summaryrefslogtreecommitdiff
path: root/sample_notebooks/LalitKumar
diff options
context:
space:
mode:
authorTrupti Kini2016-03-06 23:30:10 +0600
committerTrupti Kini2016-03-06 23:30:10 +0600
commitf78ea80ea8da9f42637ce019f233895e0638b230 (patch)
tree3ef9791b558642676567bf2b4dc94f9b38a57c31 /sample_notebooks/LalitKumar
parent22e17d795629cfe00e03435f879cfd07f27e096a (diff)
downloadPython-Textbook-Companions-f78ea80ea8da9f42637ce019f233895e0638b230.tar.gz
Python-Textbook-Companions-f78ea80ea8da9f42637ce019f233895e0638b230.tar.bz2
Python-Textbook-Companions-f78ea80ea8da9f42637ce019f233895e0638b230.zip
Added(A)/Deleted(D) following books
A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter10.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter11.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter12.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter13.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter14.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter2.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter3.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter4.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter5.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter6.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter7.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter8.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter9.ipynb A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/screenshots/1.png A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/screenshots/2.png A Fiber_Optics_and_Optoelectronics_by_R._P._Khare/screenshots/3.png A sample_notebooks/LalitKumar/Ch3.ipynb
Diffstat (limited to 'sample_notebooks/LalitKumar')
-rw-r--r--sample_notebooks/LalitKumar/Ch3.ipynb683
1 files changed, 683 insertions, 0 deletions
diff --git a/sample_notebooks/LalitKumar/Ch3.ipynb b/sample_notebooks/LalitKumar/Ch3.ipynb
new file mode 100644
index 00000000..9c58334b
--- /dev/null
+++ b/sample_notebooks/LalitKumar/Ch3.ipynb
@@ -0,0 +1,683 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Ch-3 Electron Ballistics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1 : Page 225"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of the electron, v =sqrt(2*q*V/m) = 4.19e+07 m/s\n",
+ "The kinetic energy = q x V = 5000 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "q=1.6*10**-19 #charge of electron\n",
+ "V=5000 #potential difference\n",
+ "m=9.1*10**-31 #mass of electron\n",
+ "v=sqrt(2*q*V/m) #speed of electron\n",
+ "print \"Speed of the electron, v =sqrt(2*q*V/m) = %0.2e m/s\"% v\n",
+ "ke=(q*V)/(1.6*10**-9) #kinetic energyin eV\n",
+ "x1=ke*10**10\n",
+ "print \"The kinetic energy = q x V = %0.f eV\"%x1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2 Page 225"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mass of the charged particle = 1000 times the mass of an electron = 9.10e-28 kg\n",
+ "The charge of the partical = 1.6*10**-19 C\n",
+ "Therefore, The velocity, v = sqrt(2*q*V/me) = 5.93e+05 m/s\n",
+ "Kinetic energy = q x V = 1000.00 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "me=1000*9.1*10**-31\n",
+ "print \"Mass of the charged particle = 1000 times the mass of an electron = %0.2e kg\"%me\n",
+ "print \"The charge of the partical = 1.6*10**-19 C\"\n",
+ "q=1.6*10**-19 #charge of the particle\n",
+ "V=1000 #potential difference\n",
+ "format(8)\n",
+ "v=sqrt(2*q*V/me)\n",
+ "print \"Therefore, The velocity, v = sqrt(2*q*V/me) = %0.2e m/s\"%v\n",
+ "ke=(q*V)/(1.6*10**-19) # in eV\n",
