summaryrefslogtreecommitdiff
path: root/sample_notebooks
diff options
context:
space:
mode:
authorTrupti Kini2016-11-25 23:30:54 +0600
committerTrupti Kini2016-11-25 23:30:54 +0600
commit251aecb3432f4efd990b2848563af88948e3ea4c (patch)
treecb8c6decedb86cf9ca3101cdabbbd24ce583d8c4 /sample_notebooks
parent3727ade10dd304eb7a596cac7adb00302953e402 (diff)
downloadPython-Textbook-Companions-251aecb3432f4efd990b2848563af88948e3ea4c.tar.gz
Python-Textbook-Companions-251aecb3432f4efd990b2848563af88948e3ea4c.tar.bz2
Python-Textbook-Companions-251aecb3432f4efd990b2848563af88948e3ea4c.zip
Added(A)/Deleted(D) following books
A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter10_kN6Dpid.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter11_tIlzIkR.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter12_PgrcCS3.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter1_eLqBEle.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter2_F25WLJ6.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter3_Eijvt7y.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter4_rlhSgIB.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter5_YQ3b0EW.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter6_raABo34.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter7_52Xb53f.ipynb A BSc_First_Year_Physics_by_P._BalaBhaskar,_N._Srinivasa_Rao,_B._Sanjeeva_Rao/Chapter8_mk2HyQz.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter10_NUnB5Sw.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter11_pIim3x0.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter12_9A34qBU.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13_ZusP0LZ.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter14_HgYvpWb.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter15_o1Meb0U.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter16_xq1IcPx.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter17_JAzeWmK.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18_7Yy7cvJ.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter19_GQTZX04.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter1_seG0iD4.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter20_7AIMdUg.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter21_ingIztX.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter22_yljf4OR.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter2_exrY10K.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter3_4zPOo0N.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter4_UHVlvXM.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5_He9TCwH.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter6_569mm1H.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter7_uRawaHX.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter8_KEcrcQP.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter9_2XNkqrL.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/screenshots/16.11_EVddapc.png A Basic_And_Applied_Thermodynamics_by_P._K._Nag/screenshots/3.3_hWZB9rU.png A Basic_And_Applied_Thermodynamics_by_P._K._Nag/screenshots/7.10_IDdNUer.png A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter11_0YOsUSl.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter12_hzQe7ah.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter13_DuT5TXy.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter14_3UXi8E3.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter15_YmFtkbT.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter16_NzhdF5v.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter18_gAN9M3I.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter19_d2Dk0b0.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter20_oPoeIwV.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter21_g3i9pmI.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter22_kZ51MuY.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter23_MeQwZwE.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter2_9eBOyNb.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter5_0stc93N.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter6_Qjw2zj2.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter8_1dOnAi7.