summaryrefslogtreecommitdiff
path: root/sample_notebooks/AshvaniKumar
diff options
context:
space:
mode:
authorhardythe12015-06-11 17:31:11 +0530
committerhardythe12015-06-11 17:31:11 +0530
commit79c59acc7af08ede23167b8455de4b716f77601f (patch)
tree2d6ff34b6f131d2671e4c6b798f210b3cb1d4ac7 /sample_notebooks/AshvaniKumar
parentdf60071cf1d1c18822d34f943ab8f412a8946b69 (diff)
downloadPython-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.tar.gz
Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.tar.bz2
Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.zip
add books
Diffstat (limited to 'sample_notebooks/AshvaniKumar')
-rwxr-xr-xsample_notebooks/AshvaniKumar/CH2.ipynb300
1 files changed, 300 insertions, 0 deletions
diff --git a/sample_notebooks/AshvaniKumar/CH2.ipynb b/sample_notebooks/AshvaniKumar/CH2.ipynb
new file mode 100755
index 00000000..66f57963
--- /dev/null
+++ b/sample_notebooks/AshvaniKumar/CH2.ipynb
@@ -0,0 +1,300 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e3537477beffef32716056a02b1119855be97d741374cf7c8e1075a3a804210f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ch-2, Optical Fibers & its types"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.1 ; page 146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "#Given data :\n",
+ "n1=1.40 #refractive index\n",
+ "delta=1 #relative refractive index difference in %\n",
+ "#Formula : n2/n1=1-delta\n",
+ "n2=n1*(1-delta/100) #refractive index(unitless)\n",
+ "print \"Refractive index of cladding is\",n2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index of cladding is 1.386\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.2 ; page 149"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "from numpy import sin, arcsin, pi\n",
+ "#Given data :\n",
+ "fi_o=22 #in Degree\n",
+ "delta=3 #relative refractive index difference in %\n",
+ "#Part (a) :\n",
+ "#Formula : NA=sin(fi_o).....(max)\n",
+ "NA=sin(fi_o*pi/180) #Numerical Aperture(Unitless)\n",
+ "print \"Numerical Aperture : \",round(NA,2)\n",
+ "#Part (b) :\n",
+ "#Formula : n2/n1=1-delta\n",
+ "#Let say, n2/n1=n2byn1\n",
+ "n2byn1=(1-delta/100) #refractive index(unitless)\n",
+ "#Formula : sin(fi_C)=n2/n1 \n",
+ "fi_c=arcsin(n2byn1) #in degree\n",
+ "print \"Critical Angle at core cladding interface is\",round(fi_c,2),\"Degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Numerical Aperture : 0.37\n",
+ "Critical Angle at core cladding interface is 1.33 Degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.3; page 156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "from numpy import sqrt\n",
+ "#Given data :\n",
+ "delta=0.45 #relative refractive index difference in %\n",
+ "fi_o=0.115 #in Radian\n",
+ "c=3*10**8 #speed of light in m/s\n",
+ "#Formula : NA=sin(fi_o).....(max)\n",
+ "NA=sin(fi_o) #Numerical Aperture(Unitless)\n",
+ "#Formula : NA=n1*sqrt(2*delta)\n",
+ "n1=NA/sqrt(2*delta/100) #unitless\n",
+ "#Formula : n1=c/v \n",
+ "v=c/n1 #in m/s\n",
+ "print \"Speed of light in fibre core is \",round(v,2),\" m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of light in fibre core is 248028935.21 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.4; page 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "from numpy import sqrt, pi\n",
+ "#Given data :\n",
+ "n1=1.5 #Unitless\n",
+ "delta=1 #relative refractive index difference in %\n",
+ "lamda=1.3 #in um\n",
+ "N=1100 #No. of modes\n",
+ "#Formula : v=2*%pi*a*n1*NA/lambda \n",
+ "#NA=sqrt(2*delta)\n",
+ "#v=sqrt(2*N)\n",
+ "a=(sqrt(2*N)*lamda)/(2*pi*n1*sqrt(2*delta/100)) #Normalized frequency\n",
+ "d=2*a # um\n",
+ "print \"Diameter of the fiber core is\",round(d,2),\"um\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of the fiber core is 91.5 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.5; page 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "from numpy import sin, pi\n",
+ "#Given data :\n",
+ "\n",
+ "n1=1.52 #unitless\n",
+ "fi_o=8 #in Degree\n",
+ "#Formula : sin(fi_o)=n1*sqrt(2*delta)\n",
+ "delta=(sin(fi_o*pi/180)/n1)**2/2 #Relative refractive index\n",
+ "delta*=100 # in %\n",
+ "print \"The value of relative refractive index difference is \",round(delta,2),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of relative refractive index difference is 0.42 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.6; page 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "from numpy import pi, sqrt\n",
+ "#Given data :\n",
+ "N=700 #No. of modes\n",
+ "d=30 #in um\n",
+ "a=d/2 #in um\n",
+ "NA=0.62 #Numerical Aperture\n",
+ "#Formula : v=2*sqrt(N) and v=2*%pi*a*NA/lambda\n",
+ "lamda=2*pi*a*NA/(2*sqrt(N)) #in um\n",
+ "print \"Wavelength of light propagating in fibre is\",round(lamda,2),\" micro meter\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of light propagating in fibre is 1.1 micro meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exa 2.7;page 165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": true,
+ "input": [
+ "from __future__ import division\n",
+ "from numpy import pi, sqrt\n",
+ "#Given data :\n",
+ "n1=1.5 #unitless\n",
+ "alfa=2 #characteristic index profile\n",
+ "d=40 #in um\n",
+ "a=d/2 #in um\n",
+ "#Part (a) :\n",
+ "lamda=1.3 #in um\n",
+ "delta=1 \n",
+ "#Formula : v=2*%pi*a*NA/lambda=2*%pi*a*(n1*sqrt(2*delta))/lambda\n",
+ "v=2*pi*a*(n1*sqrt(2*delta/100))/lamda #Unitless\n",
+ "print \"Normalized Frequency for single mode transmission : \",round(v,2) \n",
+ "#Part (b) :\n",
+ "#Formula : N=(alfa/alfa+2)*(v**2/2)\n",
+ "N=(alfa/(alfa+2))*(v**2/2) #No. of guided modes\n",
+ "print \"No. of guided modes propagating in the fibre is %d\" %N"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Normalized Frequency for single mode transmission : 20.51\n",
+ "No. of guided modes propagating in the fibre is 105"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file