diff options
author | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
commit | 4a1f703f1c1808d390ebf80e80659fe161f69fab (patch) | |
tree | 31b43ae8895599f2d13cf19395d84164463615d9 /sample_notebooks/SaurabhBarot | |
parent | 9d260e6fae7328d816a514130b691fbd0e9ef81d (diff) | |
download | Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2 Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip |
add books
Diffstat (limited to 'sample_notebooks/SaurabhBarot')
-rw-r--r-- | sample_notebooks/SaurabhBarot/ch2.ipynb | 510 |
1 files changed, 510 insertions, 0 deletions
diff --git a/sample_notebooks/SaurabhBarot/ch2.ipynb b/sample_notebooks/SaurabhBarot/ch2.ipynb new file mode 100644 index 00000000..79ba56c5 --- /dev/null +++ b/sample_notebooks/SaurabhBarot/ch2.ipynb @@ -0,0 +1,510 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:883876eb2a3f623c02ca3c86ebd8020a1b244805e7be4ab0f882af58fcdc4d16" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2 : MAGNETIC CIRCUITS" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1 Page No : 89" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "N = 2000.;\t\t\t#no of turns\n", + "I = 10.;\t\t\t#current in A\n", + "Rm = 25.;\t\t\t#mean radius in cm\n", + "d = 6.;\t\t\t#diameter of each turn in cm\n", + "\n", + "#CALCULATIONS \n", + "MMF = N*I;\t\t\t#magneto motive force in A\n", + "l = 2*math.pi*(Rm/100);\t\t\t#circumference of coli in m\n", + "u = (4*math.pi*10**-7);\t\t\t#permeability (U = Ur*U0)\n", + "a = (math.pi*d*d*10**-4)/4;\n", + "reluctance = (l/(a*u));\t\t\t#reluctance in At/Wb\n", + "flux = (MMF)/(reluctance);\t\t\t#flux in Wb\n", + "fluxdensity = (flux/a);\t\t\t#flux density in Wb/m**2 or tesla\n", + "\n", + "#OUTPUT\n", + "print \"Thus MMF, flux, flux density are %d A, %g Wb , %g Wb/m**2 or Tesla respectively \"%(MMF,flux,fluxdensity);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus MMF, flux, flux density are 20000 A, 4.52389e-05 Wb , 0.016 Wb/m**2 or Tesla respectively \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2 Page No : 90" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "#Chapter-2, Example 2.2, Page 90\n", + "\n", + "#INPUT DATA\n", + "phi = 5*10**-2;\t\t\t#flux in wb\n", + "a = 0.2;\t\t\t#area of cross-section in m**2\n", + "lg = 1.2*10**-2;\t\t\t#length of air gap in m\n", + "ur = 1;\t\t\t#permeability\n", + "u = ur*4*math.pi*10**-7;\t\t\t#permeability\n", + "\n", + "#CALCULATIONS \n", + "B = (phi/a);\t\t\t#flux density in wb/sq.m\n", + "H = (B/(4*math.pi*10**-7*ur));\t\t\t#magnetic flux density in A/m\n", + "S = lg/(a*u);\t\t\t#reluctance of air gap in A/wb\n", + "permeance = 1/S;\t\t\t#permenace in A/wb\n", + "mmf_in_airgap = phi*S;\t\t\t#mmf in A\n", + "\n", + "#OUTPUT\n", + "print \"Thus B, H,S, permeance, MMF in air gap are %1.2f Wb/sq.m, %g A/m ,%f A/wb ,\\\n", + "%g Wb/A %d A respectively \"%(B,H,S,permeance,mmf_in_airgap);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus B, H,S, permeance, MMF in air gap are 0.25 Wb/sq.m, 198944 A/m ,47746.482928 A/wb ,2.0944e-05 Wb/A 2387 A respectively \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 Page No : 90" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "phi = 0.1*10**-3;\t\t\t#flux in wb\n", + "a = 1.7*10**-4;\t\t\t#area of cross-section in m**2\n", + "lg = 0.5*10**-3;\t\t\t#length of air gap in m\n", + "Rm = 15./2;\t\t\t#radius of ring in cm\n", + "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space in henry/m\n", + "N = 1500.;\t\t\t#no of turns of ring\n", + "\n", + "#CALCULATIONS \n", + "B = (phi/a);\t\t\t#flux density in wb/sq.m\n", + "H = (B/(4*math.pi*10**-7));\t\t\t#magnetic flux density in A/m\n", + "ampere_turns_provided_fo = H*lg;\n", + "total_ampere_turns_provi = N*1;\n", + "Available_for_iron_path = N-(H*lg);\n", + "length_of_iron_path = (2*Rm*math.pi*10**-2)-(lg);\t\t\t#length of iron path in m\n", + "H_for_iron_path = ((N-(H*lg)))/(length_of_iron_path);\n", + "ur = (B/(u0*H_for_iron_path));\t\t\t#relative permeability of iron\n", + "\n", + "#OUTPUT\n", + "print \"Thus relative permeability of iron is %d\"%(ur);\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus relative permeability of iron is 174\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4 Page No : 91" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "li = 0.5;\t\t\t#iron path length in m\n", + "lg = 10.**-3;\t\t\t#length of air gap in m\n", + "phi = 0.9*10**-3;\t\t\t#flux in wb\n", + "a = 6.66*10**-4;\t\t\t#area of cross-section of iron in m**2\n", + "N = 400.;\t\t\t#no of turns \n", + "\n", + "#CALCULATIONS \n", + "B = (phi/a);\t\t\t#flux density in wb/sq.m\n", + "Hg = (B/(4*math.pi*10**-7));\t\t\t#magnetic flux density in A/m\n", + "AT_required = Hg*lg;\t\t\t#AT required for air path\n", + "Hi = 1000;\t\t\t#magnetic flux density in A/m\n", + "AT_required_for_iron_pat = Hi*li;\n", + "total_AT_required = (Hg*lg)+(Hi*li);\n", + "I = ((Hg*lg)+(Hi*li))/(N);\n", + "\n", + "#OUTPUT\n", + "print \"Thus exciting current required is %1.2f A\"%(I);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus exciting current required is 3.94 A\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.5 Page No : 92" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "#Chapter-2, Example 2.5, Page 92\n", + "\n", + "#INPUT DATA\n", + "r = 0.01;\t\t\t#radius in m\n", + "lg = 10.**-3;\t\t\t#length of air gap in m\n", + "Rm = (30./2)*10**-2;\t\t\t#mean radius in m\n", + "ur = 800.;\t\t\t#relative permeability of iron\n", + "ur2 = 1.;\t\t\t#relative permeability of air gap\n", + "N = 250.;\t\t\t#no of turns\n", + "phi = 20000.*10**-8;\t\t\t#flux in Wb\n", + "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space \n", + "a = math.pi*(r)**2;\t\t\t#area of cross-section in m\n", + "leakage_factor = 1.1\n", + "\n", + "#CALCULATIONS \n", + "reluctance_of_air_gap = (lg/(u0*ur2*a));\t\t\t#reluctance of air gap in A/wb\n", + "li = (math.pi*(2*r)-(lg));\t\t\t#length of iron path in m\n", + "reluctance_of_iron_path = ((math.pi*0.3)-(lg))/(4*math.pi*10**-7*800*a);\t\t\t#in A/wb\n", + "total_reluctance = reluctance_of_air_gap+reluctance_of_iron_path;\t\t\t#in A/wb\n", + "MMF = phi*total_reluctance;\t\t\t#in Ampere turns\n", + "current_required = (MMF)/(N);\t\t\t#in A\n", + "\n", + "#OUTPUT\n", + "print \"Thus current required is %1.2f A \"%(current_required);\n", + "#Including leakage\n", + "\n", + "#CALCULATIONS\n", + "MMF_of_airgap = phi*reluctance_of_air_gap;\t\t\t#in A/wb\n", + "Total_flux_in_ironpath = leakage_factor*phi;\t\t\t#in Wb\n", + "MMF_of_ironpath = Total_flux_in_ironpath*reluctance_of_iron_path;\t\t\t#in A\n", + "Total_MMF = MMF_of_ironpath+MMF_of_airgap;\t\t\t#in A/wb\n", + "current_required2 = Total_MMF/(N);\t\t\t#in A\n", + "\n", + "#OUTPUT\n", + "print \"Thus current required is %1.3f A\"%(current_required2);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus current required is 4.41 A \n", + "Thus current required is 4.650 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.6 Page No : 93" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "l1 = 0.1;\t\t\t#length in m\n", + "l2 = 0.18;\t\t\t#length in m\n", + "l3 = 0.18;\t\t\t#length in m\n", + "lg = 1.*10**-3;\t\t\t#airgap length in mm\n", + "a1 = 6.25*10**-4;\t\t\t#area in m**2\n", + "a2 = 3.*10**-4;\t\t\t#area in m**2\n", + "ur = 800.;\t\t\t#relative permeability of iron path\n", + "ur2 = 1.;\t\t\t#relative permeability in free space\n", + "u0 = 4*math.pi*10**-7\n", + "N = 600.;\n", + "phi = 10.**-4;\t\t\t#airgap flux in Wb\n", + "\n", + "#CALCULATIONS \n", + "#for the airgap\n", + "Bg = (phi/(a1));\t\t\t#fluxdensity in Tesla\n", + "Hg = (Bg/(u0*ur2));\t\t\t#magnetimath.sing force in A/m\n", + "MMF1 = Hg*lg;\t\t\t#in A\n", + "#for path I1\n", + "B1 = 0.16;\t\t\t# flux density in tesla\n", + "H1 = (B1/(ur*u0));\t\t\t#magnetimath.sing force in A/m\n", + "MMF2 = H1*l1;\t\t\t#in A\n", + "#math.since paths l2 and l3 are similar,the total flux divide equally between these two paths.Since these paths are in parallel,consider only one of them\n", + "#for path l2\n", + "flux = 50*10**-6;\t\t\t#flux in wb\n", + "B2 = (flux/a2);\t\t\t#fluxdensity in tesla\n", + "H2 = (B2/(ur*u0));\t\t\t#magnetimath.sing force in A/m\n", + "MMF3 = H2*l2;\t\t\t#in A\n", + "totalmmf = MMF1+MMF2+MMF3;\t\t\t#in A\n", + "I = (totalmmf/N);\t\t\t#current required in A\n", + "\n", + "#OUTPUT\n", + "print \"Thus current required is %1.3f A\"%(I);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus current required is 0.288 A\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7 Page No : 95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "#Chapter-2, Example 2.7, Page 95\n", + "\n", + "#INPUT DATA\n", + "Dm = 0.1\t\t\t#diameter in m\n", + "a = 10.**-3;\t\t\t#area of cross-section im m**2\n", + "N = 150.;\t\t\t#no of turns\n", + "ur = 800.;\t\t\t#permeability of iron ring\n", + "B = 0.1;\t\t\t#in Wb/m**2\n", + "u0 = 4*math.pi*10**-7;\t\t\t#permeability of free space\n", + "\n", + "#CALCULATIONS \n", + "S = (math.pi*Dm)/(a*ur*u0);\t\t\t#reluctance\n", + "I = (B*a*S)/(N);\t\t\t#current in A\n", + "\n", + "#OUTPUT\n", + "print \"Thus current is %f A\"%(I);" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus current is 0.208333 A\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.8 Page No : 95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "l = 0.3;\t\t\t#length in m\n", + "d = 1.5*10**-2;\t\t\t#diameter in m\n", + "N = 900;\t\t\t#no of turns\n", + "ur = 1;\t\t\t#relative permeability in free space\n", + "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space\n", + "I = 5;\t\t\t#current in A\n", + "\n", + "#CALCULATIONS \n", + "a = (math.pi*(d)**2/4);\t\t\t#in m**2\n", + "S = (l)/(a*ur*u0);\t\t\t#reluctance\n", + "\n", + "#OUTPUT\n", + "print \"Thus reluctance is %f A/wb\"%(S);\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus reluctance is 1350949115.231170 A/wb\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.9 Page No : 95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "lg = 10**-3;\t\t\t#length of air gap in m\n", + "B = 0.9;\t\t\t#flux density in wb/m**2\n", + "li = 0.3;\t\t\t#length of ironpath in m\n", + "Hi = 800;\t\t\t#magnetic flux density in AT/m\n", + "u0 = 4*math.pi*10**-7;\t\t\t#permeabilty in free space\n", + "\n", + "#CALCULATIONS \n", + "#for iron path\n", + "MMF_required1 = Hi*li;\t\t\t#magnetic motive force in AT\n", + "#for air gap\n", + "MMF_required2 = (B/u0)*lg;\t\t\t#magnetic motive force in AT\n", + "Totalmmf = MMF_required1+MMF_required2\n", + "\n", + "#OUTPUT\n", + "print \"Thus total MMF required is %d AT\"%(Totalmmf);\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus total MMF required is 956 AT\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.10 Page No : 96" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#INPUT DATA\n", + "li = 0.5;\t\t\t#length of iron ring mean length in m\n", + "N = 220;\t\t\t#no of turns\n", + "I = 1.2;\t\t\t#current in A\n", + "lg = 1.2*10**-3;\t\t\t#length of airgap in m\n", + "ur = 350;\t\t\t#relative permeability of iron\n", + "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space\n", + "\n", + "#CALCULATIONS \n", + "MMF_produced = N*I;\n", + "Si = li/(u0*ur);\t\t\t#reluctance of iron path\n", + "Sg = lg/(u0);\t\t\t#reluctance of air gap\n", + "S = Si+Sg;\t\t\t#total reluctance \n", + "Flux_density = (MMF_produced)/(S);\n", + "\n", + "#OUTPUT\n", + "print \"Thus fluxdensity is %1.3f Wb/m**2\"%(Flux_density);\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus fluxdensity is 0.126 Wb/m**2\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |