo3t3OOAAKI4y5YmI5IH67vkcZWIoBpYDxwHrgdeA\n4e6+tFyZPYAv3P1rM7sM6OfuF1ZxLa8qzq+/hhUr4M03w7F4cTjefx+6doUePSoee6v3QkQakZxL\nDABmNgi4FSgCJrj7GDMbAeDu482sD3AvodnpTeASd99YxXWqTAzV+eyzHYnijTdg0aLws3lzOOSQ\ncBx6aDg6dYKiogz8x4qI5JicTAyZUtfEUBV3eO+9kCQWLYLXX4eFC+HDD0Pz0+GHw2GHhZ/dusHO\nO2coeBGRmCgx1NMnn4REsXBhOBYsCH0XXbrAEUfsOHr0ULIQkfyixJBBn38emp4WLIB582D+/NCX\n0bUr9OwJ3/9++Nmtmzq5RSR3KTFE7PPPQ81i3jyYOzcca9aEfopeveDII8PRvj1Ynf83iIhknhJD\nDDZuDInitddgzpxwlJVB7947jp49oUWLuCMVkcZIiSEHuIdaxJw58OqrMHt2qGUceCD06QN9+0K/\nftChg2oVIhI9JYYc9dVXoVN79mz4xz9g1qyQQPr1g6OOCsehh6qvQkQyT4khT7jDu++GBDFrFsyc\nCatXh36Ko48OR+/eYc6FiEhDKDHksQ0bQpL4+9/D8cYbYXjsMcdA//6hdrH77nFHKSL5RomhgHz+\neeijePnlcMybF4bGJhLhOOoo2G23uKMUkVynxFDAvvwydGi/9BIkkyFR9OgBxx4Lxx0XOrV32SXu\nKEUk1ygxNCJffBE6sl98EV54IawL1bs3DBwYjsMO0/pPIqLE0Kht3BianF54AZ57Dj74AAYMgBNO\nCEf79nFHKCJxUGKQ7datg+efh7/9LSSKVq3gxBOhpCR0aO+6a9wRikg2KDFIlcrKwkqyM2aEY/78\n0Ow0eDAMGgSdO2uynUihUmKQtHz6aWhyevbZcDRpEpLESSeFEU/aKlWkcCgxSJ25h47rZ54Jx8KF\noalpyJCQKNq2jTtCEWmInEwMZlbCjh3c7q6837OZtQb+AnwHKAZudvd7q7iOEkMWbNgQmpuefBKm\nTw9rOp1ySjgOPVRNTiL5JucSg5kVEfZ8HgisA+by7T2fS4Gd3X10KkksB9q4+9ZK11JiyLKtW8Ns\n7GnT4Iknwv7aQ4fCqaeG2dhNmsQdoYjUpr6JYacogknpBax099XuvgWYDAytVOZ9YNtiD7sDH1dO\nChKP4uLQrHTLLWGTounT4bvfhWuugTZt4Pzz4fHHwyxtESksUSaGtsCacudrU8+VdxfQzczWA4uA\nn0YYj9STGRx0UEgKc+bA4sVhU6I//jEki9NPh0mTQse2iOS/KBd7Tqft5xrgdXdPmFlH4DkzO8Td\nN1UuWFpauv1xIpEgkUhkKk6po7Zt4Sc/CcfHH4fmpkmT4Mc/DrWMM84I/RItW8YdqUjjkkwmSSaT\nDb5OlH0MvYFSdy9JnY8Gysp3QJvZM8Cv3X1W6vwFYJS7z6t0LfUx5IGNG0PH9V//GtZ16t8fhg0L\nfRNaHVYk+3Kxj2Ee0MnMOphZU2AYMK1SmWWEzmnMrA3QGXg7wpgkQnvsAeeeGzqr166Fs86CRx6B\nffcNndaTJ8PmzXFHKSK1iXq46iB2DFed4O5jzGwEgLuPT41EmgjsR0hSY9x9UhXXUY0hj23YAFOn\nhsQwZ06YUHf22WGZDo1uEolOzg1XzSQlhsLx4YehqWnSJPjnP0N/xDnnhKXDNU9CJLOUGCTvvPMO\nPPQQ/OUvYc+Jc8+F886DTp3ijkykMCgxSN5yhwUL4IEHQqL43vfgggtCx3WrVnFHJ5K/lBikIGzZ\nEpYLv+++8PPEE+Gii+D447X5kEhdKTFIwdmwIXRYT5wI69eH2dYXXaSmJpF0KTFIQXvzzZAgHngg\nzMK+5JIw47p587gjE8ldSgzSKHz9dZhEd/fd8NprYdjrZZdBjx5xRyaSe5QYpNF59124555wtG0b\nluQ480zVIkS2UWKQRuubb8JGQ+PHw+zZYdjr5ZdDly5xRyYSr1xcEkMkK4qKwq5zTz0Vhr22aBG2\nKR0wAB59NIx0EpH0qcYgBenrr2HKFPjTn+Dtt0Mz02WXhb0kRBoL1RhEymnaNCzi98or8PTT8N57\noWnp3HNh7ty4oxPJbaoxSKOxYQNMmADjxsE++8BVV4Uhr1rITwqVOp9F0rR1axjyeuutYb2mkSND\nM5OW35BCo6YkkTQVF8Npp8HLL4flwBcvho4dQw3ibe0GIqLEII3b4YeH2dSLF8Ouu0KvXmEp8Dlz\n4o5MJD5qShIpZ9OmMGHu97+H9u3hF7+AQYNgJ32FkjyUk30MZlbCjh3c7i6/33Pq9auBc1KnxUBX\noLW7f1KpnBKDZNXWrWFDobFjw+NRo8IoJ3VUSz7JucRgZkXAcsKezuuAucBwd19aTfmTgZ+5+8Aq\nXlNikFi4h+W/b7opdFT/13/BxRdDs2ZxRyZSu1zsfO4FrHT31e6+BZgMDK2h/NnAQxHGI1JnZmFP\niJdeCpsIzZgRNhL63e9Cs5NIIYoyMbQF1pQ7X5t67lvMrDlwIvBYhPGINEifPjBtWkgO8+eHBHHD\nDfDJJ7X/rkg+KY7w2nVp+xkCzKzct1BeaWnp9seJRIJEIlHvwEQaokePsIHQ8uUwZgwccABccQX8\n7Gew555xRyeNWTKZJJlMNvg6UfYx9AZK3b0kdT4aKKvcAZ167XHgYXefXM211McgOWvVqpAgHn88\nrOr6858rQUhuyMU+hnlAJzPrYGZNgWHAtMqFzGwPoD/wRISxiESmY8ewcdD8+fDBB3DggXDddWEJ\nDpF8FFlicPetwEhgBrCEUCNYamYjzGxEuaKnAjPc/YuoYhHJhg4d4K67ws5ya9eGBPHrX6uTWvKP\nJriJROSf/4T//m94/vkwUe6KKzTMVbIrF5uSRBq1Aw+EBx+EF16AmTOhUye4805tHCS5T4lBJGIH\nHxw6pqdMgUcegW7dwk9VgiVXqSlJJMuefx5++csweW7s2LAFqUgUcm5JjExSYpBCU1YW1mK65prQ\n5DR2bJgfIZJJ6mMQySM77QTDhsHSpTB4MBx/fFiDad26uCMTUWIQiVXTpnDllWEEU5s2odZw/fXw\n2WdxRyaNmRKDSA7YY48we3rBAli5Ejp3hokTQ5OTSLapj0EkB82ZE5bW+PJLuO02OOqouCOSfKTO\nZ5EC4w4PPxwmx/XtC7/9Ley3X9xRST5R57NIgTELu8YtWwZduoT9qW+4Ab7Q4jESMSUGkRzXvDmU\nloZF+t54I0yQmzpVE+QkOmpKEskzL7wQRjK1bw+33x6W2hCpipqSRBqJ446DRYvCzz594Fe/gs8/\njzsqKSRKDCJ5qEkTuPrqkCBWrAjrMT39dNxRSaGosSnJzJoAJxA20ulA2K7zXeAVwh4KW7MQo5qS\nRGrx3HNhWe/u3cPw1nbt4o5IckHGm5LM7FfAXOBkYBlwD3AfsJywR/M8M/t/tQRVYmbLzGyFmY2q\npkzCzBaa2Ztmlqzrf4CIhCU1Fi8OM6cPOywkh2++iTsqyVfV1hjM7BTgyeq+qpvZTsDJ7v6t7TpT\nrxcRkshAYB0hyQx396XlyrQEZgEnuvtaM2vt7v+q4lqqMYikaflyGDECNm8O+z8cdljcEUlcMl5j\ncPdpNX0au3tZdUkhpRew0t1Xu/sWYDIwtFKZs4HH3H1t6prfSgoiUjedO8NLL4WmpZISGDVKndNS\nN7V2PptZTzN7PNXcszh1vJHGtdsCa8qdr009V14nYE8ze8nM5pnZeemHLiLVMYOLLgrzHt57Dw45\nJCQLkXQUp1HmQeBq4E2gLkt6pdP20wQ4HDgOaA7MNrNX3X1FHd5HRKrRpg089BA89RRccAGceCLc\nfHNYtE+kOukkho9qaTKqzjqg/NiIdoRaQ3lrgH+5+xfAF2b2CnAI8K3EUFpauv1xIpEgkUjUIySR\nxunkk6F//7Du0sEHw5//DCedFHdUkmnJZJJkMtng69Q689nMTgCGAc8DX6eednefUsvvFRM6n48D\n1gOv8e3O5y7AOOBEYGdgDjDM3ZdUupY6n0Uy5MUX4dJLw4qtt90GrVrFHZFEJcqZzxcQvsWXEIau\nnkwYrlqj1ByHkcAMYAnwsLsvNbMRZjYiVWYZMB14g5AU7qqcFEQkswYMCENbW7YM8x40MU4qS6fG\nsBzoEudXdtUYRKKRTIYtRY85Bm69VX0PhSbKGsM/gIPqHpKI5LpEIoxc2mWXMDnuxRfjjkhyQTo1\nhmVAR+Ad4KvU0+7uPSKOrXwMqjGIRGz69ND3cPrpYZvR5s3jjkgaKrId3MysPVD5wu7u79b1zepL\niUEkO/79bxg5EhYuhAcfDJsDSf6KsinpxtTs5e0HcGOdIxSRnLfnnjBpElx3XZg1PWaM1lxqjNJJ\nDAeXP0kNQz0imnBEJBcMHw7z5oVVW489Ft7NWvuA5IKaVle9xsw2Ad3NbNO2A/gQqM+ENxHJI/vt\nB88/D0OGQM+e8PDDcUck2ZJOH8NN7v7LLMVTXQzqYxCJ0fz5oRbRrx/84Q/QokXcEUk6Iut8Tl28\nFWHBu122Pefur9T1zepLiUEkfp99Bj/9KcycCZMnaznvfBDlqKTLgKsIax0tBHoDs919QH0CrQ8l\nBpHc8dBDIUH86ldhBJPV+WNHsiXKxPAm0JOQDA5NrW80xt1Pq1+odafEIJJbVq2Cs86Ctm1h4kSt\nt5Srohyu+mVq9VPMbJfU+kad6/pGIlI4OnaEWbNg//3DXIc5c+KOSDIpncSwJtXHMBV4zsymAasj\njUpEcl7TpvD734djyBD43/8FVewLQ1qdz9sLmyWA3YHp7v51LcUzRk1JIrlt9Wo44wxo1y40LWkx\nvtyQ8aYkM9ut8nPunkztBf11dWVEpPHp0CGMVvrud+GII+D11+OOSBqi2hqDmT1P2GjnCWCeu/87\n9fyehM7oU4FO7j4w8iBVYxDJG5MmhVFLv/sdXHhh3NE0bpGMSjKzAcDZQD9gn9TT64GZwIPunqx7\nqHWnxCCSX5YsgdNOC8tp3HYb7Lxz3BE1TpFOcKsvMysBbgWKgLvdfWyl1xOEGsnbqacec/dvLdCn\nxCCSfz79NNQY1q2DRx8N/Q+SXVEOVy3/Jh3N7Fdm9lYaZYsI+zmXEDb6GW5mXaso+rK7H5Y6tGqr\nSIHYfXd47DH4wQ/gyCPhlaytlSANVWtiMLO2ZvZzM5sLvEX49n9WGtfuBaxMLdW9BZgMDK3qLeoS\nsIjkDzMYNQruvTeMWho3TkNa80FNo5JGmFkSeA5oCVwMvO/upe6+OI1rtwXWlDtfm3quPAf6mtki\nM3vGzLSFqEgBOuEE+Mc/4M47wx7TX34Zd0RSk5pqDOOATcBwd78uzWRQXjrfCxYA7dz9EOAPhEl0\nIlKAOnaE2bPDYnzHHgvvvx93RFKd4hpe+y5wBnC7mf0H8CjQpA7XXkdYeG+bdoRaw3buvqnc42fN\n7E9mtue2obHllZaWbn+cSCRIJBJ1CEVEcsGuu8Ijj8CNN0KvXjBlStjrQTIjmUySTCYbfJ10l91u\nB5wJDAdaAFPc/ZpafqeYMA/iOMIQ19cItY+l5cq0AT50dzezXsAj7t6himtpVJJIgXn8cfjRj8L+\nDmel02spdVbfUUk11Ri2XbgZISkcBbwHvEq5fRmq4+5bzWwkMIPQYT3B3Zea2YjU6+OBHwKXm9lW\n4HPS69QWkQJw2mmheemUU2DpUrj+etipTuMkJSrpLLv9V+BT4C+EEURnA3u4+xnRh7c9BtUYRArU\nBx+EJLFtnaXmzeOOqHBEuR/DEnc/qLbnoqTEIFLYvvwSLrsMli2DadPCmkvScFFOcFtgZn3KvVFv\nYH5d30hEpDq77AL33x+alXr3hsV1HQMpGZVOjWEZcCBhToID+xE6lbcC7u49Ig9SNQaRRuOhh+Cq\nq0KiGDQo7mjyW5RNSR1qet3dV9f1TetKiUGkcZk1C04/HW64IYxckvrJyUX0MkWJQaTxWbECBg8O\nS2nceKNGLNWHEoOIFJyPPgr9DvvvH0YsafnuusnK6qoiItm0997w4ovw1Vehv2HjxrgjahyUGEQk\npzVrFpbROOgg6N8f1q+PO6LCp8QgIjmvqGjH0hl9+4aZ0hKdWpfEEBHJBWYwejTss09YnXXq1DDn\nQTJPNQYRySsXXAATJsCQITB9etzRFCYlBhHJOyedBE88EZLEgw/GHU3hUVOSiOSlvn3DiKWSEtiw\nAUaOjDuiwqHEICJ5q1s3eOUVOP54+OQTuPba0BchDaMJbiKS995/H048EQYOhFtuUXLYRjOfRaRR\n27AhLKHRrRuMHx+GuDZ2OTnz2cxKzGyZma0ws1E1lOtpZlvN7AdRxiMihatVK3juOXj7bTj/fNiy\nJe6I8ldkicHMioBxQAlwEDDczLpWU24sMJ2wQ5yISL20aAFPPx36G844IyylIXUXZY2hF7DS3Ve7\n+xZgMjC0inJXAo8CH0UYi4g0Es2aweOPQ5MmMHQofPFF3BHlnygTQ1vC5j7brE09t52ZtSUkiztS\nT6kjQUQarGnTsOFP69Zw8smweXPcEeWXKIerpvMhfyvwS3d3MzNqaEoqLS3d/jiRSJBIJBoan4gU\nsOJiuO8+uPTSsDLr00/DbrvFHVW0kskkyWSywdeJbFRSam/oUncvSZ2PBsrcfWy5Mm+zIxm0Bj4H\nLnP3aZWupVFJIlIvZWVw+eVhH+np02H33eOOKHtybriqmRUT9oY+DlgPvAYMd/cq10U0s4nAk+4+\npYrXlBhEpN7cw8zoBQtCcthjj7gjyo6cG67q7luBkcAMYAnwsLsvNbMRZjYiqvcVEanMDMaNgyOO\nCBPhtOFPzTTBTUQaDXe46iqYOxdmzCj8mkPO1RhERHKNGdx+O/TsGRbf+/TTuCPKTaoxiEij4w5X\nXLGjQ7pFi7gjioZqDCIiaTKDP/4RunbVPIeqqMYgIo1WWRlccgmsWQNPPQW77BJ3RJmVc8NVM0mJ\nQUSi8s03cO65sGkTTJkSZk0XCiUGEZF62rIlLLpXVAQPPxxmTRcC9TGIiNRTkyYhIWzeHPaR/uab\nuCOKlxKDiAiw886hKWndOvjJT8LIpcZKiUFEJKV5c5g2DebPh9Gj444mPkoMIiLl7L57mNvw5JMw\nZkzc0cSjQLpYREQyZ6+9wjahRx8NLVuG1VkbEyUGEZEq7LPPjuSw115w5plxR5Q9SgwiItX43vfg\n2Wdh4MBQczjhhLgjyg71MYiI1KBHD3jsMTjnHJgzJ+5oskOJQUSkFkcfDRMnwtChsHx53NFET4lB\nRCQNJ58Mv/lNWK57/fq4o4lWpInBzErMbJmZrTCzUVW8PtTMFpnZQjObb2YDooxHRKQhLr4YLr0U\nBg8u7F3gotzzuYiw5/NAYB0wl0p7PpvZru6+OfW4O/C4ux9QxbW0VpKI5IRt+0cvXRo6pnfeOe6I\nqpeLayX1Ala6+2p33wJMBoaWL7AtKaS0AP4VYTwiIg22bRe4li1DDaKsLO6IMi/KxNAWWFPufG3q\nuQrM7FQzWwo8C1wVYTwiIhlRVAQPPgjvvAPXXht3NJkX5TyGtNp+3H0qMNXMjgYeADpXVa60tHT7\n40QiQSKRaHiEIiL11KxZWFepb19o3x5+/OO4I4JkMkkymWzwdaLsY+gNlLp7Sep8NFDm7mNr+J1V\nQC93/7jS8+pjEJGctGoVHHUU3HknDBkSdzQV5WIfwzygk5l1MLOmwDBgWvkCZtbRzCz1+HCAyklB\nRCSXdewIU6eG/oYFC+KOJjMia0py961mNhKYARQBE9x9qZmNSL0+HjgdON/MtgCfAWdFFY+ISFSO\nPBL+/Gc45RSYPRvatYs7oobR1p4iIhly881w//0wc2ZYvjtu2vNZRCRm7mGJ7nffDfs5xL13dC72\nMYiINCpmMG5c2DP65z+PO5r6U2IQEcmg4mJ45JGwl8Mdd8QdTf1oPwYRkQxr2RKeegr69YMDDoDj\nj487orpRjUFEJAIdO4aawznnwLJlcUdTN0oMIiIR6d8fxowJw1g3bIg7mvRpVJKISMR+9jNYsgSe\neSa7I5U0KklEJEfdfHP4efXV8caRLiUGEZGIFRfDww+HGsM998QdTe3UlCQikiXLloV+h2nToHfv\n6N9PTUkiIjmuSxeYMAF++EN4//24o6meEoOISBYNGQIjRsDpp8NXX8UdTdXUlCQikmVlZaHW0Lp1\n2MchKmpKEhHJEzvtBPfdF1ZhveuuuKP5NtUYRERisnx52P3t6aehV6/MX181BhGRPNO5c2hKOuMM\n+PDDuKPZIfLEYGYlZrbMzFaY2agqXj/HzBaZ2RtmNsvMekQdk4hIrjjttLCe0llnwdatcUcTRNqU\nZGZFwHJgILAOmAsMd/el5cr0AZa4+0YzKwFK3b13peuoKUlECtY338CgQXD44XDTTZm7bq42JfUC\nVrr7anffAkwGhpYv4O6z3X1j6nQOsG/EMYmI5JSiIpg0KRzTpsUdTfSJoS2wptz52tRz1bkEeCbS\niEREclDr1mGZ7ksvhVWr4o0l6nX+0m7/MbNjgYuBflW9Xlpauv1xIpEgkUg0MDQRkdzSuzdcd12Y\n/DZ7NjRrVrffTyaTJJPJBscRdR9Db0KfQUnqfDRQ5u5jK5XrAUwBStx9ZRXXUR+DiDQK7qEzunlz\nuPvuhl0rV/sY5gGdzKyDmTUFhgEVWtDMbD9CUji3qqQgItKYmMH48WHy2wMPxBRD1N/EzWwQcCtQ\nBExw9zFmNgLA3ceb2d3AacB7qV/Z4u69Kl1DNQYRaVQWL4YBA+Dll+Ggg+p3jfrWGDTzWUQkR91z\nD9xyC7z2Guy6a91/X4lBRKTAuMOFF4bmpXvvrfvv52ofg4iI1JMZ/OlPocZw//1ZfN98+CauGoOI\nNGbb+htmzgzrK6VLNQYRkQLVvTv8z//AsGHw5ZfRv59qDCIiecAdzjwTvvMd+MMf0vsd1RhERAqY\nWdjU56mnYOrUiN8rH76Jq8YgIhLMng2nngrz58O+tSw5qhqDiEgj0KcPXHklnHdeWK47CkoMIiJ5\nZvTo0Ofw299Gc301JYmI5KE1a+D73w/7Nxx5ZNVl1JQkItKItGsHd9wRVmLdtCmz11aNQUQkj11y\nSfg5YcK3X1ONQUSkEbrttrAC65QpmbumagwiInnu1Vdh6FBYuBD22WfH86oxiIg0Ur17wxVXhJVY\ny8oafr3IE4OZlZjZMjNbYWajqni9i5nNNrMvzew/o45HRKQQXXstnH9+Zq4VaWIwsyJgHFACHAQM\nN7OulYp9DFwJ3BxlLIUiExt9Fwrdix10L3ZorPeiuBjOPRd2ysCnetQ1hl7ASndf7e5bgMnA0PIF\n3P0jd58HbIk4loLQWP/RV0X3Ygfdix10Lxou6sTQFlhT7nxt6jkREclRUScGDSUSEckzkQ5XNbPe\nQKm7l6TORwNl7j62irLXA5+5+y1VvKYEIyJSD/UZrlocRSDlzAM6mVkHYD0wDBheTdlqg6/Pf5iI\niNRP5BPczGwQcCtQBExw9zFmNgLA3ceb2XeAucDuQBmwCTjI3T+LNDAREalSXsx8FhGR7Mmpmc+1\nTYZLlbk99foiMzss2zFmSxoTA89J3YM3zGyWmfWII85sSOffRapcTzPbamY/yGZ82ZLm30fCzBaa\n2ZtmlsxyiFmTxt9HazObbmavp+7FhTGEmRVmdo+ZfWBmi2soU7fPTXfPiYPQ1LQS6AA0AV4HulYq\nMxh4JvX4SODVuOOO8V70AfZIPS5pzPeiXLkXgaeA0+OOO6Z/Ey2Bt4B9U+et4447xntRCozZdh8I\nE2mL4449ovtxNHAYsLia1+v8uZlLNYZaJ8MBpwD3Abj7HKClmbXJbphZkc7EwNnuvjF1OgeoZffX\nvJXOvwsIs+cfBT7KZnBZlM59OBt4zN3XArj7v7IcY7akcy/eJ/Rbkvr5sbtvzWKMWePufwc21FCk\nzp+buZQ8N1ERAAAD0ElEQVQY0pkMV1WZQvxArOvEwEuAZyKNKD613gsza0v4YLgj9VQhdpyl82+i\nE7Cnmb1kZvPM7LysRZdd6dyLu4BuZrYeWAT8NEux5aI6f25GPVy1LtL9Y648dLUQPwTS/m8ys2OB\ni4F+0YUTq3Tuxa3AL93dzcyoYehzHkvnPjQBDgeOA5oDs83sVXdfEWlk2ZfOvbgGeN3dE2bWEXjO\nzA5x9wzvdZY36vS5mUuJYR3Qrtx5O0Jmq6nMvqnnCk0694JUh/NdQIm711SVzGfp3IsjgMkhJ9Aa\nGGRmW9x9WnZCzIp07sMa4F/u/gXwhZm9AhwCFFpiSOde9AV+DeDuq8zsHaAzYW5VY1Pnz81cakra\nPhnOzJoSJsNV/sOeBpwP22dVf+LuH2Q3zKyo9V6Y2X7AFOBcd18ZQ4zZUuu9cPfvufv+7r4/oZ/h\n8gJLCpDe38cTwFFmVmRmzQkdjUuyHGc2pHMvlgEDAVLt6Z2Bt7MaZe6o8+dmztQY3H2rmY0EZrBj\nMtzS8pPh3P0ZMxtsZiuBzcBFMYYcmXTuBXAd0Aq4I/VNeYu794or5qikeS8KXpp/H8vMbDrwBmGy\n6F3uXnCJIc1/E78BJprZIsIX4F+4+79jCzpCZvYQcAzQ2szWANcTmhXr/bmpCW4iIlJBLjUliYhI\nDlBiEBGRCpQYRESkAiUGERGpQIlBREQqUGIQEZEKlBhEamFmz5vZbhm4zguZuI5I1JQYRGpgZgOA\n5RlaY2cycFkGriMSKU1wE0lJzZz9cep0D2A1sAr4q7v/LVXmfOA/CYuQLXL3C8zsXuBzwpr4/0FY\n7fYioCcwx90vSv1uG+DJQpyhLoVFiUGkEjMrJmz681vgd0A/d/+3mXUjrE/VJ3Xe0t0/MbOJwM7u\nfraZnQL8hbCR0hLCfuaXuPui1LXfBrq7++YY/tNE0qKmJJFvux14wd2fAvYpt8bOAOCRbefu/km5\n33ky9fNN4P+7+1sevnW9RdhpbJsPqLjSpUjOyZlF9ERyQWpv4HbufkUVLzvV7/XwdepnGfBVuefL\nqPh3ZhTmHiJSQFRjEEkxsyMI/Qfldz5bb2Z7ph6/CJyx7dzMWtXjbdpQxd4aIrlENQaRHX5CWMr8\npdRS5vOAmYRO5BnuvsTMfg28bGbfAAsIu+dBxVpA5RqBA5jZdwh7D6t/QXKaOp9FamBmCWCYu1+e\ngWv9CNjV3X/f4MBEIqSmJJEauHuSsFtYJiamDSNsxSqS01RjEBGRClRjEBGRCpQYRESkAiUGERGp\nQIlBREQqUGIQEZEKlBhERKSC/wMlMWMmKfP/ywAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x3bd4e48>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Calculation of flux and velocity\n", + "\n", + "%matplotlib inline\n", + "from math import log\n", + "from math import exp\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "#calculation for (a) part\n", + "l = 1 #thickness of air in cm\n", + "pAo = 0.9 #in atm\n", + "pAl = 0.1 #in atm\n", + "Dab = 0.214 #in cm^2/s\n", + "T = 298 #in K\n", + "P = 1 #in atm\n", + "R = 82.1 #in (cm^3)(atm)/(K)(gmol)\n", + "#calculating molar flux of ammonia\n", + "Na = ((Dab*P)/(R*T*l))*log((P-pAl)/(P-pAo))\n", + "print '(a) The molar flux of Ammonia is:%0.3E'%Na,'gmol/cm^2.s'\n", + "\n", + "#calculation for (b) and (c) part\n", + "Nb = 0 #air is non-diffusing\n", + "U = (Na/(P/(R*T))) #molar average velocity\n", + "yA = pAo/P\n", + "yB = pAl/P\n", + "uA = U/yA #\n", + "uB = 0 #since Nb=0\n", + "Ma = 17\n", + "Mb = 29\n", + "M = Ma*yA + Mb*yB\n", + "u = uA*yA*Ma/M #since u =(uA*phoA + uB*phoB)/pho\n", + "print '(b) and (c)'\n", + "print 'Velocity of A is %0.3f'%uA,'cm/s'\n", + "print 'Velocity of B is %0.3f'%uB,'cm/s'\n", + "print 'Mass average velocity of A is %0.3f'%u,'cm/s'\n", + "print 'Molar average velocity of A is %0.2f'%U,'cm/s'\n", + "\n", + "#calculation for (d) part\n", + "Ca = pAo/(R*T)\n", + "Ia = Ca*(uA - u) #molar flux of NH3 relative to an observer moving\n", + " #with the mass average velocity \n", + "print '(d) Molar flux of NH3 is %0.3E'%Ia,'gmol/cm^2.s'\n", + "\n", + "z = []\n", + "pa =[]\n", + "for i in np.arange(0,1,0.01):\n", + " z.append(i)\n", + " \n", + "for i in range(0,len(z)):\n", + " pa.append(1-(0.1*exp(2.197*z[i])))\n", + " \n", + "from matplotlib.pyplot import*\n", + "plot(z,pa);\n", + "plt.xlabel('z(cm)');\n", + "plt.ylabel('pA(atm)');\n", + "#Answers may vary due to round off error" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 2.4 pgno:19" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Rate of diffusion of oxygen 7.151E-10 kmol/s\n", + "(b) The partial pressure gradient of oxygen at midway in diffusion path is: -4.25 bar/m\n", + "(c)\n", + "Molar average velocity and diffusion velocities at \"midway\"\n", + "Molar average velocity in z-direction is 9.9E-05 m/s\n", + "The diffusion velocity of oxygen 7.9E-04 m/s\n", + "The diffusion velocity of Nitrogen -9.9E-05 m/s\n", + "Molar average velocity and diffusion velocities at \"top of tube\"\n", + "Molar average velocity in z-direction is 9.9E-05 m/s\n", + "The diffusion velocity of oxygen 