summaryrefslogtreecommitdiff
path: root/sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commitf270f72badd9c61d48f290c3396004802841b9df (patch)
treebc8ba99d85644c62716ce397fe60177095b303db /sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb
parent64d949698432e05f2a372d9edc859c5b9df1f438 (diff)
downloadPython-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip
Removed duplicates
Diffstat (limited to 'sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb')
-rwxr-xr-xsample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb430
1 files changed, 430 insertions, 0 deletions
diff --git a/sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb b/sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb
new file mode 100755
index 00000000..fb6cc7a3
--- /dev/null
+++ b/sample_notebooks/ManikandanD/Chapter_2_Light_propagation_in.ipynb
@@ -0,0 +1,430 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e126fa636efa72af4b20cd3702da45f085d125811e3d4b6de05ba5fde96d2c77"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2:Light propagation in optical ber"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1 , Page no:30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "ncore=1.46; #refractive index of core\n",
+ "nclad=1; #refractive index of cladding\n",
+ "c=3e5; #velocity of light in Km/s\n",
+ "L=1; #length of path in Km\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "NA=math.sqrt(ncore**2-nclad**2); #Numerical aperture\n",
+ "delt_tau_by_L=(NA**2)/(2*c*ncore); #multipath pulse broadening in s/Km\n",
+ "delt_tau=delt_tau_by_L*L; #bandwidth distance product Hz\n",
+ "BL=(1/delt_tau)*L; #bandwidth distance product Hz\n",
+ "#case-2\n",
+ "ncore1=1.465; #refractive index of core\n",
+ "nclad1=1.45; #refractive index of cladding\n",
+ "NA1=math.sqrt(ncore1**2-nclad1**2); #Numerical aperture\n",
+ "delt_tau_by_L1=(NA1**2)/(2*c*ncore1); #multipath pulse broadening in s/m\n",
+ "BL1=(1/delt_tau_by_L1)*L; #bandwidth distance product Hz\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"Numerical aperture=\",round(NA,5); #The answers vary due to round off error\n",
+ "print\"\\nMultipath pulse broadening=\",round(delt_tau_by_L*1e9,5),\"ns/Km\"; #The answer provided in the textbook is wrong//multiplication by 1e9 to convert s/Km to ns/Km \n",
+ "print\"\\nBandwidth distance product=\",round(BL*1e-6,5),\"GHz \"; #The answer provided in the textbook is wrong//multiplication by 1e-6 to convert Hz to MHz\n",
+ "print\"\\n\\nNumerical aperture=\",round(NA1,5);\n",
+ "print\"\\nMultipath pulse broadening=\",round(delt_tau_by_L1*1e9,5),\"ns/Km\"; #The answer provided in the textbook is wrong//multiplication by 1e9 to convert s/Km to ns/Km \n",
+ "print\"\\nBandwidth distance product=\",round(BL1*1e-9,5),\"GHz \"; #The answer provided in the textbook is wrong//multiplication by 1e-6 to convert Hz to GHz"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Numerical aperture= 1.06377\n",
+ "\n",
+ "Multipath pulse broadening= 1291.78082 ns/Km\n",
+ "\n",
+ "Bandwidth distance product= 0.77413 GHz \n",
+ "\n",
+ "\n",
+ "Numerical aperture= 0.20911\n",
+ "\n",
+ "Multipath pulse broadening= 49.74403 ns/Km\n",
+ "\n",
+ "Bandwidth distance product= 0.0201 GHz \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2 , Page no:30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "lamda1=0.7; #wavelength in um\n",
+ "lamda2=1.3; #wavelength in um\n",
+ "lamda3=2; #wavelength in um\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "f_lambda1=(303.33*(lamda1**-1)-233.33); #equation for lambda1\n",
+ "f_lambda2=(303.33*(lamda2**-1)-233.33); #equation for lambda2\n",
+ "f_lambda3=(303.33*(lamda3**-1)-233.33); #equation for lambda3\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"Material dispersion at Lambda 0.7um=\",round(f_lambda1,5);\n",
+ "print\"\\nMaterial dispersion at Lambda 1.3um=\",round(f_lambda2,5); #The answers vary due to round off error\n",
+ "print\"\\nMaterial dispersion at Lambda 2um=\",round(f_lambda3,5); #The answers vary due to round off error\n",
+ "print\"\\nIts is a standard silica fiber\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Material dispersion at Lambda 0.7um= 199.99857\n",
+ "\n",
+ "Material dispersion at Lambda 1.3um= 0.00077\n",
+ "\n",
+ "Material dispersion at Lambda 2um= -81.665\n",
+ "\n",
+ "Its is a standard silica fiber\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3 , Page no:32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "ncore=1.505; #refractive index of core\n",
+ "nclad=1.502; #refractive index of cladding\n",
+ "V=2.4; #v no. for single mode \n",
+ "lambda1=1300e-9; #operating wavelength in m\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "NA=math.sqrt(ncore**2-nclad**2); #numerical aperture\n",
+ "a=V*(lambda1)/(2*3.14*NA); #dimension of fiber core in m\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"The numarical aperture =\",round(NA,5);\n",
+ "print\"\\n Dimension of fiber core =\",round(a*1e6,5),\"um\"; #multiplication by 1e6 to convert unit from m to um"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numarical aperture = 0.09498\n",
+ "\n",
+ " Dimension of fiber core = 5.23079 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4 , Page no:33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "V=2; #v no. for single mode \n",
