diff options
author | Trupti Kini | 2016-02-27 23:30:09 +0600 |
---|---|---|
committer | Trupti Kini | 2016-02-27 23:30:09 +0600 |
commit | 4f7cbff441f0ed54667e973d0ad3913958135349 (patch) | |
tree | 8aab310483679c7229b6595f6b22d5c271fb1276 /sample_notebooks | |
parent | 2eb56155ebc24ccecc3efc3e23740e0dfa7d2939 (diff) | |
download | Python-Textbook-Companions-4f7cbff441f0ed54667e973d0ad3913958135349.tar.gz Python-Textbook-Companions-4f7cbff441f0ed54667e973d0ad3913958135349.tar.bz2 Python-Textbook-Companions-4f7cbff441f0ed54667e973d0ad3913958135349.zip |
Added(A)/Deleted(D) following books
A sample_notebooks/AnkitKumar/Ch16.ipynb
A sample_notebooks/GauravMittal/Ch3.ipynb
A sample_notebooks/Mohdarif/Ch21.ipynb
Diffstat (limited to 'sample_notebooks')
-rw-r--r-- | sample_notebooks/AnkitKumar/Ch16.ipynb | 364 | ||||
-rw-r--r-- | sample_notebooks/GauravMittal/Ch3.ipynb | 373 | ||||
-rw-r--r-- | sample_notebooks/Mohdarif/Ch21.ipynb | 725 |
3 files changed, 1462 insertions, 0 deletions
diff --git a/sample_notebooks/AnkitKumar/Ch16.ipynb b/sample_notebooks/AnkitKumar/Ch16.ipynb new file mode 100644 index 00000000..86539c04 --- /dev/null +++ b/sample_notebooks/AnkitKumar/Ch16.ipynb @@ -0,0 +1,364 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16 : Electrical Energy & Capacitance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1 Page No : 533" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of E = 4000.00 v/m\n" + ] + } + ], + "source": [ + "v_bminusv_a=-12\n", + "d=0.3*10**-2#in m\n", + "E=-(v_bminusv_a)/d\n", + "print \"The value of E = %0.2f v/m\"%E" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2 Page No : 533" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "solution a\n", + "Electric potential from A to B = -40000.00 V\n", + "solution b\n", + "Change in electric potential = -0.00 joules\n", + "velocity = 2768514.16 m/s\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "print \"solution a\"\n", + "E=8*10**4#in V/m\n", + "d=0.5#in m\n", + "delta_V=-E*d\n", + "print \"Electric potential from A to B = %0.2f V\"%delta_V\n", + "print \"solution b\"\n", + "q=1.6*10**-19#in C\n", + "delta_PE=q*delta_V\n", + "print \"Change in electric potential = %0.2f joules\"%delta_PE\n", + "m_p=1.67*10**-27#in kg\n", + "vf=sqrt((2*-delta_PE)/m_p)\n", + "print \"velocity = %0.2f m/s\"%vf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.3 Page No: 534" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solution a\n", + "Magnitude of V1 = 112375.00 v\n", + "Magnitude of V2 = -35960.00 v\n", + "solution b\n", + "Magnitude of Vp = 76415.00 v\n", + "work done = 0.31 Joule\n" + ] + } + ], + "source": [ + "k_e=8.99*10**9 #N.m**2/c**2\n", + "q1=5*10**-6# in C\n", + "q2=-2*10**-6#in C\n", + "r1=0.4\n", + "r2=0.5\n", + "V1=(k_e*q1)/(r1)\n", + "V2=(k_e*q2)/(r2)\n", + "print \"Solution a\"\n", + "print \"Magnitude of V1 = %0.2f v\"%V1\n", + "print \"Magnitude of V2 = %0.2f v\"%V2\n", + "print \"solution b\"\n", + "vp=V1+V2\n", + "print \"Magnitude of Vp = %0.2f v\"%vp\n", + "q3=4*10**-6#in C\n", + "w=vp*q3\n", + "print \"work done = %0.2f Joule\"%w" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.4 Page No: 535" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Capacitance = 1.77e-12 farad\n" + ] + } + ], + "source": [ + "e0=8.85*10**-12#in c2/N.m2\n", + "A=2*10**-4#in m2\n", + "d=1*10**-3#in m\n", + "c=(e0*A)/d\n", + "print \"Capacitance = %0.2e farad\"%c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5 Page No : 535" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "capacitance = 4.50e-05 farad\n", + "voltage