summaryrefslogtreecommitdiff
path: root/sample_notebooks/MohdTasleem/Ch2.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commit4a1f703f1c1808d390ebf80e80659fe161f69fab (patch)
tree31b43ae8895599f2d13cf19395d84164463615d9 /sample_notebooks/MohdTasleem/Ch2.ipynb
parent9d260e6fae7328d816a514130b691fbd0e9ef81d (diff)
downloadPython-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip
add books
Diffstat (limited to 'sample_notebooks/MohdTasleem/Ch2.ipynb')
-rwxr-xr-xsample_notebooks/MohdTasleem/Ch2.ipynb333
1 files changed, 333 insertions, 0 deletions
diff --git a/sample_notebooks/MohdTasleem/Ch2.ipynb b/sample_notebooks/MohdTasleem/Ch2.ipynb
new file mode 100755
index 00000000..59039ed8
--- /dev/null
+++ b/sample_notebooks/MohdTasleem/Ch2.ipynb
@@ -0,0 +1,333 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2 : Energy Bands and Charge Carriers in semiconductor"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.1 Page No. 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "Eg=0.72 #eV\n",
+ "Ef=0.5*Eg\n",
+ "dE=Eg-Ef #eV\n",
+ "k=8.61*10**-5 #Boltzman constant\n",
+ "T=300 #K\n",
+ "\n",
+ "import math\n",
+ "N=1/(1+math.exp(dE/(k*T)))\n",
+ "\n",
+ "\n",
+ "print\"the fraction of total no. of electron is \",round(N,9)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the fraction of total no. of electron is 8.85e-07\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.4 Page No. 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "E=300*1.602*10**-19 #eV Energy\n",
+ "m=9.108*10**-31 #kg, mass of electron\n",
+ "h=6.626*10**-34 #Planck constant\n",
+ "\n",
+ "v=math.sqrt(2*E/m)\n",
+ "lam=h*v/E\n",
+ "\n",
+ "print\"The wavwlength is\",round(lam*10**10,3),\"A\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavwlength is 1.416 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.5 Page No. 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "ni=1.4*10**18\t\t\t#in atoms/m**3\n",
+ "Nd=1.4*10**24\t\t\t#in atoms/m**3\n",
+ "n=Nd\t\t\t\t#in atoms/m**3\n",
+ "\n",
+ "p=ni**2/n\t\t\t#in atoms/m**3\n",
+ "ratio=n/p\t\t\t#unitless\n",
+ "\n",
+ "print\"Ratio of electron to hole concentration : \",round(ratio,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of electron to hole concentration : 1e+12\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.7 Page no 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "n=10**24 #Electron density\n",
+ "e=1.6*10**-19 #Electron charge\n",
+ "v=0.015 #m/s drift velocity\n",
+ "A=10**-4 #m**2 area\n",
+ "\n",
+ "I=n*e*v/A\n",
+ "\n",
+ "print\"The magnitude of current is\",round(I/10**8,2),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnitude of current is 0.24 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.8 Page No. 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "Ef=5.5\t\t\t#in eV\n",
+ "MUe=7.04*10**-3\t\t#in m**2/V-s\n",
+ "n=5.8*10**28\t\t#in m**-3\n",
+ "e=1.6*10**-19\t\t#constant\n",
+ "m=9.1*10**-31\t\t#in Kg\n",
+ "\n",
+ "import math\n",
+ "tau=MUe*m/e\t\t#in sec\n",
+ "rho=1/(n*e*MUe)\t\t#in ohm-m\n",
+ "vF=math.sqrt(2*Ef*1.6*10**-19/m)\n",
+ "\n",
+ "print\"Relaxation time in sec : \",tau,\"s\"\n",
+ "print\"Resistivity of conductor in ohm-m : \",round(rho,11),\"ohm m\"\n",
+ "print\"velocity of electron with fermi energy is \",round(vF,0),\"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Relaxation time in sec : 4.004e-14 s\n",
+ "Resistivity of conductor in ohm-m : 1.531e-08 ohm m\n",
+ "velocity of electron with fermi energy is 1390707.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.9 Page No. 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "e=1.6*10**-19\t\t\t#in coulamb\n",
+ "ND=10**17\t\t\t#in cm**-3\n",
+ "Bz=0.1\t\t\t\t#in Wb/m**2\n",
+ "w=4\t\t\t\t#in mm\n",
+ "d=4\t\t\t\t#in mm\n",
+ "Ex=5\t\t\t\t#in V/cm\n",
+ "MUe=3800\t\t\t#in cm**2/V-s\n",
+ "\n",
+ "v=MUe*Ex\t\t\t#in cm/s\n",
+ "v=v*10**-2\t\t\t#in m/s\n",
+ "VH=Bz*v*d\t\t\t#in mV\n",
+ "\n",
+ "print\"Magnitude of hall voltage is\",VH,\"mV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Magnitude of hall voltage is 76.0 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.11 Page No.92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "e=1.6*10**-19\t\t\t#in coulamb\n",
+ "ND=10**21\t\t\t#in m**-3\n",
+ "Bz=0.2\t\t\t\t#in T\n",
+ "d=4\t\t\t\t#in mm\n",
+ "d=d*10**-3\t\t\t#in meter\n",
+ "J=600\t\t\t\t#in A/m**2\n",
+ "n=ND\t\t\t\t#in m**-3\n",
+ "\n",
+ "VH=Bz*J*d/(n*e)\t\t\t#in V\n",
+ "\n",
+ "print\"Magnitude of hall voltage is \",VH*10**3,\"mV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Magnitude of hall voltage is 3.0 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.12 Page No."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "e=1.6*10**-19\t\t\t#in coulamb\n",
+ "rho=0.00912\t\t\t#in ohm-m\n",
+ "B=0.48\t\t\t\t#in Wb/m**2\n",
+ "RH=3.55*10**-4\t\t\t#in m**3-coulamb**-1\n",
+ "SIGMA=1/rho\t\t\t#in (ohm=m)**-1\n",
+ "\n",
+ "import math\n",
+ "THETAh=math.atan(SIGMA*B*RH)\t#in Degree\n",
+ "\n",
+ "print\"Hall angle is\",round(THETAh*180/3.14,4),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hall angle is 1.0709 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 169
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file