+ "print \"Kinetic energy = q x V = %0.2f eV\"%ke"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3 : Page 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Therefore, E = V / d = 5.83e+04 \n",
+ " ax = qE / m = 1.03e+16 m/s**2\n",
+ "We know that,\n",
+ " x = vox*t + 0.5*a*t**2\n",
+ " vx = vox + ax*t\n",
+ "(i) Consider x = 3*10**-3 m\n",
+ "3*10**-3 = 3*10**6*t + 5.13*10**15*t**2\n",
+ "Solving this equation,\n",
+ "t = 5.26e-10 seconds \n",
+ "vx = 8.40e+06 m/s \n",
+ "(ii) Consider x = 6*10**-6 m\n",
+ "t**2+(5.85*10**-10)*t-(1.17*10**-18) = 0\n",
+ "Solving this equation,\n",
+ "t = 8.28e-10 seconds \n",
+ "vx = 1.15e+07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "d=6*10**-3\n",
+ "q=1.6*10**-19\n",
+ "m=9.1*10**-31\n",
+ "vax=3*10**6\n",
+ "E=350/d\n",
+ "print \"Therefore, E = V / d = %0.2e \"%E\n",
+ "ax=q*E/m\n",
+ "print \" ax = qE / m = %0.2e m/s**2\"%ax\n",
+ "print \"We know that,\"\n",
+ "print \" x = vox*t + 0.5*a*t**2\"\n",
+ "print \" vx = vox + ax*t\"\n",
+ "print \"(i) Consider x = 3*10**-3 m\"\n",
+ "print \"3*10**-3 = 3*10**6*t + 5.13*10**15*t**2\"\n",
+ "print \"Solving this equation,\"\n",
+ "from sympy import symbols, solve\n",
+ "t=symbols('t')\n",
+ "p1=(5.13*10**15)*t**2+(3*10**6)*t-3*10**-3\n",
+ "t1=solve(p1,t)\n",
+ "ans1=t1[1]\n",
+ "print \"t = %0.2e seconds \"%ans1\n",
+ "vx=(3*10**6)+((1.026*10**16)*(5.264*10**-10))\n",
+ "print \"vx = %0.2e m/s \"%vx\n",
+ "print \"(ii) Consider x = 6*10**-6 m\"\n",
+ "print \"t**2+(5.85*10**-10)*t-(1.17*10**-18) = 0\"\n",
+ "print \"Solving this equation,\"\n",
+ "t=symbols('t')\n",
+ "p2=t**2+(5.85*10**-10)*t-1.17*10**-18\n",
+ "t2=solve(p2, t)\n",
+ "ans2=t2[1]\n",
+ "print \"t = %0.2e seconds \"%ans2\n",
+ "vx1=(3*10**6)+((8.28*10**-10)*(1.026*10**16))\n",
+ "print \"vx = %0.2e m/s\"%vx1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4 : Page 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i)The electron starts from rest at plate A, therefore, the initial velocity is zero. The velocity of electron on reaching plate B is\n",
+ "v = sqrt(2*q*V/m) = 8.39e+06 m/s\n",
+ "(ii)Time taken by the electron to travel from plate A to plate B can be calculated from the average velocity of the electron in transit.The average velocity is,\n",
+ "vaverage = (Initial velocity + Final velocity) / 2 = 4.19e+06 m/s\n",
+ "Therefore, time taken for travel is,\n",
+ "Time = Separation between the plates / Average velocity = 7.16e-10 seconds\n",
+ "(iii)Kinetic energy of the electron on reaching the plate B is\n",
+ "Kinetic energy = q V = 3.20e-17 Joules\n"
+ ]
+ }
+ ],
+ "source": [
+ "V=200\n",
+ "m=9.1*10**-31\n",
+ "format(8)\n",
+ "v=sqrt(2*q*V/m)\n",
+ "print \"(i)The electron starts from rest at plate A, therefore, the initial velocity is zero. The velocity of electron on reaching plate B is\"\n",
+ "print \"v = sqrt(2*q*V/m) = %0.2e m/s\"%v\n",
+ "iv=0 #initial velocity\n",
+ "fv=8.38*10**6 #final velocity\n",
+ "va=(iv+fv)/2 #average velocity of electron in transit\n",
+ "print \"(ii)Time taken by the electron to travel from plate A to plate B can be calculated from the average velocity of the electron in transit.The average velocity is,\"\n",
+ "print \"vaverage = (Initial velocity + Final velocity) / 2 = %0.2e m/s\"%va\n",
+ "sp=3*10**-3 #separation between the plates\n",
+ "time=sp/va\n",
+ "print \"Therefore, time taken for travel is,\"\n",
+ "print \"Time = Separation between the plates / Average velocity = %0.2e seconds\"%time\n",
+ "ke=q*V\n",
+ "print \"(iii)Kinetic energy of the electron on reaching the plate B is\"\n",
+ "print \"Kinetic energy = q V = %0.2e Joules\"%ke"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5 : Page 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The speed acquired by electron due to the applied voltage is\n",