between battery = 2.16e-04 c\n" + ] + } + ], + "source": [ + "c1=3*10**-6\n", + "c2=6*10**-6\n", + "c3=12*10**-6\n", + "c4=24*10**-6\n", + "delta_v=18\n", + "c_eq=c1+c2+c3+c4\n", + "print \"capacitance = %0.2e farad\"%c_eq\n", + "q=delta_v*c3\n", + "print \"voltage between battery = %0.2e c\"%q" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.6 Page No : 536" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "solution a\n", + "capacitance = 1.60e-06 farad\n", + "solution b\n", + "voltage between battery = 2.88e-05 c\n" + ] + } + ], + "source": [ + "c1=3*10**-6\n", + "c2=6*10**-6\n", + "c3=12*10**-6\n", + "c4=24*10**-6\n", + "delta_v=18\n", + "print \"solution a\"\n", + "c_eq=1/((1/c1)+(1/c2)+(1/c3)+(1/c4))\n", + "print \"capacitance = %0.2e farad\"%c_eq\n", + "q=delta_v*c_eq\n", + "print \"solution b\"\n", + "print \"voltage between battery = %0.2e c\"%q" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.7 Page No: 536" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "solution a\n", + "capacitance = 2.00e-06 farad\n" + ] + } + ], + "source": [ + "c1=4*10**-6\n", + "c2=4*10**-6\n", + "print \"solution a\"\n", + "c_eq=1/((1/c1)+(1/c2))\n", + "print \"capacitance = %0.2e farad\"%c_eq" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.8 Page No: 537" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "solution a\n", + "Energy stored = 4671 volt\n", + "solution b\n", + "power = 240000 watt\n" + ] + } + ], + "source": [ + "Energy=1.2*10**3#in J\n", + "c=1.1*10**-4#in f\n", + "delta_v=sqrt((2*Energy)/c)\n", + "print \"solution a\"\n", + "print \"Energy stored = %0.f volt\"%delta_v\n", + "print \"solution b\"\n", + "Energy_deliverd=600#in j\n", + "delta_t=2.5*10**-3#in s\n", + "p=(Energy_deliverd)/delta_t\n", + "print \"power = %0.f watt\"%p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.9 Page No: 538" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "solution a\n", + "Capacitance = 1.96e-11 farad\n", + "solution b\n", + "Voltage = 16000.0 volt\n", + "Maximum charge = 3.14e-07 columb\n" + ] + } + ], + "source": [ + "k=3.7\n", + "e0=8.85*10**-12#in c2/N.m2\n", + "A=6*10**-4#in m2\n", + "d=1*10**-3#in m\n", + "c=(k*e0*A)/d\n", + "print \"solution a\"\n", + "print \"Capacitance = %0.2e farad\"%c\n", + "print \"solution b\"\n", + "E_max=16*10**6#in v/m\n", + "delta_v_max=E_max*d\n", + "print \"Voltage = %0.1f volt\"%delta_v_max\n", + "Q_max=delta_v_max*c\n", + "print \"Maximum charge = %0.2e columb\"%Q_max" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/GauravMittal/Ch3.ipynb b/sample_notebooks/GauravMittal/Ch3.ipynb new file mode 100644 index 00000000..6e94dab7 --- /dev/null +++ b/sample_notebooks/GauravMittal/Ch3.ipynb @@ -0,0 +1,373 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3 - Properties of pure substances" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.1 Page: 88" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.1 - Page: 88\n", + "\n", + "\n", + "Molar Volume of the gas is 1.29e-02 cubic metres\n" + ] + } + ], + "source": [ + "print \"Example: 3.1 - Page: 88\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "P = 2*10**5## [Pa]\n", + "T = 273 + 37## [K]\n", + "R = 8.314## [J/mol K]\n", + "#****************\n", + "# Since the gas behaves ideally:\n", + "V = R*T/P## [cubic metres]\n", + "print \"Molar Volume of the gas is %.2e cubic metres\"%(V)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.2 Page: 89" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.2 - Page: 89\n", + "\n", + "\n", + "The pressure of air after compression is 1200 