+ "a=4; #radius of fiber in um\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "w=a*(0.65+1.619*V**(-3/2)+2.87*V**-6); #effective mode radius in um\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"Effective mode radius =\",round(w,5),\"um\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Effective mode radius = 5.06899 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6 , Page no:34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "m=0; #for dominant mode\n",
+ "v=0; #for dominant mode\n",
+ "n1=1.5; #refractive index of core\n",
+ "delta=0.01; #core clad index difference\n",
+ "a=5; #fiber radius in um\n",
+ "lambda1=1.3; #wavelength of operation in um\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "k0=(2*3.14/lambda1); #constant in /m\n",
+ "beta=math.sqrt((k0**2)*(n1**2)-(2*k0*n1*math.sqrt(2*delta)/a)); #propagation constant in rad/um\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"Propagation constant=\",round(beta,5),\"rad/um\"; #The answers vary due to round off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Propagation constant= 7.21781 rad/um\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.8 , Page no:34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "M=1000; #modes supported\n",
+ "lambda1=1.3; #operating wavelength in um\n",
+ "n1=1.5; #refractive index of core\n",
+ "n2=1.48; #refractive index of cladding\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "V=math.sqrt(2*M); #normalised frequency V no.\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical apperture\n",
+ "R=lambda1*V/(2*3.14*NA); #radius of fiber in um\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"Core Radius=\",round(R,5),\"um\"; #The answer provided in the textbook is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Core Radius= 37.92063 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.9 , Page no:35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "lambda1=1.3; #wavelength of operation in um\n",
+ "n1=1.5; #refractive index of core\n",
+ "n2=1.48; #refractive index of cladding\n",
+ "k0=2*3.14/lambda1; #constant in /m\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "#case-1\n",
+ "b=0.5; #normalized propagation constant\n",
+ "k0=2*3.14/lambda1; #constant\n",
+ "beta=k0*math.sqrt(n2**2+b*(n1**2-n2**2)); #propagation constant\n",
+ "\n",
+ "#case-2\n",
+ "#given \n",
+ "lambda1=1.3; #wavelength of operation in um\n",
+ "n1=1.5; #refractive index of core\n",
+ "n2=1.48; #refractive index of cladding\n",
+ "k0=2*3.14/lambda1; #constant in /m\n",
+ "b=0.5; #normalized propagation constant\n",
+ "k0=2*3.14/lambda1; #constant\n",
+ "b1=(((n1+n2)/2)**2-n2**2)/(n1**2-n2**2); #normalized propagation constant\n",
+ "\n",
+ "#case-3\n",
+ "#given \n",
+ "lambda1=1.3; #wavelength of operation in um\n",
+ "n1=1.5; #refractive index of core\n",
+ "n21=1.0; #refractive index of cladding\n",
+ "k0=2*3.14/lambda1; #constant in /m\n",
+ "b=0.5; #normalized propagation constant\n",
+ "k0=2*3.14/lambda1; #constant\n",
+ "beta1=k0*math.sqrt(n21**2+b*(n1**2-n21**2)); #propagation constant\n",
+ "\n",
+ "#RESULTS\n",
+ "print\"Propagation constant=\",round(beta,5),\"rad/um\"; #The answers vary due to round off error\n",
+ "print\"\\nPropagation constant=\",round(b1,5); #The answers vary due to round off error\n",
+ "print\"\\nPropagation constant=\",round(beta1,5),\"rad/um\"; #The answers vary due to round off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Propagation constant= 7.19801 rad/um\n",
+ "\n",
+ "Propagation constant= 0.49832\n",
+ "\n",
+ "Propagation constant= 6.15805 rad/um\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.10 , Page no:35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#initialisation of variables\n",
+ "#case-1\n",
+ "n1=1.49; #refractive index of core\n",
+ "n2=1.46; #refractive index of cladding\n",
+ "c=3*10**5; #speed of light in Km/s\n",
+ "t1=n1/c; #time delay for one traveling along axis in s/Km\n",
+ "t2=(n1**2/n2)/c; #time delay for one traveling along path that is totally reflecting at the first interface in s/km\n",
+ "\n",
+ "#case-2\n",
+ "n11=1.47; #refractive index of core\n",
+ "n21=1.46; #refractive index of cladding\n",
+ "c1=3*10**5; #speed of light in Km/s\n",
+ "t11=n11/c1; #time delay for one traveling along axis in\n",
+ "t22=(n11**2/n21)/c1; #time delay for one traveling along path that is totally reflecting at the first interface\n",
+ "\n",
+ "\n",
+ "print\"time delay for traveling along axis =\",round(t1*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
+ "print\"\\ntime delay for traveling along path that is totally reflecting at the first interface =\",round(t2*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
+ "print\"\\ntime delay for traveling along axis =\",round(t11*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
+ "print\"\\ntime delay for traveling along path that is totally reflecting at the first interface =\",round(t22*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n",
+ "#The answer provided in the textbook is wrong it has got wrong unit"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "time delay for traveling along axis = 4.96667 us/Km\n",
+ "\n",
+ "time delay for traveling along path that is totally reflecting at the first interface = 5.06872 us/Km\n",
+ "\n",
+ "time delay for traveling along axis = 4.9 us/Km\n",
+ "\n",
+ "time delay for traveling along path that is totally reflecting at the first interface = 4.93356 us/Km\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file