+ "v = sqrt(vinitial**2+(2*q*V/m)) = 1.03e+07 m/s\n",
+ "The average velocity,\n",
+ "vaverage = (vinitial + vfinal) / 2 = 5.66e+06 m/s\n",
+ "Therefore, time for travel = seperation between plates / vaverage = 1.41e-09 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "vinitial=1*10**6\n",
+ "q=1.6*10**-19\n",
+ "V=300\n",
+ "m=9.1*10**-31\n",
+ "vfinal=10.33*10**6\n",
+ "sp=8*10**-3 #separation between plates\n",
+ "v=sqrt(vinitial**2+(2*q*V/m))\n",
+ "print \"The speed acquired by electron due to the applied voltage is\"\n",
+ "print \"v = sqrt(vinitial**2+(2*q*V/m)) = %0.2e m/s\"%v\n",
+ "va=(vinitial+vfinal)/2\n",
+ "print \"The average velocity,\"\n",
+ "print \"vaverage = (vinitial + vfinal) / 2 = %0.2e m/s\"%va\n",
+ "time=sp/va\n",
+ "print \"Therefore, time for travel = seperation between plates / vaverage = %0.2e seconds\"%time"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6 : Page 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electric field intensity,\n",
+ "E = -5t / d*10*-9 = -5t / 10**-9*1*10**-2 = 5*10**11*t (for 0 < t < t1)\n",
+ " = 0 (for t1 < t < infinity)\n",
+ "(i) The position of the electron after 1ns,\n",
+ " d(um) = (5*10**11)*(1.76*10**11)*((1*10**-9)**3/6) = 14.67 um\n",
+ "(ii) The rest of the distance to be covered by the electron = 0.8cm - 14.7 um = 0.80\n",
+ "Since, the potential difference drops to zero volt, after 1ns, the electron will travel the distance of 0.799 cm with a constant velocity of\n",
+ "vx = (5*10**11)*(q/m)*(t**2/2) = 4.40e+04 m/s\n",
+ "Therefore, the time t2 = d / vx = 1.81e-07 seconds\n",
+ "The total time of transit of electron from cathode to anode = 1.82e-07 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "d=(5*10**11*1.76*10**11)*(((1*10**-9)**3)/6)\n",
+ "x1=d*10**6\n",
+ "print \"The electric field intensity,\"\n",
+ "print \"E = -5t / d*10*-9 = -5t / 10**-9*1*10**-2 = 5*10**11*t (for 0 < t < t1)\"\n",
+ "print \" = 0 (for t1 < t < infinity)\"\n",
+ "print \"(i) The position of the electron after 1ns,\"\n",
+ "print \" d(um) = (5*10**11)*(1.76*10**11)*((1*10**-9)**3/6) = %0.2f um\"%x1\n",
+ "x2=0.8-(d*10**2)\n",
+ "print \"(ii) The rest of the distance to be covered by the electron = 0.8cm - 14.7 um = %0.2f\"%x2\n",
+ "print \"Since, the potential difference drops to zero volt, after 1ns, the electron will travel the distance of 0.799 cm with a constant velocity of\"\n",
+ "vx=(5*10**11*1.76*10**11)*(((1*10**-9)**2)/2)\n",
+ "print \"vx = (5*10**11)*(q/m)*(t**2/2) = %0.2e m/s\"%vx\n",
+ "x3=(x2/vx)*10**-2\n",
+ "print \"Therefore, the time t2 = d / vx = %0.2e seconds\"%x3\n",
+ "x4=(1*10**-9)+x3\n",
+ "print \"The total time of transit of electron from cathode to anode = %0.2e seconds\"%x4"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7 : Page 230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The velocity of the electron is = sqrt(2qVa/m) = 3.75e+06 m/s\n",
+ "The time taken for one revolution is T = 2*pi*m / B*q = 3.93e-11 seconds\n",
+ "The pitch = T*v*cos(theta) = 1.28e-04 meters\n",
+ "Thus, the electron has travelled = 1.28e-04 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "q=1.6*10**-19\n",
+ "Va=40\n",
+ "m=9.1*10**-31\n",
+ "B=0.91\n",
+ "ve=sqrt(2*q*Va/m)\n",
+ "print \"The velocity of the electron is = sqrt(2qVa/m) = %0.2e m/s\"%ve\n",
+ "tt=(2*pi*m)/(B*q)\n",
+ "print \"The time taken for one revolution is T = 2*pi*m / B*q = %0.2e seconds\"%tt\n",
+ "p=tt*ve*(sqrt(3)/2) #cos(30)=sqrt(3)/2\n",
+ "print \"The pitch = T*v*cos(theta) = %0.2e meters\"%p\n",