kPa\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 3.2 - Page: 89\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "V1 = 8## [cubic m]\n", + "P1 = 300## [kPa]\n", + "V2 = 2## [cubic m]\n", + "#**************\n", + "# Apptying the ideal gas Eqn. & since the Temperature remains constant:\n", + "P2 = P1*V1/V2## [kPa]\n", + "print \"The pressure of air after compression is %d kPa\\n\"%(P2)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.3 Page: 89" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.3 - Page: 89\n", + "\n", + "\n", + "The pressure of the remaining air is 0 kPa\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 3.3 - Page: 89\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "V1 = 6## [cubic m]\n", + "P1 = 500## [kPa]\n", + "R = 0.287## [kJ/kg K]\n", + "#*************\n", + "# Applying the charectarstic equation to the gas initially:\n", + "# P1*V1 = m1*R*T1.......................................(i)\n", + "# Applying the charectarstic equation to the gas which was left in the vessel after one-fifth of the gas has been removed:\n", + "# P2*V2 = m2*R*T2.......................................(ii)\n", + "# V2 = V1# T2 = T1# m2 = (4/5)*m1# Eqn (ii) becomes:\n", + "# P2*V1 = (4/5)*m1*R*T1..................................(iii)\n", + "# Dividing eqn (i) by eqn (iii), we get:\n", + "P2 = (4/5)*P1## [kPa]\n", + "print \"The pressure of the remaining air is %d kPa\\n\"%(P2)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.4 Page: 90" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.4 - Page: 90\n", + "\n", + "\n", + "Final Temperature of the air when the piston reaches stop is 361.5 K\n", + "\n", + "Pressure of air inside the cylinder is 2.51 bar\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 3.4 - Page: 90\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "T1 = 450 + 273## [K]\n", + "P1 = 3## [bar]\n", + "#***************\n", + "# Soluton(a)\n", + "# From Fig. 3.7, (Page 90)\n", + "# Since the weight remains the same, therefore, the final pressure is equal to the initial pressure.\n", + "# Therefore it is a constant pressure process.\n", + "P2 = P1## [bar]\n", + "# Volumetric Ratio:\n", + "V2_by_V1 = 2.5/(2.5 + 2.5)# Applying ideal gas law & P1 = P2\n", + "T2 = T1*V2_by_V1## [K]\n", + "print \"Final Temperature of the air when the piston reaches stop is %.1f K\\n\"%(T2)\n", + "# Solution (b)\n", + "# When the piston rests ot the stops, the pressure exerted by the weight, air & the atmosphere will be different. But there will beno further decrease in volume.\n", + "# This is a constant volume process.\n", + "T3 = 273 + 30## [K]\n", + "# Applying ideal gas law & V2 = V3\n", + "P3 = T3*P2/T2## [bar]\n", + "print \"Pressure of air inside the cylinder is %.2f bar\\n\"%(P3)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.5 Page: 95" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.5 - Page: 95\n", + "\n", + "\n", + "The temperature at which ammonia exists in the cylinder is 321.5 K\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 3.5 - Page: 95\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "m = 1.373## [kg]\n", + "P = 1.95*10**(6)## [Pa]\n", + "V = 0.1## [cubic m]\n", + "a = 422.546*10**(-3)## [cubic m/square mol]\n", + "b = 37*10**(-6)## [cubic m/mol]\n", + "M = 17*10**(-3)## [kg/mol]\n", + "R = 8.314## [J/mol K]\n", + "#****************\n", + "n = m/M## [moles]\n", + "Vm = V/n## [molar volume, cubic m]\n", + "# Applying Van der Waals equation of state:\n", + "T = (P + (a/Vm**2))*((Vm - b)/R)## [K]\n", + "print \"The temperature at which ammonia exists in the cylinder is %.1f