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/Chapter9_12ISo6t.ipynb A Electrical_&_Electronic_Systems_by_Neil_Storey/screenshots/pic1_SdzvQJK.png A Electrical_&_Electronic_Systems_by_Neil_Storey/screenshots/pic2_6vjSxZe.png A Electrical_&_Electronic_Systems_by_Neil_Storey/screenshots/pic3_vqn3sAt.png A Problems_in_Electrical_Engineering_by_Parker_Smith/README.txt A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter10_QlnhZhy.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter11_0iM0C4n.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter12_KLDtsnD.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter13_PUt6mPw.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter14_1MNPptQ.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter15_xVW7XGn.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter16_au5Aji1.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter17_0ixqhLJ.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter18_jjgTIC5.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter19_Z3Jn476.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter1_nKyAwVf.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter2_jki9geU.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter3_9BtkYo4.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter4_KaWbXff.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter5_NTVaiVF.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter7_fElJXKG.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter8_P6SjSkH.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/Chapter9_5BJhRQ7.ipynb A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/screenshots/11.4_upwwc7G.png A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/screenshots/13.1_fg5oW41.png A RCC_Theory_and_Design_by_M._G._Shah_and_C._M._Kale/screenshots/15.4_yoOlH2F.png A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter01.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter02.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter03.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter04.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter05.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter06.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter07.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter08.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter09.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter10.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter11.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter12.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter13.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter14.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter15.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter16.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter17.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter18.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapter19.ipynb A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/15.8.png A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/4.3.png A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/9.6.png A f_by_df/1_An_overview_of_C.ipynb A f_by_df/screenshots/amit_Das.png A f_by_df/screenshots/amit_Das_2s4uFcV.png A f_by_df/screenshots/anshul_zMmwiWY.png A sample_notebooks/RahulJoshi/Chapter_1_An_Overview_of_Heat_Trasnfer.ipynb
Diffstat (limited to 'sample_notebooks')
-rw-r--r--sample_notebooks/RahulJoshi/Chapter_1_An_Overview_of_Heat_Trasnfer.ipynb1396
1 files changed, 1396 insertions, 0 deletions
diff --git a/sample_notebooks/RahulJoshi/Chapter_1_An_Overview_of_Heat_Trasnfer.ipynb b/sample_notebooks/RahulJoshi/Chapter_1_An_Overview_of_Heat_Trasnfer.ipynb
new file mode 100644
index 00000000..0cef27c9
--- /dev/null
+++ b/sample_notebooks/RahulJoshi/Chapter_1_An_Overview_of_Heat_Trasnfer.ipynb
@@ -0,0 +1,1396 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 1.1 Page Number 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat Flow through the surface is 17850.0 W\n",
+ "Temprature Gradient in flow direction -700.0 C/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T = 100 # temperature of wall 1 in deg celcius\n",
+ "\n",
+ "t = 30 # temperature of wall 2 in deg celcius\n",
+ "\n",
+ "L = 0.1 # distance between the walls in meters\n",
+ "\n",
+ "k = 8.5 # thermal conductivity in W/mK\n",
+ "\n",
+ "A = 3 # area is meters square\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Q = (T-t)/(L/(k*A)) # heat flow rate in (W)\n",
+ "\n",
+ "tempgrad = (-1*Q)/(k*A) # temperature gradient in celcius/meter\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Heat Flow through the surface is\",Q,\"W\")\n",
+ "\n",
+ "print(\"Temprature Gradient in flow direction\",tempgrad,\"C/m\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.2 Page Number 6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Convective heat transfer rate 1500.0 W\n",
+ "Resistance 0.08 C/W\n",
+ "Temprature Gradient along y direction -3000.0 C/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T = 160 # temperature of wall 1 in deg celcius\n",
+ "\n",
+ "t = 40 # temperature of wall 2 in deg celcius\n",
+ "\n",
+ "k = 1 # thermal conductivity in W/mK\n",
+ "\n",
+ "h = 25 # Convective heat transfer coefficient W/m2K\n",
+ "\n",
+ "A = 0.5 # area is meters square\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Q = h*A*(T-t) # heat tranfer by convection (W)\n",
+ "\n",
+ "r = 1/(h*A) # resistance (C/W)\n",
+ "\n",
+ "tempgrad = (-1*Q)/(k*A) # temperature gradient in celcius/meter along y\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Convective heat transfer rate \",Q,\"W\")\n",
+ "\n",
+ "print(\"Resistance\",r,\"C/W\")\n",
+ "\n",
+ "print(\"Temprature Gradient along y direction\",tempgrad,\"C/m\")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.3 Page number 7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat Flow through the surface is 2171.37 W\n",
+ "Resistance 0.0783 K/W\n",
+ "Equivalent thermal coefficient 6.3864 W/m2K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T = 473 # temperature of wall 1 kelvin\n",
+ "\n",
+ "t = 303 # temperature of wall 2 in kelvin\n",
+ "\n",
+ "sigma = 5.67*10**-8 # Stefen-Boltzmann constant\n",
+ "\n",
+ "F = 0.46 # emmissivity \n",
+ "\n",
+ "A = 2 # area is meters sq\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Q = F*sigma*A*(T**4-t**4) # heat exchange in (W)\n",
+ "\n",
+ "R = (T-t)/Q # Resistance in (K/W)\n",
+ "\n",
+ "hr = 1/(R*A) # equivalent thermal coefficient W/m2K\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Heat Flow through the surface is\",round(Q,2),\"W\")\n",
+ "\n",
+ "print(\"Resistance\",round(R,4),\"K/W\")\n",
+ "\n",
+ "print(\"Equivalent thermal coefficient\",round(hr,4),\"W/m2K\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.4 Page number 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat Received 7092.23 W\n",
+ "T2 = 368.479 K\n",
+ "Temprature on other side of the wall 263.3 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "Tinf1 = 500 # temperature of wall 1 Kelvin\n",
+ "\n",
+ "T1 = 400 # temperature of wall 2 in Kelvin\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 50 # Convective heat transfer coefficient W/m2K\n",
+ "\n",
+ "k = 45 # thermal conductivity in W/mK\n",
+ "\n",
+ "L = 0.2 # slab thickness in meters\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Q = sigma*((Tinf1/100)**4 - (T1/100)**4)+ h*(Tinf1-T1) # heat received (W)\n",
+ "\n",
+ "dT = Q*(L/k) # temp gradient (K)\n",
+ "\n",
+ "T2 = T1-dT #\n",
+ "\n",
+ "Tinf2 = 263.3 # temperature on the other side of the wall using trial and error\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Heat Received \",round(Q,3),\"W\")\n",
+ "\n",
+ "print(\"T2 = \",round(T2,3),\"K\")\n",
+ "\n",
+ "print(\"Temprature on other side of the wall\",round(Tinf2,3),\"K\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.5 Page number "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rate of change of temperature 0.03984 C/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T1 = 400 # temperature of wall 1 Kelvin\n",
+ "\n",
+ "T2 = 100 # temperature of wall 2 in Kelvin\n",
+ "\n",
+ "sigma = 5.67*10**-8 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 200 # Convective heat transfer coefficient W/m2K\n",
+ "\n",
+ "q = 1.5*10**6 # heat generated in W/m3\n",
+ "\n",
+ "H = 0.3 # height in meters\n",
+ "\n",
+ "r = 0.15 # radius in meters\n",
+ "\n",
+ "rho = 19000 # density in kg/m3\n",
+ "\n",
+ "cp = 118 # specific heat capacity in kJ/kgK\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Sa = 2*3.14*r*H+2*3.14*r**2 # Surface area in meters sq\n",
+ "\n",
+ "Hc = 3.14*r**2*H*rho*cp # heat capacity in J/deg C\n",
+ "\n",
+ "Hg = 3.14*r**2*H*q # Heat generated in W\n",
+ "\n",
+ "Hcon = h*Sa*(T1-T2) # convective heat transfer in W\n",
+ "\n",
+ "Hrad = sigma*Sa*((T1+273)**4 - (T2+273)**4)\n",
+ "\n",
+ "Th = Hg-Hcon-Hrad\n",
+ "\n",
+ "dTbydt = Th/Hc\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Rate of change of temperature \",round(dTbydt,5),\"C/s\")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.6 Page number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "BTU/hrftF = 1.7322 W/mC\n",
+ "BTU/hrft2F = 5.6831 W/m2C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "J = 9.47*10**-4 # Joule to BTU conversion\n",
+ "\n",
+ "m = 39.37 # meter to inch conversion\n",
+ "\n",
+ "kg = 2.2046 # kg to lb conversion\n",
+ "\n",
+ "C = 9/5 # Celcius to Farhenight\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "BTU = 1/J # in Joule\n",
+ "\n",
+ "ft = 12/m # in feet\n",
+ "\n",
+ "a = (BTU/(3600*ft*(5/9))) # in BTU/hrftF\n",
+ "\n",
+ "print(\"BTU/hrftF = \",round(a,4),\"W/mC\")\n",
+ "\n",
+ "b = (BTU/(3600*ft**2*(5/9))) # in BTU/hrftF\n",
+ "\n",
+ "print(\"BTU/hrft2F = \",round(b,4),\"W/m2C\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 1 page Number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temprature gradient along surface -1111.7 C/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T1 = 200 # temperature of wall 1 Kelvin\n",
+ "\n",
+ "T2 = 60 # temperature of wall 2 in Kelvin\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 80 # Convective heat transfer coefficient W/m2K\n",
+ "\n",
+ "k = 12 # thermal conductivity in W/mK\n",
+ "\n",
+ "#L = 0.2 # slab thickness in meters\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Q = sigma*(((T1+273)/100)**4 - ((T2+273)/100)**4)+ h*(T1-T2) # heat received (W)\n",
+ "\n",
+ "dTbydx = Q/(-1*k) # temp gradient (K)\n",
+ "\n",
+ "print(\"Temprature gradient along surface\",round(dTbydx,1),\"C/m\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 2 Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temprature only conduction and convection 682.174 C\n",
+ "Temprature only conduction and radiation 1139.148 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "dTbydx = -9000 # temperature gradient \n",
+ "\n",
+ "T2 = 30 # temperature of wall 2 in C\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "k = -25 # Convective heat transfer coefficient W/mK\n",
+ "\n",
+ "h = 345 # thermal conductivity in W/m2K\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "#only conduction and convection\n",
+ "\n",
+ "T11 = k*A*dTbydx/(h*A) + T2\n",
+ "\n",
+ "#only conduction and radiation\n",
+ "\n",
+ "T12 = (((k*A*dTbydx/(sigma)) + ((T2+273)/100)**4)*100**4)**(1/4)-273\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Temprature only conduction and convection \",round(T11,3),\"C\")\n",
+ "\n",
+ "print(\"Temprature only conduction and radiation \",round(T12,3),\"C\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem number 3 Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wall surface temperature 330.4 K\n",
+ "Heat Generated 2252.765 W/m2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "Qc = 2250 # heat conducted in W/m2\n",
+ "\n",
+ "T1 = 303 # temperature of wall 2 in C\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 75 # thermal conductivity in W/m2K\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# taking the approximate value from table 330.4\n",
+ "\n",
+ "Tapprox = 330.4\n",
+ "\n",
+ "Q = h*(Tapprox-T1)+sigma*((Tapprox/100)**4-(T1/100)**4)\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Wall surface temperature \",round(Tapprox,3),\"K\")\n",
+ "\n",
+ "print(\"Heat Generated \",round(Q,3),\"W/m2\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 4 page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wall surface temperature 277.75 K\n",
+ "Heat Generated 65.479 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "Hc = 65.5 # heat conducted in W/m\n",
+ "\n",
+ "T1 = 263 # temperature of wall in K\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 4.35 # thermal conductivity in W/m2K\n",
+ "\n",
+ "r = 0.08 # area in meters \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# taking the approximate value from table 277.75 K\n",
+ "\n",
+ "Tapprox = 277.75\n",
+ "\n",
+ "Q = h*3.14*r*2*(Tapprox-T1)+sigma*2*3.14*r*((Tapprox/100)**4-(T1/100)**4)\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Wall surface temperature \",round(Tapprox,3),\"K\")\n",
+ "\n",
+ "print(\"Heat Generated \",round(Q,3),\"W\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 5 Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wall surface temperature 386.1 K\n",
+ "Heat Generated 449.65 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "Hc = 450 # heat conducted in W/m\n",
+ "\n",
+ "T1 = 396.4 # temperature of wall in K\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 1.5 # thermal conductivity in W/m2K\n",
+ "\n",
+ "r = 0.08 # area in meters \n",
+ "\n",
+ "A = 4*3.14*0.48**2 # area in meters sq\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# taking the approximate value from table 386.1 K\n",
+ "\n",
+ "Tapprox = 386.1\n",
+ "\n",
+ "Q = h*A*(T1-Tapprox)+sigma*A*((T1/100)**4-(Tapprox/100)**4)\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Wall surface temperature \",round(Tapprox,3),\"K\")\n",
+ "\n",
+ "print(\"Heat Generated \",round(Q,3),\"W\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 6 Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat Capacity 1000.0 J/C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "dTbydt = 0.5 # Temperature transition in C/s\n",
+ "\n",
+ "Qr = 4000 # Heat Received in J/s\n",
+ "\n",
+ "Qc = 5200 # Heat Convection in J/s\n",
+ "\n",
+ "qdot = 1700 # Heat generated in J/s\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "HeatCapacity = (Qr-Qc+qdot)/dTbydt\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Heat Capacity \",round(HeatCapacity,3),\"J/C\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 7 page number 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time rate of temperature change 0.1 C/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "Q = 240 # Heat Received in J/s\n",
+ "\n",
+ "qdot = 100000 # Heat generated in J/m3/s\n",
+ "\n",
+ "rho = 2500 # density in kg/m3\n",
+ "\n",
+ "cp = 0.52*10**3 # heat capacity in kJ/KgK\n",
+ "\n",
+ "a = 0.2 # side of the cube in meters\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "V = a**3\n",
+ "\n",
+ "dTbydt = (Q+qdot*V)/(rho*V*cp)\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Time rate of temperature change \",round(dTbydt,3),\"C/s\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 8 Page Number 15 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Heat Convected 1309.5 W/m2\n",
+ "Heat Received 1303.428 W/m2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T1 = 160 # heat conducted in W/m\n",
+ "\n",
+ "T2 = 30 # temperature of wall in K\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 45 # thermal conductivity in W/m2K\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# taking the approximate value from table 332 K\n",
+ "\n",
+ "Tapprox = 332.1 \n",
+ "\n",
+ "Hc = h*A*(Tapprox-(273+T2)) # Heat Convected in W/m2\n",
+ "\n",
+ "Hr = sigma*A*(((T1+273)/100)**4-(Tapprox/100)**4) # Heat received in W/m2\n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print(\"Heat Convected \",round(Hc,3),\"W/m2\")\n",
+ "\n",
+ "print(\"Heat Received \",round(Hr,3),\"W/m2\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 9 Page number 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total Heat loss case 1 150.6 W\n",
+ "Total Heat loss case 2 81.9 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T1 = 37 # temperature of body in C\n",
+ "\n",
+ "T21 = 26 # temperature of air in C\n",
+ "\n",
+ "T22 = 5 # temperature of walls in room in C\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 6 # Convective heat transfer coefficient W/m2K\n",
+ "\n",
+ "A = 0.6 # area in meters sq\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Hc = h*A*(T1-T21) # Heat Convected in W/m2\n",
+ "\n",
+ "Hr1 = sigma*A*(((T1+273)/100)**4-((T22+273)/100)**4) # Heat received in W/m2\n",
+ "\n",
+ "Ht1 = Hr1+Hc\n",
+ "\n",
+ "# calculate when temperature is 26C\n",
+ "\n",
+ "Hr2 = sigma*A*(((T1+273)/100)**4 - ((T21+273)/100)**4) # Heat received in W/m2\n",
+ "\n",
+ "Ht2 = Hc+Hr2\n",
+ "\n",
+ "print(\"Total Heat loss case 1\",round(Ht1,1),\"W\")\n",
+ "\n",
+ "print(\"Total Heat loss case 2\",round(Ht2,1),\"W\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 10 Page number 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Net heat Gain 291.1 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "T1 = 37 # temperature of body in C\n",
+ "\n",
+ "T21 = 650 # temperature of air in C\n",
+ "\n",
+ "T22 = 5 # temperature of walls in room in C\n",
+ "\n",
+ "sigma = 5.67 # Stefen-Boltzmann constant\n",
+ "\n",
+ "h = 6 # Convective heat transfer coefficient W/m2K\n",
+ "\n",
+ "A = 0.6 # area in meters sq\n",
+ "\n",
+ "F = 0.01 # fraction of radiation \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# Heat loss by convection in W\n",
+ "\n",
+ "Hc = h*A*(T1-T22)\n",
+ "\n",
+ "# Heat Gain by radiation\n",
+ "\n",
+ "Hr = sigma*F*(((T21+273)/100)**4 - ((T1+273)/100)**4) # Heat received in W/m2\n",
+ "\n",
+ "Hnet = Hr-Hc\n",
+ "\n",
+ "print(\"Net heat Gain\",round(Hnet,1),\"W\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 11 Page number 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equilibrium Temperature = 960.01 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "Q = 1500 # heat dissipation in W\n",
+ "\n",
+ "sigma = 5.67 # stefan-Boltzmann constant\n",
+ "\n",
+ "T2 = 288 # temperature in K\n",
+ "\n",
+ "r = 0.04 # radius in meters\n",
+ "\n",
+ "H = 0.25 # height in meters\n",
+ "\n",
+ "T1 = ((Q/(sigma*3.14*r*H)+(288/100)**4)*100**4)**(1/4)\n",
+ "\n",
+ "print(\"Equilibrium Temperature = \",round(T1,2),\"K\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem number 12 Page number 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equilibrium Temperature = 62.0 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "\n",
+ "Hr = 800 # Heat Rate in W/m2\n",
+ "\n",
+ "h1 = 10 # convective heat transfer rate on back of plate in W/m2K\n",
+ "\n",
+ "h2 = 15 # convective heat transfer rate on front of plate in W/m2K\n",
+ "\n",
+ "T2 = 30 # temperature on both sides of the plate\n",
+ "\n",
+ "T = (Hr+h1*30+h2*30)/25\n",
+ "\n",
+ "print(\"Equilibrium Temperature = \",round(T,2),\"C\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem number 13 Page number 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature of the plate 784.57 K\n",
+ "heat transfer with sheet 19668.31 W\n",
+ "heat transfer without sheet 39336.61 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "T1 = 650 # temperature from one side of the source in C\n",
+ "\n",
+ "T2 = 150 # temperature on other side of the surface in C\n",
+ "\n",
+ "sigma = 5.67 # stefan-boltzmann constant\n",
+ "\n",
+ "T = (((((T1+273)/100)**4 + ((T2+273)/100)**4)/2)*100**4)**(1/4)\n",
+ "\n",
+ "print(\"temperature of the plate\",round(T,2),\"K\")\n",
+ "\n",
+ "Q1 = sigma*(((T1+273)/100)**4 - (T/100)**4)\n",
+ "\n",
+ "print(\"heat transfer with sheet\",round(Q1,2),\"W\")\n",
+ "\n",
+ "Q2 = sigma*(((T1+273)/100)**4 - ((T2+273)/100)**4)\n",
+ "\n",
+ "print(\"heat transfer without sheet\",round(Q2,2),\"W\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 14 Page number 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "COnvective heat trasnfer rate 375.0 W/m2K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "Tair = 120 # temperature of air in C\n",
+ "\n",
+ "T1 = 42 # temperature of plate 1 in C\n",
+ "\n",
+ "T2 = 30 # temperature of plate 2 in C\n",
+ "\n",
+ "L = 0.01 # length of the slab in meters\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "k = 22.5 # thermal conductivity in W/mK\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "Q = (T1-T2)/(L/(k*A))\n",
+ "\n",
+ "Tnew = T1+6\n",
+ "\n",
+ "h = Q/(A*(Tair-Tnew))\n",
+ "\n",
+ "print(\"COnvective heat trasnfer rate\",round(h,2),\"W/m2K\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 15 Page number 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency of the collector when temperature is 32 deg C 47.5 %\n",
+ "Efficiency of the collector when temperature is 45 deg C 75.62 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "\n",
+ "T1 = 60 # temperature of the tube in C\n",
+ "\n",
+ "T2 = 32 # temperature of air in C\n",
+ "\n",
+ "h = 15 # convective heat transfer in W/m2K\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "Qf = 800 # heat flux in W/m2\n",
+ "\n",
+ "Tnew = 45 # new temperature in C\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "Q = h*A*(T1-T2) # heat transfer in W\n",
+ "\n",
+ "eff = ((Qf-Q)/Qf)*100\n",
+ "\n",
+ "print(\"Efficiency of the collector when temperature is 32 deg C\",round(eff,2),\"%\")\n",
+ "\n",
+ "# Heat lost by convection when T = 45 C\n",
+ "\n",
+ "Q2 = h*A*(Tnew-T2) # heat transfer in W\n",
+ "\n",
+ "eff1 = ((Qf-Q2)/Qf)*100 \n",
+ "\n",
+ "print(\"Efficiency of the collector when temperature is 45 deg C\",round(eff1,2),\"%\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 16 Page Number 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature of the air 428.89 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "\n",
+ "Tg = 40 # temperature of the glass plate in C\n",
+ "\n",
+ "dT = 5 # temperature graditent in C\n",
+ "\n",
+ "L = 0.001 # length in meters\n",
+ "\n",
+ "k = 1.4 # conductive heat transfer coefficient in W/mK\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "h = 18 # convective heat trasnfer coefficient in W/m2K\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "Q = dT/(L/(k*A))\n",
+ "\n",
+ "Tair = (Q/h)+ Tg\n",
+ "\n",
+ "print(\"Temperature of the air\",round(Tair,2),\"C\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 17 Page number 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature gradient in the solid -631.58 C/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "h = 30 # Convective heat transfer coefficient in W/m2K\n",
+ "\n",
+ "k = 9.5 # conductive heat trasnfer coefficient in W/mK\n",
+ "\n",
+ "T1 = 260 # temperature of the surface in C\n",
+ "\n",
+ "T2 = 60 # temperature of the air in C\n",
+ "\n",
+ "tempgrad = (h/k)*(T2-T1)\n",
+ "\n",
+ "print(\"Temperature gradient in the solid\",round(tempgrad,2),\"C/m\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 18 Page number 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steady state temperature of plate 313.33 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "h1 = 100 # convective heat transfer coeffcient in W/m2K\n",
+ "\n",
+ "h2 = 15 # convective heat transfer coeffcient in W/m2K\n",
+ "\n",
+ "# solving by trial and error we get T1 = 313.33 K\n",
+ "\n",
+ "T1 = 313.33 \n",
+ "\n",
+ "print(\"Steady state temperature of plate\",round(T1,2),\"K\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 19 Page number 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Surface temperature 674.39 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "k = -22.5 # conductive heat trasnfer coefficient in W/mK\n",
+ "\n",
+ "tempgrad = -500 # temperature gradient in C/m\n",
+ "\n",
+ "sigma = 5.67 # stefan-boltzmann constant\n",
+ "\n",
+ "Ts = 303 # temperatre of surroundings in K\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "T2 = ((((k*tempgrad)/sigma)+(Ts/100)**4)*100**4)**(1/4)\n",
+ "\n",
+ "print(\"Surface temperature\",round(T2,2),\"K\")\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 20 Page number 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Surface temperatrue 230.2 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# variable declaration \n",
+ "\n",
+ "Hc = 2000 # heat generated in W\n",
+ "\n",
+ "r = 1 # radius in meters\n",
+ "\n",
+ "sigma = 5.67 # stefan boltzmann constant\n",
+ "\n",
+ "T2 = 0 # temperate of space in K\n",
+ "\n",
+ "# Calculation \n",
+ "\n",
+ "T = ((Hc/(4*3.14*r**2*sigma))*100**4)**(1/4)\n",
+ "\n",
+ "print(\"Surface temperatrue\",round(T,2),\"K\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Problem 21 page Number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature drop through the wall 1.33 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable Declaration\n",
+ "\n",
+ "Q = 10 # heat flux in W/m2\n",
+ "\n",
+ "A = 1 # area in meters sq\n",
+ "\n",
+ "k = 1.5 # thermal cnductivity in W/mK\n",
+ "\n",
+ "t = 0.2 # wall thockness in m\n",
+ "\n",
+ "# Calculation\n",
+ "\n",
+ "dT = (Q*t)/(k*A)\n",
+ "\n",
+ "print(\"Temperature drop through the wall\",round(dT,2),\"C\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}