+ "print \"Thus, the electron has travelled = %0.2e meters\"%p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8 : Page 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The velocity of the charged particle before entering the field is,\n",
+ "v = sqrt(2aV/m) * sqrt(2(3q)V/2m) = sqrt(6qV/2m) = 5.14e+06 m/s\n",
+ "(ii) The radius of the helical path is\n",
+ "r = Mvsine(theta) / QB = 2mvsine(theta) / 3qB = 0.41 mm\n",
+ "(iii) Time for one revolution,\n",
+ "T = 2*pi*M / B*Q = 2*pi*(2m) / B(3q) = 1.19e-09 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import radians as rdn, sin\n",
+ "radians=rdn(25)\n",
+ "q=1.6*10**-19\n",
+ "m=9.1*10**-31\n",
+ "V=50\n",
+ "Q=3*q\n",
+ "M=2*m\n",
+ "v=sqrt(2*Q*V/M)\n",
+ "print \"(i) The velocity of the charged particle before entering the field is,\"\n",
+ "print \"v = sqrt(2aV/m) * sqrt(2(3q)V/2m) = sqrt(6qV/2m) = %0.2e m/s\"%v\n",
+ "B=0.02\n",
+ "r=(M*v*sin(radians))/(Q*B)\n",
+ "r1=r*10**3\n",
+ "print \"(ii) The radius of the helical path is\"\n",
+ "print \"r = Mvsine(theta) / QB = 2mvsine(theta) / 3qB = %0.2f mm\"%r1\n",
+ "T=(2*pi*M)/(B*Q)\n",
+ "print \"(iii) Time for one revolution,\"\n",
+ "print \"T = 2*pi*M / B*Q = 2*pi*(2m) / B(3q) = %0.2e seconds\"%T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9 : Page 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Given, T = 35.5/B *10**-12 s, B = 0.01 Wb/m**3, Va = 900V\n",
+ "Therefore, T = 3.55*10**-9 s\n",
+ "Velocity, v(m/s) = sqrt(2qVa/m) = 1.78e+07 m/s\n",
+ "Radius, r(mm) = mv/qB = v/(q/m)B = 10.11 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Given, T = 35.5/B *10**-12 s, B = 0.01 Wb/m**3, Va = 900V\"\n",
+ "print \"Therefore, T = 3.55*10**-9 s\"\n",
+ "T = 3.55*10**-9\n",
+ "Va=900\n",
+ "v=sqrt(2*(1.76*10**11)*900)\n",
+ "print \"Velocity, v(m/s) = sqrt(2qVa/m) = %0.2e m/s\"%v\n",
+ "r=(17.799*10**6)/(0.01*1.76*10**11)\n",
+ "x1=r*10**3\n",
+ "print \"Radius, r(mm) = mv/qB = v/(q/m)B = %0.2f mm\"%x1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10 : Page 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The velocity of the electron, v = 1.45e+07 m/s\n",
+ "(ii) ma = qE\n",
+ "Thus, acceleration, a(m/s)= qE / m = (q/m)(Vd/d) = 4.40e+14 m/s\n",
+ "(iii) The deflection on the screen, D(cm)= ILVd / 2Vad = 1.46 cm\n",
+ "(iv) Deflection sensitivity(cm/V)= D / Vd = 0.07 cm/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "Va=600\n",
+ "l=3.5\n",
+ "d=0.8\n",
+ "L=20\n",
+ "Vd=20\n",
+ "format(9)\n",
+ "q=1.6*10**-19\n",
+ "m=9.1*10**-31\n",
+ "v=sqrt(2*q*Va/m)\n",
+ "print \"(i) The velocity of the electron, v = %0.2e m/s\"%v\n",
+ "a=(q/m)*(Vd/d)\n",
+ "a1=a*10**2\n",
+ "print \"(ii) ma = qE\"\n",
+ "print \"Thus, acceleration, a(m/s)= qE / m = (q/m)(Vd/d) = %0.2e m/s\"%a1\n",
+ "D=(l*L*Vd)/(2*Va*d)\n",
+ "print\"(iii) The deflection on the screen, D(cm)= ILVd / 2Vad = %0.2f cm\"% D\n",
+ "Ds=D/Vd\n",
+ "print \"(iv) Deflection sensitivity(cm/V)= D / Vd = %0.2f cm/V\"%Ds"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11 : Page 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) The velocity of the beam, v = sqrt(2qVa / m) = 1.68e+07 m/s\n",
+ "(ii) The deflection of the beam, D = lLVd / 2dVa\n",
+ "Therefore, the voltage that must be applied to the plates, Vd = 20.00 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "q=1.6*10**-19\n",
+ "m=9.1*10**-31\n",
+ "Va=800\n",
+ "l=2\n",
+ "d=0.5\n",
+ "L=20\n",
+ "D=1\n",
+ "v=sqrt(2*q*Va/m)\n",
+ "print \"(i) The velocity of the beam, v = sqrt(2qVa / m) = %0.2e m/s\"%v\n",
+ "Vd=(D*2*d*Va)/(l*L)\n",
+ "print \"(ii) The deflection of the beam, D = lLVd / 2dVa\"\n",
+ "print \"Therefore, the voltage that must be applied to the plates, Vd = %0.2f V\"%Vd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12 : Page 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) Velocity of beam, v = sqrt(2qVa/m) = 1.88e+07 m/s\n",
+ "(ii) Deflection sensitivity = D/Vd\n",
+ "where D = l*L*Vd / 2*Va*d = 0.01 cm\n",
+ "Therefore, the deflection sensitivity = 4.00e-04 cm/V\n",
+ "(iii) To find the angle of deflection, theta :\n",
+ " tan(theta) = D/L-l\n",
+ "Therefore, theta = tan**-1(D/L-l) = 0.032 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import degrees, atan\n",
+ "v=sqrt((2*(1.6*10**-19)*1000)/(9.1*10**-31))\n",
+ "print \"(i) Velocity of beam, v = sqrt(2qVa/m) = %0.2e m/s\"%v\n",
+ "D=((2*10**-2)*(20*10**-2)*25)/(2*1000*(0.5*10**-2))\n",
+ "print \"(ii) Deflection sensitivity = D/Vd\"\n",
+ "print \"where D = l*L*Vd / 2*Va*d = %0.2f cm\"%D\n",
+ "ds=D/25\n",
+ "print \"Therefore, the deflection sensitivity = %0.2e cm/V\"%ds\n",
+ "theta=degrees(atan(1/1800))\n",
+ "print \"(iii) To find the angle of deflection, theta :\"\n",
+ "print \" tan(theta) = D/L-l\"\n",
+ "print \"Therefore, theta = tan**-1(D/L-l) = %0.3f degrees\"%theta"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13 : Page 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electron starts moving in the +y direction, but, since acceleration is along the -y direction, its velocity isreduced to zero at time t=t''\n",
+ "v0y = v0 * cos(theta) = 1.50e+05 m/s\n",
+ "ay = qE / m = 1.60e+14 m/s**2\n",
+ "t'' = v0y / ay = 0.94 ns\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import cos\n",
+ "v0=3*10**5\n",
+ "E=910\n",
+ "theta=60\n",
+ "m=9.109*10**-31\n",
+ "q=1.6*10**-19\n",
+ "print \"The electron starts moving in the +y direction, but, since acceleration is along the -y direction, its velocity isreduced to zero at time t=t''\"\n",
+ "v0y=v0*cos(theta*pi/180)\n",
+ "print \"v0y = v0 * cos(theta) = %0.2e m/s\"%v0y\n",
+ "ay=(q*E)/m\n",
+ "print \"ay = qE / m = %0.2e m/s**2\"%ay\n",
+ "tdash=v0y/ay\n",
+ "x1=tdash*10**9\n",
+ "print \"t'' = v0y / ay = %0.2f ns\"%x1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14 : Page 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The deflection of the spot,\n",
+ "D = (IBL/sqrt(Va))*sqrt(q/2m) = 0.42 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "D=(((2*10**-2)*(1*10**-4)*(20*10**-2))/sqrt(800))*sqrt((1.6*10**-19)/(2*9.1*10**-31))\n",
+ "x1=D*10**2\n",
+ "print \"The deflection of the spot,\"\n",
+ "print \"D = (IBL/sqrt(Va))*sqrt(q/2m) = %0.2f cm\"%x1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15 : Page 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The magnetostatic deflection, D = (IBL/sqrt(Va))*sqrt(q/2m)\n",
+ "The electrostatic deflection, D = lLVd / 2dVa\n",
+ "For returning the beam back to the centre, the electrostatic deflection and the magnetostatic deflection must be equal, i.e.,\n",
+ "(IBL/sqrt(Va))*sqrt(q/2m) = lLVd / 2dVa\n",
+ "Therefore,\n",
+ "Vd = dB*sqrt(2*Va*q/m) = 33.55 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"The magnetostatic deflection, D = (IBL/sqrt(Va))*sqrt(q/2m)\"\n",
+ "print \"The electrostatic deflection, D = lLVd / 2dVa\"\n",
+ "print \"For returning the beam back to the centre, the electrostatic deflection and the magnetostatic deflection must be equal, i.e.,\"\n",
+ "print \"(IBL/sqrt(Va))*sqrt(q/2m) = lLVd / 2dVa\"\n",
+ "print \"Therefore,\"\n",
+ "Vd=(1*10**-2*2*10**-4)*sqrt((2*800*1.6*10**-19)/(9.1*10**-31))\n",
+ "print \"Vd = dB*sqrt(2*Va*q/m) = %0.2f V\"%Vd"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}