K\\n\"%(T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.10 Page: 103" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.10 - Page: 103\n", + "\n", + "\n", + "Value of derivative is 23.98 bar/OC\n", + "\n", + "The pressure generated by heating at constant Volume is 240.84 Pa\n", + "\n", + "The change in Volume is -0.038 cubic cm/g\n", + "\n" + ] + } + ], + "source": [ + "from math import exp\n", + "print \"Example: 3.10 - Page: 103\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "beeta = 1.487*10**(-3)## [1/OC]\n", + "alpha = 62*10**(-6)## [1/bar]\n", + "V1 = 1.287## [cubic cm /g]\n", + "#************\n", + "# Solution (a)\n", + "# The value of derivative (dP/dT) at constant V:\n", + "# dV/V = beeta*dT - alpha*dP\n", + "# dV = 0\n", + "# dP/dT = beeta/alpha\n", + "# Value = dP/dT\n", + "Value = beeta/alpha## [bar/OC]\n", + "print \"Value of derivative is %.2f bar/OC\\n\"%(Value)\n", + "# Solution (b)\n", + "P1 = 1## [bar]\n", + "T1 = 20## [OC]\n", + "T2 = 30## [OC]\n", + "# Applying the same equation:\n", + "P2 = P1 +(beeta/alpha)*(T2 - T1)## [bar]\n", + "print \"The pressure generated by heating at constant Volume is %.2f Pa\\n\"%(P2)\n", + "# Solution (c)\n", + "T2 = 0## [OC]\n", + "T1 = 20## [OC]\n", + "P2 = 10## [bar]\n", + "P1 = 1## [bar]\n", + "# The change in Volume can be obtained as:\n", + "V2 = V1*exp((beeta*(T2 - T1)) - alpha*(P2 - P1))## [cubic cm/g]\n", + "deltaV = V2 - V1## [cubic cm/g]\n", + "print \"The change in Volume is %.3f cubic cm/g\\n\"%(deltaV)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 3.11 Page: 107" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 3.11 - Page: 107\n", + "\n", + "\n", + "Acentric factor is 0.6447\n" + ] + } + ], + "source": [ + "from math import log10\n", + "print \"Example: 3.11 - Page: 107\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****\n", + "Tc = 513.9## [K]\n", + "Pc = 61.48*10**5## [Pa]\n", + "#************\n", + "Tr = 0.7\n", + "T = Tr*Tc - 273.15## [OC]\n", + "P_sat = 10**(8.112 - (1592.864/(T + 226.184)))## [mm Hg]\n", + "P_sat = P_sat*101325/760## [Pa]\n", + "Pr_sat = P_sat/Pc## [Pa]\n", + "omega = -1 - log10(Pr_sat)## [Acentric factor]\n", + "print \"Acentric factor is %.4f\"%(omega)#" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/Mohdarif/Ch21.ipynb b/sample_notebooks/Mohdarif/Ch21.ipynb new file mode 100644 index 00000000..507735ab --- /dev/null +++ b/sample_notebooks/Mohdarif/Ch21.ipynb @@ -0,0 +1,725 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 21 Newtin-cotes integration formula" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 21.1 Pg : 612" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Error Et= 1.468\n", + "The percent relative error et= 89.467 %\n", + "The approximate error estimate without using the true value= 2.56\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "tval=1.640533#\n", + "a=0#\n", + "b=0.8#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "l=(b-a)*((fa+fb)/2)#\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the second derivative of f\n", + "def g(x):\n", + " y=-400+4050*x-10800*x**2+8000*x**3\n", + " return y\n", + "\n", + "from sympy.mpmath import quad\n", + "f2x=quad(g,[0,0.8])/(b-a)##average value of second derivative\n", + "Ea=-(1/12)*(f2x)*(b-a)**3#\n", + "print \"The Error Et=\",round(Et,3)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",Ea" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 21.2 Pg : 613" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Error Et= 0.572\n", + "The percent relative error et= 34.85 %\n", + "The approximate error