3.72E-04 m/s\n", + "The diffusion velocity of Nitrogen -9.9E-05 m/s\n", + "Molar average velocity and diffusion velocities at \"bottom of tube\"\n", + "Molar average velocity in z-direction is 9.9E-05 m/s\n", + "The diffusion velocity of oxygen is not infinity\n", + "The diffusion velocity of Nitrogen -9.9E-05 m/s\n", + "(d)\n", + "New molar flux of (A) 4.95E-06 kmol/m^2.s\n", + "New molar flux of (B) 7.19E-06 kmol/m^2.s\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHi1JREFUeJzt3XmUVNW59/HvI42CSDOIoAwCMqioiAM44NACKuLAvbnX\nqNFwxVl81USjETXCfZfG+Y3xGl1elWgS0TglKlEQ0HKIIoiKIoKgIIOKEyJBhIZ+3j92td1gd3V1\nd506p6p/n7X2qlOnTp/zcBZdT++9z97b3B0REZHabBV3ACIikmxKFCIikpEShYiIZKREISIiGSlR\niIhIRkoUIiKSUUncATSEmemZXhGRBnB3q+/PFGyNwt1V3Bk3blzsMSSl6F7oXuheZC4NVbCJQkRE\n8kOJQkREMlKiKHBlZWVxh5AYuhdVdC+q6F40njWm3SouZuaFGLeISJzMDG9KndkiIpIfShQiIpKR\nEoWIiGSkRCEiIhkpUYiISEZKFCIikpEShYiIZKREISIiGSlRiIhIRkoUIiKSkRKFiIhkpEQhIiIZ\nJTJRmNlwM5tvZgvN7NdxxyMi0pQlbvZYM2sGLACGASuAWcAp7v5+tWM0e6yISD0V0+yxg4BF7r7E\n3cuBh4GRWx70/fdQUZH32EREmpySuAOoQRdgWbX3y4EDtjyoTRvYsAFKSmCbbULZeuvw2qJF1b4W\nLeouLVtWvdZUtt02lOrbLVrAVklMsyIiOZbERJFVm9LYseNxD7WKgw4qY9CgMjZsCDWN9es3L99/\nD+vW/fj999+H8u23sHJl2FdZKo/57ruq17Vrq7bXrw/JolWrkDhatdq8bLddKJXbrVtX7at8X72U\nlobSvHnUt1dEmopUKkUqlWr0eZLYR3EgMN7dh6ffjwUq3P3GasfE3kdRURGSxtq1tZd//SuU6ttr\n1lS9VpZvv616bd68KmmUloaaU2kptG0bttu2/XFp166qtG4NVu8WSBFpChraR5HERFFC6MweCnwC\nzKSJdGa7h5rM6tWhfPttKJXvV6+Gb74JpXJ71arNy/ffh+TRvn1V2X778NqhQyjbbx9ed9ih6r1q\nMiLFr2gSBYCZHQPcBjQD7nP367f4vCgTRS6Ul1clja++CuXrr+HLL6veV25/8UXY/vrrUBPp2DEk\nj44doVOnqtcdd6x63Wmn0FcjIoWnqBJFXZQocquiIiSWzz/fvKxcWVU++ww+/TRst2gREsZOO0Hn\nzlWlS5dQunYNn6mWIpIsShSSF+4hqXz6aSiffFJVli+HFSvC6xdfhNpJt26h7LxzeO3evaq0b6/+\nFJF8UqKQRCkvD7WQZctCWboUPv646vXjj2HTJujZE3r0CK+77AK9eoXXnj3VxCWSa0oUUnC++QYW\nL4YlS+Cjj8L2hx+GsnRpqJH07g19+oTSt2947d07jJkRkfpRopCismlTqIksWgQLF4bywQehLF0a\nmrF22y2U3XevKm3bxh25SHIpUUiTsWFDqIHMnx/KvHnw/vuhtG0Le+4Je+wBe+0F/ftDv36hA16k\nqVOikCavoiL0fbz3HsydC+++G8rChaHPY8CAUPbeG/bdNzRtiTQlShQitdiwIdQ25syBt9+Gt94K\npbQ0JIz99oOBA2H//cMARJFipUQhUg/uofN89mx4441QZs8O06AccEBV2XdfNVtJ8VCiEGmkiorQ\nTPX666HMmBH6QPr3h4MPhsGD4ZBDwoh1kUKkRCESgbVrYdYsePVVeOWV8NqpExx6KBx+OJSVhSew\nRAqBEoVIHmzaFDrLX3yxqpSWwhFHwNCh4XXHHeOOUqRmShQiMXAPieOFF2D69JA4unaFo46CI4+E\nww4L65WIJIEShUgCbNoUOsafew6mTg1PVx18MBxzTCh9+2p+K4mPEoVIAq1eDdOmwbPPhrLttnD8\n8XDccaGfQzPsSj4pUYgknHsYxzFpEjz9dJie5Nhj4d/+DYYPD8vmikRJiUKkwKxYAU89BX//e3gU\nd+hQ+M//DLWN0tK4o5NipEQhUsBWrQpJ47HH4KWXYMgQOPnkkDRU05BcUaIQKRLffBNqGQ8/HGoa\nI0bAz38enqIqKYk7OilkShQiReiLL+CRR+AvfwlTjpx8Mpx+epjcUKS+lChEitzChfDnP8MDD4Rl\nZEePhtNOC9si2VCiEGkiKirg+edhwgR45pnQj3HOOeFxW43RkEyUKESaoK++CrWMe+4JCWTMGBg1\nCtq0iTsySSIlCpEmzD08LXXnnWFU+EknwUUXhdX9RCo1NFFsFUUwIpJfZmE227/+Ncw91alTeMT2\n6KPDiPCKirgjlEKmGoVIkVq/Pjxie9ttYZW/Sy+FU0+FbbaJOzKJi5qeRKRG7mFm25tvDmuI/+IX\ncN55Gv3dFKnpSURqZAbDhsGUKaEZ6q23oFcvGDcudIaL1EWJQqQJ2XtveOihsFLfihVh2vMrr1TC\nkMyUKESaoD594N574c03Q5Lo2xeuugq+/jruyCSJlChEmrDu3eHuu2H2bPj885AwrrsO/vWvuCOT\nJFGiEBF69AiD9l59FebODTWO//mf8LSUiBKFiPygb9/Qh/Hss2GBpT32gCeeCE9OSdOlx2NFpFbP\nPQeXXQatW4fxGPvvH3dE0hh6PFZEcu6oo0KH9+jRYa3vM86Azz6LOyrJNyUKEcmoWTM480xYsAC2\n3x723BNuvRXKy+OOTPIllkRhZjeb2ftmNsfMnjCzNtU+G2tmC81svpkdFUd8IvJjpaVhdPerr4bB\ne/vuCy+/HHdUkg+x9FGY2ZHAdHevMLMbANz9CjPrB0wEBgJdgGlAX3ev2OLn1UchEiP3sL73JZfA\n0KGhhrH99nFHJXUpqD4Kd59a7cv/daBrensk8JC7l7v7EmARMCiGEEUkAzM48USYNw/atg3NURMn\n6umoYpWEPoozgGfS252B5dU+W06oWYhIAlU+DfXkk3DDDTBiBCxdGndUkmuRJQozm2pm79ZQjq92\nzFXABnefmOFU+htFJOEGDQqjuw85BPbbL0wPotpF8SiJ6sTufmSmz83sdGAEMLTa7hVAt2rvu6b3\n/cj48eN/2C4rK6OsrKxhgYpITjRvHuaLGjkSTj8dHn00JIxu3er8UYlIKpUilUo1+jxxdWYPB24F\nDnf3L6vtr+zMHkRVZ3bvLXuu1Zktkmzl5XDjjXD77fD738Mpp8QdkUCBLVxkZguBrYHKuSpfc/cx\n6c+uJPRbbAQudvcpNfy8EoVIAZg9G047DQYMCOt5t2sXd0RNW0ElisZSohApHN99B7/+NTz1FDz4\nYOjHkHgoUYhIok2aBGedBRdcEBZLatYs7oiaHiUKEUm8FStCUxSEcRc77RRvPE1NQQ24E5GmqUsX\nmDYNysrCTLQvvhh3RJIN1ShEJBbPPQejRsEvfxmmMt9Kf7ZGTk1PIlJwli2Dn/40NEE98EAY6S3R\nUdOTiBScbt0glYIOHeDAA2HRorgjkpooUYhIrLbZBv73f+Gii2DwYJg8Oe6IZEtqehKRxHjllTAr\n7dixcOGFYZZayR31UYhIUVi8GI47Dg4/PEz/0bx53BEVD/VRiEhR6NkzrKK3eDEceyysXh13RKJE\nISKJ06YNPP009OkDhx0WBupJfJQoRCSRSkrgjjvg1FPh4INh7ty4I2q61EchIok3cWIYmPfII6Hv\nQhpGndkiUtSmTw/rWtx3Hxx/fN3Hy4+pM1tEitrQofCPf8DZZ8Of/xx3NE1LZEuhiojk2sCB8MIL\ncPTRsGpVGKQn0VOiEJGCsvvu8PLLoYaxbl1YFEmipUQhIgWne/cwRfnQobB+PfzmNxrFHSUlChEp\nSF26hGQxbFhIFtdeq2QRFSUKESlYnTqFPothw8AdrrtOySIKShQiUtA6dAir5g0ZEuaF+u//jjui\n4qNEISIFrzJZHHEENGsG11wTd0TFJWOiMLPmwFHAYUAPwIGPgZeAKe6+MeoARUSy0bFjGJRXVhbW\nuNDTULlT68hsM/sN8B/Aa8BM4BPCAL2dgEHAgcBj7n5tfkLdLDaNzBaRGq1YAYceCpdfDuedF3c0\nydLQkdmZahRzgGtr+UaeYGZbAcfV94IiIlHq0gWmTg1zQrVpE6b9kMbRXE8iUpTmzg1PQ917b1gI\nSSKcFNDMBgJXEvooKmsg7u7963uxXFGiEJFszJwZksSTT8JBB8UdTfyiTBQfAL8C5gIVlfvdfUl9\nL5YrShQikq3Jk+H00yGVgt12izuaeEWZKP7p7oMbHFkElChEpD7uvz+Mr/jnP6Fz57ijiU+UieIo\n4CRgGrAhvdvd/Yl6R5kjShQiUl+//W1Y+Oill6C0NO5o4hFlongQ2BV4j82bnkbX92K5okQhIvXl\nDmPGwJIlYT3ukiY43DjKRLEA2C1J38xKFCLSEBs3wrHHQu/eYT3upjYvVJQr3L0K9Kt/SCIiyVJS\nEpqfXnwRbr897mgKRzaVr4OAt81sMbA+vS/Wx2NFRBqqTRuYNAkOPhh69dIYi2xk0/TUHdiyquLu\n/nFkUdVBTU8i0lgzZsAJJ4Taxe67xx1NfkTZ9HStuy+pXoC8z+8kIpJLBx4IN94II0eG9beldtkk\nij2rvzGzEmC/XFzczC41swoza19t31gzW2hm89OP5oqIRGL0aBgxIswHtWlT3NEkV62JwsyuNLM1\nwF5mtqayAJ8DTzX2wmbWDTiSMG155b5+hDEb/YDhwJ3pyQdFRCJxyy1QXg5XXBF3JMlV65ewu//W\n3VsDt7h762qlvbvn4pb+P+DyLfaNBB5y9/J0E9ciwpTmIiKRqHwS6rHH4NFH444mmep86sndrzCz\ndkAfoEW1/S819KJmNhJY7u7v2OYPMncGZlR7vxzo0tDriIhkY/vtQ6IYPhz22ktzQm2pzkRhZmcD\nFwHdgLcICxa9Bgyp4+emAjvW8NFVwFjCynk/HJ7hVDU+3jR+/PgftsvKyigrK8sUjohIRvvtB9df\nDz/5SZh1drvt4o6o8VKpFKlUqtHnyebx2LnAQOA1dx9gZrsB17v7vzfogmZ7AtOB79K7ugIrgAOA\n0QDufkP62MnAOHd/fYtz6PFYEYnEmWfC2rXw0EPFN3I7ysdjv3f3demLtHD3+YS5nxrE3ee6eyd3\n7+nuPQnNS/u6+0pCJ/nJZra1mfUkNHfNbOi1RETq64474IMP4M47444kObIZmb0s3Ufxd2Cqma0C\nluQwhh+qBu4+z8weAeYBG4ExqjqISD61bAl//WsYuT14MAwYEHdE8avXUqhmVgaUApPdfUMdh0dG\nTU8iErWJE8MaFrNnF0d/BUQwe6yZtXb3NXVctM5joqBEISL5cNZZsH49/OlPxdFfEUUfxd/M7A9m\ndtQWI6fbm9nRZnYX8LeGBCsiUghuvx3efBMeeCDuSOKVsenJzIYAPwMGE8Y4AHwCvAI86O6pqAOs\nJS7VKEQkL959F4YMCZMI9uoVdzSNE9nCRUmkRCEi+XTbbVXLqBbyynhRPh5b/SK9zOw3ZvZefS8k\nIlKoLroodGhfd13ckcSjzkRhZl3M7BIzm0VYN7sZcHLkkYmIJMRWW8H994exFTNm1Hl40ck0e+y5\nZpYCpgJtgTOAT919vLu/m6f4REQSoXNnuOsuOO20MHK7Kcn0eGw5MBm42t3npPctTo+mjpX6KEQk\nLqNGQWlpGMFdaKIYR9EBOJHQzNQReAwY7e5dGxNoLihRiEhcVq0KM8z+6U/haahCEulTT+lFhn4K\nnAJsBzzh7lfWO8ocUaIQkTg9+yycfz68806oXRSKyBKFmbUExgCHEOZlmgG0cPf/25BAc0GJQkTi\ndtZZ0KwZ3H133JFkL8pE8SjwLfAXwroRPwPauPuJDQk0F5QoRCRuq1dD//5w771w5JFxR5OdKBPF\nPHfvV9e+fFKiEJEkePZZuOCCMHq7Vau4o6lblAPu3jSzg6pd6EBgdn0vJCJSbI45JkxHfs01cUcS\nrWxqFPOBvsAyQh/FzsACwnoR7u79ow6yhphUoxCRRPjyS9hzT3j6aRg4MO5oMouy6alHps/dfUl9\nL9pYShQikiQPPgg33QRvvAHNm8cdTe00KaCISEzc4dhj4dBDYezYuKOpnRKFiEiMliyB/feHmTNh\nl13ijqZmeZk9VkREatajB/zqV3DhhaGGUUyUKEREcuSSS2DxYvhbka39qaYnEZEcSqXCxIHz5oU1\nLJJEfRQiIgkxahR07Ai33BJ3JJtTohARSYjPP4c99oAXX4R+sc1h8WPqzBYRSYiOHeHqq+Hii4uj\nY1uJQkQkAmPGwCefwJNPxh1J46npSUQkItOmwTnnhI7tFi3ijkZNTyIiiTNsGAwYALfeGnckjaMa\nhYhIhBYvDiO258yBrjEvJK2nnkREEurqq2HZMnjggXjjUKIQEUmoNWugb1/4xz9g333ji0N9FCIi\nCdW6NYwfD5deWpiPyypRiIjkwZlnhoF4Tz8ddyT1p0QhIpIHJSVhSo/LLoPy8rijqR8lChGRPBk+\nHLp3h7vvjjuS+lFntohIHs2ZA0cfDQsXhr6LfCq4zmwzu9DM3jezuWZ2Y7X9Y81soZnNN7Oj4opP\nRCQKe+8dBuL97ndxR5K9WGoUZnYEcCUwwt3LzWwHd//CzPoBE4GBQBdgGtDX3Su2+HnVKESkYH30\nEQwcCPPnww475O+6hVajOB+43t3LAdz9i/T+kcBD7l7u7kuARcCgeEIUEYnGLrvAKafA9dfHHUl2\n4koUfYDDzGyGmaXMbP/0/s7A8mrHLSfULEREisrVV4eR2kuXxh1J3UqiOrGZTQV2rOGjq9LXbefu\nB5rZQOARYJdaTqU2JhEpOjvuCOefHwbiTZgQdzSZRZYo3P3I2j4zs/OBJ9LHzTKzCjPrAKwAulU7\ntGt634+MHz/+h+2ysjLKysoaH7SISB5ddhn06RP6KnbbLffnT6VSpFKpRp8nrs7sc4HO7j7OzPoC\n09x952qd2YOo6szuvWXPtTqzRaRYXH89vPsuTJwY/bUKalJAM2sOTAAGABuAS909lf7sSuAMYCNw\nsbtPqeHnlShEpCisWQO9e8Pzz4d1tqNUUImisZQoRKSY3HwzzJoFjzwS7XWUKERECtTataFWMWUK\n9O8f3XUKbRyFiIiktWoFl18enoBKItUoREQSYN26UKuYNAn22Seaa6hGISJSwFq2DI/LXntt3JH8\nmGoUIiIJsXZtmN4jqiegVKMQESlwrVrBL3+ZvDmgVKMQEUmQb7+FXr3gtddCn0UuqUYhIlIESkvh\nggvghhvijqSKahQiIgnz9ddhDqi33oKdd87deVWjEBEpEu3bw9lnw003xR1JoBqFiEgCrVwJu+8O\nCxbkbhU81ShERIpIp05w4olwxx1xR6IahYhIYi1cCIMHw+LF4dHZxlKNQkSkyPTpA4cdBvfdF28c\nqlGIiCTY66/DSSeF2kXz5o07l2oUIiJF6IADoEcPePTR+GJQohARSbjLLw+PysbVkKJEISKScMcc\nAxs3wvTp8VxfiUJEJOHM4Be/gNtui+n6hdgprM5sEWlq1q0LfRUvvQS77tqwc6gzW0SkiLVsCeec\nA7//ff6vrRqFiEiB+PRT6NcPPvwwzAdVX6pRiIgUuZ12ghNOgHvuye91VaMQESkgb78Nxx8PH31U\n/wF4qlGIiDQBAwaEle8efzx/11SiEBEpMBdemN9ZZZUoREQKzAknwMcfh2aofFCiEBEpMCUlcN55\n8Ic/5Od66swWESlAn38eBt7V51FZdWaLiDQhHTvCccfBH/8Y/bVUoxARKVAzZsCpp4a1KrbK4s9+\n1ShERJqYAw6Adu1g8uRor6NEISJSoMzgggui79RW05OISAH77jvo1g3efBO6d898rJqeRESaoG23\nDf0U994b3TVUoxARKXBz58LRR4dBeCUltR9XUDUKMxtkZjPN7C0zm2VmA6t9NtbMFprZfDM7Ko74\nREQKyZ57hkWNJk2K5vxxNT3dBPzG3fcBrkm/x8z6AScB/YDhwJ1mpuYxEZE6nHsu3H13NOeO60v4\nU6BNerstsCK9PRJ4yN3L3X0JsAgYlP/wREQKy4knwqxZsGRJ7s8dV6K4ArjVzJYCNwNj0/s7A8ur\nHbcc6JLn2ERECk7LlnDaadF0amfo9mgcM5sK7FjDR1cBFwEXufvfzOxEYAJwZC2nqrHXevz48T9s\nl5WVUVZW1phwRUQK3jnnwLBhMG5cWNQolUqRSqUafd5Ynnoys2/dvTS9bcA37t7GzK4AcPcb0p9N\nBsa5++tb/LyeehIRqcEhh8Dll4epyLdUUE89AYvM7PD09hDgg/T2U8DJZra1mfUE+gAz4whQRKQQ\nnXEGTJiQ23PGVaPYH/gDsA2wDhjj7m+lP7sSOAPYCFzs7lNq+HnVKEREarBmTRipvWABdOq0+WcN\nrVFowJ2ISJEZPTqMrbj00s33F1rTk4iIRKSy+SlXf08rUYiIFJlDDoENG2Bmjnp4lShERIqMWW47\ntdVHISJShFasgL32guXLwwyzoD4KERGppksXOOggePzxxp9LNQoRkSK1aBG0bx8K6PFYERGpg5qe\nREQkEkoUIiKSkRKFiIhkpEQhIiIZKVGIiEhGShQiIpKREoWIiGSkRFHgcrHMYbHQvaiie1FF96Lx\nlCgKnH4JquheVNG9qKJ70XhKFCIikpEShYiIZFSwcz3FHYOISCFqMpMCiohI/qjpSUREMlKiEBGR\njBKdKMxsuJnNN7OFZvbrWo65Pf35HDPbJ98x5ktd98LMTk3fg3fM7J9m1j+OOPMhm/8X6eMGmtlG\nM/tJPuPLpyx/R8rM7C0zm2tmqTyHmDdZ/I50MLPJZvZ2+l6cHkOYkTOzCWa20szezXBM/b433T2R\nBWgGLAJ6AM2Bt4HdtzhmBPBMevsAYEbcccd4Lw4C2qS3hzfle1HtuOeBScB/xB13jP8v2gLvAV3T\n7zvEHXeM92I8cH3lfQC+Akrijj2Ce3EosA/wbi2f1/t7M8k1ikHAIndf4u7lwMPAyC2OOQF4AMDd\nXwfamlmn/IaZF3XeC3d/zd1Xp9++DnTNc4z5ks3/C4ALgceAL/IZXJ5lcy9+Bjzu7ssB3P3LPMeY\nL9nci0+B0vR2KfCVu2/MY4x54e4vA6syHFLv780kJ4ouwLJq75en99V1TDF+QWZzL6o7E3gm0oji\nU+e9MLMuhC+Ju9K7ivXRvmz+X/QB2pvZC2b2hpn9PG/R5Vc29+IeYA8z+wSYA1ycp9iSpt7fmyWR\nhtM42f5yb/lMcDF+KWT9bzKzI4AzgMHRhROrbO7FbcAV7u5mZvz4/0ixyOZeNAf2BYYC2wKvmdkM\nd18YaWT5l829uBJ4293LzKwXMNXM9nb3NRHHlkT1+t5McqJYAXSr9r4bIfNlOqZrel+xyeZekO7A\nvgcY7u6Zqp6FLJt7sR/wcMgRdACOMbNyd38qPyHmTTb3YhnwpbuvA9aZ2UvA3kCxJYps7sXBwHUA\n7v6hmS0GdgXeyEuEyVHv780kNz29AfQxsx5mtjVwErDlL/pTwCgAMzsQ+MbdV+Y3zLyo816Y2c7A\nE8Bp7r4ohhjzpc574e67uHtPd+9J6Kc4vwiTBGT3O/IkcIiZNTOzbQmdl/PyHGc+ZHMv5gPDANJt\n8rsCH+U1ymSo9/dmYmsU7r7RzP4PMIXwRMN97v6+mZ2b/vxud3/GzEaY2SJgLTA6xpAjk829AK4B\n2gF3pf+SLnf3QXHFHJUs70WTkOXvyHwzmwy8A1QA97h70SWKLP9f/Bb4o5nNIfyRfLm7fx1b0BEx\ns4eAw4EOZrYMGEdogmzw96am8BARkYyS3PQkIiIJoEQhIiIZKVGIiEhGShQiIpKREoWIiGSkRCEi\nIhkpUYjUk5lNM7PWOTjP9FycRyRqShQi9WBmQ4AFOZof6GHg7BycRyRSGnAnUov0qN7z0m/bAEuA\nD4FH3f259DGjgEsJk6rNcff/MrP7ge8IawJ0JMzmOxoYCLzu7qPTP9sJeLoYR9BLcVGiEKmDmZUQ\nFkG6CbgZGOzuX5vZHoT5tQ5Kv2/r7t+Y2R+Bbdz9Z2Z2AvAXwsJS84BZwJnuPid97o+Avdx9bQz/\nNJGsqOlJpG63A9PdfRLQudr8QEOARyrfu/s31X7m6fTrXOAzd3/Pw19l7xFWYau0ks1n8hRJnMRO\nCiiSBOl1lbu5+5gaPnZqX+tiQ/q1AlhfbX8Fm//eGcW5hooUEdUoRGphZvsR+h+qrwr3iZm1T28/\nD5xY+d7M2jXgMp2oYW0RkSRRjUKkdhcQpm5/IT11+xvAK4RO6SnuPs/MrgNeNLNNwJuE1QVh81rC\nljUGBzCzHQnrNqt/QhJNndki9WBmZcBJ7n5+Ds51DtDK3X/X6MBEIqSmJ5F6cPcUYSW1XAyUO4mw\ndK1IoqlGISIiGalGISIiGSlRiIhIRkoUIiKSkRKFiIhkpEQhIiIZKVGIiEhG/x/dtbi5bQDtAwAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x3bc1e10>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Flux, velocity and pressure gradient\n", + "\n", + "#calculation of (a) part\n", + "#given data\n", + "from math import log\n", + "from math import pi\n", + "from math import exp\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "T = 298 #in kelvin\n", + "P = 1.013 #in bar\n", + "pAl = 0 #partial pressure of oxygen(A) at liquid surface\n", + "pAo = 0.21*1.013 #partial pressure of oxygen at open mouth\n", + "l = 0.05 #length of diffusion path in m\n", + "Dab = 2.1e-5 #diffusivity in m^2/s\n", + "R = 0.08317 #in m^3.bar.kmol.K\n", + "Na = Dab*P*log((P-pAl)/(P-pAo))/(R*T*l) #in kmol/m^2.s\n", + "area = (pi/4)*(0.015)**2\n", + "rate = area*Na\n", + "print '(a) Rate of diffusion of oxygen %0.3E'%rate,'kmol/s'\n", + "z = []\n", + "pa =[]\n", + "for i in np.arange(0,1,0.01):\n", + " z.append(i)\n", + " \n", + "for i in range(0,len(z)):\n", + " pa.append(P-(P-pAo)*exp((R*T*Na*z[i])/(Dab*P)))\n", + " \n", + "from matplotlib.pyplot import*\n", + "plot(z,pa);\n", + "plt.xlabel('z(cm)');\n", + "plt.ylabel('pA(atm)');\n", + "\n", + "#calculation of (b) part\n", + "z = 0.025 #diffusion path\n", + "pA = 0.113 #in bar\n", + "#we have to find partial pressure gradient of oxygen at mid way of diffusion path\n", + "#let dpA/dz = ppd\n", + "ppd = -(R*T*round(Na,8)*(P-pA))/(Dab*P)\n", + "print '(b) The partial pressure gradient of oxygen at midway in diffusion path is: %0.2f'%ppd,'bar/m'\n", + "\n", + "#calculation of (c) part\n", + "uA = Na*(R*T/pA) #velocity of oxygen\n", + "uB = 0 #since nitrogen is non-diffusing hence Nb = 0\n", + "U = pA*uA/P #since U=1/C*(uA*Ca + uB*Cb)\n", + "vAd = uA - U #diffusion velocity of oxygen\n", + "vBd = uB - U #diffusion velocity of nitrogen\n", + "print '(c)'\n", + "print 'Molar average velocity and diffusion velocities at \"midway\"'\n", + "print 'Molar average velocity in z-direction is %0.1E'%U,'m/s'\n", + "print 'The diffusion velocity of oxygen %0.1E'%vAd,'m/s'\n", + "print 'The diffusion velocity of Nitrogen %0.1E'%vBd,'m/s'\n", + "#at z=0(at top of tube)\n", + "uA = Na*(R*T/pAo)\n", + "uB = 0\n", + "U = pAo*uA/P\n", + "vAd = uA - U\n", + "vBd = uB - U\n", + "print 'Molar average velocity and diffusion velocities at \"top of tube\"'\n", + "print 'Molar average velocity in z-direction is %0.1E'%U,'m/s'\n", + "print 'The diffusion velocity of oxygen %0.2E'%vAd,'m/s'\n", + "print 'The diffusion velocity of Nitrogen %0.1E'%vBd,'m/s'\n", + "#at z=0.05(at bottom of tube)\n", + "#uA = inf\n", + "uB = 0\n", + "U = pAo*uA/P\n", + "vAd = uA - U\n", + "vBd = uB - U\n", + "print 'Molar average velocity and diffusion velocities at \"bottom of tube\"'\n", + "print 'Molar average velocity in z-direction is %0.1E'%U,'m/s'\n", + "print 'The diffusion velocity of oxygen is not infinity'\n", + "print 'The diffusion velocity of Nitrogen %0.1E'%vBd,'m/s'\n", + "\n", + "#calculation of (d) part\n", + "V = -2*U\n", + "pA = 0.113\n", + "Nad = round(Na,8) - V*(pA/(R*T))\n", + "Nbd = 0 - (P - pA)*V/(R*T)\n", + "print '(d)'\n", + "print 'New molar flux of (A) %0.2E'%Nad,'kmol/m^2.s'\n", + "print 'New molar flux of (B) %0.2E'%Nbd,'kmol/m^2.s'\n", + "#Answers may vary due to round off errors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5 pgno:21" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) The air-film thickness is :0.00193 m\n" + ] + } + ], + "source": [ + "#Diffusion with changing bulk concentration\n", + "\n", + "from math import log\n", + "#given data\n", + "area = 3*4 #in m^2\n", + "mperarea = 3.0/12 #in kg/m^2\n", + "#part (a)\n", + "P = 1.013 #in bar\n", + "Dab = 9.95e-6 #in m^2/s\n", + "R = 0.08317 #in m^3.bar./K.kmol\n", + "T = 273+27 #in K\n", + "#let d=1\n", + "d = 1 #in m\n", + "pAo = 0.065 #partial pressure of alcohol on liquid surface\n", + "pAd = 0 #partial pressure over d length of stagnant film of air\n", + "Na = (Dab*P*log((P-pAd)/(P-pAo)))/(R*T*d) #in kmol/m^2.s\n", + "Na = Na*60 #in kg/m^2.s\n", + "flux = mperarea/(5*60) #since the liquid evaporates completely in 5 minutes\n", + "#now we have to find the value of d\n", + "d = Na/flux\n", + "print '(a) The air-film thickness is :%0.5f'%d,'m'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6 pgno:24" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)\n", + "The steady-state flux is: 3.35E-06 kmol/m^2.s\n", + "The rate of transport of N2 from vessel 1 to 2: 6.6E-09 kmol/s\n", + "(b)\n", + "The flux and the rate of transport of oxygen is: -3.35E-06 kmol/m^2.s\n", + "(c)\n", + "Partial pressure at a point 0.05m from vessel 1 is: 1.2 atm\n", + "(d)\n", + "Net or total mass flux: -1.340E-05 kmol/m^2.s\n" + ] + } + ], + "source": [ + "#Equimolar counterdiffusion\n", + "\n", + "from math import pi\n", + "#given data\n", + "#part (a)\n", + "Dab = 0.23e-4*0.5*(293.0/316)**1.75 #in m^2/s\n", + "pA1 = 2*0.8 #in atm\n", + "pA2 = 2*0.2 #in atm\n", + "l = 0.15 #in m\n", + "R = 0.0821 #in m^3.atm./K.kmol\n", + "T = 293 #in K\n", + "Ma = 28\n", + "Mb = 32\n", + "Na = Dab*(pA1-pA2)/(R*T*l) #in kmol/m^2.s\n", + "area = pi/4*(0.05)**2 #in m^2\n", + "rate = area*Na\n", + "print '(a)'\n", + "print 'The steady-state flux is: %0.2E'%Na,'kmol/m^2.s'\n", + "print 'The rate of transport of N2 from vessel 1 to 2: %0.1E'%rate,'kmol/s'\n", + "\n", + "#part (b)\n", + "Nb = -Na\n", + "print '(b)'\n", + "print 'The flux and the rate of transport of oxygen is: %0.2E'%Nb,'kmol/m^2.s'\n", + "\n", + "#part (c)\n", + "#let dpA/dz = ppg\n", + "dz = 0.05 #in m\n", + "ppg = (pA2 - pA1)/l #in atm/m\n", + "pA = pA1 + (ppg)*dz #in atm\n", + "print '(c)'\n", + "print 'Partial pressure at a point 0.05m from vessel 1 is: %0.1f'%pA,'atm'\n", + "\n", + "#part (d)\n", + "nt = Ma*Na + Mb*Nb\n", + "print '(d)'\n", + "print 'Net or total mass flux: %0.3E'%nt,'kmol/m^2.s'\n", + "#Answers may vary due to round off errors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7 pgno:25" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Methanol flux: 4.64e-05 kmol/m^2.s\n", + "Water flux: -4.06e-05 kmol/m^2.s\n" + ] + } + ], + "source": [ + "#Non-equimolar counterdiffusion in distillation of a binary mixture\n", + "\n", + "from math import log\n", + "#given data\n", + "Ha = 274.6*32 #molar latent heat of methanol(a)\n", + "Hb = 557.7*18 #molar latent heat of water(b)\n", + "yAl = 0.76 #mole fraction of methanol in the vapour\n", + "yAo = 0.825 #mole fraction of methanol in the vapour at the liquid-vapour interface\n", + "P = 1 #in atm\n", + "l = 1e-3 #in m\n", + "T =344.2 #in K\n", + "R = 0.0821 #m^3.atm./K.kmol\n", + "Dab = 1.816e-5 #in m^2/s\n", + "Na = Dab*P*log((1-0.1247*yAl)/(1-0.1247*yAo))/(0.1247*R*T*l)\n", + "print 'Methanol flux: %0.2e'%Na,'kmol/m^2.s'\n", + "Nb = -(Ha/Hb)*Na\n", + "print 'Water flux: %0.2e'%Nb,'kmol/m^2.s'\n", + "#Answers may vary due to round off errors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8 pgno:27" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of pA1 is 0.937 atm\n" + ] + } + ], + "source": [ + "#Equimolar counterdiffusion in an interconnected system\n", + "\n", + "#given values\n", + "from math import exp\n", + "V1 = 3000 #in cm^3\n", + "V2 = 4000 #in cm^3\n", + "Dab = 0.23 #in cm^2/s\n", + "Dba = 0.23 #in cm^2/s\n", + "l1 = 4 #in cm\n", + "d1 = 0.5 #in cm\n", + "l2 = 2 #in cm\n", + "d2 = 0.3 #in cm\n", + "pA3 = 1 #in atm\n", + "#unknowns\n", + "# pA1 and pA2\n", + "# dpA1bydt = (Dab/V1*l1)*((pA1)-(pA2))*((math.pi*(d1**2))/4)\n", + "#on integrating using Laplace trandformation\n", + "# initial conditions\n", + "t=18000 #in seconds\n", + "pA1 = 1-0.57*(exp((-1.005)*(10**(-6))*t)-exp((-7.615)*(10**(-6))*t))\n", + "print 'Value of pA1 is %0.3f'%pA1,'atm'" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 2.10 pgno:34" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Value of flux of water vapour: 2.96E-05 kmol/m^2.s\n" + ] + } + ], + "source": [ + "#Diffusion of only one component in a three-component mixture\n", + "\n", + "#given values\n", + "from math import log\n", + "y1l = 0 #mol fraction of dry air\n", + "y10 = (17.53/760) #mol fraction of water\n", + "l = 1.5 #in mm\n", + "C = 0.0409 #in kmol/m^3 : calculated by P/RT\n", + "D12 = 0.923 #Diffusivity of hydrogen over water\n", + "D13 = 0.267 #Diffusivity of oxygen over water\n", + "y2 = 0.6 #mole fraction of hydrogen\n", + "y3 = 0.4 #mole fraction of oxygen\n", + "D1m = 1/((y2/D12)+(y3/D13)) #calculating mean diffusivity\n", + "Ni = (D1m*C*1000/(l*10000))*log((1-y1l)/(1-y10))\n", + "print 'Value of flux of water vapour: %0.2E'%Ni,'kmol/m^2.s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11 pgno:35" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flux of ethane 4.804E-05 gmol/cm^2.s\n" + ] + } + ], + "source": [ + "#Multicomponent diffusion\n", + "\n", + "from math import log\n", + "#given data\n", + "y1 = 0.4 #mole fraction of ethane(1)\n", + "y2 = 0.3 #mole fraction of ethylene(2)\n", + "y3 = 0.3 #mole fraction of hydrogen(3)\n", + "#calculating D13\n", + "#The Lennard-Jones parameters are\n", + "sigma1 = 4.443 #in angstrom\n", + "sigma2 = 4.163 #in angstrom\n", + "sigma3 = 2.827 #in angstrom\n", + "e1byk = 215.7\n", + "e2byk = 224.7\n", + "e3byk = 59.7\n", + "sigma13 = (sigma1 + sigma3)/2 #in angstrom\n", + "e13byk = (e1byk*e3byk)**0.5\n", + "kTbye13 = 993/113.5\n", + "ohmD13 = 0.76 #from collision integral table\n", + "D13 = ((0.001858)*(993**1.5)*((1.0/30)+(1.0/2))**0.5)/((2)*(sigma13**2)*(ohmD13))\n", + "#calculating D23\n", + "sigma23 = (sigma2+sigma3)/2\n", + "kTbye23 = ((993/224.7)*(993/59.7))*0.5\n", + "ohmD23 = 0.762\n", + "D23 = (0.001858*(993**1.5)*((1.0/28)+(1.0/2))**0.5)/(2*(sigma23**2)*ohmD23)\n", + "D = (D13+D23)/2 #in cm^2/s\n", + "l = 0.15 #in cm\n", + "#at z=0 (bulk gas)\n", + "y10 = 0.6\n", + "y20 = 0.2\n", + "y30 = 0.2\n", + "#at z=l (catalyst surface)\n", + "y1l = 0.4\n", + "y2l = 0.3\n", + "y3l = 0.3\n", + "C = 2.0/(82.1*993) #calculated by P/RT\n", + "N1 = (D*C/l)*log((y10+y20)/(y1l+y2l))\n", + "print 'Flux of ethane %0.3E'%N1,'gmol/cm^2.s'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12 pgno:43" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The liquid-film thickness is: 0.0004 m\n" + ] + } + ], + "source": [ + "#Liquid-phase diffusion\n", + "\n", + "#given data\n", + "from math import pi\n", + "rc = 5e-4 #in m\n", + "D = 7e-10 #in m^2/s\n", + "Cab = 1 #in kmol/m^3\n", + "Na = 3.15e-6 #in kmol/m^2.s\n", + "W = 4*pi*(rc**2)*Na #the rate of reaction\n", + "#let (rc+delta)/delta = 1\n", + "w1 = 4*pi*D*Cab*rc*1 #flux of the reactant to the surface of the catalyst\n", + "rcplusdelta = W/w1\n", + "delta = rc/(rcplusdelta-1) #stagnant liquid-film thickness \n", + "print 'The liquid-film thickness is: ',delta,'m'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13 pgno:46" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tortuosity factor is: 2.5\n" + ] + } + ], + "source": [ + "#Diffusivity determination--diaphragm cell\n", + "\n", + "#given data\n", + "from math import log\n", + "from math import pi\n", + "V1 = 60.2 #in cm^3; volume of compartment 1\n", + "V2 = 59.3 #volume of compartment 2 in cm^3\n", + "Ca1i = 0.3 #initial concentration of KCl in compartment 1\n", + "Ca2i = 0 #initial concentration of KCl in compartment 2\n", + "Ca1f = 0.215 #final concentration of KCl in compartment 1\n", + "Ca2f = 0.0863 #final concentration of KCl in compartment 2\n", + "D = 1.51e-5 #diffusivity of KCl in cm^2/s\n", + "tf = 55.2*3600 #time of the experiment in s\n", + "#calcutaling cell constant\n", + "beta = (1/(D*tf))*log((Ca1i - Ca2i)/(Ca1f - Ca2f))\n", + "#diffusion of propionic acid\n", + "Cpa1i = 0.4 #initial concentration of propionic acid in compartment 1\n", + "Cpa2i = 0 #initial concentration of propionic acid in compartment 2\n", + "Cpa1f = 0.32 #final concentration of propionic acid in compartment 1\n", + "Cpa2f = 0.0812 #final concentration of propionic acid in compartment 2 by mass balance\n", + "tfp = 56.4*3600 #time for the experiment\n", + "Dp = (1/(beta*tfp))*log((Cpa1i-Cpa2i)/(Cpa1f-Cpa2f)) #diffusivity of the propionic acid\n", + "#calculating tortusity factor\n", + "A= (pi/4)*(3.5**2) #area of the diaphragm\n", + "epsilon = 0.39 #average porosity of the diaphragm\n", + "l = 0.18 #thickness of hte diaphragm\n", + "tou = (A*epsilon/(beta*l))*(1/V1 + 1/V2)\n", + "print 'Tortuosity factor is: ',round(tou,1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |