summaryrefslogtreecommitdiff
path: root/sample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commit4a1f703f1c1808d390ebf80e80659fe161f69fab (patch)
tree31b43ae8895599f2d13cf19395d84164463615d9 /sample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb
parent9d260e6fae7328d816a514130b691fbd0e9ef81d (diff)
downloadPython-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip
add books
Diffstat (limited to 'sample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb')
-rwxr-xr-xsample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb227
1 files changed, 227 insertions, 0 deletions
diff --git a/sample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb b/sample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb
new file mode 100755
index 00000000..0e2a1db4
--- /dev/null
+++ b/sample_notebooks/makarala shamukha venkatasahithi/Chapter_5_Imperfection_in_Solids_1.ipynb
@@ -0,0 +1,227 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5 Imperfection in Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_1 pgno:56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 5.1\n",
+ "\n",
+ "\n",
+ " Equilibrium number of vacancies/m**3 is for 1273K 2.18444488963e+25\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given that\n",
+ "Na=6.023*10**23 #Avogadro No.\n",
+ "rho=8.4e6 #Density of Copper in g/m**3\n",
+ "A=63.5 #Atomic weight of Copper\n",
+ "Qv=0.9 #Activation energy in eV\n",
+ "k=8.62*10**-5 #Boltzmann Constant in eV/K\n",
+ "T=1000+273#Temperature in K\n",
+ "from math import exp\n",
+ "print\"Example 5.1\\n\"\n",
+ "N=Na*rho/A #No. of atomic site per cubic meter\n",
+ "Nv=N*exp(-Qv/(k*T))\n",
+ "print\"\\n Equilibrium number of vacancies/m**3 is for 1273K\",Nv\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_3 pgno:57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Example 5.3\n",
+ "\n",
+ "\n",
+ " Atomic of Al is 98.7039833218\n",
+ "\n",
+ " Atomic of Cu is 1.29601667817\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given that\n",
+ "C_Al=97. #Aluminium wt%\n",
+ "C_Cu=3. #Copper wt%\n",
+ "A_Al=26.98 #Atomic wt of Aluminium\n",
+ "A_Cu=63.55 #Atomic wt of Copper\n",
+ "\n",
+ "print\" Example 5.3\\n\"\n",
+ "CAl=C_Al*A_Cu*100/((C_Al*A_Cu)+(C_Cu*A_Al))\n",
+ "CCu=C_Cu*A_Al*100/((C_Cu*A_Al)+(C_Al*A_Cu))\n",
+ "print\"\\n Atomic of Al is\",CAl\n",
+ "print\"\\n Atomic of Cu is\",CCu\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_4 pgno:58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 5.4\n",
+ "\n",
+ "\n",
+ " Number of Schottky defects are defects/m**3. 5.31422380078e+19\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given that\n",
+ "Na=6.023*10**23 #Avogadro No.\n",
+ "rho=1.955 #Density of KCl in g/cm**3\n",
+ "A_k= 39.10 #Atomic weight of potassium in g/mol\n",
+ "A_cl= 35.45 #Atomic weight of Chlorine in g/mol\n",
+ "Qs=2.6 #Activation energy in eV\n",
+ "k=8.62*10**-5 #Boltzmann Constant in eV/K\n",
+ "T=500+273 #Temperature in K\n",
+ "from math import exp\n",
+ "\n",
+ "print\"Example 5.4\\n\"\n",
+ "A = A_k+A_cl # Molar mass of KCl in gram\n",
+ "N=Na*rho*1e6/A #No. of atomic site per cubic meter\n",
+ "Ns=N*exp(-Qs/(2*k*T))\n",
+ "print\"\\n Number of Schottky defects are defects/m**3.\",Ns\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_6 pgno:58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example 5.6\n",
+ "\n",
+ "\n",
+ " Part A\n",
+ "\n",
+ " Grain size number is \n",
+ "6.49185309633\n",
+ "\n",
+ " Part B\n",
+ "\n",
+ " At magnification of 85x\n",
+ "\n",
+ " Number of grains per inch square are\n",
+ "62.2837370242\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given that \n",
+ "N=45. #Number of grains per square inch\n",
+ "M=85. # magnification\n",
+ "from math import log\n",
+ "print\"Example 5.6\\n\"\n",
+ "print\"\\n Part A\"\n",
+ "n=(log(N)/log(2))+1 #calculation for grain size no. N=2**(n-1)\n",
+ "print\"\\n Grain size number is \\n\",n\n",
+ "print\"\\n Part B\"\n",
+ "Nm=(100/M)**2*2**(n-1)\n",
+ "print\"\\n At magnification of 85x\\n\"\n",
+ "print\" Number of grains per inch square are\\n\",Nm\n",
+ "# answer in book is 62.6. It is because of rounding off at intermediate stages\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}