estimate without using the true value= 0.64\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "n=2#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "fh=f(h)#\n", + "l=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the second derivative of f\n", + "def g(x):\n", + " y=-400+4050*x-10800*x**2+8000*x**3\n", + " return y\n", + "f2x=quad(g,[0,0.8])/(b-a)##average value of second derivative\n", + "Ea=-(1/12)*(f2x)*(b-a)**3/(n**2)#\n", + "print \"The Error Et=\",round(Et,3)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",Ea" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex :21.3 Pg : 614" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No. of segments= 10\n", + "Segment size= 1.0\n", + "Estimated d= 288.749146143 m\n", + "0.237014701487 et(%)\n", + "---------------------------------------------------------\n", + "No. of segments= 20\n", + "Segment size= 0.5\n", + "Estimated d= 289.263574224 m\n", + "0.0592795228803 et(%)\n", + "---------------------------------------------------------\n", + "No. of segments= 50\n", + "Segment size= 0.2\n", + "Estimated d= 298.382319223 m\n", + "et(%) -3.09125177877\n", + "---------------------------------------------------------\n", + "No. of segments= 100\n", + "Segment size= 0.1\n", + "Estimated d= 293.915596452 m\n", + "et(%) -1.54799665905\n", + "---------------------------------------------------------\n", + "No. of segments= 100\n", + "Segment size= 0.1\n", + "Estimated d= 293.915596452 m\n", + "et(%) -1.54799665905\n", + "---------------------------------------------------------\n", + "No. of segments= 200\n", + "Segment size= 0.05\n", + "Estimated d= 289.43343055 m\n", + "et(%) 0.000594070904571\n", + "---------------------------------------------------------\n", + "No. of segments= 200\n", + "Segment size= 0.05\n", + "Estimated d= 289.43343055 m\n", + "et(%) 0.000594070904571\n", + "---------------------------------------------------------\n", + "No. of segments= 500\n", + "Segment size= 0.02\n", + "Estimated d= 290.332334709 m\n", + "et(%) -0.309977799375\n", + "---------------------------------------------------------\n", + "No. of segments= 1000\n", + "Segment size= 0.01\n", + "Estimated d= 289.883809248 m\n", + "et(%) -0.155012011658\n", + "---------------------------------------------------------\n", + "No. of segments= 2000\n", + "Segment size= 0.005\n", + "Estimated d= 289.435129352 m\n", + "et(%) 7.13401428866e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 2000\n", + "Segment size= 0.005\n", + "Estimated d= 289.435129352 m\n", + "et(%) 7.13401428866e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 5000\n", + "Segment size= 0.002\n", + "Estimated d= 289.435143766 m\n", + "et(%) 2.15393877364e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 5000\n", + "Segment size= 0.002\n", + "Estimated d= 289.435143766 m\n", + "et(%) 2.15393877364e-06\n", + "---------------------------------------------------------\n", + "No. of segments= 10000\n", + "Segment size= 0.001\n", + "Estimated d= 289.480018962 m\n", + "et(%) -0.0155022506708\n", + "---------------------------------------------------------\n" + ] + } + ], + "source": [ + "g=9.8##m/s**2# acceleration due to gravity\n", + "m=68.1##kg\n", + "c=12.5##kg/sec# drag coefficient\n", + "def f(t):\n", + " from numpy import exp\n", + " v=g*m*(1-exp(-c*t/m))/c\n", + " return v\n", + "tval=289.43515##m\n", + "a=0#\n", + "b=10#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "from numpy import arange, exp\n", + "for i in arange(10,21,10):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print et,\"et(%)\"\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(50,101,50):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(100,201,100):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(200,501,300):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(1000,2001,1000):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(2000,5001,3000):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"\n", + "\n", + "for i in arange(5000,10001,5000):\n", + " n=i#\n", + " h=(b-a)/n#\n", + " print \"No. of segments=\",i\n", + " print \"Segment size=\",h\n", + " j=a+h#\n", + " s=0#\n", + " while j<b:\n", + " s=s+f(j)#\n", + " j=j+h#\n", + " \n", + " l=(b-a)*(fa+2*s+fb)/(2*n)#\n", + " Et=tval-l##error\n", + " et=Et*100/tval##percent relative error\n", + " print \"Estimated d=\",l,\"m\"\n", + " print \"et(%)\",et\n", + " print \"---------------------------------------------------------\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 21.4 Pg : 618" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.37\n", + "The Error Et= 0.27\n", + "The percent relative error et= 16.645 %\n", + "The approximate error estimate without using the true value= 0.273\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "n=2#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "fh=f(h)#\n", + "l=(b-a)*(fa+4*fh+fb)/(3*n)#\n", + "print\"l=\", round(l,2)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the fourth derivative of f\n", + "def g(x):\n", + " y=-21600+48000*x\n", + " return y\n", + "\n", + "f4x=quad(g,[0,0.8])/(b-a)##average value of fourth derivative\n", + "Ea=-(1/2880)*(f4x)*(b-a)**5#\n", + "print \"The Error Et=\",round(Et,2)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",round(Ea,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.5 Pg : 620" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.62\n", + "The Error Et= 0.02\n", + "The percent relative error et= 1.04 %\n", + "The approximate error estimate without using the true value= 0.017\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "n=4#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "j=a+h#\n", + "s=0#\n", + "count=1#\n", + "while j<b:\n", + " if (-1)**count==-1:\n", + " s=s+4*f(j)#\n", + " else:\n", + " s=s+2*f(j)#\n", + " \n", + " count=count+1#\n", + " j=j+h#\n", + "\n", + "l=(b-a)*(fa+s+fb)/(3*n)#\n", + "print\"l=\", round(l,2)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the fou:rth derivative of f\n", + "def g(x):\n", + " y=-21600+48000*x\n", + " return y\n", + "f4x=quad(g,[0,0.8])/(b-a)##average value of fourth derivative\n", + "Ea=-(1/(180*4**4))*(f4x)*(b-a)**5#\n", + "print \"The Error Et=\",round(Et,2)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",round(Ea,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex :23.6 Pg : 625" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Part A:\n", + "l= 1.519\n", + "The Error Et= 0.12\n", + "The percent relative error et= 7.398 %\n", + "The approximate error estimate without using the true value= 0.121\n", + "---------------------------------------------------\n", + "Part B:\n", + "l= 1.645\n", + "The Error Et= -0.005\n", + "The percent relative error et= -0.277 %\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "a=0#\n", + "b=0.8#\n", + "tval=1.640533#\n", + "#part a\n", + "n=3#\n", + "h=(b-a)/n#\n", + "fa=f(a)#\n", + "fb=f(b)#\n", + "j=a+h#\n", + "s=0#\n", + "count=1#\n", + "while j<b:\n", + " s=s+3*f(j)#\n", + " count=count+1#\n", + " j=j+h#\n", + "\n", + "l=(b-a)*(fa+s+fb)/(8)#\n", + "print \"Part A:\"\n", + "print \"l=\",round(l,3)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "\n", + "#by