summaryrefslogtreecommitdiff
path: root/sample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commit64d949698432e05f2a372d9edc859c5b9df1f438 (patch)
tree012fd5b4ac9102cdcf5bc56305e49d6714fa5951 /sample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb
parent9c6ab8cbf3e1a84c780386abf4852d84cdd32d56 (diff)
downloadPython-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.gz
Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.bz2
Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.zip
Revised list of TBCs
Diffstat (limited to 'sample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb')
-rwxr-xr-xsample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb176
1 files changed, 176 insertions, 0 deletions
diff --git a/sample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb b/sample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb
new file mode 100755
index 00000000..a5fe0aae
--- /dev/null
+++ b/sample_notebooks/ManchukondaLalitha Pujitha/Chpater_1.ipynb
@@ -0,0 +1,176 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Gravity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1 pgno:10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time period of the pendulum is sec 1.00303620705\n"
+ ]
+ }
+ ],
+ "source": [
+ "#INPUT DATA\n",
+ "L=1;#Length of the bar in m\n",
+ "l=0.25;#Length of the pemdulum in m\n",
+ "from math import sqrt\n",
+ "#CALCULATIONS\n",
+ "k=sqrt((L**2)/12);#Radius of gyration m\n",
+ "T=sqrt(((k**2/l)+l)/9.8)*2*3.14;#Time period of pendulum in s\n",
+ "\n",
+ "#OUTPUT\n",
+ "print'Time period of the pendulum is sec',T\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2 pgno:11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The acceleration due to gravity is m s^-2 9.8002855276\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "#INPUT DATA\n",
+ "T=2.223;#Time taken for 1 oscillation in sec\n",
+ "L=1.228;#Length of the pendulum in m\n",
+ "\n",
+ "#CALCULATIONS\n",
+ "g=((4*3.14**2*L)/(T**2));#Acceleration due to gravity in m.s^-2\n",
+ "\n",
+ "#OUTPUT\n",
+ "print'The acceleration due to gravity is m s^-2',g\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3 pgno:12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The time period of pendulum is s\n",
+ "Distance of another point from centre of gravity on bar with same time period is m 1.79428571429 0.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#INPUT DATA\n",
+ "l=1.2;#Length of of bar in m\n",
+ "from math import sqrt\n",
+ "#CALCULATIONS\n",
+ "k=sqrt(l**2/12);#Radius of gyration in m\n",
+ "T=sqrt(((k**2/(l/2))+(l/2))/9.8)*2*3.14;#Time period of the pendulum in s\n",
+ "L=((9.8*T**2)/(4*3.14**2));#Length in m\n",
+ "D=L-(l/2);#Another point where pendulum has same timeperiod in m\n",
+ "\n",
+ "#OUTPUT\n",
+ "print'The time period of pendulum is s\\nDistance of another point from centre of gravity on bar with same time period is m',T,D\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1 pgno:14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The minimum time period is obtained at cm -28.9035753267\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "#INPUT DATA\n",
+ "L=1;#Length of pendulum in m\n",
+ "B=0.05;#Width of pendulum in m\n",
+ "from math import sqrt\n",
+ "#CALCULATIONS\n",
+ "k=sqrt((L**2+B**2)/12);#Radius of gyration in m\n",
+ "D=((L/2)-k)*100;#distance of point of minimum time period from one end in cm\n",
+ "\n",
+ "#OUTPUT\n",
+ "print'The minimum time period is obtained at cm',D\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}