diff options
author | Trupti Kini | 2016-12-28 23:30:37 +0600 |
---|---|---|
committer | Trupti Kini | 2016-12-28 23:30:37 +0600 |
commit | 908ba07e328db0a7de5b6e095d237c9dd7b134c2 (patch) | |
tree | 71aa26adb8c3d79a568e827e0f4dddb4a25ced16 /sample_notebooks/DayanidhiKrishna/Chapter2.ipynb | |
parent | 1a150fca569f908f3a0d4756b6345842188b171d (diff) | |
download | Python-Textbook-Companions-908ba07e328db0a7de5b6e095d237c9dd7b134c2.tar.gz Python-Textbook-Companions-908ba07e328db0a7de5b6e095d237c9dd7b134c2.tar.bz2 Python-Textbook-Companions-908ba07e328db0a7de5b6e095d237c9dd7b134c2.zip |
Added(A)/Deleted(D) following books
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter40.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter40.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter41.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter41.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter43.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter43.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter44.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter44.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter45.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter45.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter46.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter46.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter47.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter47.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter49.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter49.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter50.ipynb -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/chapter50.ipynb
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/screenshots/figure_1.png -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/screenshots/figure_1.png
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/screenshots/figure_2.png -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/screenshots/figure_2.png
R _A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/screenshots/figure_3.png -> A_Textbook_of_Electrical_Technology:Transmission,Distribution_And_Utilisation(Vol_III)_by_B.L.Thareja_and_A.K.Thareja/screenshots/figure_3.png
A Engineering_Mechanics_by_A._K._Tayal/README.txt
A basic_electrical_engineering_by_nagsarkar_and_sukhija/README.txt
A sample_notebooks/DayanidhiKrishna/Chapter2.ipynb
Diffstat (limited to 'sample_notebooks/DayanidhiKrishna/Chapter2.ipynb')
-rw-r--r-- | sample_notebooks/DayanidhiKrishna/Chapter2.ipynb | 231 |
1 files changed, 231 insertions, 0 deletions
diff --git a/sample_notebooks/DayanidhiKrishna/Chapter2.ipynb b/sample_notebooks/DayanidhiKrishna/Chapter2.ipynb new file mode 100644 index 00000000..bb11612c --- /dev/null +++ b/sample_notebooks/DayanidhiKrishna/Chapter2.ipynb @@ -0,0 +1,231 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 Antenna Fundamentals" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.1 Calculation of Etheta" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Distance between point's is m 200 m\n", + " the wavelength is 10 m\n", + " the current element is 0.00030000000000000003 A/m\n", + " Etheta value is V/m 0.2826\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "# Etheta = 60∗ pi ∗ I ( dl / lambda ) ∗ ( sin(theta) / r) where thetha = 90\n", + "r =200;\n", + "print ( \" Distance between point's is m\" ,r ,'m') \n", + "lam =10;\n", + "print ( \" the wavelength is \" , lam ,'m') ;\n", + "idl =3*10**-4;\n", + "print ( \" the current element is \" , idl ,\"A/m\") ;\n", + "Etheta =60*3.14*3*10** -3/2\n", + "print(\" Etheta value is V/m\",Etheta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2 Calculation of directive gain" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "radiation resistance is 72 ohm\n", + "the Loss resistance is 8 ohm\n", + "the power gain of antenna is 30\n", + "the Directivity gain is 33.333333333333336\n", + "the Directivity gain in db is given by 15.228787452803376\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#etta=Prad/Prad+Ploss=Rrad/Rrad+Rloss\n", + "Rrad=72;\n", + "print(\"radiation resistance is \",Rrad,\"ohm\");\n", + "Rloss=8;\n", + "ettar=72/(72+8);\n", + "print(\"the Loss resistance is \",Rloss,\"ohm\");\n", + "Gpmax=30;\n", + "print(\"the power gain of antenna is \",Gpmax);\n", + "Gdmax=Gpmax/ettar;\n", + "Gdmax1=10 *math.log10(Gdmax);#in db\n", + "print(\"the Directivity gain is \",Gdmax);\n", + "print(\"the Directivity gain in db is given by \",Gdmax1);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.3 Radiation Resistance calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the elemental length is given by 0.1\n", + "the radiation resistance is 7.895683520871488 ohm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Rrad=80*pi^2*(dl/lambda)^2\n", + "dl=0.1;\n", + "print(\"the elemental length is given by \",dl);\n", + "Rrad=80*(math.pi)**2*(0.1)**2;\n", + "print(\"the radiation resistance is \",Rrad,\"ohm\");\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.4 Rms current calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the wavelength is 3.0 m\n", + "the Radiated power is 100 W\n", + "the elemental length is 0.01 m\n", + "the Irms current is 106.76438151257656 A\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Prad=80*(pi)**2*(dl/lambda)*(Irms)**2;\n", + "frequency=100*10**6;\n", + "lamda=(3*10**8)/(100*10**6); #lamda=c/f;\n", + "print(\"the wavelength is \",lamda,\"m\");\n", + "Prad=100;\n", + "print(\"the Radiated power is \",Prad,\"W\");\n", + "dl=0.01;\n", + "print(\"the elemental length is \",dl,\"m\");\n", + "Irms2=(3/0.01)**2*100/(80*(math.pi)**2);\n", + "Irms=math.sqrt(Irms2);\n", + "print(\"the Irms current is \",Irms,\"A\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.5 Effective aperture calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the electric field is 0.05 V/m\n", + "the average power is 3.315727981081154e-06 W\n", + "the maximum effective aperture area is 0.603318250377074 m^2\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Pavg=0.5*|E|^2/etta0,Prmax=2*10^-6W,Aem=Prmax/Pavg\n", + "\n", + "E=50*10**-3;\n", + "Etta0=120*(math.pi);\n", + "print(\"the electric field is \",E,\"V/m\");\n", + "Pavg=0.5*(50*10**-3)**2/(120*(math.pi));\n", + "print(\"the average power is \",Pavg,\"W\");\n", + "Aem=(2*10**-6)/(3.315*10**-6);\n", + "print(\"the maximum effective aperture area is \",Aem,\"m^2\");\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} |