using approximate error estimate\n", + "\n", + "#the fourth derivative of f\n", + "def g(x):\n", + " y=-21600+48000*x\n", + " return y\n", + "f4x=quad(g,[0,0.8])/(b-a)##average value of fourth derivative\n", + "Ea=-(1/6480)*(f4x)*(b-a)**5#\n", + "print \"The Error Et=\",round(Et,2)\n", + "print \"The percent relative error et=\",round(et,3),\"%\"\n", + "print \"The approximate error estimate without using the true value=\",round(Ea,3)\n", + "#part b\n", + "n=5#\n", + "h=(b-a)/n#\n", + "l1=(a+2*h-a)*(fa+4*f(a+h)+f(a+2*h))/6#\n", + "l2=(a+5*h-a-2*h)*(f(a+2*h)+3*(f(a+3*h)+f(a+4*h))+fb)/8#\n", + "l=l1+l2#\n", + "print \"---------------------------------------------------\"\n", + "print \"Part B:\"\n", + "print \"l=\", round(l,3)\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "print \"The Error Et=\", round(Et,3)\n", + "print \"The percent relative error et=\", round(et,3), \"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.7 Pg : 626" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.59480096\n", + "The Error Et= 0.04573204\n", + "The percent relative error et= 2.78763304365 %\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "tval=1.640533#\n", + "x=[0, 0.12, 0.22, 0.32, 0.36, 0.4 ,0.44 ,0.54 ,0.64 ,0.7 ,0.8]\n", + "func=[]\n", + "for i in range(0,11):\n", + " func.append(f(x[i]))#\n", + "\n", + "l=0#\n", + "for i in range(0,10):\n", + " l=l+(x[i+1]-x[i])*(func[i]+func[i+1])/2#\n", + "\n", + "print \"l=\",l\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "print \"The Error Et=\",Et\n", + "print \"The percent relative error et=\",et,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.8 Pg : 230" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l= 1.60364091733\n", + "The Error Et= 0.0368920826667\n", + "The percent relative error et= 2.2487863802 %\n" + ] + } + ], + "source": [ + "def f(x):\n", + " y=(0.2+25*x-200*x**2+675*x**3-900*x**4+400*x**5)\n", + " return y\n", + "tval=1.640533#\n", + "x=[0, 0.12, 0.22, 0.32, 0.36, 0.4 ,0.44 ,0.54, 0.64, 0.7, 0.8]\n", + "func =[]\n", + "for i in range(0,11):\n", + " func.append(f(x[i]))\n", + "\n", + "l1=(x[1]-x[0])*((f(x[0])+f(x[1]))/2)#\n", + "l2=(x[3]-x[1])*(f(x[3])+4*f(x[2])+f(x[1]))/6#\n", + "l3=(x[6]-x[3])*(f(x[3])+3*(f(x[4])+f(x[5]))+f(x[6]))/8#\n", + "l4=(x[8]-x[6])*(f(x[6])+4*f(x[7])+f(x[8]))/6\n", + "l5=(x[9]-x[8])*((f(x[9])+f(x[8]))/2)#\n", + "l6=(x[10]-x[9])*((f(x[10])+f(x[9]))/2)#\n", + "l=l1+l2+l3+l4+l5+l6#\n", + "print \"l=\",l\n", + "Et=tval-l##error\n", + "et=Et*100/tval##percent relative error\n", + "print \"The Error Et=\",Et\n", + "print \"The percent relative error et=\",et,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex : 23.9 Pg : 629" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The average termperature is= 53.0\n" + ] + } + ], + "source": [ + "def f(x,y):\n", + " t=2*x*y+2*x-x**2-2*y**2+72\n", + " return t\n", + "Len=8##m,length\n", + "wid=6##m,width\n", + "a=0#\n", + "b=Len#\n", + "n=2#\n", + "h=(b-a)/n#\n", + "a1=0#\n", + "b1=wid#\n", + "h1=(b1-a1)/n#\n", + "\n", + "fa=f(a,0)#\n", + "fb=f(b,0)#\n", + "fh=f(h,0)#\n", + "lx1=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "\n", + "fa=f(a,h1)#\n", + "fb=f(b,h1)#\n", + "fh=f(h,h1)#\n", + "lx2=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "\n", + "fa=f(a,b1)#\n", + "fb=f(b,b1)#\n", + "fh=f(h,b1)#\n", + "lx3=(b-a)*(fa+2*fh+fb)/(2*n)#\n", + "\n", + "l=(b1-a1)*(lx1+2*lx2+lx3)/(2*n)#\n", + "\n", + "avg_temp=l/(Len*wid)#\n", + "print\"The average termperature is=\", avg_temp" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |