diff options
author | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
commit | 4a1f703f1c1808d390ebf80e80659fe161f69fab (patch) | |
tree | 31b43ae8895599f2d13cf19395d84164463615d9 /sample_notebooks/keerthi vanigundla/R.K.RAJPUTCHAPTER_12.ipynb | |
parent | 9d260e6fae7328d816a514130b691fbd0e9ef81d (diff) | |
download | Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2 Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip |
add books
Diffstat (limited to 'sample_notebooks/keerthi vanigundla/R.K.RAJPUTCHAPTER_12.ipynb')
-rw-r--r-- | sample_notebooks/keerthi vanigundla/R.K.RAJPUTCHAPTER_12.ipynb | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/sample_notebooks/keerthi vanigundla/R.K.RAJPUTCHAPTER_12.ipynb b/sample_notebooks/keerthi vanigundla/R.K.RAJPUTCHAPTER_12.ipynb new file mode 100644 index 00000000..b7f5147f --- /dev/null +++ b/sample_notebooks/keerthi vanigundla/R.K.RAJPUTCHAPTER_12.ipynb @@ -0,0 +1,292 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12:Measurement of Non-Electrical Quantities"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1,Page No:600"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Gf = 2; #guage factor \n",
+ "a = 100*10**6; #stress in N/m**2\n",
+ "E = 200*10**9; #elasticity of steel in N/m**2\n",
+ "\n",
+ "#calculation\n",
+ "st = (a/float(E)); #strain\n",
+ "x = Gf*st; # change in guage resistance\n",
+ "p = (x)*100; #percentage change in resistance in %\n",
+ "\n",
+ "#result\n",
+ "print\"percentage change in resistance %1.1f\"%p,\"%\";\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4,Page No:631"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "water flow rate 0.0586 m**3/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D1 = 200*10**-3; # inlet horizontal venturimeter in m\n",
+ "D2 = 100*10**-3; #throat horizontal enturimeter in m\n",
+ "h = 220*10**-3; #pressure in m\n",
+ "Cd = 0.98; #coefficient of discharge \n",
+ "phg = 13.6; #specific gravity of mercury\n",
+ "p = 1000; #density of water in kg/m**3\n",
+ "g = 9.81; #gravitational constant\n",
+ "pw = 1; #density of water in kg/m**3\n",
+ "w = 9.81; \n",
+ "\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "x = (g)*(h)*(phg-pw)*1000; #differential pressure head in N/m**2\n",
+ "a = 1-((D2/float(D1))**4); #velocity approach factor\n",
+ "M = 1/(float(math.sqrt(a))); #velocity of approach\n",
+ "b = math.sqrt(((2*g)/(float(w*p)))*x);\n",
+ "A2 = (math.pi/float(4))*((D2)**2); #area in m**2\n",
+ "Q = Cd*M*A2*(b); #discharge through venturimeter in m**3/s\n",
+ " \n",
+ "#result\n",
+ "print'water flow rate %3.4f'%Q,'m**3/s'; \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5,Page No:631"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rate of flow of oil 0.137850 m**3/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D1 = 400*10**-3; #diameter at inlet in m\n",
+ "D2 = 200*10**-3; #diameter at throat in m\n",
+ "y = 50*10**-3; #reading of differential manometer in m\n",
+ "Shl = 13.6; #specific gravity of mercury in U-tube \n",
+ "Sp = 0.7; #specific gravity of oil in U-tube \n",
+ "h = 0.92;\n",
+ "\n",
+ "#bernoulli's equation\n",
+ "#p1/w +z1+V1**2=p2/w +z2+V2**2\n",
+ "#solving we get h+(V1**2/2*g)-(V2**2/2*g)=0\n",
+ "# calculations\n",
+ "\n",
+ "A1 = (math.pi/float(4))*(D1**2); #area in m**2\n",
+ "A2 = (math.pi/4)*(D2**2); #area in m**2\n",
+ "a = A2/float(A1); #ratio of areas\n",
+ "#V1 = a*V2;\n",
+ "#h+(V1**2/2*g)*(1-(1/4))=0\n",
+ "V2 = math.sqrt((2*g*h)/(float(1-((a)**2)))); \n",
+ "Q = A2*V2; #rate of oil flow in m**3/s\n",
+ "\n",
+ "#result\n",
+ "print'rate of flow of oil %f'%Q,'m**3/s';\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6,Page No:633"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "difference in pressure head 4952.073 N/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 0.015; #rate of flow in m**3/s\n",
+ "D0 = 100*10**-3; #diameter orifice in m\n",
+ "D1 = 200*10**-3; #diameter of pipe in m\n",
+ "Cc = 0.6; #coefficient of contraction\n",
+ "Cd = 0.6; #coefficient of discharge\n",
+ "E = 1; #thermal expansion factor\n",
+ "g = 9.81; #gravitational constant \n",
+ "w = 9810;\n",
+ "\n",
+ "#calculations\n",
+ "A0 = ((math.pi)/float(4))*(D0**2); #area in m**2\n",
+ "A1 = ((math.pi)/float(4))*(D1**2); #area in m**2\n",
+ "a = (Cc*A0)/(float(A1)); \n",
+ "M = math.sqrt(1-((a)**2));\n",
+ "K = Cd/float(M);\n",
+ "x = ((Q/float(K*E*A0))**2);\n",
+ "dp = (x*w/float(2*g)); #difference in pressure head in N/m**2\n",
+ "\n",
+ "#result\n",
+ "print'difference in pressure head %3.3f'%dp,'N/m**2';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example:12.7,Page No:633"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "discharge through the orifice 0.742 m**3/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C0 = 0.6; #coefficient of orifice\n",
+ "Cv = 0.97; #coefficient of discharge\n",
+ "Qv = 1.2; #flow rate in m**3/s\n",
+ "\n",
+ "#calculations\n",
+ "Q0 = (C0/Cv)*Qv; #discharge through the orifice in m**3/s\n",
+ "\n",
+ "#result\n",
+ "print'discharge through the orifice %3.3f'%Q0,'m**3/s'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example:12.8,Page No:634"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of submarine 25.0 km/h\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Shl = 13.6; #specific gravity of mercury\n",
+ "Sl = 1.025; #specific gravity of sea water\n",
+ "y = 200*10**-3; #reading in m\n",
+ "g = 9.81; #constant\n",
+ "\n",
+ "#calculation\n",
+ "x = Shl/float(Sl);\n",
+ "h = (y*((x)-1)); #head\n",
+ "V = math.sqrt(2*g*h); #velocity of submarine in km/h\n",
+ "\n",
+ "#result\n",
+ "print'velocity of submarine %3.1f'%(V*(18/float(5))),'km/h';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
|